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Abstract

We introduce an algebraic multigrid method for the solution of matrices with saddle
point structure. Such matrices e.g. arise after discretization of a second order partial
differential equation (PDE) subject to linear constraints.

Algebraic multigrid (AMG) methods provide optimal linear solvers for many applications
in science, engineering or economics. The strength of AMG is the automatic construction
of a multigrid hierarchy adapted to the linear system to be solved. However, the scope
of AMG is mainly limited to symmetric positive definite matrices. An essential feature
of these matrices is that they define an inner product and a norm. In AMG, matrix-
dependent norms play an important role to investigate the action of the smoother, to
verify approximation properties for the interpolation operator and to show convergence
for the overall multigrid cycle. Furthermore, the non-singularity of all coarse grid oper-
ators in a AMG hierarchy is ensured by the positive definiteness of the initial fine level
matrix.

Saddle point matrices have positive and negative eigenvalues and hence are indefinite.
In consequence, if conventional AMG is applied to these matrices, the method will not
always converge or may even break down if a singular coarse grid operator is computed.
In this thesis, we describe how to circumvent these difficulties and to build a stable
saddle point AMG hierarchy. We restrict ourselves to the class of Stokes-like problems,
i.e. saddle point matrices which contain a symmetric positive definite submatrix that
arises from the discretization of a second order PDE.

Our approach is purely algebraic, i.e. it does not require any information not contained in
the matrix itself. We identify the variables associated to the positive definite submatrix
block (the so-called velocity components) and compute an inexact symmetric positive
Schur complement matrix for the remaining degrees of freedom (in the following called
pressure components). Then, we employ classical AMG methods for these definite oper-
ators individually and obtain an interpolation operator for the velocity components and
an interpolation operator for the pressure matrix.

The key idea of our method is to not just merge these interpolation matrices into a sin-
gle prolongation operator for the overall system, but to introduce additional couplings
between velocity and pressure. The coarse level operator is computed using this “sta-
bilized” interpolation operator. We present three different interpolation stabilization
techniques, for which we show that they resulting coarse grid operator is non-singular.
For one of these methods, we can prove two-grid convergence. The numerical results
obtained from finite difference and finite element discretizations of saddle point PDEs
demonstrate the practical applicability of our approach.
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1. Introduction

Many scientific, engineering or economic processes can be described using a partial
differential equation (PDE). In general form, a second order linear partial differential
equation can be written as [Bra97|

d
_i;a”( >8_XZ('9XJ +Zb x) + c(x)u(x) = f(x) (1.1)
where the coefficient functions a;; (i,j =1,...,d), bj (: =1,...,d), c, the solution u and

the right hand side f map from the domain Q C R? into the set of real numbers R. A
well-known example for a PDE is Poisson’s equation on a domain Q C R¢,

—Au=finQ, u=gondN. (1.2)

This PDE is e.g. used in electrostatics to find an electric potential for a given charge
distribution. It is often considered as the prototype elliptic partial differential equation.
(A PDE is called elliptic at x if the matrix A(x) = (a;; (X))jj:1 is positive definite.)

So far, we have considered scalar unknowns u. In many cases, the unknown is a vector-
valued function, i.e. u: Q — R? Then, we are no longer dealing with a single partial
differential equation of the form (L.I]), but rather with a system of partial differential
equations. A prominent example is given by the incompressible Navier—Stokes equations,
that describe the velocity u : (0,7] x Q — R% and the pressure p : (0,7] x Q — R? of a
fluid in a domain Q C R? (d = 2,3) subject to an external force f at the time ¢ € (0,71,

%u—yv (Vu)+ (u-V)u+Vp = f, (1.3)
—V-u = 0. (1.4)

Here already contains a system of d scalar (non-linear) partial differential equations
(one for each spatial component of the velocity vector field), while (1.4) is a scalar
equation.

A simpler, linear form of (1.3)-(L.4) can be used if the fluid has high viscosity, i.e.
v — 00. Then, the non-linear term (u V) u can be neglected. If we assume that u and
p are stationary, i.e. do not depend on the time ¢, we obtain Stokes’ equations,

-V (Vu)+Vp = f, (1.5)
—V-u = 0. (1.6)

Stokes’ equations can be considered as the prototype of a saddle point system. The
solution (u,p) of (1.5)—(1.6) is not the minimizer of a quadratic functional (as in the
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case of elliptic partial differential equations), but a saddle point.

The analytical solution of a partial differential equation is usually not available except
in very rare cases. Instead, we aim to approximately solve the partial differential equa-
tion(s) numerically. To this end, we discretize the partial differential equation. We
construct a mesh €2, for the domain 2 depending on a mesh width A and represent the
values of the continuous unknown u and right hand side f by vectors u and f, where
the entries of these vectors represent the value of the corresponding function at a cer-
tain point of the mesh as in finite difference discretization or a coefficient inside a finite
element ansatz. In the case of a linear PDE, the differential operator is replaced by a
matrix K whose entries reflect the coefficients a;;, bj, and c. Hence we have translated
the linear partial differential equation into a linear system of equations Ku = f.

