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viiAbstratIn this thesis a numerial approah for the simulation of three-dimensionalinompressible two-phase �ows is presented. It is based on a level set methodfor apturing the interfae. The mathematial model onsists of the inom-pressible Navier-Stokes equations and an advetion equation for the level setfuntion. The e�et of surfae tension is modeled by a singular fore termloated at the interfae.For the spatial disretization we use �nite elements on a nested hierarhy oftetrahedral grids. An adaptive multilevel re�nement algorithm allows for lo-al re�nement and oarsening of the grid hierarhy. By partial integrationof the Laplae-Beltrami operator the weak formulation of the surfae tensionfore term an be stated in suh a way that seond derivatives indued by theurvature an be avoided. It is shown that a standard Laplae-Beltrami dis-retization on a pieewise planar approximation of the interfae only yields anorder of 1/2 w. r. t. the H1 norm, and on the other hand that by a slight mod-i�ation this order an be inreased up to a value of at least 1. The pressuredistribution is ontinuous in both phases, respetively, but has a jump arossthe interfae due to surfae tension. The approximation of suh funtions instandard �nite element spaes yields poor results with an order of 1/2 w. r. t.the L2 norm. The introdution of an extended �nite element (XFEM) spaeprovides seond order approximations. For this purpose a standard �nite ele-ment spae is augmented by additional basis funtions inorporating a jumpat the interfae.For the time disretization a one-step theta-sheme is applied whih leads to aoupled system of level set and Navier-Stokes equations. The oupling an betreated by a Piard iteration. By applying a linearized variant of the theta-sheme the equations an be deoupled. The nonlinearity of the Navier-Stokesequations is handled by a �xed point approah. The arising Oseen problemsare solved by an inexat Uzawa method or by Krylov subspae methods, whereproblem-adapted preonditioners are applied whih aount for the jump ofthe material properties between both phases. For the reparametrization ofthe level set funtion a Fast Marhing method is used.The methods have been implemented in the software pakage DROPS. Thestruture of the ode and basi design onepts are brie�y disussed. We alsoonsider parallelization aspets, as the onsumption of memory resoures andomputational time are typially huge for omplex problems suh as two-phase�ows.



viiiThe orret implementation and the auray of several numerial omponentsis analyzed by means of some test ases. Finally, examples originating fromdroplet and falling �lm appliations are onsidered. These two-phase systemsplay an important role in hemial engineering proesses and are some ofthe major researh topis in the ollaborative researh enter SFB 540 at theRWTH Aahen University. Some numerial results for simulations of levitateddroplets, rising bubbles and a falling �lm are presented.



ZusammenfassungIn der vorliegenden Arbeit wird ein Ansatz zur numerishen Behandlungvon inkompressiblem dreidimensionalen Zweiphasenströmungen vorgestellt,der auf einer Levelset-Methode zur Verfolgung der Phasengrenze basiert. DieModellgleihungen bestehen aus den inkompressiblen Navier-Stokes-Gleihun-gen sowie einer Advektionsgleihung für die Levelset-Funktion. Die Ober-�ähenspannung wird durh einen singulären Kraftterm modelliert, der aufder Phasengrenze lokalisiert ist.Zur örtlihen Diskretisierung werden Finite Elemente auf einer geshahtel-ten Hierarhie von Tetraedergittern eingesetzt. Ein adaptiver Multilevel-Verfeinerungsalgorithmus ermögliht die lokale Ver- und Entfeinerung derGitterhierarhie. Der Ober�ähenspannungsterm wird in der shwahen For-mulierung durh partielle Integration des Laplae-Beltrami-Operators in eineForm überführt, in der zweite Ableitungen vermieden werden, die durh dieKrümmung hervorgerufen werden. Es wird gezeigt, dass mit einer Standard-Laplae-Beltrami-Diskretisierung auf einer stükweise planaren Approxima-tion der Phasengrenze nur eine Annäherung der Ordnung 1/2 bzgl. der H1-Norm erreiht werden kann, durh eine leihte Modi�kation die Ordnungdagegen auf mindestens 1 erhöht werden kann. Der Druk ist in beidenPhasen jeweils stetig, besitzt aber aufgrund der Ober�ähenspannung einenSprung an der Phasengrenze. Die Approximation solher Funktionen ist inStandard-Finite-Elemente-Räumen nur mit Ordnung 1/2 bzgl. der L2-Normmöglih. Die Einführung eines erweiterten Finite-Elemente-Raumes (XFEM)ermögliht eine Approximation zweiter Ordnung. Hierbei werden zusätzliheBasisfunktionen hinzugefügt, die einen Sprung an der Phasengrenze aufweisen.Zur Zeitdiskretisierung kommt ein Theta-Shema zu Einsatz, das auf eingekoppeltes System von Levelset- und Navier-Stokes-Gleihungen führt. Dieskann mit einer Piard-Iteration gelöst werden. Durh eine linearisierte Vari-ante des Theta-Shemas kann eine Entkopplung der Gleihungen erreiht wer-den. Die Nihtlinearität der Navier-Stokes-Gleihungen wird durh einen Fix-punktansatz behandelt. Die auftretenden Oseen-Probleme werden durh eineinexakte Uzawa-Methode oder durh Krylov-Teilraumverfahren gelöst, wobeiproblemangepasste Vorkonditionierungstehniken zum Einsatz kommen, dieden Sprung der Sto�daten von der einen Phase in die andere berüksihti-gen. Zur Reparametrisierung der Levelset-Funktion wird eine Fast-Marhing-Methode verwendet.Die Methoden wurden in dem Software-Werkzeug DROPS implementiert, des-sen Struktur und zugrundeliegendes Design kurz dargestellt werden. Dabeiix



xwird auh auf Parallelisierungsaspekte eingegangen, da die Speiher- und Re-henzeitanforderungen für solh komplexe Probleme wie Zweiphasenströmun-gen enorm groÿ sein können.An einigen Testbeispielen wird die korrekte Implementierung und Genauigkeiteiniger numerisher Komponenten überprüft. Shlieÿlih werden Anwendungs-beispiele aus dem Bereih von Tropfen- und Filmsystemen behandelt, dieGegenstand der Forshung in dem verfahrenstehnish ausgerihteten Sonder-forshungsbereih SFB 540 der RWTH Aahen University sind. Dabei wer-den numerishe Ergebnisse von Simulationen levitierter Tropfen, aufsteigenderTropfen sowie eines Fall�lmes präsentiert.
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1. IntrodutionDue to the advanes in omputer tehnology and improvements of numerialmethods in the last deades, the simulation of one-phase �ows in liquid orgaseous media has beome state of the art and is applied as a standard tool inindustry and researh. However, a loser look at the simulation of two-phase�ow problems, suh as rising air or oil droplets in water, learly reveals a dif-ferent piture. One major problem is the ourrene of numerially induedosillations of the veloity �eld in the viinity of the interfae, so-alled spu-rious urrents [WKP99, FCD+06℄. We mention some other hallenges in theontext of two-phase �ow problems:
• the di�erent material properties of the two phases induing a jump inthe oe�ients of the partial di�erential equations,
• the singular surfae tension fore term whih is only de�ned at the in-terfae,
• topologial hanges of the interfae like the break-up or merging of bub-bles.As the numerial methods for two-phase problems are not yet mature inmany respets, for example w. r. t. auray, there is an ative �eld of ur-rent researh on the improvement of existing methods or the design of newapproahes.In this thesis we desribe a numerial strategy for the simulation of three-dimensional inompressible two-phase �ow problems. It is based on a levelset method for apturing the interfae and a �nite element disretization onadaptive multilevel tetrahedral grids. The main ahievements of this thesisare the development and analysis of two novel methods for the numerialtreatment of surfae tension whih feature a higher auray ompared tostandard methods in this �eld:
• a modi�ed Laplae-Beltrami disretization of the singular surfae tensionfore term whih is loalized at the interfae, 1



2 1. Introdution
• an extended �nite element (XFEM) spae for the pressure to representthe jump aross the interfae whih is present due to surfae tension.1.1. Two-phase systems in hemial engineeringappliationsIn this setion we give a few examples of two-phase �ow systems whih are ofinterest in the area of hemial engineering and are a topi of urrent researhin the Collaborative Researh Center SFB 540 [SFB℄ at the RWTH AahenUniversity. In the SFB 540 several groups from di�erent sienti� disiplinessuh as hemial engineering, hemistry, physis, sienti� omputing andmathematis ollaborate to gain more insight into kineti phenomena arisingin multi-phase systems. Among them some groups are working on numerialsimulation (whih is also the fous of our group), while others are ondutingexperiments to ollet measurement data or developing adequate models forthe desription of the observed phenomena.The goal of the SFB 540 is to enhane the modeling of momentum, heat andmass transport in multiphase systems, in whih interfaial phenomena oftenplay a dominant role. This is aomplished by the formulation and solutionof inverse problems, whih aim to math the measurement data with thesimulation results as good as possible. In the most simple ase this means the�tting of a few model parameters, in more elaborate ases the inverse problemonsists in estimating an unknown funtion [GSM+05, KGM+08℄. Questionsof model struture and model identi�ation or optimal experimental design(i. e., roughly speaking, whih experiment gives most information), whih arearising in this ontext, are also onsidered on the basis of inverse problems.This integrated modeling proess is alled `model-based experimental analysis'[Mar05℄, or MEXA for short, whih explains the title of the SFB 540: `Model-based experimental analysis of kineti phenomena in �uid multi-phase reativesystems'.The main ontribution from our researh group is the development of the soft-ware pakage DROPS for the simulation of three-dimensional inompressibletwo-phase �ow problems. Many of the numerial methods implemented inDROPS are desribed in Part II of this thesis. The software ode is writ-ten in C++ and developed by a ouple of people at the Chair of NumerialMathematis and the Chair of Sienti� Computing at the RWTH AahenUniversity. We refer to Chapter 9 for a ompat overview of the design and



1.1. Two-phase systems in hemial engineering appliations 3

Figure 1.1.: Photo of a lev-itated droplet in a measure-ment devie. The photo wastaken applying an exposuretime of 3 seonds to show thestability of the droplet. Pro-vided by projet B3, SFB 540.
Figure 1.2.: Photo showing the surfae of a falling�lm. The measurement devie at the top is usedfor measuring the loal �lm thikness. Providedby Georg Dietze, projet C2, SFB 540.

struture of the DROPS ode.We are interested in the following two-phase systems, whih are of interest inthe hemial engineering ommunity: The �rst one is a bubble in a surrounding�uid. This is related to bubble olumn reators, where mass transport takesplae aross the phase interfae of bubble swarms. For investigation purposesa single bubble is onsidered, the hosen substanes are silion oil, n-butanolor toluene in water. In a speial measurement devie, where the bubble anbe held in a stable �xed position, NMR measurements of momentum (andmass) transfer are operated by our projet partners [AGHK+05℄. A photoof the levitated bubble in the devie is shown in Figure 1.1. The goal is toimprove the interfae model by preise measurement in the viinity of theinterfae and aurate numerial simulation of the system. The latter is ourtask. Some numerial results of the hydrodynamis of bubbles are presentedin the Setions 11.1 and 11.2.The seond system we are interested in is the �ow of thin liquid �lms, whihare ourring in falling �lm apparatuses. In appliations these are mainlyused for heating, ooling and evaporation proesses. The liquid �lm is �owingdown an inlined wall and develops a wavy struture at the interfae to the



4 1. Introdutiongaseous phase, even without external exitation, see Figure 1.2. This wavi-ness enhanes heat and mass transport and is therefore an interesting �eld ofinvestigation. Our projet partners are measuring important parameters suhas �lm thikness, veloity information at ertain points or planar setions, sur-fae temperature and temperature and onentration distribution inside the�lm by means of several measurement tehniques [LASLR05, SMDK06℄. Theliquid phase in our examples is hosen as water or silion oil, the gaseous phaseonsists of air or nitrogen. Sine the material properties of this liquid-gas sys-tem di�er by a fator of roughly 103 and the interfae is very large omparedto the bubble experiment, the numerial simulation is very hallenging in thisase. Some �rst results of numerial simulations are given in Setion 11.3.1.2. Numerial approahThe omplexity of the aforementioned appliation examples de�nes the hal-lenges one is faing when treating suh phenomena numerially. This will giveus a guideline for the development proess of our numerial method, i. e., inthe hoie and ombination of adequate numerial tools. Some of the keyissues are listed below:The transport phenomena are essentially 3D, hene we annot restrit to2D or 3D rotationally symmetri models. We therefore need the abilityto handle three-dimensional inompressible �ows. The high omplexityof 3D problems demands the usage of parallel omputers, otherwise asu�ient grid resolution an often not be ahieved on a single proessordue to memory limitations and/or huge omputational times.Many important transport phenomena our at the interfae demanding ahigh resolution in the interfaial region. Otherwise the development ofreliable interfae models is not possible. Hene we have to apply adap-tivity loally at the interfae, ombined with load distribution in the aseof parallelization.The interfae is moving in time, therefore we have to deal with a non-sta-tionary problem and need some interfae loalization tehnique. Alsothe grid has to be adapted from time to time if the interfae tends tomove out of the re�nement zone.Surfae fores are dominant. In the ase of the levitated droplet, surfae ten-sion is high as the urvature is large due to the small bubble diameter.In the ase of the falling �lm apillary fores are dominant beause of



1.2. Numerial approah 5the large extent of the interfae. Hene we need a speial numerialtreatment of surfae tension to avoid spurious urrents at the interfaeor keep them as small as possible.Disontinuous pressure. In the presene of surfae tension there is a pressurejump at the interfae due to the Laplae-Young law. For the approxi-mation of disontinuous funtions we introdue extended �nite elementansatz funtions whih are disontinuous aross the interfae.Large jumps in oe�ients of the PDE have to be handled, at least for thefalling �lm problem. This demands speial quadrature tehniques for in-tegrals with disontinuous integrands in the disretization proess. Spe-ial preonditioning tehniques for the Shur omplement matrix haveto be applied for the solution of the disrete problem to aount for thejumping oe�ients.Based on these requirements and properties of two-phase �ow problems, wehave hosen several numerial methods whih are in our opinion appropriatefor this task. In the following we list the main ingredients of our numerialstrategy:
• The level set method is applied for apturing the interfae between thetwo phases. This method is also apable of desribing topology hangesof the interfae.
• The spatial disretization is based on a hierarhy of three-dimensionaltetrahedral grids whih are onstruted in suh a way that they are on-sistent (i. e., no hanging nodes) and that the hierarhy of triangulationsis stable. Loal re�nement and oarsening are easy to realize.
• For the disretization of level set and Navier-Stokes equations we useonforming P2 �nite elements for the veloity u and level set funtion
ϕ as well as extended �nite elements (XFEM) for the pressure p. Theevaluation of integrals with disontinuous integrands arising during theassembly of the system matries are alulated by speial quadraturetehniques whih aount for the position of the interfae.
• We use a Laplae-Beltrami tehnique for the disretization of the sur-fae tension fore term, whih avoids seond derivatives indued by theinterfaial urvature. By a slight modi�ation the auray of the dis-retization an be signi�antly inreased ompared to standard Laplae-Beltrami approahes on pieewise planar interfae approximations.
• The one-step theta-sheme or a linearized variant of it is applied for timeintegration.



6 1. Introdution
• In eah time step the nonlinearity of the disrete Navier-Stokes problemis treated by a �xed point defet orretion. The Oseen problems aresolved by an inexat Uzawa method or Krylov subspae methods, wherewe use speial Shur omplement preonditioning tehniques aountingfor the pieewise onstant material properties ρ and µ.
• The Fast Marhing method is used for reparametrization of the level setfuntion ϕ.
• Most of the numerial omponents have been parallelized to enable thesimulation of omplex two-phase �ow problems with su�ient resolutionin a�ordable omputational time.1.3. Outline of the thesisThe thesis is strutured in three parts desribing the mathematial model, thenumerial methods applied (onstituting the largest part) and some numerialresults.In Part I the governing equations of motion for one-phase and two-phase �oware de�ned, f. Chapter 2. In Setion 2.2 we brie�y disuss di�erent methodsto desribe the unknown interfae. We use the level set method, where theinterfae is desribed as the zero-level of a salar funtion, the so-alled levelset funtion, f. Setion 2.2.1.In Part II all numerial omponents are presented whih are part of the over-all numerial strategy. A short outline of the applied numerial methods isgiven at the beginning of Part II. We use a hierarhy of nested tetrahedralgrids, a so-alled multilevel triangulation, and a multilevel re�nement algo-rithm for loally re�ning and oarsening the grid, f. Chapter 3. The �niteelement disretization of the level set and Navier-Stokes equations is desribedin Chapter 4. Due to surfae tension fores for the disretization of two-phase�ow problems, some speial aspets have to be taken into aount, whih arehighlighted in Chapter 5. In Setion 5.3 the disretization of the singular sur-fae tension fore term by a Laplae-Beltrami tehnique is analyzed. For thedisretization of the disontinuous pressure an extended �nite element spae(XFEM) is applied, whih is desribed in Setion 5.4. Topis of Chapter 6 arethe time disretization and oupling of level set and Navier-Stokes equations.The iterative solution of the disrete problems and orresponding preondi-tioning aspets are addressed in Chapter 7. Chapter 8 is onerned with thereparametrization of the level-set funtion and a simple volume orretion



1.3. Outline of the thesis 7strategy to enfore onservation of mass. The struture of the software odeDROPS as well as ertain implementational aspets inluding the paralleliza-tion of some omponents are desribed in Chapter 9.Finally, in Part III we present some results obtained by the simulation toolDROPS. In Chapter 10 the performane of several numerial omponents isinvestigated by means of spei� test ases. Numerial results of 3D inom-pressible two-phase �ow problems for real two-phase systems originating fromdroplet and falling �lm appliations are given in Chapter 11.In Chapter 12 we summarize the results of this thesis, draw some onlusionsand formulate several researh topis relevant for future work.
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Part I.Mathematial model

9





2. Governing equations2.1. A ontinuous model for two-phase �owLet Ω be a polyhedral domain in R
3 and [t0, tf ] a time interval. In the fol-lowing we derive the Navier-Stokes equations for unsteady laminar �ow oftwo immisible �uids. We assume the �uids to be inompressible, visous,Newtonian and pure (i. e., no mixture of di�erent omponents). Moreover weassume isothermal onditions for both �uids and therefore neglet variationsof density ρ and dynami visosity µ due to temperature hanges. Hene, µand, due to inompressibility, also ρ are onstant (and positive) in eah phase.2.1.1. One-phase �owWe �rst onsider the Navier-Stokes equations for unsteady laminar �ow of onephase. Let u = u(x, t) ∈ R

3 and p = p(x, t) ∈ R denote veloity and pressure,respetively. We introdue a funtionX : Ω× [t0, tf ]→ Ωwith the following meaning. For a partile with the initial spatial positionx0 ∈ Ω at the initial time t0, X(x0, t) desribes the spatial position of thepartile at the time t. This is the Eulerian desription of motion in spatially�xed oordinates. By de�nition, X(x0, t0) = x0 for all x0 ∈ Ω andXt(x0, t) :=
d

dt
X(x0, t) = u(X(x0, t), t)as the partiles are moving with veloity u. Let W0 ⊂ Ω be an arbitrary,bounded subset and

W (t) := {X(x0, t) : x0 ∈W0 }.

W (t) desribes the position of the partiles for time t, whih were loatedin W0 at initial time t0. Then for a C1 funtion f = f(x, t) the following11



12 2. Governing equationstransport theorem holds: For all t ∈ [t0, tf ],
d

dt

∫

W (t)

f(x, t) dx =

∫

W (t)

ft(x, t) + div(fu)(x, t) dx. (2.1)Considering onservation of mass we hoose f = ρ and obtain
0 =

d

dt

∫

W (t)

ρ dx =

∫

W (t)

ρt + div(ρu) dx.Sine W (t) is arbitrary, this is equivalent to
ρt + div(ρu) = 0for all (x, t) ∈ Ω× [t0, tf ]. Due to our assumption ρ = const this simpli�es to

divu = 0. (2.2)(2.2) is also alled ontinuity equation.We now onsider onservation of momentum. The momentum of mass on-tained in W (t) is given by
M(t) =

∫

W (t)

ρu dx.Due to Newton's law the hange of momentum M(t) is equal to the fore
F (t) ating on W (t). This fore is deomposed in a volume fore F1(t) anda boundary fore F2(t). The external volume fore F1(t) is given by thegravitational fore,

F1(t) =

∫

W (t)

ρg dx,where g ∈ R
3 is the vetor of gravitational aeleration. The boundary fore

F2(t) is modeled by the surfae integral
F2(t) =

∫

∂W (t)

σn ds,where σ = σ(x, t) ∈ R
3×3 is the stress tensor and n = n(x, t) ∈ R

3 the outernormal on ∂W (t). Summarizing, Newton's law yields
d

dt
M(t) = F1(t) + F2(t) (2.3)

=

∫

W (t)

ρg+ div σ dx,



2.1. A ontinuous model for two-phase �ow 13where we applied Stokes' theorem for F2(t). Using the transport theorem (2.1)in the left-hand side of (2.3) with f = ρ ui, i = 1, 2, 3, we obtain
∫

W (t)

(ρ ui)t + div(ρ ui u) dx =

∫

W (t)

ρg+ div σi dx, i = 1, 2, 3,with σi the i-th row of σ. In vetor notation,
∫

W (t)

(ρu)t + div(ρu⊗ u) dx =

∫

W (t)

ρg+ div σ dx.Sine W (t) is arbitrary, this is equivalent to
(ρu)t + div(ρu⊗ u) = ρg+ div σfor all (x, t) ∈ Ω× [t0, tf ]. Note that div(ρu⊗ u) = (ρu · ∇)u+ (ρu)(div u)and due to the ontinuity equation (2.2), the last summand vanishes, yieldingthe so-alled momentum equation
(ρu)t + (ρu · ∇)u = ρg+ div σ. (2.4)For visous Newtonian �uids the stress tensor σ is modeled as

σ = −pI+ µD(u)where D(u) = ∇u + (∇u)T is the deformation tensor. Summarizing theequations from above, we end up with the well-known Navier-Stokes equationsfor inompressible �ow:
ρ(
∂u
∂t

+ (u · ∇)u)− div(µD(u)) +∇p = ρg, (2.5)
divu = 0 in Ω× [t0, tf ]. (2.6)Remark 2.1If µ is onstant (whih is the ase for isothermal one-phase �ows of a puresubstane) then the term div

(
µD(u)

) simpli�es to
div
(
µD(u)

)
= µ div

(D(u)
)

= µ
(
∆u+∇(div u)

)
= µ∆utaking into aount that divu = 0. ⋄



14 2. Governing equations
Ω1

Ω2

ΓFigure 2.1.: 2D illustration of the omputational domain Ω onsisting of two phases
Ω1 and Ω2 and interfae Γ.2.1.2. Two-phase �owWe now onsider two-phase �ows, i. e., Ω ontains two di�erent immisibleinompressible phases (�uid-�uid or �uid-gas) whih are moving in time andhave di�erent material properties ρi and µi, i = 1, 2. Therefore we assumethat for eah point in time, t ∈ [t0, tf ], Ω is partitioned into two subdomains
Ω1(t) and Ω2(t), Ω = Ω1(t)∪Ω2(t), Ω1(t)∩Ω2(t) = ∅, eah of them ontainingone of the phases, respetively. Both phases are separated from eah otherby the interfae Γ(t) = Ω1(t) ∩ Ω2(t), f. Figure 2.1. As mentioned before,we assume isothermal onditions and that both phases are pure substanes.Moreover, we do not onsider reation, mass transfer or phase transition.In eah of the phases onservation of mass and momentum has to hold, yieldingseparate Navier-Stokes equations on the two domains Ωi, i = 1, 2. Additionallywe have to onsider transition onditions at the interfae. As the phases arevisous and no phase transition is taking plae, the veloity an be assumedto be ontinuous at the interfae:

[u]Γ = 0. (2.7)Here for x ∈ Γ and a funtion f de�ned on Ω we use the notation
[f ]Γ(x) := f1(x)− f2(x), fi(x) := lim

ξ→x f(ξ) in Ωi, i = 1, 2.For the interfae fore we hoose a standard model inorporating surfae ten-sion, i. e., we assume that the jump of the normal stress along the interfae



2.1. A ontinuous model for two-phase �ow 15
Γ is proportional to the loal urvature κ = κ(x),x ∈ Γ, f., for example,[BKZ92, Sr60℄:

[σn]Γ = τκn. (2.8)This is a free boundary ondition at the interfae. Here n denotes the outernormal on Γ pointing from Ω1 to Ω2. The urvature is de�ned by
κ(x) = − divn(x), x ∈ Γ,thus for a onvex interior of Γ we have the onvention that κ is negative. τis alled the surfae tension oe�ient, whih is a material property of thetwo-phase system. In ombination with onservation of mass and momentumin eah phase this yields the following standard model for two-phase �ows:







ρi(
∂u
∂t

+ (u · ∇)u) = ρig+ div σi

divu = 0
in Ωi × [t0, tf ], i = 1, 2, (2.9)

[σn]Γ = τκn, [u]Γ = 0, (2.10)initial ondition u|t=t0 = u0 in Ω,suitable boundary onditions at ∂Ω.The density and visosity, ρi and µi, i = 1, 2, are assumed to be onstant ineah phase.Instead of two separate Navier-Stokes equations on the omputational domains
Ωi, i = 1, 2, and additional interfae onditions it would be advantageous toonsider an equivalent system of PDEs on the whole domain Ω. In fat, theso-alled ontinuum surfae fore (CSF) model (f. [BKZ92, CHMO96℄) issuh a model. It onsists of the Navier-Stokes equation on Ω with jumpingoe�ients ρ, µ,

ρ =

{

ρ1 in Ω1,

ρ2 in Ω2,
µ =

{

µ1 in Ω1,

µ2 in Ω2.
(2.11)The free boundary ondition (2.8) is expressed in terms of a loalized foreterm fΓ, whih appears on the right-hand side of the momentum equation.The CSF term fΓ is given by

fΓ = τκ δΓnΓ, (2.12)
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Γ

γ

W1

W2

x
Figure 2.2.: 2D illustration of a neighborhood W = W1 ∪W2 for an interfae pointx ∈ Γ.where δΓ is a Dira δ-distribution de�ned by

∫

Ω

δΓ(x)φ(x) dx =

∫

Γ

φ(s) dsfor a smooth funtion φ.Summarizing, the CSF model is as follows:






ρ(
∂u
∂t

+ (u · ∇)u) = ρg+ div σ + fΓ

divu = 0
in Ω× [t0, tf ], (2.13)initial ondition u|t=t0 = u0 in Ω,suitable boundary onditions at ∂Ω.Under reasonable smoothness assumptions one an show that (2.13) is in fatequivalent to (2.9)�(2.10). In the following lemma we show that the CSFmodel an be derived from onservation of momentum and mass in the wholedomain Ω.Lemma 2.2Let u, p be a solution of (2.9)�(2.10) suh that σ(u) is di�erentiable. Thenwe have

∫

Ω

u · ∇q dx = 0 for all q ∈ C∞
0 (Ω), (2.14)i. e., the onservation equation for mass, divu = 0, holds in Ω (in the senseof distributions). Furthermore, onservation of momentum in an arbitrarysubdomain W ⊂ Ω yields

∫

W

ρ (ut + (u · ∇)u) dx =

∫

W

(ρg+ div σ) dx+

∫

W∩Γ

τκn ds. (2.15)



2.1. A ontinuous model for two-phase �ow 17Proof. We �rst onsider (2.14). Using divu = 0 in Ωi, i = 1, 2, and [u·n]Γ = 0,for q ∈ C∞
0 (Ω) we obtain
∫

Ω

u · ∇q dx =

2∑

i=1

∫

Ωi

u · ∇q dx
=

2∑

i=1

(∫

∂Ωi

q u · n ds− ∫
Ωi

q divu dx)
=

∫

Γ

q [u · n]Γ ds = 0.Now we onsider (2.15). For W ∩ Γ = ∅ we have the situation W ⊂ Ωiwith i = 1 or i = 2. The derivation of onservation of momentum for one-phase �ows was already disussed in Setion 2.1.1 yielding (2.15), where theboundary integral is missing due toW ∩Γ = ∅. Thus we only have to onsiderthe ase γ := W ∩ Γ 6= ∅. Then W is subdivided by Γ into two subdomains
Wi := W ∩Ωi, i = 1, 2, f. Figure 2.2. Repeating the steps from Setion 2.1.1but without integrating by parts, we end up with

∫

W

ρ (ut + (u · ∇)u) dx =

∫

W

ρg dx+

∫

∂W

σn ds. (2.16)Note that applying Stokes' theorem to the boundary integral on the right-handside of (2.16) yields
∫

∂W

σn ds =

(
2∑

i=1

∫

∂Wi

σn ds)+

∫

γ

[σn]Γ ds

=

(
2∑

i=1

∫

Wi

div σ dx)+

∫

γ

τκn ds
=

∫

W

div σ dx+

∫

γ

τκn ds.Combined with (2.16) this proves the result.One important issue is hidden in the formulation of problem (2.13), namelythat the loation of the interfae Γ(t) has to be known for eah time instant
t ∈ [t0, tf ]. This topi is disussed in Setion 2.2.Note that the lassial strong formulation in (2.13) has to be treated withare as the oe�ients ρ, µ are disontinuous aross Γ and thus, e. g., div σis not de�ned. It should rather be interpreted in a weak sense. The weakformulation of (2.13) is given below in Setion 2.1.4.



18 2. Governing equations2.1.3. Boundary onditionsIn the two-phase �ow models (2.9)�(2.10) and (2.13) suitable boundary ondi-tions on ∂Ω have to be added. We distinguish between essential and naturalboundary ondition. Let the boundary Σ = ∂Ω be partitioned in a part
ΣN ⊂ Σ where natural boundary onditions are imposed and a remainingpart ΣD = Σ \ ΣN with essential boundary onditions.The essential boundary onditions are of Dirihlet type and are used for model-ing in�ow (in�ow boundary ondition) and walls (no-slip boundary ondition).The in�ow boundary ondition presribes the veloity at the in�ow boundary
Σin ⊂ ΣD, u(x, t) = uin(x, t), (x, t) ∈ Σin × [t0, tf ],with uin suh that uin · n ≤ 0 on Σin holds. The no-slip boundary onditionpresribes the veloity on Σwall ⊂ ΣD to be equal to the tangential veloityuwall of the related wall,u(x, t) = uwall(x, t), (x, t) ∈ Σwall × [t0, tf ],with uwall · n = 0 on Σwall. For a �xed wall we have uwall = 0, thus homoge-neous Dirihlet boundary onditions on Σwall. In the following we representin�ow and no-slip boundary onditions in a ombined way byu(x, t) = uD(x, t), (x, t) ∈ ΣD × [t0, tf ]. (2.17)Natural boundary onditions are usually applied to model out�ow (out�owboundary ondition):

σn = −pextn on ΣN × [t0, tf ].Here pext is a given external pressure. One usually hooses pext = 0, thus weget a homogeneous natural boundary ondition on ΣN . In the following weassume
σn = 0 on ΣN × [t0, tf ]. (2.18)A disussion on alternative out�ow boundary onditions an be found in[Tur99℄.2.1.4. Weak formulationWe �rst ollet some useful results on partial integration. We assume that

p : Ω→ R and u,v : Ω→ R
3 are su�iently smooth funtions. Then

∫

Ω

∇p · u dx = −
∫

Ω

p divu dx+

∫

∂Ω

pu · n ds.



2.1. A ontinuous model for two-phase �ow 19A simple alulation shows
−
∫

Ω

(
divD(u)

)
· v dx =

1

2

∫

Ω

tr
(D(u)D(v)

)
dx− ∫

∂Ω

(D(u)n) · v ds,where tr denotes the trae operator for matries, i. e., trM =
∑N

i=1Mii for
M ∈ R

N×N .For the weak formulation of (2.13) we introdue the spaesV := (H1(Ω))3,V0 := {v ∈ V : v = 0 on ΣD },VD := {v ∈ V : v = uD on ΣD },

Q := L2,0(Ω) = { q ∈ L2(Ω) :

∫

Ω

q dx = 0 }.We de�ne the bilinear forms
m : V×V→ R : m(u,v) :=

∫

Ω

ρuv dx,
a : V×V→ R : a(u,v) :=

1

2

∫

Ω

µ tr
(D(u)D(v)

)
dx,

=
1

2

∫

Ω

µ

3∑

i,j=1

[D(u)
]

ij

[D(v)
]

ij
dx

b : V×Q→ R : b(v, q) := −
∫

Ω

q div v dx,and the trilinear form
n : V×V×V→ R : n(u;v,w) :=

∫

Ω

ρ(u · ∇v)w dx.For the weak formulation of the CSF term we introdue the linear form
fΓ : V→ R : fΓ(v) :=

∫

Γ

τκn · v ds. (2.19)The L2 salar produt in L2(Ω) is denoted by
(g, h)0 :=

∫

Ω

g · h dx.



20 2. Governing equationsNote that for u,v ∈ V, p ∈ Q we get by partial integration
−
∫

Ω

div(σ)v dx = a(u,v) + b(v, p)− ∫
∂Ω

σnv ds. (2.20)Assuming homogeneous natural boundary onditions on ΣN , i. e., σn|ΣN = 0,all boundary integrals aused by partial integration vanish for v ∈ V0. Thenthe weak formulation of (2.13) is as follows:Find (u, p) ∈ VD ×Q suh that for all t ∈ [t0, tf ]

m(
∂u
∂t
,v) + n(u;u,v)

+ a(u,v) + b(v, p) = (ρg,v)0 + fΓ(v) for all v ∈ V0, (2.21)
b(u, q) = 0 for all q ∈ Q, (2.22)initial ondition u|t=t0 = u0 in Ω.2.2. Loating the interfaeThe CSF model (2.13) has to be supplemented by some interfae loalizationtehnique, beause the surfae fore fΓ and the oe�ients ρ, µ are dependingon Γ. Several interfae loalization tehniques an be found in the literature.Most of these methods are either of front-traking or of front-apturing type.We refer to [Smo01℄ for a survey on this topi. Most of these methods arestrongly onneted to disretization onepts and often they annot be for-mulated in a ontinuous manner. Therefore disretization notions are used inthe disussion of these methods below.The front-traking methods are based on an expliit representation of theinterfae as a disretized manifold, whih is evolved in time. Either the gridis �tted to the interfae and deformed aording to the �ow �eld (Lagrangianapproah), or a separate representation is used for the interfae, e. g., someinterfae mesh, while the grid disretizing the omputational domain is kept�xed (Eulerian approah).The Lagrangian front-traking approah is mostly used for simulations of free-surfae �ows (f. [Bän01, Beh02℄), where the omputational domain oversonly one phase and the moving interfae is part of the domain's boundary.There are only few appliations of this method to two-phase �ows (e. g.,



2.2. Loating the interfae 21[JT94, TBM92, Tez07℄). The main di�ulty of this method is to preventgrid deterioration over time. Non-loal updating strategies ranging from sim-ple projeting methods to omplete remeshing are used to keep the quality ofthe elements.In Eulerian front-traking methods (e. g., [UT92, TBE+01, GGL+98, MCN03,DFG+06, Mao07℄) the interfae is represented by a separate data struturestoring the position and onnetivity of marker points on the interfae. Thesemarker points are individually adveted by the loal veloity �eld. During theevolution of the interfae, points have to be inserted or removed to providean aurate representation of the interfae. If the topology of the interfaehanges (e. g., when bubbles merge or break up), a proper update of theinterfae representation is hard to realize, in partiular for the 3D ase, whihis a major drawbak of this method. However, in [ZALC05℄ suh a method isapplied to three-dimensional droplet break up yielding satisfatory results.The most popular front-apturing methods are the Volume of Fluids (VOF)method and the level set method. In both ases the interfae is de�ned im-pliitly by some indiator funtion, the so-alled VOF or level set funtion,respetively.The VOF method (see e. g., [HN81, GW01, BKW04℄) is a volume-traking ap-proah whih uses a ell-wise onstant funtion to indiate the volume frationof a ertain phase for eah ell. If ombined with onservative �nite volumeshemes, one bene�t of the method is its onservation of mass property. Amajor disadvantage is the non-uniqueness of the interfae loation. For the ad-vetion of the VOF funtion and the omputation of normals and urvature asharp interfae has to be reonstruted loally from the volume fration infor-mation in eah time step. If one tries to keep the interfae relatively smooth,this task is not straight-forward. Therefore, several interfae reonstrutionalgorithms have been developed and improved over the years. A omparisonof some VOF methods is given in [Rud97℄.For the level set method (f. [CHMO96, OF01, OS88, Sus03℄) the interfaeis given by the zero-level set of a ontinuous funtion, whih is positive inthe one phase and negative in the other. Thus the position of the interfae isuniquely desribed and an be reonstruted from its impliit representation (ifneeded). Moreover, topology hanges an be handled without further e�ort.A drawbak of this method is that onservation of mass is not inherentlyinorporated in it.The level set tehnique has been suessfully used in many two-phase in-ompressible �ow simulations. By far most of these simulations use �nite



22 2. Governing equationsdi�erene or �nite volume disretization methods (f. [OF01, Set99℄ and thereferenes therein and [Sus03℄). There are relatively few publiations in whihthe level set method is ombined with �nite element disretization tehniques.Suh a ombination for a 2D simulation is presented in [Tor00, TE00℄ and[Smo01, Smo05℄. Other referenes are [PS01, Hys06℄. In [MR06, CMR08℄the level set equation is disretized by a disontinuous Galerkin method. InSetion 2.2.1 a more detailed desription of the level set method is given.2.2.1. The level set methodThe level set method was introdued by Sethian and Osher [OS88℄. Anoverview of the method and its appliations is given in [Set99, OF01℄.The basi idea of the level set method is to represent the interfae Γ impliitlyby the zero level set of some ontinuous, salar funtion ϕ : Ω × [t0, tf ] → R,i. e.,
Γ(t) = {x ∈ Ω : ϕ(x, t) = 0 }, t ∈ [t0, tf ].Moreover, the sign of ϕ(x, t) indiates in whih phase x is loated, i. e., whetherx ∈ Ω1(t) or x ∈ Ω2(t). As a onvention, we assume ϕ(·, t) < 0 in Ω1(t) and

ϕ(·, t) > 0 in Ω2(t). There are many possible hoies of suh funtions ϕ.From the omputational point of view the most onvenient one is the signeddistane funtion, i. e.,
|ϕ(x, t)| = dist(x,Γ(t)).For this hoie we have ‖∇ϕ‖ = 1. In pratie, we will use an approximativesigned distane funtion for ϕ. A 2D example of a level set funtion for thesetting shown in Figure 2.1 is given in Figure 2.3.We assume that the initial loation Γ|t=t0 of the interfae is known, givenby an initial value for the level set funtion ϕ(x, t0) = ϕ0(x). The evolutionof the interfae is determined by the loal �ow �eld u|Γ as the interfae istransported by the moving �uid. Formulated in a Lagrangian manner of amoving oordinate system, if x(t) ∈ Ω is the position of a partile movingwith the �uid andif x(t0) ∈ Γ(t0), then x(t) ∈ Γ(t) for all t ∈ [t0, tf ]. (2.23)Rewriting (2.23) in terms of the level set funtion ϕ, for eah x(t0) ∈ Γ(t0)we obtain

ϕ(x(t), t) = ϕ(x(t0), t0) = 0 for all t ∈ [t0, tf ].
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Figure 2.3.: 2D level set funtion ϕ for two-phase example from Figure 2.1.Extending this to the whole domain Ω, for eah x(t0) ∈ Ω

ϕ(x(t), t) = ϕ(x(t0), t0) = const for all t ∈ [t0, tf ].Hene,
0 =

d

dt
ϕ(x(t), t)

= ϕx(x, t) ẋ(t) + ϕt(x, t) for all (x(t), t) ∈ Ω× [t0, tf ]. (2.24)Note that ẋ(t) = u(x(t), t), as u denotes the veloity of partiles. Substitutingthis in (2.24) we obtain the following evolution equation for the level setfuntion ϕ,
ϕt + u · ∇ϕ = 0 in Ω× [t0, tf ]. (2.25)(2.25) is alled the level set equation. Note that (2.25) is a pure hyperboliproblem. We introdue the Sobolev spae V := H1(Ω). Then a weak formu-lation of (2.25) is given byFind ϕ ∈ V suh that for all t ∈ [t0, tf ]

(ϕt, v)0 + (u · ∇ϕ, v)0 = 0 for all v ∈ V. (2.26)



24 2. Governing equationsOther weak formulations for hyperboli problems an be found in [QV94℄.One advantage of the level set approah is the fat that geometri propertiesof the interfae Γ suh as normals and urvature an be easily omputed:n =
∇ϕ
‖∇ϕ‖ , (2.27)

κ = − divn = − div
∇ϕ
‖∇ϕ‖ . (2.28)Remark 2.3The omputation of urvature is needed for the evaluation of the surfae foreterm fΓ, f. (2.19). Instead of formula (2.28), whih requires the omputationof seond order derivatives of ϕ, we use a Laplae-Beltrami tehnique desribedin Setion 5.3 whih only needs �rst order derivatives of ϕ. As we assume

ϕ ∈ H1(Ω), learly the latter approah is more suitable. ⋄The jumps in the oe�ients ρ and µ an also be desribed by using the levelset funtion ϕ. Introduing the Heaviside funtion H : R→ R,
H(x) =







0 x < 0,

0.5 x = 0,

1 x > 0,we de�ne
ρ(ϕ) := ρ1 + (ρ2 − ρ1)H(ϕ), µ(ϕ) := µ1 + (µ2 − µ1)H(ϕ). (2.29)Even though the level set method is a very elegant method from the mathe-matial point of view, it also su�ers from some nasty features. Firstly, duringthe evolution of the level set funtion, the signed distane property is lost andhas to be reestablished from time to time. This reparametrization has to behandled with are as the zero level set should be kept �xed or moved by onlya `small' amount. Seondly, the disretization of the Navier-Stokes equationsindues loss or gain of mass as the method is not inherently mass-onservingfor a disrete divergene-free veloity �eld uh. This has to be orreted bysome suitable strategy. These issues are disussed in Chapter 8.
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OverviewIn the following the main features of the numerial methods are presented,whih are used for solving the two-phase �ow problem disussed in the previ-ous hapter. The desription is rather short and intends to give a shematioverview of the overall struture of the solution strategy, see also Figure 2.4 fora sketh of the outline. A more detailed desription of the several omponentsis given in the Chapters 3�9.To be able to disretize the phase interfae with a high resolution, an adaptivere�nement algorithm based on multilevel tetrahedral grids is applied. Thisallows for a highly re�ned mesh lose to the interfae and a relatively oarsemesh in other regions of the domain. If the interfae is moving (like in theexample of the rising bubble), the mesh an easily be adapted to follow theinterfae by appropriate re�nement and oarsening of the tetrahedral elementsfrom time to time. The re�nement algorithm is desribed in Chapter 3.Both Navier-Stokes and level set equations are disretized in spae by �nite el-ements. We use P2 �nite elements for the level set funtion whih are stabilizedby streamline di�usion (SDFEM). For the disretization of the Navier-Stokesequations P2-FE for the veloity and P1-FE or extended PΓ
1 -FE for the pres-sure are used. The Taylor-Hood (P2-P1) �nite element pair is known to beLBB stable. For the P2 − PΓ

1 �nite element pair this is an open question. Inour simulations we did not experiene any stability problems. The jumpingoe�ients are treated by means of a speial quadrature strategy. More detailsan be found in Chapter 4.The numerial treatment of surfae tension raises (at least) two hallengingissues whih are addressed in Chapter 5.
• For the weak formulation of the CSF term a Laplae-Beltrami tehniqueis used avoiding the alulation of seond derivatives when omputingthe urvature. The CSF term is disretized as a surfae integral, so thereis no need for numerially approximating the Dira delta distribution inthe volume integral formulation. In Setion 5.3 we treat this issue.
• Due to the disontinuous pressure jump aross the interfae in pres-27



28 Overviewene of surfae tension fores, known as the Laplae-Young law, it isadvantageous to swith to another FE spae for the pressure variable(PΓ
1 -FE instead of P1-FE). The onstrution of appropriate FE spaesis disussed in Setion 5.4.For the time disretization impliit shemes like the one-step theta sheme orthe Frational Step sheme are applied. For the Frational Step sheme twodi�erent variants � one with operator splitting and one without � are pre-sented. Espeially the time disretization of the CSF term has to be handledwith are, as it leads to restritive time step sizes if it is treated expliitly. Ineah (maro) time step a oupled Navier-Stokes and level set problem has to besolved. Here the problem is deoupled by introduing a �xed point approah,whih an be seen as some kind of Piard iteration. Time disretization andoupling strategy are disussed in Chapter 6.The solution of the disrete problems is topi of Chapter 7. The nonlinear-ity of the Navier-Stokes problem is treated by a defet orretion approah.Krylov subspae methods are used as iterative solvers for the linear problems.For the saddle point problems an inexat Uzawa method (Shur omplementapproah) is applied. Preonditioning of the Shur omplement operator hasto take into aount the jumping oe�ients aused by di�erent material prop-erties in the two phases.Even though the level set approah is very attrative for interfae apturing,there are some disadvantages that have to be overome. During the advetionproess, the signed distane funtion property gets lost and has to be reestab-lished by a ertain reparametrization. A variant of the fast marhing methodhas turned out to be a favorable hoie for this task. As onservation of massis not inherently inorporated into the method, it is enfored arti�ially bya simple orretion of the level set funtion. These topis are addressed inChapter 8.Finally, Chapter 9 desribes the struture and design of the software pakageDROPS [DRO℄, where all the aforementioned methods have been implemented.DROPS is written in C++ and developed by a ouple of people at the IGPM,RWTH Aahen University, Germany. The software is applied to simulate thehydrodynamis and heat and mass transfer in two-phase �ow problems arisingin the Collaborative Researh Center SFB 540 [SFB℄.Remark 2.4In the following we brie�y motivate the hoie of the numerial methods.Due to the nested multilevel hierarhy of tetrahedral meshes whih allows sim-ple re�nement and also oarsening routines we an realize a high resolution



29DisretizationGeometrial aspets Ch. 3
• grids: multilevel tetrahedral grid hierarhy
• adaptivity: loal re�nement at the interfaeSpatial disretization by FEM Ch. 4
• P2-P1-FE for veloity, pressure
• stabilized FEM for level set equationTreatment of surfae tension Ch. 5
• modi�ed pressure spae (XFEM)
• improved Laplae-Beltrami disretization of fΓTime disretization Ch. 6

• one-step θ-sheme
• frational step sheme
• oupling of level set and Navier-StokesIterative Solvers Ch. 7

• Navier-Stokes: linearization + defet orretion
• Oseen: Uzawa-type methods + general Krylov-type methods
• preonditioningReparametrization Ch. 8
• redistaning of level set funtionImplementation Ch. 9
• data strutures + algorithms
• parallelization aspetsFigure 2.4.: Overview of numerial methods and outline of Part II of the thesis.



