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Zusammenfassung

In dieser Arbeit stellen wir eine neue Methode zur Schätzung der sogenannten intrin-
sischen Dimension einer in der Regel endlichen Menge von Punkten vor. Derartige
Verfahren sind wichtig etwa zur Durchführung der Dimensionsreduktion eines multi-
variaten Datensatzes, ein häufig benötigter Verarbeitungsschritt im Data-Mining und
maschinellen Lernen.

Die zunehmende Zahl häufig automatisiert generierter, mehrdimensionaler Datensätze
ernormer Größe erfordert spezielle Methoden zur Berechnung eines jeweils entsprechen-
den reduzierten Datensatzes; im Idealfall werden dabei Redundanzen in den ursprüng-
lichen Daten entfernt, aber gleichzeitig bleiben die für den Anwender oder die Weiter-
verarbeitung entscheidenden Informationen erhalten.

Verfahren der Dimensionsreduktion errechnen aus einer gegebenen Punktmenge eine
neue Menge derselben Kardinalität, jedoch bestehend aus Punkten niedrigerer Dimen-
sion. Die geringere Zieldimension ist dabei zumeist eine unbekannte Größe. Unter gewis-
sen Modellannahmen, zum Beispiel für Punkte auf einer niederdimensionalen Mannig-
faltigkeit, wird diese Größe, welche hier der Dimension der Mannigfaltigkeit entspricht,
auch als intrinsische Dimension der Punktmenge bezeichnet.

Zur Schätzung dieser intrinsischen Dimension existieren diverse Methoden. Viele
dieser Verfahren basieren auf der Auswertung lokaler, niederdimensionaler Größen, ins-
besondere Euklidischer Abstände oder Winkel, welche in Räumen verschiedener Dimen-
sion entsprechend unterschiedliche Verteilungen aufweisen und somit Rückschlüsse auf
den gesuchten Wert zulassen.

Wir entwickeln einen neuen Ansatz, indem wir die Volumina von Simplexen beliebig
hoher Dimension betrachten. Die Eckpunkte eines solchen Simplex werden dabei zufällig
aus einer Menge benachbarter Datenpunkte gewählt. Der empirische Mittelwert vieler
Volumina wird letztlich dazu genutzt, die zugrunde liegende intrinsische Dimension zu
schätzen.

Die Struktur dieser Arbeit lässt sich wie folgt zusammenfassen. Zunächst rekapi-
tulieren und analysieren wir einige Zusammenhänge in hochdimensionalen Räumen,
um unser intuitives Verständnis für diese zu schärfen; insbesondere betrachten wir die
Entwicklung der Volumina einfacher geometrischer Objekte sowie allgemeine Konzen-
trationseffekte bestimmter Größen für den Grenzfall einer gegen unendlich strebenden
Raumdimension. Anschließend geben wir einen kurzen Einblick in das Thema der Dimen-
sionsreduktion, welche einen Rahmen für das Hauptkapitel bildet.
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Im Hauptteil werden zunächst verschiedene Dimensionsbegriffe vorgestellt, des wei-
teren die wichtigsten Methoden zur Schätzung der intrinsischen Dimension beschrieben
und klassifiziert. Eine Auswahl von sechs dieser Methoden wird detaillierter erläutert
und dient uns als Benchmark für spätere numerische Untersuchungen. Die konkrete
Verfahrensweise unseres eigenen Ansatzes, welchen wir “Sample Simplex Volume” nen-
nen, wird sowohl theoretisch motiviert und begründet als auch algorithmisch im Detail
geschildert. Eine Kernkomponente ist dabei ein Algorithmus zur schnellen und sta-
bilen Berechnung einer großen Zahl hochdimensionaler Simplex-Volumina. Aufgrund
von Laufzeitüberlegungen und Tests mit verrauschten Eingabedaten entwickeln wir eine
alternative Variante des ersten Ansatzes und verwenden dementsprechend die Bezeich-
nungen SSV1 und SSV2.

Wir führen eine Reihe numerischer Experimente sowohl mit zufällig generierten Daten
als auch mit frei verfügbaren Datensätzen aus verschiedensten Anwendungen durch.
Dabei liegt das Hauptaugenmerk im ersten Fall auf geometrischen Strukturen relativ
hoher intrinsischer Dimension, wobei wir auch auf Problembereiche wie undersampling
(eine im Verhältnis zur Dimension zu geringe Anzahl von Punkten) und verrauschte
Daten eingehen. Bei Datensätzen aus konkreten Messungen ist das erwartete Ergebnis
der Dimensionsschätzung nicht immer eindeutig. Wir diskutieren die damit verbunde-
nen, teils anwendungsabhängigen Fragestellungen. Unsere eigenen Verfahren erweisen
sich in den meisten Fällen als mindestens ebenbürtig zu den zum Vergleich herangezo-
genen etablierten Techniken.
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Chapter 1
Introduction

Apart from a small number of prototypes and high-priced, specialized machines, the first
personal computers have been developed almost exclusively by American companies in
the mid-seventies. Today, about fifty years later, computers have pervaded modern
societies triggering changes in various domains, from global to local, e.g. from political,
medical, and even ethical issues down to common work routines and habits of individuals.
Probably no previous human invention has had a social impact of similar scale within
such a short timespan.

The workflow of a computer system can be divided into three basic steps: input,
processing, output. While the growth in accumulated processing power of computer
devices in their entirety over the last decades has been tremendous, the current quantity
and diversity of input devices — and hence the amount of gathered input data — seems at
least equally impressive. Due to decreasing hardware manufacturing costs, sensors and
other kinds of automatic input devices have recently become omnipresent in modern
industrial and consumer products. However, the collection and storage of the increasing
amount of resulting data are essentially worthless without the existence of tools to process
them in an appropriate way.

This fact underlines the importance of data mining. Data mining can be defined as the
extraction of “meaningful” information from raw data. Here, the data is already given
in a specific context, e.g. in terms of images, documents, categories, or measurements.
Data mining methods seek to assist a (usually human) user to detect previously unknown
correlations, structures, or similarities in the dataset. The underlying objective can be
diverse: categorizing objects, predicting time series, discovering causal relationships,
localizing distinctive entities, and many more.

Dimensionality Reduction The first step in many practical data mining scenarios often
is the so-called dimensionality reduction step. Here, the size of the dataset is reduced by
either simply eliminating certain data features or by computing a new, smaller dataset
that shares the most relevant attributes with the original one. The two main reasons
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2 1 Introduction

for the use of dimensionality reduction methods are the following. First, the data is
likely to contain some features that are (almost) irrelevant for the particular objective.
Consequently, they might disturb or at least overcomplicate the subsequent data pro-
cessing step. Second, the sheer size of the original dataset would result in excessive
computational costs (time or memory consumption) and thus renders the straightfor-
ward application of the respective algorithm impossible.

The task of dimensionality reduction can be considered from two slightly different
perspectives: data-driven and model-driven. In the first approach, the given original
data is processed “as is”, meaning that no a priori assumptions about any underlying
structures are made. In contrast, the second approach requires the original data to be
generated according to some model, i.e., the data is in fact the outcome of a function
usually depending on only a rather small number of generating variables.

In mathematical terms, let the original data be given by the finite sequence of points

X = (x1, x2, . . . , xN) , where xi=1,...,N ∈ RD. (1.1)

In the model-driven approach, one assumes that there exists a sequence of generating
variables of minimal dimension m,

Y = (y1, y2, . . . , yN) where yi=1,...,N ∈ Rm, (1.2)

and a mapping function

f : Rm → RD, f (yi) = xi ∀ i = 1, . . . , N. (1.3)

This function might be highly complex, feature many parameters, or even be completely
unknown to the user. The task of reconstructing the function f in some appropriate
way is the topic of regression analysis. While specific knowledge about f can certainly
be useful in the process of dimensionality reduction, it is not compulsory. Moreover, in
most practical applications, also the dimension m of the generating space Rm is unknown
a priori. Depending on the current perspective, m is referred to as the number of latent
variables or as the intrinsic dimension of the data X .

In the context of machine learning, dimensionality reduction can either emerge as a
supervised or an unsupervised task. In the former case, the data X comes with labels
L = (l1, l2, . . . , lN) of some kind which represent the desired output variables of the
underlying problem. The pair (X , L) is called the training data, and the final objective
usually is to infer a function or procedure which maps data points onto labels. This
procedure should be able to assign meaningful labels to new data points, but also be
compatible with the given training data. In contrast, unsupervised learning is concerned
with unlabeled data. Here, the purpose can be preprocessing, compression, denoising,
or visualization, compare [LV10].

As an example for supervised learning, consider the collection of human genome data
to enhance the understanding of the formation of genetic disorders. Suppose that the
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researcher is confronted with two sets of genome data, consisting of genes of affected
and non-affected individuals, respectively. The total number of base pairs in each gene
set can be as high as several millions. The goal is to identify the (presumably) small
number and combination of base pairs relevant for the particular genetic defect. Here, a
carefully selected dimensionality reduction method can be used as a first step to eliminate
the majority of irrelevant features and thus shrink the original dataset to a size that can
be processed further by more sophisticated techniques.

An example for the use of unsupervised dimensionality reduction can be found in hy-
perspectral imaging. A hyperspectral sensor captures information from multiple bands
each featuring a small continuous range across the electromagnetic spectrum. These
devices are deployed in such diverse areas as medical examinations, agriculture, min-
eralogy, astronomy, and food processing. A single measurement can be regarded as a
three-dimensional vector with two spatial components and one spectral component. De-
pending on the analyzed object, certain bands can be highly correlated, and some of
them will contain more or less relevant information. Consequently, a dimensionality
reduction technique is often applied as a preprocessing step to extract the most useful
features.

Other applications include advanced image processing (e.g. recognition of human faces,
handwritten digits, traffic signs), forecasting of climatic time series, enhanced investi-
gation of complex chemical and physical simulations or experiments, the training of
recommender systems, and many others, compare also [Don00, LV07, GKWZ08].

Intrinsic Dimension Estimation In both dimensionality reduction scenarios presented
above, the number of relevant or dominant features is unknown a priori. Yet, numerous
reduction methods do not compute a target embedding dimension but rather rely on
an external input parameter. Consequently, the estimation of the intrinsic dimension
of a given dataset is essential for the proper functioning of those methods. As we are
primarily interested in the unsupervised case, i.e., our data is unlabeled, let from now
on X denote a set of N unique points instead of an ordered sequence as before.

The notion of the intrinsic dimension of some arbitrary set X ⊂ RD is not a clearly
defined concept, neither in mathematics nor in data mining. Nevertheless, precise defi-
nitions exist for particular settings. Naturally, for the model introduced above, featuring
a mapping function f : Rm → RD with minimal m, the intrinsic dimension of X is
given by m. In order to enable a rigorous description and a comprehensive analysis of
dimensionality reduction as well as intrinsic dimension estimation approaches, one often
resorts to the more restrictive model of the data X = {x1, . . . , xN} being random point
samples of some m-dimensional manifold embedded in RD. In this scenario, while the
m-dimensional manifold locally resembles the m-dimensional Euclidean space, the esti-
mation of m is still highly non-trivial due to the impact of manifold curvature, point
sampling, and noise.

Common concepts of dimension, such as the Lebesgue covering dimension or the Haus-
dorff dimension, can not be applied in a straightforward way since they assign the value
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of zero to each finite subset of RD. For this reason, in [GP83], Grassberger and
Procaccia introduced the important notion of the correlation dimension. The under-
lying idea of the correlation dimension, as well as of the related box-counting dimension,
is the following: consider a well-chosen1 point xi of the dataset and a relatively small
neighborhood, for example the open ball Bϵ(xi) for some small ϵ > 0. Now, supposing
that the point set has been sampled from a sufficiently smooth m-dimensional manifold,
the number of points xj, j ̸= i, contained in Bϵ(xi) should be proportional to ϵm for
increasing ϵ in a suitable interval ϵ ∈ (ϵmin, ϵmax).

In fact, while there exist a great amount of diverse techniques to accomplish the task
of intrinsic dimension estimation (a contemporary review can be found in [CCCR15]),
many of those approaches are based on the fundamental principle of either counting
the number of data points in small subdomains or analyzing distance distributions of
points in small subdomains. Note that one can basically interpret the counting of data
points as a zero-dimensional measurement, whereas the inter-point distance represents a
one-dimensional measurement. In theory, most methods based on these low-dimensional
quantities allow for the estimation of arbitrarily high intrinsic dimensions m. In practice,
many of them have also successfully been employed in applications where 2 ≤ m < 10.
However, recent investigations, e.g. in [HA05, BQY13, CCCR15], have revealed a critical
problem of numerous estimators: their reliability declines in an overproportional manner
for higher values of m. Yet, due to an increasing complexity of modern data mining tasks,
this scenario becomes more and more significant.

The question naturally arises whether common low-dimensional measurements, such
as distance distributions, could be substituted by high-dimensional equivalents to yield
better estimates, especially when it comes to point sets of higher intrinsic dimension. Par-
ticular approaches exploring this direction (compare [CCB+14, JSF15]) already achieved
some promising results. A reason for the previous lack of such methods might be found in
the increased difficulties of analyzing high-dimensional quantities along with numerically
evaluating them in an efficient way.

Our new approach is based on the analysis of simplex volumes of arbitrary dimension.
The theorem that provides the required theoretical foundations has been established by
Miles in [Mil71]. In short, given s + 1 points drawn at random from the uniform distri-
bution over the n-dimensional unit ball, where s ≤ n, the theorem specifies the expected
value of the (random) volume of the s-simplex spanned by those points. Now, provided
that our dataset is sampled from an m-dimensional manifold and under some mild pre-
conditions on the distribution function, it is reasonable to assume that data points in
a sufficiently small ϵ-ball are approximately distributed according to the m-dimensional
uniform distribution. Consequently, the basic idea is to compare the empirical average
volume of multiple simplices, whose vertex points are drawn from local subsets of the
data, to the corresponding expected value.

Under the idealized assumption that points from a fixed local subset are perfectly

1More precisely, the point should be far away from the boundary of the manifold.
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contained in some m-dimensional affine space, the expected volume of the (m + 1)-
dimensional simplices formed as described above equals zero. This fact is exploited in
our first, straightforward technique. Here, we increment a test dimension d = 1, 2, . . .
and evaluate the associated d-dimensional simplex volumes until d exceeds m̂, which
shall denote the estimated value of the intrinsic dimension.

While this proceeding allows for a very precise estimation of even higher intrinsic
dimensions m, it also implicates relatively high computational costs and a distinct sen-
sitivity with respect to noise. For this reason, we develop a second procedure that relies
on the analysis of lower-dimensional simplices. It achieves lower runtimes and comes
with an increased robustness against disturbances caused by noisy data.

Since, to the best of our knowledge, our approach represents the first of its kind being
purely based on simplex volumes, we also describe an efficient numerical technique based
on Cayley-Menger determinants for the fast evaluation of multiple simplex volumes with
vertex points sampled from RD. The crucial feature of this algorithm is its overall time
complexity, which is in fact dominated by the dimension of the considered simplices, but
not by the ambient dimension D.

In summary, the s-dimensional simplex is one of the most elementary geometric objects
of the s-dimensional space and, furthermore, the simplex volume represents a natural
generalization of the Euclidean distance to more than two dimensions. A detailed in-
vestigation of its properties for the purpose of dimension estimation appears to be both
plausible and valuable. The present work provides a basis for this endeavor.

Contributions This thesis includes the following theoretical and numerical contribu-
tions in the context of intrinsic dimension estimation:

• We provide an overview of the vast number of different approaches for intrinsic
dimension estimation with a detailed description of selected recent and important
variants, which are included in subsequent numerical comparisons.

• One of the core components of our method is the efficient computation of multiple
s-dimensional simplex volumes with vertex points in RD. We present the required
theorems from elementary Euclidean geometry and the corresponding algorithm
which is both fast and numerically stable. Its overall workload is dominated by
the dimension s of the simplices, but not by the ambient dimension D.

• We introduce two variants of our new approach for the purpose of intrinsic dimen-
sion estimation called “Sample Simplex Volume” (SSV) method. The first variant
(SSV1) is a straightforward procedure based on arbitrarily high-dimensional sim-
plex volumes, while the second one (SSV2) is adapted for better runtime perfor-
mance and improved handling of noisy datasets. A detailed algorithmic description
as well as a complexity analysis are provided for the two versions.
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• In an extensive numerical comparison, the SSV methods are evaluated against
selected dimension estimators, thus revealing individual advantages and drawbacks.
For both synthetical and real-world datasets, our methods feature very competitive
estimation results and often outperform most established techniques when it comes
to higher intrinsic dimension values.

Outline The remainder of this thesis is organized as follows. In Chapter 2, we first
discuss certain particularities of high-dimensional objects, which might seem counterin-
tuitive from the naive two- and three-dimensional perspective. Our main focus lies on
volumes in Euclidean space and general concentration effects for increasing dimensional-
ity. Subsequently, a condensed introduction to the topic of dimensionality reduction and
an explanatory example are given, thus motivating the development of reliable dimension
estimators.

Chapter 3 starts with a review of the most important different notions of dimension.
Next, a thorough discussion and classification of the multitude of existing approaches
for dimension estimation are provided. Selected methods are explained and analyzed
in more detail. Subsequently, we introduce our technique for the efficient and stable
computation of multiple simplex volumes. The presentation of our SSV methods in
section 3.4 includes a theoretical introduction of the underlying concept, the precise
algorithmic descriptions, and a runtime complexity analysis. The last section is devoted
to numerical experiments involving diverse synthetical and real-world datasets, where
our methods are compared with several distinguished dimension estimators.

We revisit the relationship to dimensionality reduction in Chapter 4 by means of a
final illustrating example. Chapter 5 concludes with a short summary and an outlook
on potential future research.



Chapter 2
High-dimensional Data Analysis and
Dimensionality Reduction

2.1 Particularities of High-Dimensional Structures
2.1.1 Some considerations on high-dimensional volumes
In some introductions to the field of high-dimensional spaces the reader is confronted
with “counter-intuitive” phenomenons or “paradoxical” characteristics of particular high-
dimensional structures, see e.g. [Mat02, Ver03]. These formulations are often based on
the consideration of familiar objects in two or three dimensions where our human intu-
ition is rather reliable, while the corresponding generalizations of those objects behave
more and more unexpectedly for increasing dimensionality. On the other hand, many
simple and straightforward relationships exist for one-dimensional geometric structures
and we are usually not surprised that these do not hold in the two- or three-dimensional
Euclidean space. Keeping in mind that each step from d to d + 1 dimensions, loosely
speaking, “adds” an uncountably infinite number of d-dimensional spaces to the orig-
inal space, it becomes clear that certain relationships will change rapidly for growing
dimension d.

One popular example is the relationship of volumes between the unit hypercube and
its inscribed d-ball. It might seem surprising at first that the volume of the corresponding
d-ball tends to zero very quickly. However, let us bear in mind that the volume of the
surrounding hypercube is fixed to one, while its number of vertices grows exponentially
in d, and the inscribed d-ball can not even come close to the vertices since it only touches
each facet (or side) of the hypercube in a single point. Therefore, even without looking
at the explicit formula for the volume of the d-ball, it seems reasonable that its volume
must vanish for higher values of d.

To sharpen our intuition for high-dimensional structures somewhat further, let us con-
sider the analogue relationship as described above, where we now replace the hypercube

7



8 2 High-dimensional Data Analysis and Dimensionality Reduction

polytope 3D object vertices facets

hypercube cube 2d 2d

simplex tetrahedron d + 1 d + 1

cross-polytope octahedron 2d 2d

Table 2.1: Properties of selected d-dimensional regular polytopes.

by a regular simplex and a cross-polytope (also called cocube), respectively. These three
objects are the most simple regular polytopes that can be defined for arbitrary dimen-
sion d (compare table 2.1 and figure 2.1). The d-dimensional unit hypercube is given by
[0, 1]d and features 2d vertices as well as 2d facets. The regular d-simplex features d + 1
(affinely independent) vertex points and also d + 1 facets, while each of its edges has
the same length. The d-dimensional (unit) cross-polytope can be defined as the closed
unit ball in the ℓ1-norm on Rd, i.e.,

{
x ∈ Rd : ∥x∥1 ≤ 1

}
. Its 2d vertex points are all

permutations of (±1, 0, 0, . . . , 0) and it has 2d facets. The constant edge length of this
cross-polytope is given by a =

√
2.

Figure 2.1: Regular 3-dimensional polytopes: cube, regular tetrahedron, and octahedron.

Now, we would like to evaluate the volume of the inscribed d-ball for each of those
three polytopes, while their volume is fixed as one. The volume of a d-ball with radius
r is given by

V
(d)

B (r) = πd/2 · rd

Γ (d/2 + 1)
. (2.1)

Clearly, the radius of the ball inscribed in the unit hypercube is given by r
(d)
H = 1

2 . For a
regular simplex with edge length a, one can show that its volume and the radius of its
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inscribed ball are given by

V
(d)

S (a) =
√

d + 1
d!
√

2d
ad, r

(d)
S (a) = a√

2d(d + 1)
, (2.2)

respectively (see e.g. [EN97]). Letting V
(d)

S (a) = 1, we can thus evaluate the associated
radius as

r
(d)
S =

(
d!√

d + 1

) 1
d

·
(√

d(d + 1)
)−1

. (2.3)

Finally, the volume of a cross-polytope with fixed edge length a and the corresponding
radius of its inscribed ball are given by

V
(d)

C (a) =
√

2d

d!
ad, r

(d)
C (a) = a√

2d
, (2.4)

respectively (see e.g. [TFV15]). Again, letting V
(d)

C (a) = 1, the associated radius evalu-
ates as

r
(d)
C = (d!) 1

d

2
√

d
. (2.5)

Plugging the radii r
(d)
H , r

(d)
S , and r

(d)
C in formula 2.1 now yields the respective inball

volumes in each case. The corresponding plot in figure 2.2 for values d ∈ [2, 40] reveals
some interesting trends. First, we note that for both the hypercube and the simplex,
the inball volumes decrease at a rate which is higher than exponential in the dimension
d. However the rate of decay is much smaller for the cross-polytope.

Let us offer two intuitive explanations for this phenomenon. From a pure geomet-
ric point of view, the inball touches each facet of its surrounding polytope in a single
point. Now, a small number of facets does not permit the inball to “grow big” inside
the polytope, while on the other hand, a larger number of facets permits the inball to
approach the polytope from the inside. In fact, the ball itself can be considered as a
regular polytope with infinitely many facets. Consequently, the simplex with its d + 1
facets contains a relatively small inball, while the inball of the cross-polytope with its 2d

facets is substantially bigger. A second explanation can be based on norms. Obviously,
the (solid) cross-polytope, ball, and hypercube can be defined as the point set

Sp(a) :=
{
x ∈ Rd : ∥x∥p ≤ a

}
(2.6)

for the ℓp-norm ∥ · ∥p with p = 1, 2,∞, respectively. Thus, the q-ball inscribed into a
p-ball Sp(a) is given by

Sq(r), where r := rq,p(a) = min
{x∈Rd:∥x∥p=a}

(
∥x∥q

)
(2.7)
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for 1 ≤ p ̸= q ≤ ∞. In fact, the constrained minimization problem (2.7) can be solved in
a straightforward way (at least for p, q <∞) using Lagrange multipliers and the solution
evaluates as

r(∗)
q,p(a) =

a · d
p−q
p·q for q > p,

a for q ≤ p.
(2.8)

Thus, as expected, we have limq→p r(∗)
q,p(a) = a.

2 10 20 30 40

10−25
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100
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cross-polytope

Figure 2.2: Volume of d-ball inscribed in the d-dimensional regular polytope of constant
volume 1.

Another often cited example is the volume of the d-ball with radius r relative to the
volume of the d-ball with just slightly enlarged radius r + ϵ. Obviously, by virtue of
formula (2.1), we have

V
(d)

B (r)
V

(d)
B (r + ϵ)

=
(

r

r + ϵ

)d

→ 0 for d→∞. (2.9)

For high values of d, the volume thus concentrates in the thin ϵ-shell. Clearly and
unsurprisingly, this property generalizes to every d-dimensional geometric object whose
volume scales as rd for some parameter r.

In general, so-called concentration effects of various mathematical structures — such
as random variables, metrics, or norms — have been studied for a long time. Recently,
many of those findings have been rediscovered or refined, and the term “concentration
of measure” has been coined in this context.
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2.1.2 Concentration of measure
The principle called concentration of measure is an important concept in many mathe-
matical fields such as measure theory, probability theory, and combinatorics. First, we
aim to give a generic description of this concept. Let us start with a collection of multi-
ple arbitrary objects1 and a corresponding measure of pairwise (dis-)similarity between
them. Now, when considering an increasing number of objects, the measure might em-
phasize either the differences or the similarities between the objects to a growing extent.
In the first case, the measure still serves as a discriminative function; in the second case,
however, it loses its discriminative power and one speaks of concentration of measure.
It is important to note straightaway that this concentration effect is the result of the
combination of the particular measure and the considered objects.

In our context of high-dimensional data analysis, it is vital to study the behavior
of commonly used metrics for increasing dimension d → ∞. For certain classes of
multidimensional objects, different metrics show rather unexpected trends for growing
dimensionality. In the following, we provide a compact synopsis of recent advances in
this field, which are relevant for our purpose.

First, let us recall the most basic and well-known concentration inequalities of prob-
ability theory (compare for example [Geo04]), which in fact represent the foundation of
the majority of the subsequent results.

Theorem 2.1 (Markov’s inequality). For a real-valued random variable X with bounded
expected value E(|X|), a constant ϵ > 0, and an increasing function f : [0,∞)→ [0,∞)
with f(x) > 0 for x > 0, it holds that

P (|X| ≥ ϵ) ≤ E(f(|X|))
f(ϵ)

. (2.10)

Now, letting f(x) = x2 and substituting X by X − E(X), we immediately get

Theorem 2.2 (Chebyshev’s inequality). Let X be a real-valued random variable with
bounded expected value E(X) and bounded variance Var(X) = E([X − E(X)]2). Then,
for any ϵ > 0, we have

P (|X − E(X)| ≥ ϵ) ≤ Var(X)
ϵ2 . (2.11)

From those inequalities, one can derive a variant of the weak law of large numbers:

Theorem 2.3. Let (Xi)i=1,2,... be pairwise uncorrelated random variables with bounded
variance and let further C = supi≥1 (Var(Xi)) <∞. Then, for any ϵ > 0, we have

P

(∣∣∣∣∣ 1n
n∑

i=1
(Xi − E(Xi))

∣∣∣∣∣ ≥ ϵ

)
≤ C

nϵ2 → 0 for n→∞. (2.12)

1An object in this context shall denote a general (possibly multidimensional) entity, such as a random
variable, a vector, or a point of some dataset.



12 2 High-dimensional Data Analysis and Dimensionality Reduction

Moreover, for independent and identically distributed (i.i.d.) variables Xi, their sam-
ple mean X̄n := 1

n

∑n
i=1 Xi converges to their common expected value µ = E(Xi) in prob-

ability. A consequence of the law of large numbers is the classical central limit theorem,
stating that, for i.i.d. variables Xi with µ = E(Xi), the random variables

√
n
(
X̄n − µ

)
converge in distribution to the Gaussian distributionN (0, σ2), where σ2 = Var(Xi) <∞.

Let us now introduce the most important recent findings in the field of concentra-
tion of measure, which — to our knowledge — have been presented (among others)
in [Dem94, BGRS99, HAK00, AHK01, FWV07, DK09, BM15]. The respective results
can actually be categorized according to three different characteristics. The first one is
the underlying probability distribution, with the most restrictive case of i.i.d. random
variables. The second is the considered similarity measure, ranging from the standard
Minkowski norms over ℓp-quasi-norms (see below) to general function classes. The third
is the actual quantity to be analyzed, which can be either a probabilistic (limit) value,
e.g. the expectation of a random variable, or some statistical value of a finite set of
objects. For the subsequent statements, we require the following definitions.

Definition 2.4 (Quasi-norm). A quasi-norm ∥ · ∥ on a vector space V over the field
K = R or K = C is a map ∥ · ∥ : V→ [0,∞) with the properties

1. ∥v∥ = 0 if and only if v = 0;

2. ∥κv∥ = |κ|∥v∥ for all κ ∈ K, v ∈ V;

3. ∥v + w∥ ≤ C (∥v∥+ ∥w∥) for all v, w ∈ V and a given constant C ≥ 1.

A quasi-norm differs from a norm as it is required to satisfy only a weaker version of
the triangle inequality. We are interested in ℓp-quasi-norms, where the parameter range
is 0 < p < 1. These are defined exactly like the well-known Minkowski norms of order p
(for 1 ≤ p ≤ ∞); however, they are no norms since they only fulfill the relaxed triangle
inequality with a constant C > 1. Note that ℓp-quasi-norms are referred to as “fractional
distance metric” in [AHK01] and “fractional norm” in [FWV07].

Definition 2.5 (Absolute and relative contrast). Let S = {xi=1,...,N} ⊂ Rd be a finite
set of points and let further ∥ · ∥∗ denote some norm or quasi-norm defined on Rd. Then
we define the absolute contrast of S (with respect to ∥ · ∥∗) as

Ω(∗)
S = ΩS := max

i
{∥xi∥∗} −min

i
{∥xi∥∗} . (2.13)

In case that 0 /∈ S, we define the relative contrast of S (with respect to ∥ · ∥∗) as

Ω̂(∗)
S = Ω̂S := maxi {∥xi∥∗} −mini {∥xi∥∗}

mini {∥xi∥∗}
. (2.14)
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Here, each maximum / minimum is taken for all i = 1, . . . , N .2

A first result, which has probably drawn more of the data mining community’s at-
tention towards concentration phenomenons, has been presented in [Dem94] and studies
the Euclidean norm of a random vector of increasing dimensionality, with independent
identically distributed components.

Theorem 2.6 (Demartines). Let xd ∈ Rd be a random vector with i.i.d. components
xd(k), k = 1, . . . , d. Let further their eighth order moment be finite: E(xd(k)8) <∞ for
all k. Then, we have:

E (∥xd∥2) =
√

αd− β +O (1/d) , (2.15)

Var (∥xd∥2) = β +O
(
1/
√

d
)

, (2.16)

for d→∞, with constants α and β that do not depend on the dimension d.

More precisely, the constants α and β depend only on the central moments of order
1 to 4 of a vector component, and thus on the underlying distribution function. The
main statement of Theorem 2.6 is, considering only the leading order terms, for d→∞,
the expectation of ∥xd∥2 increases with

√
d, while the variance remains constant. For

high values of d, the variance is thus small when compared with the expectation. De-
martines infers that high-dimensional random points with i.i.d. components appear to
be distributed close to a sphere of radius µd := E(∥xd∥2). Furthermore, as the difference
of two such points is again a random point with i.i.d. components, the Euclidean distance
concentrates at the same value µd and loses its discriminative power in this scenario.

While the above result is remarkable, it studies a very specific setting. On the contrary,
the next theorem provides a conditional statement, involving the relative contrast of some
finite point set of growing dimensionality, and requires only very universal assumptions.
It has first been presented by Beyer et al. (see [BGRS99]) in a more general form, while
the following is a slightly simplified version.

Theorem 2.7. For each d = 1, 2, . . . , let Fd be an arbitrary probability distribution on
Rd and, for fixed N ≥ 1, let further Sd = {xd,1, . . . , xd,N} ⊂ Rd be a (finite) point
sample independently drawn from Fd. Finally, let ∥ · ∥∗ denote some norm (or quasi-
norm) defined on Rd for each d ≥ 1 and let 0 < p < ∞ be a constant. Now, under the
condition that

lim
d→∞

Var
(
∥xd,i∥p

∗

)
E
(
∥xd,i∥p

∗

)2 = 0, (2.17)

we have, for any ϵ > 0,
lim

d→∞
P
(
Ω̂(∗)

Sd
≤ ϵ

)
= 1. (2.18)

2In the following, when considering the relative contrast of some set S, we implicitly presume 0 /∈ S
for well-definedness.
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In order to judge upon the impact of the statement, it is necessary to identify scenarios
fulfilling the prerequisite (2.17). The authors discuss several examples, where, in each
case, the norm ∥ · ∥∗ is presumed to be the standard Minkowski norm ∥ · ∥p for 1 ≤ p <
∞. Note here that the parameter p in the above theorem is not related a priori to the
used norm ∥ · ∥∗.

The first example consists of distribution functions Fd which are i.i.d. in all dimensions
and have finite moments up to order 2p. Second, there are appropriate distributions
where each dimension is correlated with all the others and the variance of each additional
dimension increases. Another example features distributions, where the variance of each
additional dimension tends to zero for d → ∞. Beyer et al. call their Theorem 2.7
an “instability result” and they conclude that the concept of nearest neighbors becomes
“meaningless” in high dimensions in many situations that are far more general than i.i.d.
data.

However, let us discuss two facts showing that the above conclusion must indeed be
relativized. First, since the respective result only deals with the limit case d → ∞, the
authors provide numerical experiments including the “worst case” scenario of a set Sd

containing N = 106 uniformly distributed points in dimensions up to d = 100; as they
do not mention the employed norm, we assume they chose the Euclidean norm. On
the one hand, the measured relative contrast decreases (for d = 1, . . . , 10) from roughly
Ω̂S1 ≈ 107 to only Ω̂S10 ≈ 8. On the other hand, even for d = 100, they get an empirical
value of Ω̂S100 ≈ 1, thus relatively far away from the limit value of zero. Note further
that the number of N = 106 points is rather small as a uniform sample of some 100-
dimensional space, whereas the expectation of Ω̂Sd

grows monotonically with increasing
N . In summary, given the worst case of uniformly distributed data, while the relative
contrast drops rapidly for increasing dimensionality from d = 1 to d = 10, it is still
far from zero for high dimensions such as d = 100. Consequently, the question arises
whether the problem of “meaningless” distance measures is in fact relevant in practice,
where the data is usually far from being uniformly distributed in several hundreds of
dimensions.

Second, in [DK09], Durrant and Kabàn provide a “converse theorem” to the above
statement and some further enlightening analysis. Their theorem basically states that
the converse of the if-then-statement of Theorem 2.7 is also true, under the additional
condition that the number N of points is sufficiently large such that

min
i=1,...,N

{
∥xd,i∥∗

}
≤ E

(
∥xd,i∥∗

)
≤ max

i=1,...,N

{
∥xd,i∥∗

}
. (2.19)

Further, for a d-dimensional (random) vector x = (x1, . . . , xd) and the standard ℓp-norm,
the authors reconsider the quotient

Var
(
∥x∥p

p

)
E
(
∥x∥p

p

)2 =
∑d

j=1
∑d

k=1 Cov (|xj|p, |xk|p)∑d
j=1

∑d
k=1 E (|xj|p) · E (|xk|p)

, (2.20)
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which they refer to as “relative variance” of x with respect to the norm ∥ · ∥p. Nota
bene that the notion of “relative variance” has no generally valid definition and is also
sometimes used in the field of statistics for quantities differing from the above one.

The authors of [DK09] now argue that all of the examples discussed in [BGRS99] (and
satisfying condition (2.17)) feature a sparse correlation structure, where independent
components only represent the most trivial case. Hence, the covariances in the numerator
of (2.20) are not able to grow at the same (or a higher) rate than the expectations in the
denominator with d → ∞ and thus, the limit approaches zero. Durrant and Kabàn
further claim that, in contrast to the above examples, real datasets often come with a rich
correlation structure and they provide an insightful discussion under which circumstances
certain latent variable models do and do not fulfill the critical precondition.

While the previous considerations do not explicitly differentiate between the various
norms, it is now particularly interesting to analyze the differing behavior of common
(and less common) norms. In this context, Hinneburg et al. (see [HAK00]) study the
limit of the absolute contrast with respect to the Minkowski norm of order p, in the
scenario of random points with i.i.d. components.

Theorem 2.8. Let F be an arbitrary distribution function on (0, 1) and let further Sd =
{xd,1, . . . , xd,N} ⊂ Rd be a (finite) set of points, where each coordinate is independently
drawn from F . Then, for the Minkowski norm ∥ · ∥p of order p, we have

Cp ≤ lim
d→∞

E

 Ω(p)
Sd

d1/p−1/2

 ≤ (N − 1) · Cp, (2.21)

where the constant Cp depends only on p and F .

In our opinion, this theorem is highly interesting since it shows that, in the limit
of d → ∞, the absolute contrast Ω(p)

Sd
of a point set with i.i.d. components behaves

differently in the three cases p < 2, p = 2, and p > 2. More particularly, for commonly
used norms, we have in the limit d→∞:

• p = 1: the abs. contrast w.r.t. the Manhattan norm scales with
√

d;

• p = 2: the abs. contrast w.r.t. the Euclidean norm stays within a constant range;

• p > 2: the abs. contrast w.r.t. ℓp-norms of higher order vanishes.

Consequently, even in the setting of i.i.d. components, the widespread ℓ2-norm does not
lose its discriminative power and in fact stands out as the sole ℓp-norm for which the
expected absolute contrast does not depend on the dimension d of the considered point
set.

On the other hand, one could be tempted to presume that an absolute contrast grow-
ing with the underlying dimension d, as for the Manhattan norm, should generally be
beneficial for the analysis of high-dimensional data, due to a better discrimination of
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neighboring points. This supposition also motivated Hinneburg et al. in [AHK01] to
consider the ℓp-quasi-norms for p ∈ (0, 1), which they refer to as “fractional distance
metrics”. From now on, we simply speak of ℓp-(quasi-)norms for 0 < p < ∞, when in
fact subsuming the quasi-norms (p < 1) and norms (p ≥ 1). For the (most restrictive)
scenario of uniformly distributed points, Hinneburg et al. provide the following bounds:

Theorem 2.9. Let Sd = {xd,1, . . . , xd,N} ⊂ Rd be a set of uniformly distributed points.
Let further ∥ · ∥p denote the associated be ℓp-(quasi-)norm for 0 < p < ∞. Then, the
absolute and the relative contrast of Sd, with respect to the (quasi-)norm ∥ · ∥p, behave
as follows:

C1

(p + 1)1/p ·
√

2p + 1
≤ lim

d→∞
E

 Ω(p)
Sd

d1/p−1/2

 ≤ (N − 1) · C1

(p + 1)1/p ·
√

2p + 1
; (2.22)

C2√
2p + 1

≤ lim
d→∞

E
(
Ω̂(p)

Sd
·
√

d
)
≤ (N − 1) · C2√

2p + 1
, (2.23)

where C1 and C2 are some constants.

This theorem shows that, for d→∞, a quasi-norm with small p < 1 potentially allows
a larger range for the expected (both absolute and relative) contrast of N uniformly
distributed points.

For that reason, the authors of [AHK01] advocate the use of quasi-norms in cer-
tain high-dimensional data mining applications and perform the following experiment.
They select a small number of datasets from the UCI Machine Learning Repository
[Lic17], which all stem from classification problems. Now for each point xi of a given
set {xi=1,...,N}, they count the number ni(p) of nearest neighbor points — with respect
to the ℓp-(quasi-)norm — that feature the same class label as xi. The corresponding
sum n̄(p) := ∑

i ni(p) is then suggested as some kind of quality measure of the respec-
tive ℓp-(quasi-)norm. For all tested values of p ∈ {0.1, 0.5, 1, 2, 4, 10,∞} and each tested
dataset, the empirical results fulfill n̄(p1) > n̄(p2) for p1 < p2 (except for two cases). The
authors therefore conclude that smaller values of p generally seem to be better suited
to measure dissimilarities of high-dimensional data. They argue that norms with higher
values of p tend to overemphasize the influence of single dimensions (with high variance),
while lower values of p rather extenuate the influence of those “outlier dimensions”.