To obtain an approximate solution of the PDE, we have to solve a linear system of
equations. Direct linear solvers like LU or QR decomposition are not the first choice
in this area. Letting N denote the length of the vectors u and f, a direct method re-
quires O(N?) floating point operations for the solution. In other words, if we double our
problem size (e.g. if we request a finer resolution of the discretization) the compute time
grows by a factor of 8. In addition, direct methods need to store the full N x N matrix,
but the discretization matrices of partial differential equations are usually sparse, i.e.
they only contain a small (fixed) number of non-zero entries per row independent of N
due to the locality of differential operators. Sparse matrix storage formats allow us to
exploit this structure and to efficiently use the memory available in our computer. The
usage of a direct solver would impose a much more severe limit on the mesh width than
the problem discretization itself.

From these arguments it is clear that we need a linear solver that only requires O(N)
compute time and storage. Iterative solvers that employ one or few applications of sparse
matrix-vector computations per iteration can be carried out using O(N) operations per
step, but are not always able to reduce the error by a fixed factor independent of the
problem size. For example, for the well-known Jacobi and Gauss-Seidel iterations the
convergence speed depends on the condition of the matrix, which in turn depends on
the PDE coefficients and the discretization width h. However, for symmetric positive
definite matrices K these methods are good smoothers, i.e. they very quickly remove
oscillating parts from the error and leave a smooth component.

The key idea of multigrid methods (MG) is that after smoothing, the low-frequency er-
ror can be represented using less degrees of freedom, No < N. To this end, after a few
smoothing steps the current residual 7 = f — Ku is transferred to a coarse mesh Qp,
fr < Rr® using a linear restriction operator R, and a coarse linear system Kyey = fu
is solved. The solution is then used to update the fine grid iterate, u® < u+ Pec, where
P denotes a linear prolongation operator. The coarse solution eq itself can be computed
recursively, i.e. after a few smoothing steps the resulting residual is transferred to an
even coarser level and so on, until the system is so small that it can be directly solved.
The question remains how the coarse mesh Qg and the matrices Ky, Py and Ry are
constructed. In geometric multigrid, 25 can e.g. be obtained by doubling the mesh
width, H = 2h. The coarse grid matrix Ky is then computed as discretization of the



PDE on this coarse mesh, while for the restriction operator R and the interpolation or
prolongation matrix P we can e.g. use linear interpolation or injection.

A drawback of geometric multigrid is that the construction of the coarse mesh and the
coarse matrix require the knowledge of the underlying PDE as well as the geometry of
Q. Furthermore, a simple isotropic coarsening of the mesh might not well reflect the
structure of the smoothed error, especially in the case of anisotropic or jumping PDE
coefficients a;; (where a “smooth error” may still contain certain oscillations). To cir-
cumvent these difficulties, algebraic multigrid methods (AMG) have been developed.
The key ingredients to AMG are operator-dependent interpolation operators P together
with a Galerkin coarse grid operator Ky := PTKP [Den82] and automatic operator-
dependent coarsening [BMR82, [BMRS&4]. These components allow us to construct robust
solvers for a wide class of problems, especially if K is a positive definite M-matrix. Such
matrices often arise in the discretization of second order partial differential equations.
All information needed to build the multigrid hierarchy is obtained from the matrix on
the finest level K7 = K. In order to apply the multigrid cycle, we need to employ a
setup phase. On each level [, we need to carry out the following steps depending on the
matrix Kj:

e Construct the next coarser mesh €2, 1.
e Build a prolongation matrix F,.
e Compute the coarse grid matrix K;,; < PTK;P,.

We stop if the matrix K;,; is small enough, i.e. it is feasible to be treated by a direct
method (or few iterations of the smoother). With this AMG hierarchy available, we can
now start the multigrid cycle.

In the past years, AMG has been further developed. One notable development is
smoothed aggregation [VMB94, VMB96], where the coarse mesh is obtained from the
fine mesh by aggregating fine nodes instead of picking coarse nodes as a subset of the
fine nodes. The Bootstrap AMG approach [Bra0ll [FV04, BBKLII] tries to generalize
AMG ideas to a wider class of problems. Many efforts have also been put in the paral-
lelization of the AMG setup case, in particular the parallel coarse grid generation, see
e.g. [MY06] for an overview.