30 Overviewlose to the interfae Γ. For the loal re�nement in that area we need a suitablemarking strategy. For this the level set funtion is very well suited, beauseit yields a good approximation of the distane to the interfae. Another im-portant reason why we use the level set tehnique is the fat that topologialhanges of the interfae (e. g., ourring during droplet-droplet interation)an be handled without further e�ort. For interfae traking approahes thisis a more deliate task, as the interfae mesh has to be ompletely restru-tured. Also the VOF method su�ers from a bad interfae reonstrution inthis ase.The �nite element method is a �exible disretization method, whih an dealwith omplex geometries. Due to the use of �nite element disretizationson a nested multilevel grid hierarhy, multigrid solution tehniques an beapplied. A further nie property of the �nite element approah is that we anapply partial integration to the Laplae-Beltrami operator and thus eliminatethe seond order derivatives that our in the urvature κ. A disadvantageompared to �nite volume methods is the fat that the disretization has tobe stabilized for onvetion-dominated problems and that the �nite elementmethod is not onservative.We use impliit time integration shemes to avoid the time step restritionsof expliit methods for small grid sizes h.



3. Adaptive multilevelre�nement3.1. Multilevel grid hierarhyWe �rst introdue some notions for the geometri entities by the followingde�nitions.De�nition 3.1 (Triangulation)A �nite olletion T of tetrahedra T ⊂ Ω is alled a triangulation of Ω (or Ω)if the following holds:1. meas3(T ) > 0 for all T ∈ T ,2. ⋃T∈T T = Ω,3. int(S) ∩ int(T ) = ∅ for all S, T ∈ T with S 6= T .Here int(U) means the interior of the set U ⊂ Ω. ⋄De�nition 3.2 (Consisteny)A triangulation T is alled onsistent if the intersetion of any two tetrahedrain T is either empty, a ommon fae, a ommon edge or a ommon vertex. ⋄De�nition 3.3 (Stability)A sequene of triangulations (T0, T1, T2, . . .) is alled stable if all angles of alltetrahedra in this sequene are uniformly bounded away from zero. ⋄It is known that for �nite element disretizations in many ases the weaker(maximal angle) ondition �all angles of all tetrahedra are uniformly boundedaway from π� would be su�ient. However, using the latter ondition, strongerrequirements on the robustness of iterative solvers are needed, whih an beavoided when using the minimal angle ondition in De�nition 3.3.De�nition 3.4 (Re�nement)For a given tetrahedron T a triangulation K(T ) of T is alled a re�nementof T if |K(T )| ≥ 2 and any vertex of any tetrahedron T ′ ∈ K(T ) is either a31



32 3. Adaptive multilevel re�nementvertex or an edge midpoint of T . In this ase T ′ is alled a hild of T and Tis alled the parent of T ′.A re�nement K(T ) of T is alled regular if |K(T )| = 8, otherwise it is alledirregular.A triangulation Tk+1 is alled re�nement of a triangulation Tk 6= Tk+1 if forevery T ∈ Tk either T ∈ Tk+1 or K(T ) ⊂ Tk+1 for some re�nement K(T ) of
T . ⋄De�nition 3.5 (Multilevel triangulation)A sequene of onsistent triangulationsM = (T0, . . . , TJ ) is alled a multileveltriangulation of Ω if the following holds:1. For 0 ≤ k < J : Tk+1 is a re�nement of Tk.2. For 0 ≤ k < J : if T ∈ Tk ∩ Tk+1, then T ∈ TJ .The tetrahedra T ∈ TJ are alled the leaves ofM. Note that T is a leaf i� Thas no hildren inM.A tetrahedron T ∈M is alled regular if T ∈ T0 or T resulted from a regularre�nement of its parent. Otherwise T is alled irregular.A multilevel triangulationM is alled regular if all irregular T ∈M are leaves(i. e., have no hildren inM).
T0 is alled the oarsest or initial triangulation, TJ is alled the �nest trian-gulation. ⋄Remark 3.6LetM be a multilevel triangulation and Vk (0 ≤ k ≤ J) be the orresponding�nite element spaes of ontinuous funtions p ∈ C(Ω̄) suh that p|T ∈ Pqfor all T ∈ Tk (q ≥ 1). The re�nement property 1 in De�nition 3.5 impliesnestedness of these �nite element spaes: Vk ⊂ Vk+1. ⋄De�nition 3.7 (Hierarhial deomposition of M)LetM = (T0, . . . , TJ) be a multilevel triangulation of Ω. For every tetrahedron
T ∈ M a unique level number ℓ(T ) is de�ned by

ℓ(T ) := min{ k : T ∈ Tk }.The set Gk ⊂ Tk,
Gk := {T ∈ Tk : ℓ(T ) = k }is alled the hierarhial surplus on level k, k = 0, 1, . . . , J . Note that

G0 = T0, Gk = Tk \ Tk−1 for k = 1, . . . , J.



3.2. Adaptive re�nement 33The sequene H = (G0, . . . ,GJ ) is alled the hierarhial deomposition ofM.Note that the multilevel triangulationM an be uniquely reonstruted fromits hierarhial deomposition due to re�nement property 2 in De�nition 3.5.⋄Remark 3.8The hierarhial deomposition indues simple data strutures in a anonialway. The tetrahedra of eah hierarhial surplus Gk are stored in a separatelist. Thus every tetrahedron T ∈ M is stored exatly one sine T has aunique level number ℓ(T ). By introduing unique level numbers also for ver-ties, edges and faes, these sub-simplies an be stored in the same manner:For a sub-simplex S the level number ℓ(S) is de�ned as the level of its �rstappearane. Additionally, the objets are linked to ertain orresponding ob-jets by pointers (e. g., a tetrahedron is linked to its verties, edges, faes,hildren and parent). ⋄3.2. Adaptive re�nementIn this setion we desribe a re�nement algorithm whih is, apart from someminor modi�ations, the algorithm presented in [Bey95, Bey98℄. This methodis based on similar ideas as the re�nement algorithms in [BSW83, BBJ+97℄.We restrit ourselves to tetrahedral meshes. However, the method an easilybe modi�ed suh that it is appliable to other element types suh as, forexample, hexahedra and pyramids.The re�nement strategy is based on a set of regular and irregular re�nementrules (also alled red and green rules, due to [BSW83℄), whih are desribedin the following two setions. The regular and irregular rules are loal in thesense that they are applied to a single tetrahedron. These rules are appliedin a (global) re�nement algorithm that desribes how the loal rules an beombined to ensure onsisteny and stability, f. De�nitions 3.2 and 3.3.3.2.1. The regular re�nement ruleLet T be a given tetrahedron. For the onstrution of a regular re�nementof T it is natural to onnet midpoints of the edges of T by subdividing eahof the faes into four ongruent triangles. This yields four sub-tetrahedra atthe orners of T (all similar to T ) and an otahedron in the middle. Thisotahedron is further subdivided into four sub-tetrahedra with equal volume



34 3. Adaptive multilevel re�nement

Figure 3.1.: Regular re�nement.(f. Figure 3.1). A stable tetrahedral regular re�nement strategy, based on anidea from [Fre42℄, is presented in [Bey95, Bey00℄. We reall this method.Let T = [x(1), x(2), x(3), x(4)] be a tetrahedron with ordered verties x(1), x(2),
x(3), x(4) and

x(ij) :=
1

2
(x(i) + x(j)) , 1 ≤ i < j ≤ 4,the midpoint of the edge between x(i) and x(j). The regular re�nement

K(T ) := {T1, . . . , T8} of T is onstruted by the (red) rule
T1 := [x(1), x(12), x(13), x(14)] , T5 := [x(12), x(13), x(14), x(24)] ,

T2 := [x(12), x(2), x(23), x(24)] , T6 := [x(12), x(13), x(23), x(24)] ,
T3 := [x(13), x(23), x(3), x(34)] , T7 := [x(13), x(14), x(24), x(34)] ,

T4 := [x(14), x(24), x(34), x(4)] , T8 := [x(13), x(23), x(24), x(34)] .

(3.1)
T1, . . . , T4 are the sub-tetrahedra at the orners of T , and T5, . . . , T8 form theotahedron in the middle of T . In [Bey00℄ it is shown that for any T therepeated appliation of this rule produes a sequene of onsistent triangula-tions of T whih is stable. For a given T all tetrahedra that are generated insuh a reursive re�nement proess form at most three similarity lasses.3.2.2. Irregular re�nement rulesLet T be a given onsistent triangulation. We selet a subset S of tetrahedrafrom T and assume that the regular re�nement rule is applied to eah of thetetrahedra from S. In general the resulting triangulation T ′ will not be on-sistent. The irregular (or green) rules are used to make this new triangulation



3.2. Adaptive re�nement 35onsistent. For this we introdue the notion of an edge re�nement pattern.Let E1, . . . , E6 be the ordered edges of T ∈ T . We de�ne the 6-tuple
R(T ) = (r1, . . . , r6) ∈ {0, 1}6by:

• ri = 1 if Ei is an edge of a tetrahedron S ∈ S (i. e., edge Ei is re�nedand has two sub-edges in T ′) and
• ri = 0 otherwise (i. e., edge Ei is not re�ned) .For T ∈ S we have R(T ) = (1, . . . , 1). For T ∈ T \S the ase R(T ) = (0, . . . , 0)orresponds to the situation that the tetrahedron T does not ontain anyverties from T ′ at the midpoints of its edges. For eah of the 26 − 1 possiblepatterns R 6= (0, . . . , 0) there exists a orresponding re�nement K(T ) of T (inthe fashion of (3.1)) for whih the verties of the hildren oinide with vertiesof T or with the verties at the midpoints on the edges Ei with ri = 1. Thisre�nement, however, is not always unique. This is illustrated in Figure 3.2.

Figure 3.2.: Non-unique fae re�nement.To obtain a onsistent triangulation in whih the subdivision of adjaent faesof neighboring tetrahedra mathes speial are is needed. One way to ensureonsisteny is by introduing a so-alled onsistent vertex numbering:De�nition 3.9 (Consistent vertex numbering)Let T1 and T2 be two adjaent tetrahedra with a ommon fae F = T1 ∩ T2and loal vertex ordering
Tl = [x

(1)
l , x

(2)
l , x

(3)
l , x

(4)
l ], l = 1, 2.The pair (T1, T2) has a onsistent vertex numbering, if the ordering of theverties of F indued by the vertex ordering of T1 oinides with the oneindued by the vertex ordering of T2. A onsistent triangulation T has aonsistent vertex numbering if every two neighboring tetrahedra have thisproperty. ⋄



36 3. Adaptive multilevel re�nementRemark 3.10We note that a onsistent vertex numbering an be onstruted in a rathersimple way. Consider an (initial) triangulation T̃ with an arbitrary numberingof its verties. This global numbering indues a anonial loal vertex orderingwhih is a onsistent vertex numbering of T̃ . Furthermore, eah re�nementrule an be de�ned suh that the onsistent vertex numbering property of theparent is inherited by its hildren by presribing suitable loal vertex orderingsof the hildren. (3.1) is an example of suh a rule. Using suh a strategy aonsistent triangulation T̃ ′ that is obtained by re�nement of T̃ aording tothese rules also has a onsistent vertex numbering. ⋄Assume that the given triangulation T has a onsistent vertex numbering. Fora fae with a pattern as in Figure 3.2 one an then de�ne a unique fae re�ne-ment by onneting the vertex with the smallest number with the midpointof the opposite edge. For eah edge re�nement pattern R ∈ {0, 1}6 we thenhave a unique rule. We emphasize that if for a given tetrahedron T the edgere�nement pattern R(T ) is known, then for the appliation of the regular orirregular rules to this tetrahedron no information from neighboring tetrahedrais needed. Clearly, for parallelization this is a very nie property.3.2.3. Multilevel re�nement algorithmUp to now we disussed how the onsisteny of a triangulation an be ahievedby the hoie of suitable irregular re�nement rules based on the onsistentvertex numbering property. We will now explain how the regular and irregularrules an be ombined in a repeated re�nement proedure to obtain a stablesequene of onsistent triangulations. The ruial point is to allow only there�nement of regular tetrahedra, i. e., hildren of irregularly re�ned tetrahedra,also alled green hildren, are never re�ned. If suh a green hild T is markedfor re�nement, instead of re�ning T the irregular re�nement of the parent willbe replaed by a regular one. As the appliation of the regular rule (3.1) reatestetrahedra of at most 3 similarity lasses (f. [Fre42, Bey00℄), the tetrahedrareated by a re�nement proedure aording to this strategy belong to an a-priori bounded number of similarity lasses. Hene the obtained sequene oftriangulations is stable.The idea of the so alled red-green re�nement strategy an be best explainedby a simple 2D example: for ease of presentation we use triangles instead oftetrahedra and show the ation of a one-level re�nement method. Considerthe following multilevel triangulationM = (T0, T1) as depited in Figure 3.3.
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T0 T1Figure 3.3.: Initial multilevel triangulation with some leaf tetrahedra marked forre�nement (indiated by shading).In T1 two triangles are marked (by shading) for re�nement. A one-level re-�nement algorithm (like the one desribed in [BSW83℄) only uses the �nesttriangulation T1 as input. It �rst applies the regular re�nement rule (the soalled �red re�nement�) to marked regular triangles and to the parents of greenhildren, whih are either marked or neighbors of marked triangles � greenhildren are never re�ned beause of stability reasons. This red re�nementof ourse yields an inonsistent triangulation (f. Figure 3.4 in the middle).Thus in the next step appropriate irregular re�nement rules are applied toavoid hanging nodes (�green losure�). The output of the one-level re�nementalgorithm is the new triangulation T2 (f. Figure 3.4 on the right).
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T1

T2Figure 3.4.: One-level red/green re�nement.The new triangulation T2 is onsistent, but not a re�nement of T1 in the senseof De�nition 3.4. Related to this, the orresponding FE spaes are not nested,whih is not favorable if one wants to use multigrid solvers for the solution ofthe linear systems. Another important disadvantage is the fat that it is notobvious how to treat oarsening of the grid, whih is also an important task,if the re�nement zones are moving in time. This, for example, ours in therising bubble problem, where tetrahedra in the lower part of the grid have tobe unre�ned, when the interfae has moved further upwards.In multilevel re�nement algorithms both input and output are multilevel tri-angulations (f. De�nition 3.5). That means that in general the algorithm notonly a�ets the �nest triangulation like in the ase of the one-level method, butthe whole multilevel triangulation, whih an be seen in the next example. Themultilevel method is more ompliated than the one-level algorithm, but o�ersimportant advantages: Property 1 of De�nition 3.5 assures the nestedness ofthe belonging FE spaes, f. Remark 3.6. The multilevel struture also allows



38 3. Adaptive multilevel re�nementto treat loal re�nement and oarsening in a similar way. In view of theseadvantages we implemented a multilevel re�nement algorithm in DROPS.For the desription of the multilevel re�nement algorithm we introdue thenotions of status and mark of a tetrahedron. Let M = (T0, . . . , TJ ) be amultilevel triangulation that has been onstruted by applying the regularand irregular re�nement rules and let H = (G0, . . . ,GJ ) be the orrespondinghierarhial deomposition. Every tetrahedron T ∈ H is either a leaf of M(i.e., T ∈ TJ ) or it has been re�ned. The label status is used to desribe thisproperty of T :For T ∈ H : status(T ) =







NoRef if T is a leaf ofM,RegRef if T is regularly re�ned inM,IrregRef if T is irregularly re�ned inM.The label IrregRef also ontains the number of the irregular re�nement rule(one out of 63) that has been used to re�ne T , i.e., the binary representationof status(T ) oinides with the edge re�nement pattern R(T ) of T .In adaptive re�nement an error estimator (or indiator) is used to mark ertainelements of TJ for further re�nement or for deletion. For this the label markis used:For T ∈ H : mark(T ) =







Ref if T ∈ TJ is marked for re�nement,Del if T ∈ TJ is marked for deletion,status(T ) otherwise.
We desribe a multilevel re�nement algorithm known in the literature. Thebasi form of this method was introdued by Bastian [Bas96℄ and developedfurther in the UG-group [BBJ+97, BBJ+99, UG℄. We use the presentation asin [Bey95, Bey98℄, whih is shown in Algorithm 3.11.



3.2. Adaptive re�nement 39Algorithm 3.11 (Multilevel re�nement)Algorithm SerRe�nement(G0, . . . ,GJ)for k = J, . . . , 0 do // phase IDetermineMarks(Gk); (1)MarksForClosure(Gk); (2)for k = 0, . . . , J do if Gk 6= ∅ then // phase IIif k > 0 then MarksForClosure(Gk); (3)if k < J then Unre�ne(Gk); (4)Re�ne(Gk); (5)if GJ = ∅ then J := J − 1; (6)else if GJ+1 6= ∅ then J := J + 1; (7)The input of SerRe�nement onsists of a hierarhial deomposition
H = (G0, . . . ,GJ )in whih all re�ned tetrahedra T are labeled by mark(T ) = status(T ) aordingto their status and the unre�ned T ∈ TJ have mark(T ) ∈ {NoRef,Ref,Del}.The output is again a hierarhial deomposition, where all tetrahedra aremarked aording to their status.The main idea underlying the algorithm SerRe�nement is illustrated using themultilevel triangulation (T0, T1) from above. The hierarhial deomposition

H and the orresponding marks are shown in Figure 3.5.
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G1

G0

mark(T ) = NoRefmark(T ) = RegRefmark(T ) = IrregRefmark(T ) = RefFigure 3.5.: Input hierarhial deomposition.Note that for the two shaded triangles in G1 we have status(T ) 6= mark(T ).For all other triangles status(T ) = mark(T ) holds. In phase I of the algo-rithm (top�down: (1),(2)) only marks are hanged. In DetermineMarks some



40 3. Adaptive multilevel re�nement
G̃1

G̃0Figure 3.6.: After phase I.

Gnew
2

Gnew
1

Gnew
0Figure 3.7.: Output hierarhial de-omposition.tetrahedra are labeled with new marks, whih are of the type RegRef (forred re�nement) or NoRef (for oarsening). The green losure marks are setin MarksForClosure, where appropriate irregular re�nement marks are deter-mined from the edge re�nement patterns to avoid hanging nodes.One phase I has been ompleted the marks have been hanged suh thatmark(T ) ∈ {NoRef,RegRef, IrregRef} holds for all T ∈ H, f. Figure 3.6. Weemphasize that all green hildren in G̃1 have mark(T ) = NoRef, as they arenot re�ned beause of stability reasons. Instead the orresponding irregularre�ned parents in G̃0 are labeled by mark(T ) = RegRef.In the seond phase (bottom�up: (3)-(5)) the atual re�nement (oarseningis not needed in our example) is onstruted: A all of Unre�ne(Gk) deletesall tetrahedra, faes, edges and verties on level k + 1, whih are not neededanymore due to hanged marks. In the subroutine Re�ne(Gk) all T ∈ Gkwith mark(T ) 6= status(T ) are re�ned aording to mark(T ) and new objets(tetrahedra, faes, edges, verties) on level k + 1 are reated. A subsequentall to MarksForClosure in (3) omputes the appropriate re�nement marksfor the new reated tetrahedra in the next sweep of the for-loop.In the output hierarhial deomposition

Hnew = (Gnew

0 ,Gnew

1 ,Gnew

2 )



3.2. Adaptive re�nement 41we havemark(T ) = status(T ) for all T ∈ Hnew, f. Figure 3.7. The output mul-tilevel triangulationMnew = (T new

0 , T new

1 , T new

2 ) is regular (f. De�nition 3.5)and is given by
T new

0 = Gnew

0 , T new

1 = Gnew

1 , T new

2 = Gnew

2 ∪{T ∈ Gnew

1 : mark(T ) = NoRef }.Note that T new

0 = T0, T new

1 6= T1 (!) and that the new �nest triangulation T new

2is the same as the triangulation T2 in Figure 3.4 resulting from the one-levelalgorithm.A more detailed disussion of the subroutines in algorithm SerRe�nement (f.Algorithm 3.11) is given in [Bey95, Bey98, Gro02℄.Remark 3.12A parallelized version of the algorithm, alled ParRe�nement, has been devel-oped and is desribed in [Gro02, GR05℄. It is based on a formal desriptionof the distributed geometri data whih is very suitable for parallelization.This formal desription was introdued in [Gro02℄ and is alled an admis-sible hierarhial deomposition, f. De�nition 9.2. It was proved that theappliation of the multilevel re�nement algorithm ParRe�nement to an inputadmissible hierarhial deomposition again yields an admissible hierarhialdeomposition. The same holds for a suitable load balaning strategy de-sribed in [Gro02℄. Both parallel re�nement algorithm and load balaningstrategy have been implemented and were suessfully applied up to a num-ber of 64 proessors. This implementation has served as a starting point for afurther parallelization of DROPS [For07℄ whih is urrently onduted by ourpartners at the Chair of Sienti� Computing, RWTH Aahen University. ⋄
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4. Spatial disretization byFinite ElementsLet T be a onsistent triangulation of Ω, e. g., T = TJ the �nest triangulationintrodued in the previous hapter. For k ≥ 1 we introdue the spaes ofpieewise polynomial ontinuous funtions,
X

k := { vh ∈ H1(Ω) : vh|T ∈ Pk ∀T ∈ T }, (4.1)
X

k
D := X

k ∩H1
0,ΣD

(Ω) (4.2)with H1
0,ΣD

(Ω) the spae of all funtions in H1(Ω) vanishing on the Dirihletboundary ΣD (in the sense of traes). For the disretization of the Navier-Stokes and level set equations we will onsider the spaes for 1 ≤ k ≤ 2, soalled P1 (pieewise linear) and P2 (pieewise quadrati) �nite elements.4.1. Disretization of the Navier-StokesequationsFor the �nite element disretization of the Navier-Stokes equations we hoose�nite dimensional subspaes Vh ⊂ V0 and Qh ⊂ Q for veloity and pressure,respetively. Here we hoose the Hood-Taylor �nite element pairVh ×Qh :=
(
X

2
D

)3 × X
1,whih ful�lls the inf-sup ondition (also known as LBB stability)

inf
qh∈Qh

supvh∈Vh

b(vh, qh)

‖vh‖1‖qh‖0
≥ β > 0 (4.3)with β > 0 independent of h. 43



44 4. Spatial disretization by Finite ElementsRemark 4.1In Setion 5.4 we will introdue an alternative �nite element spae QΓ
h forthe pressure whih allows for disontinuities at the interfae Γ and is thusmore appropriate to approximate pressure jumps indued by surfae tension.Certain theoretial questions like the LBB stability of the pair Vh × QΓ
h arestill unanswered and topis of urrent researh. ⋄We onsider the ontinuous problem in weak formulation, f. (2.21)�(2.22).For the time being we address the simple ase of homogeneous boundary ondi-tions, i. e., uD(x, t) = 0 for all (x, t) ∈ ΣD×[t0, tf ] and σn = 0 on ΣN×[t0, tf ],f. Setion 2.1.3. The treatment of non-homogeneous boundary onditions willbe disussed in Setion 4.1.1. The assoiated Galerkin disretization is givenas follows:Find uh(t) ∈ Vh and ph(t) ∈ Qh suh that for (almost every) t ∈ [t0, tf ]

m(u′
h(t),vh) + n(uh(t);uh(t),vh)

+ a(uh(t),vh) + b(vh, ph(t)) = (ρg,vh)0 + fΓ(vh) for all vh ∈ Vh,(4.4)
b(uh(t), qh) = 0 for all qh ∈ Qh,(4.5)initial ondition uh|t=t0 = u0 in Ω.Here we use the notation from Setion 2.1.4 for the bilinear forms m(·, ·),

a(·, ·), b(·, ·), the trilinear form n(·; ·, ·) and the linear form fΓ(·).Let NVh
:= dimVh and NQh

:= dimQh be the dimensions of the �niteelement spaes. For tetrahedral meshes the nodes of the P1 �nite elementare loated at the verties of the triangulation, f. Figure 4.1. Let x̂i ∈ R
3denote the spatial oordinate of the i-th P1 node, i = 1, . . . , NQh

. For the P2�nite element the nodes are loated at the verties and the midpoint of theedges of the triangulation, its spatial oordinates are denoted by x1, . . . ,xNVh
.Note that, due to vh|ΣD = 0 for all vh ∈ Vh, nodes on Dirihlet boundariesare not taken into aount for the onstrution of Vh. We introdue nodalbases {vi}i=1,...,NVh

and {qi}i=1,...,NQh
of Vh and Qh, respetively. Then byonstrution, vi(xj) = 0 and qi(x̂j) = 0 for i 6= j and vi(xi) = 1, qi(x̂i) = 1.By means of the nodal bases, the Galerkin problem (4.4)�(4.5) an be equiva-lently written in matrix-vetor notation. For this we de�ne the isomorphisms



4.1. Disretization of the Navier-Stokes equations 45
Figure 4.1.: P1 (4 nodes, on the left) and P2 �nite element (10 nodes, on the right).
JVh

: R
NVh → Vh and JQh

: R
NQh → Qh by

JVh
(x) :=

NVh∑

i=1

xi vi,

JQh
(y) :=

NQh∑

i=1

y
i
qi,

(4.6)
for all vetors x ∈ R

NVh , y ∈ R
NQh . These isomorphisms represent the linkbetween oe�ient vetors and assoiated �nite element funtions. Based onthat, the matries A,M,N(w) ∈ R

NVh
×NVh and B ∈ R

NQh
×NVh are de�nedby

〈M u, v〉 := m
(
JVh

(u), JVh
(v)
) (mass matrix),

〈Au, v〉 := a
(
JVh

(u), JVh
(v)
) (disrete di�usion),

〈N(w)u, v〉 := n
(
JVh

(w); JVh
(u), JVh

(v)
) (disrete onvetion),

〈B v, q〉 := b
(
JVh

(v), JQh
(q)
) (disrete divergene)for all u,v,w ∈ R

NVh and q ∈ R
NQh . Here 〈·, ·〉 denotes the Eulidean innerprodut of two vetors.We rewrite the Galerkin problem (4.4)�(4.5) in matrix-vetor notation:



46 4. Spatial disretization by Finite ElementsFind uh(t) ∈ R
NVh , p

h
(t) ∈ R

NQh suh that for (almost every) t ∈ [t0, tf ]

(
Mu′

h(t)
0

)

+

(
[N(uh(t)) +A] BT

B 0

)(uh(t)
p

h
(t)

)

=

(b
0

)

, (4.7)initial ondition uh|t=t0 = u0,where the upper right-hand side b is given bybi := (ρg,vi)0 + fΓ(vi), i = 1, . . . , NVhand for the initial ondition u0 the property JVh
(u0) = u0 holds.4.1.1. Non-homogeneous boundary onditionsIn the previous setion we only onsidered the disretization for homogeneousboundary onditions. We now disuss the ase with general Dirihlet boundaryonditions u = uD on ΣD × [t0, tf ]and general natural boundary onditions

σn = gN on ΣD × [t0, tf ].De�ne the �nite element spae VD
h := (X2)3 ⊃ Vh, whih also has nodes onthe Dirihlet boundary ΣD. Let NΣD := dimVD

h − dimVh be the numberof nodes on ΣD and {vD
i }i=1,...,NΣD

the orresponding nodal basis funtions.Note thatVD
h = Vh⊕span(vD

1 , . . . ,vD
NΣD

). We denote by xD
i the spatial oor-dinate of the loation of the i-th node on ΣD, i. e., xD

i is either the oordinateof a vertex on ΣD or the midpoint of an edge on ΣD.For t ∈ [t0, tf ] let uD
h (t) =

NΣD∑

i=1

αivD
isuh that uD

h (t)(xD
i ) = uD(xD

i , t) for all i = 1, . . . , NΣD . By onstrution,uD
h (t)(xi) = 0 for all i = 1, . . . , NVh

and t ∈ [t0, tf ]. We introdue JVD
h

:

R
NVh × [t0, tf ]→ VD

h with
JVD

h
(x, t) := JVh

(x) + uD
h (t) (4.8)



4.1. Disretization of the Navier-Stokes equations 47The Galerkin problem with non-homogeneous boundary onditions is as fol-lows:Find uh(t) ∈ VD
h with uh(t)|ΣD ≡ uD

h (t) and ph(t) ∈ Qh suh that for(almost every) t ∈ [t0, tf ]

m(u′
h(t),vh) + n(uh(t);uh(t),vh) + a(uh(t),vh) + b(vh, ph(t))

= (ρg,vh)0 + fΓ(vh) +

∫

ΣN

gNvh ds for all vh ∈ Vh,(4.9)
b(uh(t), qh) = 0 for all qh ∈ Qh, (4.10)initial ondition uh|t=t0 = u0 in Ω.Note that the surfae integral over ΣN in the right-hand side of (4.9) arisesfrom partial integration and substitution of the natural boundary ondition, f.(2.20). In pratie, we do not use this formulation, but the following equivalentone. Let u0

h := uh − uD
h ∈ Vh be the homogeneous part of the �nite elementsolution uh. Replaing uh(t) by u0

h(t) in (4.9)�(4.10), we obtainFind u0
h(t) ∈ Vh and ph(t) ∈ Qh suh that for (almost every) t ∈ [t0, tf ]

m((u0
h)′(t),vh) + n(uh(t);u0

h(t),vh) + n(u0
h(t);uD

h (t),vh)

+ a(u0
h(t),vh) + b(vh, ph(t))

= (ρg,vh)0 + fΓ(vh) +

∫

ΣN

gNvh ds

−m((uD
h )′(t),vh)− n(uD

h (t);uD
h (t),vh)− a(uD

h (t),vh) for all vh ∈ Vh,(4.11)
b(u0

h(t), qh) = −b(uD
h (t), qh) for all qh ∈ Qh,(4.12)initial ondition u0

h|t=t0 = u0 − uD
h (t0) in Ω.Then the seeked �nite element solution is given byuh = u0

h + uD
h .Note that the right-hand side of (4.11) ontains additional terms aountingfor the non-homogeneous Dirihlet boundary values. On the left-hand side



48 4. Spatial disretization by Finite Elementsthere are two ourrenes of the trilinear form n(·; ·, ·), hene, the matrix Nhas to be replaed by Ñ ∈ R
NVh

×NVh , where
〈Ñ(w(t))u(t), v(t)〉 := n

(
JVD

h
(w(t), t); JVh

(u(t)), JVh
(v(t))

)

+ n
(
JVh

(u(t)); uD
h (t), JVh

(v(t))
)for all u(t),v(t),w(t) ∈ R

NVh , t ∈ [t0, tf ].Writing (4.11)�(4.12) in equivalent matrix-vetor notation we obtainFind u0
h(t) ∈ R

NVh , p
h
(t) ∈ R

NQh suh that for (almost every) t ∈ [t0, tf ]

(
M(u0

h)′(t)
0

)

+

(
[Ñ(uh(t)) +A] BT

B 0

)(u0
h(t)
p

h
(t)

)

=

(b̃̃
c

)

, (4.13)initial ondition u0
h|t=0 = u0,withuh = u0

h + uD
h ,b̃ = b+ vN − vD,vN

i =

∫

ΣN

gNvi ds, i = 1, . . . , NVh
,vD

i = m((uD
h )′(t),vi) + n(uD

h (t);uD
h (t),vi) + a(uD

h (t),vi), i = 1, . . . , NVh
,

c̃j = −b(uD
h , qj), j = 1, . . . , NQh

.Thus, the disretization is very similar to (4.7), but with a di�erent right-handside and a slightly hanged disrete onvetion matrix Ñ .4.1.2. Treatment of jumping oe�ientsThe material oe�ients ρ and µ have to be handled with are as they aredisontinuous aross Γ. They our in integrals of the form
I =

∫

Ω

αG(x) dx,where α ∈ {ρ, µ} is pieewise onstant and G is a ontinuous smooth fun-tion on eah element T ∈ Th. There are two possible ways to deal with theomputation of suh integrals with disontinuous integrands:



4.1. Disretization of the Navier-Stokes equations 49(A) Integration on parts. Split the integral into two integrals on the subdo-mains,
∫

Ω

αG(x) dx = α1

∫

Ω1

G(x) dx+ α2

∫

Ω2

G(x) dx.The integrands on the right-hand side are ontinuous and smooth oneah tetrahedron and thus standard quadrature rules an be used. How-ever, tehnial di�ulties arise for tetrahedra T ∈ T whih are inter-seted by Γ, as we have to integrate over its two parts Ωi ∩ T , i = 1, 2whih are not tetrahedral in general, f. Figure 5.9. This issue is furtherdisussed in Setion 5.4.4.(B) Integration of regularized integrands. Replae the disontinuous α by aontinuous smoothed αε. This an be ahieved by replaing the Heavi-side funtion H in (2.29) by a smoothed Heaviside funtion Hε : R→ R,
Hε(x) =







0 x ≤ −ε,
ν(x

ε ) x ∈ (−ε, ε),
1 x ≥ ε.with

ν(ξ) =
1

2
+

1

32
(45ξ − 50ξ3 + 21ξ5), (4.14)f. [Tor00℄. Also other hoies of smooth transition funtions ν(ξ) anbe found in the literature, e. g., ν(ξ) =

1+sin(ξ π
2
)

2 [SSO94℄. For theapproximation of I, we apply quadrature to the integral
Iε :=

∫

Ω

αε(ϕ(x))G(x) dx.For the �rst approah we have the following error bound.Remark 4.2 (Disretization error for approah A)Assume that Γ is approximated by a pieewise planar interfae approximation
Γh with the property

|d(x)| ≤ c h2 for all x ∈ Γh,where d(x) := dist(x,Γ) is the distane funtion for Γ. For the onstrutionof suh an interfae approximation Γh we refer to Setion 5.1.2 where more



50 4. Spatial disretization by Finite Elementsdetails are given. Γh subdivides Ω into two subdomains Ωi,h, i = 1, 2. Theintegral I is approximated by integrating on both subdomains,
Ih := α1

∫

Ω1,h

G(x) dx+ α2

∫

Ω2,h

G(x) dx.Usually the integration is performed tetrahedron by tetrahedron. If a tetra-hedron T is ut by the planar interfae approximation Γh, the domains ofintegration T ∩ Ωi,h, i = 1, 2, are not neessarily tetrahedral. For more de-tails on how to integrate over the two parts of a ut tetrahedron we refer toSetion 5.4.4.In the following the error |I − Ih| is analyzed in terms of h. We introdue thesets D+
h := Ω1 \ Ω1,h, D−

h := Ω1,h \ Ω1 and Dh := D+
h ∪ D−

h . Note that Dhontains all points between Γ and Γh and that meas3(Dh) ≤ c h2. Then for
G ∈ L∞(Dh) we have
|I − Ih| ≤ |α1 − α2| ‖G‖L1(Dh) ≤ |α1 − α2| ‖G‖L∞(Dh) meas3(Dh)

≤ c h2.
(4.15)

⋄We now turn to the seond approah. Clearly, the seond method is muheasier to implement than the �rst one, but introdues a new parameter ε.For the hoie of ν(ξ) as in (4.14), an extensive analysis and omparison withthe �rst approah is given in [Tor00, Tor02℄ for the 2D ase. Based on theseinvestigations the seond approah is used in [TE00℄. We give here the maindisretization error results from [Tor02℄. Before that we have to introduesome notions for polynomial transition funtions.De�nition 4.3Let ν : [−1, 1]→ R be a polynomial with ν(−1) = 0 and ν(1) = 1. Then ν isalled a transition polynomial. ν has m ≥ 0 vanishing moments, if
∫ 1

−1

ν(ξ) ξα dξ =
1

α+ 1
for all α = 0, 1, . . . ,m.