While this reasoning is essentially plausible, further practical studies have come to
more deliberate conclusions. In [DAD04], the authors subsume that their results on
K-means class recovery show no superiority of the tested ℓp-quasi-norm (for p = 0.3)
when compared to the standard ℓ2-norm. Moreover, they replicated the experiments of
[AHK01] described above, however with d-dimensional data that has been standardized
in the sense that each component has been shifted and scaled as

x̄j :=
(
xj − x

(min)
j

)
/
(
x

(max)
j − x

(min)
j

)
,
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where x
(min)
j and x

(max)
j denote the respective minimum and maximum of the jth com-

ponent. For this type of standardized data, again, the considered quasi-norms and the
Euclidean norm feature comparable outcomes. In [HR05], the authors investigate the
practical advantages of quasi-norms in the field of image retrieval and conclude that,
while they could not derive a scheme to find the optimal value of p for a given dataset,
the ℓp-quasi-norms for values p ∈ [0.25, 0.75] achieved the best results in most scenar-
ios. More precisely, quasi-norms generally seem to be favorable when it comes to sparse
vectors, while for dense vectors, the differences vanish. A similar insight is presented in
[FWV05], where the relationship between noise characteristics of datasets and the suit-
ability of different (quasi-)norms is examined. According to the authors, the Euclidean
norm is superior for data tainted with white (i.e., Gaussian) noise, while quasi-norms are
preferable for colored noise, i.e., noise that affects not all, but only some components to
a high degree. An example is the so-called “salt and pepper noise” of images, consisting
of sparsely scattered black or white erroneous pixels.

While Theorem 2.9 only holds for uniform distributions, in [FWV07] and [BM15],
further concentration results of ℓp-(quasi-)norms are given for the slightly more general
case of points with i.i.d. components. However, these statements completely rely on
the assumption of independent components, which usually does not apply for real-world
data. François et al. conclude that — depending on the underlying distribution func-
tions — “fractional norms” are not always less concentrated than norms of higher order.
Moreover, they discuss some approaches to determine the (in an empirical sense) optimal
value p of the (quasi-)norm depending on certain dataset characteristics.

Recently, a growing number of publications have studied the interplay of different
ℓp-(quasi-)norms and real-world data in more detail, compare e.g. [FCX12, Kab12]. In
[HC09], an interesting ansatz to circumvent concentration phenomenons is propagated.
The authors introduce a so-called “shrinkage-divergence proximity” function. For d-
dimensional points x = (x1, . . . , xd) , y = (y1, . . . , yd) ∈ Rd, and some given metric
δ : R×R→ [0,∞), they define the similarity measure

s (x, y) =
d∑

j=1
wj · faj ,bj

(δ(xj, yj)) ,

where the functions fa,b : [0,∞)→ [0,∞) are given by

fa,b(z) =


0, if 0 ≤ z < a

z, if a ≤ z < b

ez, otherwise,

and wj, aj, bj are parameters that can be adapted to the dataset. Consequently, large
dissimilarities in the components are overemphasized, while small ones are ignored. The
authors do not offer any advanced theoretical analysis of the properties of their proximity
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function, but they present various experimental results based on a k-NN classifier. On
the one hand, the proposed similarity function outperforms both the ℓ2-norm as well as
the ℓ1/2-quasi-norm in most of their experiments; on the other hand, its performance
is highly dependent on the numerous parameters. Nevertheless, the underlying idea of
adapting similarity measures to (high-dimensional) datasets demonstrates an interesting
direction for further research.

Let us now give a compact summary of the diverse facets of the concentration of
measure phenomenon discussed above. First of all, we would like to emphasize here
again that concentration, i.e., the loss of discriminative power, is always a consequence
of the interplay of a particular measure and a particular object (e.g. random vector,
dataset). Many conclusions of norms becoming concentrated in high dimensions rely on
very restrictive assumptions, often random vectors with i.i.d. components. The situation
is much more complex for arbitrarily distributed points, and thus, for real-world data
mining applications. A similar reasoning applies to the ℓp-(quasi-)norms. While there
is good evidence that Minkowski norms of higher order p > 2 might be less useful in
high-dimensional spaces, many different scenarios have been described where either the
commonly-used ℓ1- and ℓ2-norms or certain quasi-norms with p < 1 turn out as favorable.
However, the topic of identifying the (in some sense) optimal value of p with respect to
a given dataset — or even the optimal dissimilarity measure in a more general sense —
still leaves a lot of space for future investigations.

Another aspect that has been observed for example in [FWV07] and [DK09] is the
fact that concentration effects of norms naturally scale with the intrinsic dimension
of the data rather than the ambient dimension. The different interpretations of this
term will be discussed in Chapter 3. For the sake of clarity, consider the trivial case of
points sampled from an m-dimensional affine subspace embedded in RD with m ≪ D.
Clearly, the distances between those D-dimensional points resemble distances between
m-dimensional points. Thus, in this scenario, the high ambient dimension D does not
affect the norm concentration at all.

In data mining, when the underlying structure of the dataset is unknown, the estima-
tion of the intrinsic dimension and subsequent reduction of the ambient dimension are
often the first two steps before the dataset is processed further on. Without any a priori
knowledge, as we have seen above, there is no reason to favor the use of a particular
(quasi-)norm. As a consequence, most general-purpose methods both for intrinsic di-
mension estimation (IDE) as well as for dimensionality reduction (DR) are based on the
standard ℓ2- or (sometimes) the ℓ1-norm. Nevertheless, it should be kept in mind that
quasi-norms can be advantageous in specific settings.

The main topic of this thesis is the theoretical and practical introduction of a new
approach for the efficient and reliable estimation of the intrinsic dimension of a given
dataset. However, the task of IDE is highly interrelated with dimensionality reduction,
which is why we choose to embed our main discussion into an introductory example in
order to illustrate the interplay between the two concepts.
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2.2 Dimensionality Reduction
2.2.1 A compact introduction to dimensionality reduction
Since a large number of different approaches and techniques have been attributed to the
field of dimensionality reduction (DR), it surely is helpful to outline certain character-
istics that allow for a first classification and categorization of those methods. For this
purpose, we make use of the carefully elaborated proposal presented in [LV07] by Lee
and Verleysen.

To establish the general setting, let us start with a given dataset of N objects with D
components or features each, where D is large. These features might be of different type,
e.g. numeric, categorical, textual or other. The dataset shall now be used or analyzed
or processed in a particular context. In this context, some of the available features
might be more or less relevant, others might be completely irrelevant. The separation of
relevant and irrelevant features, also sometimes referred to as feature selection, is often
accomplished in a supervised manner and is not studied any further here.

Given only the relevant features, there might still be relationships between them: if one
particular feature changes in a certain way, another feature changes accordingly. From
the stochastic viewpoint, these two features are correlated or at least not independent.
Consequently, the general assumption is that there exists a smaller number m < D of so-
called latent variables and a rule set mapping those variables onto the original features,
thus recovering the original dataset. Here, the number m of latent variables is usually
unknown, as well as the respective rule set, which might range from a simple linear
projection to some highly complex function. Besides, the recovery of the given data can
also be of approximate nature.

Dimensionality reduction methods basically seek to construct a new, low-dimensional
dataset that allows to recover the relevant structure of the original (high-dimensional)
dataset in the best possible manner. These methods can now be classified according to
the following three specific tasks or functionalities.

1. Estimation of the number of latent variables.

2. Mapping the data points into low-dimensional space to reduce their dimensionality.

3. Mapping the data points into low-dimensional space to recover the latent variables.

The estimation of the number of latent variables is a crucial part of the whole process.
Some DR methods feature their own scheme to derive a proper estimate, others at least
come with some technique that allows to narrow down the choice, while the majority rely
on an external input parameter. As explained above, the notion of “latent variables”
assumes the existence of a corresponding function projecting those variables into the
original data space. However, in many practical scenarios, there is no need to study this
function which in fact is often likely to be of extremely high complexity. In this case, one
rather speaks of the intrinsic dimension of the dataset instead of the number of latent
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variables. Here, the precise representation of the latent variables and the mapping are
no longer relevant, but only the pure (topological) dimension of the reduced data. The
estimation of this intrinsic dimension is the main topic of Chapter 3.

The second task describes the case where the goal of dimensionality reduction is to
construct a low-dimensional representation with minimal target dimension, but without
involvement of the latent variables. Here, the underlying practical purpose is often
data compression, visualization, or preprocessing. In contrast, the third task includes
the recovery of latent variables. Sometimes, the process is split into dimensionality
reduction and latent variable separation. Concerning the latent variables, frequently,
certain statistical properties, e.g. the independence of components, are requested.

A further categorization of DR techniques can be accomplished by considering the
underlying model the data are presumed to follow, the precise algorithmic procedure or
implementation, and the optimization criterion.

Concerning the model, one distinguishes e.g. linear from nonlinear, as well as con-
tinuous from discrete approaches. We stick to the naming convention of “linear” versus
“nonlinear” dimensionality reduction methods, when actually referring to the underlying
linear / nonlinear model. The most well-known and widespread linear methods include
principal component analysis (PCA) and (classical) multidimensional scaling (MDS), as
well as linear discriminant analysis (LDA), all of those featuring many different variants
under various names. Since PCA and MDS also include a technique to derive an esti-
mate of the intrinsic dimension, they are discussed in more detail in subsection 3.2.1. A
comprehensive survey on linear DR methods can be found in [CG15].

Linear methods come with obvious limitations, however are still often used in practice,
either as a first pre-processing step to reduce the dimensionality of very high-dimensional
data, or just because of their simplicity. Nevertheless, to overcome these immanent limi-
tations, a growing number of nonlinear approaches have been coined in the last decades.
These approaches can be loosely categorized into distance preserving and topology pre-
serving methods.

The first group can be subdivided further according to the used distance type, such
as e.g. the Euclidean or the geodesic distance. The use of the Euclidean metric is often
linked to a well-defined optimization criterion and thus allows for a precise theoretical
analysis of the method’s characteristics. Geodesic distances, usually approximated by
graph distances when dealing with a finite number of sample points, seek to reproduce
the geometric shape of the underlying manifold and may outclass the Euclidean model
considerably in appropriate scenarios.

While distance preserving methods focus upon the relationship of pairs of points, the
model of topology preserving methods is based on the global topology of the manifold. In
the precise implementation, the discretization step usually involves either a lattice or a
graph structure. Even though topology preserving approaches are often able to uncover
complex underlying structures due to their flexible model assumptions, most of them
are restricted in practice to rather (both extrinsically and intrinsically) low-dimensional
problems, because of their algorithmic and parametric complexity.
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Plenty of literature on both linear and nonlinear dimensionality reduction methods
exists. Two nice compact reviews can e.g. be found in [vdMPvdH09] and [SVP14], while
for a more comprehensive overview, we again refer to [LV07].

2.2.2 An explanatory example: dimensionality reduction with
ISOMAP

The ISOMAP method has been introduced by Tenenbaum, de Silva and Langford
in [TdSL00] and belongs to the group of nonlinear dimensionality reduction methods pre-
serving geodesic distances. More precisely, ISOMAP is based on the so-called (classical)
multidimensional scaling (compare [Tor52]), which is per se a linear method. However,
replacing the Euclidean distances of the classical variant with geodesic distances makes
ISOMAP a nonlinear approach. Miscellaneous extensions of the method have been pro-
posed e.g. in [dST03, SGM04, CC07].

The term “multidimensional scaling” (MDS) in fact refers to a whole category of
different procedures which are discussed in further detail in subsection 3.2.1. At this
point, let us just give a short description of classical MDS.

For a given dataset X = {xi=1,...,N} ⊂ RD, consider the corresponding centered points

x̄i := xi −
1
N

N∑
j=1

xj,

and the (N × D)-matrix X made up of those x̄i. The Gram matrix B = X · XT is
positive-semidefinite and symmetric and the crucial component is now its eigenvalue
decomposition

B = SΛST , with Λ = diag(λ1, . . . , λN),

where at most D eigenvalues λi are positive and the remaining ones are zero. The
dimension reduction step consists of selecting a number m (with m < D) of components
to be kept and the reduced data is then given by

X̂ = SmΛ1/2
m ,

where the (m ×m)-matrix Λm contains the largest eigenvalues on its diagonal and the
(N ×m)-matrix Sm holds the associated eigenvectors. It must further be noted that the
Gram matrix B can be rewritten as

B = −1
2

JQJ,

where J is some centering matrix and Q = [qij] with qij = ∥x̄i − x̄j∥2 is the squared
distance matrix. Thus, given the matrix Q, the MDS computations can in fact be
accomplished without the explicit knowledge of the precise data point coordinates.
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In the ISOMAP algorithm, the Euclidean distances are now replaced by graph dis-
tances, i.e., approximated geodesic distances. For this purpose, a weighted nearest neigh-
bor (NN) graph G is constructed for the input points, either a k-NN or an ϵ-ball graph.
For the first variant, a point xj is connected to xi if it is among its k nearest neigh-
bors, for the second variant, if ∥xi − xj∥ < ϵ. The corresponding edge weight is set to
∥xi − xj∥ in each case. The final graph distance between two points is now given by the
sum of all edge weights on the shortest path in G between the points.

Swiss role and heated swiss role

Let us now consider two different scenarios to shed some light upon the abilities and
shortcomings of the ISOMAP dimensionality reduction algorithm. First, we revert to
the so-called “swiss role” dataset that has indeed been analyzed in [Ten98] to demonstrate
the advantages of ISOMAP and has quickly become a popular benchmark case study
for both dimension reduction and dimension estimation approaches. The dataset, a two-
dimensional manifold embedded in three-dimensional space, resembles a coiled up sheet
and its name is derived from a certain type of sponge cake. To our knowledge, there
exists no standardized parameterization of this dataset. One way to generate the data
points is to use the function fsw : R2 → R3,

[
y1
y2

]
7→

 x1
x2
x3

 =


√

y1 · cos
(
4π
√

y1
)

√
y1 · sin

(
4π
√

y1
)

y2

 , (2.24)

where [y1, y2]T is uniformly distributed in [0, 1]2. A more complex variant, the so-called
“heated swiss role”, has been proposed in [LV07], and can be described via the function
fswh : R2 → R3,

[
y1
y2

]
7→

 x1
x2
x3

 =


(2y2

2 − 2y2 + 1) · √y1 · cos
(
4π
√

y1
)

(2y2
2 − 2y2 + 1) · √y1 · sin

(
4π
√

y1
)

y2

 , (2.25)

where, again, [y1, y2]T is uniformly distributed in [0, 1]2. Here, the y2 variable is used to
yield a height-dependent parabolic bending of the structure.

While at first sight, both manifolds resemble each other quite closely, the swiss role
represents a so-called developable manifold (in the terminology of differential geometry),
while the heated version is non-developable. Basically, an m-dimensional manifold is
called developable if there exists an isometry between geodesic distances on the manifold
and Euclidean distances within a convex subset of Rm. Intuitively, if the manifold can be
“unfolded” without any distortions, it is developable. This can be done for the swiss role,
but not for the heated version. Another simple example of a non-developable manifold
is of course the m-sphere.
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Figure 2.3: Top: Surface plot of the “swiss role” (left) and “heated swiss role” (right).
Middle: Both manifolds sampled with 2000 random points each. Bottom:
Two-dimensional embeddings computed by ISOMAP (k = 12).
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According to [LV07], the ISOMAP approach is able to recover the underlying structure
of developable manifolds, while it fails for non-developable ones. Figure 2.3 now shows
surface plots illustrating the two manifolds, where the generating variable y1 is encoded
by the coloring; in the center, both manifolds have been sampled with 2000 random
points each; the lower plot finally represents the respective two-dimensional embeddings
computed by the ISOMAP algorithm with parameter k = 12 for the k-NN graph.

The two-dimensional embedding of the standard swiss role shows that the structure
has been unrolled in a satisfying manner. In this case, the graph constructed by ISOMAP
is able to perfectly capture the shape of the underlying manifold due to a sufficiently
high number of (noiseless) sampling points. It is also clear that a linear method is not
able to reproduce this result because of the swiss role’s highly nonlinear structure.

The ISOMAP embedding of the heated version does not look completely wrong, how-
ever it is also not entirely satisfactory. On the positive side, the data points have been
unfolded with respect to the generating variable y1 encoded by the coloring. On the
negative side, the points appear to be clinched with respect to the y2-variable for y1
close to 0 (dark red color) and close to 1 (dark blue color). In fact, this characteristic of
ISOMAP remains the same for different NN values k. Nevertheless, it should be noted
that even the relatively simple example of the heated swiss role poses problems to many
other relevant dimension reduction approaches, and only a minority perform well after
some parameter tuning, compare [LV07].

Paraboloid

Next, we consider variations of a two-dimensional paraboloid embedded in R3. The
generating function is given by f (α)

pa : R2 → R3,

[
y1
y2

]
7→

 x1
x2
x3

 =

 y1
y2

(y1 − 0.5)2 + (α · (y2 − 0.5))2

 , (2.26)

where [y1, y2]T is uniformly distributed in [0, 1]2. Here, the constant α controls the
asymmetry of the paraboloid.

We study the three cases α = 1, 2, 4 to show that subtle differences of the underlying
manifold can lead to disparate outcomes produced by dimensionality reduction methods.
For this purpose, we sample each paraboloid with 2000 points and apply both MDS and
ISOMAP (with NN parameter k = 12) to reduce the dimension from three to two. The
corresponding plots are presented in figure 2.4. Note that the coloring has been chosen
to match the y2 variable of the original dataset in each case.

Let us first have a look at the two-dimensional point sets produced by multidimen-
sional scaling (MDS). Even though the paraboloid is a nonlinear manifold, MDS yields
a satisfying result for α = 1. This is of course due to the fact that the bending of the
chosen segment of the paraboloid is rather low here. For α = 2, the manifold is not
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unrolled (or flattened) in a desirable way; points close to the “bottom” of the original
paraboloid are overlapping. Finally, for α = 4, the embedding produced by MDS is not
satisfactory at all since it nearly resembles a projection onto the plane spanned by the
x1- and x3-axes.

The ISOMAP embedding for α = 1 is very similar to the one produced by MDS;
the manifold is flattened as expected. For α = 2, ISOMAP is still able to unroll the
paraboloid without heavy distortions. However, the same does not apply to the case
of α = 4. On the positive side, nearby points in the embedding are also nearby in the
original data; in other words, no severe overlapping has been produced by ISOMAP. On
the negative side, however, the global structure of the paraboloid has been extremely
distorted. Further experiments show that this problem persists also when varying the
ISOMAP parameter k. Moreover, for even higher values of α, the corresponding two-
dimensional embeddings collapse further and resemble more and more the picture of
three straight lines meeting at the origin (0, 0).

The two examples discussed here give some insight into the strong limitations of dimen-
sionality reduction methods. In fact, both toy examples fulfill many favorable conditions
that are rarely given in practice: the underlying manifold is perfectly smooth, the sam-
pling is uniform, the data points are noisefree, and the reduction is only required to
eliminate a single component. Nevertheless, the outcomes are not fully satisfactory in
each considered scenario.

A last remark should be made with respect to the “quality” of the computed embed-
ding. As mentioned in subsection 2.2.1 already, some DR techniques (e.g. as PCA and
MDS) feature a precise optimization criterion, i.e., the respective outcome minimizes a
particular error measure. Yet, there exists no reasonable approach to define a universally
valid error measure for the task of dimensionality reduction. This fact can easily be veri-
fied by considering (a random sampling of) the surface of the three-dimensional unit ball,
i.e., the two-dimensional unit sphere in R3. Despite being a smooth 2D-manifold, there
is no ideal way of a corresponding two-dimensional embedding. Any such embedding
can not reveal the true structure of the sphere, if there is no knowledge of the latent
variables and the underlying mapping function.

The low ambient dimension of the above-mentioned examples has been chosen on
purpose in order to illustrate certain issues of dimensionality reduction methods visually.
However, in most practical scenarios, the ambient dimension is much higher. Indeed,
a larger gap between the ambient dimension D and the intrinsic dimension m makes a
reliable reduction procedure more beneficial and desirable. In many cases, the intrinsic
dimension of a high-dimensional dataset is completely unknown. Recall also that the
majority of DR methods rely on an input parameter for the intrinsic dimension. Hence,
the first step towards a viable data processing approach requires the determination or,
more precisely, the estimation of the intrinsic dimension.
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Chapter 3
Intrinsic Dimension Estimation

In this chapter, we discuss the important notion of the intrinsic dimension of a set of
points. Under the assumption that the points have been generated according to some
model, the intrinsic dimension basically coincides with the number of latent variables of
the appropriate model. Without an underlying model, the intrinsic dimension can be
characterized as the number of variables of a new, lower-dimensional representation of
the original data, that is considered sufficient to describe the data according to certain
external requirements, e.g. some error measure. As this description already suggests, the
intrinsic dimension of a dataset might not be unambiguous, but might rather depend
on an error norm or on the purpose of the data processing method. Some concepts of
dimension are motivated by fractal geometry, thus, the range of corresponding estimators
of the intrinsic dimension is the real interval [0, D], where D is the dimension of the given
data. Most dimension reduction methods require a value of the intrinsic dimension as
an input parameter, while nevertheless, it could be advantageous in certain cases to
combine dimension estimation and reduction in a single approach. In order to get a
better understanding of the foundations of different estimation methods, we first consider
the most common concepts of dimension.

Before we continue, let us present some notational conventions that we make use of
throughout this chapter. All descriptions in table 3.1 are effective unless noted otherwise.

3.1 Concepts of Dimension
In mathematics, the term “dimension” is employed in different areas with different mean-
ings. The most well-known and elementary definition is the dimension of a vector space
determined by the cardinality of its basis. This includes the Euclidean space of dimen-
sion n, denoted by Rn. Since a manifold is defined as a topological space that is locally
homeomorphic to the Euclidean space of some fixed dimension n, the corresponding
dimension of the manifold is also given by n in a straightforward way.

In our context, problems arise when we consider a countable (or usually finite) set

27
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symbol explanation

Rn Euclidean space of dimension n

x, y, z bold symbols denote vectors, typically elements of Rn for some given n

∥x∥ Euclidean norm: ∥x∥ = ∥x∥2 =
√

x2
1 + . . . + x2

n

Br(x) ball with radius r centered at x

D dimension of ambient space (i.e., original data space)

m intrinsic dimension of data (or number of latent variables)

N number of observed data points

X set of observed data points: X = {xi=1,...,N} ⊂ RD

x
(j)
i jth nearest neighbor of point xi

Tj(xi) Euclidean distance of xi to its jth nearest neighbor: Tj(xi) =
∥∥∥xi − x

(j)
i

∥∥∥
Table 3.1: Notational conventions for Chapter 3. The last two expressions are used if and

only if we are referring to a fixed and finite set of points. The term x
(j)
i might

not be well-defined if there exist two points at the same distance from xi. In
this case, we implicitly assume some fixed ordering of the nearest neighbors.
The exact kind of this ordering is of no relevance.

of points sampled from some unknown manifold. The topological dimension, which will
be introduced below, of any finite set equals zero, hence we need to study alternative
concepts which brings us to fractal dimensions. For sufficiently well-behaved sets, these
fractal dimensions coincide with the standard topological dimension. However for the
so-called fractals, which are basically characterized by self-similarity and a recursive
construction process, the fractal dimensions usually evaluate as non-integer real numbers
larger than the topological dimension. Furthermore, the nature of their definition often
leads to a practical approach to assign a meaningful value (of dimension) to a finite point
set.

In the following, we first present the topological dimension, also known as Lebesgue
covering dimension, then the Hausdorff dimension being the most prominent example of
a fractal dimension, before we consider the box-counting and the correlation dimension,
which can both be subsumed in the more general concept of the q-dimension. Parts of
this section are based on [LV07] and [Fal03], a nice introduction to the topic can also be
found in [Cut93].

3.1.1 Lebesgue covering dimension
One of the most fundamental and well-understood concepts is the Lebesgue covering
dimension, also called topological dimension or just covering dimension. It is defined
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with respect to a given topological space (Y , τ), that is a set of points Y together with
a collection τ of subsets of Y called open sets. For any subset S ⊂ Y , a covering of
S is defined as a family C of open sets whose union contains S. For any covering C, a
refinement C ′ of C is another covering such that each set of C ′ is contained in some set
of C.

Now the Lebesgue covering dimension of S ⊂ Y is defined as the smallest integer DL,
such that every covering C of S has a refinement C ′, for which each point of S is contained
in at most DL + 1 sets of C ′. If such an integer does not exist, the covering dimension is
infinite.

Provided that Y is a separated space (also known as Hausdorff space), it is easy to
see that any finite set has a topological dimension of zero, since for each point, an open
neighborhood containing no other points can be found. On the other hand, there are
also unions of uncountable closed sets with dimension zero, such as the famous Cantor
set.

The geometric idea behind this notion of dimension can be illustrated in the Euclidean
space by considering simple one- and two-dimensional examples like a line segment, a
circle, or a disk. For example, any covering of a circle can be refined such that each set
of the refinement contains only an open arc of the circle. Thus, each point of the circle
is contained in no more than two sets of the refinement and consequently, the dimension
of the circle is one.

As mentioned above, the Lebesgue covering dimension, being a very general topological
concept, is of limited use when it comes to analyzing certain intricate point sets. The
following fractal dimensions provide the necessary flexibility.

3.1.2 Hausdorff dimension
The Hausdorff dimension is defined with respect to a metric space (Y , dY). For a set
S ⊂ Y , a countable family C = {Ti} of open sets is called an ϵ-covering of S, if the union
of all Ti contains S, and the diameter of all Ti is bounded by ϵ. Here, the diameter of Ti

is defined as diam(Ti) := sup {dY(u, v) | u, v ∈ Ti}. Now, given some real number α ≥ 0,
the α-Hausdorff measure of S is defined as

Hα(S) = lim
ϵ→0

inf
C

∑
Ti∈C

diam(Ti)α : C is an ϵ-covering of S

 . (3.1)

It should be recalled here that Hausdorff measures generalize the concept of n-dimensional
volume, i.e. the n-dimensional Lebesgue measure. In particular, for any Borel subset
S ⊂ Rn, we have (see [Fal03])

Hn(S) = cn · voln(S), (3.2)

where the constant cn is the volume of the n-ball of diameter 1.
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Since it can be shown that the following infimum and supremum exist and coincide,
the Hausdorff dimension of S is now defined as

DH(S) = inf {α : Hα(S) = 0} = sup {α : Hα(S) =∞} . (3.3)

Thus, the Hausdorff dimension is given by the precise value of α, where the Hausdorff
measure Hα “jumps” from infinity to zero. It can be shown that this jump occurs at
the same place when the measure is slightly modified. Instead of all ϵ-coverings of S, it
suffices to consider only all coverings with balls of radius less than or equal to ϵ. This
leads to the following intuitional view: consider a sufficiently well-behaved set S and each
covering of S with such balls. Let Nϵ be the smallest number of balls of this covering.
Then, as ϵ approaches zero, the number Nϵ grows as ϵ−d, where d is the Hausdorff
dimension.

Since it will be sufficient for our further considerations, from now on, we restrict
ourselves to the case Y = Rn. As noted in [Fal03], the Hausdorff dimension features the
following important properties:

• Monotonicity: For each S ⊆ T ⊂ Rn: DH(S) ≤ DH(T ).

• Countable stability: DH (∪∞
i=1 Si) = sup1≤i<∞ DH(Si).

• Countable sets: For each countable set S ⊂ Rn: DH(S) = 0.

• Geometric invariance: DH(f(S)) = DH(S), if f is an isometry or an affine trans-
formation of Rn.

• Open sets: For each open subset S ⊂ Rn: DH(S) = n.

• Smooth manifolds: For each continuously differentiable m-dimensional submanifold
S of Rn: DH(S) = m.

• Bi-Lipschitz invariance: For S ⊂ Rn let f : S → Rm be a bi-Lipschitz trans-
formation, i.e., there exist two positive constants c1 ≤ c2 with c1∥x − y∥ ≤
∥f(x)− f(y)∥ ≤ c2∥x− y∥ for all x, y ∈ S. Then DH(f(S)) = DH(S).

Intuitively, all those properties might seem natural and desirable for any notion of di-
mension. Nevertheless, we will see that the box-counting dimension introduced below,
which is closely related to the Hausdorff dimension, violates even basic concepts, e.g. the
countable stability and countable sets properties.

In the following, we present two fractal dimension definitions which are the foundation
for many important methods in practical dimension computation and estimation.
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3.1.3 The box-counting dimension
The intuition behind the box-counting dimension, the correlation dimension, and the
Hausdorff dimension is in fact quite similar. Let Nϵ(S) denote the number of “volume-
like” elements scaling with parameter ϵ, where each element is associated with some
point of the d-dimensional set S. Then, for small ϵ, we expect the measurement to obey
an exponential dependence on d:

Nϵ(S) ∼ ϵ−d. (3.4)

After applying the logarithm and letting ϵ→ 0, we yield

d ∼ lim
ϵ→0

log Nϵ(S)
− log ϵ

. (3.5)

In fact, this relationship is already very close to the precise definition of the box-counting
dimension, also known as Minkowski-Bouligand dimension or capacity dimension. Given
some non-empty bounded subset S ⊂ Rn, define Nϵ(S) as the smallest number of sets
of diameter at most ϵ covering S. Then, the lower and upper box-counting dimensions
of S are defined as

D−
box(S) = lim inf

ϵ→0

log Nϵ(S)
− log ϵ

, D+
box(S) = lim sup

ϵ→0

log Nϵ(S)
− log ϵ

. (3.6)

Finally, if the two limit values coincide, their common value

Dbox(S) = lim
ϵ→0

log Nϵ(S)
− log ϵ

(3.7)

is called the box-counting dimension of S.
So far, the naming might not seem appropriate, since the definition does not involve

particular objects such as boxes. For this reason, it must be noted that the box-counting
dimension can be defined equivalently using any of the following quantities for Nϵ(S):

(i) the smallest number of closed ϵ-balls covering S,
(ii) the smallest number of ϵ-cubes covering S,
(iii) the number of ϵ-mesh cubes intersecting S,
(iv) the largest number of disjoint ϵ-balls with centers in S.

The quantities (ii) and (iii) are frequently used in practical dimension estimation. For
example, when using (iii), the set S is covered with ϵ-meshes for decreasing values of ϵ
and the number of boxes overlapping S are counted for each ϵ. The dimension can then
be estimated as the logarithmic rate at which Nϵ(S) increases for ϵ→ 0.

Furthermore, when it comes to estimating the Hausdorff dimension of a set, for which
only a finite number of sample points is available, the box-counting dimension is often
the method of choice due to its simplicity. In fact, the Hausdorff and the box-counting
dimension are equal for many sufficiently regular subsets of Rn; however, one can show
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that
DH(S) ≤ Dbox(S) for each S ⊂ Rn, (3.8)

and numerous examples are known where the two dimensions actually differ. Consider
e.g. the countable set S1 of all rational numbers in the unit interval [0, 1]. It can easily
be derived that Dbox(S1) = 1, while DH(S1) = 0, since S1 is countable. Another rather
counterintuitive case is represented by the set S2 =

{
0, 1, 1

2 , 1
3 , 1

4 , . . .
}
, which has a single

limit point; nevertheless, its box-counting dimension is Dbox(S2) = 1
2 .

These results show that the box-counting dimension violates both the countable sta-
bility and the countable sets properties of the Hausdorff dimension, which is however not
a problem in common practical applications. To the contrary, one often seeks to analyze
the dimension of a set or manifold which is represented by only finitely many points,
where the Hausdorff dimension itself is not helpful at all.

3.1.4 The correlation dimension
The correlation dimension has been introduced by Grassberger and Procaccia in
[GP83] in the context of time series and attractors. In a nutshell, an attractor is a set
of numerical values, often with either some manifold-like or fractal-like structure, acting
like a local or global equilibrium for an underlying system, meaning that the underlying
system tends to evolve towards the attractor. Even though the correlation dimension
can be defined in a more general way, we prefer the following quite intuitive approach.

Consider a countable set S = {si=1,...,∞} ⊂ Rn and define the so-called correlation
sum of S,

Cϵ(S) = lim
K→∞

2
K(K − 1)

∑
1≤i<j≤K

H (ϵ− ∥si − sj∥) , (3.9)

where H : R→ R is the Heaviside step function defined by

H(x) =

0 if x < 0,

1 if x ≥ 0.
(3.10)

The correlation sum describes the probability that some arbitrary pair of points (si, sj)
features a distance of no more than ϵ. Now, analogously as for the box-counting di-
mension, if the corresponding limit inferior and limit superior coincide, the correlation
dimension of S is defined as

Dcor(S) = lim
ϵ→0

log Cϵ(S)
log ϵ

. (3.11)

For the intuition behind the correlation dimension, consider a fixed point si and its ϵ-
neighborhood Bϵ(si). Then, the growth rate of the number of points sj within Bϵ(si)
for increasing ϵ should be exponential with respect to the underlying dimension. Thus,
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while the box-counting dimension is related with a global covering of the complete point
set, the correlation dimension relies on a local analysis of isolated points.

To estimate the correlation dimension in practice, it suffices to compute all (or a large
number of) pairwise inter-point distances and subsequently approximate the correlation
sum Cϵ(S) for decreasing values of ϵ. The challenging part here — as with the box-
counting dimension — is to determine an appropriate range of values for ϵ and to yield a
proper logarithmic rate for ϵ→ 0. Details for this issue will be discussed in the upcoming
section.

Finally, both notions of dimension can be united in a more general concept that we
now present in aggregate form.

3.1.5 The q-dimension
The q-dimension is usually attributed to Rényi (see [Rén59]) and hence it is sometimes
also referred to as Rényi dimension. An equivalent definition has also been provided
in [HP83] by Hentschel and Procaccia, again in the context of chaotic dynamical
systems and their attractors. A review of different definitions can be found in [Pes93].

Instead of for some subset of Rn, the q-dimension is defined more generally for a given
Borel probability measure µ on a metric space Y . For each q ≥ 0 and ϵ > 0, first define
the correlation integral

Cq,ϵ(µ) =
∫

Y

(
µ(B̄ϵ(y))

)q−1
dµ(y), (3.12)

where B̄ϵ(y) denotes the closed ball of radius ϵ with center y. Next, for q ̸= 1, the lower
and upper q-dimensions of µ are given by

D−
q (µ) = lim inf

ϵ→0

log Cq,ϵ(µ)
(q − 1) log ϵ

, D+
q (µ) = lim sup

ϵ→0

log Cq,ϵ(µ)
(q − 1) log ϵ

. (3.13)

In case the two limit values coincide, their common value

Dq(µ) = lim
ϵ→0

log Cq,ϵ(µ)
(q − 1) log ϵ

(3.14)

is called the q-dimension of µ.
In our context, the most important properties of the q-dimension are the following.

First, for a given metric space Y and a probability measure µ on Y , consider a bounded
and µ-measurable set S ⊂ Y . Then, using the corresponding correlation integral

Cq,ϵ(µ, S) =
∫

S

(
µ
(
B̄ϵ(y)

))q−1
dµ(y), (3.15)

we yield the q-dimension of S, Dq(µ, S). Now, one can easily derive that D0(µ, S)
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corresponds to the box-counting dimension and D2(µ, S) corresponds to the correlation
dimension.

It is also noteworthy that after taking the limit q → 1 and applying de l’Hospital’s
rule, the result D1(µ, S) is referred to as information dimension. In practice however,
the information dimension does not play a vital role since it is generally complicated to
estimate (see [LV07]).

Finally, the following inequality has already been shown in [HP83]:

For all 0 ≤ q1 < q2 <∞ : Dq2(µ) ≤ Dq1(µ), (3.16)

which naturally implies D2(µ) ≤ D1(µ) ≤ D0(µ).

3.1.6 Further notions of dimension
Besides the widespread concepts of dimension discussed above, there exist many more,
most of which come with subtle differences. Before moving on, we would like to name
just a few rather well-known variants without going into further details.

Approaches based on the open covering of the given point set include the Assouad
dimension and the Aikawa dimension. The first has been introduced by Assouad in
[Ass79] and is based on a covering of the set with open balls. An in-depth review
including alternative definitions can be found in [Luu98]. The second is due to Aikawa
(see [Aik91]) and based on integrals of the distance function. In [LT13a] however, it has
been shown that for all subsets of Rn, the Assouad and the Aikawa dimension coincide.

In the context of the theory of attractors, another commonly used concept is the
Kaplan-Yorke dimension, also known as Lyapunov dimension. Since this topic is not
the focus of our work, we refer the reader interested in deeper insights to the original
publication [KY79] as well as the nice surveys in [FOY83] and [Ott02].

3.2 Estimation of the Intrinsic Dimension
Just as the concept of dimension, the notion of the intrinsic dimension of a point set has
been established in various research fields with slightly different meanings. The term
“intrinsic dimension” is sometimes imputed to Bennett (cf. [Ben65]), while the basic
idea has certainly been around much earlier, e.g. when Peano introduced a continuous
mapping from the unit interval onto the unit square, a so-called space-filling curve, in
[Pea90].

Due to the multitude of characterizations and approaches, we do not aim for a compre-
hensive summary of all existing concepts of intrinsic dimension. Reviews of estimation
methods can be found in [Cam03] or [MM10] amongst others. Furthermore, [CCCR15]
provides a very recent overview of successful methods, while a more theoretical approach
to the topic is presented in [Pes08].
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In the following subsection, we propose several ways to categorize estimation methods,
we highlight the most relevant examples with their associated modifications, and we
discuss the corresponding advantages and drawbacks. Subsequently, we analyze certain
carefully selected approaches for dimension estimation in more detail. From now on,
when appropriate, we use the acronym IDE for intrinsic dimension estimation.

3.2.1 Classification and characteristics of IDE methods
The underlying model

What is the intrinsic dimension of a given dataset X ⊂ RD? There are at least two
different answers to this question, depending on the underlying assumptions. The first
model is based on some generating function f : Rm → RD and assumes that the observed
data X = {xi} has been generated from the set of latent variables {yi} ⊂ Rm via
xi = f(yi) + ϵi, where ϵi denotes the noise term. In this very general setting, the
intrinsic dimension is the dimensionality of the latent space, m. The second model is a
geometric approach and just assumes that the data X ⊂ RD is situated on or, in the
noisy case, close to some unknown manifold. Here, the intrinsic dimension clearly is the
corresponding manifold dimension.

The latent variable model can usually not be applied without any further assumptions
on the generating function f . To see this, just let f be a space-filling curve, e.g. a
generalized Hilbert curve, mapping the unit interval [0, 1] onto the unit cube [0, 1]n.
There is no intuitive reasoning according to which the observed variables {xi} of this
model should have an intrinsic dimension of m = 1.

Certainly, any knowledge about the generating function f can potentially be used
both to give a more precise definition of the intrinsic dimension and to choose a specific
estimation method. However, in many cases, not only f is completely unknown or highly
nonlinear, but also the measurement errors have an enormous impact on the observed
data. Hence, numerous approaches ([CH04b], [HA05], [BL05], [RL06], [MM10]) prefer
the manifold model as definition of the intrinsic dimension.

Next, we discuss some specific characteristics that allow to classify estimation methods
more precisely. It must be noted though that several approaches can not be categorized
into the following scheme in a completely unambiguous way. Nevertheless, it is still
useful to keep in mind the following distinctive features. Our considerations are partly
based on [LV07] and [CCCR15].