AMG was at first developed for scalar systems, but already in [Rug86] it was demon-
strated that it can also be used for the solution of systems of elliptic partial differential
equations (here, a problem arising from linear elasticity). A further approach to AMG
for linear elasticity, where the rigid body modes are preserved in the AMG hierarchy
was given by [Oel01l, [GOS03]. A systematic introduction to AMG for systems of elliptic
PDEs as well as applications in semiconductor industry is given in [Cle04].

All of these system AMG techniques rely on the fact that after discretization the matrix
K is symmetric positive definite, as in the case of a single elliptic PDE, and thus defines
an inner product and norm. This is an essential feature for AMG:

e For symmetric positive definite matrices, we have a smoothing property for the
Jacobi Gauss—Seidel and SOR iterations,
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e if in addition the matrix has M-matrix structure (which is the case in many PDE
applications), we know how the smoothed error behaves w.r.t. the matrix entries,

e the coarse grid matrix Ky = PTKP computed by the Galerkin product is also
symmetric positive definite and thus non-singular,

e we have a variational property for the coarse grid operator, which, together with
the smoothing property, guarantees convergence.

A saddle point matrix K is indefinite and we cannot rely on the properties above.
Instead, we must

e identify suitable smoothers for saddle point systems,

e construct restriction, interpolation and coarse grid operators such that the coarse
grid matrix is invertible,

e show convergence in terms of a suitable norm.

Still, system AMG is applied to saddle point matrices even if all the points mentioned
above are not clear. We refer e.g. to [LSACOg| for a CFD example or to [GKW11], where
a smoothed aggregation AMG is extended to a full AMG solver for a fluid-structure in-
teraction problem.

There are few approaches to AMG dedicated to saddle point problems. A smoothed ag-
gregation method for contact problems is presented in [Ada04]. The method introduced
in [LOS04] was used to solve a saddle point system arising from a particle method, where
the boundary conditions cannot be easily eliminated and are included as constraints.
In [Wab03, Wab04, Wab06], an algebraic multigrid method for the Oseen equations is
constructed. The Oseen equations arise from a linearization of the Navier-Stokes equa-
tions. This AMG method is used inside a finite element computational fluid dynamics
(CFD) solver. The stability (invertibility) of the coarse systems is shown using geomet-
rical properties.

So far, there exists no AMG for saddle point matrices that is truly algebraic, i.e. does
not need geometric information for the hierarchy setup or the stability proofs and hence
can be applied to a wide class of problems. The method introduced in this thesis fills
this gap.

Contribution of this thesis We introduce an algebraic multigrid (AMG) method for
Stokes-type saddle point matrices of the form

()= () s
(3 )= ) =)

where



In the following, calligraphic letters denote operators defined on the space V x W. Here,
“Stokes-type” means that A € RY*Y is the discretization of an (elliptic) second order
partial differential equation, while B € RM*Y is e.g. given by a discrete divergence
operator. In other words, we are looking for the solution of a partial differential equa-
tion subject to a linear constraint equation. In consequence, we can assume that we
know how to construct the algebraic multigrid components (coarse grid, interpolation,
restriction and coarse grid operator) for the A matrix part.

In this thesis, we describe how to extend AMG to the whole coupled matrix K. Our
method will be purely algebraic, i.e. we do not require any information from the geom-
etry or the discretization mesh to carry out the AMG setup procedure.

As with every AMG method, we first choose a suitable smoother. The first alternative
is an inexact Uzawa method introduced in [SZ03]. Each relaxation step is given by

ut o= uit L A! (f — Ayt — Bsz't)
P = pit g G-t (Bu* —Cpt — g)
W = it A (f At — BTpit-H) ’

where A is an easily invertible matrix such that A—Ais symmetric positive definite. A
common choice for A is the scaled (block) diagonal of A. The symmetric positive definite
matrix S is chosen such that S — BA=!BT — C is also symmetric positive definite.
The second option is to employ an algebraic Vanka smoother [Van86l, [SZ03]. Here, we
solve, for j = 1,..., M, small linear systems of the form

(Aj 5?) (Ww) _ (ﬂﬁ)

B; ;) \Pw 96/

where A; € RN>Ni| B, ¢ RMi*Ni (¢ € RM*Mi and N; < N as well as M; < M.
We use the solution vectors uj) and p(;) to update the iterates v and p”. The small
right hand side vectors f(;) and g(;) are derived from the residuals f — Au' — BTpt
and g — Bu® + Cp™, respectively. These residuals can either be computed after each
subsystem solve (multiplicative application) or after all subsystems have been visited
(additive application). For a special choice of Aj, B; and C'j, the additive version

coincides with the inexact Uzawa smoother.
The error propagation operator of the inexact Uzawa method motivates us to consider

the block diagonal matrix
A 0
0 BA'BT+C)"

as starting point for the construction of the coarse grid and interpolation operators for the
saddle point matrix . We hence compute a coarse grid and a tentative prolongation R,
for the operator A and a coarse grid and an interpolation matrix R, for the symmetric
positive semi-definite matrix B A™'BT + C to obtain a block diagonal interpolation

operator
RL 0
0 RIL,
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We can however not simply use the Galerkin ansatz for the coarse grid operator,

R 0 A B RL 0

c v v

e (8 m) (o ) (V R)

as this can lead to a singular matrix.