ν has an transition smoothness of order k ≥ 0, if
ν(β)(±1) = 0 for all β = 1, . . . , k. ⋄Theorem 4.4 (Disretization error for approah B, 2D ase)We onsider the 2D ase Ω ⊂ R

2. Let QT be a quadrature formula for atriangle T suh that QTf =
∫

T f(x) dx for all polynomials f up to the order
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n. We introdue the regularization error

Eε :=

∫

Ω

(H −Hε)(ϕ(x))G(x) dxand the quadrature error
Equad :=

∫

Ω

Hε(ϕ(x))G(x) dx− ∑

T∈Th

QT (HεG).Then the total error Etot :=
∫

ΩH(ϕ(x))G(x) dx −∑T∈Th
QT (HεG) is thesum of regularization and quadrature error,

Etot = Eε + Equad. (4.16)Assuming that ε ·maxx∈Γ |κ(x)| < 1, where κ is the loal urvature of Γ, andthat ν(ξ) has m vanishing moments, for the regularization error we have
Eε ∼ εβ+2, with β = 2

⌊
m+ 1

2

⌋

. (4.17)If G ∈ Ck, Hε ∈ Ck and n > k, where n is the order of the quadrature rule
QT , then

Equad ∼
hk+2

εk+1
. (4.18)Proof. Given in [Tor02℄.Remark 4.5For the transition funtion ν(ξ) mentioned above in (4.14) we have m = 2vanishing moments and a transition smoothness of order k = 1. Thus we haveto apply a quadrature rule whih is exat up to the order of at least n = 2,yielding

Etot ∼ ε4 +
h3

ε2
.When the grid size h hanges due to re�nement the regularization parameter

ε should be saled with h suh that ε ∼ h1/2. In that ase we have
Etot ∼ h2.This is the same order of onvergene as for the �rst approah, f. (4.15) inRemark 4.2. ⋄



52 4. Spatial disretization by Finite ElementsEven though the seond approah seems to be quite onvenient, we experi-ened some ritial problems. When disretizing the mass matrix M ,
Mij =

∫

Ω

ρε(ϕ(x))vivj dx, 1 ≤ i, j ≤ NVh
,using a quadrature rule of order 2 or even of order 5 yields a matrix whih isnot always positive de�nite. This undesired e�et was also observed for othermatries involving disontinuous oe�ients and has of ourse a signi�antimpat on the onvergene behavior of the iterative solvers. We thereforefavor the �rst approah, although its implementation is more tedious, as itavoids the additional smoothing parameter ε and guarantees a positive de�nitedisretization of ellipti operators.4.2. Disretization of the level set equationThe level set equation (2.26) is also disretized by �nite elements. For thispurpose we use P2 �nite elements and introdue the �nite-dimensional spae

Vh := X
2 ⊂ H1(Ω). Note that there are no boundary onditions stated for thelevel set funtion ϕ, hene NVh

:= dimVh is equal to the number of vertiesand edges of the orresponding triangulation Th. Let {vi}i=1,...,NVh
be thenodal basis of Vh and JVh

: R
NVh → Vh the isomorphism de�ned by

JVh
(x) :=

∑

i=1,...,NVh

xi vi (4.19)for all vetors x ∈ R
NVh .As the level set equation is purely hyperboli, the standard Galerkin disretiza-tion should not be used and requires some stabilization. We apply a streamlinedi�usion stabilization whih an be seen as a Petrov-Galerkin method withtrial spae Vh and speial test funtions v̂h. For eah tetrahedron T ∈ Th astabilization parameter δT = δT (hT ,uh|T ) is hosen, where hT denotes themaximal diameter of T . The test funtions are then de�ned as
v̂h|T := vh + δTuh · ∇vh, T ∈ Th,whih indues additional di�usion in streamline diretion explaining the nameof the method. For an analysis of the streamline di�usion method and rea-sonable hoies of the stabilization parameter δT we refer to [RST96℄. We use

δT = c hT with a suitable onstant c > 0. If the veloity �eld uh shows strong



4.2. Disretization of the level set equation 53loal �utuations, the hoie δT = c hT

‖uh‖∞,T
is suggested in [Pri06℄. As this isnot well-de�ned for uh = 0 and tends to in�nity for u→ 0 we reommend touse

δT = c
hT

max {ε0/hT , ‖uh‖∞,T}instead for some small ε0 > 0.The streamline di�usion �nite element disretization of the level set equationis given by
∑

T∈Th

(ϕ′
h(t) + uh(t) · ∇ϕh(t), vh + δTuh(t) · ∇vh)0,T = 0 for all vh ∈ Vh,(4.20)where t ∈ [t0, tf ]. Introduing the matries E = E(uh) ∈ R

NVh
×NVh and

H = H(uh) ∈ R
NVh

×NVh given by
Eij :=

∑

T∈Th

(
vj , vi + δTuh · ∇vi

)

0,T
(stabilized mass matrix),

Hij :=
∑

T∈Th

(uh · ∇vj , vi + δTuh · ∇vi

)

0,T
(stabilized disrete onvetion),where 1 ≤ i, j ≤ NVh

, we rewrite (4.20) in matrix-vetor notation:Find ϕ(t) ∈ R
NVh suh that for (almost every) t ∈ [t0, tf ]

E ϕ′(t) +H ϕ(t) = 0. (4.21)
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5. Numerial treatment ofsurfae tensionDue to the Laplae-Young law, typially the pressure has a jump aross theinterfae, when surfae tension fores are present (τ 6= 0), f. Remark 5.1below. In numerial simulations, this disontinuity and inadequate approx-imation of the loalized surfae fore term often lead to strong unphysialosillations of the veloity uh at the interfae, so alled spurious veloities orspurious urrents, f. , e. g., [LNS+94, FCD+06℄. In this hapter we present analternative �nite element disretization approah whih signi�antly reduesthe size of these spurious veloities ompared to known methods. For themotivation and analysis of our approah we further simplify (2.21)�(2.22) andonsider a stationary Stokes problem with a onstant visosity (µ1 = µ2 = µin Ω). We emphasize, however, that the methods that we present are notrestrited to this simpli�ed problem but apply to the general Navier-Stokesmodel (2.21)�(2.22) as well. We introdue the following Stokes problem: �nd
(u, p) ∈ V0 ×Q suh that

a(u,v) + b(v, p) = (ρg,v) + fΓ(v) for all v ∈ V0,

b(u, q) = 0 for all q ∈ Q, (5.1)where
a(u,v) :=

∫

Ω

µ∇u∇v dx, b(v, q) = −
∫

Ω

q div v dx,with a visosity µ > 0 that is onstant in Ω. The unique solution of thisproblem is denoted by (u∗, p∗) ∈ V0 ×Q.Remark 5.1The problem (5.1) has a smooth veloity solution u∗ ∈ V0 ∩
(
H2(Ω)

)3 and apieewise smooth pressure solution p with p|Ωi
∈ H1(Ωi), i = 1, 2, whih hasa jump aross Γ. These smoothness properties an be derived as follows. Theurvature κ is a smooth funtion (on Γ). Thus there exist p̂1 ∈ H1(Ω1) suhthat (p̂1)|Γ = κ (in the sense of traes). De�ne p̂ ∈ L2(Ω) by p̂ = p̂1 in Ω1,55



56 5. Numerial treatment of surfae tension
p̂ = 0 on Ω2. Note that for all v ∈ V0,
fΓ(v) = τ

∫

Γ

κnΓ · v ds = τ

∫

Γ

p̂1nΓ · v ds
= τ

∫

Ω1

p̂1 div v dx+ τ

∫

Ω1

∇p̂1 · v dx = τ

∫

Ω

p̂ div v dx+ τ

∫

Ω

g̃ · v dx,with g̃ ∈ L2(Ω)3 given by g̃ = ∇p̂1 in Ω1, g̃ = 0 on Ω2. Thus (u∗, p∗ + τ p̂)satis�es the standard Stokes equations
a(u∗,v) + b(v, p∗ + τ p̂) = (ρg+ τ g̃,v) for all v ∈ V0,

b(u∗, q) = 0 for all q ∈ Q.From regularity results on Stokes equations and the fat that Ω is onvex weonlude that u∗ ∈ H2(Ω)∩H1
0 (Ω) and p∗ + τ p̂ ∈ H1(Ω). Thus [p∗ + τ p̂]Γ = 0(a.e. on Γ) holds, whih implies

[p∗]Γ = −τ [p̂]Γ = −τκ,i.e., p∗ has a jump aross Γ of the size τκ. ⋄Example 5.2 (Stati Bubble)A simple example that is used in the numerial experiments in Setion 10.4 isthe following. Let Ω := (−1, 1)3 and Ω1 a sphere with enter at the origin andradius r < 1. We take g = 0. In this ase the urvature is onstant, κ = − 2
r ,and the solution of the Stokes problem (5.1) is given by u∗ = 0, p∗ = τ 2

r + c0on Ω1, p∗ = c0 on Ω2 with a onstant c0 suh that ∫Ω p∗ dx = 0. ⋄The outline of this hapter is as follows. In Setion 5.1 we introdue an inter-fae approximation Γh of the interfae Γ and formulate some abstrat proper-ties of the interfae approximation our analysis is based on. Furthermore, wedesribe how the interfae approximation is implemented in our ode suh thatthe desired properties are ful�lled. In Setion 5.2 the spurious veloities aretraed bak to two major error soures, the disretization error of the surfaetension fore and the approximation error of the disontinuous pressure. Bothare analyzed in the subsequent setions. Setion 5.3 desribes the disretiza-tion of the surfae tension fore fΓ based on a Laplae-Beltrami tehnique.For this approah a disretization error of O(
√
h) is proved and some slightmodi�ation with an improved O(h) behavior is introdued. In Setion 5.4it is shown that standard �nite element spaes are not very suitable for theapproximation of funtions with a jump aross Γ due to an approximationerror of size O(

√
h). We introdue a new �nite element spae whih is moresuitable for this task, based on the extended �nite element method (XFEM)by Belytshko [MDB99, BMUP01℄.



5.1. Interfae approximation 575.1. Interfae approximationRealling the de�nition of fΓ,
fΓ(v) = τ

∫

Ω

κδΓvn dx = τ

∫

Γ

κvn ds for all v ∈ V0,we see, that this term an either be disretized by omputing a volume integralwhere the integrand ontains a (regularized) delta funtion δΓ or by omputinga surfae integral over an approximation of the interfae Γ. Both approahesan be found in the literature, see for instane [TE00, Hys06, PS01, MGCR07℄for the volume integral approah and [MCN03, GRR06, Smo05℄ for the surfaeintegral approah. We favor the surfae integral approah as it seems to bemore natural and avoids the di�ulties arising from the numerial treatmentof the delta funtion. For evaluating the surfae integral we need to knowthe loation of the interfae Γ, whih is only impliitly given by the level setfuntion. Hene, a loal interfae reonstrution method has to be appliedwhih provides an approximative interfae Γh.Before desribing how an approximation Γh of the interfae Γ an be on-struted in pratie, we �rst give some abstrat onditions whih the interfaeapproximation Γh should ful�ll (f. Setion 5.1.1). Our theoretial analysis ofthe disretization of the surfae tension fore fΓ in Setion 5.3 will be basedon these abstrat onditions. We note that due to this fat the analysis is notonly restrited to our onrete interfae reonstrution method desribed inSetion 5.1.2 but applies to any interfae reonstrution method that meetsthe requirements formulated in the onditions (5.5)�(5.7) below.5.1.1. Assumptions on ΓhFor the formulation of assumptions on the approximate interfae Γh it is on-venient to introdue the signed distane funtion
d : U → R, |d(x)| := dist(x,Γ) for all x ∈ U.Thus Γ is the zero level set of d. We assume d < 0 on the interior of Γ (thatis, in Ω1) and d > 0 on the exterior. Note that nΓ = ∇d on Γ. We de�nen(x) := ∇d(x) for all x ∈ U . Thus n = nΓ on Γ and ‖n(x)‖ = 1 for all x ∈ U .Here and in the remainder of the setion ‖ · ‖ denotes the Eulidean norm.Remark 5.3In our approah we use the disrete level set funtion ϕh as approximation forthe distane funtion d, whih is not available. ⋄



58 5. Numerial treatment of surfae tensionThe Hessian of d is denoted by H:H(x) = D2d(x) ∈ R
3×3 for all x ∈ U. (5.2)The eigenvalues of −H(x) are denoted by κ1(x), κ2(x) and 0. For x ∈ Γ theeigenvalues κi(x), i = 1, 2, are the prinipal urvatures, and κ(x) = κ1(x) +

κ2(x) is the mean urvature.We will need the orthogonal projetion P onto the tangential spae of Γ,P(x) = I− n(x)n(x)T for x ∈ U. (5.3)Using the distane funtion d we introdue assumptions on the approximateinterfae Γh. In Setion 5.1.2 below we indiate how in pratie an approxi-mate interfae Γh an be onstruted whih satis�es these assumptions. Let
{Γh}hΓ>0 be a family of polygonal approximations of Γ. Eah Γh is ontainedin U and onsists of a set Fh of triangular faes :

Γh =
⋃

F∈Fh

F. (5.4)For F1, F2 ∈ Fh with F1 6= F2 we assume that F1 ∩ F2 is either empty or aommon edge or a ommon vertex. The parameter hΓ denotes the maximaldiameter of the triangles in Fh:
hΓ = max

F∈Fh

diam(F ).By nh(x) we denote the outward pointing unit normal on Γh. This normal ispieewise onstant with possible disontinuities at the edges of the trianglesin Fh.The approximation Γh is assumed to be lose to Γ in the following sense:
|d(x)| ≤ ch2

Γ for all x ∈ Γh, (5.5)
ess infx∈Γh

n(x)Tnh(x) ≥ c > 0, (5.6)
ess supx∈Γh

‖P(x)nh(x)‖ ≤ chΓ. (5.7)Here c denotes a generi onstant independent of hΓ.Remark 5.4The onditions (5.6), (5.7) are satis�ed if
ess supx∈Γh

‖n(x)− nh(x)‖ ≤ min{c0, chΓ}, with c0 < √2, (5.8)
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T

T ′

Γ
Γh

Figure 5.1.: Constrution of approximate interfae for 2D ase.holds. This easily follows from
‖n(x)− nh(x)‖2 = 2

(
1− n(x)Tnh(x)

)
,and

‖P(x)nh(x)‖ = ‖P(x)
(n(x)− nh(x)

)
‖ ≤ ‖n(x)− nh(x)‖. ⋄5.1.2. ImplementationWe brie�y explain the approah that is used in our implementation DROPS(f. [DRO℄) for omputing Γh. Let S be the (loally re�ned) triangulationof Ω, onsisting of tetrahedra, that is used for the disretization of the �owvariables with �nite elements, f. (2.21)�(2.22). The level set equation for dis disretized with ontinuous pieewise quadrati �nite elements on a trian-gulation T , f. Setion 4.2. This triangulation is either equal to S or obtainedfrom one or a few re�nements of S, i. e., T = TJ is the �nest and S = Tk,

0 ≤ k ≤ J is a possibly oarser triangulation of the multilevel triangulation
M, f. Chapter 3. The pieewise quadrati �nite element approximation of don T is denoted by dh.We now introdue one further regular re�nement of T (subdivision of eahtetrahedron in 8 hild tetrahedra), resulting in T ′. Let I(dh) be the ontinuouspieewise linear funtion on T ′ whih interpolates dh at all verties of alltetrahedra in T ′. Note that the degrees of freedom of the P1 FE on T ′(loated at the verties) oinide with the degrees of freedom of the P2 FE on
T (loated at the verties and midpoints of edges).The approximation Γh of the interfae Γ is de�ned by

Γh := {x ∈ Ω : I(dh)(x) = 0 } (5.9)
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+ +

+

+ +

−

− −

Figure 5.2.: Sign pattern of dh on T ∈ T ′ and orresponding interfae segment
ΓT = T ∩ Γ (in gray): either a triangle or a quadrilateral.whih onsists of pieewise planar segments F = ΓT ⊂ Γh, where

ΓT := T ∩ Γh (5.10)for T ∈ T ′.The interfae mesh size parameter hΓ is the maximal diameter of these seg-ments. This (maximal) diameter is approximately the (maximal) diameterof the tetrahedra in T ′ that ontain the disrete interfae, i.e., hΓ is approx-imately the maximal diameter of the tetrahedra in T ′ that are lose to theinterfae. In Figure 5.1 we illustrate this onstrution for the two-dimensionalase. Note that in general the segments of Γh are not aligned with the faesof the tetrahedral triangulation T ′
h.Eah of the planar segments of Γh is either a triangle or a quadrilateral, de-pending on the sign pattern of dh on the orresponding T ∈ T ′, f. Figure 5.2.By onstrution the verties of a planar segment ΓT are loated on those edgesof T along whih dh hanges its sign. If there are two positive and two negativevalues of dh on the verties of T , then the orresponding interfae segment

ΓT is a quadrilateral. In all other ases ΓT is a triangle. The quadrilateralsan (formally) be divided into two triangles. Thus Γh onsists of a set Fh oftriangular faes.Speial ases may our if some of the values of dh on the verties of T areequal to zero. Let 0 ≤ n0 ≤ 4 be the number of these zero values. In thefollowing we disuss the shape of ΓT in all the ases n0 = 0, 1, 2, 3, 4.
• n0 = 0 is not a speial ase, the situation is as depited in Figure 5.2whih was disussed in the foregoing paragraph.
• For n0 = 1, 2 we distinguish two ases: If the other 4 − n0 non-zerovalues have the same sign, then ΓT is a point (n0 = 1) or a line segment
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Figure 5.3.: 2D examples for interfae degeneration, where the proposed interfaereonstrution fails. Left: urvature κ too large for grid resolution (|κ| ≥ 2

hΓ
). Right:distane d between interfaes too small for grid resolution (d ≤ hΓ).(n0 = 2) and an be ignored as meas2 ΓT = 0. Otherwise the non-zerovalues are of di�erent sign yielding 3 − n0 edges with a hange of sign,as a simple ase di�erentiation shows. Thus ΓT has 3 verties, hene ΓTis a triangle.

• In the ase n0 = 3 the interfae segment ΓT is equal to a fae of T . Thenone has to take are that this fae is not ounted twie (additionally bythe neighboring tetrahedron in T ′ whih also has ΓT as one of its faes)when omputing a surfae integral on Γh.
• If n0 = 4 then the interfae segment is not 2D but 3D (ΓT = T ) whih,of ourse, makes not muh sense. If suh a situation ours, the orre-sponding segment is ignored and a warning is given. This is typially anindiation that the grid is too oarse to represent the interfae properly,f. Figure 5.3.For the example 5.2, in whih Γ is a sphere, the resulting polygonal approx-imations Γh for h = 1

5 and h = 1
10 resp. are shown in Figure 5.4. Here theradius is hosen as r = 1

2 , see also the numerial experiment presented inSetion 10.3.Remark 5.5Related to the assumptions (5.5)-(5.7) we note the following. If we assume
|I(dh)(x)− d(x)| ≤ c h2

Γfor all x in a neighborhood of Γ, whih is reasonable for a smooth d andpieewise quadrati dh, then for x ∈ Γh we have |d(x)| = |d(x)− I(dh)(x)| ≤
c h2

Γ and thus (5.5) is satis�ed. Instead of (5.6), (5.7) we onsider the su�ient
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Figure 5.4.: Approximate interfae Γh for the example from Setion 10.3 on aoarse grid (left) and after one re�nement (right).ondition (5.8). We assume
‖∇I(dh)(x)−∇d(x)‖ ≤ c hΓfor all x in a neighborhood of Γ (x not on an edge), whih again is reasonablefor a smooth d and pieewise quadrati dh. Due to ‖∇d‖ = 1 we then alsohave ‖∇I(dh)(x)‖ = 1 + O(h), in a neighborhood of Γ. For x ∈ Γh (not onan edge) we obtain

‖nh(x)− n(x)‖ =

∥
∥
∥
∥

∇I(dh)(x)

‖∇I(dh)(x)‖ − ∇d(x)

∥
∥
∥
∥

≤
∣
∣
∣
∣

1

‖∇I(dh)(x)‖ − 1

∣
∣
∣
∣
· ‖∇I(dh)(x)‖ + ‖∇I(dh)(x)−∇d(x)‖

≤ c hΓ,and thus (5.8) is satis�ed (for hΓ su�iently small). ⋄5.2. Consequenes of Strang's LemmaWe assume that a pieewise planar surfae Γh is known, whih is lose to theinterfae Γ in the sense of (5.5)�(5.7). The indued polyhedral approximationsof the subdomains are Ω1,h = int(Γh) (region in the interior of Γh) and Ω2,h =
Ω \Ω1,h. Furthermore, we de�ne the pieewise onstant approximation of the



5.2. Consequenes of Strang's Lemma 63density ρh by ρh = ρi on Ωi,h. We assume that for vh ∈ Vh the integrals in
(ρhg,vh) = ρ1

∫

Ω1,h

g · vh dx+ ρ2

∫

Ω2,h

g · vh dxan be omputed with high auray. This an be realized e�iently in ourimplementation beause if one applies the standard �nite element assemblingstrategy by using a loop over all tetrahedra T ∈ Th, then T ∩ Ωi,h is eitherempty or T or a relatively simple polygonal subdomain (due to the onstru-tion of Γh). For more details we refer to Setion 5.4.4.The disretization of (5.1) is as follows: determine (uh, ph) ∈ Vh × Qh suhthat
a(uh,vh) + b(vh, ph) = (ρhg,vh) + fΓh

(vh) for all vh ∈ Vh,

b(uh, qh) = 0 for all qh ∈ Qh.
(5.11)The approximation fΓh

(vh) of fΓ(vh) is disussed in Setion 5.3.1 below.Using standard �nite element error analysis (Strang lemma) we get a dis-retization error bound. In our appliations we are partiularly interested inproblems with µ≪ 1. Therefore, in the next theorem we give a disretizationerror bound that shows the dependene on µ.Theorem 5.6Let (u∗, p∗), (uh, ph) be the solution of (5.1) and (5.11), respetively. Thenthe error bound
µ ‖uh − u∗‖1 + ‖ph − p∗‖L2 ≤ c

(

µ infvh∈Vh

‖vh − u∗‖1 + inf
qh∈Qh

‖qh − p∗‖L2

+ supvh∈Vh

|(ρg,vh)− (ρhg,vh)|
‖vh‖1

(5.12)
+ supvh∈Vh

|fΓ(vh)− fΓh
(vh)|

‖vh‖1

)holds with a onstant c independent of h, µ and ρ.Proof. The result follows from a saling argument. For f ∈ V′
0, fh ∈ V′

h let
(û, p̂), (ûh, p̂h) be the solutions of the µ-independent Stokes problems

∫

Ω

∇û∇v dx+ b(v, p̂) = f(v) for all v ∈ V0,

b(û, q) = 0 for all q ∈ Q, (5.13)
∫

Ω

∇ûh∇vh dx+ b(vh, p̂h) = fh(vh) for all vh ∈ Vh,

b(ûh, qh) = 0 for all qh ∈ Qh.

(5.14)



64 5. Numerial treatment of surfae tensionStandard error analysis for Stokes equations, using the Strang lemma, yields
‖ûh − û‖1 + ‖p̂h − p̂‖L2 ≤ c

(

infvh∈Vh

‖vh − û‖1 + inf
qh∈Qh

‖qh − p̂‖L2

+ supvh∈Vh

|f(vh)− fh(vh)|
‖vh‖1

)

,
(5.15)with a onstant c independent of f , fh and h. Now note that (u∗, p∗) satis�es(5.13) with û = u∗, p̂ = 1

µp
∗, f(v) = 1

µ

(
(ρg,v) + fΓ(v)

) and (uh, ph) satis�es(5.14) with ûh = uh, p̂h = 1
µph, fh(vh) = 1

µ

(
(ρhg,vh) + fΓh

(vh)
). The resultin (5.15) then yields (5.12).Remark 5.7We assume Ω to be onvex and thus the problem (5.13) is H2-regular. Usinga standard duality argument it follows that

‖û− ûh‖L2
≤ ch (‖û− ûh‖1 + ‖p̂− p̂h‖L2

) .Due to û = u∗, ûh = uh, p̂ = 1
µp

∗, p̂h = 1
µph, (f. proof of Theorem 5.6) weget

‖u∗ − uh‖L2
≤ ch

(

‖u∗ − uh‖1 +
1

µ
‖p∗ − ph‖L2

)with a onstant c independent of µ and h. ⋄Corollary 5.8Let (u∗, p∗), (uh, ph) be as in Theorem 5.6 and de�ne
rh := supvh∈Vh

|(ρg,vh)− (ρhg,vh)|
‖vh‖1

+ supvh∈Vh

|fΓ(vh)− fΓh
(vh)|

‖vh‖1
.The following holds:

‖uh − u∗‖1 ≤ c
(

infvh∈Vh

‖vh − u∗‖1 +
1

µ
inf

qh∈Qh

‖qh − p∗‖L2 +
1

µ
rh

)

, (5.16)
‖uh − u∗‖L2

≤ ch
(

infvh∈Vh

‖vh − u∗‖1 +
1

µ
inf

qh∈Qh

‖qh − p∗‖L2 +
1

µ
rh

)

,(5.17)
‖ph − p∗‖L2 ≤ c

(

µ infvh∈Vh

‖vh − u∗‖1 + inf
qh∈Qh

‖qh − p∗‖L2 + rh

)

, (5.18)with onstants c independent of h, µ and ρ. We observe that if µ ≪ 1 thenin the veloity error we have an error ampli�ation e�et proportional to 1
µ .This e�et does not our in the disretization error of the pressure.



5.2. Consequenes of Strang's Lemma 65Remark 5.9For small µ values the disretization an be improved by adding a grad-divstabilization term to the Stokes equations. In [OR04℄ it is shown that withthis term the veloity errors (in ‖ · ‖1) are proportional to µ−1/2 (instead of
µ−1) and that for small µ values the disretization errors for the veloity aresigni�antly smaller than without this grad-div term. ⋄We omment on the terms ourring in the bound in (5.12). As explainedabove (Remark 5.1), the solution u∗ of (5.1) is smooth and thus with standard�nite element spaes Vh for the veloity (e.g., P1 or P2) we obtain

infvh∈Vh

‖vh − u∗‖1 ≤ ch.Due to (5.5) we get |meas3(Ωi)−meas3(Ωi,h)| ≤ ch2
Γ, i = 1, 2, and using thiswe obtain

|(ρg,vh)− (ρhg,vh)| ≤
2∑

i=1

ρi

∣
∣
∣
∣
∣

∫

Ωi

g · vh dx− ∫
Ωi,h

g · vh dx∣∣∣∣
∣

≤ c(ρ1 + ρ2)hΓ‖vh‖1,and thus an O(hΓ) bound for the third term in (5.12).The remaining two terms in (5.12) are less easy to handle. In Setion 5.3we treat the fourth term. It is shown that a (not so obvious) approximationmethod based on a Laplae-Beltrami representation results in a O(hΓ) boundfor this term whereas a naive Laplae-Beltrami approximation, whih is usedin the literature, only yields O(
√
hΓ) if it is applied to a pieewise planarinterfae approximation.The seond term in (5.12) is disussed in Setion 5.4.1. It is shown thatstandard �nite element spaes (e.g., P0 or P1) lead to an error infqh∈Qh

‖qh−
p∗‖L2 ∼

√
hΓ. This motivates the use of another pressure �nite element spae,as explained in Setion 5.4.2, whih has muh better approximation propertiesfor funtions that are pieewise smooth but disontinuous aross Γh.Remark 5.10Consider the problem as in Example 5.2. Then u∗ = 0, g = 0 and the boundin (5.12) simpli�es to

µ ‖uh‖1 + ‖ph − p∗‖L2

≤ c
(

inf
qh∈Qh

‖qh − p∗‖L2 + supvh∈Vh

|fΓ(vh)− fΓh
(vh)|

‖vh‖1

)

. (5.19)
⋄



66 5. Numerial treatment of surfae tension5.3. Disretization of the surfae tension foreIn this setion we disuss the disretization of the surfae tension fore fΓ by aLaplae-Beltrami tehnique and analyze the disretization error ‖fΓ−fΓh
‖V′

h
.Based on this analysis we introdue an improved disretization f̃Γh

whih hasa higher order of onvergene. The results are also presented in [GR07b℄.5.3.1. Laplae-Beltrami disretizationIn this setion we explain how the loalized surfae tension fore term fΓ(vh)in (2.21) is approximated. We use the tehnique presented in [Bän01, Dzi91,GRR06℄. For this we �rst need some notions from di�erential geometry.Let U be an open subset in R
3 and Γ a onneted C2 ompat hypersurfaeontained in U . For a su�iently smooth funtion g : U → R the tangentialderivative (along Γ) is de�ned by projeting the derivative on the tangentspae of Γ, i. e.

∇Γg = ∇g − (∇g · nΓ)nΓ. (5.20)Note that the tangential derivative an be written as ∇Γg = P∇g with Pde�ned as in (5.3).The Laplae-Beltrami operator of g on Γ is de�ned by
∆Γg := ∇Γ · ∇Γg.It an be shown that ∇Γg and ∆Γg depend only on values of g on Γ. Forvetor valued funtions f, g : Γ→ R

3 we de�ne
∆Γf := (∆Γf1,∆Γf2,∆Γf3)

T , ∇Γf · ∇Γg :=

3∑

i=1

∇Γfi · ∇Γgi.We reall the following basi result from di�erential geometry.Theorem 5.11Let idΓ : Γ→ R
3 be the identity on Γ and κ = κ1+κ2 the sum of the prinipalurvatures. For all su�iently smooth vetor funtions v on Γ the followingholds:

∫

Γ

κnΓ · v ds =

∫

Γ

(∆Γ idΓ) · v ds = −
∫

Γ

∇Γ idΓ ·∇Γv ds. (5.21)



5.3. Disretization of the surfae tension fore 67In a �nite element setting (whih is based on a weak formulation) it is naturalto use the expression on the right-hand side in (5.21) as a starting point forthe disretization. This idea is used in, for example, [Dzi91, Bän01, GT05,GRR06, Hys06, MCN03℄. In this disretization we use the approximation Γhof Γ.Given an approximate interfae Γh the loalized fore term fΓ(vh) is approx-imated by
fΓh

(vh) := −τ
∫

Γh

∇Γh
idΓh
·∇Γh

vh ds, vh ∈ Vh. (5.22)Under the assumptions (5.5)-(5.7) on the family {Γh}hΓ>0 we will derive, inSetion 5.3.3, a bound for the approximation error
supvh∈Vh

fΓ(vh)− fΓh
(vh)

‖vh‖1
, with fΓh

(vh) as in (5.22). (5.23)Remark 5.12From Theorem 5.11, the fat that fΓ(v) = τ
∫

Γ κv · n ds is a bounded linearfuntional on V0 and a density argument it follows that the linear funtional
fΓ : v→ −τ ∫

Γ

∇Γ idΓ ·∇Γv ds , v ∈ (C∞
0 (Ω)

)3
, (5.24)has a unique bounded extension to V0. Therefore, for fΓ : V0 → R we anuse both the representation in (2.19) and the one in (5.24) (these are the sameon a dense subset). This, however, is not the ase for fΓh

. Beause Γh is notsu�iently smooth, a partial integration result as in Theorem 5.11 does nothold. The linear funtionalv→ −τ ∫
Γh

∇Γh
idΓh

·∇Γh
v dsis not neessarily bounded on V0. For this reason the restrition to vh fromthe �nite element spae Vh in (5.22) and (5.23) is essential. ⋄Remark 5.13At many plaes in this setion, for example in (5.21), (5.2) and (impliitly) in(5.5), and also in the analysis presented in the next setion the assumptionthat Γ is a C2 smooth interfae plays a ruial role. We do not know anyliterature in whih for a Navier-Stokes inompressible two-phase �ow prob-lem with surfae tension smoothness properties of the interfae are analyzed.In [AMY00℄ and [AMS01℄ a two-phase Stokes �ow problem without surfae



68 5. Numerial treatment of surfae tensiontension in whih the evolution is driven by the gravity fore is analyzed. In[AMY00℄ it is proved that if the initial on�guration has a C2 smooth interfae
Γ = Γ(0) then for arbitrary �nite time t > 0 the interfae Γ(t) is a surfaeof lass C2−ε for arbitrary ε ∈ (0, 2]. In [AMS01℄ it is shown that if Γ(0) isa C2+ℓ smooth surfae, with ℓ > 0, then Γ(t) is of lass C2+ℓ, too, for all
t ∈ [0, T ] and T > 0 su�iently small. ⋄5.3.2. Extensions and projetionsIn this setion we ollet some results that will be used in the analysis inSetion 5.3.3. The tehniques that we use ome from the paper [DD07℄. Forproofs of ertain results we will refer to that paper.We introdue a loally (in a neighborhood of Γ) orthogonal oordinate systemby using the projetion p : U → Γ:p(x) = x− d(x)n(x) for all x ∈ U.We assume that the deomposition x = p(x) + d(x)n(x) is unique for allx ∈ U . Note that n(x) = n(p(x)) for all x ∈ U.We use an extension operator de�ned as follows. For a (salar) funtion vde�ned on Γ we de�ne

ve
Γ(x) := v(x− d(x)n(x)) = v(p(x)) for all x ∈ U,i.e., v is extended along normals on Γ. We will also need extensions of funtionsde�ned on Γh to U . This is done again by extending along normals n(x). For

v de�ned on Γh we de�ne, for x ∈ Γh,
ve
Γh

(x+ αn(x)) := v(x) for all α ∈ R with x+ αn(x) ∈ U. (5.25)The projetion p and the extensions ve
Γ, ve

Γh
are illustrated in Figure 5.5.We de�ne a disrete analogon of the orthogonal projetion P:Ph(x) := I− nh(x)nh(x)T for x ∈ Γh, x not on an edge.The tangential derivative along Γh an be written as ∇Γh

g = Ph∇g. In theanalysis a further tehnial assumption is used, namely that the neighborhood
U of Γ is su�iently small in the following sense. We assume that U is a stripof width δ > 0 with

δ−1 > max
i=1,2

‖κi(x)‖L∞(Γ). (5.26)
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x̂1 x1 = p(x̂1)

n1

x̂2x2 = p(x̂2)

n2

Γh

Γ

Figure 5.5.: Example for projetion p and onstrution of extension operators. n1and n2 are straight lines perpendiular to Γ. For v de�ned on Γ we have ve
Γ ≡ v(x1)on n1. For vh de�ned on Γh we have ve

Γh
≡ vh(x̂2) on n2.Assumption 5.14In the remainder of the setion we assume that (5.5), (5.6), (5.7)and (5.26)hold. ⋄We present two lemmas from [DD07℄. Proofs are elementary and an be foundin [DD07℄.Lemma 5.15For the projetion operator P and the Hessian H the relationP(x)H(x) = H(x)P(x) = H(x) for all x ∈ Uholds. For v de�ned on Γ and su�iently smooth the following holds:

∇Γh
ve
Γ(x) = Ph(x)

(I− d(x)H(x)
)P(x)∇Γv(p(x)) a.e. on Γh. (5.27)Proof. Given in Setion 2.3 in [DD07℄.In (5.27) (and also below) we have results �a.e. on Γh� beause quantities(derivatives, Ph, et.) are not well-de�ned on the edges of the triangulation

Γh.Lemma 5.16For x ∈ Γh (not on an edge) de�ne
µ(x) =

[
Π2

i=1(1 − d(x)κi(x))
]n(x)Tnh(x), (5.28)A(x) =

1

µ(x)
P(x)

[I− d(x)H(x)
]Ph(x)

[I− d(x)H(x)
]P(x). (5.29)



70 5. Numerial treatment of surfae tensionLet Ae
Γh

be the extension of A as in (5.25). The following identity holds forfuntions v and ψ that are de�ned on Γh and su�iently smooth:
∫

Γh

∇Γh
v · ∇Γh

ψ ds =

∫

Γ

Ae
Γh
∇Γv

e
Γh
· ∇Γψ

e
Γh
ds. (5.30)Proof. Given in Setion 2.3 in [DD07℄.Due to the assumptions in (5.6) and (5.26) we have ess infx∈Γh

µ(x) > 0 andthus A(x) is well-de�ned.5.3.3. Disretization error analysisWe are interested in the di�erene between the terms
τ

∫

Γ

∇Γ idΓ ·∇Γvh ds and τ ∫
Γh

∇Γh
idΓh

·∇Γh
vh ds for vh ∈ Vh.Sine ∇Γ idΓ ·∇Γvh =

∑3
i=1∇Γ(idΓ)i · ∇Γ(vh)i we onsider only one term inthis sum, say the i-th. We write idΓ and v for the salar funtions (idΓ)i and

(vh)i, respetively. We write idΓh
for (idΓh

)i. Note that
∇Γ idΓ = P∇ idΓ = Pei, ∇Γh

idΓh
= Ph∇ idΓh

= Phei,with ei the i-th basis vetor in R
3. We introdue salar versions of the fun-tionals fΓ and fΓh

de�ned in (5.24) and (5.22) (without loss of generality wean take τ := 1):
g(v) :=

∫

Γ

∇Γ idΓ ·∇Γv ds, gh(v) :=

∫

Γh

∇Γh
idΓh
·∇Γh

v ds.As noted in Remark 5.12, g is a bounded linear funtional on H1(U). Toguarantee that gh and the extension operator in (5.25) are well-de�ned weassume v ∈ H1(Γh) ∩ C(Γh). Therefore, in the analysis in this setion weuse the subspae W of H1(U) onsisting of funtions whose restrition to Γhbelongs to H1(Γh) ∩ C(Γh).Remark 5.17If we use a Hood-Taylor pairVh×Qh in the disretization of the Navier-Stokesequations, then the i-th omponent v ∈ Vh of vh ∈ Vh = (Vh)3 is ontinuousand pieewise polynomial (on the tetrahedral triangulation S). Thus v ∈ Wholds. ⋄



5.3. Disretization of the surfae tension fore 71In this setion we �rst derive, for v ∈ W , a bound for |g(v)−gh(v)| in terms of
‖v‖1,U := ‖v‖H1(U) and ‖∇Γh

v‖L2(Γh). This bound is given in Corollary 5.18.Using this bound we then derive a bound for
sup
v∈Vh

|g(v)− gh(v)|
‖v‖1

,f. Theorem 5.22. This immediately implies a bound for the approximationerror as in (5.23), f. Corollary 5.23.The analysis is based on the following splitting:
g(v)− gh(v)

=

∫

Γ

∇Γ idΓ ·∇Γv ds−
∫

Γh

∇Γh
ide

Γ ·∇Γh
v ds

+

∫

Γh

∇Γh
(ide

Γ− idΓh
) · ∇Γh

v ds

=

∫

Γ

∇Γ idΓ ·∇Γv ds−
∫

Γ

Ae
Γh
∇Γ idΓ ·∇Γv

e
Γh
ds (f. (5.30))

+

∫

Γh

∇Γh
(ide

Γ− idΓh
) · ∇Γh

v ds

=

∫

Γ

∇Γ idΓ ·∇Γ(v − ve
Γh

) ds+

∫

Γ

(I−Ae
Γh

)∇Γ idΓ ·∇Γv
e
Γh
ds

+

∫

Γh

∇Γh
(ide

Γ− idΓh
) · ∇Γh

v ds. (5.31)In the orollary below we derive bounds for the three terms in (5.31). Notethat the �rst two terms do not involve idΓh
.Corollary 5.18The three terms in (5.31) an be bounded by

∣
∣
∣
∣

∫

Γ

∇Γ idΓ ·∇Γ(v − ve
Γh

) ds

∣
∣
∣
∣
≤ c hΓ ‖v‖1,U , (5.32)

∣
∣
∣
∣

∫

Γ

(I−Ae
Γh

)∇Γ idΓ ·∇Γv
e
Γh
ds

∣
∣
∣
∣
≤ c h2

Γ ‖∇Γh
v‖L2(Γh), (5.33)

∣
∣
∣
∣

∫

Γh

∇Γh
(ide

Γ− idΓh
) · ∇Γh

v ds

∣
∣
∣
∣
≤ c hΓ ‖∇Γh

v‖L2(Γh), (5.34)and thus
|g(v)− gh(v)| ≤ c hΓ ‖v‖1,U + c h2

Γ ‖∇Γh
v‖L2(Γh) + c hΓ ‖∇Γh

v‖L2(Γh)



72 5. Numerial treatment of surfae tensionholds for all v ∈W .Proof. (5.32)�(5.34) are proved in Lemma 4.1�4.3 in [GR07b℄. These boundstogether with the splitting (5.31) yield the result.In view of Corollary 5.18 and the error measure in (5.23) we want to derive abound for ‖∇Γh
v‖L2(Γh) in terms of ‖v‖1 for v from the salar �nite elementspae Vh. An obvious approah is to apply an inverse inequality ombinedwith a trae theorem, resulting in:

‖∇Γh
v‖L2(Γh) ≤ c h−1

min‖v‖L2(Γh) ≤ c h−1
min‖v‖1 for all v ∈ Vh. (5.35)This, however, is too rude (f. the bound in Corollary 5.18). In order tobe able to derive a better bound than the one in (5.35) we have to introduesome further assumptions related to the family of triangulations {Γh}hΓ>0.We assume that to eah triangulation Γh = ∪F∈Fh

F there an be assoiateda set of tetrahedra SΓ
h with the following properties:For eah F ∈ Fh there is a orresponding SF ∈ SΓ

h with F ⊂ SF . (5.36)For F1, F2 ∈ Fh with F1 6= F2 we have meas3(SF1
∩ SF2

) = 0. (5.37)The family {SΓ
h}hΓ>0 is shape-regular. (5.38)

c0hΓ ≤ diam(SF ) ≤ chΓ for all F ∈ Fh,with c0 > 0 (quasi-uniformity). (5.39)For eah SF ∈ SΓ
h there is a tetrahedron S ∈ S suh that SF ⊂ S. (5.40)Reall that S is the (�xed) tetrahedral triangulation that is used in the �niteelement disretization of the Navier-Stokes problem in (2.21)�(2.22). Notethat the set of tetrahedra SΓ

h has to be de�ned only lose to the approximateinterfae Γh and that this set not neessarily forms a regular tetrahedral tri-angulation of Ω. Furthermore, it is not assumed that the family {Γh}hΓ>0 isshape-regular or quasi-uniform.Remark 5.19Consider the onstrution of {Γh}hΓ>0 as in Setion 5.1.2. The approximateinterfae Γh is the zero level of the funtion I(dh), whih is ontinuous piee-wise linear on the tetrahedral triangulation T ′:
Γh =

⋃

F∈F

F,where eah F is a triangle or a quadrilateral. To eah F there an be assoiateda tetrahedron SF ∈ T ′ suh that F ⊂ SF . Realling the de�nition (5.10) of



5.3. Disretization of the surfae tension fore 73an interfae segment, we note that in fat F = ΓT for T = SF ∈ T ′. If F is aquadrilateral then we an subdivide F and SF in two disjoint triangles F1, F2and two disjoint tetrahedra SF1
, SF2

, respetively, suh that Fi ⊂ SFi ⊂ SFfor i = 1, 2. One an hek that this onstrution results in a family {SΓ
h}hΓ>0that satis�es the onditions (5.36)-(5.40). ⋄In the following lemma we onsider a standard a�ne mapping between atetrahedron SF ∈ SΓ

h and the referene unit tetrahedron and apply it to thetriangle F ⊂ SF .Lemma 5.20Assume that the family {Γh}hΓ>0 is suh that for the assoiated family of setsof tetrahedra {SΓ
h}hΓ>0 the onditions (5.36)-(5.40) are satis�ed. Take F ∈ Fhand the orresponding SF ∈ SΓ

h . Let Ŝ be the referene unit tetrahedronand Φ(x) = Jx + b be an a�ne mapping suh that Φ(Ŝ) = SF . De�ne
F̂ := Φ−1(F ). The following holds:

‖J‖2 meas3(Ŝ)

meas3(SF )
≤ c h−1

Γ , (5.41)
‖J−1‖2 meas2(F )

meas2(F̂ )
≤ c, (5.42)with onstants c independent of F and hΓ.Proof. Let ρ(SF ) be the diameter of the maximal ball ontained in SF andsimilarly for ρ(Ŝ). From standard �nite element theory we have

‖J‖ ≤ diam(SF )

ρ(Ŝ)
, ‖J−1‖ ≤ diam(Ŝ)

ρ(SF )
.Using (5.38) and (5.39) we then get

‖J‖2 meas3(Ŝ)

meas3(SF )
≤ c diam(SF )2

meas3(SF )
≤ c diam(SF )−1 ≤ c h−1

Γ ,and thus the result in (5.41) holds.The verties of F̂ = Φ−1(F ) are denoted by V̂i, i = 1, 2, 3. Let V̂1V̂2 be alongest edge of F̂ and M̂ the point on this edge suh that M̂V̂3 is perpendiularto V̂1V̂2. De�ne Vi := Φ(V̂i), i = 1, 2, 3, and M := Φ(M̂). Then Vi, i = 1, 2, 3,



74 5. Numerial treatment of surfae tensionare the verties of F and M lies on the edge V1V2. We then have
meas2(F̂ ) =

1

2
‖V̂1 − V̂2‖‖V̂3 − M̂‖ =

1

2
‖J−1(V1 − V2)‖‖J−1(V3 −M)‖

≥ 1

2
‖J‖−2‖V1 − V2‖‖V3 −M‖ ≥ c

ρ(Ŝ)2

diam(SF )2
meas2(F ),with a onstant c > 0. Thus we obtain

‖J−1‖2 meas2(F )

meas2(F̂ )
≤ c diam(Ŝ)2

ρ(SF )2
diam(SF )2

ρ(Ŝ)2
≤ c,whih ompletes the proof.Theorem 5.21Assume that the family {Γh}hΓ>0 is suh that for the assoiated family of setsof tetrahedra {SΓ

h}hΓ>0 the onditions (5.36)-(5.40) are satis�ed. Then thefollowing holds:
‖∇Γh

v‖L2(Γh) ≤ c h−
1
2

Γ ‖v‖1 for all v ∈ Vh.Proof. Note that
‖∇Γh

v‖2L2(Γh) =
∑

F∈Fh

‖∇F v‖2L2(F ).Take F ∈ Fh and let SF be the assoiated tetrahedron as explained above.Let Ŝ be the referene unit tetrahedron and Φ : Ŝ → ST as in Lemma 5.20.De�ne v̂ := v ◦ Φ. Using standard transformation rules and Lemma 5.20 weget
‖∇F v‖2L2(F ) = ‖Ph∇v‖2L2(F ) ≤ ‖∇v‖2L2(F ) =

∑

|α|=1

‖∂αv‖2L2(F )

≤ c ‖J−1‖2
∑

|α|=1

‖(∂αv̂) ◦ Φ−1‖2L2(F )

≤ c ‖J−1‖2 meas2(F )

meas2(F̂ )

∑

|α|=1

‖∂αv̂‖2
L2(F̂ )

≤ c
∑

|α|=1

‖∂αv̂‖2
L2(F̂ )

≤ c
∑

|α|=1

maxx∈F̂

∣
∣∂αv̂(x)

∣
∣
2 ≤ c

∑

|α|=1

maxx∈Ŝ

∣
∣∂αv̂(x)

∣
∣
2
,with a onstant c independent of F . From (5.40) it follows that v̂ is a poly-nomial on Ŝ of maximal degree k, where k depends only on the hoie of the



5.3. Disretization of the surfae tension fore 75�nite element spae Vh. On P∗
k := { p ∈ Pk : p(0) = 0 } we have, due toequivalene of norms:

∑

|α|=1

maxx∈Ŝ

∣
∣∂αv̂(x)

∣
∣
2 ≤ c

∑

|α|=1

‖∂αv̂‖2
L2(Ŝ)

for all v̂ ∈ P∗
k .Beause, for v̂ ∈ Pk and |α| = 1, ∂αv̂ is independent of v̂(0), the same in-equality holds for all v̂ ∈ Pk. Thus we get

‖∇F v‖2L2(F ) ≤ c
∑

|α|=1

‖∂αv̂‖2
L2(Ŝ)

≤ c ‖J‖2 ∑
|α|=1

‖(∂αv) ◦ Φ‖2
L2(Ŝ)

= c ‖J‖2 meas3(Ŝ)

meas3(SF )

∑

|α|=1

‖∂αv‖2L2(SF ) ≤ c h−1
Γ ‖∇v‖2L2(SF ) ,with a onstant c independent of F and h. Using (5.37) we �nally obtain

‖∇Γh
v‖2L2(Γh) ≤ c h−1

Γ

∑

F∈Fh

‖∇v‖2L2(SF )

≤ c h−1
Γ

∫

Ω

(∇v)2 dx ≤ c h−1
Γ ‖v‖21 ,whih proves the result.We now present the main result of this setion.Theorem 5.22Let the assumptions be as in Theorem 5.21. The following holds:

sup
v∈Vh

|g(v)− gh(v)|
‖v‖1

≤ c
√

hΓ.Proof. Combine the result in Corollary 5.18 with the one in Theorem 5.21.As a diret onsequene we obtain:Corollary 5.23Let the assumptions be as in Theorem 5.21. For fΓ and fΓh
as de�ned inSetion 5.3.1 the following holds:

supv∈Vh

|fΓ(vh)− fΓh
(vh)|

‖vh‖1
≤ τc

√

hΓ.