Global and local methods

Methods that compute a single estimate using the entire dataset at once are called
global methods. Popular examples are Principal Component Analysis (PCA) and Mul-
tidimensional Scaling (MDS). In contrast, local methods assign a different estimate to
local patches of the data or even to each single point. If required, local results are then
combined into a global estimate, using averaging or voting or some more sophisticated
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technique. A global method can be made local by providing a suitable way to extract
local subsets of the data and then applying the original method to each subset separately.

Global methods can usually be successfully applied for datasets with a simple under-
lying structure, such as an affine subspace or some smooth manifold with a constant,
a priori given curvature. However, for more complex manifolds with non-constant cur-
vature or highly non-linear features, or also for a mixture of different manifolds, local
methods are in general much better suited. This seems natural regarding the character-
ization of a manifold as a locally smooth and low-dimensional object.

While the discrimination between global and local methods only refers to the associ-
ated output mode, it might also be beneficial to consider the precise technique, which
can be either global, local, or multilevel. PCA and MDS are also global in this regard,
since they work with all data points at once. In contrast, the estimator by Grass-
berger and Procaccia (see subsection 3.2.2) yields a global estimate via a multilevel
approach, considering the dataset at different scales. On the other hand, the multiscale
SVD (see below) method uses also different, relatively small scales to get multiple local
estimates. Eventually, most nearest neighbor methods rely just on a single, local scale
for their local estimation results.

Multilevel techniques clearly provide the highest flexibility, since they allow for the
examination of global as well as different local structures. On the other hand, the
flexibility of local and especially multilevel methods usually comes at the expense of a
higher complexity, e.g. regarding the algorithmic implementation, the tuning of multiple
parameters, or cost complexity. Nevertheless, nearly all recent approaches rely on either
local or multilevel schemes and frequently deliver more precise estimation results than
classical global variants.

Projective methods

Projective approaches explicitly construct a mapping that projects the given data into
an appropriate space. The intrinsic dimension is either the dimension of the image
space or it is extracted as a property of the projection itself. Many of these particular
methods have been primarily designed as dimension reduction procedures in the context
of data exploration or visualization and require the intrinsic (target) dimension as input
parameter. Nevertheless, modifications and extensions have been presented that allow
for an estimation of the ID.

The majority of all projective methods are based on one of two well-established tech-
niques with a long history going back to the beginning of the 20th century: Princi-
pal Component Analysis (PCA, see [Jol02]) and Multidimensional Scaling (MDS, see
[BG05]). While both variants do not come with a trivial standard approach to compute
the intrinsic dimension, still many estimation methods, ranging from simple to sophisti-
cated, rely on the one or the other, which is why we present the two concepts in a more
detailed manner.

PCA can be interpreted — from a statistical viewpoint — as maximization of the
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preserved variance in the data or — from an approximation viewpoint — as minimization
of the reconstruction error. In a nutshell, PCA can be performed via the following steps.
First, center all data points xi=1,...,N ∈ RD via subtracting their mean value to yield the
shifted points

x̄i = xi −

 1
N

N∑
j=1

xj

 . (3.17)

Assume now that the shifted data x̄i=1,...,N are arranged in an (N ×D)-matrix X. Next,
consider the covariance matrix defined by

W = XT ·X, (3.18)

which is positive-semidefinite and symmetric. Consequently, the eigenvalue decomposi-
tion of W can be written as

W = SΛST , (3.19)

where the diagonal matrix Λ = diag (λ1, . . . , λD) contains the eigenvalues of W in de-
scending order λ1 ≥ . . . ≥ λD ≥ 0 and the columns of S are the corresponding or-
thonormal eigenvectors. The core part of the principal component analysis is now the
transformation matrix S. The columns of S are called “components”, and the projection
on the first few components (associated with the largest eigenvalues) preserves the max-
imum of variance in the data. Now, the proper selection of the number m of relevant
principal components is equivalent to the estimation of the intrinsic dimension. One
possible approach is to fix some small ϵ > 0 and determine the smallest m ≤ D such
that ∑m

k=1 λk∑D
k=1 λk

≥ 1− ϵ. (3.20)

By keeping only the first m components, the fraction (1 − ϵ) of the global variance is
preserved in the reduced data.

Principal Component Analysis is a purely linear transformation. Therefore, it is gen-
erally not able to discover any nonlinear structure and its usefulness is rather limited,
unless it is modified or combined with other techniques.

In practice, for very high-dimensional data residing in RD with low intrinsic dimension
m ≪ D, PCA is occasionally applied as a first step to project the data into the best-
approximating d-dimensional space with m < d ≪ D, where subsequently, a more
advanced scheme is utilized to recover the true ID value m from the data embedded in
the much smaller ambient space.

Many different modifications of the PCA method exist. A local variant has first been
presented in [FO71], where PCA is applied in local hyperspheres of varying sizes. An
extension of this variant using optimally topology preserving maps for a superior handling
of noisy data is introduced in [BS98]. In [SSM98], the so-called kernel PCA was coined
as a non-linear generalization of PCA, which now takes place in an arbitrarily high-
dimensional feature space determined by the chosen kernel function. The authors claim
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that fewer nonlinear principal components are required to get the same performance in
classification tasks as with standard PCA. However, on the downside, the reconstruction
of the original data from the components is highly non-trivial.

Probabilistic variants have been proposed in [TB99] and [Bis99], where the PCA is
reformulated as a maximum likelihood problem. This allows for a combination of multiple
PCA models into a probabilistic mixture model. Further, the Bayesian PCA in [Bis99]
introduces a way to automatically derive the number of latent variables (i.e., the intrinsic
dimension) under certain model assumptions. An interesting generalization has been
established in [CDS02], where the Gaussian distribution in the underlying PCA model
is replaced by the exponential family, allowing for better suited models in the case of
integer or binary data. A recent refinement of this approach can also be found in [LT13b].

An interesting extension, the so-called sparse PCA, is presented in [ZHT06], the cor-
responding probabilistic variant in [GD09]. While each standard principal component
usually depends on all given input variables, the sparse PCA imposes the constraint
that the sparse PCs only depend on a few input variables, thus allowing for a more
straightforward interpretation of the results in certain scenarios.

Finally, a promising approach named multiscale SVD has been published in [LMR12,
LMR11]. Based on tools from multiscale geometric measure theory and harmonic anal-
ysis, the authors implement a carefully constructed model with particular assumptions
on the manifold’s curvature, the sampling, and the imposed noise level. They show that
under these conditions, for an m-dimensional manifold and for an appropriate local scale
r > 0, the corresponding singular values of the local SVDs can be separated into m values
growing like r, while the remaining ones grow like r2. This gap in the singular values is
finally utilized in a multiscale approach to determine the intrinsic dimension m. Their al-
gorithm yields very good results for artificial datasets, in particular for high-dimensional
unit cubes and spheres tainted with relatively high levels of Gaussian noise. However, in
experiments for real world datasets presented in [LMR12, LMR11], the multiscale SVD
method frequently produces estimates much lower than all competing approaches, and
no attempt of an explanation for this behavior is provided.

The second category consists of methods based on multidimensional scaling (MDS).
This term describes a concept rather than a specific procedure. The key idea of MDS
is to preserve most of the pairwise similarities (or dissimilarities) between data points
while embedding them into a lower-dimensional space. To achieve this, an associated
loss function (called stress or strain) measuring the dissimilarity between the original
and projected similarity matrix, is minimized. Different definitions of loss functions lead
to different variants of MDS. Generally, one distinguishes between metric and non-metric
MDS. While metric versions seek to preserve the exact values of the similarities as well as
possible, non-metric versions are linked to the ranking of the similarities. Further details
can be found in [CC00, BG05], a nice historical introduction is provided in [GB14].

The most prominent example of metric MDS is due to Torgerson (see [Tor52]) and
it is usually referred to as classical multidimensional scaling or sometimes as principal
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coordinates analysis. This approach can also be thought of as a “transposed analogue”
of PCA. Classical MDS does not require the precise coordinates of the input points, but
rather relies on the matrix of pairwise squared Euclidean distances between them. As
above, let the centered data points x̄i=1,...,N be arranged in an (N×D)-matrix X and let
further Q = [qij] with qij = ∥x̄i − x̄j∥2 be the squared distance matrix. Now, consider
the Gram matrix defined by

B = X ·XT , (3.21)

which is positive-semidefinite and symmetric. Note that B can be rewritten as

B = −1
2

JQJ, (3.22)

where J = IN − 1
N

1N · 1T
N is a centering matrix, IN the N -dimensional identity matrix,

and 1N the N -dimensional vector containing ones everywhere. Finally, let

B = SΛST (3.23)

be the eigenvalue decomposition with Λ = diag (λ1, . . . , λN) and the orthonormal matrix
S containing the eigenvectors as columns. Here, at most D of the N eigenvalues λi can
be positive, while the remaining eigenvalues are zero. The final dimension reduction step
corresponds to the selection of the number m of components to be kept. The reduced
data is then given by

X̂ = SmΛ1/2
m , (3.24)

where the (m ×m)-matrix Λm contains the largest eigenvalues on its diagonal and the
(N ×m)-matrix Sm holds the associated eigenvectors.

It is straightforward to prove that both PCA and classical MDS are linear reduction
methods and yield equivalent results, see e.g. [LV07].

Classical MDS minimizes the so-called strain loss function given by

f
(1)
MDS (x̂1, . . . , x̂N) =

(∑
i,j (bij − ⟨x̂i, x̂j⟩)2∑

i,j b2
ij

) 1
2

, (3.25)

where x̂i are the output data and bij are the entries of the matrix B.
It must further be noted that classical MDS is also utilized in situations where first

the points x̄i=1,...,N are unknown and second the given matrix Q = [qij] corresponds to
pairwise dissimilarities, but not Euclidean distances between the data points. This case
must be treated in a slightly different way, since some of the eigenvalues λ1, . . . , λN can
now be negative.

As mentioned above, many different variants of MDS exist. In general — except
for classical MDS — the associated function to be minimized is called stress function
due to Kruskal, who proposed the following stress function prototype for the output
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configuration x̂1, . . . , x̂N in [Kru64a, Kru64b]:

f
(2)
MDS (x̂1, . . . , x̂N) =

(∑
i<j (dij − δ(qij))2∑

i<j d2
ij

) 1
2

. (3.26)

Here, dij = d(x̂i, x̂j) represents an arbitrary distance function, e.g. the Minkowski dis-
tance of order p, while δ(qij) denotes some general transformation of the input dissimi-
larities qij.

Even in the most basic setting, where dij = ∥x̂i − x̂j∥ denotes the Euclidean distance
and also δ(qij) = qij represent the measured Euclidean distances, the solution of the
minimization problem with loss function (3.26) has no analytical solution (like classical
MDS) and thus requires for example a steepest descent method. However, as opposed to
the classical version, most variants are able to recover underlying nonlinear structures
in the data.

First steps using multidimensional scaling to determine the intrinsic dimensionality
of signal collections are due to Shepard and Carroll [SC66], Kruskal, Bennett
[Ben69], Trunk [Tru68], and others, see [CA74] and the references therein.

Popular and successful methods primarily used in dimension reduction include Sam-
mon’s mapping [Sam69], Kohonen’s self-organizing maps [Koh89], and more recent ap-
proaches like curvilinear component analysis (CCA, [DH97]), locally linear embedding
(LLE, [RS00, RS03]) and ISOMAP [TdSL00]. Detailed descriptions and evaluations are
presented in [LV07]. The most promising among these approaches are probably ISOMAP
and LLE.

Simply speaking, ISOMAP combines classical MDS with graph distances, which on
their part approximate geodesic distances. This modification results in a nonlinear
method. The graph distances are computed as follows. First, a weighted nearest neigh-
bor graph G is constructed for all input points, which is either a k-NN or an ϵ-ball
graph. More precisely, given xi, the point xj is connected to xi either if it is among the
k nearest neighbors of xi, or if their distance fulfills ∥xi − xj∥ < ϵ. In each case, the
edge weight equals ∥xi − xj∥. Now, the graph distances are evaluated via constructing
the shortest path between two points in G and summing up the corresponding weights.
Finally, the classical MDS procedure is applied to the matrix of graph distances.

ISOMAP is a great improvement over classical MDS. While it inherits the advantage
of algorithmic and computational simplicity, it is also able to successfully recover certain
nonlinear manifolds, for example the famous “swiss role”, as shown already in subsec-
tion 2.2.2. However, recall that ISOMAP suffers from the following two main issues. The
class of recoverable nonlinear manifolds is restricted to the developable manifolds. Basi-
cally, an n-dimensional manifold is called developable if there exists an isometry between
geodesic distances on the manifold and Euclidean distances in a convex subset of Rn;
intuitively, if the manifold can be unfolded without any distortions, it is developable.
When confronted with non-developable manifolds, ISOMAP — both as a dimension re-
duction and intrinsic dimension estimation method — does not yield satisfying results
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in many cases. Moreover, the approach can be highly sensitive when it comes to the
proper choice of the particular graph parameter, be it k or ϵ.

The LLE method (see [RS00, RS03]) is motivated by the MDS concept, however,
instead of a global optimization process including all pairwise distances, it seeks to
preserve local similarities between neighboring points. For this purpose, in a first step,
each data point xi ∈ RD is reconstructed via a weighted combination of its nearest
neighbors. More precisely, the cost function

f
(1)
LLE(W ) =

N∑
i=1

∥∥∥xi −
N∑

j=1
wijxj

∥∥∥2
(3.27)

is minimized, where the weight matrix W = [wij] is required to fulfill two constraints:
it is sparse in the sense that, for each i = 1, . . . , N , wij ̸= 0 only if xj belongs to the
k nearest neighbors of xi. Second, each row sums up to one, i.e., ∑j wij = 1 for each
i. This minimization problem can be solved using constrained least squares fits, which
involve the solution of local linear systems with an associated Gram matrix. In certain
cases, for example when k > D, this Gram matrix can be nearly singular and therefore
must be conditioned using a small regularization parameter δ > 0.

In the second step, for fixed output dimension m, LLE computes a lower-dimensional
representation x̂1, . . . , x̂N ∈ Rm of the data by minimizing the cost function

f
(2)
LLE(X̂) =

N∑
i=1

∥∥∥x̂i −
N∑

j=1
wijx̂j

∥∥∥2
, (3.28)

where the minimization is now carried out with respect to the matrix X̂ ∈ RN×m,
while the weights wij are the outcome of step one. In order to get a well-posed mini-
mization problem, the authors introduce the following two constraints: the outputs are
required to be centered at the origin, i.e., ∑N

i=1 x̂i = 0, and to have unit covariance,
i.e., 1

N

∑N
i=1 x̂ix̂

T
i = Im. The solution can be found via computing the smallest m + 1

eigenvalues and corresponding eigenvectors of the symmetric and positive-semidefinite
matrix A = (IN −W )T (IN −W ). Increasing or decreasing the number of eigenvalues
yields hierarchically embedded solutions of higher or lower dimension m, respectively.
Theoretically, the jumps between the eigenvalues (arranged in ascending order) can also
be used for estimating the intrinsic dimensionality of the data.

Due to its local nature, LLE is able to successfully recover certain nonlinear manifolds.
This capability actually stems from its first step: the computation of nearest neighbors
and the associated restriction of the weights. However, in [LV07], Lee and Verleysen
remark that different choices of the two parameters, the number k of NNs and the
regularization constant δ, can lead to highly divergent results.

When it comes to the estimation of the intrinsic dimension, the authors of [PP02] ex-
amine some preconditions on the data that allow for the use of LLE as an IDE method.
On the other side, the inventors of the method recommend against this usage in [RS03]
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and present some rather simple examples of two-dimensional manifolds, where the eigen-
value spectrum in the last step of LLE can not provide an unambiguous criterion.

In summary, it must be noted that the majority of projective methods have been de-
rived for the purpose of dimensionality reduction and thus, their usefulness in dimension
estimation — even though being a convenient side benefit — is often limited.

Fractal methods

Under the notion of fractal methods we shall summarize all approaches which are based
directly on one of the concepts of fractal dimensions introduced in section 3.1. Most of
these methods rely on the “manifold model”: the given data points are assumed to be
sampled through some smooth probability density function from an underlying manifold
with intrinsic topological dimension m. Most often, the theoretical concept is in fact
based on the premise of uniformly distributed data.

According to [CCCR15], only two state-of-the-art estimators seek to explicitly estimate
the Lebesgue covering dimension. The first is the so-called tensor voting framework
(see [MMN05, MM10] for details) and the second approach in [LGX09] is motivated
by LLE and estimates the ID using local weights that approximate each point by its
nearest neighbors, in a very similar manner as in the first step of LLE. As remarked
both in [CCCR15] and the original publications, those two methods suffer from certain
drawbacks, especially when it comes to data with higher ID values.

In contrast, approaches based on estimating specific fractal dimensions, such as the
box-counting or correlation dimension, are widespread and have been successfully applied
in many areas. The most famous of all those methods is the estimator of the correla-
tion dimension (see subsection 3.1.4) introduced by Grassberger and Procaccia in
[GP83]. This variant will be included in our numerical experiments and is described in
detail in subsection 3.2.2. It should be noted here that, in theory, this particular method
requires a prohibitively large number of data points as shown in [Smi88] and [ER92]. To
be specific, the ID m and the number of points N must satisfy

m < 2 log10 N. (3.29)

Nevertheless, the Grassberger-Procaccia estimator can still be an adequate choice
for small values of m, and heuristic correction methods, e.g. as proposed in [CV02], can
effectively attenuate its deficiencies.

Another important variant using a maximum likelihood rule to yield an asymptoti-
cally unbiased estimator of the correlation dimension has been proposed by Takens in
[Tak85]. After choosing a threshold value ϵ1, only pairs of points with distance less than
ϵ1 are considered. Let r1, . . . , rK ∈ [0, 1] denote those distances divided by ϵ1. Now, it
can be shown that

m̂ = −
(∑K

i=1 ln(ri)
K

)−1

(3.30)
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is an assymptotically unbiased estimator for the correlation dimension with assymptot-
ically minimal variance.

The Grassberger-Procaccia and the Takens estimators are analyzed and com-
pared in [The90] and [BBD99]. In the latter publication, the authors suggest to modify
the Takens estimator by introducing a lower threshold value ϵ0 and evaluating only
pairwise distances within the range [ϵ0, ϵ1]. In practice, estimation results will be highly
dependent on the choice of those two parameters.

A promising approach presented in [HA05] is based on a generalization of the corre-
lation sum (eq. (3.9)) in the setting of the correlation dimension. The Heaviside step
function is replaced by a universal kernel function. Besides, an automatic scheme for se-
lecting multiple scales is introduced, which only leaves a smallest scale to choose. Finally,
a convergence analysis based on so-called U -statistics is provided and a comparison with
the estimators by Grassberger-Procaccia and Takens proves the effectiveness of
the new method. A precise description is given in subsection 3.2.2, and the algorithm is
also included in our numerical experiments in section 3.5.

Numerous further methods exploiting the concept of fractal dimensions exist — we
only mention a few more important variants. Ashkenazy’s approach [Ash99] relies
on the general information dimension, while Kégl [Kég03] uses packing numbers to
approximate the capacity dimension, a setup that is generalized in [RL06]. A method
optimized for binary datasets is presented in [TMGM06].

Nearest-neighbor based methods

Many IDE methods analyze certain properties of local sets of nearest neighbors (NN) to
derive an estimate of the intrinsic dimension. Starting with the model of the underly-
ing m-dimensional manifold, most of these methods act on the assumption that, given
some data point xi and a sufficiently small radius r, the corresponding points within
the m-dimensional ball Br(xi) around xi with radius r are distributed according to the
multivariate uniform (or some other model-specific) distribution. Afterwards, certain
quantities e.g. like the number of points in a particular region, the distribution of dis-
tances or angles are evaluated for each nearest neighbor subset to yield local estimates.

The first steps in NN based estimators have been made by Trunk in [Tru76] and by
Pettis et al. in [BDJP79]. In a nutshell, Trunk’s method fixes a number k of nearest
neighbors and, for a given data point xi, considers the angle θ between the (k + 1)th
nearest neighbor of xi and the subspace spanned by the k NNs of xi. The average over
those angles (for all data points) is then used to get a proper ID estimate. However, the
choice of a proper threshold parameter is nontrivial and moreover, the method has only
been tested successfully for low ID values.

The approach by Pettis et al. assumes that the N data points are drawn indepen-
dently according to some unknown density p(·). Their starting point is the following
density estimator

p̂(x) = k

N
· (Vmrm

k )−1 , (3.31)
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where k represents the number of considered NN points, rk is the distance of x to its
kth nearest neighbor, and Vm is the volume of the m-dimensional unit ball. Then, an
iterative scheme is developed to estimate the intrinsic dimension m from a plot of log(rk)
versus log(k) for k = 1, . . . , kmax, where rk denotes the global average distance to the kth
nearest neighbor. In the original publication [BDJP79], the method is evaluated only
for datasets of low ID m ≤ 3. Subsequent experiments performed in [VD95] however led
to the conclusion that this estimator tends to underestimation, especially for datasets of
moderate or high intrinsic dimensionality.

Another interesting IDE method proposed in [FQZ09] is also based on eq. (3.31). It
relies on counting the number of nearest neighbors in balls of growing radii, and fits
a polynomial to those empirical values. In the end, the degree of such a polynomial
fulfilling several constraints is considered the final ID estimate. The algorithm requires
the selection of multiple parameters, however, it showed a competitive performance when
compared to the well-established maximum likelihood estimator [BL05], which we discuss
next.

This estimator (abbreviated MLE) introduced by Bickel and Levina has quickly
become very popular in many application areas. Its model is based on a Poisson process
which describes the number of neighbors within distance t as a time-dependent pro-
cess. The final point-wise estimate is derived via a maximum likelihood approach. The
associated formula is quite simple and depends on nothing but the distances to the k
nearest neighbors. A detailed explanation can again be found in our comparison in sub-
section 3.2.2. Consistency of this method (and similar ones) has been proven in [PY13].
Also, further analysis in [MG05] seeks to address the weakness of the MLE’s high bias.
Finally, multiple extensions of the original method have been presented, which we will
also discuss below.

Next, a group of researchers including Campadelli et al. have presented three similar
approaches for intrinsic dimension estimation in [CCC+11], [CCL+11] and [CCC+12], as
well as [CCB+14]. Apart from that, the same authors also suggested the benchmark
framework in [CCCR15].

The first algorithm called “MiNDML” (see [CCC+11]) is a maximum likelihood ap-
proach similar to the estimator in [BL05]. Given the d-dimensional unit ball B1(0) and
k points zi uniformly drawn from its interior, the authors consider the probability density
function g(r; d, k) related to the event r = mini∈{1,...,k} ∥zi∥. Given a fixed value of near-
est neighbors k, a maximization of the log-likelihood function for all values d = 1, . . . , D
yields the desired local estimate. As reported in [CCC+12], this method still suffers from
serious underestimation for high ID values.

The second approach, presented in [CCL+11] and revisited in [CCC+12], is named
“IDEA” and based on the fact that uniform sampling within a d-ball is equivalent to
sampling from a multivariate standard normal distribution with subsequent scaling. The
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crucial observation is that the quantities

f(xi) = 1− Tj(xi)
Tk+1(xi)

(3.32)

are distributed according to the beta distribution β1,d. Here, Tj(xi) denotes the distance
of xi to its jth nearest neighbor among all given data points. This leads to the following
compact estimator for the intrinsic dimension m:

m̂ = d̂

1− d̂
, where d̂ = 1

Nk

N∑
i=1

k∑
j=1

Tj(xi)
Tk+1(xi)

. (3.33)

Since this approach also suffers from underestimation for high IDs, the authors implement
an asymptotic correction step as proposed in [CV02], which basically consists in applying
the original estimator to random subsets of different sizes (and associated values of k, the
number of NNs), and calculating an asymptotic value from those different estimates based
on empirical observations. This procedure comes at the expense of a higher complexity,
however, according to [CCC+12], it lessens the negative effects of underestimation.

Finally, in [CCB+14], a third method called “DANCo” is introduced. It seizes on the
basic concept of the MiNDML approach, which is the probability density function (PDF)
modeling the distribution of nearest neighbor distances, and adds a second PDF modeling
the distribution of pairwise angles. The name refers to the concept of dimensionality
estimation via angle and norm concentration. In a nutshell, the method compares the
statistics of the two particular PDFs with those pre-computed on synthetic data of
known ID, which is accomplished via Kullback-Leibler-divergences. Since this approach
has been tested with promising results in [CCCR15], it is included in our upcoming
comparison and the exact details as well as numerical results can be found below.

Many more methods based on nearest neighbor distances exist. Eventually, we would
like to mention the approach by Audibert et al. in [FSA07], which leads to another
simple formula for a local estimate at the point xi:

m̂(xi) = ln 2
ln
(
Tk(xi)/T⌈k/2⌉(xi)

) . (3.34)

The global ID estimate is then computed either via averaging or voting, i.e., selecting
the value m̂ that appears most often among the local results. Furthermore, the authors
prove the consistency (in probability) and provide an in-depth analysis of the reliability of
their estimator under certain regularity assumptions on the underlying manifold. These
theoretical bounds must however be considered with care, since first, they include three
universal constants and second, even though the calculated bounds suggest that voting
should perform better than averaging, the experimental results carried out by the authors
show a precisely inverse behavior.
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Altogether, a comprehensive comparison of existing NN methods would certainly be
very informative, however — to our knowledge — it has not been realized yet.

Simplex based methods

Next, we summarize IDE techniques based on the examination of simplices. Since our
method is based on the evaluation of simplex volumes, we would like to clearly distinguish
it from similar approaches.

In the context of statistical shape analysis (see [DM98, SG02]), a particular type of
polytopes has been used in dimension estimation. In short, statistical shape analysis
is the examination of geometric properties of one or several shapes, given by either an
exact representation or a point sampling. This research area has been motivated mainly
by biological and medical problems. Thus, the shapes are often derived from certain
physical, three-dimensional objects, such as bones or blood vessels.

In order to map test points from one object onto another similar object, the question
of determining the local dimension (usually ranging in the interval [1, 3]) of data points
sampled from an underlying continuous object has emerged and has been investigated
e.g. in [DGGZ03, GW04]. First, the data points xi=1,...,N ∈ RD are assumed to be a
so-called (ϵ, δ)-sampling of the underlying manifold, which ensures that the sampling is
sufficiently dense where required, but at the same time does not form arbitrary low-
dimensional patterns disturbing the estimation procedure.

Next, the Voronoi decomposition with respect to the data points is considered. This
is a partition of the space, where each x ∈ Rd is assigned to the point xi with minimum
Euclidean distance. Each xi is now called the center of its Voronoi cell or polytope Vxi

,
i.e., the set of all points assigned to xi. Now, the authors remark that Vxi

approximates
the Minkowski sum of Txi

∩ Vxi
and Nxi

∩ Vxi
, where Txi

and Nxi
denote the tangent

space and the normal space, respectively, at xi with respect to the manifold. Finally,
the heights of certain lower-dimensional subpolytopes of Vxi

are evaluated in order to
determine local ID estimates.

This approach has been successfully applied to subdivide three-dimensional manifolds
into local areas that are intrinsically either one-, two-, or three-dimensional. However,
the algorithm has been tailored exactly for this specialized context, and therefore, its
capabilities of dealing with higher-dimensional data are probably rather limited.

A method motivated by the former one has been presented in [CC09] and utilizes
the notion of sliver, being a degenerated simplex with small “negligible” volume. The
concept of slivers has emerged in the context of mesh generation, cf. [CFF85, CDE+00],
and Delaunay triangulations (a triangulation dual to the Voronoi decomposition), where
it is often beneficial to avoid or eliminate slivers in order to get structures fulfilling certain
regularity constraints. There are at least two slightly different definitions of the term
“sliver”, which we introduce now. First, a parameter σ ∈ (0, 1) is fixed, quantifying the
degree of degeneration. Then, a σ-sliver is defined as follows.

(I) All 0- and 1-simplices are no σ-slivers.
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(IIa) For d ≥ 2, a d-simplex ∆ is called σ-sliver, if none of its boundary simplices is a
σ-sliver, and there exists one boundary simplex ∆p, such that

vol(∆) < σ · l∆ · vol(∆p), (3.35)

where l∆ denotes the length of the shortest edge of ∆.

(IIb) Alternatively: For d ≥ 2, a d-simplex ∆ is called σ-sliver, if

vol(∆) < (σ · L∆)d /d!, (3.36)

where L∆ denotes the length of the longest edge of ∆.

The first variant (IIa), presented e.g. in [CDR05], is more commonly used, while the
second variant (IIb) is utilized in [CC09], where the authors claim that the differences
between the two alternatives are minor under their specific assumptions on the point
sampling.

The approach introduced in [CC09] is based on a theorem from [CDR05]. This the-
orem states that, for a given manifold of dimension m and an associated (ϵ, δ)-sample
set S, under certain conditions on the parameters ϵ, δ, and σ, there exists a restricted
weighted Delaunay triangulation of S, which is homeomorphic to the manifold and does
not contain any j-dimensional σ-sliver for all 1 ≤ j ≤ m. Furthermore, any (m + 1)-
dimensional simplex with vertices selected from neighboring points of S is a σ-sliver,
provided that none of its boundary simplices is a σ-sliver. For the complete details, we
refer to the original publication.

This theorem can now be exploited in order to estimate the dimension via analyzing
multiple j-simplices made up of neighboring points of S for growing values of j ≥ 2. The
number of slivers found for the current test dimension j is then used as the decision rule
for either j ≤ m̂ or j > m̂, where m̂ is the estimated intrinsic dimension.

The practical implementation of the method uses three different parameter combina-
tions to distinguish between sliver and non-sliver simplices and it thus appears strongly
dependent on a proper choice of parameters. It has been tested only for d-dimensional
spheres (with 4 ≤ d ≤ 9) and two different, intrinsically low-dimensional real datasets,
both with solid results.

Finally, a promising IDE approach can be found in [JSF15], where the skewness of sim-
plices made up of neighboring points is utilized to estimate the intrinsic dimension. The
method is called “expected simplex skewness” and it exploits a general concentration phe-
nomenon. A detailed description and numerical results are provided in subsection 3.2.2
and section 3.5, respectively.

Graph based methods

A thorough overview on current graph based IDE approaches is provided by Brito et al.
in [BQY13]. Also, an empirical comparison between several different methods is included.
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According to the authors, graph based approaches benefit from lower computational
costs, the comprehensive availability of theory, and a certain robustness against noise,
since most graph constructions rather rely on the ordering of nearest neighbor distances
than on the exact distance values. They revisit their IDE method presented in [BQY02]
and introduce two new similar methods based on different graph concepts.

The three particular graphs are the well-known k-nearest-neighbor graph Gk, the min-
imum spanning tree graph M, and the sphere of influence graph Sk. In Gk, two points
xi and xj are connected if and only if either xj is within the set of the k NNs of xi or
vice versa.

The minimum spanning tree (MST) graph M is a spanning tree with minimal total
weight; here, an edge weight corresponds to the Euclidean distance between the two
vertex points, and a spanning tree denotes an undirected graph connecting all given
points. Replacing the Euclidean distance by the geodesic distance yields the geodesic
minimum spanning tree (GMST).

In the sphere of influence graph Sk, two points xi and xj are connected if and only if
∥xi − xj∥ ≤ Tk(xi) + Tk(xj), where Tk(xi) denotes the distance of xi to its kth nearest
neighbor point.

The first approach introduces the notion of reach rt(xi, Gk), which equals the number
of points xj that can be reached from xi in the graph Gk via a path xi = v0, v1, . . . , vt =
xj within t steps or less. The intuition is that the statistic about the average reach of t
steps,

r̄t(X , Gk) = 1
N

N∑
i=1

rt(xi, Gk), (3.37)

depends on the intrinsic dimension m, since in higher dimensions, a point has more
directions to connect to neighbors and thus, the sum in eq. (3.37) should increase with
the value of m.

The second approach based on the MST graph M considers the quantity

d̄(X , M) = 1
N

N∑
i=1

(deg(xi))2, (3.38)

where the degree deg(xi) of node xi equals the number of points xj such that {xi, xj}
is an edge of M. It has been shown in [SSE87] that, given N samples of a continuous
distribution, the number of graph nodes with a fixed degree t scales with the intrinsic
dimension m in the limit N → ∞ almost surely. This justifies the use of the above
statistic.

For the sphere of influence graph Sk, the authors count the number ni,j of points,
excluding xi and xj, in the intersection BTk(xi)(xi) ∩ BTk(xj)(xj), i.e., the number of
points among the k nearest neighbors that xi and xj share. The corresponding statistic
is then defined as

ū(X , Sk) = 1
N

∑
1≤i<j≤N

ni,j. (3.39)
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For each of those three statistics, to yield a valid estimator, it is assumed that the
underlying probability density corresponds to a Gaussian density with mean µ(m) and
variance σ2(m)/N . Here, the two latter parameters are supposed to depend on the
intrinsic dimension m only. Finally, a Bayesian decision theoretic approach is applied
to derive an a posteriori expected value of the intrinsic dimension, where the reference
values are pre-computed in a simulation of random samples of the uniform distribution
on the d-dimensional unit cube.

After a recommendation for the proper selection of the required parameters for each
statistic, a comparison with other methods, including the MLE method [BL05], for
various datasets (sphere, paraboloid, and swiss roll) is provided in [BQY13]. While the
graph based methods feature competitive results, the authors still come to the conclusion
that none of the methods is clearly superior when compared to the others.

Two different graph based IDE algorithms included in the comparison are due to Hero
et al. (see [CHG05] and [SRH10]). The earlier approach has already been described in
[CH04b, CH04a] and is based on the following length functional

Lγ(X , G) =
∑
e∈G
|e|γ, (3.40)

where G is a so-called entropic graph (e.g. the k-nearest-neighbor graph or minimum
spanning tree graph) and e is an edge in G. Further, γ ∈ (0, d) is a weight parameter
which will ultimately be used for the dimension estimation. The authors exploit a
theorem from [BHH59] which states that, under certain assumptions on the distribution
(with density function f) of the sample points x1, . . . , xN ∈ Rd, the limit converges with
probability 1 as

lim
N→∞

Lγ({x1, . . . , xN} , G)/Nα = βd

∫
Rd

fα(y)dy, (3.41)

where α = (d− γ)/d and βd is a constant not depending on the underlying distribution.
The same asymptotic behavior can now be shown for points sampled from an underlying
manifold with intrinsic dimension m, where d is replaced by m in eq. (3.41). Finally, a
non-parametric least squares strategy is applied to estimate m from multiple trials with
different subset sizes.

In [CRH07], the IDE method from [CHG05] is slightly modified in two ways. First, it
is converted into a local estimator. Second, the authors suggest a general approach for
de-biasing such estimators in order to avoid the dominating influence of the boundary
effect in high dimensions. Their concept of a measure for the “data depth” of points
looks promising, however, further examinations in [CRH10] showed that for increasing
intrinsic dimension m, the theoretical potential of improvement vanishes.

Furthermore, Hero et al. propose another IDE variant in [SRH10] based on the k-
nearest-neighbor graph Gk. In fact, this approach does not require specific properties
of the graph, but only relies on NN distances, and should thus rather be classified as a
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nearest-neighbor based method. The idea is to partition the dataset into two sets, and
consider the average of the logarithms of k-NN distances of all points of the first set to
the neighbors of the second set. More precisely, this statistic is evaluated two times for
two different values of k = k1, k2, and the comparison of the outcomes allows for the
estimation of the intrinsic dimension.

As mentioned before, both procedures introduced in [CHG05] and [SRH10] have been
examined in [BQY13] amongst other up-to-date graph based methods with no definite
winner.

A very recent examination of geodesic distances combined with the scale-dependent
correlation dimension is presented in [GC16]. Here, the authors analyze similarities
of log-log-plots of the scale-dependent correlation dimension (with Euclidean distances
replaced by geodesic ones) of different sampled objects of the same dimensionality in
order to estimate the ID for other datasets. The general concept of this approach (with
Euclidean distances) will be explained in detail in the upcoming subsection. In [GC16],
some promising results are achieved for simple geometric objects of IDs up to m = 20
and also for certain low-dimensional, but more complex structures such as the swiss roll
and the 10-fold Möbius strip.

Summary

As can be seen from the above considerations, many different approaches for the problem
of estimating the intrinsic dimension of a dataset exist. We introduced the — to the best
of our knowledge — most relevant methods based on projections, fractal dimensions, the
analysis of nearest neighbors, simplices, and graphs, where an unambiguous classification
is not always possible. Due to the vast number of IDE procedures, originating from
diverse research areas, it is beyond the scope of our work to cite all existing methods.
As mentioned before, we selected six particular approaches that will be described in detail
in the following subsection and will be part of the subsequent numerical comparison of
section 3.5.

3.2.2 Selected approaches
In the following, we present the selected methods that are significant in our context for
different reasons. The classic estimator of the correlation dimension by Grassberger
and Procaccia [GP83] is chosen as our reference method, since it is one of the most
cited and well-established IDE methods.

We continue with a closely related approach by Hein and Audibert [HA05] that
we choose to call “generalized correlation dimension”, since it basically generalizes and
extends Grassberger and Procaccia’s concept. Moreover, in [HA05], the authors
suggest a number of synthetic datasets for the study of key properties of IDE methods,
that we will come back to in our own numerical experiments later on.
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Next, we focus on the maximum likelihood approach (MLE) by Bickel and Levina
[BL05] that is well-understood and has led to several refined approaches, e.g. in [HRS08],
where noise is included in the statistical model, further [DGH10], where a regularization
term is added to the original model, and [KDM11, KD15], where geodesic distances are
used instead of Euclidean distances. The MLE method has repeatedly been used in
miscellaneous applications (see [LWC+07, SWLH10]), also for the purpose of selecting
the target dimension for dimension reduction techniques, e.g. in [vdMPvdH09], [OV13].

Less attention has been paid so far to an estimator introduced by Chávez et al.
in [CNBYM01], that relies on nothing but the empirical mean and variance of pairwise
distances and is simply referred to by the authors as “intrinsic dimensionality” of a metric
space. We did not mention this variant before since it is not a concrete procedure, but
rather a theoretical concept, which, however, has also been promoted in an axiomatic
analysis by Pestov in [Pes08].

A recent approach presented in [CCB+14] by Campadelli et al. called “Dimension-
ality from Angle and Norm Concentration” (DANCo) is particularly interesting for us
from a theoretical viewpoint since it exploits concentration effects of both distances and
angles. In practical experiments, e.g. in [CCCR15], it turned out to be relatively robust
both for data tainted with moderate noise and for data of high intrinsic dimensionality.

The method introduced in [JSF15] by Johnsson et al. is noteworthy for several rea-
sons. First, it relies on the analysis of the expected simplex skewness (ESS), which is
a dimension dependent expected value, and thus, it is similar to our approach. Second,
according to the authors, it delivers competitive results, however, to our knowledge, it
has not been tested elsewhere. Beyond that, ESS is able to provide quite reliable esti-
mates of the intrinsic dimension for the case m > N . This is an unusual feature of an
IDE method and motivates further considerations.

For each approach described below, we proceed in the following way: we start with
the description of the model and the assumptions about the input data. Then, the
particular estimator and the role of its parameters are explained. Next, we highlight the
most important characteristics and finally, if applicable, we point out similar methods
and known extensions.