For saddle point problems the stability (and thus the invertibility) of the discrete system

is usually shown by means of a so-called inf-sup condition: Let there exist constants
c,d > 0 such that

BT 1
sup uz p > c|lpllw —d (pTC’p)2 for all p e W.
ouev |l

We use this inequality on the finest level [ = 1 (i.e. for the original matrix K = ;) to
show an inf-sup condition for all levels [ = 2, ..., L of the AMG hierarchy by induction.
To this end, we need to construct coupled interpolation operators P. Here, we introduce
three variants.

1. The first variant is to apply the inexact Uzawa smoother to the tentative block
diagonal operator RT. We obtain

p_ (I —ATBY( 1 0 [-A7A 0 R, 0
_<0 I )(S—lB I) 0 -5 (Bfl*lBT+C’> (0 R%)

and a “Petrov-Galerkin” coarse grid operator
K€ + RKP.

In this case, we can show not only the stability of the coarse matrix K¢, but also
two-grid convergence. On the downside, this variant introduces many non-zero
entries in the prolongation matrix P and hence also in the coarse matrix K£¢. To
circumvent this problem, we introduce two sparser alternatives.

2. The second option is to compute

p_ (I —A7B" (R} 0
0 I 0 RY)

and use a Galerkin coarse grid operator K¢ < PTKP. The additional prolongation
coupling term —A~'BT implies an additional stability term in the lower right block
of the coarse matrix K°.

3. Finally, we can employ the decomposition of the grid for the velocity variables
v € RY into coarse and fine variables to obtain an even sparser variant of the



last stabilization technique. To this end, letting AFF and Bp denote the por-
tion of A and B associated with the fine velocity variables and Ry, o denote the
interpolation from coarse to fine points, we compute

Irp 0 —AppBE\ (Rice 0
P - 0 [CC 0 [CC 0
0 0 I 0 R},

Again we use the Galerkin coarse grid operator K¢ < PTKP.

An important ingredient for all of the stability proofs is the approximation property for
the velocity variables, which is expressed by the inequality

lur = Recuclpp < 7llull?. (1.7)

Here, we assume again that u is decomposed into its coarse and fine parts uc and
up, while R%. denotes the interpolation from the coarse to the fine variables. Letting
Dpr be the part of the diagonal of A associated with the fine grid points, we define
|upllh p = upDpup and the energy norm [ju||% := u” Au. Inequality needs to be
shown for the tentative velocity interpolation matrix

- (%),

Icc
In case of the direct and classical AMG interpolation techniques, the approximation
property was already shown in [RS87, [Stii99]. For more complex schemes (modified
classical interpolation, extended(+i) interpolation, Jacobi interpolation), we prove the
approximation property in this thesis.
To summarize, we are able to construct an algebraic multigrid hierarchy for saddle point
problems based on AMG techniques applied to the matrices A and BA™'BT 4 C, where
the coarse grids and tentative transfer operators can be set up independently for each of
these positive (semi-)definite matrices. The final interpolation operator introduces an
additional coupling, which helps to ensure the stability of the coarse grid.

Outline of this thesis

e In Chapter [2| we give a systematic introduction to algebraic multigrid (AMG)
methods. After a short recapitulation of iterative methods and, in particular, ge-
ometric multigrid, we focus on classical AMG by Ruge and Stiiben [RS87]. We
describe the algorithms of the AMG setup phase as well as their mathematical
background. A special focus is placed on the derivation of approximation proper-
ties for the interpolation operators for modified classical, extended(+i) and Jacobi
interpolation in Section [2.8]

After this introduction, we describe the convergence theory for non-symmetric
AMG by [Not10]. This convergence theory will form the basis for the two-level
convergence proof of one of our saddle point AMG approaches.
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For sake of completeness, we also shortly introduce three alternative AMG meth-
ods, namely AMGe, smoothed aggregation, and Bootstrap AMG.