76 5. Numerial treatment of surfae tensionProof. Note that
fΓ(vh)− fΓh

(vh)

= −τ
3∑

i=1

( ∫

Γ

∇Γ(idΓ)i · ∇Γ(vh)i ds−
∫

Γh

∇Γh
(idΓh

)i · ∇Γh
(vh)i ds

)

,and use the result in Theorem 5.22.An upper bound O(
√
hΓ) as in Corollary 5.23 for the error in the approxima-tion of the loalized fore term may seem rather pessimisti, beause Γh is an

O(h2
Γ) aurate approximation of Γ. Numerial experiments in Setion 10.3and results in [GMT07℄, however, indiate that the bound is sharp.5.3.4. Improved Laplae-Beltrami disretizationIn this setion we show how the approximation of the loalized fore term anbe improved, resulting in an improved error bound of the form O(hΓ) (insteadof O(
√
hΓ) in Corrolary 5.23).From Corollary 5.18 and Theorem 5.21 we see that the √hΓ behavior is ausedby the estimate in (5.34):

∣
∣
∣
∣

∫

Γh

∇Γh
(ide

Γ− idΓh
) · ∇Γh

v ds

∣
∣
∣
∣
≤ c hΓ ‖∇Γh

v‖L2(Γh). (5.43)The term ∇Γh
idΓh

that is used in gh(v) ours in (5.43) but not in the othertwo terms of the splitting, f. (5.32), (5.33). We onsider
g̃h(v) =

∫

Γh

mh · ∇Γh
v dsand try to �nd a funtion mh = mh(x) suh that g̃h(v) remains easily om-putable and the bound in (5.43) is improved if we use mh instead of ∇Γh

idΓh
.The latter ondition is trivially satis�ed formh = ∇Γh

ide
Γ (leading to a bound0 in (5.43)). This hoie, however, does not satisfy the �rst ondition, beause

Γ is not known. We now disuss another possibility, that is used in the exper-iments in Setion 10.3.Due to |d(x)| ≤ ch2
Γ we get from Lemma 5.15, for x ∈ Γh:

∇Γh
ide

Γ(x) = Ph(x)P(x)∇Γ idΓ(p(x)) +O(h2
Γ) = Ph(x)P(x)ei +O(h2

Γ).



5.3. Disretization of the surfae tension fore 77In the onstrution of the interfae Γh, f. Setion 5.1.2, we have a pieewisequadrati funtion dh ≈ d available. De�neñh(x) :=
∇dh(x)

‖∇dh(x)‖ , P̃h(x) := I− ñh(x)ñh(x)T , x ∈ Γh.Thus an obvious modi�ation is based on the hoie mh(x) = Ph(x)P̃h(x)ei,i. e.,
g̃h(v) :=

∫

Γh

Ph(x)P̃h(x)ei · ∇Γh
v ds =

∫

Γh

P̃h(x)ei · ∇Γh
v ds. (5.44)In this approah the approximate interfae Γh is not hanged (pieewise pla-nar). For pieewise quadratis dh and v, the funtion ∇Γh

v = Ph∇v is piee-wise linear and P̃hei is pieewise (very) smooth on the segments of Γh. Hene,the funtional in (5.44) an be evaluated easily.Under reasonable assumptions the modi�ed funtional indeed yields a bettererror bound:Lemma 5.24Assume that there exists p > 0 suh that
‖∇dh(x)−∇d(x)‖ ≤ c hp

Γ, for x ∈ Γh. (5.45)Then for all v ∈ W the following holds:
∣
∣
∣
∣

∫

Γh

(
∇Γh

ide
Γ−PhP̃hei

)
· ∇Γh

v ds

∣
∣
∣
∣
≤ c hmin{p,2}

Γ ‖∇Γh
v‖L2(Γh).Proof. From Lemma 5.15 we get for x ∈ Γh (not on an edge),

∇Γh
ide

Γ(x) = Ph(x)
(I− d(x)H(x)

)P(x)∇Γ idΓ(p(x))

= Ph(x)
(I− d(x)H(x)

)P(x)ei.We also have ∇Γh
idΓh

= Ph∇ idΓh
= Phei. Hene,

∣
∣
∣
∣

∫

Γh

∇Γh
(ide

Γ− idΓh
) · ∇Γh

v ds

∣
∣
∣
∣

(5.46)
=

∣
∣
∣
∣

∫

Γh

(Ph(I− dH)Pei −Phei

)
· ∇Γh

v ds

∣
∣
∣
∣

≤ c ess supx∈Γh
‖Ph(x)

(I− d(x)H(x)
)P(x)−Ph(x)‖ ‖∇Γh

v‖L2(Γh)

≤ c ess supx∈Γh

(
‖Ph(x)P(x)−Ph(x)P̃h(x)‖ (5.47)
+ |d(x)| ‖Ph(x)H(x)P(x)‖

)
‖∇Γh

v‖L2(Γh). (5.48)



78 5. Numerial treatment of surfae tensionWe �rst derive a bound for (5.47). Using ‖∇d‖ = 1 it follows that ‖∇dh‖ =
1 +O(hp

Γ) holds. We drop x in the notation and using the assumption (5.45)we obtain
‖PhP−PhP̃h‖ = ‖Ph(P− P̃h)‖ ≤ ‖nnT − ñhñT

h ‖

≤ ‖(n− ñh)nT ‖+ ‖ñh(n− ñh)T ‖ = 2‖n− ñh‖

= 2

∥
∥
∥
∥
∇d− ∇dh

‖∇dh‖

∥
∥
∥
∥

≤ 2
∣
∣1− ‖∇dh‖−1

∣
∣ ‖∇dh‖+ 2‖∇d−∇dh‖ ≤ c hp.We now turn to (5.48). Note that due to (5.5) |d(x)| ≤ c h2

Γ for x ∈ Γh, and
ess supx∈Γh

‖Ph(x)H(x)P(x)‖ ≤ ess supx∈Γh
‖H(x)‖ ≤ c,hene yielding a bound |d(x)|‖Ph(x)H(x)P(x)‖ ≤ c h2

Γ for the term in (5.48).Combined with the inequality ‖PhP − PhP̃h‖ ≤ c hp
Γ for the term in (5.47)this proves the result.If we assume that the ondition in (5.45) is satis�ed for p = 2, whih is rea-sonable for a pieewise quadrati approximation dh of d, we get the followingimprovement due to the modi�ed funtional g̃h, f. Corollary 5.18:

|g(v)− g̃h(v)| ≤ c hΓ ‖v‖1,U + c h2
Γ ‖∇Γh

v‖L2(Γh) for all v ∈ W.Combining this with the result in Theorem 5.21 yields (under the assumptionas in Theorem 5.21):
|g(v)− g̃h(v)| ≤ c hΓ ‖v‖1,U + c h

3/2
Γ ‖v‖1 for all v ∈ Vh.Hene, using this modi�ed funtional g̃h we have a O(hΓ) error bound. Wetherefore de�ne the improved Laplae-Beltrami disretization by

f̃Γh
(v) := −τ

∫

Γh

P̃h∇ idΓh
·∇Γh

v ds = − τ
3∑

i=1

g̃h,i(vi) (5.49)for all v ∈ Vh.This signi�ant improvement (O(hΓ) ompared to the O(
√
hΓ) error bound forthe funtional fΓh

) is on�rmed by the numerial experiments in Setion 10.3.



5.4. Finite element spae for the disontinuous pressure 795.4. Finite element spae for the disontinuouspressureAfter the analysis and improvement of the disretization of the loalized sur-fae fore term fΓ given in the previous setion, we now turn to the approxi-mation of the pressure whih is disontinuous aross the interfae Γ if surfaetension fores are present. We show that standard �nite element spaes haveonly poor approximation properties for suh funtions with a jump aross Γand introdue a new extended �nite element spae whih is more appropriatefor this task. Most of the results presented in this setion are from [GR07a℄.5.4.1. Approximation error for standard FE spaesIn this setion we onsider the approximation error
inf

qh∈Qh

‖qh − p∗‖L2for a few standard �nite element spaes Qh and explain why in general for afuntion p∗ that is disontinuous aross Γh one an expet no better boundfor this approximation error than c
√
h. This serves as a motivation for animproved pressure �nite element spae as presented in Setion 5.4.2. To ex-plain the e�et underlying the √h behavior of the error bound we analyzea onrete two-dimensional example as illustrated in Figure 5.6. We take

Ω = (0, 1)2 ⊂ R
2 and de�ne

Ω1 := { (x, y) ∈ Ω : x ≤ 1− y }, Ω2 := Ω \ Ω1.The interfae Γ separating both subdomains from eah other is given by
Γ = { (x, y) ∈ Ω : y = 1− x }.A family of triangulations {Th}hΓ>0 is onstruted as follows. The start-ing triangulation T0 onsists of two triangles, namely the ones with verties

{(0, 0), (0, 1), (1, 1)} and {(0, 0), (1, 0), (1, 1)}. Then a global regular re�ne-ment strategy (onneting the midpoints of edges) is applied repeatedly. Thisresults in a nested sequene of triangulations Thk
, k = 1, 2, . . ., with mesh size

hk = 2−k. In Figure 5.6 the triangulation Th2
is shown. The set of trianglesthat ontains the interfae is given by (with h := hk)

T Γ
h := {T ∈ Th : meas1(T ∩ Γ) > 0 }.
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Γ

Γ

m

m4

m3

m2

m1

TU

TL

Figure 5.6.: Triangulation Th2
and a triangle T ∈ T Γ

hk
.In Figure 5.6 the elements in T Γ

h2
are olored gray.For h = hk we onsider the �nite element spaes

Q0
h := { p : Ω→ R : p|T ∈ P0 for all T ∈ Th } (pieewise onstants),

Q1,disc
h := { p : Ω→ R : p|T ∈ P1 for all T ∈ Th } (pieewise linears,disontinuous),
Q1

h := { p ∈ C(Ω) : p|T ∈ P1 for all T ∈ Th } (pieewise linears,ontinuous).Note that
Qj

h ⊂ Q
1,disc
h for j = 0, 1. (5.50)We take p∗ as follows: p∗(x, y) = cp > 0 for all (x, y) ∈ Ω1, p(x, y) = 0 for all

(x, y) ∈ Ω2. We study infqh∈Qh
‖qh − p∗‖L2 for Qh ∈ {Q0

h, Q
1,disc
h , Q1

h}. For
Qh = Q1,disc

h the identity
inf

qh∈Q1,disc

h

‖qh − p∗‖2L2 =
∑

T∈T Γ
h

min
q∈P1

‖q − p∗‖2L2(T )holds. Take T ∈ T Γ
h . Using a quadrature rule on triangles that is exat for all



5.4. Finite element spae for the disontinuous pressure 81polynomials of degree two we get, f. Figure 5.6,
min
q∈P1

‖q − p∗‖2L2(T ) = min
q∈P1

(∫

TL

(q − cp)2 dx dy +

∫

TU

q2 dx dy
)

=
h2

12
min
q∈P1

(
(q(m3)− cp)2 + (q(m4)− cp)2 + (q(m) − cp)2

+ q(m1)
2 + q(m2)

2 + q(m)2
)

≥ h2

12
min
q∈P1

(
(q(m)− cp)2 + q(m)2

)
=

1

24
c2ph

2.Thus we have
inf

qh∈Q1,disc

h

‖qh − p∗‖L2 ≥
( ∑

T∈T Γ
h

1

24
c2ph

2
) 1

2

=
( 2

h

1

24
c2ph

2
) 1

2 =
1

2
√

3
cp
√
h.Due to (5.50) this yields

inf
qh∈Qh

‖qh − p∗‖L2 ≥ 1

2
√

3
cp
√
h for Qh ∈ {Q0

h, Q
1,disc
h , Q1

h}. (5.51)To derive an upper bound for the approximation error we hoose a suitable
qh ∈ Qh. First onsider Qh = Q0

h and take q0h ∈ Q0
h as follows: (q0h)|T = cpfor all T with meas1(T ∩Ω1) > 0, q0h = 0 otherwise. With this hoie we get

‖q0h−p∗‖L2 =
( ∑

T∈T Γ
h

‖q0h−p∗‖2L2(T )

) 1
2

=
( ∑

T∈T Γ
h

c2p
1

4
h2
) 1

2 =
1√
2
cp
√
h. (5.52)For Qh = Q1

h we take q1h := Ih(p∗), where Ih is the nodal interpolationoperator (note: p∗ = cp on Γ). Elementary omputations yield
‖q1h − p∗‖L2 =

( 1

12
c2ph
) 1

2 =
1

2
√

3
cp
√
h. (5.53)Combination of (5.50), (5.51), (5.52) and (5.53) yields

1

2
√

3
cp
√
h ≤ inf

qh∈Qh

‖qh − p∗‖L2 ≤ 1√
2
cp
√
h for Qh ∈ {Q0

h, Q
1,disc
h , Q1

h}.(5.54)Note that this approximation error result does not hange if we apply onlyloal re�nement lose to the interfae and then replae h by hΓ, where thelatter denotes the mesh size of the triangles in T Γ
h .



82 5. Numerial treatment of surfae tensionIf instead of pieewise onstants or pieewise linears we onsider polynomialsof higher degree, the approximation error still behaves like √h.Similar examples, whih have a √h approximation error behavior, an beonstruted using these �nite element spaes on tetrahedral triangulations in3D.5.4.2. Extended �nite element spaeThe analysis in the previous Setion 5.2, whih is on�rmed by numerialexperiments in Setion 10.4, leads to the onlusion that there is a need foran improved �nite element spae for the pressure. In this setion we presentsuh a spae whih is based on an idea presented in [MDB99, BMUP01℄. Inthat paper a so-alled extended �nite element spae (XFEM) is introduedin the ontext of rak formations in struture mehanis whih has goodapproximation properties for interfae type of problems.Here we apply the XFEM method to two-phase �ow problems by onstrutingan extended pressure �nite element spae QΓ
h. In this setion we explain themethod and disuss some implementation issues. In Setion 10.4 results ofnumerial experiments with this method are presented.For k ≥ 1 �xed we introdue the standard �nite element spae

Qh = Qk
h = { q ∈ C(Ω) ∩ L2

0(Ω) : q|T ∈ Pk for all T ∈ T }.For k = 1, for example, this is the standard �nite element spae of ontinuouspieewise linear funtions. We de�ne the index set J = {1, . . . , n}, where
n = dimQh is the number of degrees of freedom. Let B := {qj}j∈J be thenodal basis of Qh, i. e. qj(xi) = δi,j for i, j ∈ J where xi ∈ R

3 denotes thespatial oordinate of the i-th degree of freedom.The idea of the XFEM method is to enrih the original �nite element spae
Qh by additional basis funtions qX

j for j ∈ J ′ where J ′ ⊂ J is a given indexset. An additional basis funtion qX
j is onstruted by multiplying the originalnodal basis funtion qj by a so alled enrihment funtion Φj :

qX
j (x) := qj(x)Φj(x). (5.55)This enrihment yields the extended �nite element spae

QX
h := span

(
B ∪ {qX

j }j∈J ′

)
.
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Γ

Figure 5.7.: Enrihment by additional basis funtions for P1 �nite elements in a2D example. Dots represent degrees of freedom of original basis funtions, irlesindiate where additional basis funtions are added in the viinity of the interfae
Γ.This idea was introdued in [MDB99℄ and further developed in [BMUP01℄for di�erent kinds of disontinuities (kinks, jumps), whih may also intersetor branh. The hoie of the enrihment funtion depends on the type ofdisontinuity. For representing jumps the Heaviside funtion is proposed toonstrut appropriate enrihment funtions. Basis funtions with kinks anbe obtained by using the distane funtion as enrihment funtion [MCCR03℄.In our ase the �nite element spae Q1

h is enrihed by disontinuous basisfuntions qX
j for j ∈ J ′ = JΓ := { j ∈ J : meas2(Γ ∩ supp qj) > 0 }, asdisontinuities only our at the interfae. This situation is illustrated inFigure 5.7 for a 2D example.Let d : Ω → R be the signed distane funtion (or an approximation to it)with d negative in Ω1 and positive in Ω2. For example the level set funtion

ϕ ould be used for d. Then by means of the Heaviside funtion H we de�ne
HΓ(x) := H(d(x)) =

{

0 x ∈ Ω1,

1 x ∈ Ω2.As we are interested in funtions with a jump aross the interfae we de�nethe enrihment funtion
ΦH

j (x) := HΓ(x)−HΓ(xj) (5.56)and a orresponding funtion qX
j := qj · ΦH

j , j ∈ J ′. The seond term in thede�nition of ΦH
j is onstant and may be omitted (as it doesn't introdue new
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Γ

Ω2 Ω1

01 xi xj

qi qj

qΓj

qΓiFigure 5.8.: Extended �nite element basis funtions qi, q
Γ

i (dashed) and qj , q
Γ

j(solid) for 1D ase.funtions in the funtion spae), but ensures the nie property qX
j (xi) = 0 forall i, i. e., qX

j vanishes in all degrees of freedom. As a onsequene, we have
supp qX

j ⊂
(
supp qj ∩ ΩΓ

)
, (5.57)where

ΩΓ :=
⋃

T∈T Γ
h

T (5.58)is the union of all tetrahedra interseted by Γ,
T Γ

h := {T ∈ Th : meas2(T ∩ Γ) > 0 }. (5.59)Thus qX
j ≡ 0 in all T with T /∈ T Γ

h .In the following we will use the notation qΓj := qj ΦH
j and

BΓ := B ∪ { qΓj : j ∈ JΓ }, (5.60)
QΓ

h := span
(
BΓ
) (5.61)to emphasize that the extended �nite element spae QΓ

h depends on the loa-tion of the interfae Γ. In partiular the dimension of QΓ
h may hange if theinterfae is moved. The shape of the extended basis funtions for the 1D aseis skethed in Figure 5.8.Remark 5.25Note that QΓ

h an also be haraterized by the following property: q ∈ QΓ
h ifand only if there exist funtions q1, q2 ∈ Qh suh that q|Ωi = qi|Ωi , i = 1, 2. ⋄



5.4. Finite element spae for the disontinuous pressure 85The following result from [Reu08℄ shows that the extended �nite element spae
QΓ

h o�ers the following optimal approximation property.Theorem 5.26For an integer k ≥ 0 we de�ne the spae
Hk(Ω1 ∪ Ω2) := { p ∈ L2(Ω) : p|Ωi

∈ Hk(Ωi), i = 1, 2 }with the norm ‖p‖2k,Ω1∪Ω2
:= ‖p‖2k,Ω1

+ ‖p‖2k,Ω2
. Then for integer l, m with

0 ≤ l < m ≤ 2 the following holds:
inf

q∈QΓ
h

‖p− q‖l,Ω1∪Ω2
≤ c hm−l‖p‖m,Ω1∪Ω2

(5.62)for all p ∈ Hm(Ω1 ∪ Ω2).Proof. Given in [Reu08℄.Hene, for pressure solutions p with p|Ωi
∈ H1(Ωi), i = 1, 2, (f. Remark 5.1)we have

inf
qh∈QΓ

h

‖qh − p‖L2 ≤ ch.This yields the desired O(h) bound, f. Setion 5.2.In [BMUP01℄ the XFEM is applied to a few problems from linear elastiitydemonstrating the ability of the method to apture jumps and kinks. Thesedisontinuities also branh or interset in some of the examples, in this asemore elaborate onstrutions of the enrihment funtions are used.In [CB03℄ the XFEM is also applied to a two-phase �ow problem. In thatpaper disontinuous material properties ρ and µ, but no surfae tension foreswere taken into aount. Thus there is no jump in pressure, but the solutionexhibits kinks at the interfae. For the pressure and the level set funtionstandard �nite element spaes are used. The veloity �eld is disretized withan extended �nite element spae enrihed by vX
j (x) = vj(x) |d(x)| to apturethe kinks at the interfae. The loation of the interfae is aptured by a levelset approah. The onstrution of the enrihment funtion is thus based onthe level set funtion ϕ.A similar idea of basis enrihment in the ontext of two-phase �ow simulationsis also suggested in [MCN03℄. The pressure spae is augmented by additionaldisontinuous basis funtions q̃Γj (x) = qj(x) Φ̃H(x), j ∈ JΓ, where the enrih-ment funtion Φ̃H is given by

Φ̃H |ΩΓ∩Ω1
≡ 1, Φ̃H |ΩΓ∩Ω2

≡ −1, Φ̃H |Ω\ΩΓ ≡ 0.



86 5. Numerial treatment of surfae tensionFor the veloity spae additional basis funtions vT (x) = v̂T (x) |d(x)| for all
T ∈ T Γ

h are added where v̂T is the bubble funtion on T .Remark 5.27We omment on two related approahes that are known in the literature. Inthe papers [HH02, HH04, HLPS05℄ of Hansbo a disontinuous �nite elementspae Qdisc
h is introdued and applied to a salar ellipti interfae problem.Boundary onditions at the interior interfae are imposed in a weak sense byusing a penalty method.For the onstrution of Qdisc

h the standard �nite element spae Q1
h is modi�edby replaing eah of the basis funtions qj , j ∈ JΓ, by the two funtions

qΓ,i
j (x) =

{

qj(x) x ∈ Ωi,

0 x /∈ Ωi,
i = 1, 2.This yields the same �nite element spae as the XFEM approah applied tothe ase of a jump at the interfae, i. e., Qdisc

h = QΓ
h, f. Remark 5.25. Forother kinds of disontinuities the approahes are essentially di�erent, e. g.,when the solution has a kink at the interfae. While in the XFEM approaha di�erent extended �nite element spae Q̃Γ

h is onstruted by adding speialbasis funtions suited to represent suh a kink at the interfae, in the approahof Hansbo the same �nite element spae Qdisc
h as given above is used, butthe penalty term is hanged to enfore ontinuity (in a weak sense) of thesolution at the interfae. In [HLPS05℄ an error analysis is given for solutionswith kinks, where seond order onvergene in L2 is shown for the modi�ed P1elements on a non-degenerate triangulation. An a-posteriori error estimatorfor this type of �nite elements is derived, too.Another approah an be found in [MM00℄. Here the standard �nite elementspae Q1

h is extended by disontinuous basis funtions qΓT for T ∈ T Γ
h , whihare de�ned by

qΓT (x) :=

{

HΓ(x)−∑j HΓ(xj) · qj(x) for x ∈ T,
0 otherwise.This introdues |T Γ

h | new degrees of freedom, whih in�uene the height ofthe jump in the orresponding elements. qΓT is not only disontinuous aross
Γ but also aross element boundaries (edges in 2D, faes in 3D) that interset
Γ where p∗ is known to be ontinuous. Due to this disadvantage we did notonsider this method for the approximation of disontinuous pressure in two-phase �ows. ⋄



5.4. Finite element spae for the disontinuous pressure 875.4.3. Challenges related to XFEMThe results for the Stokes test ases presented in Setion 10.4 are quite satis-fatory. Nevertheless, in the appliation of the XFEM method to two-phase�ow problems there are some hidden pitfalls. We mention a few hallengesrelated to stability issues and to the appliation of XFEM to non-stationaryNavier-Stokes two-phase �ow problems.As QΓ
h depends on the loation of the interfae Γ the spae QΓ

h hanges if theinterfae is moved. Thus the disretization of b(·, ·) has to be updated eahtime when the level set funtion (or VOF indiator funtion) has hanged.In a Navier-Stokes ode solving non-stationary two-phase �ow problems thisis nothing speial sine mass and sti�ness matries ontaining disontinuousmaterial properties like density and visosity have to be updated as well, f.Setion 6.2. What is speial about the extended pressure �nite element spaeis the fat that the dimension of QΓ
h may vary, i. e., some extended pressureunknowns may appear or disappear when the interfae is moving. This has tobe taken into aount by a suitable interpolation proedure for the extendedpressure unknowns.Regarding stability, one has to treat arefully the situation where some ex-tended basis funtions qΓj have only a �small� support, beause then the result-ing system matries are ill-onditioned. As a onsequene, the onvergenerate of the iterative solvers an derease signi�antly or solvers may even breakdown. One obvious possibility to deal with this stability problem is to skipthe extended basis funtions with relatively �small� ontributions. What ismeant by �small� will be spei�ed in the following paragraphs.A suitable strategy on how to deide whih extended basis funtions are tobe skipped should ful�ll the following two properties. On the one hand onewants to obtain a (more) stable basis of the extended pressure �nite elementspae, on the other hand it should maintain the desired O(h) disretizationerror behavior. Suh a strategy is desribed in [Reu08℄. Let c̃ > 0, α > 0be given parameters. For j ∈ JΓ we onsider the following ondition for theorresponding extended basis funtion qΓj :

‖qΓj ‖l,T ≤ c̃hα
T ‖qj‖l,T for all T ∈ T . (5.63)Here l ∈ {0, 1} is the degree of the Sobolev norm used for measuring theapproximation error, f. Theorem 5.26. We introdue the redued index set

J̃Γ ⊂ JΓ by
J̃Γ := { j ∈ JΓ : (5.63) does not hold for qΓj }



88 5. Numerial treatment of surfae tensionand the redued basis B̃Γ and redued extended �nite element spae Q̃Γ
h,

B̃Γ := B ∪ { qΓj : j ∈ J̃Γ }, (5.64)
Q̃Γ

h := span
(

B̃Γ
)

. (5.65)In other words, all extended basis funtions qΓj are skipped, for whih (5.63)holds. Then the optimal approximation property (5.62) given in Theorem 5.26also holds for the redued spae Q̃Γ
h when hoosing α = m, f. [Reu08℄.Another important issue from the pratial point of view is the design ofe�ient and robust solvers for the resulting disrete problems whih have tobe adapted to the extended pressure �nite element spae. These are topis ofurrent researh. Some omments on preonditioning the Shur omplementin the ontext of XFEM are given in Remark 7.7. The idea is based on thefat, that the spetral ondition number of D−1

M M is bounded uniformly w.r.t.
hΓ, f. [Reu08℄. HereM is the mass matrix orresponding to the basis BΓ and
DM is its diagonal. Hene, the L2-stability of BΓ an be ahieved by a simplediagonal saling. The same holds for the redued basis B̃Γ.Theoretial issues like LBB-stability of the Vh − QΓ

h �nite element pair areleft for future researh.5.4.4. Implementation issuesLet Γh be a pieewise planar approximation of the interfae Γ as desribed inSetion 5.1. For pratial reasons we do not onsider QΓ
h but the spae QΓh

hwhih is muh easier to onstrut. Here QΓh

h is the extended pressure �niteelement spae desribed above but with Γ replaed by its approximation Γh.We thus onsider the �nite element disretization (5.11) for the hoie Qh =
QΓh

h . As the veloity spae Vh is unhanged most of the terms are disretizedas before. Only the evaluation of b(·, ·) requires further explanation.For a basis funtion vi ∈ Vh and j ∈ JΓ the evaluation of
b(vi, q

Γh
j ) = −

∑

T ′∈T ′
h

∫

T ′

qΓh
j div vi dxrequires the omputation of integrals with disontinuous integrands, as theextended pressure basis funtion qΓh

j has a jump aross the interfae. Wesum over T ′ ∈ T ′
h (and not T ∈ Th) beause Γh is de�ned as in (5.9). Let
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Figure 5.9.: Left: Parts of tetrahedron T ′ are non-tetrahedral, i� utting fae T ′ ∩
Γh is a quadrilateral. Right: Triangulation of the lower part into three tetrahedra.
T ∈ Th be a tetrahedron with T ∩ supp qΓh

j 6= ∅ and T ′ ∈ T ′
h with T ′ ⊂ T ahild tetrahedron reated by regular re�nement of T . Due to (5.57) we have

T ∈ T Γ
h , and de�ne

Ti := T ∩ Ωi,h, T ′
i := T ′ ∩ Ωi,h, i = 1, 2.Using the de�nition of qΓh

j , f. (5.55), (5.56), we get
∫

T ′

qΓh
j div vi dx =

∫

T ′
2

qj div vi dx−HΓ(xj)

∫

T ′

qj div vi dx
=

{∫

T ′
2

qj div vi dx if xj ∈ Ω1,

−
∫

T ′
1

qj div vi dx if xj ∈ Ω2.
(5.66)The integrands in the right hand side of (5.66) are ontinuous and the sub-domains T ′

1, T
′
2 are polyhedral sine by onstrution Γh onsists of pieewiseplanar segments (f. Setion 5.1). For the omputation of the integral over

T ′
i we distinguish two ases. The fae T ′ ∩ Γh is either a triangle or a quadri-lateral. In the �rst ase one of the sets T ′

1, T
′
2 is tetrahedral, without loss ofgenerality let T ′

1 be tetrahedral. Then integration over T ′
2 an be omputedby ∫

T ′
2

G(x) dx =

∫

T ′

G(x) dx− ∫
T ′
1

G(x) dx.In the seond ase both T ′
1, T

′
2 are non-tetrahedral, but an eah be subdividedinto three sub-tetrahedra, f. Figure 5.9. In all ases the integration over T ′

ian be redued to integration on tetrahedra, for whih standard quadraturerules an be applied.
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6. Time disretization andouplingIn Setion 6.1 we disuss several time disretization shemes for the non-stationary Navier-Stokes equations. The time disretization of the salar levelset equation is arried out in a similar way. After the time disretization aoupled system of quasi-stationary level set and Navier-Stokes equations isobtained. The treatment of the oupling is explained in Setion 6.2.6.1. Time disretizationIn the following we onsider the ase that the time disretization is appliedafter the spatial disretization. This approah is alled the `Method of Lines'as opposed to the `Rothe Method', where the time disretization is followedby a spatial disretization.After the �nite element disretization desribed in Chapter 4 we obtain thedi�erential-algebrai equation (DAE)
(
M(t)u′(t)

0

)

+

(
T (u(t), t) BT

B 0

)(u(t)
p(t)

)

=

(b(t)
c(t)

)

, t ∈ [t0, tf ], (6.1)initial ondition u(t0) = u0, (6.2)with T (u(t), t) = A(t) +N(u(t), t), f. (4.13).Remark 6.1The DAE (6.1) an also be seen as an ordinary di�erential equation (ODE) forfuntions u(t) : [t0, tf ] → R
NVh whih satisfy the disrete inompressibilityonstraint

B u(t) = c(t) for all t ∈ [t0, tf ]. (6.3)91



92 6. Time disretization and ouplingNote that (6.3) means that JVD
h

(u(t), t) ∈ Vdiv
h (f. (4.8)) for all t ∈ [t0, tf ],whereVdiv

h := {uh ∈ VD
h : b(uh, qh) = (divuh, qh)0 = 0 for all qh ∈ Qh }.Hene, the DAE (6.1) is equivalent to the ODEFind uh(t) : [t0, tf ]→ Vdiv

h suh that for (almost every) t ∈ [t0, tf ]

m(u′
h(t),vh) + n(uh(t);uh(t),vh) + a(uh(t),vh) = f(vh)holds for all vh ∈ Vdiv

h and uh(t0) = u0 ∈ Vdiv
h .

(6.4)In this sense the pressure p ∈ R
NQh in (6.1) an be interpreted as the Lagrangemultiplier assoiated to the inompressibility onstraint B u = c. ⋄We now turn to the time disretization. Let

t0 < t1 < . . . < tnt = tfbe a disretization of the time interval [t0, tf ]. For 0 ≤ i < nt the size of the
i-th time step is given by ki = ti+1 − ti. The approximation of u(ti), p(ti) isdenoted by ui, pi, respetively, in the following.6.1.1. Time disretization for 1D model problemBefore disussing time disretization shemes for the DAE (6.1) arising fromthe 3D Navier-Stokes problem we �rst onsider a simple 1D di�usion problemwith time dependent oe�ients.Example 6.2For t ∈ [0, 1], x ∈ [0, 1] we de�ne the pieewise onstant funtion

d(x, t) =

{

dL if x ≤ γ(t),
dR if x > γ(t),for γ(t) = 1

2 + 1
4 t, dL = 1, dR = 3, and state the following non-stationary 1Ddi�usion problem: Find u = u(x, t) suh that

d(x, t)ut(x, t) = ε uxx(x, t) for x ∈ [0, 1], t ∈ [0, 1],

u|x=0 = u|x=1 = 0,

u|t=0 = u0(x)

(6.5)



6.1. Time disretization 93with ε > 0. The ontinuous initial value u0 is given by
u0(x) =

{

x for x ≤ 1
2 ,

(x− 1)(−8x+ 3) for x > 1
2 .For the spatial disretization the interval [0, 1] is subdivided into n+1 equidis-tant intervals with length h = (n + 1)−1 and end points xi = ih, i =

0, 1, . . . , n+1. For t ∈ [0, 1] we ollet the unknown values u(xi, t), i = 1, . . . , nin the vetor u(t) ∈ R
n. If we use a �nite di�erene disretization we end upwith the ODE system
M̂(t)u′(t) = Au(t), t ∈ [0, 1], (6.6)where M̂(t) is a diagonal matrix with M̂ii(t) = d(xi, t) and the sti�ness matrix
A =

ε

h2









−2 1

1
. . . . . .. . . . . . 1

1 −2









.A �nite element disretization with P1 FE and nodal basis funtions {vi(x)}ni=1yields the ODE system
M(t)u′(t) = Au(t), t ∈ [0, 1], (6.7)where M(t) is the mass matrix with entries
Mij(t) = h−1

∫ 1

0

d(x, t)vi(x)vj(x) dxand A the sti�ness matrix given above.Note that (6.6), (6.7) an be written in the general form
u′(t) = R(t)u(t), t ∈ [0, 1], (6.8)with R(t) = M̂(t)−1A for the �nite di�erene ase (6.6) and R(t) = M(t)−1Afor the �nite element ase (6.7). ⋄Remark 6.3 (Smoothness of M̂(t) and M(t))A simple omputation shows that

M ′
ij(t) =

dL − dR

h
vi(γ(t)) vj(γ(t)) γ

′(t).



94 6. Time disretization and ouplingHene, the matrix entries of M(t) are C1 w.r.t. time t. Furthermore, for a
t with γ(t) 6= xi, i = 1, . . . , n, the matrix entries of M(t) are of the sameregularity as γ(t) (C∞ for Example 6.2). We emphasize that in ontrast tothat the diagonal entries of M̂(t) are disontinuous w.r.t. time t. To be morepreise, M̂ii(t) is pieewise onstant w.r.t. t with a jump at t = tdisc where
γ(tdisc) = xi, i = 1, . . . , n. This will in�uene the onvergene order of thetime disretization sheme, see below. ⋄For Example 6.2 we study the following two time disretization shemes. Here
k := tn+1−tn denotes the length of the time step and the parameter θ ontrolsthe impliitness of the sheme. For a shorter notation we introdue θ′ = 1−θ.

un+1 − un

k
= θ R(tn+1)u

n+1 + θ′R(tn)un (6.9)is the well-known theta-sheme. Speial ases are θ = 0 (the expliit Eulersheme), θ = 1 (the impliit Euler sheme) and θ = 1/2 (the Crank-Niholsonsheme). The impliit Euler sheme is strongly A-stable, but only of �rst or-der. On the other hand the Crank-Niholson sheme has seond order aurayfor smooth u(t), but is not strongly A-stable, whih may lead to instabilitiesin ertain situations, f. [Ran04℄.
un+1 − un

k
= θ R(tn)un+1 + θ′R(tn)un (6.10)is a variant of the former sheme, where we applied one step of the theta-sheme to the linearized ODE problem u′(t) = R(tn)u(t). We will refer tothat sheme as the linearized theta-sheme. The following lemma shows thatthis sheme is onvergent.Lemma 6.4Let y(t), ỹ(t) be solutions of the ODE's

y′(t) = f(t, y(t)), ỹ′(t) = f̃(t, ỹ(t))with y(tn) = ỹ(tn). If f(tn, y(tn)) = f̃(tn, y(tn)) and f, f̃ are C1 funtionsw.r.t. t and y, then
y(tn+1)− ỹ(tn+1) = O(k2).Proof. By Taylor expansion there exists τ ∈ (tn, tn+1) with

y(tn+1) = y(tn) + ky′(tn) +
k2

2
y′′(τ)

= y(tn) + kf(tn, y(tn)) +
k2

2
(ft + fyf)(τ)



6.1. Time disretization 95and τ̃ ∈ (tn, tn+1) with
ỹ(tn+1) = ỹ(tn) + kỹ′(tn) +

k2

2
ỹ′′(τ̃)

= y(tn) + kf(tn, y(tn)) +
k2

2
(f̃t + f̃y f̃)(τ̃ ).As a onsequene, the linearized theta-sheme is onvergent of order one forall θ ∈ [0, 1].Remark 6.5 (Warning)Starting with the formulation (6.6) or (6.7), one might think that

M(tn+1)u
n+1 −M(tn)un

k
= θ Aun+1 + θ′Aunalso seems to be a reasonable time disretization sheme. But one an easilyshow that in ase of a time-dependent matrixM(t) this sheme does in generalnot onverge to the right solution and should therefore not be used. ⋄Using a �xed spatial disretization with �nite di�erenes for n = 30 unknownsand the hoie ε = 10−3 we implemented both time disretization shemes(6.9) and (6.10) in MATLAB [Mat℄. Applying the theta-sheme with θ = 1

2for a small time step size of k = 10−4 we omputed a referene solution
u∗1 := u104 approximating the solution u(t) of the ODE system (6.8) for the�nal time t = 1. For di�erent numbers of time steps nt ≤ 1000 with step size
k = n−1

t , we omputed the approximations u1(k) := unt of the solution u(1)and ompared them with the referene solution,
e(k) = |u1(k)− u∗1|.The error e(k) as a funtion of the step length k for θ = 1/2 is shown inFigure 6.1 on the left.We repeated this proedure for the �nite element disretization on the samespatial grid. The error behavior is shown in Figure 6.1 on the right. Notethat the referene solutions u∗1 for the �nite di�erene and �nite element ase(slightly) di�er from eah other as the ODE systems (6.6) and (6.7) are dif-ferent as well.Seond order onvergene an only be observed for the Crank-Niholson timedisretization sheme (theta-sheme with θ = 1/2) ombined with the �nite el-ement disretization. In all other ases only �rst order onvergene is ahieved.
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Figure 6.1.: Time disretization error e(k) as funtion of step size k for theta-sheme and linearized theta-sheme, θ = 1/2. Fixed spatial disretization with�nite di�erenes (on the left) or �nite elements (on the right).We emphasize that the Crank-Niholson sheme yields only �rst order on-vergene when ombined with the �nite di�erene disretization. Obviously,this is due to the di�erent regularities of M̂(t) and M(t) as funtions of t, f.Remark 6.3. We will analyze this in the following paragraphs.For that we further simplify (6.8) and study the following salar ODE
u′(t) = r(t)u(t) for t ∈ [t0, tf ], (6.11)
u(t0) = u0,with time-dependent oe�ient r(t) > 0. The solution of the ODE is given by

u(t) = C + e
t

R

t
t0

r(τ)dτwhere C = u0 − 1.We assume that there is a tΓ ∈ [t0, tf ] suh that r(t) an be written as
r(t) =

{

fL(t) if t ∈ [t0, tΓ],

fR(t) if t ∈ (tΓ, tf ],with C2 funtions fL : [t0, tΓ]→ R, fR : [tΓ, tf ]→ R.Lemma 6.6Let tn → tn+1 be the time step with tΓ ∈ [tn, tn+1]. Starting from un = u(tn)one time step of the theta-sheme and the linearized theta-sheme is appliedyielding un+1
i , i = 1, 2, respetively. Then for the loal trunation errors

τi(θ) := u(tn+1)− un+1
i the following holds.
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• For general fL, fR we have

τi(θ) = O(k), i = 1, 2.