Correlation Dimension (CD)

The concept of the correlation dimension ([GP83]) has already been introduced in subsec-
tion 3.1.4. Given a finite set of data X = {xi=1,...,N}, the principal idea is to consider the
total number of pairs of points with a Euclidean distance of less than a given ϵ > 0, and
then analyze those values for appropriately small ϵ→ 0. More precisely, the correlation
sum for finitely many points is defined by

Cϵ(X ) = 2
N(N − 1)

∑
1≤i<j≤N

H (ϵ− ∥xi − xj∥) . (3.42)
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The estimated correlation dimension is then given by

m̂cor = lim
ϵ→0

log Cϵ(X )
log ϵ

. (3.43)

Since both the numerator and the denominator tend to −∞ for ϵ → 0, the above
definition is not directly applicable in practice. However, applying de l’Hospital’s rule
yields

m̂cor = lim
ϵ→0

∂ϵ log Cϵ(X )
∂ϵ log ϵ

= lim
ϵ2,ϵ1→0

log Cϵ2(X )− log Cϵ1(X )
log ϵ2 − log ϵ1

= lim
ϵ2,ϵ1→0

log Cϵ2 (X )
Cϵ1 (X )

log ϵ2
ϵ1

.

(3.44)

To get a viable estimator, we still must determine a valid range of values for ϵi and
furthermore, we have to practically evaluate the limit towards zero. For this purpose,
we follow the suggestions in [LV07]. To begin with, it is obvious that neither too large
values of ϵi are a good choice, since we are considering the limit of ϵi → 0, nor too small
values, since Cϵ(X ) will be zero. For this reason, in a first step, the global minimum and
maximum of all pairwise distances, δmin and δmax, are computed. For a constant number
L, the range [δmin, δmax] is now divided into L intervals uniformly stretched across the
logarithmic scale via

ϵi = δmin ·
(

δmax

δmin

)i/L

, i = 0, . . . , L. (3.45)

For two neighboring values ϵi and ϵi+1, the following scale-dependent correlation dimen-
sion estimate is then given as

m̂(i)
cor := m̂cor (ϵi+1, ϵi) =

log Cϵi+1 (X )
Cϵi (X )

log ϵi+1
ϵi

. (3.46)

In [LV07], the authors recommend to find the largest “plateau” in the corresponding
log-log plot, i.e., the largest region with almost constant slope, in order to get a good
estimate. We implement this recommendation in the following way. In a first step, we
determine the index

q = arg min
i=2,...,L−3

∑i+2
j=i−2

∣∣∣m̂(i)
cor − m̂(j)

cor

∣∣∣
m̂

(i)
cor

 . (3.47)

The idea is to extract the local value m̂(q)
cor with minimum average (relative) distance to
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its neighboring estimates. The final result is then defined as the average of these five
contiguous values:

m̂ = 1
5

q+2∑
j=q−2

m̂(j)
cor. (3.48)

For this approach, we found that L = 20 is a reasonable and sufficient number of intervals.

Generalized Correlation Dimension (GCD)

The setting of the approach proposed in [HA05] by Hein and Audibert is as follows.
The data X = {xi=1,...,N} ⊂ RD are samples of a probability measure P with support on
an m-dimensional submanifold M ⊂ RD. The submanifold is required to satisfy certain
regularity assumptions. These can be essentially subsumed by smoothness (M has to
be a Riemannian manifold), being well-behaved (which includes bounded extrinsic and
bounded sectional curvature), and global boundedness of the injectivity radius and the
regularity radius away from the boundary of M . The precise definitions from the field
of Riemannian geometry can either be found in the original paper [HA05] or in [Lee97].

Next, the probability density function f : M → R+ of P is defined with respect to the
natural volume element dvol(x) on M , and furthermore, it is assumed to be three times
differentiable and square-integrable.

The starting point of the dimension estimation approach is the correlation sum for
finitely many points, defined in subsection 3.1.4, associated with the correlation dimen-
sion:

Cϵ(X ) = 2
N(N − 1)

∑
1≤i<j≤N

H (ϵ− ∥xi − xj∥) . (3.49)

The main idea is to replace the Heaviside function in the correlation sum by a general
isotropic kernel function K : R+ → R. The outcome is a so-called U -statistic1 (we will
explain this term in the following) of K:

UN,h,m(K) = 2
N(N − 1)

∑
1≤i<j≤N

Kh,m

(
∥xi − xj∥2

)
, (3.50)

where Kh,m is the corresponding m-dimensional kernel scaled with bandwidth h:

Kh,m

(
∥x− y∥2

)
= 1

hm
K
(
∥x− y∥2/h2

)
. (3.51)

The kernel function K is required to fulfill certain constraints, in particular it must be
measurable, non-negative, non-increasing, and its second derivative must be bounded.
Additionally, it must be square-integrable with respect to the m-dimensional Lebesgue-

1For a proper use of the term U -statistic, the kernel function should rather be defined as a function of
two variables: K : RD × RD → R. Since we consider isotropic kernels only, we prefer the simpler,
self-explanatory notation used above.
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measure:
∫
Rm K(∥y∥2)dy = c1 <∞.

The term U -statistic is due to Hoeffding (see [Hoe48]) and can be viewed as a
generalization of the sample mean. Given a set of i.i.d. samples z1, . . . , zn ∈ R of the
probability density function f , and some measurable function ϕ : Rs → R with s ≤ n,
the U -statistic associated with ϕ is defined as

Un(ϕ) = (n− s)!
n!

∑
(i1,...,is)∈Π(n,s)

ϕ (zi1 , . . . , zis) , (3.52)

where Π(n, s) denotes the set of all permutations (i1, . . . , is) of size s chosen from
(1, . . . , n). Now, if the expected value µ(f) = Ef [ϕ(z1, . . . , zs)] exists, Un(ϕ) is obvi-
ously an unbiased estimate of µ(f). Under certain assumptions, the U -statistic is also
the optimal unbiased estimate in terms of having a minimum variance. For further
details, the reader is referred to [Lee90] and [KB94].

Now let us return to our particular problem. The main objective is to estimate the
intrinsic dimension m from the behavior of (3.50). For this purpose, both limit values
for N → ∞ and h → 0 of UN,h,m(K) and their corresponding expectations are studied.
The procedure in [HA05] is the following.

First, it is shown that the limit for h→ 0 of the expectation exists:

lim
h→0

E [UN,h,m(K)] = c1

∫
M

f(x)2dvol(x). (3.53)

After a theorem by Hoeffding is used to control the deviation of UN,h,m from its
expectation, the authors deduce that applying the two limits N →∞ and h→ 0, under
the assumption N · hm →∞, yields

lim
N→∞

lim
h→0

UN,h,m(K) = c1

∫
M

f(x)2dvol(x), in probability. (3.54)

Finally, it can be shown that replacing m by some smaller or greater value l, the limit
converges to zero or infinity, respectively. Formally, for N · hl →∞ we have

lim
N→∞

lim
h→0

UN,h,l(K) =

0, in probability if l < m,

∞, if l > m.
(3.55)

Note the similarity of this property to definition (3.3) of the Hausdorff dimension.
We now reached the point, where we can explain the details of the estimation method.

Given a dataset x1, . . . , xN , the central idea is to evaluate the U -statistic for different
sub-samples of five sizes n ∈ {⌈N/5⌉, ⌈N/4⌉, ⌈N/3⌉, ⌈N/2⌉, N} and multiple values of
h = hl(n), which must be chosen appropriately. The corresponding considerations on
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convergence in [HA05] eventually result in the choice

hl(n) = hmin ·
(

N log n

n log N

)1/l

, where hmin = 1
N

N∑
i=1

T1(xi). (3.56)

The constant hmin is the average of all N distances between each point to its first nearest
neighbor (recall that Tj(xi) is the distance of xi to its jth nearest neighbor). According
to the authors, different kernel functions K only entail negligible variations in the out-
come. In disagreement with the assumption that K should be two times continuously
differentiable, the efficiently computable kernel

K(z) = (1− z)+ (3.57)

is chosen. The whole estimation procedure can now be subsumed as follows. First,
for each sub-sample size nr, r = 1, . . . , 4 (excluding n5 = N), multiple disjoint subsets
are chosen. Then the average (with respect to the subsets of the same size nr) of
the corresponding U -statistics Unr,hl(nr),l(K) are computed for different test dimensions
l = 1, . . . , lmax. In the last step, for each dimension l, a line is constructed through the five
points

(
log hl(nr), log Unr,hl(nr),l(K)

)
for r = 1, . . . , 5, using weighted least squares with

weights w(r) = 1/r. Finally, the absolute value of the slope is computed for each line,
and the line with minimal absolute value determines the final dimension estimate m̂ ∈
{1, . . . , lmax}. This choice is reasonable due to the fact that, in theory, the corresponding
slope is given by (m− l) log hl(n) for n→∞ and h→ 0.

The authors do not state a reason for their particular choice of the number — let us
call it Nsub = 5 — of different sub-sample sizes. Consequently, Nsub can be treated as a
parameter of the method, even though it is suggested that its influence on the results is
very limited.

The approach by Hein and Audibert, just like the MLE method, is based on the sta-
tistical distribution of distances between nearest neighbor points. While straightforward
estimation of the correlation dimension requires the selection of multiple scales ϵ (see
subsection 3.2.2), the GCD method only fixes a single minimum scale hmin and provides
a scheme to select the larger scales appropriately. The computational costs are again
dominated by the distance calculations, as long as Nsub is moderately small as proposed
by the authors.

Finally, a comparison conducted in [HA05] with two established estimators, i.e., the
correlation dimension estimator (CD) and the Takens estimator (see [Tak85]), both ap-
plied with carefully selected scales, shows that in numerous tested scenarios either one
or the other estimator yields results comparable to those of the GCD method.
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Maximum Likelihood Estimation (MLE)

The maximum likelihood estimator (MLE) presented in [BL05] is based on the following
assumptions. Let yi be points sampled i.i.d. from some smooth probability density
function f on Rm, where both f and m are unknown. The data x1, . . . , xN ∈ RD

are then generated via a continuous and sufficiently smooth mapping g : Rm → RD,
yi 7→ g(yi) = xi. Beyond that, for a given point x, the model requires the density f(x)
to be approximately constant in a small ball Br(x) with fixed radius r around x. The
data are then considered as observations of a certain inhomogeneous Poisson process.
For this purpose, first, the function

S(t, x) =
N∑

i=1
1{xi∈Bt(x)} (3.58)

is introduced, that describes the number of occurrences within distance t from x. Omit-
ting the dependence of x, this function can be approximated by an appropriate Poisson
process P (t) with rate

λ(t) = f(x) · Vm ·m · tm−1, (3.59)

where Vm is the volume of the unit ball in Rm. Finally, it can be shown that the
log-likelihood of P (t) is given by

L(m) =
∫ r

0
log λ(t)dP (t)−

∫ r

0
λ(t)dt. (3.60)

According to [BL05], if one considers the limit N → ∞, a corresponding maximum
likelihood estimator for m exists with probability 1, is unique, and can be derived as

m̃r(x) =

 1
S(r, x)

S(r,x)∑
j=1

log r

Tj(x)

−1

, (3.61)

where Tj(x) is defined as the Euclidean distance of x to its jth nearest neighbor.
It is also possible to fix the number of nearest neighbors k instead of the ball radius

r, which yields the following asymptotically unbiased estimator:

m̂k(x) =

 1
k − 2

k−1∑
j=1

log Tk(x)
Tj(x)

−1

. (3.62)

In [BL05], the authors only deploy the second variant for the definition of their esti-
mator. It is obvious that the choice of k in (3.62) is crucial, since different values are
likely to result in different estimates. This problem is attenuated simply by averaging
estimates for multiple values k = k1, k1 + 1, . . . , k2. Thus, the final estimator for our
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input data x1, . . . , xN is given by

m̂ = 1
k2 − k1 + 1

k2∑
k=k1

m̂k, where m̂k = 1
N

N∑
i=1

m̂k(xi). (3.63)

Here, the authors note that a deliberate, data dependent choice of the two parameters
k1 and k2 can reduce the bias. However, at the same time, the method is supposed to
be stable for different values of k. Eventually, for the sake of reproducibility, standard
values of k1 = 10 and k2 = 20 are proposed.

The MLE method is a local method and relies on statistical properties of distances
between nearest neighbors to estimate the intrinsic dimension. The algorithmic costs are
dominated by the computation of the k2 nearest neighbors for each data point. Since
the underlying model is based on the characteristics of sample points in a relatively
small ball, the method generally requires a large number of data, especially in higher
dimensions. Furthermore, for a small number k of nearest neighbors, the estimate suffers
from a rather high bias.

In order to address this limitation, the authors of [MG05] replace the arithmetic mean
in (3.63) by the harmonic mean, which yields the modified estimator

m̂mod = 1
k2 − k1 + 1

k2∑
k=k1

m̂mod
k , where m̂mod

k =
(

1
N

N∑
i=1

(m̂k(xi))−1
)−1

. (3.64)

Another extension of the MLE approach is presented in [DGH10], where, for the purpose
of regularization, a Kullback-Leibler divergence (see [KL51]) between the rate parameters
of the Poisson process is introduced. The main effect is again a reduction of the bias for a
small number of nearest neighbors. A comparison of those three procedures in [DGH10]
reveals subtle differences, but the numerical results are qualitatively very similar.

In [HRS08], the model by Levina and Bickel is first extended to a translated Poisson
model including the presence of noise in the data. In the next step, mixtures of translated
Poisson processes are considered in order to be able to handle datasets generated by
multiple densities with different intrinsic dimensions. The resulting method is then
applied in the context of stratification learning, which is the task of classifying points
from datasets of the above-mentioned kind.

Finally, in [KDM11] the MLE method is also successfully applied with geodesic dis-
tances instead of Euclidean distances yielding superior results in certain scenarios, which
is coherent, since geodesic distances often permit to capture some information about the
local structure of the underlying manifold.

Distribution of Distances (DD)

The next approach we address here is based on an interesting concept of intrinsic dimen-
sionality introduced in section 7 of [CNBYM01] by Chávez et al. in the context of the
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analysis of proximity searching in high-dimensional metric spaces. A further discussion
of this notion can also be found in [CN00].

Consider the metric space (Y , dY) and a finite subset S ⊂ Y . Then, the intrinsic
dimensionality of S is defined as

dimdist (S) = µ2/2σ2, (3.65)

where µ and σ2 are the mean and variance of the histogram of distances of S.
In the definition provided in [CNBYM01], the term intrinsic dimensionality is actually

deployed for the metric space Y itself, which, however, leaves open the question of the
construction of the histogram of distances.

In [Pes07, Pes08], Pestov provides some axiomatic background and compares this
statistical quantity with similar concepts. Further considerations on the topic can also
be found e.g. in [FWV07].

In practice, this definition can be applied to yield a global estimate of the ID of
a dataset simply by analyzing all pairwise distances at once. When dealing with data
points sampled from a manifold with high curvature, however, it is reasonable to suppose
that a local estimator will produce much better results than a global one. For this reason,
we propose the following local variant for a given dataset X = {xi=1,...,N}:

m̂dist = 1
N

N∑
i=1

dimdist
({

x
(j)
i

∣∣∣ j = 0, . . . , k − 1
})

, (3.66)

where x
(j)
i is the jth nearest neighbor of xi (in particular x

(0)
i = xi), and k is a fixed

parameter.
This ansatz certainly is one of the most elementary estimators based on statistics of

local distances. In addition, to our knowledge, the variant presented here has not been
examined in practical experiments anywhere else, which is why we choose to include it
in our subsequent comparison.

Angle and Norm Concentration (ANC)

Campadelli et al. introduced a method named DANCo (short for “Dimensionality from
Angle and Norm Concentration”) in [CCB+14]. Additionally, in [CCCR15], the same
team of authors compared their approach with seven other selected estimation methods
in a comprehensive benchmark framework. We choose “DANCo” for our numerical
comparison since it outperforms all of its alternatives presented by Campadelli et al. in
[CCC+11], [CCL+11], and [CCC+12]. From now on, to keep our upcoming presentations
of results more compact, we substitute the abbreviation DANCo by “ANC” (Angle and
Norm Concentration).

While the previous ID estimators (CD, GCD, MLE, DD) solely rely on information
extracted from local distances, ANC utilizes both local distance and local angle infor-
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mation. This is achieved by minimizing the sum of two Kullback-Leibler (in short: KL)
divergences in order to obtain the final estimate.

Before we describe the assumptions of the approach, let us first give a short expla-
nation of the term Kullback-Leibler divergence. Introduced in [KL51] as a measure of
divergence or dissimilarity between two different probability distributions, it has be-
come a quasi-standard for this purpose and is also called information gain or relative
entropy in different contexts. Given two probability distributions P and Q on RD with
corresponding densities p and q, the KL divergence of Q from P is defined as

DKL(P ||Q) =
∫
RD

p(x) log p(x)
q(x)

dx. (3.67)

It should be noted here, that some mild assumptions on p and q are required for the
definition to be well-defined. Further, the KL divergence is not symmetric in terms of
P and Q and can also be interpreted as the proportion of information that is lost when
Q, typically a model, is used to approximate P , the “true” or measured distribution.

We now return to the setting of the ANC method. Given an m-dimensional manifold
M ⊂ RD, embedded via some locally isometric smooth map, the data x1, . . . , xN are
assumed to be samples of a probability measure P with corresponding smooth PDF
f : M → R+. In [CCB+14], the authors show that even if f is non-uniform, it is still
locally uniform at x, provided that f(x) ̸= 0. This result serves as justification to
presume the density as constant in a small ball Br(x) of radius r around x, as is also
done in the preconditions of the MLE estimator.

Let us now introduce the first of the two Kullback-Leibler divergences, which is as-
sociated with the local distances. To this end, without loss of generality, consider the
origin 0 ∈ Rd and k points zi=1,...,k uniformly drawn from the corresponding unit ball
B1(0) ⊂ Rd. Next, consider the random variable defined by r = mini∈{1,...,k} ∥zi∥, i.e.,
the minimum distance r of all points to the origin. Then, it can be shown that the
associated probability density function is given by

gk(r; d) = kdrd−1(1− rd)k−1. (3.68)

Note that when it comes to the final estimation procedure, d will be the intrinsic dimen-
sion to be estimated, while k, the number of nearest neighbors, will be the sole global
parameter of the method. The above PDF describes the case where the smallest NN
distance (of the k points to the origin) equals r, while the remaining k− 1 NN distances
are within the interval (r, 1).

Given our dataset X = {xi=1,...,N}, consider now some point xi and its k + 1 nearest
neighbors. In order to fit these points into the model, normalize all NN distances of
xi with Tk+1(xi). The random variable r introduced above now corresponds to the
normalized (minimum) distance ρ(xi) := T1(xi)/Tk+1(xi). Next, utilizing these distances
ρ(xi) in the density function of (3.68), the authors evaluate the log-likelihood with respect
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to all N points as

LX (d) :=
N∑

i=1
log gk (ρ(xi); d) (3.69)

= N log(kd) + (d− 1)
N∑

i=1
log ρ(xi) + (k − 1)

N∑
i=1

log
(
1− ρd(xi)

)
.

Subsequently, the optimization problem

m̂X = arg max
d∈[1,D]

LX (d) (3.70)

is solved numerically, where it is important to note that the search interval [1, D] allows
for a non-integer solution m̂X . This result can now be plugged into (3.68) to yield the
corresponding PDF gk( · ; m̂X ) associated with the distances of the given data X .

Eventually, the Kullback-Leibler divergence is used to measure the dissimilarity be-
tween the latter PDF and similar “reference” PDFs of known intrinsic dimensionality.
Those reference PDFs are computed in the following way: for each for d = 1, . . . , D, a set
of N random points is sampled from the d-dimensional unit-ball, and the same maximum
likelihood procedure as described above is applied to each point set; this yields associ-
ated dimension estimates m̌d. Note that due to the bias of the estimator, in general,
we have m̌d ̸= d and thus, it is reasonable to work with the estimated values instead of
the true underlying dimensions d. Finally, the authors of [CCB+14] derive an analytical
expression for the Kullback-Leibler divergence

KL(1)
d = DKL

(
gk( · ; m̂X )

∣∣∣∣∣∣ gk( · ; m̌d)
)

. (3.71)

In a similar way, a second KL divergence — associated with local angles — is con-
structed. To this end, the authors employ the so-called von Mises distribution M(µ, κ)
(also known as Tikhonov distribution) with its probability density function

q(θ; µ, κ) = 1
2πI0(κ)

eκ cos(θ−µ), (3.72)

where I0 denotes the modified Bessel function of the first kind and order 0:

I0(κ) = 1
2π

∫ 2π

0
eκ cos θdθ. (3.73)

Introduced by Richard von Mises in 1918, the aforementioned distribution can be
viewed as the circular counterpart of the normal distribution on a line, where the two
parameters in (3.72) are called mean µ and concentration κ. Further, µ and κ−1 are the
respective analoga of the mean µ and variance σ2 of the standard normal distribution
N (µ, σ2). Now, for the final objective of the dimension estimation, the authors of the
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ANC method seek to exploit the following relationship between the parameter κ and the
dimension d. First, for angles θ ∈ [−π, π], the scaled random variable θ̃ =

√
d(θ − π/2)

converges in distribution to N (0, 1) for d → ∞, as shown e.g. in [Söd11]. Second,
as indicated above, for large values of κ, the von Mises distribution M(µ, κ) can be
approximated by N (µ, κ−1). Combining these two results, it can be concluded that for
d → ∞, the concentration parameter κ converges asymptotically to the dimension d,
meaning that limd→∞(κ/d) = 1.

This motivates a similar procedure as before, using a Kullback-Leibler divergence.
To this end, given an appropriate sample of pairwise angles (θ1, . . . , θN), a maximum
likelihood approach is used in order to yield parameter estimates µ̂ and κ̂ for the mean
and concentration. The details that lead to those estimates can be found in [CCB+14]
and are not relevant for us.

Now, given a data point xi and its associated k nearest neighbors x
(1)
i , . . . , x

(k)
i , all

possible
(

k
2

)
angles between two of the k vectors

(
xi − x

(j)
i

)
are computed and accumu-

lated in the set Θi. For each xi and its set of angles Θi, the corresponding estimates
µ̂i and κ̂i are computed via the ML approach, and then, their respective averages µ̂X
and κ̂X are used in the KL divergence in an analogous manner as for the distances. For
this purpose, again, random sample points from d-balls (d = 1, . . . , D) are used to yield
parameter estimates µ̌d and κ̌d, and the second Kullback-Leibler divergence is given by

KL(2)
d = DKL

(
q( · ; µ̂X , κ̂X )

∣∣∣∣∣∣ q( · ; µ̌d, κ̌d)
)

. (3.74)

In section 3.3 of [CCB+14], the authors discuss the challenges of combining the two
KL divergences (3.71) and (3.74) into a single estimator. First, they remark that both
approaches, if applied on their own, produce results with a considerable, but opposite
bias. The main reason for this behavior should be the same as for many other dimension
estimation methods, namely the use of a relatively small number of nearest neighbors k,
whereas the model assumptions rely on a rather large number of input points. A possible
solution to this intrinsic problem is not reconsidered by the authors of the ANC method.
Instead, it is argued that since the distribution of distances gk(r; d) and the distribution of
angles q(θ; µ, κ) are independent for the setting of points sampled uniformly from d-balls,
the joint probability density function factorizes and consequently, the KL divergence
applied to the joint PDF corresponds exactly to the sum of both divergences. Therefore,
the final dimension estimate is defined as

m̂ = arg min
d=1,...,D

[
KL(1)

d + KL(2)
d

]
, (3.75)

where the exact analytic definitions of the divergences can be found in the original
publication [CCB+14]. As mentioned above, the sole parameter of the estimator is the
number k of nearest neighbors used in the computation of both KL divergences.

It is noteworthy that the authors propose an accelerated version of their method,
named “FastDANCo”. The acceleration is realized by precomputing the variables m̌d, µ̌d
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and κ̌d, which do not depend on the precise data X , but only on d and N , the number
of input points. Once the parameter k is fixed, the three variables are computed for
different values of d and N , in each case multiple times and averaged, and then the
dependence of each variable on d and N is described using suitable fitting functions,
or more specifically cubic smoothing splines. As reported by the authors, FastDANCo
achieves results of similar quality as those of the original variant.

The ANC method is certainly an interesting approach since it is — at least to our
knowledge — the only method combining local geometric information from distances and
angles. Besides, it has been thoroughly tested and compared with other state-of-the-art
approaches in both [CCB+14] and [CCCR15], where the authors claim the superiority
of their technique.

Simplex Skewness (ESS)

A further approach introduced recently in [JSF15] by Johnsson, Soneson and Fontes
is called “Expected Simplex Skewness” (ESS). Its model assumptions are not specified
in detail. Instead, the authors presume that the data points are sampled from some
sufficiently smooth m-dimensional manifold, where the sampling is dense enough and the
influence of noise must not be too large. Eventually, just as the MLE or ANC method, it
is required that each examined local neighborhood of the input data resembles a uniform
distribution on an m-dimensional ball.

In a nutshell, the principal idea of the ESS method is the following. First, fix a
“test dimension” parameter d, which must not be larger than the (unknown) intrinsic
dimension m and can be safely chosen as d = 1 in the standard case. Next, in each
available local neighborhood, construct multiple (d+1)-dimensional simplices using data
points as vertices, compute their associated skewnesses, and compare the average of
all skewness values with the (theoretical) expected simplex skewness for all possible
dimensions to yield a corresponding estimate. As opposed to most other IDE methods,
the ESS approach is only described and evaluated for small local patches (with N = 50
points) of some larger global datasets. Nevertheless, a global dimension estimate can
easily be found by averaging the local results.

The notion of skewness is described informally by the authors in the following way.
Given a set of local data points, they consider a simplex S defined by its vertices, the first
of which is the centroid of all given points, the other (d + 1) are randomly sampled from
the data. Then, the skewness of S is determined as its volume divided by “the volume
it would have had if the edges incident to the centroid vertex were orthogonal” [JSF15].
The exact definition is only given for the case d = 1 as sin θ, where θ denotes the angle
between the two edges incident to the centroid vertex. However, the expected simplex
skewness is defined for uniformly distributed data in the unit n-ball Bn := B1(0) ⊂ Rn
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for d = 1 and d ≥ 2, respectively, as

s(1)
n = 1

Vn

∫
Bn

| sin θ(x)|dx, (3.76)

s(d)
n = 1

V d
n

∫
Bn×···×Bn

∣∣∣∣∣u ∧ v1

∥v1∥
∧ · · · ∧ vd

∥vd∥

∣∣∣∣∣ dv1 . . . dvd. (3.77)

Here, Vn = πn/2/Γ(n/2 + 1) is the volume of Bn. Next, θ(x) is defined as the angle
between a fixed coordinate axis and the vector −→0x. Finally, u denotes the unit vector
along some reference coordinate axis, and the operator ∧ represents the so-called exterior
product or wedge product.

The exterior product is an algebraic construction used in Euclidean geometry to study
n-dimensional volumes. The product of n vectors v1 ∧ v2 ∧ · · · ∧ vn is an object of a
space also known as the nth exterior power and is sometimes called an n-blade. It can
be interpreted as the oriented volume of the parallelotope spanned by the respective
vectors.

In the supplemental material to [JSF15], the authors also derive the following closed
expression for the expected simplex skewness (3.77):

s(d)
n =

Γ
(

n
2

)d+1

Γ
(

n+1
2

)d
Γ
(

n−d
2

) . (3.78)

Consequently, for fixed d, we have monotone convergence s(d)
n ↗ 1 for n→∞. The first

few values of s(1)
n and s(2)

n can be found in table 3.2.

n 2 3 4 5 6 7 8 9 10 11 12

s
(1)
n 0.637 0.785 0.849 0.884 0.905 0.920 0.931 0.940 0.946 0.951 0.956

s
(2)
n − 0.393 0.566 0.663 0.724 0.767 0.798 0.822 0.841 0.856 0.869

Table 3.2: Numerical values (rounded to 3 digits) of the expected simplex skewness for
d = 1, 2 and n = 2, . . . , 12.

As noted above, the authors only consider local patches of the data, which are supposed
to resemble a uniform distribution on some m-dimensional ball. Given such a dataset
X = {x1, . . . , xN}, the entire estimation procedure, for the parameter d fixed as d = 1,
can be summarized as follows. First, the data are centered such that their centroid
coincides with the origin. If the total number of different simplices does not exceed
C = 5000, the skewness of each simplex determined by the origin and (d + 1) data
points is computed, otherwise, C simplices are chosen at random amongst all available
possibilities. Next, a weighted average of all skewness values is computed. Since the
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relative impact of noise is in general larger for groups of points forming smaller simplices,
the authors choose the weight for each simplex equal to the product of the lengths of the
edges incident to the centroid. Thus, the estimator of the simplex skewness (for d = 1)
is given by

ŝ(1) =
∑

i ̸=j |xi ∧ xj|∑
i ̸=j ∥xi∥ · ∥xj∥

, (3.79)

where xi denotes the vector from 0 to the centered data point x̃i. The final dimension
estimate is a real number determined via interpolation. For this purpose, and for general
d ≥ 1, if n is chosen such that s(d)

n ≤ ŝ(d) < s
(d)
n+1, the dimension estimate is given by

m̂ = n + ŝ(d) − s(d)
n

s
(d)
n+1 − s

(d)
n

. (3.80)

The ESS method as described in [JSF15] features only a single parameter d which is
required to satisfy d < m, but can be set to 1 as default option. In their experiments,
the authors compare the algorithm for d = 1 and d = 2 and conclude that there is
no significant superiority of one or the other variant. Since the choice of d = 1 is
both easier to implement and more flexible (it is able to distinguish between datasets of
intrinsic dimensionality of m = 1 and m = 2), we thus restrict our upcoming numerical
considerations to this variant.

In practice, the ESS approach naturally requires a particular procedure to choose the
local datasets. In the simplest case, a second parameter k is introduced, and for each
point xi of the global dataset X = {x1, . . . , xN}, the local dataset consisting of the k
nearest neighbors of xi is taken as input for the original ESS method, and, in the last
step, the local results are averaged.

For the sake of completeness, we mention that the authors of [JSF15] propose a second
version referred to as ESSb as opposed to ESSa, which denotes the method described
here. In the ESSb approach, given two normalized vectors constructed from the data
points as explained above, the estimated quantity is the expected length of the projection
of the first onto the second vector. The expectation value of the new quantity for d = 1
is then given by formula (3.76), where the term sin θ is replaced by cos θ. Since the
corresponding technique yields similar results, we only consider the original ESS method
in the following.

As mentioned above, the ESS method is interesting for our purposes, as it is related
to our own approach and it has not been examined in another publication known to us.
In the basic case where d = 1 (let us abbreviate this by ESS(1)), only angles between
vectors given by data points are analyzed, hence, it relies on concentration effects of
angles in high dimensions, similar to the ANC method. According to the authors, the
ESS technique is also able to reliably estimate intrinsic dimension values m exceeding
the number of points N for certain datasets.
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3.3 Simplex Volume Computation
In contrast to all methods for intrinsic dimension estimation presented above, our ap-
proach relies on the evaluation of numerous potentially high-dimensional simplex vol-
umes, where the corresponding vertex points have been drawn from some local point
subset S ⊂ X ⊂ RD of moderate size in each case. More precisely, the dimension
of the simplices can be as high as the intrinsic dimension m of the dataset X . While
the computation of Euclidean distances and angles is generally a trivial task, the effi-
cient determination of n-dimensional simplex volumes for n ≫ 3 is significantly more
challenging.

In the context of dimension estimation and dimension reduction, one naturally assumes
that the intrinsic dimension is considerably smaller than the ambient dimension, i.e.,
m ≪ D. In this section, we therefore present a technique for the efficient volume
evaluation of multiple n-dimensional simplices with vertex points in RD, where, after a
pre-computation step of O(D) time complexity, each simplex volume computation can
be performed with only O(n3) operations, independently of the ambient dimension D
in a numerically stable way. In order to explain this procedure we require a few basic
results of Euclidean geometry.

3.3.1 Theoretical preliminaries
Our introduction to some fundamental results of Euclidean geometry follows in parts the
works of Berger, see [Ber09a], [Ber09b]. As commonplace, let ⟨·, ·⟩ : RD × RD → R

denote the standard inner product of the Euclidean space RD, with the associated norm
∥ · ∥ : RD → R. Further, for zi, zj ∈ RD, the Euclidean distance of the two elements is
sometimes abbreviated as δij := ∥zi − zj∥.

Affine subspaces

An affine subspace S of the vector space RD is a subset closed under affine combinations
of its elements. Formally, for arbitrary elements z1, . . . , zn ∈ S and scalars α1, . . . , αn ∈
R with ∑n

i=1 αi = 1, the linear combination ∑n
i=1 αi · zi is also contained in S. The

affine subspace S is equivalent to a linear subspace translated away from the origin and
thus, can be written as S = p + W , where p can be any element of S, and W is the
corresponding linear subspace. The dimension of S is inherited from W . Zero-, one-,
and two-dimensional affine subspaces are called points, lines, and planes, respectively.
In the following, if unambiguous, we will refer to “affine subspace” simply as “subspace”.

Parallelotopes and simplices

Let 2 ≤ n ≤ D. A set of n + 1 points z0, . . . , zn ∈ RD is called affinely independent,
if there is no (n − 1)-dimensional affine subspace S ⊂ RD with z0, . . . , zn ∈ S. The
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parallelotope Π = Π (z0, . . . , zn) determined by a set of affinely independent points is
defined as

Π =
{

z ∈ RD

∣∣∣∣∣ z = z0 +
n∑

i=1
αi · −−→z0zi, where 0 ≤ αi ≤ 1

}
, (3.81)

where −−→z0zi := zi − z0. This parallelotope is also called n-parallelotope, since it is
contained in an n-dimensional subspace. A 2-parallelotope is a parallelogram, a 3-
parallelotope is known as parallelepiped. The simplex ∆ = ∆ (z0, . . . , zn) determined
by the same point set is given by its associated convex hull:

∆ =
{

z ∈ RD

∣∣∣∣∣ z =
n∑

i=0
αi · zi, where 0 ≤ αi ≤ 1 and

n∑
i=0

αi = 1
}

. (3.82)

Correspondingly, we call it an n-simplex. A 2-simplex is a triangle, a 3-simplex is a
tetrahedron. We can extend our definition to a 1-simplex as a line between two points,
and a 0-simplex as a single point. Since every nonempty subset of the n + 1 points
z0, . . . , zn is also affinely independent, its convex hull is again a simplex, which we call
face of the simplex ∆. The points zi, the faces of dimension 0, are called vertices. The
one-dimensional faces are called edges, and the (n−1)-dimensional faces are called facets
of the simplex. The same terms (i.e. vertex, edge, facet) can be defined in an analogous
manner for the parallelotope.

Volume in Euclidean space

The canonical measure for volume in the Euclidean space RD is the Lebesgue measure
µ : L(RD) → R, where L(RD) is the set of Lebesgue-measurable sets, and R is the
extended real number system R ∪ {−∞, +∞}. For a comprehensive introduction into
measure theory, we refer to [Rud87]. The volume of a compact set K ⊂ RD is now
defined as

vol(K) =
∫
RD

χKµ, (3.83)

where χK is the characteristic function of K.
Let us again consider a set of n + 1 affinely independent points z0, . . . , zn ∈ RD and

let vi = −−→z0zi = zi − z0, (i = 1, . . . , n). In [Ber09a], it is shown that the volume of
the parallelotope Π = Π (z0, . . . , zn) can be calculated via the determinant of the Gram
matrix as

vol(Π) =
√

det (Gram (v1, . . . , vn)), (3.84)
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where the Gram matrix is given by

Gram (v1, . . . , vn) =


⟨v1, v1⟩ . . . ⟨v1, vn⟩

...
...

⟨vn, v1⟩ . . . ⟨vn, vn⟩

 . (3.85)

Furthermore, the volume of the corresponding simplex ∆ = ∆ (z0, . . . , zn) is given by

vol(∆) = 1
n!

vol(Π) = 1
n!

√
det (Gram (v1, . . . , vn)). (3.86)

Hence, the Gram matrix is the key to volume computation of basic geometric objects.
Consequently, let us recall some of its important properties. First, the Gram matrix is
always positive semidefinite, and it is positive definite if and only if its defining vectors
vi are linearly independent. The Gram determinant can be bounded via the following
inequality (cf. [Fis00]).

Theorem 3.1 (Hadamard’s inequality). For n < D, let v1, . . . , vn ∈ RD be arbitrary
vectors. Then the following inequality holds:

0 ≤ det (Gram (v1, . . . , vn)) ≤
n∏

i=1
∥vi∥2, (3.87)

where det (Gram (v1, . . . , vn)) = 0 if and only if the vectors vi are linearly dependent.

The geometric intuition behind this bound is straightforward: the parallelotope fea-
tures its maximal volume in case all vi are pairwise orthogonal and thus form a box,
while the volume of the box simply equals the product of the vector lengths.

Distance relationships of affinely dependent points

Given a set of points z0, . . . , zn ∈ RD (n ≥ 2) in the same (n − 1)-dimensional affine
subspace S, it is reasonable to assume that there is some relationship between their
pairwise distances δij := ∥zi − zj∥. Consider for instance three points z0, z1, z2 on a
line. The corresponding distances satisfy the equation

(δ01 + δ02 − δ12) · (δ01 + δ12 − δ02) · (δ02 + δ12 − δ01) = 0, (3.88)

since the sum of the two smaller distances equals the largest distance. Indeed, a similar
relation exists for the general case n ≥ 2. The underlying idea is that the volume of the
appropriate (degenerated) parallelotope (or simplex, respectively) must be zero and can
be calculated using nothing but the pairwise distances. For this purpose, we introduce
the
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Definition 3.2 (Cayley-Menger determinant). Given n + 1 points z0, . . . , zn ∈ RD with
pairwise distances δij = ∥zi − zj∥, we define the Cayley-Menger determinant as

Λ (z0, . . . , zn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 . . . 1
1 0 δ2

01 . . . δ2
0n

1 δ2
10 0 δ2

1n
...

...
. . .

...
1 δ2

n0 δ2
n1 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.89)

The following relationship is now shown in [Ber09a]:

det
(
Gram

(−−→z0z1, . . . ,−−→z0zn

))
= (−1)n+1

2n
· Λ (z0, . . . , zn) . (3.90)

Thus, we have a convenient criterion to decide whether a set of n + 1 points with given
pairwise distances are contained in the same affine subspace.

Theorem 3.3. Let z0, . . . , zn ∈ RD be arbitrary points with pairwise Euclidean distances
δij = ∥zi − zj∥. Then a necessary and sufficient condition for the points to be affinely
dependent (i.e. contained in an (n− 1)-dimensional affine subspace) is

Λ (z0, . . . , zn) = 0. (3.91)

Furthermore, combining relationship (3.90) with (3.86) leads us to another formula
for the volume of the simplex ∆ = ∆ (z0, . . . , zn):

vol(∆) = 1
n!

√
(−1)n+1

2n
· Λ (z0, . . . , zn). (3.92)

This is an interesting geometrical result, since the simplex volume can be calculated
without knowledge of the exact vertex coordinates — only the distances between the
vertices are required. From the numerical viewpoint, the computation of the Cayley-
Menger determinant appears to be troublesome, since the diagonal consists of nothing
but zeros. Therefore, we derive another formula for the simplex volume.

For given z0, . . . , zn ∈ RD and their distances δij, we again consider the vectors
vi = (zi − z0) or rather the normalized vectors vi = (zi − z0)/δ0i for i = 1, . . . , n.
Now the Gram matrix associated with the vi turns out to have a nice structure, which
motivates another definition.