We conclude this chapter with a summary of algebraic multigrid for systems of
elliptic PDEs. Following [Cle04], we introduce unknown-based and point-based
AMG and give smoothing and approximation properties for these techniques.

e In Chapter 3| we discuss the difficulties of parallel AMG, especially concerning the
coarsening process. Various parallel coarsening algorithms are described together
with their respective advantages and disadvantages. Then, we recapitulate our
results from [Met04, I(GMOS06, [GMS06], where we have introduced the parallel
coarse grid classification (CGC) algorithm and give an extension for large numbers
of processors first introduced in [GMSO0S].

e Chapter (4] forms the core of this thesis. After an introduction to saddle point

systems (in particular, Stokes-like equations), we discuss the role of the inf-sup
condition for both the continuous as well as the discrete equations. We present
finite element and finite difference discretization techniques that satisfy an inf-sup
condition and then give an overview of previous approaches to algebraic multigrid
for saddle point systems.
We start the description of our saddle point AMG with an inexact Uzawa method
and an algebraic Vanka smoother introduced by [SZ03]. Then, we introduce our
algebraic stabilization techniques and show that the coarse grid operator remains
stable. We also give the two-grid convergence proof for one of these methods.

e In Chapter [5| we show the numerical performance of our saddle point AMG. We
conduct experiments with both finite difference and finite element discretizations
of saddle point systems.

e We summarize our results in [6| and give an outlook for further research.
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2. Algebraic Multigrid

In this chapter we introduce the construction of algebraic multigrid methods (AMG),
where we focus on the setup phase, i.e. the construction of the multigrid hierarchy
(coarse grids, coarse grid operators and transfer operators). We assume that a smoother
is available and can be carried out on all levels using information from the respective
system matrix only (e.g. simple relaxation schemes like Jacobi or Gauss-Seidel). We
use the smoother and its error reduction behavior to construct the remaining AMG
components. This is described in more detail in the following sections, see also [Sti199]
and [Met04].

Before we proceed, we first introduce the notation used throughout this chapter. We
denote the level index by [ = 1,..., L. where 1 is the finest and L., the coarsest
level. On each level [, we have a linear system of equations A;u; = f;, or, in components,

Z aﬁjué. = le (Z € Ql) )

jeQ!

where Q! is the grid (index set) on level [ and N; := |Q!| denotes its cardinality. In the
simplest case, €; can be split disjointly into the set of coarse grid points C' and fine
grid points F', Q' = C'UF'. The set of coarse grid points defines the grid on the next
coarser level: Q! := (!, The elements of Q'*! can also be formed by more advanced
means, e.g. by forming unions of the members of €!. To transfer information between
two consecutive grids ! and Q! we introduce a prolongation operator P, : Q! — Q!
and a restriction operator R; : Q' — Q1. We omit the level index [ if no mix-up is
possible.

In many cases, the matrix A is symmetric positive (semi-) definite,

A= AT and 27 Az > (>) 0 for all 2 # 0

We us the notation A > 0 for a symmetric positive definite A and A > 0 for a symmetric
positive semi-definite operator. We write A > B if A — B is symmetric positive definite.
Amax(A) and A\pin(A) denote the largest and the smallest eigenvalue of a matrix A (if all
eigenvalues of A are real). The smallest and largest singular value of A are denoted by
Omin(A) and oyax(A).

We start this chapter with a short introduction to the multigrid concept and geometric
multigrid methods. We first stress that the term “multigrid” does not refer to a single
algorithm, but rather categorizes a whole class of methods that can be used to accelerate
the speed of convergence of classical iterative solvers like Gauss-Seidel-iteration. Their
key idea here lies in the observation that after a few steps of such a method, the error is
“smooth” in the sense that it can be represented with less degrees of freedom than the

11
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original problem. Hence, this part of the error can be eliminated by solving a smaller
linear system of equations. For a comprehensive introduction to multigrid methods, we
refer to [TOS01].

2.1. Relaxation Solvers

Before we proceed to multigrid techniques, we first summarize some basic facts about
Richardson-like iterative solution methods. In the simplest case, this iteration takes the
form

uzt—i—l — uzt Tw (f _ Auzt)
for some damping parameter w > 0. In terms of the error e = u — u® the iteration can

be rewritten as
et = Me" = (I —wA)e™,

From this equation it becomes clear that in the case of a symmetric, positive definite
operator A, the iteration converges if and only if the spectral radius p(M) = p(I —wA)
(also called the convergence factor of M) is strictly smaller than one. This is the case

if w < /\# To estimate the convergence speed, we also need to consider the (f2-)

x(A)”
condition number ky(A) = ’j\r“?—"((f;)): The eigenvalues of the iteration are contained in

the interval [1 — wApax(A), 1 — wAnin(A)]. For large numbers of ky(A), i.e. Apin(A) <
Amax(A), the largest eigenvalue of the iteration tends towards one and the convergence
slows down. If however Apin(A) = Anax(A), fast convergence is possible for a properly
chosen relaxation parameter w. In particular, for symmetric positive matrices A, the
optimal relaxation parameter is given by ([Hac91], Theorem 4.4.3)

opt __ 2

= - 2.1
>\max + )\min ( )

w

which yields a convergence factor of

K’?(A) —1 o Amax = Amin

M opt | — — .
p( v ) KJQ(A) + 1 /\max + AInin

(2.2)
This observation motivates to reformulate the problem to reduce the condition number
ro(A): Instead of solving the equation Au = f, we solve the equivalent equation

BAu = B,

where the non-singular matrix B is an approximation to A~! that can be easily applied
(or even explicitly constructed) such that the condition number ky(BA) < k2(A). For
example, we can take B = D™! = diag(A)~" and obtain the damped Jacobi relazation,

uit+1 — uit 4 wD—l (f o Auzt) ]

A sufficient criterion for convergence of the undamped (w = 1) iteration is given by
([Hac91], Theorem 4.4.11)
2D > A > 0.