• If fL(tΓ) = fR(tΓ), i. e., r(t) is ontinuous on [t0, tf ], then
τi(θ) = O(k2), i = 1, 2.

• If fL(tΓ) = fR(tΓ) and f ′
L(tΓ) = f ′

R(tΓ), i. e., r(t) is a C1 funtion on
[t0, tf ], then

τ1(θ) = C

(

θ − 1

2

)

k2 +O(k3) and τ2(θ) = O(k2).Proof. Without loss of generality we take tΓ = 0, tn = −λk, tn+1 = (1 − λ)kwith 0 ≤ λ ≤ 1. A Taylor expansion of τi around t = tΓ then yields theresults.6.1.2. One-step theta-shemeIn the following we will derive the theta-sheme and linearized theta-shemefor the non-stationary Navier-Stokes equations. Based on these shemes thefrational-step sheme an easily be onstruted, f. Setion 6.1.3. For easeof presentation we assume homogeneous Dirihlet boundary onditions, i. e.,
c(t) = 0, and that the operator B(t) does not depend on t. In the general asethe time disretization is slightly hanged, see Remarks 6.9 and 6.10 below.The DAE system (6.1) is rewritten in the formu′(t) +M(t)−1BT p(t) = M(t)−1 g(u(t), t),

B u(t) = 0,
(6.12)where

g(u(t), t) := b(t)− T (u(t), t)u(t).Similarly to Remark 6.1 we �rst eliminate the inompressibility onstraint
Bu(t) = 0 and the orresponding Lagrange multiplier p(t) to replae theDAE system by an equivalent ODE system. This an be ahieved by applyingthe M(t)-orthogonal projetion P (t) on kerB, i. e., P (t) is orthogonal w.r.t.the salar produt 〈· , ·〉M(t) := 〈M(t) · , ·〉,

P (t) = I −M(t)−1BT (BM(t)−1BT )−1B.



98 6. Time disretization and ouplingNote that P (t) v = v for all v ∈ kerB and P (t)M(t)−1BT = 0. Thus thesolution u(t) ∈ kerB of (6.12) satis�esu′(t) = P (t)M(t)−1 g(u(t), t) =: f(t,u(t)). (6.13)For a given veloity u(t) the orresponding pressure p(t) is de�ned by theequation
BM(t)−1BT p(t) = BM(t)−1 g(u(t), t). (6.14)Theta-shemeWe �rst derive the theta-sheme for the non-stationary Navier-Stokes equa-tions. Applying the theta-sheme to the ODE system (6.13) yieldsun+1 − un

k
= θ Pn+1M

−1
n+1 g(un+1, tn+1) + θ′ PnM

−1
n g(un, tn). (6.15)Due to Pn+1Pn = Pn, the sequene {un}n≥0 is also a solution ofun+1 − un

k
+M−1

n+1B
T p̃ = θM−1

n+1 g(un+1, tn+1) + θ′ PnM
−1
n g(un, tn),(6.16)

B un+1 = 0, (6.17)whih an be seen by applying Pn+1 to (6.16). Using (6.14) a simple alula-tion shows
PnM

−1
n g(un, tn) = M−1

n g(un, tn)−M−1
n BT pn.Substituting this expression in (6.16) and multiplying by B from the left weobtain

BM−1
n+1B

T p̃ = θ BM−1
n+1 g(un+1, tn+1)

+ θ′BM−1
n

(
g(un, tn)−BT pn

)

= θ BM−1
n+1B

T pn+1.This gives rise to the hoie p̃ = θ pn+1. Summarizing, the theta-sheme forthe Navier-Stokes equations is given by
[k−1Mn+1 + θ Tn+1(un+1)]un+1 + θ BT pn+1 (6.18)

= θ bn+1 +Mn+1

(
1

k
un + θ′M−1

n

(
g(un, tn)−BT pn

)
)

,

B un+1 = 0. (6.19)



6.1. Time disretization 99Eah time step of the (linearized) one-step theta-sheme requires the solutionof a generalized Navier-Stokes problem. We should mention that whenever
θ 6= 1 we need an initial value p0 for the pressure whih is obtained from theequation

BM(t0)
−1BT p0 = BM(t0)

−1 g(u0, t0).The solution of a linear system with Mn on the right-hand side of (6.18) ineah time step an be avoided by introduing an additional variablezn := M−1
n

(
g(un, tn)− BT pn

)
∈ kerB.After an initial omputation of z0 by solving the linear system M0 z0 =

g(u0, t0)−BT p0, the variable an be updated in eah time step by the simplereurrene formula
θ zn+1 =

un+1 − un

k
− θ′ zn.This leads to the following sheme,

[k−1Mn+1 + θ Tn+1(un+1)]un+1 + θ BT pn+1 (6.20)
= θ bn+1 +Mn+1

(
1

k
un + θ′ zn

)

,

B un+1 = 0, (6.21)zn+1 =
un+1 − un

θk
− θ′

θ
zn. (6.22)Linearized theta-shemeWe now derive the linearized theta-sheme for the Navier-Stokes equations.The ODE system (6.13) is modi�ed in the following way.u′(t) = P (tn)M(tn)−1 [b(t)− T (u(t), tn)u(t)] =: fn(t,u(t)). (6.23)We emphasize that the ompatibility ondition fn(tn,u(tn)) = f(tn,u(tn))holds and thus Lemma 6.4 an be applied. Note that also other hoies forsuh ompatible fn(t,u(t)) are possible. Appliation of the theta-sheme to(6.23) yieldsun+1 − un

k
= PnM

−1
n

(bn+1
θ − θ Tn(un+1)un+1 − θ′ Tn(un)un

)
, (6.24)



100 6. Time disretization and ouplingwhere we used the notation Cn := C(tn) for a time dependent operator C =
C(t) and the notation cn+1

θ := θ cn+1+θ′ cn for vetors cn, cn+1. The sequene
{un}n≥0 is also a solution of

Mn
un+1 − un

k
+ θ Tn(un+1)un+1 + θ′ Tn(un)un +BT p̃ = bn+1

θ , (6.25)
B un+1 = 0. (6.26)Note that multiplying (6.25) with BM−1

n from the left yields
BM−1

n BT p̃ = BM−1
n

(bn+1
θ − θ Tn(un+1)un+1 − θ′ Tn(un)un

)
.Hene, for the hoie p̃ = pn+1

θ
the pressure variable satis�es the pressureequation BM−1

n BT p(t) = BM−1
n g(u(t), tn) whih is (6.14) linearized at t =

tn.Summarizing, the linearized theta-sheme is as follows:
[k−1Mn + θ Tn(un+1)]un+1 + θ BT pn+1 (6.27)

=
1

k
Mn un + θ bn+1 + θ′

(bn − Tn(un)un −BT pn
)
,

B un+1 = 0. (6.28)Remark 6.7An alternative linearized sheme is the following, f. [QV94℄,
Mn

un+1
θ − un

θk
+ Tn(un+1

θ )un+1
θ +BT pn+1

θ
= bn+1

θ ,

B un+1
θ =

{

θ′Bu0 n = 0,

0 n ≥ 1,whih is solved for the unknown quantities un+1
θ , pn+1

θ . After that we setun+1 = θ−1(un+1 − θ′ un), pn+1 = θ−1(pn+1 − θ′ pn). ⋄



6.1. Time disretization 101Some RemarksRemark 6.8 (Order of onvergene for two-phase Stokes �ow)Numerial experiments of a two-phase Stokes �ow problem (rising bubbleproblem, f. also Setion 11.2) have been onduted in [Ess08℄ to examinethe onvergene order of the theta-sheme and the linearized theta-sheme forthe parameter hoies θ = 0.5 (Crank-Niholson sheme) and θ = 1 (impliitEuler sheme), respetively. Similar to the 1D experiments presented in Se-tion 6.1.1, a referene solution u∗(t), t ∈ [t0, tf ], was omputed applying avery small time step size kref . For these time disretization shemes solutionsuk(t), t ∈ [t0, tf ], were omputed for di�erent time step sizes k > kref andafterwards the orresponding errors
e(k) := ‖uk(tf )− u∗(tf )‖L2(Ω)were alulated. The numerial results show seond order onvergene forthe theta-sheme with θ = 0.5 and �rst order onvergene in the remainingthree ases. Thus the expeted theoretial onvergene order was on�rmedby these experiments. ⋄Up to now we assumed that the inompressibility onstraint has the form

B u(t) = 0. In the following we treat the more general ase B(t)u(t) = c(t).Remark 6.9 (Extension to non-homogeneous right-hand side)A non-homogeneous right-hand side c(t) 6= 0 is aused by non-homogeneousDirihlet boundary onditions u|ΣD = uD for the veloity in the �nite ele-ment disretization of the inompressibility onstraint divu = 0. In order toexplain the time disretization in this ase, for a moment we introdue addi-tional unknowns for the degrees of freedom loated at the Dirihlet boundary
ΣD and ollet these in the vetor uD. Doing so we obtain a �nite elementdisretization

(

M̃(t) ũ′(t)
0

)

+

(
T̃ (ũ(t), t) B̃T

B̃ 0

)(ũ(t)
p(t)

)

=

(b̃(t)
0

)

, t ∈ [t0, tf ],with an augmented vetor ũ(t) =

( u(t)uD(t)

)and augmented matries M̃, T̃ , B̃. This system has the form of (6.1), but with
c(t) = 0. Thus the derivation of the (linearized) one-step theta-sheme anbe arried out as presented in this setion. A subsequent elimination of the



102 6. Time disretization and ouplingunknowns uD (whih an be substituted diretly due to the known Dirihletboundary ondition) leads to the shemes (6.27) and (6.20) with modi�edright-hand sides bn, bn+1 and (6.28), (6.21) replaed by
B un+1 = cn+1. ⋄Remark 6.10 (Extension to time dependent operator B(t))We now assume that the operator B(t) is time dependent, whih is in generalthe ase for an extended �nite element disretization of the pressure due tothe dynamis of the interfae Γ, f. Setion 5.4. In the derivation of the one-step theta-sheme we used that Pn+1Pn = Pn, whih is no longer true for atime dependent operator B(t). Hene, a di�erent approah has to be hosenwhih will not be explained here, but an be found in [RFG+℄. The same timestepping theme as in (6.20)�(6.22) is obtained, but with a di�erent initialpressure p0 given by

B0M
−1
0 BT

0 p
0 = B0M

−1
0 g(u0, t0) +

dB

dt
(t0)u0. (6.29)Note that the derivation of the linearized one-step theta-sheme remains un-hanged for B depending on t, sine here the projetion P (t) is applied onlyfor a �xed time t = tn, f. (6.23). The initial pressure p0 should also beomputed aording to (6.29). ⋄Time disretization of the level set equationWe now disuss the time disretization of the level set equation. After the�nite element disretization of the level set equation we obtain the followingsystem of ordinary di�erential equations,

E(u(t))ϕ′(t) +H(u(t))ϕ(t) = 0, (6.30)
ϕ(t0) = ϕ0. (6.31)The appliation of the one-step theta-sheme to (6.30) yields

[
1

k
E(un+1) + θH(un+1)

]

ϕn+1 = E(un+1)

[
1

k
ϕn − θ′ E(un)−1H(un)ϕn

]

.Together with the one-step theta-sheme for the Navier-Stokes problem (6.20)�(6.22) this leads to a oupled system whih has to be solved for the unknown



6.1. Time disretization 103quantities (un+1, pn+1, ϕn+1) in eah time step. This issue is further disussedin Setion 6.2.The appliation of the linearized theta-sheme to (6.30) leads to
[

1

k
E(un) + θH(un)

]

ϕn+1 =

[
1

k
E(un)− θ′H(un)

]

ϕn.Note that here only un (and not un+1) has to be known to obtain the level setapproximation ϕn+1 at the new time t = tn+1. The impliations for the overalltime stepping sheme (level set and Navier-Stokes equations) are desribed inSetion 6.2.6.1.3. Frational-step shemeFor the frational-step sheme the time step tn → tn+1 with time step size
k = tn+1 − tn is subdivided into three maro time steps

tn → tn+Θ → tn+Θ̂ → tn+1,where
tn+Θ = tn + Θk, tn+Θ̂ = tn+1 −Θk,with maro time step sizes Θk, (1−2Θ)k, Θk, respetively. Here 0 < Θ < 1/2de�nes the portion of the �rst and third maro step in relation to the timestep size k. The portion of the seond maro step is denoted by Θ′ := 1− 2Θ.The frational-step sheme is based on a splitting T = T(1) + T(2) of theoperator T in (6.1), where in the �rst and third maro step the operator

T(1) is treated impliitly while T(2) is treated expliitly, and vie-versa for theseond maro step. A popular variant is based on the splitting
T(1) = αT, T(2) = (1− α)Twith 0 < α < 1, f. [Tur99, Ran04℄. This means that in eah maro timestep the theta-sheme is applied, where θ = α is hosen for the �rst andthird maro time step and θ = 1 − α for the seond maro time step. Hene,the appliation of the frational-step sheme requires the solution of threegeneralized Navier-Stokes problems per time step. The level set is updated byapplying the orresponding theta-sheme in eah maro time step.In the ase of one-phase �ow, for Θ = 1 −

√
2/2 = 0.292893 . . . and 1/2 <

α ≤ 1 this sheme has seond order auray and is strongly A-stable, f.



104 6. Time disretization and oupling[BGP87℄. Due to this fat we hoose Θ = 1−
√

2/2 and disuss the hoie ofthe parameter α in the following.For a shorter notation we introdue α′ = 1 − α. One often hooses α =
1−2θ
1−θ = 0.585786 . . . as the operators in all three maro steps then have thesame struture (up to a onstant fator) due to αθ = α′θ′. This an beexploited in the onstrution of the system matries, if M and A are timeindependent (whih is usually the ase for one-phase �ow problems). Fortwo phase problem this is no longer the ase beause of the non-stationaryinterfae Γ = Γ(t) and thus these matries have to be rebuild in eah marostep, anyway. However, there are still some advantages as for this hoie of αthe struture of the Shur omplement preonditioners stays the same in eahmaro step, f. Setion 7.2.3. Thus we hose α as indiated above.A linearized variant of the frational step sheme an similarly be derived byapplying the linearized theta-sheme in eah maro time step. However, forthis linearized variant we annot expet better than �rst order onvergene.6.1.4. Frational-step sheme with operator splittingThe frational-step sheme was �rst proposed by Glowinski et al. [BGP87℄in form of an operator splitting approah, where the two main hallenges ofthe Navier-Stokes equations, inompressibility and nonlinearity, are deoupledfrom eah other. It is based on the splitting T(1) = αA and T(2) = (1−α)A+Nwhere the inompressibility onstraint is omitted in the seond maro step.The linearized frational-step operator splitting sheme is as follows:






[
1

Θk
M + αA

]

n

un+Θ + BT pn+Θ =

[
1

Θk
M − α′A−N

]

n

un + bn

B un+Θ = cn

[
1

Θk
E + αH

]

n

ϕn+Θ =

[
1

Θk
E − α′H

]

n

ϕn

(6.32)
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[
1

Θ′k
M + α′A+N

]

n+Θ

un+Θ̂ =

[
1

Θ′k
M − αA

]

n+Θ

un+Θ

−BT pn+Θ + bn+Θ̂

[
1

Θ′k
E + α′H

]

n+Θ

ϕn+Θ̂ =

[
1

Θ′k
E − αH

]

n+Θ

ϕn+Θ

(6.33)






[
1

Θk
M + αA

]

n+Θ̂

un+1 +BT pn+1 =

[
1

Θk
M − α′A−N

]

n+Θ̂

un+Θ̂

+ bn+Θ̂

B un+1 = cn+1

[
1

Θk
E + αH

]

n+Θ̂

ϕn+1 =

[
1

Θk
E − α′H

]

n+Θ̂

ϕn+Θ̂ (6.34)This sheme will be referred to as FS-OS sheme in the remainder of the text.Performing one time step of the FS-OS sheme requires the solution of anOseen problem in the �rst and third maro step respetively, and one nonlinearBurgers-type problem in the seond maro step. This has the advantage thatthe nonlinearity and the inompressibility onstraint an be treated separately.Thus one an reuse solution tehniques developed for linear Stokes problems.The level set variable ϕ is updated by applying the orresponding linearizedtheta-sheme in eah maro time step.At least for one-phase �ow problems the FS-OS sheme is strongly A-stable,but has only �rst order auray. For further analysis of the sheme we referto [KR94℄. In [Bän98℄ the ombination of the linearized FS-OS sheme withthe impliit treatment of the surfae fore fΓ is desribed and analyzed. Thistopi is disussed in Setion 6.1.5 below.



106 6. Time disretization and oupling6.1.5. Impliit treatment of the CSF termThe time disretization of the surfae tension fore term fΓ deserves speialattention, as its expliit treatment will lead to a apillary time step restrition
∆t <

√

(ρ1 + ρ2)h3
Γ

4πτ
∼ h3/2 τ−1/2.A derivation of this bound an be found in [BKZ92℄. To overome this problema semi-impliit treatment of fΓ is suggested in [Bän98℄ whih will be brie�ydesribed in the following. Reall from Setion 5.3 that fΓ an be expressedby means of the Laplae-Beltrami operator ∆Γ,

fΓ(v) = τ

∫

Γ

(∆Γ idΓ) · v ds = −τ
∫

Γ

∇Γ idΓ ·∇Γv ds, v ∈ Vh.The new interfae position Γn+1 for t = tn+1 an be expressed in terms of theold interfae position Γn by means of the identity operator idΓ,
idΓn+1 = idΓn +kn+1 un+1 +O(k2

n+1), (6.35)where kn+1 = tn+1 − tn denotes the orresponding time step size. This givesrise to the formulation
fΓn+1(v) = −τ

∫

Γn+1

∇Γ idΓn+1 ·∇Γv ds v ∈ Vh.

≈ −τ
∫

Γn

∇Γ idΓn ·∇Γv ds− kn+1 τ

∫

Γn

∇Γun+1 · ∇Γv ds, (6.36)whih is a semi-impliit disretization as the integration is performed on Γninstead of Γn+1. It is impliit in the sense that the seond integral in (6.36)de�nes a bilinear form cΓ(·, ·)n on V×V,
cΓ(u,v)n := τ

∫

Γn

∇Γu · ∇Γv ds, u,v ∈ V,whih ontributes to the veloity operator on the left-hand side of the mo-mentum equation (2.21). This interfae di�usion term cΓ(·, ·)n is an elliptioperator and thus has a stabilizing e�et. For the �nite element disretizationwe onsider the bilinear form
cΓh

(uh,vh)n := τ

∫

Γn
h

∇Γh
uh · ∇Γh

vh ds, for all uh,vh ∈ Vh.



6.1. Time disretization 107The orresponding matrix CΓh
n ∈ R

NVh
×NVh is de�ned by

〈CΓh
n u, v〉 := cΓh

(
JVh

(u), JVh
(v)
)

nfor all u,v ∈ R
NVh .Applying this tehnique exemplarily to the linearized one-step theta-shemeresults in the following sheme,

[k−1Mn + θ Tn(un+1) + k CΓh
n ]un+1 + θ BT pn+1 (6.37)

=
1

k
Mn un + bn

Γh
+ θ b̂n+1

+ θ′
(b̂n − Tn(un)un −BT pn

)

,

B un+1 = 0. (6.38)Here bΓh
denotes the vetor representation of the surfae fore term, i. e.,bΓh

|i = fΓh
(vi), i = 1, . . . , NVh

, and b̂ = b − bΓh
the remaining part of theright-hand side.In [Hys06℄ the expliit and semi-impliit treatment of the surfae tension termare ompared to eah other in numerial experiments onsidering an osillatingand a rising bubble example. It an be seen that the expliit treatment leadsto numerial osillations when the time step size exeeds a ertain bound.On the other hand the semi-impliit treatment yields more stable results andallows for larger time step sizes.Remark 6.11Applying the improved Laplae-Beltrami disretization f̃Γh

of the surfae foreterm desribed in Setion 5.3.4 requires a slight modi�ation of (6.37). In thisase bΓh
and CΓh

n have to be replaed by their modi�ed ounterparts b̃Γh
and

C̃Γh
n de�ned by b̃Γh

|i = f̃Γh
(vi), i = 1, . . . , NVh

, and
〈C̃Γh

n u, v〉 := c̃Γh

(
JVh

(u), JVh
(v)
)

nfor all u,v ∈ R
NVh , where

c̃Γh
(uh,vh)n := τ

∫

Γn
h

P̃h(x)∇uh · ∇Γh
vh ds, for all uh,vh ∈ Vh.

⋄



108 6. Time disretization and oupling6.2. Coupling of level set and Navier-StokesequationsWe onsider the spatially disretized oupled system of level set and Navier-Stokes equations:
E(u(t))ϕ′(t) +H(u(t))ϕ(t) = 0, (6.39)

M(ϕ(t))u′(t) + T (u(t), ϕ(t))u(t) +BT p(t) = b(ϕ(t)), (6.40)
B u(t) = c. (6.41)Let the quantities uold, pold, ϕold from the old time step told be given. We arelooking for the quantities u = unew, p = pnew, ϕ = ϕnew whih approximatethe solutions at tnew. The time step size is denoted by k = tnew − told.The appliation of the linearized variant of the one-step theta-sheme to theoupled system (6.39)�(6.41) yields

[
1

k
E(uold) + θH(uold)

]

ϕ =

[
1

k
E(uold)− θ′H(uold)

]

ϕold (6.42)
[
1

k
M(ϕold) + θ T (u, ϕold)

] u+ θ BT p =

[
1

k
M(ϕold)− θ′ T (uold, ϕold)

] uold(6.43)
− θ′BT pold + θ b(ϕ) + θ′ b(ϕold)

Bu = c. (6.44)Here θ ∈ [0, 1] and θ + θ′ = 1. In a �rst step the level set equation (6.42)an be solved for ϕ and in a seond step the Navier-Stokes equations (6.43)�(6.44) an be solved for u, p. Thus a deoupling of level set and Navier-Stokesequations is ahieved. This is a very nie property in terms of omputationale�ieny, but omes for the prie of being only �rst order aurate in time.Hene, a linearized time disretization is the method of hoie, when thespatial disretization error dominates the temporal disretization error.In ontrast to that, when applying a non-linearized time disretization shemeto (6.39)�(6.41) we may gain seond order onvergene, but will end up witha fully oupled system. The strategy used for the oupling of the level set and



6.2. Coupling of level set and Navier-Stokes equations 109Navier-Stokes equations will be explained exemplary for the one-step theta-sheme, f. Setion 6.1.2. It an be applied to other time disretization shemesin a similar manner.Applying the one-step theta-sheme to the level set equation (6.39) yields
0 =

[
1

k
E(u) + θH(u)

]

ϕ− E(u)

[
1

k
ϕold − θ′ E(uold)−1H(uold)ϕold

]

=: LS(ϕ;u). (6.45)For the Navier-Stokes equations (6.40)�(6.41) we obtain
0 =

[
1

k
M(ϕ) + θ T (ũ, ϕ)

] u+ θ BT p− θ b(ϕ) (6.46)
−M(ϕ)

[
1

k
uold + θ′M(ϕold)−1

[b(ϕold)− T (uold, ϕold)uold −BT pold
]
]

=: NS1(u, p; ũ, ϕ),

0 = B u− c (6.47)
=: NS2(u).Here we introdued the quantity ũ for a more �exible notation. In the on-vergene history of the oupling strategy this quantity will tend to u in orderto ful�ll the Navier-Stokes equations.The time disretization of the oupled system then reads as follows: Givenuold, pold, ϕold from the old time step told, �nd unew, pnew, ϕnew for the newtime step tnew = told + k suh that

LS(ϕnew;unew) = 0, (6.48)
NS1(unew, pnew;unew, ϕnew) = 0, (6.49)

NS2(unew) = 0. (6.50)This oupled system is solved by a �xed point approah in the following way.Algorithm 6.12 (Coupling)Set u0 := uold, ϕ0 := ϕold. For m = 0, 1, 2, . . . proeed1. Solve the level set equation
LS(ϕm+1;um) = 0



110 6. Time disretization and ouplingfor ϕm+1.2. Solve the Navier-Stokes equations
NS1(um+1, pm+1;um+1, ϕm+1) = 0, NS2(um+1) = 0for um+1, pm+1.3. Set m← m+ 1 and return to step 1.For the solution of the sub problems in steps 1 and 2 iterative solvers are used,where the quantities ϕm resp. um, pm from the last �xed point step are usedas initial values for the solvers. If both solvers perform zero iterations, i. e.,the stopping riteria of both solvers are already satis�ed for the initial valuesand hene ϕm+1 = ϕm, um+1 = um, pm+1 = pm, then the �xed point loop isstopped. We then set ϕnew := ϕm+1, unew := um+1 and pnew := pm+1.Remark 6.13Assume that the stopping riteria of the iterative solvers for the level set andNavier-Stokes equations are hosen suh that

‖LS(ϕm+1)‖ ≤ εLS, ‖NS1(um+1, pm+1)‖ ≤ εNS1
, ‖NS2(um+1)‖ ≤ εNS2

.Then after onvergene of the oupling loop we have
‖LS(ϕnew)‖ ≤ εLS , ‖NS1(unew, pnew)‖ ≤ εNS1

, ‖NS2(unew)‖ ≤ εNS2
.Hene, the quantities (ϕnew,unew, pnew) ful�ll equations (6.48)�(6.50) up tothe tolerane used by the iterative solvers.However, the hoie of suitable toleranes εLS, εNS1

, εNS2
for the iterativesolvers is a deliate task. If the toleranes are hosen too restritive, the ou-pling loop may not onverge. On the other hand, hoosing the toleranes tooloose will lead to an inaurate solution (ϕnew,unew, pnew). Another possi-bility is to hoose di�erent tolerane parameters εm in eah iteration of theoupling loop, for example ε0LS = δ ‖LS(ϕm)‖ and

εm
LS = max(δ εm−1

LS ,
εLS

2
) for m = 1, 2, . . .,with 0 < δ < 1, for instane δ = 0.1. A systemati approah for takingappropriate tolerane parameters ε is not available, yet, and is left as a topifor future researh. ⋄



6.2. Coupling of level set and Navier-Stokes equations 111One an think of other variants for the �xed point strategy. For example, wean replae the solution of the Navier-Stokes system in step 2 by the Oseenproblem
NS1(um+1, pm+1;um, ϕm+1) = 0, NS2(um+1) = 0,whih is solved for um+1, pm+1. This will in general require more �xed pointsteps than the �rst variant, but less solution e�ort in eah step.Another possibility is to interhange the order of solution of the sub problems,i. e., �rst solve the Navier-Stokes problem and after that the level set problem:Algorithm 6.14 (Coupling � reverse order)Set u0 := uold, ϕ0 := ϕold. For m = 0, 1, 2, . . . proeed1. Solve the Navier-Stokes equations

NS1(um+1, pm+1;um+1, ϕm = 0), NS2(um+1) = 0for um+1, pm+1.2. Solve the level set equation
LS(ϕm+1;um+1) = 0for ϕm+1.3. Set m← m+ 1 and return to step 1.For our experiene this solution order is more expensive in terms of omputa-tional time. As the solution of the Navier-Stokes problem is muh harder thanthe solution of the level set problem, one should solve the level set equationin advane to get a better initial approximation of the interfae Γnew for thetime-onsuming solution of the Navier-Stokes problem.
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7. Iterative solversIn the following we desribe how the disrete problems arising in eah iter-ation of the oupling loop are solved, f. Algorithm 6.12. For the level setequation we use a Krylov subspae method for non-symmetri systems (dueto the onvetion term u ·∇ϕ), e. g., GMRES or BiCGStab [Saa03℄, whih arepreonditioned by SSOR. The solution of the disrete Navier-Stokes system ismore involved and will be explained further in the next setions. For ease ofnotation we write u, p, ϕ instead of u, p, ϕ, dropping the ` ', in the remainderof the hapter.7.1. Navier-Stokes solversWe onsider the disrete Navier-Stokes problem
K(u)

(u
p

)

=

(b
c

)

, (7.1)where
K(u) :=

(
T (u) BT

B 0

)

.Note that this notation an be used both for stationary and non-stationaryproblems. In the ase of a stationary problem we have T (u) = A + N(u).For the non-stationary ase, after applying some time disretization shemefrom Chapter 6, T (u) is a linear ombination of the mass matrix M and theonvetive-di�usive part A + N(u) and b, c denote the orresponding right-hand sides.The nonlinearity T (u) is treated by a �xed point approah employing defetorretion in eah iteration yle:Algorithm 7.1 (Fixed point defet orretion)Let initial values u0, p0 be given. For m = 0, 1, 2, . . . repeat 113



114 7. Iterative solvers1. Compute the residual vetor
(rm

sm

)

= K(um)

(um

pm

)

−
(b
c

)

.2. Solve the linear Stokes or Oseen problem
K(um)

(
∆um

∆pm

)

=

(rm

sm

)

. (7.2)yielding the update (∆um,∆pm)T .3. Defet orretion: Obtain the new iterates
(um+1

pm+1

)

=

(um

pm

)

− ωm

(
∆um

∆pm

) (7.3)with some step length ωm.Note that by far most of the omputational work is done in the seond step(7.2).The step length ωm in (7.3) an either be taken �xed as ωm ≡ 1 or ωm ≡ 0.9(applying some damping) for all m, or may be adjusted by some step lengthontrol in eah �xed point iteration. One strategy for step length ontrol isdisussed in the following.The optimal step length ωopt is given by the one dimensional optimizationproblem
ωopt = arg min

ω

∥
∥
∥
∥
K(um − ω∆um)

(um − ω∆um

pm − ω∆pm

)

−
(b
c

)∥
∥
∥
∥
. (7.4)Here ‖ · ‖ denotes the Eulidean norm. This formula is also known as linesearh in the optimization ommunity, f. [NW99℄. However, this approah isnot feasible as the optimization problem in (7.4) is nonlinear in ω and wouldrequire, if solved iteratively, the repeated disretization of the nonlinear part

N in eah optimization step, whih is expensive in terms of omputationaltime. Therefore we modify the problem in (7.4) slightly to obtain a simplerone:
ω̃opt = arg min

ω

∥
∥
∥
∥
K̃

(um − ω∆um

pm − ω∆pm

)

−
(b
c

)∥
∥
∥
∥

(7.5)



7.2. Oseen solvers 115with K̃ := K(um−ωm−1∆um) using the step length ωm−1 from the last iter-ation (and ω−1 := 1 at the beginning). Note that this optimization problemis linear in ω. Applying the neessary optimality ondition, the solution of(7.5) is given by
ω̃opt =

〈

K̃

(
∆um

∆pm

)

, K̃

(um

pm

)

−
(b
c

)〉

∥
∥
∥
∥
K̃

(
∆um

∆pm

)∥
∥
∥
∥

2 , (7.6)where 〈·, ·〉 denotes the Eulidean salar produt. Note that the evaluationof (7.6) only requires the one-time onstrution of K̃ = K(um − ωm−1∆um)and the omputation of some matrix-vetor multipliations and salar prod-uts. This is only little e�ort ompared to the most time onsuming part ofAlgorithm 7.1, the solution of the Stokes/Oseen problem (7.2) in the seondstep. Algorithm 7.1 with the hoie ωm = ω̃opt from (7.6) is alled adaptive�xed point defet orretion method in [Tur99℄.We experiened that the step length ontrol given by (7.6) is more robust thanusing a �xed step length ωm. In most of the iterations, ωm given by (7.6) isalmost 1, indiating that the linear part of K(u) is dominant in those ases.7.2. Oseen solversIn this setion the iterative solution of the disrete Stokes or Oseen problem
K̂

(u
p

)

=

(b
c

) (7.7)is onsidered. Here
K̂ =

(

T̂ BT

B 0

)is a blok matrix with saddle point struture for some (onstant) regular ma-trix T̂ , hene (7.7) onstitutes a linear problem. E.g., for T̂ = A we have thestationary Stokes problem and for T̂ = M + γ(A+N(û)) an Oseen problem.The latter kind of problems arises, e. g., within the �xed point defet orre-tion, f. Equation (7.2) in Algorithm 7.1, where K̂ = K(û) for some �xedû.For ease of notation we drop the ` ˆ ' in the notation, i. e., we simply write
K, T instead of K̂, T̂ in the remainder of this setion.



116 7. Iterative solversIn [PRR05℄ three iterative solvers for the solution of disrete Stokes problemsare investigated, namely preonditioned CG, MINRES and an inexat Uzawamethod. Two of them (CG and MINRES) exploit the symmetry of the Stokesequations. As we are interested in the appliation to Navier-Stokes problemswhih are non-symmetri due to the onvetion term u · ∇u, we onentrateon iterative solvers for non-symmetri Oseen problems.Iterative Oseen solvers onsidered in this thesis for the solution of (7.7) anbe divided into two lasses.
• The �rst lass, so alled Uzawa methods, exploit the saddle point stru-ture of K and are based on its Shur omplement fatorization, f. Sub-setion 7.2.1.
• The seond lass onsists of iterative solvers for general non-symmetrisystems, e. g., GMRES or GCR, whih are diretly applied to the blokmatrix K without exploiting the saddle point struture of the problem.In the following we all them general Krylov subspae methods.7.2.1. Uzawa type methodsUzawa methods are related to the Shur omplement fatorization of K,

K =

(
T 0
B −I

)

·
(
I T−1BT

0 S

) (7.8)with the Shur omplement matrix
S := B T−1BT .Throughout this setion we assume that T is symmetri positive de�nite.Remark 7.2 (Uzawa methods for Oseen problems)The onstrution of Uzawa methods and theoretial results in that ontextalways assume that T is symmetri positive de�nite (i. e., the Stokes ase),yielding a symmetri positive semi-de�nite Shur omplement S. For smallReynolds numbers, however, the methods an also be applied to Oseen prob-lems and turned out to be suessful solution methods in pratie, even though

T is not s.p.d. anymore. ⋄The Shur omplement fatorization (7.8) an also be regarded as blok LUfatorization of K. The orresponding blok forward-bakward substitutionslead to the following algorithm:



7.2. Oseen solvers 117Algorithm 7.3 (Shur omplement method)1. Solve T v = b.2. Solve S p = B v− c.3. Solve T u = b−BT p.In the �rst and third step linear systems for the matrix T have to be solved.Depending on the properties of T , suitable (preonditioned) Krylov subspaemethods or multigrid methods an be applied. The solution of the pressuresystem in the seond step deserves further explanation. We use an iterativeKrylov subspae method, where in eah iteration matrix-vetor multipliations
s = Sq have to be omputed. Beause the de�nition of S involves T−1,the omputation of s requires the solution of a linear system for T : solve
T r = BT q, then s = B r. The solution r has to be determined iterativelywith high auray, otherwise the outer Krylov solver for the pressure systemwill diverge. Typially the solution of the inner T -system demands threeorders of magnitude higher auray than of the outer pressure iteration. Thishigh omputational osts make the Shur omplement method unattrative inpratie.We therefore use a variant of this approah, in whih the linear systems for
T (and S) have to be solved with less auray, whih explains the nameinexat Uzawa method. Here T−1 is replaed by the appliation of a symmet-ri positive de�nite preonditioner Q−1

T for T , leading to the inexat Shuromplement Ŝ := BQ−1
T BT .Instead of solving the pressure system Ŝ q = w with high auray, an approx-imate inverse of Ŝ is applied, namely q̃ = Ψ(w) ≈ Ŝ−1w with the property
‖Ψ(w)− q̃‖Ŝ ≤ δ ‖q̃‖Ŝ for all w ∈ Qfor some δ < 1. For the realization of Ψ we use a suitable Krylov subspaemethod with initial vetor equal to zero, e. g., CG in ase of Stokes or GM-RES in ase of Oseen problems. The Krylov subspae method is preondi-tioned with an preonditioner QS for the Shur omplement. The design ofpreonditioners QT and QS is disussed in Setion 7.2.3.The inexat Uzawa method is based on iterative defet orretion of the Oseenequation (7.7):

(um+1

pm+1

)

=

(um

pm

)

+

(dm
1

dm
2

)
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1 , d

m
2 )T is given by the solution of
K

(dm
1

dm
2

)

=

(b
c

)

−K
(um

pm

) (7.9)
=:

(rm
1

rm
2

)

.Applying forward-bakward substitution (i. e., Algorithm 7.3) to (7.9) the de-fet an be omputed by �rst solving vm = T−1rm
1 and then

dm
2 = S−1(B vm − rm

2 ),dm
1 = vm − T−1BT dm

2 .
(7.10)For the inexat Uzawa method we now replae T−1 by Q−1

T and S−1 by theappliation of Ψ as explained above. Introduingwm := um+vm the followingalgorithm is obtained:Algorithm 7.4 (Inexat Uzawa method)Let u0, p0 be given. Compute the residual r01 = b− Tu0 −BT p0.For m = 0, 1, 2, . . . iterate:1. Compute auxiliary vetorwm := um +Q−1
T rm

1 ,2. Pressure defet:
dm
2 := Ψ(Bwm − c),3. Pressure update:
pm+1 := pm + dm

2 ,4. Veloity update: um+1 := wm −Q−1
T BTdm

2 ,5. Residual update:rm+1
1 := rm − T (um+1 − um)−BTdm

2 .For the ase of T being a symmetri positive de�nite matrix (i. e., we onsidera generalized Stokes problem), in [PRR05℄ a more detailed inspetion and arigorous analysis of the inexat Uzawa method is given. It is shown, that the
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Figure 7.1.: Number of Q−1

T evaluations for the inexat Uzawa algorithm as afuntion of δ.error redution of one iteration of Algorithm 7.4 in a suitable norm an bebounded by
2µT + δ (1 + µT ) := g(µT , δ),where µT := ‖I−Q− 1

2

T T Q
− 1

2

T ‖ is the ontration number of the preonditioner
QT . Hene, for an e�ient solution the parameter δ (i. e., the auray of Ψ)should be hosen dependent on the quality of the preonditioner QT .Remark 7.5 (Choie of δ)We onsider the Stokes ase, i. e., T is symmetri positive de�nite. If one usesone multigrid V-yle as preonditioner Q−1

T , then the ontration number istypially about µT = 0.1. For this ase it su�es to hoose δ < 0.8
1.1 = 0.72to get a onvergent method beause then g(0.1, δ) < 1. That means that thepressure system has to be solved only with low auray. But what is theoptimal hoie of δ in terms of omputational e�ort? The arithmeti osts aredominated by the appliation of Q−1

T , hene δ should be hosen suh that thenumber NQT of evaluations of Q−1
T is small. The plot in Figure 7.1 shows atypial behavior of NQT as a funtion of δ for the example µT = 0.1. It turnsout that low arithmeti osts an be ahieved for a rather broad range of δ(roughly δ ∈ [0.1, 0.4]) and that δ is not very sensitive to this quantity NQTwithin this range. Choosing δ very small is ine�ient, as this would requiremany matrix-multipliation with Ŝ involving the evaluation of Q−1

T . The sameholds for δ lose to 0.7 where slow onvergene is observed in pratie, sinethe method diverges for δ ≥ 0.72. ⋄



120 7. Iterative solvers7.2.2. General Krylov type methodsAnother approah to solve the Oseen equation (7.7) is to apply a suitableiterative solver diretly to the matrix K, disregarding the property that Kis a blok matrix with saddle point struture. If T is symmetri (i. e., theStokes ase), then K is also symmetri and thus the preonditioned MINRESalgorithm is a suitable Krylov solver for this ase. For the general Oseen ase,
T and K are non-symmetri, thus preonditioned GMRES, BiCGSTAB orGCR (f. [Saa03℄) are methods of hoie. In all ases K is preonditioned bythe diagonal blok preonditioner

Q−1
K =

(
Q−1

T 0
0 Q−1

S

)

, (7.11)where Q−1
T , Q−1

S are preonditioners for the upper left blok T and the Shuromplement S, respetively. The design of Q−1
T and Q−1

S is disussed in Se-tion 7.2.3. Note that the Shur omplement matrix of K̃ := Q−1
K K is givenby

S̃ = (Q−1
S B)(Q−1

T T )−1(Q−1
T BT ) = Q−1

S S.Most of the standard Krylov subspae methods assume that the preondi-tioner Q−1
K is linear and onstant in eah step. But if one uses for Q−1

T , e. g.,the appliation of some GMRES iterations, both aforementioned assumptionson Q−1
K are not ful�lled anymore. In this ase one should use so alled �exibleKrylov methods, whih do not have these restritions onerning the preon-ditioner. Examples of suh methods are GCR or �exible GMRES.7.2.3. PreonditioningIn this setion we desribe the design of preonditioners for the upper leftblok T of K and the Shur omplement S.Preonditioning of TConsider the linear system of equations T x = b and denote byy = Q−1

T bthe appliation of the orresponding preonditioner. If T is the disretizationof a di�usion-dominated di�erential operator, then performing one step of a



7.2. Oseen solvers 121standard multigrid solver (V-yle with Jaobi or Gauss-Seidel smoother) isan e�ient preonditioner Q−1
T . Here the hierarhial struture of the trian-gulations an be exploited, f. De�nition 3.5.For small time steps, due to the time disretization the matrix T is dominatedby 1

kM . Sine systems involving the mass matrix are relatively easy to solvedue to its bounded ondition number, applying a multigrid method is oftennot worth the e�ort. In this ase, for the preonditioner Q−1
T we usually applyone step of a damped Jaobi iterationx(m+1) = x(m) + ω[diag(T )]−1(b− T x(m))or one symmetri suessive over-relaxation (SSOR) step. With the hoiex(0) = 0 as initial guess the damped Jaobi preonditioner simpli�es toy

i
=

ω

Tii
bi, i = 1, . . . , NVh

(7.12)and the SSOR preonditioner is given by the following algorithm.Algorithm 7.6 (SSOR preonditioner)1. Compute auxiliary vetorw by damped Gauss-Seidel iteration for initialguess x(0) = 0,wi =
ω

Tii



bi −
i−1∑

j=1

Tij wj



 , i = 1, . . . , NVh
.2. Compute y by damped bakwards Gauss-Seidel iterationy

i
= (2− ω)wi −

ω

Tii

NVh∑

j=i+1

Tij yj
, i = NVh

, NVh
− 1, . . . , 1.Preonditioning of the Shur omplement SIn the following we restrit ourselves to the Stokes ase, i. e., T is symmetripositive de�nite and hene the Shur omplement S is symmetri positivesemi-de�nite. For a disussion of preonditioners for the more general Oseenase we refer to Remark 7.8.Sine S is not expliitly available as NQh

×NQh
matrix, only by its (usuallyapproximative) appliation to some vetor, the design of preonditioners for



122 7. Iterative solversthe Shur omplement is di�erent from the tehniques for the design of Q−1
Tpresented in the foregoing setion. For example, we annot apply SSOR to S,as this would require matrix entries of S whih are not available.Therefore we seek for matries G ∈ R

NQh
×NQh whih are spetrally equivalentto S, i. e.,

γS 〈Gq, q〉 ≤ 〈S q, q〉 ≤ ΓS 〈Gq, q〉 for all q ∈ R
NQh / kerS (7.13)with onstants ΓS , γS > 0. These onstants should be independent of the gridsize h, time step size k = ∆t and the ratios µ1

µ2
, ρ1

ρ2
of dynami visosity anddensity of the two phases, respetively.We �rst onsider the stationary Stokes ase, i. e., T = A. Let Mµ ∈ R

NQh bede�ned by
〈Mµ p, q〉 := (p, q)µ := (µ−1 JQh

p, JQh
q)0 (7.14)for p, q ∈ R

NQh and (·, ·)0 the usual L2 salar produt. In other words, Mµ isthe pressure mass matrix with respet to the saled L2 salar produt (·, ·)µ.In [OR06℄ it is shown that G = Mµ ful�lls (7.13) with onstants independentof h and µ.For the non-stationary Stokes problem we assume T = ξM + A with ξ >
0, whih is the outome of some time disretization sheme as desribed inChapter 6. We de�ne the saled pressure sti�ness matrix Aρ ∈ R

NQh
×NQh by

〈Aρ p, q〉 := (ρ−1∇JQh
p, ∇JQh

q)0. (7.15)Then we take
G̃−1 = M−1

µ + ξA−1
ρ (7.16)as Shur omplement preonditioner for the non-stationary Stokes problem.In [OPR06℄ it is shown that this preonditioner G̃ ful�lls the property

〈S q, q〉 ≤ C 〈G̃ q, q〉 for all q ∈ R
NQh / kerSwith a onstant C independent of ξ, µ and ρ. The other bound c 〈G̃ q, q〉 ≤

〈S q, q〉 has not been proved yet. This is beause of missing regularity resultsfor the generalized Stokes interfae problem.However, numerial results obtained by the appliation of the Uzawa method(f. Algorithm 7.3) in [OPR06℄ indiate, that the number of PCG iterationswith the Shur omplement S and preonditioner G̃ are almost onstant with



7.2. Oseen solvers 123respet to h, k, and moderate ratios µ1

µ2
and ρ1

ρ2
. Thus the preonditioner G̃turns out to be robust for the generalized Stokes interfae problem within er-tain parameter ranges, even though a theoretial robustness result is missing.Remark 7.7 (Preonditioning for extended pressure spae)If extended �nite elements are used for the pressure spae (f. Setion 5.4),some modi�ations have to be onsidered for the preonditioning of the Shuromplement operator.