Definition 3.4 (Spherical Cayley-Menger determinant). Let zi ∈ RD with distances δij

and vi ∈ RD be as above. Then we define the spherical Cayley-Menger determinant as
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the Gram determinant

Λ̃ (z0, . . . , zn) = det (Gram (v1, . . . , vn)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 c12 c13 . . . c1n

c21 1 c23 . . . c2n

c31 c32 1
...

...
...

. . . cn-1,n

cn1 cn2 . . . cn,n-1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.93)

Here, cij := ⟨vi, vj⟩ = cos(∡(vi, vj)) can also be written in terms of distances as

cij =
δ2

0i + δ2
0j − δ2

ij

2δ0iδ0j

.

Finally, since the determinant is linear in each row and each column, we have

det (Gram (v1, . . . , vn)) =
n∏

i=1
δ2

0i · det (Gram (v1, . . . , vn)) ,

and thus, we can rewrite (3.86) as

vol(∆) =
∏n

i=1 δ0i

n!

√
Λ̃ (z0, . . . , zn). (3.94)

Thus, we derived a second formula for the simplex volume that uses nothing but distances
between the vertices. As mentioned before, the Gram matrix of linearly independent
vectors is positive definite, which will simplify the numerical evaluation of the Gram
determinant. Therefore, for our purposes, formula (3.94) seems to be more favorable as
opposed to (3.92).

For the reader interested in Cayley-Menger type determinants and their geometric
interpretations, further examples can be found in [Ber09a], [Aud11] and [MF04].

3.3.2 Efficient numerical computation of simplex volumes
We are now ready to describe the procedure for the rapid evaluation of multiple simplex
volumes. For a given local point set of moderate size, in the first step, all inter-point
distances are pre-computed and stored. In the second step, the volume of a particular
simplex with vertices selected from this point set is calculated via equation (3.94) using
nothing but distances; here, the exact coordinates of the D-dimensional vertex points
are not required any more. It still remains to provide an efficient way to evaluate the
spherical Cayley-Menger determinant Λ̃ (z0, . . . , zn), see eq. (3.93). To this end, we
proceed with some condensed remarks on determinants.

The concept of the determinant of a matrix A ∈ Rn×n can be motivated in various
ways. The geometric interpretation as the oriented volume of a parallelotope has been
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used in the above considerations. The classical algebraic version is the so-called Leibniz
formula

det(A) =
∑

σ∈Sn

sgn(σ)
n∏

i=1
aσ(i),i, (3.95)

defining the determinant via permutations σ of the matrix elements ai,j. Finally, Weier-
strass gave an elegant axiomatic description of the determinant function using only
three axioms, see e.g. [Fis00].

The numerical computation of a matrix determinant is in fact closely connected with
the solution of a linear equation system. Clearly, the direct evaluation of the Leibniz
formula requires O(n!) operations and thus gets infeasible in practice even for moderate
values of n. In contrast, a classical LU decomposition via Gaussian elimination has a
complexity of onlyO(n3) and provides a straightforward way to compute the determinant
as

det(A) = det(LU) = det(L) · det(U) = det(U) =
n∏

i=1
uii,

where det(L) = 1, since its diagonal elements are all ones. More precisely, LU decom-
position with partial pivoting requires a permutation matrix P to reorder the rows of A
and yields a factorization PA = LU for any square matrix A. The determinant for this
general case is then given by

det(A) = (−1)r det(U), (3.96)

where r is the number of row permutations in P . The same procedure can be adopted
for the QR decomposition, since det(Q) = ±1 for any orthogonal matrix Q. An error
analysis and numerical results for implementations of these decomposition approaches
can be found in [PYS97]. Beyond that, many efforts have been made to treat special cases
of determinants in an optimized way. Division-free algorithms for integer matrices have
been investigated e.g. in [Sam42], [Bar68], [Kal92] and [Rot01]. For very large matrices,
an approach presented in [KV05] based on the CoppersmithWinograd algorithm for
fast matrix multiplication (see [CW90]) reduces the complexity from O(n3) to O(n2.7).
Certainly, the determinants of sparse or block matrices can be evaluated with suitable
efficient algorithms.

Our method requires the evaluation of Gram determinants of normed vectors as pre-
sented in definition 3.93. As mentioned above, the corresponding Gram matrix is always
positive semidefinite. Thus, we can distinguish two cases: either the vectors defining the
matrix are linearly independent and consequently, the matrix is positive definite with a
positive determinant; or the vectors are linearly dependent resulting in a singular matrix
with a determinant equal to zero.

Some fundamental properties of symmetric and positive definite matrices are summa-
rized in the following theorem (see e.g. [HJ12]).

Theorem 3.5. Let A ∈ Rn×n be symmetric. Then each of the following conditions is
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equivalent for A being positive definite, that is xT Ax > 0 for all x ∈ Rn, x ̸= 0:

(i) Every principal submatrix A(k) (i.e. the upper-left (k×k)-submatrix of A) is positive
definite.

(ii) Every leading principal minor (i.e. the determinant of A(k)) is positive.

(iii) Every eigenvalue of A is positive.

(iv) A has a unique Cholesky decomposition A = LLT .

In particular, the Cholesky decomposition of a symmetric positive definite matrix
requires no pivoting and is numerically stable according to [Sto05]. It involves roughly
n3/3 floating point operations and can be performed in-place, see e.g. [GVL96].

Summing up, the Cholesky decomposition is clearly to be favored — not only due
to its practical advantages — as compared to specialized approaches mentioned above.
The latter algorithms can usually only benefit from their slightly superior runtime per-
formance for large matrices, but not for the matrices of moderate sizes we are dealing
with.

Our proceeding for the rapid and efficient computation of multiple n-dimensional sim-
plex volumes with vertex points drawn from some moderately sized point set S ⊂ RD

can now be subsumed as follows.

(0) Pre-compute and store all inter-point distances δij = ∥zi − zj∥ for zi, zj ∈ S.

(1) For a given simplex ∆ (z0, . . . , zn): build the Gram matrix as in (3.93) using the
corresponding distances δij.

(2) Evaluate the determinant of the Gram matrix via Cholesky decomposition and
apply formula (3.94) to yield the simplex volume.

The runtime complexity for a set of size |S| = k is O(D · k(k − 1)/2) for the pre-
computation and O(n3/3) for each simplex volume evaluation. The crucial fact is that
the costs of each volume computation is independent of the ambient dimension D.

3.4 Intrinsic Dimension Estimation via Sample Simplex
Volumes (SSV)

We now reached the point where we present our approach for intrinsic dimension esti-
mation based on volumes of sample simplices, which is why we named it Sample Simplex
Volume (SSV) method; to be exact, we will introduce two slightly different variants
called SSV1 and SSV2 method.

In the first subsection, we provide a short motivation for the use of simplex volumes.
In subsection 3.4.2, we present our underlying model assumptions and three theorems
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from geometric probability that represent the foundation of our IDE concept. The main
descriptions of our two approaches are given in subsection 3.4.3; both the SSV1 and
the SSV2 method are motivated and the precise procedures are unveiled. Subsequently,
a compact examination of the influence of noise on simplex volumes is given in subsec-
tion 3.4.4, right before the algorithmic description of both SSV methods in 3.4.5. Finally,
we conclude this section with the complexity analysis in 3.4.6.

3.4.1 Why simplex volumes?
First, we would like to state the consideration behind our decision to rely on high-
dimensional volumes contrary to most other approaches that are only based on pairwise
distances (MLE, GCD, DD, and many more) or angular information (ANC and ESS(1)).
Consider a set of points X = {xi=1,...,N} ⊂ RD with N ≫ D. A Euclidean distance
∥xi −xj∥ reflects a relationship between two points, an angle (or alternatively, the area
of a triangle) reflects a relationship between three points. Similarly, for d ≥ 2, the
volume of a d-simplex spanned by its (d + 1) vertices reflects a relationship between
(d + 1) points.

Furthermore, using statistical techniques to analyze all pairwise distances between
some (d + 1) points, there is no straightforward way to decide whether the points span
an actual d-dimensional space or whether they belong to a lower dimensional subspace.
However, as shown in subsection 3.3.1, the volume of the corresponding simplex is the
answer to this question and also, in case it is non-zero, can provide a measure of the
deviation from a potential lower dimensional subspace. Clearly, this information can also
be derived from the pairwise distances, since the computation of the simplex volume
requires nothing but those, as shown above. Summing up, our intuition is that the
concept of analyzing high-dimensional volumes — being a more complex quantity than
pairwise distances — might enable new and more advanced approaches of estimating the
intrinsic dimensionality of datasets.

3.4.2 Model and theoretical background
We start with the description of our model. To begin with, our theoretical and algorith-
mic considerations are based on noisefree data. Subsection 3.4.4 will be dedicated to the
subject of noise.

We assume that the data X = {x1, . . . , xN} ⊂ RD is sampled from some smooth
m-dimensional manifold M , where m < D, and both the intrinsic dimension m and
the precise parametric description of M are unknown. Consequently, we rely on the
fact that our manifold locally resembles an m-dimensional affine space. In particular,
we ignore the local curvature of M , i.e., we treat the linear approximation as perfectly
linear. Therefore, we can suppose that, for any data point xi, all data points within a
small ball Br(xi) (for some small, but unknown radius r) are part of or close to some
m-dimensional affine space. According to an argumentation presented in [CCB+14]
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(compare also the description of the ANC method in subsection 3.2.2), it is furthermore
reasonable to assume that points within Br(xi) are approximately distributed according
to the m-dimensional uniform distribution, even if the underlying global distribution
function might be non-uniform.

Let us now make a short excursion into topics from geometric probability to provide
the theoretical foundation for our method. More precisely, we present three different
results on the expected volume of random simplices. The first result taken from [Kin69]
is due to Kingman and can be summarized in the following

Theorem 3.6. For some fixed n ≥ 1, let Bn
r (0) be a ball in Rn around the origin

with radius r > 0 with n-dimensional volume Vn(r). Let further z0, . . . , zn ∈ Rn be
random points drawn independently from a uniform distribution over the ball Bn

r (0).
The random n-simplex spanned by the vertex points z0, . . . , zn shall be denoted by ∆n.
Then, the expected value of the random volume of ∆n is given by

E [voln(∆n)] = Vn(r) ·
(

n + 1
1
2(n + 1)

)n+1

·
[(

(n + 1)2

1
2(n + 1)2

)
· 2n

]−1

. (3.97)

For future reference, we define the following constants:

ν(n) :=
(

n + 1
1
2(n + 1)

)n+1

·
[(

(n + 1)2

1
2(n + 1)2

)
· 2n

]−1

. (3.98)

These describe the expected simplex volume for the case of a surrounding n-dimensional
ball of volume 1. Some numerical values of ν(n) for small n can be found in table 3.3.

n 1 2 3 4 5 6 7 20 30

ν(n) 0.333 0.0739 0.0126 1.79e−3 2.20e−4 2.44e−5 2.46e−6 2.23e−21 1.97e−34

Table 3.3: Numerical values (rounded to 3 digits) of the expected simplex volumes ν(n)
with vertex points randomly drawn from within an n-dimensional ball with
volume 1.

The general question of the expected volume of a simplex with vertices chosen ran-
domly within a given convex body has been investigated in many different variants (see
e.g. [Kle69] and [Mil71]) and might have its origin in the well-known four point problem
by Sylvester [Pfi89], which is strongly related to the two-dimensional version of the
problem considered here. The solution requires the (non-trivial) evaluation of multi-
ple nested integrals. While many two-dimensional and some three-dimensional variants
could be evaluated explicitly, a universal formula as given in theorem 3.6 has not been
found — at least to our knowledge — for the important case where the surrounding
convex body is an n-dimensional cube, compare also [CFG91]. Recent developments in
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the research field of random polytopes and their volumes can be found e.g. in [Sch08]
and [Hug13].

The second result presented by Miles (theorem 2 in [Mil71]) is basically a general-
ization of theorem 3.6. It provides a formula for the kth order moments of the random
p-volume of the p-simplex whose p + 1 = s + t vertices consist of s points sampled from
within the unit n-ball and t points sampled from the boundary, i.e., the unit (n − 1)-
sphere. For the sake of clarity, we recite the formula for k = 1 and t = 0 only, which is
sufficient for our purposes. Instead of the unit ball, we consider the more general case
of a given n-ball with radius r > 0.

Theorem 3.7. For some fixed n ≥ 1, let Bn
r (0) be a ball in Rn around the origin with

radius r > 0. For 1 ≤ s ≤ n, let s + 1 points be randomly and independently drawn
from a uniform distribution over the ball Bn

r (0). Then, the expected value of the random
s-volume of the random s-simplex ∆s spanned by these s + 1 points is given by

En [vols(∆s)] = rs

s!

(
n

n + 1

)s+1 Γ
(

1
2(s + 1)(n + 1) + 1

)
Γ
(

1
2((s + 1)(n + 1) + 1)

)
·

Γ
(

1
2(n + 1)

)
Γ
(

1
2(n− s + 1)

)
 Γ

(
1
2n
)

Γ
(

1
2(n + 1)

)
s+1

.

(3.99)

Naturally, letting s = n, the above formula coincides with equation (3.97), which is
just a more compact representation. Again, for future reference, we define the following
constants:

ξ(r, n, s) := En [vols(∆s)] (3.100)

as given by eq. (3.99).
The third result is due to Groemer [Gro73] and reveals the role of the n-ball as

opposed to other convex bodies.

Theorem 3.8. Let K ⊂ Rn be any convex body for some fixed n ≥ 1. Let further ∆[K]
denote the random n-simplex with n+1 vertices randomly and independently drawn from
a uniform distribution over K, and E[voln(∆[K])] denote the expected volume of ∆[K].
Then we have

E[voln(∆[B])] ≤ E[voln(∆[K])], (3.101)

where B is the n-dimensional ball with the same volume as K. Equality holds if and only
if K is an ellipsoid.

Let us offer the following intuition for this theorem. First, the problem of finding
the convex body with the above minimal property is obviously invariant under volume
preserving affine transformations, which is why we can consider the n-dimensional ball
instead of arbitrary ellipsoids. Now note that, among all n-dimensional convex bodies,
the n-simplex is the most “spiky” while the n-ball is the least spiky one. Thus, when
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inscribing a simplex of maximal volume into a given ball, a lot of volume of the ball is
wasted between the facets of the simplex and the surface of the ball. On the other hand,
if we replace the ball by a simplex of the same volume, its interior can be perfectly filled
by an inscribed simplex. This insight suggests that random simplices sampled from the
interior of some n-ball should on average be smaller than when sampled from the interior
of another convex object of the same volume.

While theorem 3.8 is basically cited for the sake of completeness and for deeper under-
standing, the remaining two theorems provide the justification and motivation for our
approach which we present now.

3.4.3 Concept of the SSV approach
The main idea behind the SSV approach is simple: compute multiple volumes of random
d-simplices with vertices sampled from local datasets and compare the average of these
volumes with the expected values as given in theorem 3.6 and theorem 3.7, respectively.
The basic proceeding of our IDE method and the rationale for its practicability, which
might not be as obvious, will be presented below. In fact, we will introduce two slightly
different versions of the SSV method, named SSV1 and SSV2. While the SSV1 method
has first been developed for the ideal case of noisefree data, the SSV2 method is more
suitable to handle moderate levels of noise and also has much lower runtime costs when
it comes to data with higher intrinsic dimension m. In the following, we introduce and
motivate the approach of both SSV methods, while a detailed technical description of
the algorithms will be given in subsection 3.4.5.

The SSV1 method

We start with a brief sketch of the SSV1 method. The algorithm iterates over a growing
test dimension d = 1, 2, . . . , dmax and stops in case that either its decision rule accepts
the current d as estimated intrinsic dimension (i.e., the output value), or d reaches dmax.
Consequently, we require m < dmax ≤ D. For growing d, we now consider local datasets
Si consisting of the point xi and its kd nearest neighbors, where kd ≥ d + 2. For each
set Si, the radius ri of its D-dimensional minimum bounding ball is computed, i.e., the
ball in RD containing all points in Si with minimal radius. Next, a large number C of
random d-simplices are sampled (with their (d + 1) vertices drawn from Si) and their
average volume V i is calculated. The quotient of V i and the volume of the d-dimensional
ball2 with radius ri is then compared with the expected value ν(d). Thus, for the current
test dimension d and each i = 1, . . . , N , we consider the (random) quantities

qi(d) = V i ·
[
vold

(
Bd

ri
(0)

)
· ν(d)

]−1
= V i · [ξ(ri, d, d)]−1 , (3.102)

2Mind the difference: the radius ri has been computed with respect to the D-dimensional minimum
bounding ball; now we consider the d-dimensional ball of the same radius, where d < D. A justifi-
cation is provided in the upcoming descriptions.
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where ν(·) and ξ(·, ·, ·) are defined as in eq. (3.98) and (3.100), respectively. Finally,
the results from the local datasets Si are combined into a global result — the exact
proceeding is explained in the following. The algorithm stops once d is considered to be
the valid dimension estimate or reaches its maximum dmax.

Now the crucial question is: Which values of qi(d) do we expect in the three different
cases d < m, d = m and d > m? Recall that m is the true intrinsic dimension of the
dataset and we assume that, if the points in Si are enclosed in a sufficiently small ball,
they are distributed according to the m-dimensional uniform distribution. Consequently
and according to the definition of the constants ν(d), in the case d = m, we expect
qi(d) = 1. For the case of d < m, our intuition is that qi(d) should be larger than 1.
To see this, let us first analyze the situation for d = 1 and growing m ≥ 2. Here, note
that ν(1) = 1

3 is the expected length of the line segment determined by two random
points within the interval [0, 1]. For m = 2 or m = 3, respectively, we are looking for the
expected length of the line segment determined by two random points from the uniform
distribution in the sphere or the ball with volume 1, respectively. Intuitively, we would
say that these values should be larger than ν(1), since the line segments can “spread
out” in more dimensions.

In fact, theorem 3.7 gives us a straightforward way to compute the expectation of our
random quantity qi(d) for d ≤ m as

E [qi(d)] = ξ(ri, m, d)
ξ(ri, d, d)

= ξ(1, m, d)
ξ(1, d, d)

=: f(m, d), (3.103)

where ξ(·, ·, ·) is defined in eq. (3.100).
One can easily verify that for fixed d, f(m, d) is monotonically increasing in m. Now,

for our dimension estimation procedure, it is crucial to be able to distinguish between
qi(m−1) and qi(m) = 1 (in expectation). The corresponding numerical values of f(m, d)
for d = m − 1 and d = m − 2 can be found in table 3.4. Here, it can be seen that the
expected values f(m, m− 1) considerably deviate from 1 and furthermore, the deviation
gets slightly larger for higher intrinsic dimension m.

Summing up the theory so far, the computation of the quantities qi(d) for growing
test dimension d = 1, 2, . . . , m should yield a monotonically decreasing series of values
approaching 1 from above, where qi(d̂) ≈ 1 is a good indicator for d̂ being the true
intrinsic dimension m.

m 2 3 4 5 6 7 8 9 10 20 30

f(m, m− 1) 1.36 1.58 1.76 1.93 2.07 2.21 2.34 2.46 2.57 3.52 4.27

f(m, m− 2) − 1.54 1.96 2.35 2.73 3.10 3.48 3.85 4.22 7.90 11.6

Table 3.4: Numerical values (rounded to 3 digits) of f(m, d) (see eq. (3.103)).
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Finally, let us consider the case where d > m. Clearly, under our current assumption
of noisefree data, and ignoring the local curvature of the manifold for now, any d-simplex
with vertex points sampled from an m-dimensional uniform distribution will be degen-
erated and thus have a volume of zero. As a result, we also have E [qi(d)] = 0 for all
d > m. Subsuming our considerations, the expectation for our empirical quantity is:

E [qi(d)]


> 1 for d < m;
= 1 for d = m;
= 0 for d > m.

(3.104)

The last step of our method is the computation of the arithmetic mean

q(d) = 1
N

N∑
i=1

qi(d) (3.105)

and the final estimate is determined as

m̂ = min
d=1,...,dmax

{d : q(d + 1) < 1− ϵ} (3.106)

for some tolerance parameter 0 < ϵ≪ 1.
In theory so far, the case-by-case analysis (3.104) qualifies our qi(d) as a well-suited

criterion for the determination of the ID m. In practice however, a prudent choice of ϵ is
very important, since for d > m we rather expect the parameter’s range as 0 ≤ qi(d) < 1
due to the influence of noise and curvature of the manifold. In subsection 3.4.4, some
experiments will in fact show that the presence of noise has a particularly large effect on
the volumes of higher-dimensional simplices and thus, the presented SSV1 method can
eventually lead to overestimation of the intrinsic dimension. This is one of the reasons
the SSV2 method has been coined for.

Before we introduce the alternative approach, let us briefly discuss our preference for
the use of bounding balls. First of all, the approach of a high-dimensional grid (or space-
partitioning scheme) in the data space RD does not seem appealing to us, because of well-
known problems concerning complexity, potential sparse data, and also because of the
simple fact that a d-simplex requires (d + 1) vertex points. Hence, the idea of examining
nearest neighbor points and some adequate bounding body appears to be much more
advisable. The most common variants of minimum bounding objects include the convex
hull, D-dimensional balls, or boxes, which could be either axis-aligned or arbitrarily
rotated in order to minimize their volume. Axis-aligned bounding boxes can be rapidly
computed by trivial routines, but they are likely to include a large amount of empty
space. Moreover, given some D-dimensional bounding box, there is no straightforward
way to derive (the volume of) an appropriate d-dimensional bounding object (recall that
d ≪ D), and finally, the explicit expected volume values — as provided by theorems
3.6 and 3.7 for bounding balls — are not available. The latter two arguments are also
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valid for rotated boxes as well as the convex hull. In contrast, balls have the beneficial
property that, given D-dimensional data contained in some m-dimensional subspace, the
radius of their D-dimensional minimum bounding ball coincides with the radius of their
m-dimensional bounding ball within the m-dimensional subspace. Hence, the radius
of the D-dimensional minimum bounding ball is a useful quantity and our proceeding
described above is reasonable. Finally, the isotropic nature of the ball does not favor
any direction which is another desirable property since the relevance of the different
coordinate directions is completely unknown a priori.

The SSV2 method

The objective of the SSV2 method is to attenuate two drawbacks of the SSV1 method.
The first one has already been mentioned — the presence of noise can lead to substan-
tial overestimation of higher IDs. A second shortcoming is related with the runtime
performance of the method. While many IDE methods, e.g. as the ones presented in
subsection 3.2.2, are based on the computation of basic low-dimensional quantities, gen-
erally Euclidean distances or angles, the SSV1 method relies on the calculation of simplex
volumes in dimensions up to the intrinsic dimension m of the data. Consequently, the
asymptotic theoretical as well as practical runtime of its estimation routine, albeit not
dominated by the ambient space dimension D, scales with the intrinsic dimension m and
thus often exceeds the average runtime of other IDE methods.

The SSV2 method tackles these issues by evaluating only volumes of low-dimensional
simplices of dimensions s = 1, 2, . . . , smax and comparing their averages with the associ-
ated expected values from Miles’ theorem 3.7. This also allows for the estimation of
ID values larger than smax. As one might expect, choosing a larger smax entails both
more precise estimation results and higher computation runtimes. Furthermore, while
the SSV1 method analyzes only d-dimensional simplex volumes for some particular test
dimension d, the SSV2 approach compares volumes of s-dimensional simplices, for mul-
tiple s ≤ d, against their respective expected values. The current test dimension d is
selected as the estimated ID if, for at least one of the values s ≤ d, the average volume
associated with s fulfills the condition for d-dimensional structures. The idea behind
this strategy is that, while higher-dimensional simplex volumes might be influenced by
noise to a higher degree, lower-dimensional simplices will still allow to detect the true
underlying ID.

The SSV2 method features three consecutive stages. The first stage covers the cases
where m̂ < s(1)

max, the second stage is deployed for s(1)
max ≤ m̂ < s(2)

max = smax, and the third
stage finally deals with all cases where s(2)

max ≤ m̂ ≤ dmax. In our actual implementation,
the constants are fixed as s(1)

max = 5 and s(2)
max = 10. The purpose of these different

stages is increased computational efficiency, which will become clear in the upcoming
explanations.

Before we describe each stage in more detail, we first illuminate the general function-
ality of the SSV2 approach. Similarly to the SSV1 approach, for growing test dimension
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d = 1, 2, . . . , dmax ≤ D, s-dimensional simplex volumes with s ≤ d are analyzed and the
algorithm is terminated with output value m̂ = d as soon as the current variable d is
considered to be the correct estimate. As before, let Si denote the set consisting of the
point xi and its k nearest neighbors, let further ri be the radius of the D-dimensional
minimum bounding ball of Si. Next, V i(s) denotes the (empirical) average volume of
s-dimensional simplices with their (s + 1) vertices randomly drawn from Si. The crucial
local quantities are now given by

qi(s, d) = V i(s) · [ξ(ri, d, s)]−1 , (3.107)

where ξ(·, ·, ·) is defined as in eq. (3.100).
While in each of the three stages, a slightly different proceeding applies, the common

decision criterion for choosing the ID value m̂ = d− 1 is given by

q(s, d) < 1− ϵ, (3.108)

where q(s, d) = ∑N
i=1 qi(s, d) represents the average of the local quantities qi(s, d) and

ϵ > 0 is a tolerance parameter.
Let us now focus on the detailed estimation process. To begin with, note that — in

contrast to the SSV1 method — the SSV2 method works with two fixed numbers of
nearest neighbors, k1 and k2. Since the maximum dimension of considered simplices is
fixed here, there is no need of growing numbers of nearest neighbors. In theory, a single
constant number of NNs would be enough. On the other hand, the use of two different
NN sizes allows a better estimation of IDs m̂ ≥ s(2)

max. In our implementation, the values
are chosen as k1 = 12 and k2 = 30. In short, stage I works with only k1 nearest neighbors,
since a small number of NNs is sufficient here and speeds up the computations. Stage II
also relies on the estimates based on k1 nearest neighbors, nevertheless, it determines k2
NNs and computes two potentially different local results for each point, for both k1 and
k2. However, these two results are only combined in case stage III is required to estimate
intrinsic dimensions m̂ ≥ s(2)

max. Of course, it would be more intuitive to compute the
estimates for k2 only in stage III, where they are actually used. This would accelerate
stage II, but also decelerate stage III to a greater extent, since the whole process of NN
searching and random vertex sampling had to be accomplished once more. Hence, we
opted for the combined computation in the second stage.

The precise proceeding is now as follows. Stage I is based on local datasets Si defined
by k1 nearest neighbors. In a first step, the local average simplex volumes V i(s) are
evaluated for all s = 1, . . . , s(1)

max. Next, for growing test dimension d = 1, . . . , s(1)
max, the

local quantities (3.107) are computed for all s = 1, . . . , d. If, for any of those s = 1, . . . , d,
the criterion (3.108) is fulfilled, the procedure is terminated with output m̂ = d−1. The
sole exception is the case s = 1 (1-dimensional simplices, i.e., Euclidean distances),
which is considered only for test dimensions d = 1, 2. The reason for this decision
emerged from our experimental results; here, for fixed d > 2, the quantity q(1, d) often
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featured a behavior differing from the other q(s, d) for s ≥ 2.
If no intrinsic dimension m̂ < s(1)

max has been found, the algorithm initiates stage II.
Here, the first step again consists of the computation of local average simplex volumes,
where the simplex dimension now ranges from s = s(1)

max + 1 to s = s(2)
max. Besides, the

complete procedure of volume computation is performed two times, for both numbers
of nearest neighbors k1 and k2, thus yielding the average volumes V

(z)
i (s) for z = 1, 2,

where z indicates the use of either k1 or k2. However, in stage II, only the results for k1
are utilized since they generally provide the better estimates here; the results for k2 are
pre-computed for stage III. Finally, for growing test dimension d = s(1)

max + 1, . . . , s(2)
max,

the quantities qi(s, d) (see (3.107), where V i(s) = V
(1)
i (s)) are evaluated for each s =

s(1)
max + 1, . . . , d, and the decision criterion (3.108) applies as before.
Stage III finally deals with the case where m̂ ≥ s(2)

max. Now, for z = 1, 2, and for test
dimensions d = s(2)

max + 1, . . . , dmax, the quantities

q
(z)
i (s, d) = V

(z)
i (s) ·

[
ξ
(
r

(z)
i , d, s

)]−1
, z = 1, 2 (3.109)

are computed for each s = s(1)
max + 1, . . . , s(2)

max. This proceeding leads to two (potentially
different) estimates m̂(z), again based on the criterion (3.108), i.e., m̂(z) = d − 1, if
q(z)(s, d) < 1− ϵ for any s = s(1)

max + 1, . . . , s(2)
max. In the final step, the two estimates m̂(1)

and m̂(2) are combined as follows. If both estimates have been assigned a value less than
dmax, the final estimate is defined as

m̂ =


m̂(1) if m̂(1) ≤ k1,
1
2 ·
(
m̂(1) + m̂(2)

)
if m̂(1) > k1 ∧ m̂(2) ≤ k2,

m̂(2) otherwise.
(3.110)

In case that only one of the estimates is below dmax, the output m̂ of course gets this
value, and dmax otherwise.

The reason for combining the two estimates m̂(1) and m̂(2) as in (3.110) is quite simple:
a larger number of nearest neighbors is more suitable to capture the local structures of
high-dimensional data. In our early experiments, we in fact evaluated another variant
of the SSV2 method with three different numbers of NNs k1, k2, k3 leading to even more
precise estimates for some datasets with high ID. While the advantages of this multiscale
approach are undeniable, on the downside, both the computation of many NN points
and of their associated minimum bounding ball get increasingly expensive in higher-
dimensional spaces. On top of that, there is no straightforward way of combining three
or more estimates in our setting. Therefore, we found the use of two different numbers
of nearest neighbors to be a good tradeoff.

Finally, let us examine the characteristics of the crucial quantity (3.107), which is the
empirical average simplex volume divided by the corresponding expected value. Anal-
ogous considerations as for the SSV1 method lead to the conclusion that, given some
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intrinsically m-dimensional data, the expectation of these quantities is given by

E [qi(s, d)] = ξ(ri, m, s)
ξ(ri, d, s)

= ξ(1, m, s)
ξ(1, d, s)

=: g(s, m, d). (3.111)

Similarly as above, we now have

E [qi(s, d)]


> 1 for d < m

= 1 for d = m

< 1 for d > m

 ∀s ≤ min {d, m} . (3.112)

m 2 3 4 5 6 7 8 9 10

g(1, m, m− 1) 1.358 1.136 1.073 1.046 1.032 1.023 1.018 1.014 1.011

g(2, m, m− 1) − 1.582 1.240 1.136 1.088 1.062 1.047 1.036 1.029

g(3, m, m− 1) − − 1.765 1.332 1.195 1.130 1.094 1.071 1.056

m 9 10 11 12 13 14 15 16 17

g(8, m, m− 1) 2.459 1.715 1.459 1.329 1.251 1.199 1.163 1.136 1.116

g(9, m, m− 1) − 2.574 1.782 1.507 1.366 1.281 1.225 1.185 1.155

g(10, m, m− 1) − − 2.685 1.846 1.553 1.403 1.311 1.250 1.206

Table 3.5: Numerical values (rounded to 4 digits) of g(s, m, d) (see eq. (3.111)) with the
particular test dimension d = m−1 and simplex dimension s = 1, 2, 3 (above)
and s = 8, 9, 10 (below).

Table 3.5 shows some numerical values of g(s, m, d) for test dimension d = m− 1 for
s = 1, 2, 3 and s = 8, 9, 10, respectively. Of course, the values for d = m−1 are crucial for
an efficient estimation procedure, since we have to distinguish between the case d = m−1
and d = m. From Table 3.5, we realize that low-dimensional simplices (s = 1, 2, 3) are
not very well-suited to estimate IDs of m = 8 and above, since g(s, m, m − 1) tends
to 1 relatively fast. This tendency is not as severe for higher-dimensional simplices
(s = 8, 9, 10), even though also here — as expected — the estimation of IDs m which
are significantly larger than s becomes increasingly difficult.

Before we unveil the exhaustive algorithmic description of our two SSV methods,
we would like to present an empirical evaluation of the influence of noise on higher-
dimensional simplex volumes.
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3.4.4 Influence of noise on simplex volumes
To substantiate our conjecture that volumes of high-dimensional simplices are affected
to a higher degree by noise than volumes of low-dimensional simplices, we evaluate the
following test cases. We randomly sample 100000 data points from an m-dimensional
unit ball and embed those points into RD using a random rotation. In the first setting,
we choose m = 4 and D = 4, 10, 20, 50, in the second setting, we have m = 10 and
D = 10, 20, 50, 100, 500. The data are now perturbed with D-dimensional Gaussian
noise of some standard deviation σ. Next, for each s = 1, 2, . . . , m, we calculate the
average value q(s, m) of 20000 random s-simplex volumes (with vertices sampled from
the data points) and consider the quotient

f(s, D, σ) := q(s, m)
ξ(1, m, s)

, (3.113)

where ξ(·, ·, ·) is defined by eq. (3.100).
The experiment is first performed for the noisefree case (denoted by σ = 0), where the

result should be close to 1 in each case, and then for Gaussian noise of σ1 = 0.01 and
σ2 = 0.05. Tables 3.6 and 3.7 show the associated empirical results for ID m = 4 and
m = 10, respectively. Each test case has been evaluated 20 times for different sampled
data and the averages are presented here.

Let us now consider the experimental results. For the noisefree case, we see that
the values are close to 1 which confirms that the volume computation is stable and the
number of 20000 random simplices is sufficient for this experiment.

In the first setting, we note that Gaussian noise with σ = 0.01 only leads to moderate
deviation of the measured volumes from the predicted values. For σ = 0.05, we identify
two clear trends. First and very naturally, a higher embedding dimension D leads to a
larger deviation. However for fixed D, the deviation quickly gets larger with growing s,
i.e., for higher-dimensional simplex volumes. Note in particular the leap from s = 3 to
s = 4.

The same tendencies can again be found in the second setting. Especially for higher
noise level σ = 0.05 and ambient dimension D ≥ 50, the deviation of s-dimensional
simplex volumes is disproportionately large for s approaching the intrinsic dimension
m = 10 as compared to s = 1, 2.

This effect suggests that the SSV1 method is likely to overestimate the intrinsic di-
mension of noisy datasets, at least for higher levels of Gaussian noise and large ambient
dimension D.

A theoretical analysis of the influence of noise on expected average simplex volumes of
different dimensionalities would certainly be very enlightening for our purposes. While
we assume this to be a challenging problem, we recommend this topic for future research.
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s 1 2 3 4 s 1 2 3 4

f(s, 4, 0) 0.999 1.000 1.000 1.000 f(s, 20, 0) 1.000 1.001 0.999 0.998

f(s, 4, 0.01) 1.000 1.000 1.001 1.001 f(s, 20, 0.01) 1.002 1.005 1.012 1.055

f(s, 4, 0.05) 1.007 1.014 1.022 1.027 f(s, 20, 0.05) 1.042 1.113 1.273 1.834

f(s, 10, 0) 1.000 1.000 0.999 0.999 f(s, 50, 0) 1.001 0.999 1.000 0.998

f(s, 10, 0.01) 1.001 1.002 1.005 1.023 f(s, 50, 0.01) 1.005 1.012 1.033 1.133

f(s, 10, 0.05) 1.020 1.052 1.120 1.373 f(s, 50, 0.05) 1.105 1.289 1.701 3.113

Table 3.6: Numerical values of f(s, D, σ) (see eq. (3.113)) for fixed ID m = 4 and ambient
dimensions D = 4, 10, 20, 50.

s 1 2 3 4 5 6 7 8 9 10

f(s, 10, 0) 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.999 0.998 0.997

f(s, 10, 0.01) 1.001 1.001 1.001 1.002 1.001 1.002 1.002 1.002 1.002 1.002

f(s, 10, 0.05) 1.014 1.028 1.042 1.056 1.070 1.085 1.101 1.115 1.130 1.148

f(s, 20, 0) 1.000 1.000 1.000 0.999 0.999 0.999 0.998 0.998 0.999 0.999

f(s, 20, 0.01) 1.001 1.002 1.004 1.006 1.008 1.012 1.016 1.025 1.048 1.154

f(s, 20, 0.05) 1.030 1.064 1.103 1.152 1.215 1.305 1.442 1.680 2.193 3.878

f(s, 50, 0) 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.999 1.000 1.003

f(s, 50, 0.01) 1.003 1.006 1.011 1.017 1.025 1.037 1.056 1.092 1.178 1.500

f(s, 50, 0.05) 1.076 1.169 1.290 1.454 1.690 2.051 2.659 3.820 6.565 16.66

f(s, 100, 0) 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 0.999

f(s, 100, 0.01) 1.006 1.014 1.023 1.035 1.053 1.078 1.119 1.196 1.373 1.998

f(s, 100, 0.05) 1.147 1.340 1.609 2.002 2.612 3.630 5.505 9.490 20.11 64.71

f(s, 500, 0) 1.000 1.000 1.000 1.000 1.000 1.001 1.001 1.001 1.001 1.000

f(s, 500, 0.01) 1.031 1.070 1.120 1.188 1.285 1.431 1.670 2.115 3.126 6.642

f(s, 500, 0.05) 1.602 2.670 4.689 8.764 17.65 38.93 96.44 279.4 1023 5848

Table 3.7: Numerical values of f(s, D, σ) (see eq. (3.113)) for fixed ID m = 10 and
ambient dimensions D = 10, 20, 50, 100, 500.
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3.4.5 Algorithmic description of the SSV1 and SSV2 method
In this subsection, we give a complete algorithmic description of our two SSV methods.
The important issue of the efficient computation of simplex volumes has already been
discussed in detail in section 3.3. Next, we present two more algorithmic components
that are employed likewise in both variants. Subsequently, we introduce the details and
the pseudocode for each approach individually.

Auxiliary tree structure – preprocessing of the data

The rapid determination of a fixed number of nearest neighbor (NN) points noticeably
reduces the overall computation time of our algorithm. For this reason, in a preprocessing
step, our method establishes an auxiliary data structure for the entire dataset. The k-NN
search problem in high dimensions, where the dissimilarity measure is a distance metric,
more specifically in our context the Euclidean distance, is a highly non-trivial task and
has led to a variety of approaches, both for exact and approximate NN search, see e.g.
[SDI06], [PM05], [ZADB06]. Several competing branches of techniques exist, such as
index trees, hashing, vector quantization, particular graph algorithms, just to mention
a few.

We rely on a well-established, simple technique for two reasons. First, the focus of
our work is the correct estimation of the intrinsic dimension, whereas speed is only a
secondary issue. Furthermore, most of the datasets we deal with will be of rather low
(< 10) intrinsic dimension. In [VKD09], the authors examine the adaptivity of different
tree structures to the intrinsic dimensionality of the data. Even though axis-parallel
splitting rules can not adapt well for special datasets, it is shown that on average, a
certain variant of the kd-tree performs qualitatively similar to more complex structures
like the random projection tree, the principal direction tree, and the two means tree.

Consequently, we utilize this particular variant of the kd-tree in our method. In
a nutshell, a kd-tree is a binary tree, where each inner node represents a hyperplane
dividing the space into two half-spaces. The left and right subtree of that node hold
the corresponding points, left and right of the hyperplane. Furthermore, each such
hyperplane is orthogonal to one of the coordinates axes. Different selections of those
coordinate axes lead to different variants of kd-trees. In our case, in each partitioning
step, the splitting direction is selected as the coordinate axis with maximum spread, and
the median along that direction defines the corresponding split position.