12



2.1. Relaxation Solvers

If this condition is not fulfilled, a damping parameter 0 < w < 1 is necessary such that
2D > A ([Hac91], Theorem 4.4.14). This is the case for most discretizations obtained
from elliptical PDE problems.

A second commonly used choice for B is B = (L + D)~', where L is the strict lower

triangular part of A,
LU:{%ﬁj<i

0 else.

it+1

Inside the so-called Gauss-Seidel iteration u® — u“*!, the algorithm loops over the

components u% of u® in the following way,

i+l _ it o1 it+1 it
up = +oay (fi—g aiju; —E aijuj>. (2.3)

j<i >

Here, the new value for u; is already used to determine w; if j < 7. Of course, instead
of (D + L)™! one can also use (D + U)~! as preconditioner, where U is the strictly
upper triangular part of A. Moreover, the decomposition of the non-diagonal part of A
into L and A — D — L can also be made depending on the underlying problem or the
geometry of the discretized domain (for example, the iteration may run “checkerboard-
wise” through the domain). The Gauss-Seidel iteration converges for any positive definite
matrix A ([Hac91], Theorem 4.4.18). The damped variant, which is named successive
over-relazation (SOR), converges for any 0 < w < 2 ([Hac91], Theorem 4.4.21). The
convergence factor for any SOR scheme can be derived from the convergence factor of the
Jacobi iteration applied to the same problem. This can be seen from Young’s Theorem
([Hac91], Theorem 5.6.5), which not only applies to the point-wise Gauss-Seidel iteration
described above but also to more general settings of the following form,
wittl = DSORyit | NSORf
A= D-L-U L=D"'L,U=D""U

MEOR = (1= wl) (L= @) +wl) , NSO® (I —wl)'D". (26)

Theorem 2.1 ([Hac91], Theorem 5.6.5) Let the SOR iteration (2.4) satisfy the follow-
ing conditions

1. 0<w<?2

2. The associated Jacobi iteration M7AY = I — D™'A has only real eigenvalues.
3. B=p(MA%) <1

4. D and I —wL are non-singular

5. The eigenvalues of zL + %U, z € C\ {0} are independent of z.

13



2. Algebraic Multigrid

Then,
1. The iteration (2.4) converges.

2. The convergence rate is given by

p(MSOR) — {1—w+@+uﬁ\/l—w+%Zf0<w§wopt

w—1 if Wopr <w <2
2

1+4/1-p52

8. The convergence factor p(MSOR) attains its minimum at w = Wep.
4. For w < wop, p(MSOF) is an eigenvalue of M5OF.

5. If W > Wept, the norm of all eigenvalues of MSO® is w — 1.

From this theorem we immediately see that in the case of undamped Gauss-Seidel it-
eration (w = 1), we have p(M79F) = 32 i.e. the Gauss-Seidel method converges twice
as fast as the Jacobi relaxation. For the optimal parameter w,, (which is always larger
than one in nontrivial cases), we have

pasony - Lo V125
Wopt 1 + 1 + 52

In the following, we show the convergence behavior for the solution of a simple model

problem. We consider Poisson’s equation together with Dirichlet boundary conditions

on a square,

—Au = finQ=(0,1)% (2.7)
u = gon 0, (2.8)

where f and g are continuous functions and u € C?(Q) is the sought solution function.
We discretize this equation on an equidistant grid €2, with mesh size h (see Figure[2.1(a)
using a H-point finite difference stencil,

. _
72 -1 4 -1
—1 N

and obtain a linear system of N = (n — 1)? equations, where n = 1/h, [[| which can be

written in matrix-vector-form,

Au = f.

!'Note that we have eliminated the equations on the discretized boundary

14



2.1. Relaxation Solvers

7 T

SaulERS
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B
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i

(a) Discretization grid (b) Coarse grid (c) Interpolation directions

Figure 2.1.: Finite difference discretization grids for the model problem Awu = f on the
square [0, 1]%. Here, we have h = 0.125 and n = 8. The first figure shows
the discretization on the finest level (the Dirichlet boundary conditions have
already been eliminated), in the second figure we indicate the coarse grid
points with the larger dots and the arrows in the third figure indicate how
the interpolated values at the fine grid points are computed.