• Extended basis funtions with very small support may our whih willblow up the ondition number of the pressure mass matrix Mµ. We ex-periened that a simple diagonal saling does a good job. The onditionnumber of D−1Mµ with D = diag(Mµ) is bounded independently of h(f. [Reu08℄) and is rather low.
• The de�nition of Aρ makes no sense for extended basis funtions asfuntions with jumps are not weakly di�erentiable. Thus Aρ is replaedby the operator

Ãρ := BQ−1
M BT ,where Q−1

M is a preonditioner for M , for example the inverse of thediagonal ofM . In pratie we useD−1Ãρ with D = diag(Mµ) to aountfor the di�erent saling of the extended basis funtions. ⋄Remark 7.8 (Preonditioners for Oseen ase)Unfortunately, the preonditioners for the generalized Stokes interfae problempresented in this setion turned out to be unsatisfatory when applied to theOseen problem in some ases, even for relatively small Reynolds numbers. Forsome Oseen test ases we experiened that it was even better to use no Shuromplement preonditioning at all. Hene, an extension of the preonditioningtehniques to the Oseen ase, whih ompared to the Stokes ase involves anadditional onvetive term w · ∇u, is of great interest.There are some ideas in the literature whih are based on the following ob-servation: If there was a matrix Tp ∈ R
NQh

×NQh with the ommutationproperty BTT−1
p = T−1BT , then the Shur omplement would be given by

S = BT−1BT = BBTT−1
p and thus

S−1 = Tp(BB
T )−1.In general it is not possible to �nd suh a matrix Tp, but there are ways toonstrut matries T̂p ∈ R

NQh
×NQh for whih
Q−1

S = T̂p(BB
T )−1 (7.17)



124 7. Iterative solversturns out to be a reasonable approximation of the inverse Shur omplement.In [KLW02℄ T̂p is obtained by the disretization of a pressure onvetion-di�usion operator. This is motivated by the fat that the ommutator
(

1

k
ρI − µ∆ + ρ(w · ∇)

)V∇−∇( 1

k
ρI − µ∆ + ρ(w · ∇)

)

Qis zero inside Ω for w onstant and expeted to be small for smooth w.A more algebrai approah is taken in [EHS+06℄ where the disrete ommu-tator
C := TBT −BT T̂pis onsidered. Note that

BT T̂−1
p − T−1BT = T−1CT̂−1

p =: C̃ (7.18)is the ommutator used in the derivation of (7.17). The idea is to onstrut
T̂p in suh a way that it ful�lls the minimal ommutator property

‖C‖F → min . (7.19)Here ‖ · ‖F is the Frobenius norm. Note that due to (7.18) this is equivalentto the minimization problem ‖C̃‖F̃ → min in the norm ‖ · ‖F̃ de�ned by
‖X‖F̃ := ‖TXT̂p‖F for all X ∈ R

NVh
×NQh . An equivalent formulation of(7.19) are the normal equations

(BBT )[T̂p]j = B [TBT ]j for all 1 ≤ j ≤ NQh
.The solution is given by T̂p = (BBT )−1BTBT and due to (7.17) the Shuromplement preonditioner has the form

Q−1
S = (BBT )−1BTBT (BBT )−1. (7.20)A omparison and ritial review of the two preonditioners from [KLW02,EHS+06℄ an be found in [OV07℄ where both are applied to a few numerial2D and 3D test ases. For the ase of a irulating �ow �eld w and a smallkinemati visosity oe�ient ν = µ

ρ none of the presented preonditionersprovides satisfatory onvergene results. The design of more appropriatepreonditioners for the Oseen ase is urrently a �eld of ative researh. ⋄



7.3. Some pratial remarks 1257.3. Some pratial remarksIn our software toolbox DROPS we implemented a set of di�erent iterativesolvers to be able to ompare them with regard to their e�ieny for thesolution of two-phase �ow problems. For an overview of solvers and preon-ditioners available in DROPS we refer to Setion 9.1.7. The ones that aremostly used are the following:
• For the solution of the level set equation we use a GMRES solver whihis preonditioned by SSOR (Algorithm 7.6).
• For the linearization of the Navier-Stokes problem the �xed point defetorretion (Algorithm 7.1) is used.
• For the solution of Stokes or Oseen problems we mostly use the inexatUzawa method (Algorithm 7.4) or the GCR method. As Shur omple-ment preonditioner we often use the method given in (7.16) (and thevariant desribed in Remark 7.7 for the XFEM ase, respetively) or theminimal ommutator preonditioner, f. Remark 7.8.
• For the solution of systems with the matrix T we usually use appropriateKrylov subspae methods preonditioned by SSOR or Jaobi. In thease that T is symmetri positive de�nite we use the CG method. Fornon-symmetri T we use the GMRES or BiCGSTAB method.The solvers are nested on a hierarhy of levels, f. Figure 7.2, for examplethe Navier-Stokes �xed point loop requires the Oseen solver whih requires aKrylov subspae method for systems with the matrix T involving an SSORpreonditioner. In our implementation we used a template mehanism toenable the plug-in of di�erent solvers in an easy way, f. Setion 9.1.7 formore details.Eah level of the solver hierarhy introdues new parameters whih have tobe set. This huge set of parameters δ1, . . . , δm gives rise to the problem ofhow to hoose them appropriately to get a onvergent and e�ient overallmethod. Up to now this hoie depends more or less on the experiene of theuser. This undesirable proedure should be improved in future by studyingdependenies between di�erent parameters. This should lead to a strategywith a redued number m′ < m of user-hosen parameters δ1, . . . , δm′ , whihthen automatially indue the values of the remaining parameters.
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time loopoupling (u, p) + ϕNavier-Stokes solverOseen solverdr solver
Figure 7.2.: The nestedness of time loop, oupling loop and iterative solvers showsthe omplexity of two-phase �ow simulations.



8. Maintenane of the level setfuntion8.1. ReparametrizationDuring the evolution of the level set funtion ϕ, whih is driven by the ve-loity �eld u, the property of ϕ being lose to a (signed) distane funtion islost. This a�ets the re�nement of the interfaial region and the treatmentof the disontinuous material properties if represented by a smoothed jump(f. Setion 4.1.2). Moreover, the advetion of ϕ beomes less aurate inregions where ϕ is very steep and the problem of �nding the zero level setof ϕ beomes ill-onditioned in regions where ϕ is very �at. Therefore, areparametrization tehnique is used to reestablish the signed distane fun-tion property. Important issues related to this reparametrization of ϕ are thefollowing:1. The zero level of ϕ should be preserved.2. The norm of the gradient of ϕ should be lose to one: ‖∇ϕ‖ ≈ 1.3. The reparametrization an be used to smooth ϕ (lose to the interfae)and thus stabilize the evolution of the level set funtion.Di�erent reparametrization tehniques are known in the literature, f. [Set96b,Set99, HT05℄. The most often used method is based on a pseudo time steppingsheme for the Eikonal equation
‖∇ψ‖ = 1.Let ϕh be a given approximation of the level set funtion, and onsider thefollowing �rst order partial di�erential equation for ψ = ψ(x, τ):

∂ψ

∂τ
= Sα(ϕh)(1− ‖∇ψ‖), τ ≥ 0, x ∈ Ω (8.1)

ψ(x, 0) = ϕh, 127



128 8. Maintenane of the level set funtionwith
Sα(ζ) =

ζ
√

ζ2 + α2
, ζ ∈ R,where α is a regularization parameter (0 < α ≪ 1). The funtion Sα is asmoothed sign funtion. It keeps the zero level invariant (due to Sα(0) = 0)and guarantees that the solution onverges for τ → ∞ to a solution of theEikonal equation. Thus, for su�iently large τf > 0 one an use the funtion

ψ(·, τf ) as a reparametrization of ϕh.The equation (8.1) an be reformulated in the more onvenient form
∂ψ

∂τ
+w(ψ) · ∇ψ = Sα(ϕh) with w(ψ) := Sα(ϕh)

∇ψ
‖∇ψ‖ . (8.2)The equation (8.2) an be solved numerially and then yields a reparametriza-tion of ϕh. To stabilize the evolution a di�usion term an be added to theequation. For a further disussion of this reparametrization method we referto the literature [SSO94, SF99, TE00℄. We implemented suh a method, butenountered the following two di�ulties with this approah. Firstly, the algo-rithm is di�ult to ontrol beause several parameters have to be hosen: theregularization parameter α, the di�usion parameter, the size of the onsideredtime interval τf , the time step in the evolution. Seondly, and more impor-tant, in our simulations the zero level was hanged too muh. This is due tothe fat that the invariane of the zero level only applies to the ontinuousase, but does not hold true for the disrete solution ψh.We then onsidered alternative reparametrization methods. A simple variantof the Fast Marhing method (f. [KS98, Set96a℄) turned out to perform muhbetter in our numerial simulations. In [HT05℄ a survey and omparison ofdi�erent reparametrization methods is given, where also the Fast Marhingmethod is deemed the most aurate and e�ient one. The algorithm isdesribed in the following.Let there be given a ontinuous pieewise quadrati funtion ϕh ∈ Vh orre-sponding to the triangulation Th. We introdue some notation. The regularre�nement of Th is denoted by T ′

h := {T ′ ∈ K(T ) : T ∈ Th }. The olletionof all verties in T ′
h is denoted by V . Note that ϕh is uniquely determinedby its values on V . For T ∈ T ′

h, V(T ) is the set of the four verties of T .Furthermore, for v ∈ V , T (v) is the set of all tetrahedra whih have v as avertex:
T (v) = {T ∈ T ′

h : v ∈ V(T ) }.



8.1. Reparametrization 129Finally, for v ∈ V , N (v) is the olletion of all neighboring verties of v (i. e.,for eah w ∈ N (v) there is an edge in T ′
h onneting v and w):

N (v) :=




⋃

T∈T (v)

V(T )



 \ {v}.We de�ne
TΓ := {T ∈ T ′

h : meas2(T ∩ Γ) > 0 }the olletion of tetrahedra whih interset the interfae. Let Γh be the dis-rete approximation of the interfae as de�ned in (5.9). Remind that theinterfae approximation Γh onsists of planar segments ΓT ,
{

ΓT := Γh ∩ T is a planar segment, for all T ∈ TΓ,and Γh =
⋃

T∈TΓ
ΓT .

(8.3)Remember that the planar segment ΓT in (8.3) is either a triangle or a quadri-lateral.The algorithm splits up into two phases: The initialization phase, where onlythe values on verties lose to the interfae are hanged, and the extensionphase, where the information is propagated from the interfae to the vertiesin the far �eld.We �rst explain the initialization phase of the reparametrization algorithm.We de�ne the set of verties orresponding to TΓ:
VΓ := { v ∈ V(T ) : T ∈ TΓ }. (8.4)For eah v ∈ VΓ we de�ne a disrete (approximate) distane funtion d(v) asfollows. For v ∈ VΓ and T ∈ T (v) ∩ TΓ let ΓT be the plane segment as in(8.3), with verties denoted by Q1, . . . , Qm, where m = 3 or 4. Let W be theplane in R

3 whih ontains the planar segment ΓT and PW : R
3 → W theorthogonal projetion on W . For v ∈ VΓ and T ∈ T (v) ∩ TΓ we de�ne

dT (v) :=

{

‖v − PW v‖ if PW v ∈ T,
min1≤j≤m ‖v −Qj‖ otherwise,f. Figure 8.1 as an illustration. The quantity dT (v) is a measure for thedistane between v and ΓT . Note that if PW v ∈ T holds, then dT (v) is



130 8. Maintenane of the level set funtion
W

ΓT

v1

PW v1

v2

PW v2

Q

Figure 8.1.: Evaluation of dT in the initialization phase for two verties v1, v2 byorthogonal projetion on W : here dT (v1) = ‖v1 − PW v1‖ and dT (v2) = ‖v2 − Q‖.preisely this distane. Sine Γh onsists of pieewise planar segments ΓT for
T ∈ TΓ we de�ne d(v) as an approximate distane between v and Γh by

d(v) := min
T∈T (v)∩TΓ

dT (v) for v ∈ VΓ. (8.5)After this initialization phase the grid funtion { (v, d(v)) : v ∈ VΓ } is anapproximate distane funtion from the interfae Γh for the verties v ∈ VΓ.The seond phase of the reparametrization algorithm onsists of a loop inwhih the approximate distane funtion d is extended to neighbor verties of
VΓ and then to neighbors of neighbors, et. To explain this more preisely weintrodue two sets of verties.The �rst set V̂ ⊂ V omprises the verties where the values of the distanefuntion d : V → R have already been omputed. Right after the initializationphase we thus have V̂ = VΓ. We all V̂ the �nalized set.The seond one is the set of so-alled ative verties A ⊂ V \V̂ , whih onsistsof verties v /∈ V̂ that have a neighboring vertex in V̂ :

A := { v ∈ V \ V̂ : N (v) ∩ V̂ 6= ∅ }. (8.6)
A is alled ative set. So after the initialization phase, the initial ative set
A0 is given by

A0 := { v ∈ V \ VΓ : N (v) ∩ VΓ 6= ∅ }. (8.7)For v ∈ A we de�ne an approximate distane funtion in a similar way asin the initialization phase. Sine its values may hange if the �nalized andative set are updated, we denote it by d̃ : A → R to emphasize its tentative



8.1. Reparametrization 131harater in ontrast to d, whih will be the �nal outome of the algorithm.The onstrution of d̃ is desribed in the following.Take v ∈ A and T ∈ T (v) with V(T ) ∩ V̂ 6= ∅. Note that suh a T exists if Ais nonempty. There are three possible ases, namely |V(T ) ∩ V̂| ∈ {1, 2, 3}.
• If |V(T ) ∩ V̂| = 1, say V(T ) ∩ V̂ = {w}, we de�ne

dT (v) := d(w) + ‖v − w‖.

• For the other two ases, i. e., V(T ) ∩ V̂ = {wi}1≤i≤m with m = 2 or
m = 3, we use an orthogonal projetion as in the initialization phase.Let W be the line (plane) in R

3 through the points w1, w2 (, w3) and
PW : R

3 →W the orthogonal projetion on W . We de�ne
dT (v) :=







d(PW v) + ‖v − PW v‖ if PW v ∈ T,

min1≤j≤m

[

d(wj) + ‖v − wj‖
] otherwise. (8.8)The value d(PW v) in (8.8) is determined by linear interpolation of theknown values d(wj), 1 ≤ j ≤ m. This is well-de�ned as wj ∈ V̂ for

1 ≤ j ≤ m and d is already de�ned on V̂. Note that PW v ∈ T issatis�ed if all faes of T are aute triangles.The tentative approximate distane funtion d̃ : A → R at ative verties
v ∈ A is de�ned by

d̃(v) := min{ dT (v) : T ∈ T (v) with V(T ) ∩ V̂ 6= ∅ } (8.9)The omplete reparametrization method is as follows:Algorithm 8.1 (Fast Marhing method)1. Initialization: onstrut VΓ and ompute d(VΓ) as in (8.4), (8.5).2. Construt initial ative set A0 and ompute d̃(A0) as in (8.7), (8.9).3. Initialize �nalized set V̂ := VΓ and ative set A := A0.4. While A 6= ∅, repeat the following steps:a) Determine vmin ∈ A suh that d̃(vmin) = minv∈A d̃(v).b) Update �nalized set V̂ := V̂ ∪{vmin} and de�ne d(vmin) := d̃(vmin).) Update ative set A := (A∪ Ñ ) \ {vmin} where Ñ := N (vmin) \ V̂ .



132 8. Maintenane of the level set funtiond) (Re)ompute d̃(v) for v ∈ Ñ .5. For all v ∈ V , set d(v) := sign(ϕh(v)) · d(v).After this reparametrization we have V̂ = V and a grid funtion d(v), v ∈ V ,whih uniquely determines a ontinuous pieewise quadrati funtion ϕ̃h ∈ Vhon the triangulation Th. This ϕ̃h is the reparametrization of ϕh. For ϕ̃h onean onstrut an approximate zero level set Γ̃h as desribed in Setion 5.1.The reparametrization proedure guarantees Γ̃h ⊂
⋃

T∈TΓ
T . However, ingeneral we have Γ̃h 6= Γh, i. e., the disrete zero level set may be slightlyhanged. Sine ϕ̃h is lose to a signed distane funtion, the variations in

∇ϕ̃h are usually smaller than the variations in ∇ϕh. Due to this property,the reparametrization method has a stabilizing e�et.Remark 8.2 (Complexity)The number of arithmeti operations for the initialization phase (steps 1�3 inAlgorithm 8.1) is O(|VΓ|+ |A0|). For the extension phase (steps 4�5 in Algo-rithm 8.1) the omplexity is governed by step 4.a). The searh for vmin ∈ Ahas linear omplexity in our implementation, but ould be implemented moree�iently to gain O(log |A|) omplexity whih is the optimal one. As thesteps in 4.a)�4.b) are repeated NV := |V \VΓ| times, the overall omplexity ofthe extension phase is O(N2
V ) in our implementation and ould be improvedto be O(NV logNV). Although this bound O(N2

V ) indiates suboptimal om-plexity (ompared to O(NV logNV)), in our simulations the time needed forthe reparametrization is negligible ompared to the omputing times for dis-retization and iterative solution of the Navier-Stokes equations. ⋄8.2. Conservation of massThe temporal and spatial disretization of the level set equation does notonserve mass. The same holds for the reparametrization of the level setfuntion, f. [Hup06℄ where this topi is investigated further. This loss ofmass is redued if the grid is re�ned. Suh �ner grids, however, result in higheromputational osts. Therefore we introdue another strategy to ompensatefor the mass loss.After eah time step, we shift the interfae in normal diretion suh that thevolume of Ω1 at urrent time is the same as at time t = t0. To realize thiswe exploit the fat that the level set funtion is lose to a signed distanefuntion. In order to shift the interfae over a distane δ in outward normaldiretion, we only have to subtrat δ from the level set funtion.



8.2. Conservation of mass 133Let V (ϕ) := meas3{x ∈ Ω : ϕ(x) < 0 } denote the volume of Ω1 orrespondingto a level set funtion ϕ and let ϕh be the disrete level set funtion at a giventime. We have to �nd d ∈ R suh that
V (ϕh − δ)−meas3(Ω1(0)) = 0holds. In order to keep the number of evaluations of V low, we use a methodwith a high rate of onvergene, namely the Anderson-Björk method [AB73℄,to solve this equation. We then set ϕnew

h := ϕh − δ and disard ϕh.Note that this strategy only works if Ω1 onsists of a single omponent. Ifthere are multiple omponents, mass must be preserved for eah of them. Inthis ase the algorithm an be modi�ed to shift ϕh only loally. Disontinu-ities that may our in the level set funtion an be removed by a subsequentreparametrization step. In the ase of topology hanges more elaborate teh-niques have to be applied whih are based on loal mass onservation. Anexample is the paper [PSVW05℄, where the level set method is ombined withVOF tehniques to improve loal mass onservation.Finally note that the shifting of the level set funtion to obtain a better massonservation introdues a new soure of disretization errors.
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9. Software pakage DROPSThe software pakage DROPS is developed within the framework of the Col-laborative Researh Center SFB 540 [SFB℄ where the goal of the involvedmathematial projets (B4 and C7) is two-fold: on the one hand we want todevelop and improve numerial methods for the simulation of two-phase �owproblems and on the other hand the aim is to simulate realisti two-phasesystems whih are of interest for the projet partners from the engineeringdepartment.The development of DROPS is mainly onduted by the Chair of NumerialMathematis, RWTH Aahen University, Germany. Due to the omplexity oftwo-phase �ow problems we need the ability to perform parallel omputations.In a tight ooperation the parallelization of DROPS is realized at the Chair ofSienti� Computing, RWTH Aahen University. The ode is developed by aouple of people, where the urrent ore development team onsists of threepersons, Jörg Grande, Oliver Fortmeier and the author of this thesis.The DROPS ode is written in C++. Espeially the implementation of theiterative solvers heavily uses the objet-oriented and template programmingfeatures of C++1. Some further information inluding a gallery of simulationexamples an be found on the DROPS website [DRO℄.Setion 9.1 desribes some fundamental onepts and the most importantlasses of DROPS. In Setion 9.2 we give a brief introdution to the parallelversion.9.1. Fundamental onepts and data struturesIn this setion important data strutures and algorithms implemented inDROPS are presented. Figure 9.1 gives an overview of the main omponents1Thus our ode is also used by some ompiler manufaturers as a benhmark test for theirC++ ompilers (e. g., SUN, Mirosoft). 135
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Figure 9.1.: Overview of modules and struture of DROPS.



9.1. Fundamental onepts and data strutures 137of the software. The di�erent modules are arranged in the diagram suh thatthey obey two levels of struturing, namely in vertial and horizontal diretion.The vertial struture of the �gure distinguishes between input and outputroutines, data strutures and algorithms. While the di�erent methods to bringinput in and get output from the DROPS kernel are desribed in Setion 9.1.8,we deided to present algorithms in onjuntion with related data strutures.This orresponds to the objet-oriented perspetive of C++ lasses, wheredata strutures (as data members) and funtionality (as member funtions)are ombined with eah other.In a horizontal struture Figure 9.1 lassi�es the di�erent modules into theategories `geometry'and `numeris', emphasizing the fat that we tried todeouple geometrial data suh as the grid from numerial data suh as vetorsand matries. Some tasks, however, require geometrial as well as numerialinformation and are therefore loated in the middle olumn. One example arethe disretization routines for setting up sti�ness matries, where in a loopover all tetrahedra the orresponding matrix entries are aumulated. Thegeometrial and numerial data strutures are desribed in Setions 9.1.1 and9.1.2, respetively.9.1.1. Geometrial objets: multilevel triangulation andsimpliesIn this setion we disuss the data strutures that represent geometrial ob-jets suh as verties, edges, faes, tetrahedra, the boundary and the multi-level grid. The orresponding data strutures are alled VertexCL, EdgeCL,FaeCL, TetraCL, BoundaryCL and MultiGridCL, respetively. Note that allC++ lasses in DROPS have a su�x CL to distinguish data type identi�ersfrom objet identi�ers.Boundary and boundary segmentsWe assume that the boundaryΣ = ∂Ω is partitioned into elementary boundarysegments Σj , j = 0, . . . , NΣ − 1. Note that here we used a C style number-ing starting with zero. To give an example, if Ω is a ube, then Σ an bepartitioned into NΣ = 6 boundary segments Σ0, . . . ,Σ5, f. Figure 9.2. Eahboundary segment is represented by a BndSegCL objet. Up to now DROPSan only handle boundary segments whih are pieewise planar. The lassBoundaryCL ontains an array of all BndSegCL objets.



138 9. Software pakage DROPS
1

x

3

0
2

5

4y

z

Figure 9.2.: A ube and its 6 boundary segments Σ0, . . . , Σ5.SimpliesIn the following we desribe the representation of the simplies.VertexCL. Eah vertex V stores its oordinates xV ∈ R
3 as a Point3DCLobjet. If V is loated on the boundary Σ, it stores a list of BndPointCLobjets, eah ontaining the index j of the boundary segment Σj withxV ∈ Σj and the 2D oordinate in the loal referene frame. Note that

V may be loated on multiple boundary segments. For the example inFigure 9.2 a vertex may be loated on up to 3 boundary segments.EdgeCL. Eah edge E is linked to the two verties V1, V2 whih are onnetedby E. If the edge is further re�ned into two sub-edges E1, E2, then thereis also a link to the midpoint vertex Vm. Note that E1 = V1Vm and
E2 = VmV2. If E is loated on the boundary, then it stores the indies jof the boundary segments with {xV1

,xV2
} ⊂ Σj . Note that an edge anbe loated on at most 2 boundary segments.FaeCL. Eah fae F is linked to its neighboring tetrahedra. For a boundaryfae the index j of the orresponding unique boundary segment Σj isstored. Note that a fae F may possess up to 4 neighboring tetrahedra.This is the ase if F is an inner fae onneting two tetrahedra T1 and

T2 whih are irregularly re�ned suh that F is not subdivided by theorresponding green re�nement rule. Then there are two green hildren
T ′

1 ∈ K(T1) and T ′
2 ∈ K(T2) also sharing F as a ommon fae.TetraCL. Eah tetrahedron T is linked to its 4 verties, 6 edges and 4 faes.If ℓ(T ) > 0, i. e., T is not stored in the initial triangulation T0, then

T is linked to its parent tetrahedron. If T is re�ned, then it is also



9.1. Fundamental onepts and data strutures 139linked to its hildren T ′ ∈ K(T ). T stores the integer values mark(T )(the re�nement mark) and status(T ) (the atual re�nement rule), f.Setion 3.2.3.Furthermore, eah simplex lass ontains an UnknownHandleCL objet whihstores the indies of unknowns belonging to this simplex, f. Setion 9.1.3.Multilevel triangulationThe lass MultiGridCL represents a multilevel triangulationM = (T0, . . . , TJ ),f. De�nition 3.5. The data struture is based on the orresponding hierarhi-al deomposition H = (G0, . . . ,GJ ), f. De�nition 3.7. That means that thetetrahedra are stored in J + 1 lists, eah one for the hierarhial surplus Gj ofa di�erent level. The verties, edges and faes are stored in a similar manner,where the level of suh a sub-simplex S is de�ned as
ℓ(S) := min{ ℓ(T ) : T ∈ H ontains S as sub-simplex }.Furthermore, MultiGridCL ontains a BoundaryCL objet storing all boundarysegments.The MultiGridCL onstrutor takes a MGBuilderCL objet as input argumentwhih reates the initial triangulation T0. MGBuilderCL serves as an abstratbase lass from whih spei� lasses an be derived. For instane, the derivedlass BrikBuilderCL an be used to generate an initial triangulation of auboid-shaped domain.The member funtion Refine() alls the re�nement algorithm (f. Algo-rithm 3.11) desribed in Setion 3.2.3. It expets that the tetrahedra T ∈ TJin the input multilevel triangulation are marked for re�nement or for oarsen-ing. This an be ahieved by alling the member funtions SetRegRefMark()or SetRemoveMark() of the orresponding TetraCL objets.There are di�erent kinds of iterators to aess the simplies in the multileveltriangulation. The MultiGridCLmember funtions GetTriangTetraBegin(L)and GetTriangTetraEnd(L) return iterators to yle through all tetrahedra

T ∈ TLof a ertain triangulation. Similarly the member funtions GetAllTetra-Begin(L) and GetAllTetraEnd(L) an be used to iterate over all
T ∈

L⋃

j=0

Gj ,



140 9. Software pakage DROPSwhere the level ℓ(T ) of the iterated tetrahedra T is inreasing from 0 to L.Similar iterators exist for verties, edges and faes as well.The iterators are implemented suh that a orresponding for loop an beexeuted by multiple OpenMP threads in parallel [Ope℄. This allows for fasteromputations on shared memory mahines. As the importane and availabilityof multi-ore arhitetures is growing nowadays and will grow further in thefuture, this is a relevant advantage regarding omputational e�ieny.9.1.2. Numerial objets: vetors and sparse matriesVetorsIn DROPS there are two di�erent type of vetors: SVetorCL for short vetorswith a handful of entries and VetorCL for vetors with a large number ofentries. Throughout this hapter we assume that indies always start withthe number zero (C style numbering).SVetorCL<RowsN> is a template lass with template parameter RowsN forvetors x ∈ R
RowsN with a �xed dimension RowsN. It is mostly used for storingoordinates. For this purpose we de�ned the typedefs Point2DCL, Point3DCLand BaryCoordCL whih are idential to SVetorCL<2>, SVetorCL<3> andSVetorCL<4>, respetively.The data type VetorCL is used for storing vetors x ∈ R

N where N is largeand may di�er from objet to objet. The type is de�ned as a typedef forVetorBaseCL<double>. VetorBaseCL<RealT> is a template lass for ve-tors with entry type RealT and is an anestor of std::valarray<RealT>.Thus VetorCL derives the bene�ts of the e�ient expression template meh-anisms available for arithmetial operations involving valarray objets. Bysetting a debug �ag DebugNumeriC range heking and other debug featuresan be enabled whih are swithed o� by default due to performane reasons.MatriesThere are two di�erent types of matries in DROPS, SMatrixCL for smallmatries and MatrixCL for large sparse matries.The template lass SMatrixCL<RowsN,ColsN> is used for small matries M ∈
R
RowsN×ColsN with �xed dimensions.



9.1. Fundamental onepts and data strutures 141Sparse matries are stored in objets of the type SparseMatBaseCL<RealT>where RealT indiates the type of the entries. For onveniene, we introdueda typedef MatrixCL for SparseMatBaseCL<double>.We use the ompressed row storage format (CSR) whih is desribed in the fol-lowing. For a sparse matrix with m rows and N non-zero entries, SparseMat-BaseCL ontains a vetor RowBegin with m + 1 integer entries, a vetorColIndex with N integer entries and a vetor Val with N entries of typeRealT. For a row i the indies from RowBegin[i-1℄ to RowBegin[i℄-1 indi-ate the range in Val where the values of the non-zero entries are stored. Theolumn indies of the orresponding values are stored in ColIndex.As it is a tedious task to ompute the sparsity pattern stored in RowBegin andColIndex, we use an intermediate storage format alled SparseMatBuilder-CL<RealT>when setting up a new sparse matrixM . The SparseMatBuilderCL�rst ollets and aumulates all entries in a std::map based data struture.After that a all of the member funtion Build() automatially reates theorresponding SparseMatBaseCL objet M and deletes the maps afterwards.As maps are often too memory onsuming we use them only for initializing
M . When updating M in subsequent steps the sparsity pattern is reusedby default, i. e., aess to SparseMatBuilderCL entries diretly returns theorresponding SparseMatBaseCL entries in Val. If the sparsity pattern shouldnot be reused (for example when the extended pressure spae QΓ

h hangedbeause the interfae Γ has moved) all matrix entries should be deleted by aall to the member funtion lear() to fore a omplete initialization of thematrix.9.1.3. The link between grid and unknowns: indiesAs mentioned before we deided to deouple the geometrial data (grid) fromthe numerial data (matries, vetors). This is advantageous, beause thenthe iterative solvers only have to deal with matries and vetors but not withthe grid. As a matrix-vetor multipliation does not require a loop over all gridentities this substantially saves omputational time. But for the interpretationof a solution vetor u it is neessary to know whih vetor entries are assoiatedwith a ertain vertex V , for example. Here the onept of indies omes intoplay.



142 9. Software pakage DROPSIndex desriptions and numberingsFor eah �nite element type used in a solution strategy there exists an assoi-ated index. An index J is desribed by an IdxDesCL objet. It ontains thenumber of degrees of freedom (DoF) for eah simplex type, nV , nE , nF , nT ,and the overall number of unknowns, NJ . To give an example, a P1-index has
nV = 1 DoF per vertex (and nE = nF = nT = 0), an index for vetor-valued
P2-FE has nV = nE = 3 DoFs for eah vertex and edge (and nF = nT = 0).As a next step we have to reate a numbering of all degrees of freedom whihbelong to the index J , where degrees of freedom on Dirihlet boundaries areomitted. This is done by a funtion CreateNumbering(...), whih is usuallya member funtion of the applied problem lass (f. Setion 9.1.4). By this wealso obtain the overall number of unknowns, NJ , whih is equal to the dimen-sion of the vetors assoiated with J . Thus at the end CreateNumbering(...)sets the value NJ in the orresponding IdxDesCL objet.The numbering is stored by UnknownHandleCL objets ontained in the or-responding VertexCL, EdgeCL, FaeCL and TetraCL objets. Note that for asingle simplex maybe multiple suh numbers have to be stored, namely onefor eah index or, in other words, one for eah �nite element type.For an extended �nite element spae a all to UpdateXNumbering(...) aug-ments the usual numbering, also alled base numbering, by a numberingfor the extended degrees of freedom. These numbers are not stored in theUnknownHandleCL objets, but in a separate ExtendedIdxCL objet. It on-tains a vetor xidx ∈ N

NJ where the entry xidx[j℄ either stores the numberof the extended DoF belonging to the base DoF j or it ontains a �ag that theDoF j is not extended. Note that UpdateXNumbering(...) has to be alledeah time the interfae has moved to aount for the hanged extended DoFs.Vetor and matrix desriptionsA VeDesCL objet ontains a vetor Data of type VetorCL and a pointerRowIdx to the assoiated index of type IdxDesCL. Calling the member fun-tion SetIdx(idx) sets the pointer and resizes the vetor to the right dimen-sion. Similarly, a MatDesCL objet ontains a sparse matrix Data and point-ers RowIdx and ColIdx to the assoiated row and olumn indies, respe-tively. A all of the member funtion SetIdx(ridx,idx) sets the pointersand deletes all matrix entries. The right dimension of the matrix are set laterby SparseMatBuilderCL, f. Setion 9.1.2.