As mentioned above, the only purpose of the tree structure in our method is the
acceleration of the NN search process. The use of different data structures does not
affect the algorithmic output in any way. Naturally, more complex approaches, e.g. as
introduced in [Vai89], [SSV07], could be used in order to optimize the speed-up for the
all-nearest-neighbor search problem. However, in order to keep our method simple and
easily replicable, we choose to work with the kd-tree described above.
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Minimum bounding ball

The computation of the unique D-dimensional minimum bounding ball (also named
smallest enclosing ball / sphere / disk) for a given point set S ⊂ RD of size |S| = n is a
non-trivial task for which multiple different approaches exist.

For our purposes, we tested and compared two recent methods. The first method has
been introduced in [FGK03], computes the exact solution, is one of the fastest codes
available for lower dimensions and still able to handle point sets in dimensions of up
to several thousands efficiently. The second approach presented in [LK13] computes an
approximate solution, is very easy to implement and can be considerably faster than its
competitors for very high-dimensional data.

The first approach [FGK03] by Fischer, Gärtner and Kutz (code available at
[FGK15]) is an enhancement of the algorithm presented by Gärtner in [Gär99], which
is itself a carefully optimized and numerically stable variant of an early approach by
Welzl in [Wel91]. All three methods have expected linear runtime in the number of
points n. They iteratively modify the current bounding ball (until it represents the actual
solution) via computing new support sets of at most (D + 1) points on the boundary of
the current ball. Even though the worst-case runtime complexity is exponential in D,
the performance of the most recent method is very good for low-dimensional problems
but suffers e.g. for almost cospherical point sets in very high dimensions.

The second approach [LK13] by Larsson and Källberg is an approximation algo-
rithm: for a specified precision δ > 0, a bounding ball for S with radius r ≤ (1 + δ)r∗

is computed, where r∗ shall denote the radius of the minimum bounding ball. The best
time complexity for this problem achieved until today is O(n ·D/δ), an example is the
algorithm presented in [Yil08], which also provides a solid survey on similar methods.
The method in [LK13] of our choice comes with a runtime bound of O(n ·D/δ + D/δ3).
However, the authors still claim the performance-wise superiority of their method for
values of δ ≥ 0.001, and in fact, the second summand in the complexity is due to an
additional optimization routine reducing the actual runtime in many practical cases.

Our scenario is somewhat different from most experiments in the literature, since we
are usually interested in minimum bounding balls for small sets of size n≪ 100, where
the ambient dimension D can however be quite large. For this reason, we examined
both methods embedded in the environment of our main SSV algorithms and compared
their respective performance. While for smaller dimensions of D < 50 we found no
measurable differences, for higher-dimensional point sets the approximation algorithm
(with δ = 0.001) performed significantly faster. Since the final estimation results are not
influenced by the fact that the bounding ball radius is only δ-exact, we ultimately opted
for the approach by [LK13] with fixed approximation parameter δ = 0.001.

SSV1 – Input, output and constants

The mandatory input is the data dimension D, the number of data points N , and the
data X = {xi=1,...,N}. The (optional) input parameter dmax provides an upper bound
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for the output, i.e., the estimated intrinsic dimension; its default value is of course
dmax = D. The data {xi=1,...,N} is supposed to be intrinsically low-dimensional with
intrinsic dimension m as described in subsection 3.4.2. The only output parameter is the
estimated intrinsic dimension m̂. Constants used in the algorithm are C, the number
of test simplices considered for each local dataset, further kmin, the minimal number of
nearest neighbor points forming the local datasets, and ϵ, a tolerance parameter which
is mandatory due to the influence of manifold curvature and noise in the data. Since
the method examines random simplices with vertices drawn from relatively small local
subsets of the data, we found that C = 1000 is a sufficiently large number to compute
reliable values of the local average volumes. The number of nearest neighbors is adapted
to the current test dimension. Still, the minimum number of NNs must not be to small,
which is why we choose kmin = 12 in our experiments. Finally, the tolerance parameter is
fixed as ϵ = 0.05. This relatively small value allows precise ID estimations of (noisefree)
high-dimensional data, while, on the other hand, the ID of noisy data is likely to be
overestimated in certain cases.

SSV1 – Dimension estimation procedure

The algorithmic sketch of the SSV1 method is presented in figure 3.1.
First, the kd-tree structure TX is built which will accelerate the nearest neighbor

search process to construct the local sets Si. The output variable m̂ is initialized as D,
the standard value if no lower ID can be found.

The outer for-loop marches through all possible values d = 1, . . . , dmax of the intrinsic
dimension and is aborted immediately, if (d− 1) is considered to be the correct output
value m̂. For fixed d, the algorithm analyzes volumes of random d-simplices with (d + 1)
vertices. The number of NN points is chosen as kd = max (d + 3, kmin). This guarantees
a sufficiently large number of points to draw the (d + 1) vertices from.

The intermediate for-loop marches through all local datasets, which are considered
separately. For the purpose of reproducibility, our method passes through all data points
xi and computes the corresponding nearest neighbor set Si =

{
x

(j)
i

∣∣∣ j = 0, . . . , kd

}
using

the tree structure TX .
For a fixed set Si, in the next step, the approximate minimum (D-dimensional) bound-

ing ball, denoted by B(Si), with its radius ri is calculated. This step is accomplished
via the algorithm presented in [LK13] as described above, where the resulting radius is
δ-exact with δ = 0.001.

In the inner for-loop, random subsets of (d + 1) points are drawn from Si resulting
in random sample simplices. The average volume V i of C of those simplices is computed
as explained above.

Subsequently, V i is divided by the volume of the d-dimensional ball with radius ri,
and the result is again divided by the corresponding expected volume ν(d) to yield the
local quantities

qi(d) = V i ·
[
vold(Bd

ri
(0)) · ν(d)

]−1
, (3.114)
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and finally, their arithmetic mean:

q(d) = 1
N

N∑
i=1

qi(d). (3.115)

As explained in subsection 3.4.3, we expect the following results: q(d) > 1 for d < m,
q(d) ≈ 1 for d = m, and 0 ≤ q(d) < 1 for d > m. Thus, the exit-condition for the outer
loop is defined as q(d) < 1 − ϵ, where the tolerance parameter ϵ is required due to the
effects of manifold curvature and noise in the data.

A further remark shall be given with regard to the averaging in (3.115). In a setting

SSV1(D, xi=1,...,N , dmax)
Input: D = dimension; x1, . . . , xN = data; dmax = max. intrinsic dimension
Output: m̂ = estimated intrinsic dimension
Constants: kmin = min. no. of NNs; C = no. of test simplices; ϵ = tolerance parameter

1: TX ← ConstructTree ({xi=1,...,N})
2: m̂← D
3: for d = 1, . . . , dmax do
4: kd ← max {d + 3, kmin}
5: q ← 0
6: for i = 1, . . . , N do
7: Si ←

{
x

(j)
i

∣∣∣ j = 0, . . . , kd

}
/* local NN dataset */

8: ri ← radius(B(Si))
9: V i ← 0

10: for t = 1, . . . , C do
11: ∆t ← d-simplex with vertices randomly drawn from Si

12: V i ← V i + vol (∆t)
13: V i ← V i/C

14: q ← q + V i ·
[
vol

(
Bd

ri
(0)

)
· ν(d)

]−1

15: q ← q/N
16: if q < 1− ϵ then
17: m̂← d− 1
18: break /* ID found; exit outer for-loop */
19: return m̂

Figure 3.1: Basic structure of the SSV1 dimension estimation algorithm. Note that ν(d)
are the constant values defined in (3.98) denoting the expected random sim-
plex volume within a d-dimensional ball with volume 1.
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with data sampled from some particular non-uniform probability distribution it can be
beneficial to assign different weights to different subsets, for example according to their
particular bounding ball radii. In our setting — for a uniform distribution — there is
no reason to prefer some particular weighting to the unweighted average.

SSV2 – Input, output and constants

The input parameters D, N , X = {xi=1,...,N}, and dmax, as well as the only output
parameter m̂ are the same as for the SSV1 method. When it comes to the constants, C
(with default value C = 1000) still denotes the number of test simplices for each local
set Si. The tolerance parameter is ϵ = 0.05 as in the SSV1 approach.

The more important constants are s(1)
max and s(2)

max, the maximal dimension of test
simplices for stage I and II of the algorithm. As explained before, lower values can be
used to speed up the computation, while higher values allow for a more precise estimation
of datasets of high intrinsic dimensionality. Our choice is s(1)

max = 5 and s(2)
max = 10, which

seems to be a good trade-off between precision and performance. Next, in stage II and
III we use two different numbers k1, k2 of nearest neighbor points in order to yield more
reliable estimates, again for data with high ID. Note that while the SSV1 method works
with NN sets of variable size |Si| = max {d + 3, kmin} for test dimension d, the SSV2
method only utilizes these two fixed numbers of nearest neighbor points for each local
subset. We choose k1 = 12 equal to the parameter kmin = 12 of the SSV1 method in
order to obtain similar estimates of both methods for low IDs; finally, we found that the
choice of k2 = 30 leads to decent results for a wide spectrum of different datasets.

SSV2 – Dimension estimation procedure

The algorithmic structure of the SSV2 method is presented in figure 3.2 with the de-
scription of stage II and stage III given in figures 3.3 and 3.4, respectively.

To begin with, the kd-tree structure TX is built (accelerating the computation of the
local sets Si), and the output variable m̂ is initialized with its standard value D.

Next, recall that the local quantities are given by

q
(z)
i (s, d) = V

(z)
i (s) ·

[
ξ
(
r

(z)
i , d, s

)]−1
. (3.116)

Here, the index z ∈ {1, 2} specifies the current number of NN points kz, and r
(z)
i is

the radius of the (approximate) minimum bounding ball of the local NN set S(z)
i ={

x
(j)
i

∣∣∣ j = 0, . . . , kz

}
. Correspondingly, V

(z)
i (s) denotes the (empirical) average volume

of s-dimensional simplices with their (s + 1) vertices randomly drawn from S(z)
i . The

decision criterion is given by
q(z)(s, d) < 1− ϵ, (3.117)

where q(z)(s, d) = 1
N

∑N
i=1 q

(z)
i (s, d).
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SSV2(D, xi=1,...,N , dmax)
Input: D = dimension; x1, . . . , xN = data; dmax = max. intrinsic dimension
Output: m̂ = estimated intrinsic dimension
Constants: s

(i)
max = max. dim. of simplices for stage i = 1, 2; k1, k2 = different no. of NNs;

C = no. of test simplices; ϵ = tolerance parameter

1: TX ← ConstructTree ({xi=1,...,N})
2: m̂← D
3: /* STAGE I */
4: for i = 1, . . . , N do
5: Si ←

{
x

(j)
i

∣∣∣ j = 0, . . . , k1
}

/* local NN dataset */
6: ri ← radius(B(Si))
7: for s = 1, . . . , s(1)

max do
8: V i,s ← 0
9: for t = 1, . . . , C do

10: ∆t ← s-simplex with vertices randomly drawn from Si

11: V i,s ← V i,s + vol (∆t)
12: V i,s ← V i,s/C

13: for d = 1, . . . , s(1)
max do

14: for s = 1, . . . , d do
15: qs,d ← 0
16: for i = 1, . . . , N do
17: qs,d ← qs,d + V i,s · [ξ(ri, d, s)]−1

18: qs,d ← qs,d/N
19: if qs,d < 1− ϵ and (d ≤ 2 or s ≥ 2) then
20: m̂← max {d− 1, 1}
21: goto line 22 /* ID found; exit for-loop */
22: if m̂ < D then
23: return m̂
24: else
25: SSV2StageII(D, xi=1,...,N , dmax)

Figure 3.2: Basic structure of the SSV2 dimension estimation algorithm. Note that
ξ(ri, d, s) are the expected values defined in eq. (3.100). Stage II and III
are presented in figures 3.3 and 3.4, respectively.
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SSV2StageII(D, xi=1,...,N , dmax): input, output, constants as in SSV2

1: for z = 1, 2 do
2: for i = 1, . . . , N do
3: S(z)

i ←
{
x

(j)
i

∣∣∣ j = 0, . . . , kz

}
/* local NN dataset */

4: r
(z)
i ← radius(B(S(z)

i ))
5: for s = s(1)

max + 1, . . . , s(2)
max do

6: V
(z)
i,s ← 0

7: for t = 1, . . . , C do
8: ∆t ← s-simplex with vertices randomly drawn from S(z)

i

9: V
(z)
i,s ← V

(z)
i,s + vol (∆t)

10: V
(z)
i,s ← V

(z)
i,s /C

11: for d = s(1)
max + 1, . . . , s(2)

max do
12: for s = 2, . . . , d do
13: qs,d ← 0
14: for i = 1, . . . , N do
15: qs,d ← qs,d + V

(1)
i,s ·

[
ξ
(
r

(1)
i , d, s

)]−1

16: qs,d ← qs,d/N
17: if qs,d < 1− ϵ then
18: m̂← d− 1
19: goto line 20 /* ID found; exit for-loop */
20: if m̂ < D then
21: return m̂
22: else
23: SSV2StageIII(D, xi=1,...,N , dmax)

Figure 3.3: Stage II of the SSV2 algorithm.
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SSV2StageIII(D, xi=1,...,N , dmax): input, output, constants as in SSV2

1: for z = 1, 2 do
2: m̂(z) ← D
3: for d = s(2)

max + 1, . . . , dmax do
4: for s = s(1)

max + 1, . . . , s(2)
max do

5: q
(z)
s,d ← 0

6: for i = 1, . . . , N do
7: q

(z)
s,d ← q

(z)
s,d + V

(z)
i,s ·

[
ξ
(
r

(z)
i , d, s

)]−1

8: q
(z)
s,d ← q

(z)
s,d/N

9: if q
(z)
s,d < 1− ϵ then

10: m̂(z) ← d− 1
11: break; break /* exit both for(s)- and for(d)-loop */
12: if m̂(1) < D and m̂(2) < D then
13: if m̂(1) ≤ k1 then
14: m̂← m̂(1)

15: else if m̂(2) ≤ k2 then
16: m̂← round

([
m̂(1) + m̂(2)

]
/2
)

17: else
18: m̂← m̂(2)

19: else if m̂(2) < D then
20: m̂← m̂(2)

21: return m̂

Figure 3.4: Stage III of the SSV2 algorithm.

Stage I of the SSV2 method covers all estimated IDs m̂ < s(1)
max. In the first for-

loop, the nearest neighbor sets Si, the bounding ball radii ri and the average simplex
volumes V i(s) for s = 1, . . . s(1)

max are computed, all for fixed k = k1. The second for-loop
examines each test dimension d = 1, . . . , s(1)

max. Here, for each s = 1, . . . , d, the quantities
(3.116) are evaluated and in case the decision criterion (3.117) is fulfilled for any s ≥ 2
(or for any s in case d ≤ 2), the output value is fixed as m̂ = max {d− 1, 1}.

If no intrinsic dimension m̂ < s(1)
max has been found yet, the algorithm initiates stage II

(fig. 3.3). In the first for-loop, the average simplex volumes V
(z)
i (s) are now computed

for both NN values kz, (z = 1, 2), and for all s = s(1)
max, . . . s(2)

max. The second for-loop
examines each test dimension d = s(1)

max, . . . , s(2)
max. The same quantities and decision

criterion are utilized as above, this time for each s = 2, . . . , d.
If this does not lead to some estimate m̂ < s(2)

max, stage III (fig. 3.4) is initiated. Here,
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for each z = 1, 2 and for test dimensions d = s(2)
max+1, . . . , dmax, our test quantities (3.116)

are computed, and the decision criterion (3.117) now potentially yields two (different)
estimates m̂(z), z = 1, 2. In the final step, the two estimates m̂(1) and m̂(2) are combined
as follows. If both estimates have been assigned a value less than D, the final estimate
is defined as

m̂ =


m̂(1) if m̂(1) ≤ k1,
1
2 ·
(
m̂(1) + m̂(2)

)
if m̂(1) > k1 ∧ m̂(2) ≤ k2,

m̂(2) otherwise.
(3.118)

In case that only m̂(2) < D, we let m̂ = m̂(2). The case where only m̂(1) < D does not
occur in practice.

Note that the estimation process of stage III is generally based on theoretical consid-
erations (see subsection 3.4.3), while the shortcomings of using low-dimensional simplex
volumes to estimate high intrinsic dimensionalities have been highlighted in 3.4.4. Conse-
quently, if the estimated ID m̂ is considerably larger than the maximum simplex volume
s(2)

max, we do not expect the SSV2 results to be perfectly on par with the results produced
by the SSV1 approach.

Another remark on both SSV methods should be given concerning the choice of the
parameters C, the constant number of test simplices, and ϵ, the tolerance parameter.

To improve performance, the number of random test simplices could be chosen adapted
to the current combination of variables. For example, when sampling triangles from Si

with size |Si| = kmin = 12, there are only
(

12
3

)
= 220 possible different choices, hence less

than C = 1000. However, the speed-up due to those savings is negligible in practice, as
our tests have shown. For reasons of clarity, we therefore opted for a fixed number C.

When it comes to the tolerance parameter ϵ > 0, our choice of a constant value
ϵ = 0.05 is surely suboptimal in some scenarios. It is reasonable to presume that there are
theoretical considerations that the (in some sense optimal) value of ϵ should depend on
the ambient dimension D and on the current test dimension d. In practice, we experience
the following trend. For “uncomplicated” datasets (i.e., intrinsically low-dimensional, low
noise level and curvature), ϵ can be selected from a rather large interval [0, 0.5] to reliably
produce correct estimation results. For more challenging datasets (higher intrinsic ID
and noise level), the fine tuning of the proper selection of ϵ becomes a cumbersome task
and is probably impossible without further knowledge of noise levels, manifold curvature,
or sampling density. Eventually, to keep our results more easily reproducible, we settled
for a constant ϵ.

3.4.6 Complexity analysis of the SSV methods
The complexity analysis of both SSV methods involves the investigation of three non-
trivial steps. These are the determination of each nearest neighbor set Si, the computa-
tion of the corresponding minimum bounding ball B(Si), and the evaluation of a simplex
volume vol (∆t).
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The construction of the kd-tree TX can be done inO(N ·(D+log N)). The computation
of the local subsets Si is in fact equivalent to the so-called k-all-nearest-neighbors problem
and could thus be realized using specialized approaches e.g. as suggested in [Vai89] or
[SSV07]. However, we opted for a more basic approach. In our case, note that for a
balanced tree, finding a single nearest neighbor is an O(D log N) operation. Let k be
the number of NNs to be found, this adds up to a total complexity of O(k ·D ·N log N).

The computation of the corresponding minimum bounding ball B(Si) is performed
using the algorithm presented in [LK13]. The associated complexity is O(k ·D/δ+D/δ3),
where k is the respective number of points in Si and δ = 0.001 is the approximation
parameter. For all points xi=1,...,N , this results in O(N · (k ·D/δ + D/δ3)).

Finally, as shown in section 3.3, the evaluation of a total number of C volumes of
s-dimensional simplices, with their vertex points drawn from the local set Si, can be
accomplished in roughly O(D · k2 + C · s3) time complexity.

For the SSV1 method, the (practical) time complexity heavily depends on the esti-
mated intrinsic dimension m̂ ≈ m of the dataset. The algorithm increments the test
variable d in each step until (d − 1) is selected as the estimation result. For a fixed d,
the time complexity is thus given by

O(kd ·D ·N log N) +O(N · (kd ·D/δ + D/δ3)) +O(N · (D · k2
d + C · d3)), (3.119)

where kd = max {d + 3, kmin} is the current number of NNs and C is the fixed number
of local test simplices, with default values kmin = 12 and C = 1000, respectively. Hence,
the overall complexity of the SSV1 method sums up to

m̂∑
d=1

[
O
(
N ·D · (kd · log N + kd/δ + 1/δ3 + k2

d) + N · C · d3
)]

. (3.120)

On the positive side, one can observe that the complexity is just linear in the ambient
dimension D. However, for growing values of D, the nearest-neighbor search based on
the kd-tree becomes more and more inefficient and often dominates the whole runtime
complexity. Nevertheless, this is an issue of all IDE methods based on the analysis
of nearest neighbors. The effective computation time of the approximate minimum
bounding ball also grows with D, still, its influence on the overall runtime is usually
negligible compared to the NN search. Finally, the complexity of the simplex volume
computation is quickly dominated by the factor d3 for higher IDs m > 10, resulting in
runtimes notably higher than those of methods relying on distance computations only.

The SSV2 method attenuates this drawback for high IDs to some extent. Clearly, its
time complexity is dominated by stage I and stage II. The same considerations as for
the SSV1 approach lead to an overall complexity of the SSV2 method of

s
(2)
max∑

d=1

[
O
(
N ·D · (kmax · log N + kmax/δ + 1/δ3 + k2

max) + N · C · d3
)]

, (3.121)
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where s(2)
max = 10, kmax = max {k1, k2} = k2 = 30 and C = 1000 in our setting. For

m̂ < s(1)
max, the sum in (3.121) of course is capped at d = s(1)

max. In practice, the user can
select suitable values s(1)

max and s(2)
max to gauge precision versus speed.

Now, after we introduced the theory as well as the implementation details of our SSV
algorithms, the upcoming section is dedicated to numerical experiments and comparisons
with other IDE methods.

3.5 Numerical Results
In this section, we present the numerical results of various recent approaches for intrinsic
dimension estimation (IDE), where our considerations will cover multiple different topics.
The main focus of most IDE methods are datasets of relatively low ID values m <
10, but with a rather high ambient dimension D. Recently however, more and more
practical scenarios have emerged where the data are also of higher intrinsic dimensions
m > 10. Our experiments will cover multiple low- and high-dimensional cases for both
synthetic as well as real-world datasets. Before we come to the experimental results, let
us first consider several aspects making ID estimation more challenging, including noise
in the data, curvature of the underlying manifold, and some (partly counterintuitive)
phenomenons of data in high-dimensional spaces.

3.5.1 Challenges of dimension estimation
Data originating from real-world measurements is typically tainted with noise. This
noise is usually modeled via some Gaussian distribution function, and in this case, it is
referred to as Gaussian noise.

The so-called “swiss role” dataset has already been introduced in subsection 2.2.2 in
the context of the ISOMAP dimensionality reduction algorithm. The left column of
figure 3.5 shows three instances of the swiss role, sampled with 2000 points each, tainted
with Gaussian noise of increasing standard deviation σ = 0.01, 0.03, 0.05. The first plot
with Gaussian noise of standard deviation σ = 0.01 still clearly reflects an underlying
two-dimensional object, while from the visual appearance, it is hard to tell whether the
third variant with σ = 0.05 is intrinsically two- or three-dimensional. Furthermore,
noise usually affects all D dimensions of the ambient space making the estimation of the
intrinsic dimension even harder for high values of D.

A second aspect that must be taken into account when generating test data is the
number of sampling points. Both, high curvature of the underlying manifold and a high
intrinsic dimension require a large number of sampling points. To illustrate this effect,
let us consider a k-times twisted Möbius strip in R3, given by the following mapping
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fmo : R2 → R3,

[
y1
y2

]
7→

 x1
x2
x3

 =


(
1 + y1

2 · cos
(
k · y2

2

))
· cos(y2)(

1 + y1
2 · cos

(
k · y2

2

))
· sin(y2)

y1
2 · sin

(
k · y2

2

)
 , (3.122)

where y1 ∈ [−1, 1], y2 ∈ [0, 2π) are uniformly distributed.
The second column of figure 3.5 features three instances of the 10-times twisted Möbius

strip, each with a different sampling number. While the two-dimensional structure of the
Möbius strip is clearly visible for a sample size of 10000 points and still well recognizable
for 1000 points, the sampling with only 100 points leaves just 10 points per “curl” making
a purely visual identification of the underlying structure virtually impossible.

Another problem is the so-called edge effect, which has been described e.g. in [VD95],
[CV02], and analyzed in [BGRS99]. As already explained in subsection 2.1.1, data
sampled from within an m-dimensional ball will tend to accumulate close to its boundary,
i.e., the associated (m − 1)-sphere, for m → ∞. The number of vertices of an m-
dimensional cube grows exponentially with m, as a consequence, the sampled points
concentrate in the corners. Basically, all datasets of high intrinsic dimensionality m are
affected by the edge effect. This leads to an underestimation of the true dimensionality,
since the boundary of a manifold is of dimension m− 1. The authors of [CRH10] try to
face this problem by introducing different weights for local dimension estimates before
combining them into a global estimate. For this purpose, they assign a measure of
“depth” to each data point, where points with higher depth are supposed to be farther
away from the boundary / edge. Subsequently, local estimates associated with points
of higher depth are given higher weights. The authors verify that this procedure indeed
exhibits positive effects on estimation results for a rather low intrinsic dimension m = 6.
However, they also show that for increasing ID m, the effect vanishes since the minimum
and maximum depth of all data points converges to the same value.

Finally and naturally, the curvature of the underlying manifold plays an important
role when it comes to the reliability of ID estimators. In [HA05], the authors consider
the extreme example of a highly oscillating sinusoid defined by fsi : [0, 2π)→ R3,

y 7→

 x1
x2
x3

 =

 sin(y)
cos(y)

sin(150y)/10

 (3.123)

to demonstrate this effect. The above sinusoid can be best described as a “ring” in
R3 with small height of 0.2, where the third coordinate oscillates 150 times around 0.
When comparing a plot of the sinusoid sampled with 600 points with a plot of a circle
with uniform noise of 0.1 in the third coordinate, again sampled with 600 points, no
evident difference can be seen (compare figure 3.6). The authors of [HA05] highlight
that, nevertheless, their method is able to estimate the correct ID values of 1 and 2,
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Figure 3.5: Left: Swissrole with Gaussian noise of standard dev. σ = 0.01, 0.03, 0.05.
Right: 10-fold Möbius strip sampled with 10000, 1000 and 100 points.
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Figure 3.6: Left: Highly oscillating sinusoid sampled with 600 points. Right: Circle with
uniform noise of 0.1 in the third coordinate, sampled with 600 points.

respectively, in the majority of cases. Our point of view for this scenario is slightly
different, though. With a sampling number as low as 600 points, which, on average,
leaves 4 points per oscillation, the dataset rather corresponds to a space-filling curve,
where the space in this case is the two-dimensional “strap”. Thus, an estimate of m̂ = 2
for this special case might not be as wrong as suggested by the authors.

The crucial conclusion that should be drawn from this example is that highly curved
manifolds require a large number of sample points.

3.5.2 Configuration of the tested methods
We now present the detailed parameter configuration of our testbed. Table 3.8 shows
all tested methods, introduced in subsections 3.2.2 and 3.4.5, with their corresponding
original publication and the chosen parameter settings. All parameter values where
selected to yield the best possible estimation results in each case. For the GCD, MLE and
ANC methods, the associated parameters have been fixed according to the suggestions in
the respective publications. This seems reasonable since our own tests of those methods
with different parameter values showed no substantial variation in the results. For the
CD and the DD method, we found that values larger than L = 20 or k = 30, respectively,
did only lead to increasing runtimes, while the estimates did not become more precise.

The ESS method comes with no recommendation for a practical selection of its para-
meter k. This is why we conducted multiple tests with different values of k ranging
between 15 and 50, which led us to the conclusion that the ESS estimates tend to be
slightly better for higher values of k. Since all the experiments in the original publi-
cation [JSF15] are performed for local datasets of size k = 50, we fixed the parameter
accordingly.

The minimum number of NN points for the SSV1 method proposed in this thesis is
fixed as kmin = 12; further, the tolerance parameter is set to ϵ = 0.05, which is relatively
small. As already explained above, this allows for the precise estimation of high intrinsic
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abbr. method citation parameters

CD correlation dimension [GP83] no. of intervals L = 20
GCD generalized correlation dimension [HA05] no. of sub-sample sizes Nsub = 5
MLE maximum likelihood estimation [BL05] min./max. no. of NNs k1 = 10, k2 = 20
DD distribution of distances [CNBYM01] no. of NNs k = 30

ANC angle and norm concentration [CCB+14] no. of NNs k = 10
ESS expected simplex skewness [JSF15] no. of NNs k = 50

SSV1 sample simplex volumes (1) min. no. of NNs kmin = 12, tol. ϵ = 0.05
SSV2 sample simplex volumes (2) s

(1)
max = 5, s

(2)
max = 10, k1 = 12, k2 = 30

Table 3.8: IDE methods with their parameter configurations

dimensions, however the ID of data tainted with noise is likely to be overestimated in
certain cases. Besides, the highest possible estimated ID value is limited to 63, due to
the growing costs for the computation of the high-dimensional simplex volumes.

Concerning our SSV2 method, the maximal dimension of test simplices is chosen as
s(1)

max = 5 for stage I and s(2)
max = 10 for stage II. While smaller values would reduce

the time complexity of the estimation process, larger values could yield better estimates
for datasets of higher intrinsic dimensionality. As for the SSV1 method, the tolerance
parameter is fixed as ϵ = 0.05. The two different numbers of nearest neighbors are chosen
as k1 = 12 and k2 = 30.

When it comes to the actual implementations, we rely on the C++ code of the GCD
method provided online at [HA16] and on the Matlab code of the ANC method provided
at [Lom13]. All other methods have been implemented in C++ carefully following the
descriptions presented in subsections 3.2.2 and 3.4.5, respectively.

Finally, for the sake of accuracy, we remark that the precise implementations of the
methods DD, ESS, MLE, SSV1, and SSV2 have been slightly modified in the following
way, with the sole purpose of accelerating our computations. Note that all those meth-
ods calculate certain local quantities at each point of the dataset, which are averaged
subsequently; the final result only depends on the respective average in each case. Thus,
for a sufficiently large number of data points N , it seems natural to assume that the eval-
uation of the quantity at only a reduced, but well selected number of points will yield the
same final output than the inclusion of all points. Accordingly, each of the five methods
features a kd-tree (as described in the beginning of subsection 3.4.5) which accelerates
the computations of nearest neighbors in the first place. For all datasets with N ≤ 1000,
the local quantities are computed at all points, as expected. For larger datasets, a certain
number of test points is chosen from each tree leaf. More precisely, if the current leaf size
is nl, the number of randomly selected test points equals nt = max {10, ⌈nl/8⌉}. Note
here that, in the tree construction process, a node is split only if its size is larger than
100; consequently, leaf sizes vary roughly between 50 and 100 points. Eventually, for
each tree leaf, the local quantities are only evaluated for the corresponding test points,
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instead of for all points. After thorough testing, we found that this process yields the
exact same estimation results for each of the five methods in every test scenario, while
tremendously reducing the overall runtimes. Let us yet emphasize that a completely
random sampling of test points from the whole dataset might not work as well, while our
selection procedure of test points from each leaf ensures that no local region is missed
out.

3.5.3 Technical prerequisites
In order to get reliable empirical results, we proceed in the following way (this is valid for
all upcoming synthetic datasets, unless noted otherwise). We choose a constant number
of sampling points N = 10000, which is sufficiently high for all our tests and also a
test size that all methods can still handle in a reasonable amount of time. In certain
cases, when relevant for a deeper understanding, tests with lower sample sizes will be
performed and discussed.

The test points are sampled by means of the popular pseudo-random number gen-
erator known as “Mersenne Twister”, see [MN98]. The corresponding pseudo-random
numbers are equidistributed in 623 dimensions and have a period of ≈ 4 · 106001; we
utilize a variant named “MT19937” from the GNU Scientific Library [GNU17]. This
library also includes the assistant routines gsl_rng_uniform, gsl_ran_gaussian, and
gsl_ran_exponential for getting random samples distributed according to the uniform,
the Gaussian, and the exponential distribution, respectively.

Each of our experiments is repeated 10 times, meaning that 10 different random
datasets are generated, which are then given as input to each method. Our presented
results are the respective average outcomes.

Finally, note that some methods produce a floating point output for the ID estimate,
while others come with an integer output value. In order to get a fair comparison, we
perform a rounding for all floating point outputs to the nearest integer. The decimals in
our results are due to the averaging of 10 experiments in each case.

3.5.4 Results from synthetic data
Symmetrical datasets: unit ball, cube, simplex, and isotropic Gaussian

We start with the analysis of the results for important basic datasets: we consider the
three most elementary geometric objects in different dimensions:

• the unit m-ball: Bm = Bm
1 (0) = {x ∈ Rm : ∥x∥ ≤ 1};

• the unit m-cube: Cm = [0, 1]m ⊂ Rm;

• the unit m-simplex: Sm = {(x0, . . . , xm) ∈ Rm+1 : ∑m
i=0 xi = 1 and ∀i : xi ≥ 0}.
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The unit (or standard) m-simplex is part of an affine hyperplane of Rm+1, its m + 1
vertex points are given by (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1). Naturally, a
rotation allows the representation of Sm in Rm, and the only reason for defining the
m-dimensional unit simplex in Rm+1 is simplicity.

We consider datasets sampled uniformly from the interior of these m-dimensional
objects as well as sampled uniformly on their particular (m− 1)-dimensional boundary
(or surface). The associated surfaces are the (m−1)-sphere, the union of 2 ·m boundary
(m− 1)-cubes, and the union of m + 1 boundary (m− 1)-simplices, respectively.

The uniform sampling of the interior or the surface of the cube is a trivial task.
Considering the ball and the sphere, we exploit the well-known fact that the multivariate
Gaussian distribution Nm(0, 1) is radially symmetric. Thus, given a random variable
Ym ∼ Nm(0, 1), the variable Sm = Ym/∥Ym∥ has the uniform distribution on the unit
(m− 1)-sphere (see e.g. [Mul59]). Furthermore, it is easy to see that U1/m ·Sm, where U
has the uniform distribution on the interval (0, 1), is uniformly distributed on the unit
m-ball.

Regarding the simplex, we refer to the following efficient and simple sampling method
revisited by Rubinstein in [Rub82]. Consider the exponential distribution exp(λ) with
rate parameter λ > 0 and its associated density

f(x) =

λe−λx if x > 0,

0 otherwise.
(3.124)

Now let Y0, . . . , Ym be independent exp(1) distributed random variables and define Z =∑m
i=0 Yi. Then, X = (X0, . . . , Xm) = (Y0/Z, . . . , Ym/Z) is uniformly distributed on the

unit m-simplex Sm. Note that — in contrast to our notion — in [Rub82], the m-simplex is
in fact referred to as the “surface of the (m+1)-dimensional simplex”. Uniform sampling
of the boundary of the m-simplex is easily implemented via the above procedure, where
in each sampling step, one of the m + 1 coordinates is randomly selected to be zero.

The last dataset included in our first comparison is a point sample of the isotropic
multivariate (m-dimensional) Gaussian distribution Nm(0, 1) with variance matrix Σ2 =
σ · 1 = 1 as σ = 1. It is not surprising, but still noteworthy that all methods yield the
same estimation results for different values of σ. This is due to the fact that for the
isotropic Gaussian, all distances, and consequently all angles as well as volumes, are
scaled proportionally with varying σ.

Now after sampling a particular set of points from the underlying m-dimensional struc-
ture, we embed it into D-dimensional space with a sufficiently high ambient dimension D
and perform a random rotation. Without the embedding, overestimation of the intrinsic
dimension would not be possible for most methods, since their estimation results are
limited to the outer dimension D. To be exact, D was fixed as D = 20 for m = 4, 10,
D = 30 for m = 16, and D = m + 20 for m = 20, 30, 40.

Figure 3.7 shows three-dimensional plots of selected datasets, i.e., the surface of the
three-dimensional ball, cube, simplex, as well as the isotropic Gaussian. Here, the sam-
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Figure 3.7: Symmetrical test datasets sampled with 1000 points each: three-dimensional
unit ball, cube, simplex, and isotropic Gaussian. Here, for each of the three
geometric objects, uniformly distributed points have been sampled on their
two-dimensional surface. The unit simplex has been rotated and shifted in
order to fit in R3.
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pling size has been reduced to 1000 points for improved visualization.
Table 3.9 summarizes the experimental results and already allows first insights into

the strengths and drawbacks of the different approaches on the one hand, and into some
pitfalls of estimating higher IDs on the other hand.

To begin with, we observe that two groups of methods perform quite similarly so far.
The first group (CD, GCD, MLE) achieves accurate results for low intrinsic dimensions
m ≤ 10, however for growing values 10 < m ≤ 40, the methods suffer from an increasing
underestimation of the ID. The second group (ANC, ESS, SSV1) yields accurate results
with only minor errors across the entire spectrum of m, for most datasets. In contrast,
the DD approach generally produces overestimations which tend to increase for growing
ID. Correspondingly, the estimation errors of the DD method averaged over all IDs m
for a fixed dataset are larger than for any other method in the comparison; the sole
exception is the m-simplex, where the tendency to overestimation seems to cancel out
with a peculiarity of the dataset leading to underestimation of most other methods. The
SSV2 method performs very similar to the SSV1 method for ID values m ≤ 16; however,
for larger intrinsic dimensions, minor tendencies of the SSV1 method to overestimation
(ball, sphere) and underestimation (simplex) are amplified leading to less reliable results
of the SSV2 approach.

A closer look at the outcomes for m = 10 and larger intrinsic dimensions for the
different structures reveals some of the characteristics of IDE methods presented in
subsection 3.5.1. First, the m-ball naturally represents the best-case scenario for nearly
all approaches, due to similar model assumptions, which can be seen from the near
perfect results of ANC, ESS and SSV1. The m-sphere is not a highly curved manifold,
however its constant curvature in (m+1) dimensions entails slight overestimations (ANC
and SSV1) or considerable overestimations (DD and SSV2) for values of m ≥ 20.

On the other hand, the m-cube with its 2m vertices concentrates many sample points
close to its boundary (“edge effect”) resulting in a minor underestimation for the second
group (ANC, ESS, SSV1) as well as a larger underestimation for the first group (CD,
GCD, MLE). The surface of the hypercube is again perfectly estimated by the ESS and
the SSV1 method.

The m-simplex is obviously the most challenging of the three geometric objects, due
to its acute angles at the vertex points making it more spiky than the m-cube. Even the
generally well-performing methods ANC and ESS suffer from a growing underestimation
for increasing ID values of m ≥ 16. Here, the SSV1 method clearly outperforms all its
competitors for both datasets (the interior as well as the surface of the simplex), even
though its estimation results are not completely perfect.