To estimate the convergence speed of the various iterations, we need to know the eigen-
values of the matrix A. These are given by

4
AED — o (sjn2 (#) + sin? (?)) yfork)l=1,...,n—1

with the respective eigenvectors

)

P — gsin(iknrh) sin(jlmh).

From this we easily see that

8 h 8 h
Anin(4) = XD = = sm2(%) and Amas(4) = A" = o COSQ(%).
It is clear that A is symmetric positive definite, so we conclude that the Richardson
iteration M converges for w < #2(@) whereas the optimal relaxation parameter ((2.1)
2

is given by w?' = %2. In this case, the relaxation converges with
h
p(M7AC) = 1 — 2sin2(%) = cos h. (2.9)

For this model problem, undamped Jacobi iteration M74¢ = I — D7' A for A just means
. . . 2 .

Richardson relaxation for the re-scaled matrix %A. Hence, (2.9)) also applies here.

The point-wise (lexicographic or checkerboard-wise) Gauss-Seidel method converges with

the square rate of the Jacobi iteration, i.e. in this case

p(MGS) — p(MJAC)2 = cos’ mh = 1 — sin® wh.

15



2. Algebraic Multigrid

If we employ the SOR method with the optimal damping parameter (cf. The-

2
1+sin(wh)
orem , we obtain a convergence factor of

Wopt 1+ sin(7h)

For a specific problem discretized using a mesh width h, one is often interested in the
convergence order, which is the smallest £ such that p(M) can be expanded as follows,
([Hac91], Remark 3.3.3)

p(M) =1—Ch* + O(h*)
for a constant C' independent of h. For the Jacobi, the Gauss-Seidel and the optimally

weighted SOR iteration, a Taylor expansion gives us the following convergence orders
for the model problem,

p(M7A9) = 1 —7%/2h* + O(h%)
p(M%%) = 1—72h? +0O(hY)
p(M3OT) = 1—2wh+O(h?).

Hence, with increasing accuracy (and thus diminishing mesh width h), the convergence
factors deteriorate and more iterations are necessary to obtain a given error.
To determine the overall computational costs, we also need to estimate the floating
point operations per iteration. In most relevant applications, the matrix A is sparsely
populated, i.e. the number of non-zero entries per row A; of A is small and independent
on the size of the matrix,

nonzeros(A) < CaN.

For the model problem, we have C'y = 5. It is easy to see that the Richardson, Jacobi,
Gauss- Seidel and SOR methods require O(Cy) scalar additions and multiplications to
update a variable z;, hence we need O(N) = O(75) operations for a single iteration.

In a nutshell, if we use these methods to solve a linear system with N unknown scalar
variables and O(N') non-zero entries in the matrix, the computational work grows super-
linearily in terms of N. We cannot expect that a single iteration can be carried out with
less than O(N) operations (actually, the computation of the residual f — Au already
requires this amount of work), hence, to obtain a solver that only needs O(N) overall
computations, we must seek for a method that, in each iteration, reduces the error by a
fixed factor p < 1 that does not depend on the number of unknowns N (or k). This can
be accomplished by multigrid methods, which are explained in the next section.

2.2. Geometric Multigrid

Multigrid methods can be seen as an acceleration of simple iterative schemes. To describe
this mechanism, we perform an iteration of the w-damped Jacobi relaxation method to
obtain iterate u®*! from iterate u®,

uitJrl — uit _'_wal(f - Auzt)

16



2.2. Geometric Multigrid

Consequently, the error e = u — u’ (here u denotes the exact solution) is propagated
by

6thrl — (I . WD71A> ezt‘
We return to our Poisson problem example (2.7)-(2.8) from the previous section and
decompose the error in terms of the eigenbasis of A. For the eigenvalues

1 1
Nij = (1 — §cos(z'7rh) — §COS(j7Th)) (t,j=1,...n—1)

and eigenvectors
iy =sin(irz)sin(jry),  (2,y) € Dy

the error propagation reads as follows,
1 1
Pt = (1 —w (1 -5 cos(imh) — 3 cos(jwh))) ok

i. e. for small values of 7 and j we have ¢**! ~ ¢*, while ¢* rapidly diminishes for large
i or j. Now, we have a decomposition of e in the oscillating part of the error (the span
of the eigenvectors ¢;; for large ¢ and j) and the smooth part of the error (the span of
¢i; for small ¢ and 7). While it is generally not feasible to carry out this decomposition
(actually, it would be at least as expensive as solving the system Ax = b), we still can
employ this knowledge and conclude that the slow-to-converge error can be represented
with less degrees of freedom than the dimension of the original problem N. Now the
question arises how we can obtain a smaller basis that represents this error well. We
study the point-wise error propagation of the Jacobi iteration at the (interior) mesh
point 1, 7,