9.1. Fundamental onepts and data strutures 1439.1.4. Problem lassesThere are several problem lasses in DROPS representing di�erent types ofpartial di�erential equations. So far we have problem lasses for the Poisson,Stokes and Navier-Stokes problem (one-phase), the level-set equation and thetwo-phase Stokes and Navier-Stokes problem. For example the lass for thetwo-phase Stokes problem is alled InstatStokes2PhaseP2P1CL. All problemlasses are derived from a ommon base lass ProblemCL whih ontains threeobjets onstituting a problem:
• the domain Ω, given by a multilevel triangulation (MultiGridCL),
• the boundary onditions and boundary values, given by a BndDataTobjet,
• the oe�ients and right hand-side of the partial di�erential equation,given by a CoeffT objet.BndDataT and CoeffT are template parameters of the template lass ProblemCLas their spei� struture may vary among di�erent problem types. Theirmeaning is disussed in the subsequent setions.A spei� problem lass usually ontains the index desriptions of the applied�nite element types and several matrix and vetor desriptions. Among themember funtions there are CreateNumbering(...) proedures for the in-dies (f. Setion 9.1.3) and di�erent Setup...(...) routines to omputethe matries and the right-hand side vetors onstituting the �nite elementdisretization.Boundary dataThe boundary data are desribed by a BndDataCL<BndValT> objet. It on-tains an array of BndSegDataCL<BndValT> objets, one for eah boundarysegment Σj , f. Setion 9.1.1. Eah BndSegDataCL objet stores the boundaryondition and a funtion pointer for evaluating the orresponding boundaryvalues of type BndValT. The hoie of the template parameter BndValT de-pends on whether the boundary ondition applies to a salar (double) orvetor-valued (Point3DCL) quantity. The presribed boundary ondition oftype BndCondT an be one of
• DirBC, Dir0BC for non-homogeneous and homogeneous Dirihlet bound-ary onditions, respetively,
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• NatBC, Nat0BC for non-homogeneous and homogeneous natural bound-ary onditions, respetively,
• Per1BC, Per2BC for periodi boundary onditions denoting orrespond-ing boundaries.WallBC and OutflowBC are alias names for Dir0BC and Nat0BC, respetively.Coe�ientsAs an example to desribe the lasses representing the oe�ients of a spei�partial di�erential equation we onsider a salar onvetion-di�usion problemfor the unknown funtion u = u(x, t),

ut + v(x, t) · ∇u− div(a(x, t)∇u) = f(x, t) in Ω× [t0, tf ].This type of problem is represented by the problem lass InstatPoissonP1CL.The orresponding PoissonCoeffCL ontains the funtions v(x, t), a(x, t) and
f(x, t) as stati member funtions whih have to be implemented by the user.For the two-phase �ow problem (2.13) the orresponding oe�ient lass storesquantities suh as densities ρi and dynami visosities µi of the phases Ωi,
i = 1, 2, the surfae tension oe�ient τ and the vetor of gravitational ael-eration g.9.1.5. Useful tools for disretizationIn the disretization proedures Setup...(...) of the problem lasses severalsparse matries representing the disrete di�erential operators and vetors forthe right-hand side have to be onstruted. This is done by iterating overall tetrahedra T ∈ Th, where for a single tetrahedron T ontributions to thematrix and vetor entries are omputed. These ontributions are integralsover T and the integrands are funtions whih an be de�ned loally on T ,e. g., basis funtions or gradients of basis funtions.Grid funtionsFor representing the integrands and omputing the integrals over T we useLoalP1CL and LoalP2CL objets (for linear and quadrati funtions, re-spetively) and quadrature rules Quad2CL, Quad5CL (exat for polynomials up



9.1. Fundamental onepts and data strutures 145to degree 2 or 5, respetively). All these lasses have a template parame-ter ValT for the funtion values and are derived from a ommon base lassGridFuntionCL<ValT,PointsN>. This lass stores PointsN values of typeValT whih are assoiated to distint nodes in a tetrahedron desribed bybaryentri oordinates (BaryCoordCL, f. Setion 9.1.2). For a LoalP1CLobjet these nodes are the 4 verties of the tetrahedron, for a LoalP2CL ob-jet the 6 midpoints of the edges are added, f. Figure 4.1. For the Quad...CLobjets the nodes are de�ned by the quadrature points of the orrespondingquadrature ruleArithmeti operations suh as +, -, *, / for GridFuntionCL objets are de-�ned pointwise. In the same way funtions an be applied to GridFuntionCLobjets using the member funtion apply(...). Due to inheritane all thisfuntionality is also provided for the derived LoalP...CL and Quad...CLlasses. This is very useful when reating omplex integrands like (u ·∇vj) vi.Several variants of assign(...) member funtions enable the initialization ofthe LoalP...CL and Quad...CL objets. Additionally, LoalP...CL objetsan be evaluated in an arbitrary point x ∈ T given by its baryentri oor-dinates. The Quad...CL objets have a member funtion quad(...) whihapplies the quadrature rule and returns the result of the numerial integration.Loal numberingsA LoalNumbCL objet is initialized with an index desription of index J ,the orresponding boundary data objet and a tetrahedron T . It ollets thenumbering of the loal degrees of freedom of T aording to the index J ,f. Setion 9.1.3. If a degree of freedom is on a boundary it also providesthe assoiated boundary ondition and the number j of the orrespondingboundary segment Σj . Up to now LoalNumbCL an only be used for P2 �niteelements.Integration over interfae pathes or parts of a tetrahedronAn InterfaePathCL objet is initialized by a tetrahedron T and the level setfuntion ϕh given by an P2-FE VeDesCL objet. It extrats the LoalP2CLobjet orresponding to ϕh, deides whether Γh∩T 6= and provides informationabout the sign (∈ {+,−, 0}) of eah degree of freedom.The member funtion ComputeForChild(i) omputes the planar interfaepath ΓT ′ = Γh ∩ T ′ for the ith regular hild T ′ ∈ K(T ), i = 0, . . . , 7. ΓT ′



146 9. Software pakage DROPSis represented by the oordinates of its verties, whih are given in terms ofbaryentri oordinates with respet to the parent T . Note that for the om-putation of the pathes the regular re�nement of T is not really onstrutedin the sense that geometrial data strutures are hanged.After alling ComputeCutForChild(i) the member funtion quad(...) anbe used to ompute the integral over the ut part T ′∩Ω1 or T ′∩Ω2, where theintegrand is an arbitrary quadrati funtion f given by a LoalP2CL objet.The additional member funtion quadBothParts(...) provides the integralsover both ut parts T ′ ∩ Ωi, i = 1, 2.9.1.6. Time disretization and ouplingFor the one-phase Stokes and Navier-Stokes problem the one-step theta-sheme(f. Setion 6.1) is represented by the lasses InstatStokesThetaShemeCLand InstatNavStokesThetaShemeCL, respetively. Both lasses have a tem-plate parameter SolverT for the type of the solver used in eah time step.The omputation of one time step is performed by the member funtionDoStep(...).For the two-phase Stokes and Navier-Stokes problem we have to onsider aoupled system for veloity u, pressure p and level set funtion ϕ, f. Se-tion 6.2. During the implementation it turned out that the oupling and timedisretization should be ombined in one lass and annot be deoupled inseparate lasses as they are losely onneted to eah other. However, the dif-ferent oupling lasses all have a similar struture, thus we deided to derivethem from a base lass TimeDis2PhaseCL whih stores ommon data mem-bers and de�nes a ommon abstrat interfae by means of virtual memberfuntions suh as DoStep(...).For the time disretization of the two-phase Navier-Stokes problem we imple-mented the following lasses:
• ThetaSheme2PhaseCL: oupled one-step theta-sheme as given in Algo-rithm 6.12,
• LinThetaSheme2PhaseCL: linearized one-step theta-sheme, f. (6.42)�(6.44),
• FraStep2PhaseCL: oupled frational-step sheme, applies the Theta-Sheme2PhaseCL for eah maro time step, f. Setion 6.1.3,



9.1. Fundamental onepts and data strutures 147
• OpSplitting2PhaseCL: oupled frational-step sheme with operatorsplitting, f. Setion 6.1.4.All these oupling lasses have a template parameter SolverT ontrolling thetype of the iterative solver used in eah time step. For the time disretizationof two-phase Stokes problems we deided to apply the orresponding lassesfor the two-phase Navier-Stokes problems rather than reate Stokes spei�time disretization lasses. This avoids ode dupliation and enhanes odemaintainability.9.1.7. Iterative solvers and preonditionersFor the implementation of iterative solvers we tried to use a software designthat aounts for the nested hierarhy of the solution methods, f. Figure 7.2.For example, the Navier-Stokes �xed point loop requires an Oseen solver whihapplies a Krylov subspae method involving some preonditioner. Bearing thisin mind we use a template mehanism to speify the inner solution ompo-nents as template parameters. On the one hand this enables an easy plug-inof di�erent solution omponents to test and ompare reasonable ombinationsof solvers available from the DROPS solver toolbox. On the other hand thistehnique assures e�ient ode sine the ompiler an perform full ode op-timization for the template speialization whih is known at the moment ofompilation.Example 9.1As an illustrative example for the template plug-in mehanism we give a pieeof ode for the de�nition of a Stokes solver:// preonditioner for upper left blok preonditionertypedef SSORPCL ULPPT;ULPPT ULPP(...);// preonditioner for upper left bloktypedef PCGSolverCL<ULPPT> ULSolverT;ULSolverT ULsolver( ULPP, ...);typedef SolverAsPreCL<ULSolverT> ULPT;ULPT ULP( ULsolver);// Shur omplement preonditionertypedef ISPreCL ShurPT;ShurPT ShurP( ...);// Stokes solver



148 9. Software pakage DROPStypedef InexatUzawaCL<ULPT, ShurPT> StokesSolverT;StokesSolverT StokesSolver( ULP, ShurP, ...);Hene, the objet StokesSolver represents an inexat Uzawa method. For
QT we hose some iterations of an SSOR-preonditioned CG method (ULP)applied to the upper left blok of the saddle point matrix. The Shur omple-ment preonditioner QS is given by ShurP. ⋄We emphasize that there is a oneptual di�erene between solver objets andpreonditioner objets. Solver lasses are derived from a ommon base lassSolverBaseCL storing the tolerane and the maximum number of iterations,i. e., the stopping riterion, as well as the norm of the residual and numberof iterations used after the last exeution of the solver. Eah solver lassomprises a member funtion Solve(...) alling the routine of the iterativesolver for a given initial guess. In ontrast, eah preonditioner lass ontainsthe analogon Apply(...) alling the preonditioner for the initial guess 0.In the following we list most of the solvers and preonditioners available fromthe DROPS solver toolbox.SolversNavier-Stokes solvers, f. Setion 7.1.
• FixedPtDefetCorrCL: Algorithm 7.1 with step length ωm = 1,
• AdaptFixedPtDefetCorrCL: Algorithm 7.1 with step length ωm as in(7.6).Both are template lasses where the template parameter SolverT determinesthe type of the Oseen solver. The latter is applied to solve the linearizedproblems inside the �xed point loop.Oseen solvers, f. Setion 7.2.
• ShurSolverCL: Algorithm 7.3,
• PShurSolverCL: Algorithm 7.3 with Shur omplement preondition-ing,
• UzawaCL: a variant of the Uzawa algorithm desribed in [BPV97℄,
• InexatUzawaCL: Algorithm 7.4,
• PMResSPCL: preonditioned MINRES solver for the Stokes problem.



9.1. Fundamental onepts and data strutures 149Some of the lasses provide template parameters ULPT, ShurPT to deter-mine the type of the preonditioners QT , QS , for the upper left blok T of Kand the Shur omplement S, respetively.For the appliation of a general Krylov subspae method to the saddle pointmatrix K one an use the lass BlokMatrixSolverCL<SolverT> where thetemplate parameter SolverT spei�es the type of the Krylov solver.Krylov subspae methods
• CGSolverCL, PCGSolverCL: CG method and preonditioned variant,
• MResSolverCL, PMResSolverCL: MINRES method and preonditionedvariant,
• GMResSolverCL, GMResRSolverCL: GMRES method and GMRES-Re-ursive method with left or right preonditioning,
• BiCGStabSolverCL: preonditioned BiCGSTAB method,
• GCRSolverCL: preonditioned GCR method.The lasses representing preonditioned Krylov subspae methods have a tem-plate parameter PT designating the type of the preonditioner.Multigrid methodThe MGSolverBaseCL represents a multigrid solver (V-yle) with a �xed num-ber of smoothing steps. There are two template parameters SmootherT andSolverT whih ontrol the type of the smoother and the oarse grid solver,respetively. The multigrid method is speial in the sense that it requires ahierarhy of linear systems

Aℓxℓ = bℓ, ℓ = 0, 1, . . . , Land prolongations
Pℓ : Vℓ−1

h → Vℓ
h, ℓ = 1, . . . , L,to interpolate from level ℓ−1 to the �ner level ℓ. Due to the nestedness of themultilevel triangulation M the hierarhy of �nite element spaes is nested,i. e., Vℓ−1

h ⊂ Vℓ
h, hene the prolongations are de�ned in the anonial way.For eah level the orresponding sti�ness and prolongation matries Aℓ, Pℓand right-hand side vetor bℓ are stored in a MGLevelDataCL objet. Theorresponding restrition matries are given by Rℓ := PT

ℓ and don't have tobe stored separately. The hierarhy of matries and vetors is represented bythe data struture MGDataCL whih is simply a list of MGLevelDataCL objets.



150 9. Software pakage DROPSPreonditionersThe DROPS solver toolbox omprises the preonditioner lasses given in thefollowing lists. For a disussion of the preonditioners we refer to Setion 7.2.3.Matrix-based preonditioners
• JACPCL: one step of the Jaobi preonditioner,
• GSPCL, SGSPCL: one step of the Gauss-Seidel or symmetri Gauss-Seidel preonditioner,
• SSORPCL, MultiSSORPCL: one or multiple steps of the SSOR preon-ditioner,
• DummyPCL: no preonditioningFor most of these preonditioners there exists a variant whih an be used assmoother for the multigrid solver.The wrapper lass SolverAsPreCL enables the use of a solver objet as apreonditioner. That means that the Apply(...) member funtion of thewrapper lass alls the Solve(...) member funtion of the solver lass withinitial guess zero. This mehanism is used in Example 9.1 in the de�nitionof the preonditioner for the upper left blok, ULP, whih wraps the solverobjet ULsolver.Shur omplement preonditioners QS

• ISPreCL: the Shur omplement preonditioner (7.16) where M−1
µ and

A−1
ρ are replaed by one step of the SSOR preonditioner applied to theorresponding pressure matries,

• ISNonlinearPreCL: the same Shur omplement preonditioner, butwith M−1
µ and A−1

ρ replaed by some iterations of a Krylov subspaemethod whih an be hosen by means of a template argument,
• ISBBTPreCL: the variant of the Shur omplement preonditioner (7.16)desribed in Remark 7.7, usually applied in ase of an extended pressurespae,
• MinCommPreCL: the minimal ommutator preonditioner (7.20) for Oseenproblems desribed in Remark 7.8.The DiagBlokPreCL is used in onjuntion with solvers of type BlokMatrix-SolverCL. It ombines a preonditioner QT for the upper left blok with a



9.1. Fundamental onepts and data strutures 151preonditioner QS for the Shur omplement yielding the diagonal blok pre-onditioner QK de�ned in (7.11).9.1.8. Input and outputIn this setion we desribe input and output interfaes for di�erent types ofdata.Numerial dataVetors and sparse matries an be saved to and restored from �les by usingthe input and output stream operators, >> and <<, implemented for VetorCLand MatrixCL objets. The matrix format an be read by MATLAB [Mat℄whih is very useful, e. g., for omputing ondition numbers or the spetrumof a matrix.Geometrial dataThe initial triangulation T0 an be read from a mesh �le generated withthe mesh generator GAMBIT [Gam℄. To onstrut the orresponding mul-tilevel triangulation a ReadMeshBuilderCL objet ontaining the mesh �lename is passed to the onstrutor of the MultiGridCL objet. Here theonept of the MGBuilderCL lass is applied, f. Setion 9.1.1, from whihReadMeshBuilderCL is derived. Other input �le formats an be implementedby adding further anestors of MGBuilderCL.For the input and output of a hierarhy of triangulationsM = (T0, . . . , TJ ) weuse a self-de�ned �le format. For saving a MultiGridCL objet representing amultilevel triangulation we use a software tehnique alled serialization. Forthis reason the lass representing this task is alled MGSerializationCL. Thedeserialization is done by the lass FileBuilderCL, whih is an anestor ofMGBuilderCL and is passed to the onstrutor of MultiGridCL. It reads the�les written out before by a MGSerializationCL objet and rereates theorresponding MultiGridCL objet.In this way, a anelled simulation run an be restarted from the last timestep where a serialized multilevel triangulation was saved to the �le system.In a �rst step the geometrial data is deserialized from the �le system usingthe lass FileBuilderCL. After that the vetors representing the numerial



152 9. Software pakage DROPSsolutions are restored by means of the lass ReadEnsightP2SolCL, see thesubsequent setion.VisualizationFor 3D visualization purposes we mainly use the software pakage Ensight[Ens℄. The lass EnsightP2SolOutCL writes out the geometrial information(tetrahedra and oordinates of the verties) and the numerial solutions (uh,
p, ϕ evaluated in all P2 degrees of freedom) using a spei� Ensight �le format.This format an also be read by other visualization pakages suh as ParaView[Para℄.The lass ReadEnsightP2SolCL restores the vetors u, p and ϕ from the �leswritten out by the lass EnsightP2SolOutCL. However, this only works prop-erly if the multilevel triangulations at the time of storing and restoring arethe same.There are interfaes to some other visualization tools as well.
• GeomMGOutCL, GeomSolOutCL for visualization of geometry and numeri-al solution with Geomview [Geo℄,
• TePlotSolOutCL, TePlot2DSolOutCL for visualization of geometryand numerial solution (in 3D or on a 2D ut plane, respetively) withTePlot [Te℄,
• MapleMGOutCL, MapleSolOutCL for visualization of geometry and nu-merial solution with Maple [Map℄.9.2. ParallelizationFor the simulation of two-phase �ow problems the omputational omplexityis very high and thus the use of parallel mahines is of great importane. Inthis setion we will only onsider a parallelization for distributed memory ma-hines by means of a message passing interfae (MPI [Mes94, MPI℄). Sharedmemory parallelization by means of OpenMP [Ope℄ has also been applied tosome parts of DROPS, f. [TSaM+05℄ for a desription of the parallelizedroutines and some benhmark omputations. Both parallelization oneptsan be ombined when using multi-ore proessors whih are onneted bya high-speed network. For the parallelization of DROPS we pursue suh a



9.2. Parallelization 153hybrid parallelization approah due to the growing importane of multi-orearhitetures.In Setion 9.2.1 we present a data distribution format for the geometrialdata and, based on this, we also derive a distribution format for the numerialdata. In De�nition 9.2 below the geometrial data distribution format will bemade mathematially preise by a formal spei�ation of a so-alled admissiblehierarhial deomposition. This data distribution format is suh that thefollowing holds:1. Let T ∈ Gk be an element from the hierarhial surplus on level k, f.De�nition 3.7. Then T is stored on one proessor, say p, as a so-alledmaster element. In ertain ases (explained below) a ghost opy of T isstored on one other proessor, say q.2. The hildren of T (if they exist) are all stored as masters either onproessor p or, if T has a ghost opy, on proessor q. For T ∈ Gk, k > 0,the parent of T or a ghost opy of it is stored on the same proessor pwhere T is stored as master.For the multilevel re�nement algorithm a ruial point is that for a tetrahedron
T one needs information about all hildren of T , f. Setion 3.2.3. Due toproperty 2 this information is available on the loal proessor (p or q) withoutommuniation. The �rst property shows that in a ertain sense the overlapof tetrahedra is small.In a parallel run of a simulation the omputational load has to be distributeduniformly among the proessors. So in pratie an adaptive �nite elementsolver has to be ombined with dynami load balaning and data migrationbetween the proessors. This is the topi of Setion 9.2.2.The main results onerning the admissible hierarhial deomposition, theparallel multilevel re�nement method and the load balaning strategy an besummarized as follows:
• An admissible hierarhial deomposition has the desirable properties 1(small storage overhead) and 2 (data loality) from above. This resultis given in Setion 9.2.1.
• The appliation of the parallel re�nement algorithm to an admissiblehierarhial deomposition is well-de�ned and results in an admissiblehierarhial deomposition. This is proved in [GR05℄.
• Given an admissible hierarhial deomposition one an apply a suit-able load balaning and data migration algorithm suh that after data



154 9. Software pakage DROPSmigration one still has an admissible hierarhial deomposition. Weomment on this in Setion 9.2.2.9.2.1. Data distributionDistribution of geometrial data: admissable hierarhial deompositionLet the sequene M = (T0, . . . , TJ ) of triangulations be a multilevel trian-gulation and H = (G0, . . . ,GJ ) the orresponding hierarhial deomposition.In this setion we introdue a partiular format for the distribution of thetetrahedra in H among proessors on a parallel mahine. We assume that theproessors are numbered by 1, . . . , P .For the set of elements in the hierarhial surplus on level k that are storedon proessor p we introdue the notation
Gk(p) := {T ∈ Gk : T is stored on proessor p }and we de�ne

H(p) := (G0(p), . . . ,GJ (p)).Note that in general H(p) is not a hierarhial deomposition (in the sense ofDe�nition 3.7). The sequenẽ
H = (H(1), . . . ,H(P )) (9.1)is alled a distributed hierarhial deomposition (orresponding to H).In general the intersetion Gk(p) ∩Gk(q), p 6= q, may be nonempty. Note thatsuh an overlapping distribution of the elements is neessary, due to the fatthat parents and hildren are linked by pointers. Consider, for example, thesituation depited in Figure 9.3 where a parent T and its hild T ′ ∈ K(T )are stored on di�erent proessors, say 1 and 2. Sine pointers from one loalmemory to another are not allowed in a distributed memory setting, we haveto use a opy to realize this pointer. One ould store a opy of T on proessor 2to represent the link between T and T ′ as a pointer on proessor q. If one doesnot allow suh ghost opies, all anestors and desendants of a tetrahedronmust be on the same proessor. This would ause very oarse data granularity,poor load balaning and hene low parallel e�ieny.For eah level k and proessor p we introdue a set of master elements,

Mak(p) ⊂ Gk(p), and a set of ghost elements, Ghk(p) ⊂ Gk(p). In the for-mulation of the onditions below we use the two onventions K(T ) := ∅ ifstatus(T ) = NoRef and MaJ+1(p) := ∅.
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P1 migrationto P2

P1 P2

ghost TK(T )

Figure 9.3.: Ghost elements are required to represent links between parents andtheir hildren as pointers aross memory boundaries are not allowed for distributedmemory mahines. In the depited example the parent T is stored on proessor P2as a ghost to represent the link to its hildren K(T ).We now formalize the onditions on data distribution as follows.De�nition 9.2 (Admissible hierarhial deomposition)The distributed hierarhial deomposition H̃ is alled an admissible hierarhi-al deomposition if for all k = 1, . . . , J the following onditions are ful�lled:(A1) Partitioning of Gk(p): The sets of masters and ghosts form a disjointpartitioning of Gk(p):
∀ p Mak(p) ∪ Ghk(p) = Gk(p) and Mak(p) ∩ Ghk(p) = ∅(A2) Existene: Every element from Gk is represented as a master elementon level k:

Gk =

P⋃

p=1

Mak(p)(A3) Uniqueness: Every element from Gk is represented by at most onemaster element on level k:
∀ p1, p2 : Mak(p1) ∩Mak(p2) 6= ∅ : p1 = p2(A4) Child�parent loality: A hild master element and its parent (asmaster or ghost) are stored on the same proessor:

∀ p ∀T ∈ Gk ∀T ′ ∈ K(T ) : T ′ ∈ Mak+1(p) : T ∈ Gk(p)



156 9. Software pakage DROPS(A5) Ghosts are parents: Ghost elements always have hildren:
∀ p ∀T ∈ Ghk(p) : K(T ) 6= ∅(A6) Ghost�hildren loality: A ghost element and its hildren are storedon the same proessor:

∀ p ∀T ∈ Ghk(p) : K(T ) ⊂ Mak+1(p) ⋄Remark 9.3Consider a onsistent initial triangulation T0 = G0 with a non-overlappingdistribution of the tetrahedra: G0(p) ∩ G0(q) = ∅ for all p 6= q. In this aseall tetrahedra an be stored as masters and there are no ghosts. Then thedistributed hierarhial deomposition H̃ = ((G0(1)), . . . , (G0(P ))) is obviouslyadmissible. ⋄Two elementary results are given in the following lemma.Lemma 9.4Let H̃ as in (9.1) be a distributed hierarhial deomposition. The followingholds:1. If the onditions (A3), (A5) and (A6) are satis�ed then for any elementfrom Gk there is at most one orresponding ghost element:
∀T ∈ Gk ∀ p, q : T ∈ Ghk(p) ∩ Ghk(q) : p = q2. If the onditions (A1), (A2), (A3), (A4) and (A6) are satis�ed then allhildren of a parent are stored as master elements on one proessor:

∀T ∈ Gk ∃ p : K(T ) ⊂ Mak+1(p)Proof. Given in [GR05℄.In [GR05℄ a parallel version of Algorithm 3.11 is presented whih is basedon an admissible hierarhial deomposition and is suitable for distributedmemory mahines. In our implementation we use the DDD pakage [DDD℄for the management of the distributed tetrahedra, faes, edges and verties.For a given input-multilevel triangulation the parallel method ParRe�nementprodues the same output-multilevel triangulation as the serial method Ser-Re�nement. In this sense the �omputational part� of the algorithm is nothanged. It is proved that the appliation of the parallel re�nement algorithmto an admissible hierarhial deomposition is well-de�ned and results in anadmissible hierarhial deomposition.



9.2. Parallelization 157Remark 9.5Let T ∈ Mak(p) be a parent master element. From the seond result inLemma 9.4 and (A4) it follows that either all hildren are masters on thesame proessor p as T , or they are masters on some other proessor q. In thelatter ase, the element T has a orresponding ghost element on proessor q.Due to this property, in the parallel re�nement algorithm we use the strategy:
• If a parent tetrahedron T has a ghost opy then operations that involvehildren of T are performed on the proessor on whih the ghost andthe hildren are stored.From ondition (A4) it follows that a hild master element has its parent (asghost or as master) on the same proessor. Therefore we use the strategy:
• Operations that involve the parent of T are performed on the proessoron whih the master element of T and its parent are stored.The �rst result in Lemma 9.4 shows that every T ∈ H has at most one ghostopy. Moreover, due to (A5) all leaves (T ∈ TJ) have no ghost opies. In thissense the overlap of tetrahedra between the proessors is small. ⋄The main di�erenes of ParRe�nement ompared to the serial version Ser-Re�nement (Algorithm 3.11) are the following:
• After the all of DetermineMarks(Gk) in step (1) of phase I the edgere�nement patterns have to be ommuniated to keep them onsistenton all proessors.
• If simplies are deleted, they have to be logged o� from DDD.
• If new simplies are reated, they have to be logged in to DDD. Ad-ditionally, simplies on proessor boundaries have to be identi�ed witheah other.
• After phase II the maximum number of levels has to be determined andommuniated among the proessors.Distribution of numerial dataLet x ∈ R

N a vetor and A ∈ R
N×N a (sparse) matrix. The numbering

J = {1, . . . , N} is assoiated to ertain degrees of freedom of the hierarhialdeomposition H. Based on the distributed hierarhial deomposition H̃ wewill de�ne a orresponding distribution of the numerial data x and A. Forthis purpose we �rst introdue the notion of a domain deomposition.
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Figure 9.4.: Domain deomposition for P = 8 proessors. Eah olor represents adi�erent proessor.De�nition 9.6 (Domain deomposition)LetH be a hierarhial deomposition and H̃ its admissible distribution amongthe proessors. Due to the onditions (A2) and (A3) every tetrahedron T ∈ Han be assigned a unique proessor on whih T is stored as a master element.In other words, we have a well-de�ned funtion master : H → {1, . . . , P} thatis given by master(T ) = p ⇔ T ∈ Maℓ(T )(p).Here ℓ(T ) is the level of T , f. De�nition 3.7. For 0 ≤ j ≤ J and 1 ≤ p ≤ Pwe de�ne

Tj(p) := {T ∈ Tj : master(T ) = p } and Ωj(p) :=
⋃

T∈Tj(p)

T.Then for eah 0 ≤ j ≤ J the sequene (Tj(1), . . . , Tj(P )) is a partition of thetriangulation Tj (due to (A2), (A3)) and is alled the domain deompositionof level j orresponding to the admissible hierarhial deomposition H̃. ⋄Figure 9.2.1 shows a domain deomposition for P = 8 proessors.A domain deomposition of level j automatially indues a distribution ofthe numerial data on level j. Without loss of generality we assume thatthe (global) numbering J = {1, . . . , N} is assoiated with the �nest level J .Let J (p) = {1, . . . , Np} be a (loal) numbering of the degrees of freedom ofthe loal triangulation TJ(p) on proessor p, 1 ≤ p ≤ P . Then the relationbetween a loal number i ∈ J (p) and its global ounterpart j ∈ J is given bythe oinidene matrix Ip ∈ R
N×Np ,

(Ip)i,j :=







1 if degree of freedom with global number j ∈ J existson proessor p with loal number i ∈ J (p),

0 else.Degrees of freedom whih are loated on multiple proessors form the so alledproessor boundary.



9.2. Parallelization 159De�nition 9.7 (Aumulated and distributed storage)For a (global) vetor x ∈ R
N the sequene

xA = (I1x, . . . , IPx) ∈ R
N1 × . . .× R

NPis alled the orresponding aumulated vetor. That means that for unknownson a proessor boundary eah adjaent proessor stores the same global value.The sequene xD = (x1, . . . , xP ) of vetors xp ∈ R
Np is alled the distributedvetor orresponding to x, if

x =
P∑

p=1

IT
p xp.In this ase the global value of an unknown on a proessor boundary is thesum of all loal values stored on the adjaent proessors. The same holds forentries of a distributed matrix AD = (A1, . . . , AP ) with

A =

P∑

p=1

IT
p ApIp.

⋄Remark 9.8 (Computation of distributed sti�ness matrix)For a sti�ness matrix A ∈ R
N×N the loal distributed matrix Ap ∈ R

Np×Npoinides with the sti�ness matrix orresponding to the subdomain ΩJ (p) withtriangulation TJ (p). Thus the loal matries Mp an be set up independentlyby the di�erent proessors p = 1, . . . P without any ommuniation. Further-more, the parallelization of the Setup routines (f. Setion 9.1.4) is a trivialtask. ⋄The onversion of a distributed into an aumulated vetor is ahieved bysumming up the vetor entries on proessor boundaries whih requires om-muniation between adjaent proessors. Obviously, the onversion in theother diretion is not unique. For omputing the matrix-vetor multipliation
y = Ax we use the aumulated storage xA as input and obtain the result y

Din a distributed fashion:
Ax =

(
P∑

p=1

IT
p ApIp

)

x =

P∑

p=1

IT
p Ap(Ipx)
︸ ︷︷ ︸

=:y
p

= y.Hene, the omputation of the matrix-vetor multipliation does not requireany ommuniation. The salar produt of two vetors x, y an be omputed



160 9. Software pakage DROPSe�iently if one of them is stored aumulated, for example xA, and the otherone distributed, y
D
. Then the omputation of

(x, y) = xT
P∑

p=1

IT
p yp

=

P∑

p=1

(Ipx)
T y

p
=

P∑

p=1

(Ipx, yp
)only requires the global summation of P real numbers (obtained by a all toMPI::AllRedue(...)).9.2.2. Distribution of work loadConsidering the simulation of a rising bubble as an example, during an adap-tive simulation run the multilevel triangulationM will hange as the re�ne-ment zone is moving upwards following the bubble geometry. Hene, thedistributed hierarhial deomposition H̃ and the numerial data have to beredistributed from time to time to ensure a balane of the omputational load.Otherwise the situation may our that almost all unknowns are stored on oneproessor, say p, while the others only have to solve problems of small size. Onthe one hand this leads to an ine�ient usage of the overall memory. On theother hand runtime salability severely dereases sine all proessors have towait at synhronization points suh as MPI::AllRedue(...) until proessor

p has �nished its work.The hallenge of the so-alled load balaning is to �nd a mapping
m : T → {1, . . . , P}desribing the distribution of the tetrahedra among the proessors suh thata) the orresponding proessor boundary is as small as possible andb) all proessors have almost the same number of tetrahedra.This problem statement is equivalent to a graph partitioning problem whihwill be stated in De�nition 9.10. For this reason,m is also alled a partitioningof T . We now introdue the notion of a weighted dual graph.De�nition 9.9 (Weighted dual graph)For a triangulation T the orresponding dual graph G(T ) = (V,E) is givenby the node set V = T and the edge set E ⊂ T × T , where (T1, T2) ∈ E i�the tetrahedra T1, T2 share a ommon fae.By introduing weight funtions α : V → R+ for nodes and β : E → R+for edges of the graph the omputational load α(vT ) of the orresponding
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Figure 9.5.: Dual graph for 2D triangulation.tetrahedron T and the amount of ommuniation β(eF ) for the orrespondingfae F an be desribed. Gw(T ) = (V,E, α, β) is alled a weighted dual graph.⋄Figure 9.5 shows a 2D example for a dual graph. For a subset Ṽ ⊂ V wede�ne α(Ṽ ) :=
∑

v∈Ṽ α(v) orresponding to the total load of Ṽ . For a givenpartitioning m the set
Ecut(m) := { (T1, T2) ∈ E : m(T1) 6= m(T2) }orresponds to the faes forming the proessor boundary where ommuniationtakes plae.The graph partitioning problem is given by the following de�nition:De�nition 9.10 (Generalized graph partitioning problem)For a onstant C > 1 and a given weighted dual graph (V,E, α, β) �nd apartitioning m : V → {1, . . . , P} suh that
costcomm(m) :=

∑

e∈Ecut(m)

β(e) → minand
α(Vp) ≤ C

α(V )

Pwith Vp := m−1(p). ⋄The graph partitioning problem belongs to the lass of NP-hard problems,in this sense an optimal partitioning annot be omputed e�iently. Never-theless, there are a ouple of heuristi approahes with polynomial runtimeyielding reasonable results. For a survey on this topi we refer to [Cha98℄. We



162 9. Software pakage DROPSuse the pakage ParMETIS [Parb℄ whih realizes a parallel multilevel graphpartitioning algorithm desribed in [KK98℄.Based on a partitioning m omputed by a graph partitioning tool the tetra-hedra and numerial data are rearranged among the proessors. This phase isalled data migration. To obtain again an admissible hierarhial deomposi-tion after the migration phase we have to ensure that the properties (A1)�(A5)hold. In partiular all hildren of a ommon parent have to stay together asmasters on a single proessor, f. Lemma 9.4. Thus in the following we givea de�nition for a redued dual graph, where the hildren of a ommon parentare represented by a single multi-node. For this purpose we introdue a map
P :

J⋃

k=0

Gk →
J−1⋃

k=0

Gkfrom a tetrahedron T ∈ Gk to its parent tetrahedron P (T ) ∈ Gk−1, k =
1, . . . , J , with the onvention P (T ) = T for all T ∈ G0. For T ∈ T we de�nethe orresponding equivalene lass

[T ]P := {S ∈ T : P (S) = P (T ) }.De�nition 9.11 (Redued dual graph)For a triangulation T let Gw(T ) = (V,E, α, β) be the orresponding weighteddual graph. The redued dual graph G′
w(T ) = (V ′, E′, α′, β′) is given by theredued node set

V ′ := { [T ]P : T ∈ T }induing the redued edge set
E′ := { (v′1, v

′
2) : ∃ v1 ∈ v′1, v2 ∈ v′2 : (v1, v2) ∈ E } \ { (v′, v′) : v′ ∈ V ′ }.The weight funtions α′, β′ are given by

α′(v′) :=
∑

v∈v′

α(v),

β′((v′1, v
′
2)) :=

∑

e∈E∩(v′
1
×v′

2
)

β(e). ⋄Figure 9.6 shows the redued dual graph orresponding to the dual graphgiven in Figure 9.5. The tetrahedra forming a multi-node are surrounded bya bold frame. Note that the dual graph G(T ) in Figure 9.5 has 20 nodes and24 edges whereas the redued dual graph G′(T ) in Figure 9.6 has only 8 nodesand 9 edges.
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Figure 9.6.: Redued dual graph for 2D triangulation.After omputing a load balaning partitioning m′ : V ′ → {1, . . . , P} of theredued dual graph G′
w(T ), for the data migration we use an migration al-gorithm desribed in [Gro02℄. The migration of the tetrahedra is arried outby means of the DDD pakage. After the migration for the new distributedhierarhial deomposition H̃ the propertymaster(T ) = m′([T ]P )holds. In [Gro02℄ it is shown that for an admissible input hierarhial de-omposition the distributed hierarhial deomposition after the migration isagain admissible.Remark 9.12 (Migration of numerial data)If a tetrahedron T is moved from one proessor to another, also ertain vetorentries orresponding to the degrees of freedom on T have to be migrated. Thevalid migration of numerial data is a deliate task and will not be disussedin this thesis. ⋄9.2.3. Current status and outlookThe parallel re�nement algorithm and load balaning strategy desribed in[Gro02℄ have been implemented in 2002 and were suessfully applied on aparallel mahine with up to 64 proessors. This implementation has servedas a starting point for a further parallelization of DROPS whih began in2005 and is urrently onduted by our partners at the Chair of Sienti�Computing, RWTH Aahen University. Sine then, more and more parallelfuntionality has been added. At the urrent stage we are able to performparallel simulations of two-phase �ow problems on adaptive grids whih arehanging in time.



164 9. Software pakage DROPSThe next steps will be the improvement of the e�ieny of the iterative solversand the design of e�ient parallel preonditioners. We also need to implementa parallel version of the fast marhing algorithm, f. Setion 8.1, whih is stillmissing. The parallelization of the multigrid solver will require a redesign ofthe load balaning strategy, sine up to now we only onsider the migrationof the triangulation on the �nest level J , but not of all triangulation levels.This will also have an impat on the de�nition of the weight funtions α′ and
β′.
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10. Test asesIn this hapter we present several test ases. Some of them are designed toverify the funtionality of several numerial omponents suh as the interfaeapturing by the level set method (Setion 10.1) and the reparametrization ofthe level set funtion by the Fast Marhing method (Setion 10.2). Other testases are used to numerially measure the order of onvergene for di�erentdisretizations of the surfae tension fore (Setion 10.3) and di�erent �niteelement spaes for the pressure (Setion 10.4).10.1. Advetion of the interfaeConsider the unit ube Ω = [0, 1]3 and a ball
Ω1 = {x ∈ R : ‖x− xM‖ < 0.2 }inside with enter xM = (0.5, 0.25, 0.5). Take the �xed veloity �eldû(x) = c(y) · (y2, − y1, 0)where y = x − (0.5, 0.5, 0.5) and c(y) = 4‖y‖(0.5 − ‖y‖). Hene, û is airular veloity �eld whih vanishes at the boundary ∂Ω, f. Figure 10.1 fora plot of û. We onsider the time interval [t0, tf ] = [0, 20] and de�ne theveloity �eld u(x, t) =

{û(x) t ≤ 10,

−û(x) t > 10.I. e., u hanges its sign at the time moment t = 10. Note that for an interfae
Γ ⊂ Ω moving with veloity u(x, t) we have

Γ(t0 + t) = Γ(tf − t) for t ∈ [t0,
t0 + tf

2
] = [0, 10]. (10.1)For the initial value ϕ0 of the level set funtion we use the signed distanefuntion for the sphere Γ = ∂Ω1. As a test ase for the advetion of the167
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Figure 10.1.: Interfae for t = 0. Also shown is the veloity �eld û on the slie
z = 0.

t = 5

t = 15

t = 10

t = 20Figure 10.2.: Interfae for di�erent time steps.
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Figure 10.3.: Zero level and ontour lines on slie z = 0 before (left) and afterreparametrization (right).interfae we perform 200 time steps of size dt = 0.1 of the level set equation(2.25). The triangulation of Ω onsists of 24×24×24 sububes eah subdividedinto six tetrahedra yielding 117649 unknowns for the level set funtion ϕ. Theresults for di�erent time steps are shown in Figure 10.2. As one an see,the interfaes for t ∈ {0, 20} and for t ∈ {5, 15} are almost idential, whihis reasonable regarding (10.1). However, we did not exatly measure thedisrepanies.10.2. ReparametrizationWe onsider the ubi domain Ω = [−1, 1]3 and the salar funtion
ϕ(x) =

∣
∣x · (1 + 0.2 g(x)

)∣
∣− 0.5, x ∈ Ω,where g(x) = cos(10x) cos(10y) cos(10z) for x = (x, y, z) ∈ Ω. The zero levelof ϕ and ontour lines of ϕ on the slie z = 0 are shown in Figure 10.3 onthe left. Apparently, ϕ is not a distane funtion as its ontour lines are notequidistant.For spatial disretization Ω is split into 24× 24× 24 sububes, where eah ofthem is subdivided into six tetrahedra. The orresponding P2 disretization of

ϕ requires 117649 unknowns. Applying the Fast Marhing method desribed inSetion 8.1 we obtain the reparametrized funtion ϕ̃, whih is an approximatedistane funtion, f. Figure 10.3 on the right. Comparing ϕ and ϕ̃, the
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Figure 10.4.: Lower half part of the 4 times re�ned mesh T4.zero level is only slightly hanged. A quantitative omparison measuring thedi�erene of the orresponding interfaes has not been performed, yet.10.3. Approximation order of surfae tensionfore disretizationIn this setion we present results of a numerial experiment whih indiatesthat the O(
√
h) bound in Corollary 5.23 is sharp. Furthermore, for the im-proved approximation desribed in Setion 5.3.4 the O(h) bound will be on-�rmed numerially.We onsider the domain Ω := [−1, 1]3 where the ball Ω1 := {x ∈ Ω : ‖x‖ <

R } is loated in the enter of the domain. In our experiments we take R = 1
2 .For the disretization a uniform tetrahedral mesh T0 is used where the ver-ties form a 6 × 6 × 6 lattie, hene h0 = 1

5 . This oarse mesh T0 is loallyre�ned in the viinity of Γ = ∂Ω1 using the adaptive re�nement algorithmpresented in Setion 3.2.3. This repeated re�nement proess yields the gradu-ally re�ned meshes T1, T2, . . . with loal (i. e., lose to the interfae) mesh sizes
hi = 1

5 · 2−i, i = 1, 2, . . .. Part of the tetrahedral triangulation T4 is shownin Figure 10.4. The orresponding �nite element spaes Vi := Vhi = (Vhi)
3onsist of vetor funtions where eah omponent is a ontinuous pieewisequadrati funtion on Ti.The interfae Γ = ∂Ω1 is a sphere and thus the urvature κ = − 2

R is onstant.



10.3. Approximation order of surfae tension fore disretization 171If we disretize the �ow problem using Vi as disrete veloity spae, we haveto approximate the surfae tension fore
fΓ(v) =

2τ

R

∫

Γ

nΓ · v ds = τ

∫

Γ

∇Γ idΓ ·∇Γv ds, v ∈ Vi. (10.2)To simplify notation, we take a �xed i ≥ 0 and the orresponding loal meshsize parameter is denoted by h = hi. For the approximation of the interfaewe use the approah desribed in Setion 5.1.2.The disrete approximation of the surfae tension fore is
fΓh

(v) = τ

∫

Γh

∇Γh
idΓh

·∇Γh
v ds, v ∈ Vi.We are interested in, f. Corollary 5.23,

‖fΓ − fΓh
‖V′

i
:= supv∈Vi

fΓ(v)− fΓh
(v)

‖v‖1 . (10.3)The evaluation of fΓ(v), for v ∈ Vi, requires the omputation of integralson urved triangles or quadrilaterals Γ∩ S where S is a tetrahedron from themesh Ti. We are not able to ompute these exatly. Therefore, we introduean arti�ial fore term whih, in this model problem with a known onstanturvature, is omputable and su�iently lose to fΓ.Lemma 10.1For v ∈ V = (H1
0 (Ω))3 de�ne

f̂Γh
(v) :=

2τ

R

∫

Γh

nh · v ds,where nh is the pieewise onstant outward unit normal on Γh. Then thefollowing inequality holds:
‖fΓ − f̂Γh

‖V′ ≤ ch. (10.4)Proof. Let Ω1,h ⊂ Ω be the domain enlosed by Γh, i. e., ∂Ω1,h = Γh. Wede�ne D+
h := Ω1 \Ω1,h, D−

h := Ω1,h \Ω1 and Dh := D+
h ∪D−

h . Due to Stokestheorem, for v ∈ V we have
|fΓ(v)− f̂Γh

(v)| = 2τ

R

∣
∣
∣
∣
∣

∫

Ω1

div v dx− ∫
Ω1,h

divv dx∣∣∣∣
∣

(10.5)
=

2τ

R

∣
∣
∣
∣
∣

∫

D+

h

div v dx− ∫
D−

h

div v dx∣∣∣∣
∣

(10.6)
≤ 2τ

R

∫

Dh

| div v| dx. (10.7)



172 10. Test asesUsing the Cauhy-Shwarz inequality, we get the estimate
|fΓ(v)− f̂Γh

(v)| ≤ c
√

meas3(Dh) ‖v‖1 for all v ∈ V.whih results in the upper bound
‖fΓ − f̂Γh

‖V′ ≤ c
√

meas3(Dh). (10.8)Note that for the pieewise planar approximation Γh of the interfae Γ wehave meas3(Dh) = O(h2) and thus (10.4) holds.From Lemma 10.1 we obtain ‖fΓ−f̂Γh
‖V′

j
≤ c h with a onstant c independentof j. Thus we have

‖f̂Γh
− fΓh

‖V′
i
− ch ≤ ‖fΓ − fΓh

‖V′
i
≤ ‖f̂Γh

− fΓh
‖V′

i
+ ch. (10.9)The term ‖f̂Γh

− fΓh
‖V′

i
an be evaluated as follows. Sine Γh is pieewiseplanar and v ∈ Vi is a pieewise quadrati funtion, for v ∈ Vi, both f̂Γh

(v)and fΓh
(v) an be omputed exatly (up to mahine auray) using suitablequadrature rules.For the evaluation of the dual norm ‖ · ‖V′

i
we proeed as follows. Let

{vj}j=1,...,n (n := dimVi) be the standard nodal basis in Vi and JVi
: R

n →Vi the isomorphism JVi
x =

∑n
k=1 xkvk. Let Mh be the mass matrix and Ahthe sti�ness matrix of the Laplaian:

(Mh)ij :=

∫

Ω

vi · vj dx,
(Ah)ij :=

∫

Ω

∇vi · ∇vj dx. 1 ≤ i, j ≤ n.De�ne Ch = Ah +Mh. Note that for v = JVi
x ∈ Vi we have ‖v‖21 = 〈Chx, x〉.Take e ∈ V′

i and de�ne e ∈ R
n by ej := e(vj), j = 1, . . . , n. Due to

‖e‖V′
i
= supv∈Vi

|e(v)|
‖v‖1 = sup

x∈Rn

|∑n
j=1 xje(vj)|
√

〈Chx, x〉we obtain
‖e‖V′

i
= sup

x∈Rn

〈x, e〉
√

〈Chx, x〉
= ‖C−1/2

h e‖ =

√

〈C−1
h e, e〉. (10.10)Thus for the omputation of ‖e‖V′

i
we proeed in the following way:
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i ‖f̂Γh

− fΓh
‖V′

i
order ‖f̂Γh

− f̃Γh
‖V′

i
order0 1.79 E-1 � 1.32 E-1 �1 1.40 E-1 0.35 4.43 E-2 1.572 1.03 E-1 0.45 1.46 E-2 1.613 7.22 E-2 0.51 5.06 E-3 1.524 5.02 E-2 0.53 1.78 E-3 1.51Table 10.1.: Error norms and numerial order of onvergene for di�erent re�ne-ment levels.1. Compute e =

(
e(vj)

)n

j=1
.2. Solve the linear system Ch z = e up to mahine auray.3. Compute ‖e‖V′

i
=
√

〈z, e〉.We applied this strategy to e := f̂Γh
−fΓh

. The results are given in the seondolumn in Table 10.1. The numerial order of onvergene in the third olumnof this table learly indiates an O(
√
h) behavior. Due to (10.9) this impliesthe same O(

√
h) onvergene behavior for ‖fΓ − fΓh

‖V′
i
. This indiates thatthe O(

√
h) bound in Corollary 5.23 is sharp.The same proedure an be applied with fΓh

replaed by the modi�ed (im-proved) approximate surfae tension fore
f̃Γh

(v) = −τ
3∑

i=1

g̃h,i(vi)with g̃h,i as de�ned in (5.44). This yields the results in the fourth olumnin Table 10.1. For this modi�ation the numerial order of onvergene issigni�antly better, namely at least �rst order in h. From (10.9) it followsthat for ‖fΓ − f̃Γh
‖V′

i
we an expet O(hp) with p ≥ 1.Summarizing, we onlude that the results of these numerial experimentson�rm the theoretial O(

√
h) error bound derived in the analysis in Se-tion 5.3.3 and show that the modi�ed approximation indeed leads to (muh)better results.Results of numerial experiments for a Stokes two-phase �ow problem usingboth fΓh

and f̃Γh
are presented in Setion 10.4.
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Ω1 Ω2

Γ

Figure 10.5.: 2D illustration of thephase distribution for test ase A with
Γ = Γ1.