Finally, the isotropic high-dimensional Gaussian is known to have most of its weight
concentrated in its tails (see e.g. [LV07]). We therefore expect some mild underesti-
mation issues, which are encountered in our SSV1 and SSV2 methods. While the ESS
algorithm yields correct estimates for all ID values m, the results of the ANC rather
show a moderate overestimation. The remaining methods feature a similar behavior as
discussed before.
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Table 3.9: IDE results for symmetrical datasets: unit ball, sphere, cube (and its surface),
simplex (and its surface), and isotropic Gaussian of varying dimension m

dataset m CD GCD MLE DD ANC ESS SSV1 SSV2

m-ball

4 4 4 4 5 4 4 4 4
10 9.1 9 9 14 10 10 10 10
16 13.8 14 13 23 16 16 16 16
20 17.4 17 16 29 20 20 20 21
30 23.2 23.6 22 44 30 29.9 30 32
40 29.4 29.7 27 59 40 39.8 40 45.4

m-sphere

4 4 4 4 5 4 4 4 4
10 9.4 9.9 9 15 10.1 10 10 10.4
16 14.2 14.7 14 24.6 16.8 16 17 18
20 17.2 17.6 16.9 31 20.5 20 21 23
30 24.2 24.3 22.7 46 30.4 30.2 31 35
40 29.8 30.2 28 61 40.5 40.1 41 50.8

m-cube

4 4 4 4 5 4 4 4 4
10 9 9 8.6 13 9.9 9 9 9
16 13.1 13.1 13 21 15 15 15 15
20 15.7 16 15 27 19.1 19 19 19
30 22.1 22 21 41 29.8 29 29 30.6
40 27.7 27.2 26 55 40 39.1 39 35.8
4 4 4 4 5 4 4 4 4
10 9.2 9.3 9 14 10 10 10 10

surface of 16 14 14 13 23 16 16 16 16
(m + 1)-cube 20 16.5 17 16 29 20 20 20 20.3

30 22.3 22.7 21.8 43 30.3 30 30 32.9
40 27.7 28 26.9 57.1 41.2 40 40 37.6

m-simplex

4 4 4 4 5 4 4 4 4
10 8.7 9 8 12 9 9 9 9
16 12.4 12.2 11 18 14 13.2 15 13
20 14.6 14.6 13 22 17 17 18 16
30 19.2 19 18 31.9 24.2 25 28 23.4
40 23.4 23 22 41.8 31.5 33 37 31.9
4 4 4 4 5.3 4 4 4 4
10 9 9 8.6 13 10 9.9 10 10

surface of 16 13 13 12 19.2 14.6 14 16 14
(m + 1)-simplex 20 15.3 15.1 14 23.1 17.5 17.4 19 17

30 19.7 19.8 18 33 25.1 25.4 28.6 24
40 23.8 23.6 22 43.2 32 34 38 33.1
4 4 4 4 5 4 4 4 4
10 9 9 10 12.7 11 10 9 9.9

m-variate 16 13.7 13.2 14 20 17.5 16 15 14
Gaussian 20 16.3 15.9 17 25 21.7 20 19 17.7

30 21.5 20.9 22 37.2 32.3 30 29 27.5
40 26.8 25.3 27 49.7 42.9 40 38 39.6
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Table 3.10: Average errors of IDE methods for symmetrical datasets in table 3.9

CD GCD MLE DD ANC ESS SSV1 SSV2
abs. error 4.776 4.788 5.417 6.352 1.250 0.943 0.676 2.164
rel. error 0.175 0.173 0.201 0.314 0.049 0.039 0.031 0.081

Table 3.10 presents the average errors of the different estimation methods for our first
testbed of symmetrical datasets. Let T = 42 be the number of all test datasets and let
m̂Ψ(t) denote the estimate of method Ψ for the tth dataset with ID m(t). The absolute
and relative errors are then defined as

Eabs(Ψ) = 1
T

T∑
t=1
|m̂Ψ(t)−m(t)|, Erel(Ψ) = 1

T

T∑
t=1

|m̂Ψ(t)−m(t)|
m(t)

. (3.125)

We conclude that for our first experiment with standard symmetrical datasets, the
three methods ANC, ESS and SSV1 perform significantly better than the remaining
estimators. As can be seen from the average errors, our SSV1 approach is indeed the
most reliable of all compared estimators. This is also the case for considering the error
in the maximum norm, since we have |m̂SSV1(t) − m(t)| ≤ 2 for all datasets except
for a single one, which is the 40-dimensional simplex. Furthermore, our SSV2 method
performs very well for lower ID values m ≤ 16 and still considerably better on average
than the CD, GCD, MLE and DD approaches.

Non-symmetrical datasets: ellipsoid, rectangle, paraboloid, and anisotropic
Gaussian

The symmetrical datasets considered above are an important benchmark set, however, in
practice, data will often rather be distributed in a non-symmetrical, anisotropic manner.
In the field of data mining, some techniques propose a general pre-processing of the
data to equalize either the spread or the variance in each coordinate direction, thus
possibly reducing the level of anisotropy. However, there are two important arguments
against this pre-processing. First of all, the anisotropy in the original dataset can in fact
contain crucial information about the relationships between the different components,
that should not be eliminated in the first place. In addition, the “distortion” of the
data might not be parallel to the axis, not even linear, which is why the identification
and removal of the unwanted distortion might be much more complex than the actual
analysis task itself.

Nevertheless, high levels of anisotropy lead to a fundamental conflict for every esti-
mator of the intrinsic dimension. Consider a rectangle with its two side lengths l1 = 1
and l2 = 1000. In theory, this rectangle is a two-dimensional object, while in practice,
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it clearly depends on the number of sample points and the model assumptions about
the noise level whether it would be considered a one- or two-dimensional dataset. For
this case, an estimator could of course choose a real number 1 < m̂ < 2 as output value
to gauge the level of anisotropy. However, this strategy can not be generalized in a
meaningful way for high-dimensional data.

In summary, solid estimators should be able to correctly classify datasets with rather
small levels of anisotropy, while for higher levels, we expect a tendency towards under-
estimation of the true underlying dimension.

Our second set of test datasets consists of the following four non-symmetrical objects:

• the m-dimensional ellipsoid with semi-axes a1 = 1, a2 = 2, . . . , am = m;

• the m-dimensional rectangle with side lengths l1 = 1, l2 = 2, . . . , lm = m;

• (a segment of) the m-dimensional paraboloid, defined by ym+1 = y2
1 + · · ·+ y2

m;

• the m-dimensional anisotropic Gaussian with variance Σ = 1
4 diag(1, 2, . . . , m).

Note first that for the ellipsoid and the rectangle, the level of anisotropy increases
with growing ID m, since the ratio of the smallest semi-axis (or side) to the longest is
1 : m. The anisotropic Gaussian features a similar characteristic due to its diagonal
variance matrix Σ, where the corresponding 1-dimensional Gaussians are uncorrelated,
but of growing variance σ2 = i/4 for i = 1, . . . , m. These three datasets can easily be
sampled uniformly in an analogical way as their symmetric counterparts.

The data points of the m-dimensional elliptic paraboloid on the other hand are sampled
as proposed in [BQY13]. Starting with i.i.d. exp(1) random variables E0, E1, . . . , Em,
i.e., variables distributed according to the exponential distribution with rate parameter
λ = 1, define the variables Yi = (1 + Ei/E0)−1 for i = 1, . . . , m. Finally, let Ym+1 =
Y 2

1 + · · ·+ Y 2
m. Note that the paraboloid has a non-constant curvature and the sampling

method employed here yields a non-uniform distribution (compare fig. 3.8).
The numerical results from table 3.11 for the ellipsoid, the rectangle and the Gaussian

indicate that the estimates of the SSV1 method deteriorate to a lesser extent than
those of the ANC and ESS methods when it comes to anisotropic datasets compared to
their isotropic (symmetric) counterparts. This underlines the superiority of our SSV1
method. Expectedly, the estimates of the CD, GCD and MLE methods become worse
for higher values of m, a drawback that the SSV2 method shares to a lesser degree.
The DD method on the other hand seems to benefit from a compensation of its general
tendency to overestimation. The paraboloid dataset stands out probably due to its non-
uniform sampling. Obviously, CD and GCD entirely fail to detect the true underlying
manifold structure, while the DD approach again overestimates the intrinsic dimension
as previously. The SSV1 approach clearly shows the best estimates for this example.

Finally, the average error as listed in table 3.12 confirms that our SSV1 method outper-
forms its closest competitors ANC and ESS, while the SSV2 method is slightly superior
as compared to ESS. The DD algorithm’s overestimation issue basically cancels out
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Table 3.11: Numerical IDE results for non-symmetrical datasets: ellipsoid, rectangle,
paraboloid, and anisotropic Gaussian of different dimensions

dataset m CD GCD MLE DD ANC ESS SSV1 SSV2
4 4 4 4 5 4 4 4 4
10 8.5 8.9 8 12 9 8 9 9

m-dim. 16 12 12 11 18 13.5 13 14 13
ellipsoid 20 14.3 14.4 13 22 16.2 15 17 16

30 19 18.9 17 31 23 22 25 22
40 23.5 23 21 39.6 30.1 28 32 30
4 4 4 4 5 4 4 4 4
10 8.1 8 8 11 9 8 9 9

m-dim. 16 11.5 11.8 11 17 13 12 14 12
rectangle 20 13.3 13.4 12 20 15 14.6 17 15

30 17.7 17.8 16 29 21.7 21 24 21
40 21.6 21.6 20 37.5 27.7 26.9 31.1 28.2
4 2.4 2 4 5 4 4 4 4
10 2.1 3 8 11.9 9 9 9 9

m-dim. 16 2.1 3.7 11 18 14 14 15 13
paraboloid 20 2.1 4 13 22.8 16.8 17 19 16.4

30 2.1 4.9 17 33.7 23.8 25 28 25.1
40 2.3 5.2 21 44.5 30.1 33 38 35.2

m-variate
anisotropic
Gaussian

4 4 4 4 5 4 4 4 4
10 8.4 8 8 11 9.8 8 9 9
16 11.7 11 12 16 14 12.2 13 12
20 13.9 13 13.1 19 16.9 15 16 14
30 17.8 17 18 27 23.3 21 24 20
40 20.8 20 21 34.9 30.2 27.8 31 26.3

Table 3.12: Average errors of IDE methods for non-symmetrical datasets in table 3.11

CD GCD MLE DD ANC ESS SSV1 SSV2
abs. error 9.700 9.433 7.704 1.746 4.079 4.729 2.913 4.533
rel. error 0.399 0.390 0.295 0.116 0.152 0.190 0.116 0.178
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Figure 3.8: Two-dimensional paraboloid sampled with 2000 points.

with a general trend to underestimation for anisotropic examples; hence, its seemingly
advantageous results must be put into perspective with its mediocre performance for
the standard datasets in the first experiment. Therefore, when combining the results
for symmetrical and non-symmetrical data, the SSV1 approach comes out as the most
reliable IDE method so far.

Undersampling

As already discussed in subsection 3.5.1, two of the main issues that aggravate dimension
estimation (or sometimes render it impossible) are undersampling and noise. First, we
investigate the effects of undersampling by repeating our first two numerical experiments
(symmetrical and non-symmetrical data), where the number of points per dataset is now
fixed as N = 100.

The corresponding results for symmetrical datasets can be found in tables 3.13 and
3.14. Comparing the estimates to those of our first experiment with 10000 points, we

Table 3.13: Average errors of IDE methods for symmetrical datasets (undersampling)
from table 3.14

CD GCD MLE DD ANC ESS SSV1 SSV2
abs. error 9.471 7.074 9.400 8.569 1.555 0.505 0.769 3.240
rel. error 0.395 0.277 0.385 0.400 0.074 0.038 0.044 0.134
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Table 3.14: IDE results for symmetrical datasets (sampled with 100 points each): unit
ball, sphere, cube (and its surface), simplex (and its surface), and isotropic
Gaussian of varying dimension m

dataset m CD GCD MLE DD ANC ESS SSV1 SSV2

m-ball

4 3.3 3.8 3.3 5 3.8 4 4 4
10 6.8 8.6 7 14.6 10.1 10 10 10
16 9.9 11.8 10.1 25.5 15.6 15.7 16 17.5
20 12.1 14 11.8 33.1 19.4 20 20 23.6
30 16.8 20.4 15.6 52.1 29.7 30 30 35.2
40 19.2 25.3 18.5 70.2 40.3 39.4 40 52.6

m-sphere

4 3.7 4.3 4 6 4 5 4 4
10 7.5 8.4 7.8 17.5 10.1 11 11 11.6
16 10.7 14 10.6 29.2 17.3 16.9 17 20.2
20 12.2 17.4 12.2 36.8 20.9 20.9 21 27.1
30 17.1 21.6 16.1 56.6 30.7 31.1 31 41
40 19.5 26.5 19.1 75.7 40.1 40.9 41 59.6

m-cube

4 3 3.8 3.1 4.9 3.4 4 3.8 3.6
10 7 8 7.1 13.7 10.1 10 9.9 9.9
16 10.2 12.4 10 23 16 15.9 15.7 15.9
20 11.8 14 11.8 29.4 20.3 20 19.3 20.1
30 15.3 17.8 15 45.4 30 30 29 33.7
40 18.2 22.2 18 60 40.8 40.5 39 36.9
4 3.7 3.9 3.9 6 3.9 5 4.3 4.3
10 7.2 8.9 7.6 16.2 10.7 11 11 11

surface of 16 10 12.5 10.3 25.7 17.6 16.9 16.7 17.7
(m + 1)-cube 20 12.5 14.7 12.2 32.4 21.9 20.9 20.5 23

30 14.9 18.4 15.4 47 30.1 30.6 30.1 35.3
40 19.6 22.9 18.2 63.1 41.5 41.1 40 37.7

m-simplex

4 3 3.7 3 4.1 3.1 4 3.1 3.1
10 6.3 7.6 5.9 10.8 8.5 9.3 9 8.8
16 8.7 10.3 8.3 17.3 13 15 14.7 12.1
20 9.7 11.5 9.9 21.1 16.5 19.1 18.1 15.9
30 11.2 15.5 12.3 31.6 22.3 28.4 27.6 23.5
40 14.1 16.9 15 43.2 29.4 38.5 37.2 33.5
4 3.6 4.2 3.5 5.5 3.9 4.7 4 4
10 6.4 7.7 6.5 12.3 9.1 10.2 10 9.9

surface of 16 9 10.7 8.9 18.7 14.5 16.1 15.5 13.6
(m + 1)-simplex 20 9.8 12.9 10.2 23 17.3 19.9 19.4 16.7

30 12.2 14.5 12.7 32.4 23.6 29.5 28.6 24.5
40 15.3 18.2 15 44.1 29.6 39.5 38.1 36.7
4 3.6 3.7 4 4.4 4 4 3.8 4
10 6.9 7.9 7.5 11.8 11.1 10 9.3 9.8

m-variate 16 9.7 11.1 9.9 18.7 16.4 15.9 15 13.6
Gaussian 20 11.3 12.9 11.8 24.8 19.4 19.9 19 17.2

30 13.2 17.4 14.6 36.4 29.5 29.9 28.2 28.2
40 16 21.6 17.5 50.6 39.2 40.3 38 36.3
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Table 3.15: IDE results for non-symmetrical datasets (sampled with 100 points each):
ellipsoid, rectangle, paraboloid, and anisotropic Gaussian

dataset m CD GCD MLE DD ANC ESS SSV1 SSV2
4 3.4 3.6 3 4 3.2 3 3.1 3.4
10 5.7 6.5 6 9.8 7.9 7 8 7.9

m-dim. 16 8.3 10.7 8 15.5 12 10.4 12.9 11.5
ellipsoid 20 9.6 11.3 8.9 18.8 13.9 13 15.8 13.6

30 12.3 14.6 11.3 28 19.2 18.2 22.3 20
40 14 17 13.5 35.8 26.9 24.4 29.6 27.8
4 3 3.4 3 4 3 3 3 3
10 5.3 6.6 5.4 9.3 8 6.9 8 8

m-dim. 16 7.1 9.5 7.6 14.3 11.5 10 12.1 11.7
rectangle 20 8.7 11 8.6 18.1 13.6 12.3 15 13.2

30 11.5 13.9 10.8 26.8 19.8 17.8 22 20.2
40 11.7 16.5 12.9 35.2 24.9 23.2 28.9 26.9
4 2.4 2.7 3 3.7 3.1 3 3.1 3.1
10 3.8 4.6 4.4 5.3 6.7 2.9 8.6 6.7

m-dim. 16 1.3 5.4 4.9 5.2 8.7 2.4 12.8 9.1
paraboloid 20 1.4 5.9 5 4.5 9 2 14.6 10.5

30 1 6.4 4.8 3.4 9.6 2 15.1 9.5
40 1 7.3 4.3 3.1 9.9 2 15.6 8.5

m-variate
anisotropic
Gaussian

4 3.4 3.7 3.6 3.9 3.9 3.2 3.1 3
10 5.5 7 6 8.9 7.9 7 8 7.2
16 7 9.3 7.8 13 12.1 10.6 12 11.5
20 9 10.4 9 16 14.6 12.7 14.8 11.9
30 11.3 12.5 11.1 22.3 21 18.3 21.3 17.7
40 12.9 15.9 13.1 30.5 25.5 24.1 28 24.3

Table 3.16: Average errors of IDE methods for non-symmetrical datasets (undersam-
pling) from table 3.15

CD GCD MLE DD ANC ESS SSV1 SSV2
abs. error 13.31 11.01 12.67 5.858 7.671 10.03 5.929 7.908
rel. error 0.575 0.461 0.540 0.233 0.326 0.448 0.263 0.344
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first note that the CD and MLE methods’ tendency to underestimation becomes even
worse for high values of m; to a lesser extent, we observe an increased underestimation
for the GCD and an increased overestimation for the DD approach. On the other hand,
the remaining methods (ANC, ESS, SSV1, SSV2) are less impaired by the effects of
undersampling. Surprisingly, the average results of the ESS have minimally improved
due to better estimates for the simplex dataset. Besides, the SSV1 yields an average
relative error of 0.044, only slightly larger than for the initial test (0.031) with 10000
points. Thus, our SSV1 method proves to be quite robust against the influence of
undersampling.

When it comes to the non-symmetrical datasets (compare tables 3.15 and 3.16), we
basically see a similar trend. For the ellipsoid, rectangle and Gaussian datasets, the gen-
eral tendency to underestimation worsens for all methods, where our SSV1 method again
achieves better results than ANC and ESS. As before, the competitive performance of
the DD method is a consequence of its overestimation issue canceling out with underes-
timation effects. Finally, the non-uniformly sampled paraboloid poses serious problems
for most methods, i.e., CD, GCD, MLE, DD, and ESS, as their estimates allow for no
meaningful distinction between the different ID values m. The ANC, SSV1, and SSV2
methods perform somewhat better, at least yielding increasing estimates for lower values
of m.

In summary, our experiments show that ANC, ESS and SSV1 yield favorable results for
undersampled datasets when compared to the remaining tested methods. Furthermore,
specifically for anisotropic datasets, the SSV1 method’s estimates are more reliable than
those of ANC and ESS. Nevertheless and as expected, none of the approaches considered
here is able to produce precise output values, especially for higher IDs, due to the
undersampling.

Noise

Next, we evaluate the effects of noise on the different IDE methods. To begin with,
let us remark that we do not expect our SSV methods to perform particularly well for
noisy data. In subsection 3.4.4 we already showed that, given data of intrinsic dimension
m embedded in RD and tainted with D-dimensional Gaussian noise of σ = 0.05, the
empirical average volume of s-dimensional simplices is much larger than the theoretically
expected value for the noisefree case, especially for s approaching m. Since the SSV1
method analyzes only m-dimensional volumes when identifying the intrinsic dimension
m, it is likely to be even more susceptible to overestimation of noisy datasets than the
SSV2 method.

For the following noisy data comparison of all IDE methods we slightly modify our test
settings in order to capture the interplay of different parameter values of the intrinsic
dimension m, the ambient dimension D, and the standard deviation σ of the Gaussian
noise. There are four series of experiments, one for each distinct value of m = 2, 4, 10, 20.
The ambient dimension is selected as D ∈ {3, 6, 10, 20, 30, 50, 100} with the natural
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constraint D > m. Finally, we choose two noise levels as σ1 = 0.01 for low noise and
σ2 = 0.05 for moderately strong noise. For each of those parameter combinations, we
performed experiments for all symmetrical and non-symmetrical datasets introduced
above. From this multitude of results, we selected the examples revealing the most
important trends. Those are the m-ball as our reference object, the m-simplex as the
most intricate object, and finally the isotropic m-dimensional Gaussian which stands out
due to the fact that the noise is also of Gaussian nature. The corresponding results are
presented in table 3.17 for m = 2, table 3.18 for m = 4, and table 3.19 for m = 10, 20.

At first, let us focus on the results for low noise level (σ = 0.01) and low ID values
m = 2, 4. When comparing the different approaches, the CD method clearly outperforms
all competitors, since it is the only one with (virtually) perfect estimation results for all
test cases. The remaining methods rather seem to scale to a greater or lesser extent with
the ambient dimension D, at least for the 2-ball, the 2-simplex and the 4-simplex. Apart
from the CD method, both the MLE and the ESS methods often yield some slightly
superior results than the rest of the field. Our SSV approaches on the other hand suffer
from overestimation issues especially for m = 2 and D ≥ 20. However, the problems
of serious overestimation are also shared by the GCD, DD, and ANC methods, just to
a somewhat lesser degree. Obviously, the noisy Gaussian dataset causes much fewer
difficulties than the ball, while the simplex dataset remains a big challenge for most
methods.

When it comes to a high level of noise (σ = 0.05), all methods, except for CD, yield
nearly similarly poor results which usually scale with D. The overall performance of all
methods is slightly better for m = 4 than for m = 2.

A possible explanation for the outstanding performance of the Grassberger-Procaccia
approach (CD) is the fact that it is the only method completely relying on a multiscale
scheme which includes measurements ranging from very small neighborhoods to the entire
dataset. Since noise rather affects local than global patterns, a multiscale scheme benefits
from the comparison of local and global information. On the contrary, the majority of
our tested methods (MLE, DD, ANC, ESS, SSV1, and SSV2) rely on measurements
within small neighborhoods, which are heavily disturbed by Gaussian noise. In fact,
further experiments (not presented here) confirm that the ESS method profits from its
relatively large number of nearest neighbors k = 50, while its estimates for noisy data
deteriorate for smaller values of k.

Finally, we consider the estimation outcomes for higher IDs m = 10, 20 presented in
table 3.19. For the m-ball and the m-Gaussian with σ = 0.01, ANC, ESS, SSV1, and
SSV2 yield fairly reliable estimation results, while the remaining methods do not seem
to suffer from noise issues, but their general tendency to underestimation (CD, GCD,
MLE) or overestimation (DD), at least for m = 20. The m-simplex is again a greater
challenge and only the CD method provides relatively precise estimates for m = 10.
When considering the higher noise level (σ = 0.05), naturally, estimation results become
more unreliable. Again, the Gaussian still allows for comparably good estimates of all
methods, while the noisy ball and especially the simplex are prone to overestimation.
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Table 3.17: IDE results for datasets with fixed ID m = 2, embedded in RD and tainted
with D-dimensional Gaussian noise: 2-ball, 2-simplex and 2-dim. Gaussian

ID m = 2
ball Gaussian noise, σ = 0.01 Gaussian noise, σ = 0.05
D 3 6 10 20 30 50 100 3 6 10 20 30 50 100

CD 2.2 2 2 2 2 2 2 3 5.6 8.6 11.4 5.2 2 2
GCD 3 5 7 11 14.2 20 30 3 5.8 8.2 14 18 25.2 38.4
MLE 2 4 5 8 10 14 22 3 6 8 14 18 25 38
DD 3 4 6 11 16 27.2 58 3 7 11 22 32 52.8 103

ANC 3 4 7 11 15 22.4 38.6 3 6 10 17.4 24.8 38.4 76.2
ESS 2 3 4 6 9 14 30.6 3 5 9 16.2 24 39 76

SSV1 2 5 8 16 23 38 >63 3 5.4 9 18.4 28 46 >63
SSV2 2 4 7 11 16.2 29 32 3 5 9 16 18 29 63.4

simplex Gaussian noise, σ = 0.01 Gaussian noise, σ = 0.05
D 3 6 10 20 30 50 100 3 6 10 20 30 50 100

CD 3 2.6 2 2 2 2 2 3 5.8 8.8 14.8 19.4 25.4 36.2
GCD 3 5 8 12.4 16 22.2 33.4 3 6 9 14.2 19 26.8 40.8
MLE 3 5 7 11 14 19 30 3 6 9 15 19.4 27 41.8
DD 3 6 9 17 26 42.2 84.6 4 7 12 23 34.2 56.2 110

ANC 3 5.6 8 14.2 19.8 29.4 52.8 3 6 10 19.2 27.4 44 84.4
ESS 3 4 6 11 17 28 56 3 6 9 18 26.2 43 83.8

SSV1 3 5 9 18 26 44 >63 3 6 9 19 28 47 >63
SSV2 3 5 9 14.2 21.8 23 48.6 3 5 8.8 13.6 19 30.8 69.2

Gaussian Gaussian noise, σ = 0.01 Gaussian noise, σ = 0.05
D 3 6 10 20 30 50 100 3 6 10 20 30 50 100

CD 2 2 2 2 2 2 2 3 5.4 4.4 2 2 2 2
GCD 2 4 5 8 10 14 22 3 5 8 13 16 23 34.4
MLE 2 3 3 4 6 8 12 3 5 7 11 14.4 20 31
DD 2 3 3 5 6 10 20.2 3 6 9 18 26 42.6 83.8

ANC 2 3 4 6 8 11.2 19 3 5.8 8 14.2 19.8 30 53.2
ESS 2 2 3 3 4 5 9 3 4 7 12 18 29 57

SSV1 2 3 5 11.2 16 27 53.8 3 5 9 18 27 45 >63
SSV2 2 3 4 7.8 10.8 13 25.6 3 5 9 14.2 21 22.8 46
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Table 3.18: IDE results for datasets with fixed ID m = 4, embedded in RD and tainted
with D-dimensional Gaussian noise: 4-ball, 4-simplex and 4-dim. Gaussian

ID m = 4
ball Gaussian noise, σ = 0.01 Gaussian noise, σ = 0.05
D 6 10 20 30 50 100 6 10 20 30 50 100

CD 4 4 4 4 4 4 5.2 8 4 6.2 4 4
GCD 4 4.6 5.2 6 8 12.2 5 7.8 12 16 21.8 33.6
MLE 4 4 4 5 5 7 5 7 10 13 19 29
DD 5 5 6 6 7 9 6 9 15 22 36 71.8

ANC 4 4 5 6 7 9 5.2 8 13.8 18.4 28.6 53.6
ESS 4 4 4 4 5 6 5 6 10 14 23 46.8

SSV1 4 4 5 7 9 16 5 8 16 24.2 41 >63
SSV2 4 4 5 6 7 10.2 5 8 13 19 32.6 42.6

simplex Gaussian noise, σ = 0.01 Gaussian noise, σ = 0.05
D 6 10 20 30 50 100 6 10 20 30 50 100

CD 4 4 4 3.6 3.8 3.6 6 8.6 15.2 19.6 26 39
GCD 5 6 9.8 12 17 26.2 6 8.8 14.2 19 26.2 40.4
MLE 4 5 7 8 11 18 6 9 14 19 26 40.2
DD 5 6 9 11.2 17.2 35 7 12 22 32.6 53 104

ANC 4 6 9 11.4 16.8 29.6 6 10 18.6 26.2 41 83.4
ESS 4 5 6 7 10 19.4 6 9 17 24.2 40 78.2

SSV1 4.2 7 12 17.2 29 61.2 6 9 18 28 46 >63
SSV2 4 6 9.4 11 18 41.4 5 9 16 18.2 29 65.6

Gaussian Gaussian noise, σ = 0.01 Gaussian noise, σ = 0.05
D 6 10 20 30 50 100 6 10 20 30 50 100

CD 4 4 4 4 4 4 4 4 4 4 4 4
GCD 4 4 4 4 5 5 4 5 8 9.6 13 21
MLE 4 4 4 4 4 5 4 5 6 7 9 14
DD 5 5 5 5 5 6 5 6 7 9 13 23.2

ANC 4 4 4 4 4.2 5 4 5.4 7 9 12.6 21.2
ESS 4 4 4 4 4 4 4 5 5 6 8 14

SSV1 4 4 4 4 4 6 4 6 10 15 26 58.8
SSV2 4 4 4 4 4 6 4 6 8 10 12 23.6
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Table 3.19: IDE results for datasets with fixed ID m = 10 and m = 20, respectively,
embedded in RD and tainted with D-dimensional Gaussian noise: m-ball,
m-simplex and m-dim. Gaussian

ID m = 10 ID m = 20
ball σ = 0.01 σ = 0.05 σ = 0.01 σ = 0.05
D 20 30 50 100 20 30 50 100 30 50 100 30 50 100

CD 9 9 9.8 10 11.4 12.8 14.4 19 16.6 17.2 17.8 18.2 21.6 25.6
GCD 9 9.4 10 10 12 13.6 17.6 26.2 17 17.2 18 18.4 21.2 28.2
MLE 9 9 9 9.8 10 12 15 21 16 16 16 17 19.2 25
DD 14 14 14 15 16 19 25 41 29 29 30 31 36.8 51.4

ANC 10 10 10.2 11 12.6 15 20.2 33.4 20 20 21 22.8 27 39.6
ESS 10 10 10 10 11 13 16 26 20 20 20 21 25 34

SSV1 10 10 11 12 14 19 29 60.4 20 21 22 24 33 60
SSV2 10 10 10 11 12 15 20 38 21 21 22 23 28.2 36

simplex σ = 0.01 σ = 0.05 σ = 0.01 σ = 0.05
D 20 30 50 100 20 30 50 100 30 50 100 30 50 100

CD 9.8 11.2 9.2 9 15.6 20 27.4 42.6 16.8 19.2 24.2 21.2 29.6 46.2
GCD 10.2 12 14.6 21 15 19.8 27 41.4 16.2 19 25.8 20.4 28.2 43
MLE 9 10 12 16 15 20 28 43 15 17 22 22 30 46.2
DD 13 15 18.2 28 23 33.2 54.6 108 25 30 44 35.8 59 118

ANC 11 12 15 22.6 19.2 27.4 44.6 89 19.2 23.8 35 30 48.8 97.2
ESS 10 11 13 18.6 17.8 26 42 84 19 22 32 29 47.2 93.8

SSV1 12 16 23 46.2 19 28 46.8 >63 23 32 60 28 47.8 >63
SSV2 11 12 15 24.2 16.8 19 30 67.8 18 23 38 20 32 74.6

Gaussian σ = 0.01 σ = 0.05 σ = 0.01 σ = 0.05
D 20 30 50 100 20 30 50 100 30 50 100 30 50 100

CD 9 9 9 9.2 9.2 9.6 10.2 10.4 16 16.2 16 16.2 16.8 17
GCD 9 9 9 9 9 10 10 11 16 16 16 16 16 16.2
MLE 10 10 10 10 10 10 10 11 17 17 17 17 17 17
DD 13 13 12.8 13 13 13 13.8 15 25 25 25 25 25.2 26

ANC 11 11 11 11 11 11.4 12 13 21.6 22 21.4 21.6 22.4 23
ESS 10 10 10 10 10 10 11 12 20 20 20 20 20 21

SSV1 9 9.8 10 10 10 11 12 15.6 19 19 19 19.4 20 22
SSV2 9.8 10 10 10 10 10 11 12 17.4 17.6 18 18 18 19
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In summary, we observe that the CD method, due to its multiscale approach, clearly
outperforms the remaining methods when it comes to our test scenarios featuring noisy
datasets. However, recalling the results for the m-dimensional paraboloid (see table 3.11),
the CD method is obviously not able to recover the true high-dimensional structure of
this object, since its estimate is between 2 and 3 for all values m = 4, 10, 16, 20, 30, 40.
The dilemma of separating noise from structure in high-dimensional data has of course
no universal solution.

Our SSV methods based on local simplex volumes are not particularly well-suited for
noisy data. Especially the SSV1 approach is inclined to highly overestimate the ID of
noisy datasets, while the SSV2 method is often on the same level as the ANC or GCD
method. However, the above results also show that all tested methods (except for CD)
are sensitive to noise in a quite comparable way. Considering the vast discrepancies
between the results for the m-simplex and the m-Gaussian, it is justified to conclude
that a combination of a more complex low-dimensional structure with mild noise can
make estimation impossible for all practical purposes. As a more promising strategy for
data tainted with noise we suggest to apply a denoising (i.e., noise reduction) algorithm
before utilizing any IDE method.

Datasets with high curvature proposed in [HA05]

The next series of experiments is based on datasets presented in [HA05] that have also
been re-used in the IDE review article and benchmark proposal in [CCCR15], which is
why we include them here. The descriptions of the appropriate datasets can be found in
table 3.20, while for the exact definitions, we refer to the original publication. The
numerical estimation results, each for two numbers of sample points N = 100 and
N = 10000, are given in table 3.21. We omitted the sets “GCD1”, “GCD9”, “GCD10”,
and “GCD12” representing m-dimensional spheres, cubes, and Gaussians, respectively,
since they have already been analyzed in our first experiment.

The experiments with N = 10000 points first show that, except for the DD method’s
tendency to overestimation, all methods produce reliable and correct results for nearly
all datasets, except for “GCD6” and “GCD8”.

The “GCD8” dataset is defined via the following function:

X(y) : [0, 1]12 → R72,

X2i−1(y) = yi+1 cos(2πyi), X2i(y) = yi+1 sin(2πyi), (∀i = 1, . . . , 11),
X23(y) = y1 cos(2πy12), X24(y) = y1 sin(2πy12),

Xj+24(y) = Xj+48(y) = Xj(y), (∀j = 1, . . . , 24).

Thus, it is a 12-dimensional manifold embedded in a 24-dimensional subspace, where
the 24 coordinates are duplicated two times to yield 72 dimensions in total. In [HA05],
the authors remark that their sampling procedure gives rise to a non-uniform probability
measure usually resulting in underestimation, while, at the same time, the high curvature
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Table 3.20: GCD dataset descriptions (compare also [HA05])

dataset D m description
GCD0 3 1 highly oscillating sinusoid (see eq. (3.123) and fig. 3.6)
GCD2 5 3 3D affine space embedded in R5

GCD3 6 4 4D manifold (mixture of sin, cos, x2) in R6

GCD4 8 4 4D manifold (mixture of sin, cos) in R8

GCD5 3 2 2D helix in R3

GCD6 36 6 6D “strange” manifold in R36 (see text)
GCD7 3 2 swiss role (see eq. (2.24) and fig. 3.5)
GCD8 72 12 12D “strange” manifold in R72 (see text)
GCD11 3 2 10-times twisted Möbius strip in R3 (see fig. 3.5)
GCD13 D 1 1-dim. curve in RD

Table 3.21: Numerical IDE results for GCD datasets

dataset D m N CD GCD MLE DD ANC ESS SSV1 SSV2

GCD0 3 1 100 1 2 1 1 1.8 2 1 1
10000 1 1 1 2 1 2 1 1

GCD2 5 3 100 2.3 3.1 2.9 3 2.9 3 2.9 2.9
10000 3 3 3 4 3 3 3 3

GCD3 6 4 100 3 3.6 3.4 4.3 3.3 3.8 4 4
10000 4 4 4 5 4 4 4 4

GCD4 8 4 100 4 4 5 6.4 4.6 7 6.1 6
10000 4 4 4 5 4 4 4 4

GCD5 3 2 100 2 2.1 2 2.7 2 3 2 2
10000 2 2 2 2 2 2 2 2

GCD6 36 6 100 5.9 5.9 6.9 10.9 8.4 11 10 9.1
10000 6 6 6 9 6.2 7 8 7

GCD7 3 2 100 2 2 3 3 2 3 2.3 2.3
10000 2 2 2 2 2 2 2 2

GCD8 72 12 100 10.4 11.9 11.5 25.3 19.6 23.1 22 19
10000 12 12 14 22.1 16.1 18 21 17

GCD11 3 2 100 1.6 2 2 2 2 2 2 2
10000 2 2 2 2 2 2 2 2

GCD13 5 1 100 1 1 1 2 1 2.9 1 1
10000 1 1 1 1 1 1 1 1

GCD13 20 1 100 1.2 1 2.3 2.9 1.1 3.6 3 2.9
10000 1 1 1 1 1 1 1 1
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leads to overestimation. Looking at the results in table 3.21, the two effects seem to
cancel out for the CD and the GCD approach, while the ANC, ESS, SSV1 and SSV2
methods yield outcomes between 16 and 22, which is close to the original embedding
dimension of 24. The “GCD6” is in fact constructed in the exact same way than the
“GCD8” data, just with lower dimensions, and thus, similar effects are considered for
this dataset.

Summing up the results for highly curved datasets as proposed in [HA05], our two SSV
approaches achieve accurate results comparable to those of the other methods, except
for the DD method’s poor performance. Naturally, a very high curvature can lead to
overestimation, while a lower sampling number (N = 100) slightly deteriorates results
in some cases.

3.5.5 Results from real-world data
In this subsection, we examine the performance of the selected IDE algorithms for data
collected in real-world scenarios. The datasets originate from various different research
areas such as meteorology, cartography, particle physics, image and voice recognition,
car crash simulations, and the modeling of wine preferences.

As several datasets in fact correspond to (one-dimensional) time series embedded in
some higher-dimensional ambient space, we first provide a compact introduction into
the topic of time series analysis and attractor dimensions. Next, we describe the de-
tailed characteristics of all chosen real-world datasets; for a quick overview we refer to
table 3.22. Subsequently, the empirical results of all IDE methods are presented and
discussed with a particular focus on the differences between synthetic and real-world
data and the arising challenges.

Time series and estimation of attractor dimensions

Before we introduce the datasets representing discrete time series, we give a very short
summary on the background of nonlinear dynamics methods and attractors following
[CF09] in order to justify the application of intrinsic dimension estimators in this con-
text. For deeper insights we refer to [Ott02, KS04, Sma05]. First, we assume that we
have a time series x(ti) with equidistant time steps t1, t2, . . . , tl. The underlying model
producing the time series is some (unknown) m-dimensional dynamical system, often
represented by a set of differential equations. In order to reconstruct certain system
properties and in particular in order to determine the unknown model order m, the au-
thors of [PCFS80] first proposed the so-called method of delays. For this purpose, the
time series is embedded into a higher-dimensional space by aggregating D consecutive
elements as

X(ti) =
(
x(ti), x(ti+1), . . . , x(ti+D−1)

)T
, (i = 1, 2, . . . ). (3.126)
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Now, under some mild assumptions, the embedding theorem by Takens [Tak81] states
that if 2s + 1 ≤ D, there exists a diffeomorphism between the manifold M generated
by the points X(ti) and the attractor U of the underlying dynamical system, where s
is the dimension of U . Here, the so-called attractor is a set of numerical values to-
ward which the associated system tends to evolve, generally almost independently of the
starting parameters. Attractors can be either singular points as well as curves, high-
dimensional manifolds, or fractal sets commonly known as strange attractors. The latter
can be described by fractal dimensions and have essentially motivated the concept of the
correlation dimension [GP83].

In practice, after selecting a sufficiently high embedding dimension D, an IDE method
can be utilized to estimate the intrinsic dimension of the point set X(ti) ⊂ RD, i.e., the
dimensionality of the system attractor, which in turn allows to draw conclusions about
the corresponding model order.

Description of the test datasets

The three datasets CHUA-DSVC1, CHUA-DSIL and CHUA-SPIVC1 have been pre-
sented in [ARM97]. They can be accessed at http://www.cpdee.ufmg.br/~MACSIN/
services/data/data.htm and correspond to measurements of a specific hardware real-
ization of Chua’s circuit. This simple electronic circuit, first introduced by Chua in
[CKM85] and [CKM86], features a chaotic behavior and nonlinear dynamics and has
therefore become very popular for the demonstration of distinctive effects of chaos theory.
The precise measurements are the inductor current for the so-called double-scroll attrac-
tor (DSIL), the voltage across some capacitor in the double-scroll attractor (DSVC1),
and the voltage across some capacitor in the so-called spiral attractor (SPIVC1). The
original datasets consist of 5000 (DSVC1), 15000 (DSIL) and 15000 (SPIVC1) points
and have been embedded in 20-dimensional space using the method of delays described
above. According to [ARM97] , the estimated Lyapunov dimensions of the attractors
associated with the three time series are between 2.24 and 2.26, while the estimated
correlation dimensions vary between 1.887 and 1.957. Furthermore, the authors remark
that the two larger datasets (DSIL and SPIVC1) contain significantly more noise than
the other one, which is why we rather expect estimates of 3 or above.