Ω1

Ω2

ΓFigure 10.6.: 2D illustration of thephase distribution for test ase B.10.4. Pressure jump indued by surfae tensionIn this setion we onsider the following Stokes problem on the domain Ω =
(−1, 1)3 using the notation from Chapter 5,

a(u,v) + b(v, p) = fSF(v) for all v ∈ V,
b(u, q) = 0 for all q ∈ Q. (10.11)Here fSF ∈ V′ is a surfae fore term on the interfae Γ whih will be spei�edin the two test ases below. For simpliity we assume onstant visosity µ = 1.The �nite element disretization of (10.11) is as follows:

a(uh,vh) + b(vh, ph) = fSF,h(vh) for all vh ∈ Vh,

b(uh, qh) = 0 for all qh ∈ Qh,
(10.12)where fSF,h ∈ V′

h is an approximation of fSF. We hoose a uniform initialtriangulation T0 where the verties form a 5×5×5 lattie and apply an adaptivere�nement algorithm presented in [GR05℄. Loal re�nement of the oarse mesh
T0 in the viinity of Γ yields the gradually re�ned meshes T1, T2, T3, T4 withloal mesh sizes hΓ = hi = 2−i−1, i = 0, . . . , 4 at the interfae. For thedisretization of u we hoose the standard �nite element spae of pieewisequadratis:Vh := {v ∈ C(Ω)3 : v|T ∈ P2 for all T ∈ Th, v|∂Ω = 0 }.We ompute the errors

eu := u∗ − uh and ep := p∗ − ph



10.4. Pressure jump indued by surfae tension 175interfae # ref. dimVh dimQ1
h dimQΓh

h dimQ0
h0 1029 125 150 3841 6801 455 536 1984

Γ = Γ1 2 31197 1657 1946 83843 131433 6235 7324 339844 537717 24093 28318 1363840 1029 125 190 3841 7749 543 768 2304
Γ = Γ2 2 42633 2313 3146 115563 200469 9607 12808 520884 871881 39229 51774 221796Table 10.2.: Dimensions of the �nite element spaes for test ase A.for di�erent hoies of the pressure �nite element spae Qh to ompare theapproximation properties of the di�erent spaes. In our experiments we usedpieewise onstant or ontinuous pieewise linear elements, i. e., the spaes

Q0
h, Q1

h respetively, and the extended pressure spae QΓh

h introdued in Se-tion 5.4.2.10.4.1. Test ase A: Pressure jump at a planar interfaeThis simple test ase is designed to examine interpolation errors of �nite el-ement spaes for the approximation of disontinuous jumps of the pressurevariable.For fSF we hoose the arti�ial surfae fore fSF = fASF where
fASF(v) = σ

∫

Γ

v · n ds, v ∈ Vand σ > 0 is a onstant. Note that fASF ∈ V′. Then the unique solution of(10.11) is given by
u∗ = 0, p∗ =

{

C in Ω1,

C + σ in Ω2.sine b(v, p∗ − C) = −
∫

Ω2
σ div v dx =

∫

Γ σvn ds for arbitrary v ∈ V. Here
C is a onstant suh that ∫Ω p∗ dx = 0. In our alulations we used σ = 1.



176 10. Test asesWe onsider two di�erent interfaes Γ1 and Γ2, whih are both planes. Γ1 isde�ned by
Γ1 = { (x, y, z) ∈ Ω : z = 0 }.In this ase the two subdomains are given by Ω1 := { (x, y, z) ∈ Ω : z < 0 }and Ω2 := Ω \ Ω1, f. Figures 10.5 and 10.7. Interfae Γ2 is de�ned by

Γ2 = { (x, y, z) ∈ Ω : y + z = 1 }and the orresponding subdomains are Ω1 := { (x, y, z) ∈ Ω : y + z < 0 }and Ω2 := Ω \ Ω1, f. Figure 10.9. We emphasize that for both interfaesthe interfae approximation Γh is exat, i. e., Γh = Γ, allowing for an exatdisretization of the interfaial fore, i. e., fASF,h = fASF.Due to g = 0, u∗ ∈ Vh and the fat that ‖fASF,h − fASF‖V′
h

= 0 the errorbound (5.12) simpli�es to
µ‖eu‖1 + ‖ep‖L2 ≤ c inf

qh∈Qh

‖p∗ − qh‖L2 . (10.13)Thus the errors in veloity and pressure are solely ontrolled by the approxi-mation property of the �nite element spae Qh.The number of veloity and pressure unknowns for the grids T0, . . . , T4 withdi�erent re�nement levels are shown in Table 10.2. Note that dimQΓh

h >
dimQ1

h due to the extended basis funtions and that dimQ0
h is even (muh)larger.Remark 10.2Note that for fSF = fΓ the orresponding pressure solution would be p∗ = 0as the urvature of Γ vanishes. Therefore this would not be an interesting testase. ⋄Interfae at Γ = Γ1For Γ = Γ1, the interfae Γ is loated at the element boundaries of tetrahedrainterseted by Γ, i. e., for eah tetrahedron T interseting Γ we have that Γ∩Tis equal to a fae of T .In this speial situation, the disontinuous pressure p∗ an be representedexatly in the �nite element spae Q0

h of pieewise onstants, thus the �niteelement solution (uh, ph) ∈ Vh×Q0
h is equal to (u∗, p∗). This is on�rmed bythe numerial results: the exat solution (u∗, p∗) ful�lls the disrete equations(up to round-o� errors). The same holds for the extended �nite element spae

QΓh

h .



10.4. Pressure jump indued by surfae tension 177

Figure 10.7.: Slie of grid T ′

h at x =
0 after 3 re�nements for Γ = Γ1. Figure 10.8.: 1D-pro�le of pressurejump at x = y = 0 for ph ∈ Q1

h. 3re�nements, Γ = Γ1.# ref. ‖eu‖L2 order ‖eu‖1 order ‖ep‖L2 order0 4.26E-02 � 4.26E-01 � 5.32E-01 �1 1.85E-02 1.2 3.41E-01 0.32 3.78E-01 0.492 7.09E-03 1.38 2.55E-01 0.42 2.68E-01 0.53 2.60E-03 1.45 1.85E-01 0.46 1.90E-01 0.54 9.37E-04 1.47 1.33E-01 0.48 1.34E-01 0.5Table 10.3.: Errors and numerial order of onvergene for the P2 − Q1

h �niteelement pair, Γ = Γ1.For the P1 �nite elements we obviously have p∗ /∈ Q1
h. The grid T3 after 3 timesre�nement and the orresponding pressure solution are shown in Figures 10.7and 10.8. The error norms for di�erent grid re�nement levels are shown inTable 10.3. The L2-error of the pressure shows a deay of O(h1/2). Thison�rms the theoretial results for the interpolation errorminq∈Q1

h
‖p∗−qh‖L2 ,f. Setion 5.4.1 and (10.13). The veloity error in the H1-norm shows thesameO(h1/2) behavior, whereas in the L2-norm the error behaves likeO(h3/2).Interfae at Γ = Γ2We now onsider the ase Γ = Γ2. This problem orresponds to the 2Dproblem disussed in Setion 5.4.1, f. Figure 5.6. Γ is hosen suh that

Γ ∩ F 6= F for all faes of the triangulations T0, T1, T2, T3. As a onsequene,
p∗ /∈ Q0

h and p∗ /∈ Q1
h, but p∗ ∈ QΓh

h . We heked that the �nite element
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Figure 10.9.: Slie of grid at x = 0after 3 re�nements for Γ = Γ2. Figure 10.10.: 1D-pro�le of pressurejump at x = y = 0 for ph ∈ Q1

h. 3re�nements, Γ = Γ2.# ref. ‖eu‖L2 order ‖eu‖1 order ‖ep‖L2 order0 2.53E-02 � 2.56E-01 � 5.44E-01 �1 1.24E-02 1.02 2.25E-01 0.18 3.99E-01 0.452 5.03E-03 1.31 1.75E-01 0.36 2.88E-01 0.473 1.89E-03 1.41 1.29E-01 0.44 2.06E-01 0.484 6.88E-04 1.46 9.35E-02 0.47 1.46E-01 0.49Table 10.4.: Errors and numerial order of onvergene for the P2 − Q1

h �niteelement pair, Γ = Γ2.solution (uh, ph) ∈ Vh ×QΓh

h is in fat equal to (u∗, p∗).Let us �rst disuss the results for P1 �nite elements. The grid T3 after 3 timesre�nement and the orresponding pressure solution for P1 �nite elements areshown in Figures 10.9 and 10.10 resp. The error norms for di�erent gridre�nement levels are shown in Table 10.4. The same onvergene orders as forthe ase Γ = Γ1 are obtained, f. Table 10.3.The results for the P0 �nite elements are shown in Table 10.5. Compared to
P1 �nite elements, the errors are slightly larger but show similar onvergeneorders, i. e., O(h1/2) for the pressure L2-error and veloity H1-error as well as
O(h3/2) for the L2 veloity error.



10.4. Pressure jump indued by surfae tension 179# ref. ‖eu‖L2 order ‖eu‖1 order ‖ep‖L2 order0 3.98E-02 � 3.49E-01 � 7.30E-01 �1 1.64E-02 1.28 2.75E-01 0.35 4.89E-01 0.582 6.14E-03 1.41 2.04E-01 0.43 3.35E-01 0.543 2.22E-03 1.47 1.48E-01 0.46 2.34E-01 0.524 7.92E-04 1.49 1.06E-01 0.48 1.65E-01 0.51Table 10.5.: Errors and numerial order of onvergene for the P2 − Q0

h �niteelement pair, Γ = Γ2.10.4.2. Test ase B: Stati bubbleIn this test ase (f. Example 5.2) we onsider a stati bubble Ω2 = { x ∈
R

3 : ‖x‖ ≤ r } in the ube Ω with r = 2/3 (see Figure 10.6). We assume thatsurfae tension is present, i. e., fSF = fΓ with τ = 1. This problem has theunique solution
u∗ = 0, p∗ =

{

C in Ω1,

C + τκ in Ω2.Sine κ = −2/r, the pressure jump is equal to [p∗]Γ = 3. A 2D variant of thistest ase is presented in [FCD+06, GMT07, Smo01℄.Note that in this test ase the errors in veloity and pressure are in�uenedby two error soures, namely the approximation error of the disontinuouspressure p∗ in Qh (as in test ase A) and errors indued by the disretizationof the surfae fore fΓ, f. (5.19).The number of veloity and pressure unknowns for the grids T0, . . . , T4 withdi�erent re�nement levels are shown in Table 10.6. Note that dimQΓh

h issigni�antly larger than dimQ1
h, but that dimQΓh

h ≪ dimVh.# test ase Bref. dimVh dimQ1
h dimQΓh

h0 1029 125 1761 5523 337 5332 30297 1475 22953 139029 6127 94134 569787 24373 37355Table 10.6.: Dimensions of the �nite element spaes for test ase B.



180 10. Test asesRemark 10.3As Γ has onstant urvature, for σ = − 2τ
r the two onsidered surfae foresoinide: fΓ = fASF. ⋄We onsider test ase B for two di�erent approximations of the CSF term fΓ,namely the �naive� Laplae-Beltrami disretization fΓh

as in (5.22) and themodi�ed Laplae-Beltrami disretization f̃Γh
as in (5.49). For the pressurespae we hoose Qh = Q1

h and Qh = QΓh

h . We did not onsider the spae Q0
has it yields results omparable to those for Q1

h. Table 10.7 shows the deayof the pressure L2-norm for the four di�erent experiments. We observe poor
O(h1/2) onvergene in the ases where ph ∈ Q1

h or when the surfae tensionfore fΓ is disretized by fΓh
. For the L2 and H1-norm of the veloity errorwe observe onvergene orders of O(h3/2) and O(h1/2), respetively, whih issimilar to the results in test ase A.We emphasize that only for the ombination of the extended pressure �niteelement spae QΓh

h with the improved approximation f̃Γh
we ahieve O(hα)onvergene with α ≥ 1 for the pressure L2-error. The veloity error in the

H1-norm shows a similar behavior (at least �rst order onvergene), in the
L2-norm we even have seond order onvergene, f. Table 10.8.For the improved Laplae-Beltrami disretization f̃Γh

the orresponding pres-sure solutions ph ∈ Q1
h and ph ∈ QΓh

h are shown in Figure 10.11.# ‖ep‖L2 for ph ∈ Q1

h ‖ep‖L2 for ph ∈ QΓh
href. fΓh order f̃Γh order fΓh order f̃Γh order0 1.60E+0 � 1.60E+0 � 3.12E-1 � 1.64E-1 �1 1.07E+0 0.57 1.07E+0 0.57 1.00E-1 1.64 4.97E-2 1.732 8.23E-1 0.38 8.23E-1 0.38 6.24E-2 0.68 1.66E-2 1.583 5.80E-1 0.51 5.80E-1 0.51 4.28E-2 0.54 7.16E-3 1.224 4.13E-1 0.49 4.13E-1 0.49 2.95E-2 0.54 2.83E-3 1.34Table 10.7.: Pressure errors for the P2 − Q1

h and P2 − QΓ

h �nite element pair anddi�erent disretizations of fΓ.
µ-dependene of the errorsWe repeated the omputations of (uh, ph) ∈ Vh × QΓh

h for the improvedLaplae-Beltrami disretization f̃Γh
on the �xed grid T3 varying the visosity

µ. The errors are given in Table 10.9. We learly observe that the veloity
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Figure 10.11.: Finite element pressure solution ph ∈ Q1

h (on the left) and ph ∈ Q
Γh
h(on the right), visualized on slie of T ′

4 at z = 0.# ref. ‖eu‖L2 order ‖eu‖1 order0 7.16E-03 � 1.10E-01 �1 1.57E-03 2.19 4.26E-02 1.372 3.25E-04 2.28 1.70E-02 1.333 8.57E-05 1.92 7.43E-03 1.194 1.75E-05 2.29 2.40E-03 1.63Table 10.8.: Errors and numerial order of onvergene for the P2 − QΓ

h �niteelement pair and improved Laplae-Beltrami disretization f̃Γh .errors are proportional to µ−1 whereas the pressure error is independent of µ.This on�rms the bound in (5.19).
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µ ‖eu‖L2 ‖eu‖1 ‖ep‖L210 8.62E-06 7.51E-04 8.71E-031 8.57E-05 7.43E-03 7.16E-030.1 8.58E-04 7.44E-02 6.87E-030.01 8.57E-03 7.44E-01 6.88E-030.001 8.57E-02 7.43E+00 7.16E-03Table 10.9.: Errors for the P2 − QΓ

h �nite element pair and improved Laplae-Beltrami disretization f̃Γh on T3 for di�erent visosities µ.



11. Appliation examplesIn the following setions we present some simulation results for real two-phase�ow problems originating from droplet and falling �lm appliations. Note thatthe results were obtained with the serial version of the DROPS ode, as theparallel version does not provide the full funtionality, yet. For example, theXFEM disretization of the pressure (f. Setion 5.4) is only implemented inthe serial version and still has to be parallelized. Hene, the meshes used in thefollowing examples are relatively oarse due to memory limitations or to keepomputational times a�ordable. The parallelization of the whole DROPS odeis a ruial task for the future as it will enable more levels of grid re�nementto ahieve more aurate solutions.11.1. Levitated droplet in measuring ellThis experiment originates from an interdisiplinary researh projet [SFB℄ onthe modeling of �ow and mass transfer phenomena at the interfae betweena single droplet and the surrounding �uid. For NMR measurements of theveloity u, f. [AGHK+05℄, a drop is levitated in a speial devie, whihonsists of a vertial glass tube with a narrowing in the middle. It is shownin horizontal position in Figure 11.1. A �uid �ows from the top of the tubedownwards. A drop whih is lighter than the surrounding �uid is injetedat the bottom of the tube and starts to rise upwards. At a ertain point itsbuoyany fores are balaned by the fores indued by the ounter�ow and thedrop is levitated at a stable position. A photo of a levitated droplet is givenin Figure 1.1. The aim of the following numerial simulation is to omputethe equilibrium position and drop shape for two di�erent two-phase systems:
• System A: silion oil drop in heavy water (D2O).
• System B: n-butanol drop in water.The omputational domain Ω and its triangulation are illustrated in Fig-ure 11.1. It is 5 · 10−2m long and has a diameter of 7.2 · 10−3m at inlet183
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5.5mm 7.2mm

8mm 21.5mm

50mm

Figure 11.1.: 2D sketh (top) and 3D triangulation (bottom) of measuring ell.and outlet and a diameter of 5.5 ·10−3m at the narrowest part of the tube, f.the 2D sketh of the rotationally symmetri domain at the top of Figure 11.1.As an initial ondition the drop is assumed to be spherial with a radius of rdand is loated 7 · 10−3m below the narrowest part. The initial triangulation
T0 onsisting of 4635 tetrahedra is suessively re�ned in the viinity of thedrop. The �nest triangulation T2 onsists of 19254 tetrahedra for system Aand 11712 tetrahedra for system B, hene, for system A roughly 75% and forsystem B roughly 60% of the tetrahedra are loated in the re�nement region.The boundary onditions are hosen as follows:
• a presribed paraboli in�ow pro�le at the top of the tube (non-homo-geneous Dirihlet boundary ondition for u) with maximum in�ow ve-loity uin in the middle of the inlet,
• an out�ow boundary ondition at the bottom of the tube (homogene-neous natural boundary ondition) and
• no-slip boundary onditions at the remaining walls of the tube (homo-geneous Dirihlet boundary ondition for u).For the initial onditions we set ϕ0 the signed distane funtion for the initialspherial drop and u0 the solution of the following stationary Stokes problem,

− div(µ(ϕ0)D(u)) +∇p = ρ(ϕ0)g,
divu = 0,

in Ω. (11.1)



11.1. Levitated droplet in measuring ell 185quantity System A System B(unit) silion oil heavy water n-butanol water
ρ (kg/m3) 955 1107 845.4 986.5

µ (kg/ms) 2.6 · 10−3 1.2 · 10−3 3.281 · 10−3 1.388 · 10−3

τ (N/m) 2 · 10−3 1.63 · 10−3

rd (m) 1.75 · 10−3 1 · 10−3uin (m/s) 25 · 10−3 35 · 10−3Table 11.1.: Material properties of di�erent liquids and experimental parametersused in the levitated bubble simulations.System ρ2/ρ1 µ2/µ1 Re EoA 1.16 0.46 598 66.5B 1.17 0.42 70.4 23.7Table 11.2.: Charateristi dimensionless numbers of the drop problem for systemA and B.The material properties ρ, µ, τ together with the experimental parameters rd(initial radius of droplet) and uin (maximum in�ow veloity) are given inTable 11.1. There are four dimensionless numbers haraterizing the dropproblem, namely the density ratio ρ2/ρ1 (index 1 denotes the droplet phase,index 2 the ontinuous phase), the visosity ratio µ2/µ1, the Reynolds number
Re and the Eötvös number Eo,

Re = (2rd)
3/2√g ρ2

µ2
, Eo = 4ρ2 g

r2d
τ
,with g = 9.81m/s2 denoting the gravitational aeleration. They are given inTable 11.2 for system A and B, respetively. Sometimes the Morton number

M = Eo3/Re4 is used instead of the Reynolds number.The droplet shape at its equilibrium position and the orresponding stationaryveloity �eld are shown in Figure 11.2 for system A and in Figure 11.4 forsystem B. For visualization purposes the veloity �eld is plotted on a 2Dartesian grid interseting the unstrutured tetrahedral grid. In Figure 11.3the n-butanol droplet (system B) is shown at an intermediate stage where itis still rising upwards. Here a part of the unstrutered grid is visualized whih
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Figure 11.2.: Equilibrium position of silion oil drop, visualized on slie. Veloity�eld (left) and shape of droplet (right).is re�ned in the viinity of the interfae. Note that the grid resolution washosen relatively oarse due to the non-parallel run of the simulation, as theXFEM disretization of the pressure is not available for the parallel versionof the DROPS ode, yet.11.2. Rising bubbleIn this numerial experiment we onsider a single n-butanol droplet inside auboid tank Ω = [0, 20 · 10−3] × [0, 30 · 10−3] × [0, 20 · 10−3]m3 �lled withwater, f. Figure 11.5. The material properties of this two-pase system an befound in Table 11.1. Initially at rest (u0 = 0m/s) the bubble starts to rise in
y-diretion due to buoyany e�ets.For the initial triangulation T0 the domain Ω is subdivided into 4 × 10 × 4sub-ubes eah onsisting of 6 tetrahedra. After that the grid is re�ned fourtimes in the viinity of the interfae Γ. As time evolves the grid is adapted tothe moving interfae. Figure 11.6 shows the drop and a part of the adaptivemesh for two di�erent time steps.For a butanol droplet with radius 1mm, in Figure 11.7 the y-oordinate ofthe droplet's baryenter xd is shown as a funtion of time, wherexd(t) = meas3(Ω1(t))

−1

∫

Ω1(t)

x dx.
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Figure 11.3.: Butanol drop rising in water.

Figure 11.4.: Equilibrium position of n-butanol drop, visualized on slie. Veloity�eld (left) and shape of droplet (right).
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Ω2

Ω1Figure 11.5.: 2D setupof the rising bubble ex-ample. Figure 11.6.: Interfae and part of grid for a ris-ing bubble with radius rd = 1 mm at the times
t = 0.2 s (left) and t = 0.4 s (right).The average veloity ud(t) of the drop is given byud(t) = meas3(Ω1(t))

−1

∫

Ω1(t)

u(x, t) dx.Note that x′
d(t) = ud(t). Figure 11.8 shows the veloity in y-diretion of abutanol droplet with radius 1mm as a funtion of time. After a ertain timethe bubble reahes a terminal rise veloity ur = maxt∈[t0,tf ] ‖u(t)‖. For theradius rd = 10−3m we obtain ur = 53 · 10−3m/s.We omputed the terminal rise veloities ur of rising butanol droplets for dif-ferent drop radii rd, f. Table 11.2. Note that for the larger droplets with

rd ≥ 1.5 · 10−3m a oarser mesh was used (3 times loal re�nement instead of4 times as for the smaller droplets) beause of memory limitations. The val-ues are ompared to model preditions where we applied an algebrai modelof Henshke [Hen03℄ desribed in Remark 11.1 below. In Figure 11.9 theterminal rise veloity ur is plotted versus the bubble radius rd giving a om-parison of model and simulation results. Note that the results agree very wellfor smaller droplets with radii rd ≤ 1mm. For the larger bubbles the relativedeviations |uDROPSr −umodel
r |

|umodel
r | are up to 5%. We believe that the deviations for the
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Figure 11.7.: Position y of baryenterof a rising butanol droplet with radius
1mm as a funtion of time t.
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Figure 11.8.: Rise veloity u of a bu-tanol droplet with radius 1 mm as afuntion of time t.
rd (mm) 0.5 0.75 1 1.25 1.5 1.75 2

uDROPSr (mm/s) 25.7 40.8 53.0 57.1 56.7 55.2 53.9
umodel

r (mm/s) 25.5 40.3 53.7 60.0 57.5 55.6 55.8Table 11.3.: Terminal rise veloity for di�erent droplet radii rd, obtained by DROPSsimulation and predited by algebrai model, f. Remark 11.1.larger bubbles are aused by the oarse grid resolution and that the resultsan be improved on a �ner mesh as soon as the parallel version of DROPS isavailable.Remark 11.1 (Algebrai model for terminal rise veloity)In [Hen03℄ a model is derived for the terminal rise veloity ur as a funtion of
rd. Using the notation

‖(x, y)‖α := (xα + yα)1/αfor x, y ∈ R, α ≥ 1, the model is as follows,
umodel

r =
uballuo,c

‖(uball, uo,c)‖α1

, (11.2)where
uo,c :=

∥
∥
∥
∥
∥

(
√
α2τ

ρ2rd
,

√

|ρ2 − ρ1|g rd
ρ2

)∥
∥
∥
∥
∥

8
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Figure 11.9.: Terminal rise veloities ur for di�erent droplet radii rd. Algebraimodel, f. Remark 11.1, (solid line) vs. DROPS simulation results (irles).is the terminal rise veloity of osillating or ap-shaped droplets and α1, α2are model parameters.
uball =

Reball µ2

2ρ2rddenotes the terminal rise veloity of ball-shaped droplets. Here Reball is givenby
Reball = f Recirc + (1− f)Rerigid,

Recirc =
Ar

12(0.065Ar+ 1)1/6
,

Rerigid =

√
√
√
√

4
3Ar

432Ar−1 + 20Ar−1/3 + 0.51 Ar1/3

Ar1/3+140

,where Ar = g |ρ2−ρ1| ρ2(2rd)3

µ2
2

is the Arhimedes number and f = 2µ2λ
2µ2λ+3µ1

with
0 < λ = 1− 1

1+(rd/rtr)10
< 1. The parameter rtr desribes the transition regimefrom rigid to irulating droplets. The three model parameters α1, α2, rtrhave been �tted to measurement data, yielding α1 = 6.57, α2 = 2.89 and

rtr = 1.365 · 10−3m for the two-phase system n-butanol/water. ⋄
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rd = 0.5mm rd = 1mm

rd = 1.5mm rd = 2mm

Figure 11.10.: Shape of n-butanol droplets for di�erent radii rd and veloity �eldu− ud visualized on slie.
The droplet shapes of rising butanol droplets for di�erent radii rd are shownin Figure 11.10. The droplet shape is almost spherial for rd = 0.5mm andbeomes more and more �attened for larger radii. The orresponding veloity�eld u − ud (whih is the veloity with respet to a referene frame movingwith droplet speed ud) is visualized on a slie in the middle of the domain.Toroidal vorties an be found inside the droplets. For rd = 2mm we alsoobserved a small vortex struture in the wake of the bubble.
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Ω1

Γ

α g y

xFigure 11.11.: 2D sketh of falling �lm.11.3. Falling �lmIn this setion we onsider a falling �lm �ow whih is an example for a �uid/gastwo-phase �ow problem. Falling �lm �ows are one of the researh topis in theollaborative researh enter [SFB℄. Due to their large interfaial area falling�lms are used in many hemial engineering appliations, e. g., for heatingand ooling devies, evaporation proesses and as reators for phase interfaereations.The sketh of a falling �lm experiment is shown in Figure 11.11. It onsists ofan inlined plate with a retangular inlet hannel at the top. The �uid exitsthe inlet and develops a thin liquid �lm whih is running down the plate. Theinterfae between liquid and gaseous phase develops a wavy struture (evenwithout external exitation) whih enhanes the heat and mass transport inthe �lm. For falling �lm problems usually the oordinate system is hosensuh that x is in �ow diretion, y is in normal diretion to the plate and zdenotes the transversal diretion, f. Figure 11.11.For the numerial experiment we will not onsider the whole range of the�lm experiment but only a wave in the region where the �lm pro�le beomesperiodi. Hene, in the domain Ω = [0, Lx]×[0, Ly]×[0, Lz] we hoose periodiboundary onditions in x and z diretion and homogeneous Dirihlet boundaryonditions for y = 0 and y = Ly. Let Ω1(t) denote the liquid phase and Ω2(t)the ambient gas phase. The initial onditions are hosen as follows. The initialloal �lm thikness δ(x, z) is given by
δ(x, z) = δ0

(

1 + ω sin

(

2π
x

Lx

)

cos

(

2π
z

Lz

))with the average �lm thikness δ0 > 0 and the amplitude 0 < ω < 1. In ourexperiments we used δ0 = 6.35 · 10−4m and ω = 0.5. The initial value for the



11.3. Falling �lm 193quantity (unit) DMS-T05 air
ρ (kg/m3) 909.3 1.2

µ (kg/ms) 5.183 · 10−3 1.71 · 10−5

τ (N/m) 2 · 10−3Table 11.4.: Material properties used for the falling �lm problem.level set funtion is given by ϕ0(x, y, z) = y− δ(x, z). u0 is the solution of thestationary Stokes problem (11.1).The size of the domain hosen in the numerial experiment is Lx = 20.9 ·
10−3m and Ly = Lz = 4 · 10−3m. The plate is inlined by the angle α = 0 tothe graviational aeleration vetor, hene, the plate is assumed to be vertial.The material properties are given in Table 11.4.For the initial triangulation T0 the domain is subdivided in 10× 6× 2 uboidseah onsisting of 6 tetrahedra. To re�ne the part of the domain where the�uid �lm is loated we use the following strategy. For a tetrahedron T letxT = (xT , yT , zT ) ∈ R

3 denote its baryenter. We mark all tetrahedra T with
yT < 1.5 ·10−3m for re�nement and apply the multilevel re�nement algorithmto obtain T1. Repeating this one more time yields the triangulation T2 whihthen onsists of 20 080 tetrahedra. We will use this stati triangulation T2 forall time steps. An adaptive re�nement in the viinity of the interfae Γ asfor the rising bubble example was not possible due to the periodi boundaryonditions. Up to now the re�nement algorithm does not garantuee identialsurfae triangulations of orresponding periodi boundaries. This feature willbe added in a future version of DROPS.We emphasize that the falling �lm problem is very hallenging from the nu-merial point of view due to the large jumps of the material properties in theliquid and gaseous phase as well as the large extent of the interfae. Here weonly give the results for the nonstationary Stokes �lm �ow, i. e., we negletedthe onvetive term u · ∇u in the Navier-Stokes equations (2.14)�(2.15). Thisan be justi�ed by a small Reynolds number Re = 25.8, where the Reynoldsnumber for the �lm problem is de�ned by

Re =
UNu δ0 µ1

ρ1
=
δ30 ρ

2
1 cos(α)g

3µ2
1
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Figure 11.12.: Stokes �ow of falling �lm for silion oil DMS-T05 and air, inlineangle 0◦.with the average Nusselt veloity UNu,
UNu =

cos(α)g ρ1 δ0
2µ1

.Figure 11.12 shows the falling �lm for the time t = 0.2 s. The shape of thewaves qualitatively looks similar to those depited in Figure 1.2. A quanti-tative omparison with measurement data [LASLR05, SMDK06℄ or 2D �lmsimulations [DLK07℄ from our projet partners has to be aomplished in thefuture.
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12. Summary and OutlookWe presented a numerial approah for solving three-dimensional inompress-ible two-phase �ow problems. The governing equations are given by the ontin-uum surfae fore (CSF) model, where the interfae onditions are expressedby a loalized surfae fore term. The interfae is aptured by a level settehnique. For the spatial disretization a �nite element method based on atetrahedral multilevel triangulation is used. A multilevel re�nement algorithmallows for loal grid adaption. Applying a one-step theta-sheme for time dis-retization leads to a oupled system of level set and Navier-Stokes equationswhih is solved by a �xed point approah. This oupling an be avoided whenapplying a linearized variant of the one-step theta sheme. The nonlinearityof the Navier-Stokes problem is treated by a defet orretion method. Theresulting linear Oseen systems are solved by Uzawa-type methods or generalKrylov methods whih are applied to the blok matrix, using speial problem-adapted preonditioners for the Shur omplement. From time to time thelevel set funtion has to be reparametrized by a fast marhing method. Sev-eral numerial results demonstrate the apability of our approah to solve 3Dinompressible two-phase �ow problems for real two-phase systems originatingfrom droplet and falling �lm appliations.On the basis of our experiene in this �eld we ome to the onlusion thatnumerial methods originally designed for the simulation of inompressibleone-phase �ows are often not appropriate tools to solve inompressible two-phase �ow problems. In this ontext we mention numerial osillations of theveloity at the interfae, so-alled spurious urrents, whih are reported bymany other authors, e. g., [LNS+94, WKP99, FCD+06℄. Hene, new methodsand onepts have to be developed whih address the speial properties oftwo-phase systems suh as disontinuous material properties, disontinuouspressure jump aross the interfae or the loalized surfae tension fore term,just to mention a few. This thesis ontributes to these topis by introduingand analyzing the following two new numerial methods:
• We developed an improved Laplae-Beltrami disretization f̃Γh

of theloalized surfae tension fore term fΓ, f. Setion 5.3, whih is superiorompared to a standard Laplae-Beltrami disretization on a pieewise197



198 12. Summary and Outlookplanar interfae approximation Γh. The improved disretization f̃Γh
isof �rst order w. r. t. h in the dual norm ‖·‖V′

h
, whereas the standard dis-retization fΓh

is only of order 1
2 . This has been shown by the theoretialanalysis in Setion 5.3.3 and was also observed in numerial experimentspresented in Setion 10.3.

• We introdued an extended �nite-element spae QΓ
h for the pressure, f.Setion 5.4, whih is suitable for the approximation of funtions whihare smooth on Ω1 ∪ Ω2 but disontinuous aross Γ. For suh funtionsthe approximation error in ‖ · ‖L2(Ω) is O(

√
h) for standard �nite ele-ment spaes (onforming and non-onforming as well), f. Setion 5.4.1,whereas we ahieve O(h2) for the XFEM spae QΓ

h, f. Theorem 5.26.Combining pressure XFEM with the improved Laplae-Beltrami dis-retization for the surfae tension fore, numerial results for the stan-dard test ase of a stati bubble show a substantial redution of spuriousurrents ompared to standard approahes, f. Setion 10.4.In addition to these two methods, the main harateristis of our numerialstrategy are the following:
• The level set method is applied for apturing the interfae between thetwo phases, f. Setion 2.2.1.
• The spatial disretization is based on a hierarhy of grids whih areonstruted in suh a way that they are onsistent (i. e., no hangingnodes) and that the hierarhy of triangulations is stable, f. Chapter 3.Loal re�nement and oarsening are easy to realize.
• For the disretization of level set and Navier-Stokes equations we useonforming P2 �nite elements for the veloity u and level set funtion
ϕ, f. Chapter 4, as well as extended �nite elements for the pressure p,f. Setion 5.4.
• The one-step theta-sheme or a linearized variant of it is applied for timeintegration, f. Setion 6.1.2.
• In eah time step the nonlinearity of the disrete Navier-Stokes problemis treated by a �xed point defet orretion. The Oseen problems aresolved by an inexat Uzawa method or Krylov subspae methods, wherethe Shur omplement is preonditioned by speial preonditioning teh-niques aounting for the pieewise onstant material properties ρ and
µ. All these issues are disussed in Chapter 7.
• The Fast Marhing method is used for reparametrization of the level set



199funtion ϕ, f. Setion 8.1.
• Most of the numerial omponents have been parallelized to enable thesimulation of omplex two-phase �ow problems with su�ient resolu-tion in a�ordable omputational time, f. Setion 9.2. However, someimportant issues suh as the XFEM disretization of the pressure arestill missing in the parallel version of DROPS.We emphasize that the ombination of the level set method, �nite elementdisretization, extended pressure �nite element spae, Laplae-Beltrami par-tial integration and multilevel loal re�nement is unique among all numerialstrategies known to the author for the simulation of two-phase �ow problems.There are still many open questions and unresolved hallenges left whihshould be addressed in the future. As an outlook we mention some of thetopis, whih are, in the opinion of the author of the thesis, among the mostimportant to be onsidered.New funtionality
• Consider a variable surfae tension oe�ient τ = τ(x, t). In this asethe surfae tension fore term in weak formulation reads as follows,

fvar
Γ (v) =

∫

Γ

κn · (τv)−∇Γ τ · v ds for all v ∈ V.As we saw in Setion 5.3 an aurate disretization fvar
Γh
∈ V′

h of fvar
Γis a deliate task. We should guarantee at least �rst order onvergenew. r. t. the grid size hΓ at the interfae, i. e.,

‖fvar
Γh
− fvar

Γ ‖V′
h

= O(hp
Γ)with p ≥ 1. A method for the disretization of fvar

Γh
, whih extendsthe ideas used for a onstant surfae tension oe�ient τ , has beenimplemented in DROPS. A systemati analysis of the quality of thisapproah has not been performed, yet.

• Inlude heat and mass transport in both phases. The additional par-tial di�erential equations are transient reation-di�usion equations withpieewise onstant oe�ients due to the di�erent material properties ofthe two phases. In the ase of mass transport the onentration c hasa jump at the interfae. As was shown in Setion 5.4.1, standard FEMtehniques will not lead to satisfatory results. Here an XFEM approahombined with a Nitshe tehnique as desribed in [HH04℄ has an opti-mal approximation property. An alternative XFEM approah without



200 12. Summary and Outlookthe need for a penalty term also shows this optimal order of onver-gene in numerial experiments, f. [MCCR03℄. We mention that weimplemented a standard FEM disretization of a two-phase onvetion-di�usion equation in DROPS, but did not systematially analyze its a-uray, yet.
• Study Marangoni e�ets indued by a temperature-dependent or on-entration-dependent surfae tension oe�ient τ .
• Inlude mass transport on the interfae to model the ontamination ofthe interfae with surfatants. The higher the interfae onentration ofsurfatants, the lower the surfae tension. By this mehanism these im-purities are made responsible for the so alled stagnant ap of a droplet,i. e., a region where the interfae gets rigid and inner irulations aredramatially slowed down ompared to lean systems.For the disretization of the onvetion-di�usion equation on Γ an Eule-rian �nite element method desribed in [ORG08℄ will be applied. Herewe got �rst preliminary results for a reation-di�usion equation on astati sphere.Improvement of numerial methods
• The design of better Shur omplement preonditioners for the Oseenproblem, espeially for onvetion-dominated problems, is of great in-terest.
• Alternative iterative solvers suh as multigrid methods applied to theOseen problem [LR08℄ or the appliation of projetion methods suhas Chorin or SIMPLE [Ran04℄ should be ompared to the methods de-sribed in Setion 7.2 with respet to their e�ieny.
• Other oupling strategies besides the one desribed in Algorithm 6.12should be onsidered, for example, methods based on defet orretionor Newton-type methods. A omparison with linearized time disretiza-tion shemes whih avoid suh a oupling will show the bene�ts anddisadvantages of the di�erent approahes.
• A suitable adaptive ontrol of the time step size should be onsidered inthe future.
• The stabilization of the �nite element disretization of the Navier-Stokesequations by SDFEM [RST96, GLOS05℄ would enable the simulation of�ow problems with higher Reynolds numbers.
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• Up to now the level set funtion is used as an indiator for grid re�nementwhih has proved to be satisfatory for the two-phase �ow problemsonsidered in this thesis. In the ase of oupled two-phase momentum,heat and mass transport a more sophistiated ontrol of grid adaptionis demanded. Then error estimation tehniques, e. g., in the spirit of[Ver96℄, have to be ombined with appropriate strategies to deide whihelements should be marked for re�nement or oarsening.Questions related to XFEM
• Is the �nite element pair Vh ×QΓ

h LBB stable? If this is not the ase,how an it be stabilized, e. g., by adding appropriate stabilization termsto the disretization?
• A good understanding of the time disretization in the ase of a timedependent disrete divergene operator B = B(t) is still laking.
• The veloity u ∈ V has a kink at the interfae whih is not optimallyresolved by the standard pieewise quadrati �nite elements urrentlyapplied for the disretization uh ∈ Vh. Here an XFEM approah om-bined with a Nitshe tehnique as desribed in [HH04℄ or a modi�edXFEM abs-enrihment [MCCR03℄ would lead to an optimal approxi-mation property. However, the tehnial di�ulties arising from thismethod seem to overbalane its bene�ts.Many of these issues are topis of urrent researh and some of them willbe implemented in the DROPS pakage in the near future. Our goal is toprovide DROPS as an e�ient and aurate 3D simulation tool for �ow andtransport proesses in two-phase systems. The future perspetives are two-fold in the following sense. From the mathematial point of view DROPSwill serve as a framework to improve existing and develop new numerialmethods for two-phase �ow problems. From the appliation point of viewDROPS will help users from the engineering ommunity to solve their distintreal-life two-phase problems. Here both disiplines, numerial mathematisas well as engineering siene, will bene�t from eah other. On the one handthe engineers will gain more insight from improved simulations, and on theother hand the mathematiians an learn from appliation examples, whihnumerial omponents should be further improved.
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