The two datasets CLIM-STOC and CLIM-TENE represent time series of measured
daily average temperatures, represented in 10th of degrees Celsius. The data has been
described in [KTWK+02] and can be accessed at the large archive of the European Cli-
mate Assessment and Dataset [ECA16]. We selected two stations at Stockholm (station
ID 10, daily data from January 1 1756 to December 31 1999, i.e., 89119 samples) and
Santa Cruz de Tenerife (station ID 3959, daily data from April 1 1964 to April 30 2013,
i.e., 17927 samples), which are so-called “non-blended” data, meaning that the temper-
ature values originate from a single fixed station. The time periods have been chosen
in order to avoid any missing values present in the original datasets. As the underlying
models of most climatic variables must be presumed to be of very high complexity, the

http://www.cpdee.ufmg.br/~MACSIN/services/data/data.htm
http://www.cpdee.ufmg.br/~MACSIN/services/data/data.htm
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Table 3.22: Real world dataset descriptions

dataset N D type description source
CHUA-DSVC1 4981 20 real measurements from hardware realiza-

tion of Chua’s Circuit: inductor current
(IL) and voltage across capacitor (VC1)

[ARM97]CHUA-DSIL 14981 20 real
CHUA-SPIVC1 14981 20 real
CLIM-STOC 89100 20 real measured daily average temperatures at

stations in Stockholm and Santa Cruz
de Tenerife; two embedding dimensions
D1 = 20 and D2 = 50

[KTWK+02]CLIM-STOC 89070 50 real
CLIM-TENE 17908 20 real
CLIM-TENE 17878 50 real
COVTYPE 581012 55 int. cartographic variables (e.g. elevation,

slope) used to predict forest cover type
[BD99]

HEPMASS 3500000 27 real features of simulated particle collisions [BCF+16]
ISOLET 7797 617 real acoustic features of recorded samples of

spoken letters of the English alphabet
[CF91]

ISOMAP-FACE 698 4096 real 64×64 image pixels of 3D head rendered
with different poses and lighting

[TdSL00]

MNIST-0 6903 784 int.
28×28 image pixels of hand-written dig-
its 0, 1, and 9 [LBBH98]MNIST-1 7877 784 int.

MNIST-9 6958 784 int.
POKER 997872 11 int. suit and rank of five playing cards

drawn from a standard deck of 52
[COD02]

SANTA-D 99981 20 real time series generated by numerical in-
tegration of equations of motion [WG94]

SANTA-D 99951 50 real
TAURUS-B1 273 4539 real displacement vectors of finite element

nodes of a vehicle body model for 273
different crash test simulations

[BGG16]TAURUS-B8 273 13998 real
TAURUS-ALL 273 86712 real
WINE-WHITE 3961 12 real physicochemical attributes of white

wine (Portuguese “Vinho Verde”)
[CCA+09]
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corresponding embedding dimension D for the method of delays should be chosen suf-
ficiently large. Since larger values of D might also reveal more details in the data, we
decide to evaluate our experiments with the two different choices D1 = 20 and D2 = 50
to compare the respective outcomes.

The COVTYPE dataset, accessible via the UCI machine learning repository [Lic17]
and described in [BD99], features a list of several cartographic variables with the purpose
of predicting one of seven different forest cover type classes. The first 10 attributes are:
elevation, aspect, slope, horizontal distance to hydrology, vertical distance to hydrology,
horizontal distance to roadways, hillshade 9am, hillshade noon, hillshade 3pm, horizontal
distance to fire points. These quantitative measurements are given as integer values
in their respective units, such as meters, azimuth or degrees. The following 44 binary
attributes are of qualitative nature and represent the absence (0) or presence (1) of certain
wilderness areas (4 attributes) and soil types (40 attributes). Finally, the last attribute
denotes the corresponding class of the forest cover type. The intrinsic dimensionality of
this dataset is unknown.

In high-energy physics experiments, machine learning techniques are used to facilitate
the search for signatures of exotic or new, hypothetical particles. The HEPMASS dataset
presented in [BCF+16] (available at the UCI MLR) has been generated by millions of
simulated particle collisions using the simulation interface “MadGraph 5”, see [AHM+11].
The goal here is the training of a neural network for the purpose of separating particle-
producing collisions from a background source. The particularity of the approach in
[BCF+16] is the use of additional high-level features to train the neural network, as
opposed to classical methods completely relying on low-level features. Hence, the data
consists of 27 normalized attributes, including 22 low-level features (particle momenta,
number of jets, etc.) and 5 high-level features (masses of intermediate objects). The
authors provide several datasets, from which we select the test set of the dataset called
“1000” with fixed mass. It consists of 3.5 million points with 27 features; also, the ID of
this dataset has not been examined before and is unknown.

The ISOLET dataset, available at the UCI MLR and described in [CFM90, CF91],
consists of recorded samples of all letters of the English alphabet spoken in an isolated
test environment. Each letter was spoken two times by 150 native English speakers,
resulting in a total of 52 · 150 = 7800 samples; due to recording problems, only 7797
samples are present in the dataset. Furthermore, for training and testing, the data has
been divided into five groups of 30 speakers each, referred to as ISOLET1, ISOLET2, . . . ,
ISOLET5. For each utterance, 617 features were computed, that can be classified into
one of four groups: contour features, sonorant features, pre-sonorant and post-sonorant
features. The ISOLET data has been analyzed e.g. in [KLN+10], where the authors
compute scale-dependent correlation dimensions on different scales using 100 measuring
points and generate a plot of dimensionalities against scales. Here, the dimensionality
explodes for small scales, which is probably due to a high level of noise in the acoustic
measurements. Although it is hard to detect any distinctive linear behavior of the
examined curve, the authors propose a rough estimate for the intrinsic dimension as
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m̂ ≈ 13.
For examining their ISOMAP dimensionality reduction algorithm, the authors of

[TdSL00] introduced the ISOMAP-FACE dataset that has become popular in the field
of machine learning and is currently available at http://web.mit.edu/cocosci/isomap/
datasets.html. The data consists of 698 instances of 64×64 gray-level image pixels, each
image representing the same three-dimensional head of a statue rendered with different
poses and lighting directions. This data is generally considered to have an intrinsic di-
mension of m = 3, where the three degrees of freedom correspond to the up-down pose,
the left-right pose, and the lighting direction.

The MNIST database contains 70000 gray-level 28 × 28 pixel images of handwritten
digits and is widely used in the field of image classification, e.g. via neural networks with
promising results in [CMS12]. It has first been investigated in [LBBH98] and is avail-
able at http://yann.lecun.com/exdb/mnist/. The pictures (produced by 500 writers) are
grouped according to the represented digits (0, 1, . . . , 9). We utilized the combined train-
ing and test datasets MNIST-0 with 6903 samples, MNIST-1 with 7877 samples, and
MNIST-9 with 6958 samples. Even though some publications ([CH04b, HA05, CCB+14])
seek to assign a fixed intrinsic dimension to each distinct sets of images, we believe that
a scale-dependent dimension estimate is much more appropriate to capture the intrinsic
structure of this dataset due to the variety of different handwriting styles.

The POKER dataset (see [COD02]) has been generated to test the performance of a
certain rule induction algorithm named “RAGA” [COD99] relying on genetic program-
ming and is accessible via the UCI MLR. Each record is the exact description of a random
sample of five playing cards out of 52 using the two categories suit (hearts, spades, di-
amonds, clubs) and rank (2, 3, . . . , queen, king, ace) resulting in 10 different integer
attributes. The last attribute assigns one out of 10 different classes to each sample, rep-
resenting the poker hand, i.e., the categorization of the current set according to the rules
of the poker game. After removal of duplicates, we obtain a dataset of 997872 points of
dimension 11. Since all samples have been generated randomly and all 10 attributes of
the five cards are relevant for the classification, the intrinsic dimension should be equal
m = 10.

Several interesting datasets originate from the so-called “Santa Fe Time Series Com-
petition” initiated by Gershenfeld and Weigend in 1991, see [WG94]. The original
webpage http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html is offline,
but past versions and also the datasets can still be accessed using the Internet Archive
at http://archive.org. The SANTA-D time series, consisting of 100000 points, has been
generated by numerical integration of the equations of motion for a damped, driven par-
ticle. Here, a fixed-step 4th order Runge-Kutta routine was used, and the underlying
model has 9 degrees of freedom. In order to analyze the influence of the embedding
dimension, we again select two different values D1 = 20 and D2 = 50 for the method of
delays. The ID of the SANTA-D dataset is of course m = 9.

The TAURUS data has been generated in the context of crash test simulations of
a Ford Taurus car, see [BGG16]. The original model of the vehicle body consists of

http://web.mit.edu/cocosci/isomap/datasets.html
http://web.mit.edu/cocosci/isomap/datasets.html
http://yann.lecun.com/exdb/mnist/
http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html
http://archive.org
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approximately 900000 finite element nodes and has been built by the National Crash
Analysis Center, http://www.ncac.gwu.edu/. In the experiments described in [BGG16],
multiple crash simulations are performed where 19 parameters (basically the material
thickness of certain components) have been varied leading to a total number of 273
different simulations. The most crucial components of the vehicle body are the so-called
“beams” absorbing the main impact energy of a frontal crash. Here, we are dealing with
15 beams consisting of 28904 finite element nodes. The critical information are now the
displacement vectors of each node between two fixed time steps before and after the crash.
Hence, for each of the N = 273 simulations, there are D = 3 · 28904 = 86712 entries
corresponding to the components of all displacement vectors. According to the authors,
when using a principal manifold learning technique, only two degrees of freedom are
sufficient to capture most of the simulation effects relevant in practice for a single beam.
We consider three variants: TAURUS-B1 (D = 4539) and TAURUS-B8 (D = 13998)
correspond to a solitary selected beam, respectively, while TAURUS-ALL (D = 86712)
represents the complete dataset with all 15 beams.

The WINE-WHITE dataset is described in [CCA+09] and also available at the UCI
Machine Learning Repository. Here, a total number of 3961 variants (after duplicate
removal) of the Portuguese “vinho verde” white wine has been analyzed with respect to
certain quantitative physicochemical attributes, such as acidity, residual sugar, chlorides,
sulfates, alcohol and others. The latter sum up to 11 different features, while the last
component represents a (subjective) measure of quality, i.e., a class variable between 0
and 10 chosen by test subjects. In [CCA+09], the authors use a support vector machine
approach to predict the taste preferences and state that “most of the physicochemical
tests used are relevant”. However, the intrinsic dimensionality of this wine dataset is not
examined here, which is why it is interesting to compare our IDE methods’ performances.

Analysis of the IDE results

The empirical results of our selected IDE methods can be found in table 3.5.5. We divide
our pool of datasets into two groups: the first group consists of all datasets where either
the true intrinsic dimension m is known a priori, or the estimated ID of all compared
methods turned out to be low a posteriori. The second group contains datasets that do
not have a known unique ID value; the reason can either be a high level of noise or their
intrinsic structure that can not be captured properly via some specific low-dimensional
manifold. In the latter case, generally, the data appears to have a different intrinsic
dimension when analyzed on different scales, and there is usually no perfect answer to
the question of a unique ID m. Consequently, distinct approaches lead to different results
that require careful interpretation and further considerations.

For the CHUA datasets, we already observe the difference between the less noisy
CHUA-DSVC1 data and the other two measurements tainted with higher levels of noise.
While for the first dataset, nearly all methods are able to detect the true underlying
dimension of m ≈ 2, the noise in the CHUA-DSIL and CHUA-SPIVC1 data lead to a

http://www.ncac.gwu.edu/
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Table 3.23: Numerical IDE results for real-world datasets

dataset N D m CD GCD MLE DD ANC ESS SSV1 SSV2
CHUA-DSVC1 4981 20 2 2 3 2 3 3 2 2 2
CHUA-DSIL 14981 20 2 2 10 8 11 10 7 17 11

CHUA-SPIVC1 14981 20 2 1 9 7 9 9 5 14 11
COVTYPE 581012 55 ? 5 5 3 4 3 3 3 3

ISOMAP-FACE 698 4096 3 3 3 4 8 4 7 9 6
POKER 997872 11 10 9 10 10 13 1a 10 10 10

SANTA-D 99981 20 9 3 7 7 9 8 7 9 8
SANTA-D 99951 50 9 7 7 7 10 8 8 12 9

TAURUS-B1 273 4539 ? 6 5 5 6 6 5 6 5
TAURUS-B8 273 13998 ? 7 8 8 11 10 9 14 11

TAURUS-ALL 273 86712 ? 9 9 9 14 12b 11 20 12
WINE-WHITE 3961 12 ? 3 4 4 4 4 3 4 4
CLIM-STOC 89100 20 ? 12 9 14 17 16 14 17 13
CLIM-STOC 89070 50 ? 13 11 16 26 17 22 36 21
CLIM-TENE 17908 20 ? 12 11 14 17 17 15 18 14
CLIM-TENE 17878 50 ? 14 14 17 28 20 25 40 25
HEPMASS 3500000 27 ? 13 12 14 20 15c 16 19 15

ISOLET 7797 617 ? 13 14 17 42 18 34 >63 41
MNIST-0 6903 784 ? 14 12 14 25 18 19 51 22
MNIST-1 7877 784 ? 7 8 11 15 13 12 28 14
MNIST-9 6958 784 ? 11 12 14 24 16 19 45 21

aFor the POKER dataset, the number of nearest neighbors k = 10 seems to be too small resulting in a
failure of the ANC method to estimate the corresponding ID. The outcomes for k = 20 and k = 30
are given by m̂ANC = 8 and m̂ANC = 7, respectively.

bSince the dimension D = 86712 of the TAURUS-ALL data was too large for the ANC Matlab routine,
it has been projected into R273 using multidimensional scaling (MDS).

cThe number of points of the HEPMASS dataset had to be reduced to Ñ = 500000 via random
sampling in order to make the associated Matlab routine work properly.
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serious overestimation for all approaches except for the CD method. However, for the
SPIVC1 data, the latter yields an underestimate of m̂ = 1, thus none of our tested
methods succeeds to reveal the correct ID for this example.

The COVTYPE dataset obviously features a low-dimensional structure. Considering
the estimation results, this is one of the rare cases where both the CD and GCD methods
return a larger estimate m̂ = 5 than most of the remaining approaches with m̂ = 3. We
will come back to this issue in the following subsection, where we evaluate the scale-
dependent correlation dimension.

The ISOMAP-FACE data is considered to have an ID of m = 3 due to its three degrees
of freedom (horizontal pose, vertical pose, and lighting direction). Nevertheless, half of
our tested methods (DD, ESS, SSV1 and SSV2) yield estimates between 6 and 9, which
suggests that there is some higher-dimensional structure on a certain scale.

The intrinsic dimension of the POKER data is correctly identified by almost all esti-
mators, albeit with a slight underestimation (CD) or a moderate overestimation (DD).
The ANC approach has some problems with its standard parameter for the number of
nearest neighbors of k = 10. For this reason, additional tests have been performed for
larger values k = 20 and k = 30; the associated estimates given by m̂ANC = 8 and
m̂ANC = 7, respectively, are closer to the true ID, however still not quite accurate.

The ID of the SANTA-D time series dataset, generated by a physical model with
9 degrees of freedom, is generally slightly underestimated by most methods, for both
embedding dimensions D1 = 20 and D2 = 50; only the DD and our SSV1 approach yield
correct or slightly larger estimates in both cases.

Considering the TAURUS data, we in fact analyzed each of the 15 beams individually
and selected beam B1 as an average one and B8 as the one with the generally largest
estimation results of all methods. It is interesting to see that for the smaller B1 beam,
there is a consensus amongst all estimators for an ID value of 5 or 6, while the variance
in the outcomes is much larger for the other beam B8. Furthermore, the union of all
beams only seems to have a slightly higher intrinsic dimension than the B8 beam.

Finally, for the WINE-WHITE data, no precise ID value is known; nevertheless, all
tested techniques equally return a value between 3 and 4.

Next, we focus on the real-world datasets of the second group. When considering the
results for the CLIM-STOC and CLIM-TENE time series data, we observe an interesting
aspect. As opposed to the SANTA-D time series, where the choice of the embedding
dimension has only a small effect on the estimation results, the estimates for the climate
datasets vary to a larger extent with different values of D, especially for the methods DD,
ESS, SSV1 and SSV2. We believe that the measurements of the daily mean temperatures
at a fixed location for several decades are indeed dependent on many underlying variables.
Even though the main structure might be representable by a number of 12 to 14 features,
the embedding in higher-dimensional space can unveil further and more subtle patterns.
This could explain the distinct behavior of the tested IDE methods for D2 = 50.

The HEPMASS dataset consists of 3.5 million points in 27 dimensions. Since the ANC
method’s Matlab code would not process a dataset of such size, we reduced the number
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of points to 500000 via random sampling, solely for this method. The results here span
from values between 12 to 20. Due to the tendency of the CD and GCD methods to
underestimate IDs and the tendency of the DD and SSV1 methods to overestimate IDs,
we suppose that the “true” ID here might be a value close to m = 15 or m = 16.

For the ISOLET data, we find a large variance in the estimation results ranging be-
tween m̂ = 13 for the Grassberger-Procaccia (CD) approach, while our SSV1 method
could not even detect an ID below 64, and DD, ESS and SSV2 return values of 34 and
above. Similarly to the climate time series considered before, we assume that the voice
recordings of the ISOLET data comprise high-dimensional structures on a very fine scale
causing the higher estimates of certain methods. We also refer to the upcoming analysis
of the scale-dependent correlation dimension.

The outcomes for the MNIST datasets exhibit similar characteristics, however here,
the results of the ANC, ESS and our SSV2 approach are relatively close to each other.
Although the estimates of the SSV1 are larger than those of the other methods, one clear
trend is shared by the entire test group: the intrinsic complexity of the MNIST-1 data
is rated lower than that of the MNIST-0 and MNIST-9 variants.

Summary of our methods’ results

The characteristics of our IDE methods analyzed for synthetic datasets in subsection 3.5.4
are generally confirmed by our experiments with real-world data. For many datasets
in the first group with low ID and no dominating noise (CHUA-DSVC1, COVTYPE,
POKER, TAURUS-B1, WINE-WHITE), our SSV approaches perfectly agree with the
results of the remaining test field. On the other hand, higher noise levels can render ID
estimation nearly impossible (CHUA-DSIL, CHUA-SPIVC1). The effect of underesti-
mation of the CD, GCD and MLE methods is again revealed for the SANTA-D data,
where only two methods, DD and SSV1, do not suffer from this issue. Remember that
in the context of dimension reduction, overestimation of the ID is much less of a problem
than underestimation.

For the second group of datasets, the variances in the outcomes is often high which
is why we suppose the intrinsic dimensionality is rather a scale-dependent quantity in
most cases. The results of the ESS and SSV2 methods are often very close to each
other, while the SSV1 approach yields much larger estimates than the rest in some cases
(CLIM-TENE for D = 50, ISOLET, MNIST).

3.5.6 Further numerical evaluations
Analysis of the scale-dependent correlation dimension for selected datasets

In order to shed further light on some particularities of the above estimation results,
we evaluate the scale-dependent correlation dimension for several datasets. We recall
the definition of the correlation dimension (see 3.1.4, eq. (3.11)) for a given set X =
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{x1, . . . , xN} as

Dcor(X ) = lim
r→0

log Cr(X )
log r

, (3.127)

where the corresponding correlation sum is defined as

Cr(X ) = 2
N(N − 1)

∑
1≤i<j≤N

H (r − ∥xi − xj∥) . (3.128)

In practice, for a given scale [r1, r2], the scale-dependent correlation dimension is defined
as

m̂cor (r2, r1) =
log Cr2 (X )

Cr1 (X )

log r2
r1

. (3.129)

We now apply the approach suggested in [KLN+10] to generate suitable function
plots of the correlation dimension. For this purpose, the minimum and maximum of
all distances of a given dataset, δmin and δmax, are determined and the corresponding
interval is then segmented as [δmin = r0 < r1 < . . . < rS = δmax], where S = 100 and the
rk are distributed logarithmically. Since we choose a large number of 100 segments, it
seems reasonable to smoothen the local estimates using a triangular kernel of a certain
window length w. The final function we consider is therefore defined as

m̂ (r) = 1
2w

i+w∑
j=i−w

j ̸=i

m̂cor (ri, rj) , for r ∈ [ri, ri+1) . (3.130)

The corresponding function plots for several selected datasets are shown in figure 3.9.
First, let us emphasize that the scale-dependent correlation dimension can also involve

misleading conclusions, which is why it must be interpreted with caution. To this end,
recall that a viable estimator based on the correlation dimension usually seeks to find the
largest region [a, b] of almost constant slope in the plot, and then takes the local estimate
limr→a m̂(r), since the correlation dimension is defined for the limit of r → 0 (see also
the corresponding paragraph in subsection 3.2.2). Now let us compare the first two
plots in figure 3.9 for synthetic datasets, the 10-dimensional ball and the 40-dimensional
simplex with their associated estimation results of the CD method, which are m̂CD = 9.1
and m̂CD = 23.4, respectively (see table 3.9). The two plots show a relatively similar
curve. However, in the first case, the sharp peak at the left end seems to be due to some
spurious small-scale effects leading to a considerate (local) overestimation, while in the
second case, the peak in fact indicates the true underlying dimensionality. Consequently,
while the strategy of the CD estimator is successful for the 10-ball, it fails for the 40-
simplex. In contrast, our SSV1 method yields more accurate estimates in both cases,
which are m̂SSV1 = 10 and m̂SSV1 = 37, respectively.

In spite of this deficiency, the scale-dependent correlation dimension is nevertheless
a simple and established way to reveal particular structures on different scales in the
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data. Consider e.g. the plot for the WINE-WHITE dataset in figure 3.9. The global
maximum is very close to 4 and — in contrast to many noisy datasets — no increase in
dimensionality can be found for r → 0, which explains the quite unanimous results of
all tested IDE methods (compare table 3.5.5).

The curve for the COVTYPE data is below the value of 5 except for very small scales.
Note here that the quotient of the maximum and minimum distance δmax/δmin = 3.13·103

is large compared to most other datasets. We believe that this is the reason why most
methods yield an estimate of m̂ = 3 rather than higher values.

The different estimation results for the ISOMAP-FACE data (m̂ ∈ {3, 4} for CD,
GCD, MLE, ANC, and m̂ ∈ {7, 8} for DD, ESS, SSV1, SSV2) are probably reflected in
the spike visible at the left end of the corresponding function plot.

The HEPMASS data curve clearly features an interval of nearly constant slope with
only a narrow spike for small scales r leading to relatively close estimation results of our
tested methods ranging from 12 to 20.

Finally, let us consider the scale-dependent correlation dimension for the CLIM-STOC
and the ISOLET datasets, two examples with a high variation in the estimation results.
It is remarkable that the associated estimates of the SSV1 method, m̂SSV1 = 36 and
m̂SSV1 > 63, are higher than the respective global maxima in the plots. We believe
that the analysis of high-dimensional simplex volumes is able to unveil certain high-
dimensional structures on very small scales, that might not be easily identifiable by the
pure exploration of Euclidean distances. Naturally, the important question remains open
whether those high-dimensional structures represent valuable information or rather un-
wanted artefacts (noise). In general, this question can not be answered by an automatic
scheme without further knowledge of the dataset characteristics.

3.5.7 Runtime evaluations
In this subsection, we present some runtime measurements of our methods. For this
purpose, let us first recall the cost complexities of our two approaches, that have already
been presented in subsection 3.4.6. For a given dataset X = {x1, . . . , xN} ∈ RD of
intrinsic dimension m, the associated complexities evaluate as

SSV1:
m̂∑

d=1

[
O
(
N ·D · (kd · log N + kd/δ + 1/δ3 + k2

d) + N · C · d3
)]

,

SSV2:
s

(2)
max∑

d=1

[
O
(
N ·D · (kmax · log N + kmax/δ + 1/δ3 + k2

max) + N · C · d3
)]

.

Remember that m̂ denotes the output estimate of SSV1, while s(2)
max = 10 is a constant

parameter of SSV2. Moreover, kd = max {d + 3, 12} and kmax = 30 are the respective
numbers of nearest neighbor points, while C = 1000 is the constant number of analyzed
simplex volumes, and δ = 0.001 is the fixed parameter gauging the precision of the
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Figure 3.9: Scale-dependent correlation dimensions for selected datasets
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bounding ball approximation.
Note further that the term O (N · C · d3) is due to the evaluation of the simplex vol-

umes and dominates the overall runtime of the SSV1 approach in case of input data with
higher IDs m. As mentioned before, the simplex volume computation is naturally more
expensive than the calculation of pairwise distances, which is why our SSV algorithms
can generally not achieve a similar runtime performance as other methods completely
relying on local distance computations, such as MLE, DD, and ESS.

When it comes to the actual runtime results, let us first emphasize that, for datasets
of size N > 1000, both our algorithms SSV1 and SSV2 do not compute their pointwise
estimates for each point, but rather for a reduced set of test points; this process has
already been described in subsection 3.5.2 in full detail. Consequently, for a dataset of
size N = 10000, roughly 10000/8 = 1250 test points are considered.

All cpu time measurements have been performed on a machine with 16GB RAM and
an Intel Xeon CPU E5-2620 v2 @2.10GHz featuring 6 cores, 12 threads and 15MB of
L3-cache. No parallelization has been utilized in any form. The runtimes provided
in table 3.24 include the entire algorithmic procedure, i.e., the tree construction and
estimation process; the times required for reading the input data from harddrive and
writing the output data are not comprised here. For each combination of parameters,
we sampled 10 different datasets and we provide the average of the results of those 10
experiments. In order to analyze the main trends, we selected three candidates of the
above described synthetic datasets: the m-ball as our reference object, the m-simplex
as an evidentially hard to estimate structure, and the m-paraboloid because of its non-
uniform sampling.

Let us now examine the empirical runtimes in table 3.24 of the first series of exper-
iments, i.e., for fixed D = 60 and varying m. Here, while the SSV1 runtimes grow
with increasing intrinsic dimensions m = 4, 10, . . . , 40, the SSV2 runtimes remain nearly
constant for increasing m ≥ 10. Those characteristics are, of course, in full consensus
with the theoretic cost complexities, in particular considering the outer sums capped by
m̂ and s(2)

max = 10, respectively. Furthermore, the differences in the outcomes between
the three objects (ball, simplex, and paraboloid) are rather small. In fact, the differing
runtimes of the SSV1 method (for higher values of m) are simply related with its distinct
estimates, which are e.g. for m = 40: m̂ = 40 for the ball, m̂ = 37 for the simplex, and
m̂ = 38 for the paraboloid.

The second series of experiments (fixed m = 4) shows another trend: while there is only
a mild growth (at most about a factor of 2) in runtimes for increasing D = 12, . . . , 100, we
find a roughly linear time scaling with D = 100, 1000, 10000. Clearly, for lower ambient
dimension D, the simplex volume computation with its complexity O (N · C · d3), being
independent of D, dominates the overall costs. In contrast, for D ≥ 100, the costs for
nearest neighbor search and bounding ball computations, which both scale linearly in
D, are dominating. The speed-up of the SSV2 approach as compared to SSV1 for high
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Table 3.24: CPU time measurements (in seconds) of SSV1 and SSV2 algorithms for syn-
thetic datasets (m-ball, m-simplex, m-paraboloid embedded in RD) with
fixed sampling number N = 10000 for varying intrinsic dimension m and
ambient dimension D

m-ball m-simplex m-paraboloid
D m SSV1 SSV2 SSV1 SSV2 SSV1 SSV2
60 4 2.79 1.90 2.41 1.86 3.01 1.90
60 10 14.0 13.6 7.87 13.1 7.77 12.4
60 16 41.7 14.2 30.2 13.5 31.2 12.9
60 20 71.8 14.6 53.7 13.7 58.8 12.6
60 30 210 15.3 173 14.1 195 12.9
60 40 607 16.1 358 14.4 397 13.3
12 4 1.30 1.52 1.26 1.47 1.30 1.50
20 4 1.54 1.56 1.49 1.54 1.48 1.55
50 4 2.26 1.79 2.39 1.79 2.28 1.83
100 4 3.51 2.21 3.31 2.18 3.40 2.18
1000 4 24.2 9.61 23.7 9.52 24.2 9.48
10000 4 231 83.7 228 85.1 236 87.0

12 10 8.48 10.8 4.26 10.6 3.80 10.4
20 10 8.57 11.4 5.08 11.1 4.24 10.9
50 10 12.8 13.1 7.23 12.6 5.89 12.1
100 10 17.3 15.7 11.6 14.8 8.41 13.9
1000 10 95.2 65.1 82.3 55.8 53.6 51.0
10000 10 885 532 659 449 498 408
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values of D can be traced back to the precise implementations.3 Finally, the differences
due to the three geometric objects are negligible in this scenario.

Regarding the third series (fixed m = 10), we observe the same correlation between
runtimes and increasing D as before. Again, the SSV2 method is faster than SSV1 for
higher ambient dimension D. Moreover, the slightly lower runtimes for the paraboloid
data as compared to the other datasets are probably a consequence of a more efficient
nearest neighbor search for the non-uniformly sampled points as opposed to the uniformly
sampled ball and simplex.

As already mentioned in the descriptions of our SSV methods in subsection 3.4.5,
the algorithmic design of the SSV1 approach has been optimized with regard to two
aspects, which are accurate and reproducible estimation results, as well as a clear and
easily comprehensible structure. The SSV2 approach generally yields a better runtime
performance, which comes however at the expense of less accurate estimates for high IDs
m, at least for the noisefree datasets considered here.

To conclude this short examination, let us propose three possibilities to considerably
reduce the measured computation times, especially those of the SSV1 method. First,
note that for the determination of the estimated output value m̂ of some given dataset,
ultimately, only the average d-simplex volumes for d = m̂ and d = m̂ + 1 are relevant.
Thus, if one expects a higher estimate m̂, instead of evaluating all d-simplex volumes
for d = 1, . . . , m̂ + 1, one could rather use an adaptive scheme for the following three
procedures: the selection of certain test dimensions d, the choice of (a fewer number of)
test points, and a variable number C of sample simplices. This would be reasonable, since
in case that the current test dimension d is “far away” from m̂, only a small number of test
points and sample simplices are required, as the empirical average volumes considerably
deviate from the corresponding expected values.

A second attempt to improve the performance for higher values of the ambient dimen-
sion D could be made by using a more efficient nearest neighbor search structure. In our
implementation, we opted for the kd-tree also for the sake of simplicity. Undoubtedly, a
more advanced scheme would accelerate the entire estimation process without affecting
the quality of the results.

Lastly, for very high ambient dimensions of D = 1000 and above, the computation
of the approximate bounding balls becomes more and more expensive and could be
replaced by a less precise approximation. For example, for the k NN points of some
xi, one could consider the ball Br(xi) with center xi and radius r = Tk(xi), which is
definitely a bounding ball, but usually not the minimum bounding ball for the k + 1
points. Obviously, this adjustment is likely to lead to slightly inferior estimation results.
Nevertheless, a quantitative investigation of the effects could be interesting.

3Remember that the SSV2 algorithm computes all d-dimensional simplex volumes for d = 1, . . . , 5 at
once, meaning that the NN search must only be performed a single time. The SSV1 algorithm on
the other hand starts a new NN search for each test dimension d.





Chapter 4
Application of the SSV Method in
Dimensionality Reduction

In section 2.2 we introduced the concept of dimensionality reduction (DR) and outlined
the importance of a reliable estimate of the intrinsic dimension (ID) for this purpose.
After the presentation and thorough discussion of our new “Sample Simplex Volume”
(SSV) approaches for intrinsic dimension estimation (IDE) in the preceding chapter, we
now provide a final toy example to show the interplay between IDE and DR methods.
Just like in Chapter 2, we choose a low-dimensional manifold which permits an improved
visualization of the different dimensionality reduction results.

We consider a three-dimensional paraboloid embedded in R4. Multiple paraboloids of
different dimensionalities have already been examined in our numerical experiments in
subsection 3.5.4. As before, we apply a non-uniform sampling based on the exponential
distribution. The exact sampling process is given by the following steps:

• Let E0, . . . , E3 be i.i.d. according to the exponential distribution exp(λ) with rate
parameter λ = 1;

• let Xj := (1 + Ej/E0)−1 for j = 1, . . . , 3;

• let X4 := X2
1 + (4X2)2 + (16X3)2.

Note that this paraboloid is strongly distorted (or “stretched out”) due to the definition
of X4. Our dataset consists of N = 10000 randomly sampled points. Figure 4.1 shows
two different representations of the data. In the first plot, the first three coordinates
x1, x2, x3 are plotted to visualize the non-uniform sampling, while the last coordinate x4
is represented by the coloring. Clearly, the value of x4 mainly depends on the x3 variable
as expected. The second plot represents the coordinates x1, x3, x4, where now, x2 is
represented by the coloring. Note here, that the x4-axis features a completely different
scale than the other two axes. The chosen perspective allows to see the curvature of the
paraboloid.
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Figure 4.1: Three-dimensional representations of a paraboloid embedded in R4, sampled
with 10000 points. Left: plot of coordinates (x1, x2, x3), coloring symbolizes
x4. Right: plot of coordinates (x1, x3, x4), coloring symbolizes x2.

Table 4.1 shows the corresponding ID estimates of the methods introduced and com-
pared above. The results are the empirical average of 10 different samplings of the same
paraboloid, where each individual outcome has been rounded to its nearest integer (in
case of a non-integer output value). Some methods underestimate the true number of
latent variables (i.e., the underlying intrinsic dimension) as m̂ = 2 or even m̂ = 1 in case
of the CD estimator. The reason can partly be traced back to the non-uniform sampling,
but primarily to the highly unequal influence of the three variables X1, X2, X3 onto X4.

Finally, figure 4.2 shows plots of the three-dimensional embedding of the paraboloid,
computed by classical multi-dimensional scaling (MDS) and the ISOMAP method (with
NN parameter k = 12), respectively. Each embedding is visualized three times, where
the coloring varies according to the three variables x1, x2, x3. In fact, as can be seen from
the clean color gradients, the MDS approach is able to produce a quite satisfying low-
dimensional representation, where each of the three variables corresponds to a specific
side of the cuboid, which the point set roughly resembles. The ISOMAP embedding

Table 4.1: IDE results for the three-dimensional paraboloid

D m CD GCD MLE DD ANC ESS SSV1 SSV2
4 3 1.6 2 3 3 3 2 3 3
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on the other hand somehow reflects the curvature of the paraboloid, while — on the
downside — both the x1- and x2-variables are considerably mixed up in the embedded
point set. It is noteworthy that the result produced by the linear MDS method allows for
a much better separation of the generating variables than that of the nonlinear ISOMAP
approach, even though the underlying manifold is nonlinear.

However, the objective here is not the qualitative comparison between the outcomes
of MDS and ISOMAP, but rather between the three-dimensional and two-dimensional
embeddings achieved by those methods. The latter are plotted in figure 4.3. Obviously,
since both MDS and ISOMAP calculate hierarchical solutions, the two-dimensional sets
are mere projections of their three-dimensional counterparts. Yet, the crucial point is
the fact that — for both selected DR approaches — the two-dimensional embeddings
lead to a loss of information that has been present in the original dataset. While the 3D-
embeddings feature the major spread due to the x3-variable as well as the two different
minor spreads due to the x1- and x2-variables, those two are inevitably mingled in the
2D-embeddings.

This final example again proves the significance of reliable intrinsic dimension esti-
mators, such as our two SSV approaches introduced above, to guarantee the proper
functioning of dimensionality reduction methods, which themselves continue to become
more important in the field of high-dimensional data mining.
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Figure 4.2: Three-dimensional embedding of the paraboloid computed by MDS (left col-
umn) and ISOMAP with k = 12 (right column); coloring according to latent
variables x1 (top), x2 (middle), and x3 (bottom), respectively.
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Figure 4.3: Two-dimensional embedding computed by MDS (left) and ISOMAP with
k = 12 (right); coloring according to latent variable x1.





Chapter 5
Conclusion

Summary Let us now give a compact summary of our studies and especially the com-
prised main results. The focus of this work lies on the task of intrinsic dimension estima-
tion and the development of a new approach for this purpose. Since the term intrinsic
dimension of an arbitrary point set is not a precisely defined mathematical concept,
we first recapitulated the most common and important notions of dimension. Among
the multitude of existing dimension estimation techniques, we chose six particular ones,
including a classical correlation dimension estimator, a widely used maximum likelihood
method, and recent approaches based on angular distributions and simplex skewness, re-
spectively. These methods were described in full detail and examined in the subsequent
numerical experiments.

In the central part of our work, we introduced our new estimation approach where we
first motivated the use of arbitrarily high-dimensional simplex volumes with randomly
sampled vertex points. We derived an algorithm for the fast evaluation of multiple
simplex volumes such that its overall workload is rather dominated by the intrinsic
dimension, but not the ambient (original) dimension of the dataset. Based on this
core component, we developed two algorithms, called Sample Simplex Volume methods,
which allow to derive an estimate via comparing the average of random simplex volumes
in local regions to the respective theoretically expected values. While the first variant is
a straightforward procedure, the second one basically represents a well balanced trade-off
between estimation precision and runtime performance.

In our comprehensive numerical examinations, we compared our new techniques against
the six above-mentioned selected methods. We considered a large spectrum of low- and
high-dimensional synthetical data, where both our approaches achieved excellent results,
and especially the first one usually outperformed its competitors. When it comes to data
tainted with Gaussian noise, the accuracy of all tested methods relying on the measure-
ment of local quantities suffered to a similar degree. Naturally, without any a priori
knowledge about the data, an increasing amount of high-dimensional noise renders a
proper estimation virtually impossible. The results for real-world datasets confirmed
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this insight; moreover, they verified the general competitiveness of our new estimators
and their reliability for less noisy data.

Outlook Our approaches for intrinsic dimension estimation have demonstrated a re-
liable performance. They are based on straightforward geometric considerations and
thus still leave space for further improvements and extensions. In order to decrease the
expected runtime, one could employ an adaptive scheme to select optimized values for
the hitherto constant parameters, i.e., the number of test simplices and the tolerance
parameter, compare also the discussion at the end of subsection 3.4.5. Furthermore,
the greedy incrementing of the test dimension in the SSV1 variant could be replaced by
a more advanced search technique switching between low and high values, resulting in
drastic time savings in the case of higher intrinsic dimensions.

Both our methods rely on the central theorem 3.7 by Miles, which specifies the
expected volume of an arbitrary s-dimensional simplex with vertex points drawn at ran-
dom from the uniform distribution over some D-dimensional ball. The most obstructive
constraint here certainly is the assumption about uniformly distributed points. Conse-
quently, a straightforward multiscale generalization of our approach is not reasonable, as
this assumption is only valid in local regions for general datasets. Nevertheless, varying
the local region size and comparing the respective empirical average volumes could pro-
vide additional knowledge about the dataset. One possible goal could be the estimation
of the noise level and eventually the denoising of the data.

Moreover, a modification of our approach could be used to detect and separate low-
dimensional affine subspaces or manifolds in high-dimensional data, sometimes referred
to as stratification learning or manifold clustering.

Finally, our technique for the efficient computation of multiple simplex volumes might
also turn out to be useful to accelerate the evaluation of the exact volume of high-
dimensional convex polytopes, which are — for this purpose — usually represented as
unions and intersections of many simplices, compare [BEF00]. Naturally, the improve-
ment would only consist of a constant factor, which could still be significant in case of
polytopes composed of a huge number of simplices.
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