€yl =l % (defy = €ijmr = €y — Civig — €ige)
k+1
irj
efﬂ’jil at the neighboring grid points. (For other values of w we obtain an interpolation
between the old iterate and this average). Hence, we can conclude that during the Jacobi
iteration, the error at each point tends to the average of the error at its neighbors.
This motivates us to discretize the smooth error by forming averages of the fine grid
error. As outlined above, we only need a quarter of degrees of freedom for the smooth
error. Hence, we construct a coarse mesh €2y, by doubling the mesh size h — 2h in
every spatial direction, see Figure and obtain a grid with No = [§] x |5]. To
establish a mapping between the coarse and the fine mesh, we need two transfer operators
P:RY¢ 5 RN and R : RY — RN, We first construct the prolongation or interpolation
operator P. Its image has to represent the smooth error components well, so it is natural
to choose the following interpolation scheme,

and see that letting w = 1 the new iterate e; 7" is just the average of the old iterate

ei;if k=2iand | =2j

eaﬁ;iﬂd ifk=2i—1and!l=2j
(Pe)k,l = €ijteij+1 - — 95 — 99

e itk =2iand [ =25 — 1

Chjteijeteinlteitninl §f | — 2 — 1 and [ = 2j — 1
4

17



2. Algebraic Multigrid

i.e. at the coarse grid points we just employ an injection and at all other points we form
averages of the errors at nearby coarse grid points, see Figure . For the restriction
operator R, we have different options. First, we can only take the value at the coarse
grid points, i.e.

(Re)i,j = €22;-

Another possibility is to form averages during restriction. This can for example be done
with the so-called full weighting operator,

1
(Re)m. = 1—6(4€2i,2j + 2(€gi2j-1 + €2i-12j + €2i+1,2; + €2i2j+1)
+ (€2i-1,2j—1 + €2i—1,2j41 + €2i412j—1 + €2i+1,2j+1))

which is up to a scaling factor the transpose of the prolongation operator. Other restric-
tion operators are also possible.

Finally, we need a coarse linear system. We discretize the PDE on the coarse grid and
obtain a coarse system matrix A¢c of size N/4 x N/4 (again, all Dirichlet boundary con-
ditions are eliminated and A¢ is regular). We can now solve a defect correction equation
in the following way: We first restrict the defect to the coarse grid

fe=Rr'"=R (f — Au”) )
Then, we solve a coarse defect equation,

Acuc == fc-

Finally, we update the fine grid solution u* using the coarse approximation to the error

uc, ) )
u = u" + Puc.

In terms of the error e?, this correction can be written as
et = ([ — PAglRA) e’

i.e. we again have an error propagation of the form (I — BA). Note however that in this
case B = PAZ'R is not invertible (though A¢ is) and hence the spectral radius p(I —
PAalRA) cannot be expected to be strictly smaller than one. To obtain a convergent
method, the coarse grid correction needs to be combined with one or more smoothing
iterations.

In Algorithm we give the two-grid cycle. In general, however, the application of
a direct solver for the coarse system Acuc = fo is still too expensive. Instead, we
compute an approximation to uc using the two-grid algorithm with Acuc = fo as
fine grid system. We recursively extend this procedure until the coarse system is small
enough such that it can be efficiently solved using a direct solver or even by few steps of
an iterative method. Now, we have constructed a multigrid algorithm [2.2 Note that the
recursive application can be carried out once (u = 1, V-cycle) twice (u = 2, W-cycle) or
combinations hereof depending on the level index [, see Figure 2.2

18



/
o O
\/

2.2. Geometric Multigrid
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Figure 2.2.: V-cycle (left) and W-cycle (right)

algorithm 2.1 Two-grid cycle MG(A, f,u)

begin
for v <+ 1 to 11 do u <+ Su; od;
r <+ f— Au;
Jc < Rr;
ue — (Ac) ™" fe;
u < u+ Puc;
for v <— 1 to 15 do u < Su;
end

pre-smoothing
residual

restriction

coarse grid correction
update solution
post-smoothing

algorithm 2.2 multigrid algorithm MG(A,, f;, ;)

begin
for v « 1 to v; do u; « Mju;; od;
T fi — A
Jiq < Ryry;
ifl+1=1lhu
then
Wt (An) ™ fre
else
for < 1 to p do
MG(A1+1,f1+1,Ul+1))§
od;
fi;

w4 uy + Pugyg;
for v < 1 to 1, do u; < Mju;; od;
end

pre-smoothing
residual

restriction

coarse grid correction

apply directly

solve recursively

update solution
post-smoothing

19



2. Algebraic Multigrid

For sake of completeness, we now outline the classical multigrid convergence proof scheme
as introduced by Wolfgang Hackbusch in the Chapters 6 and 7 of [Hac85]. First, we
show the convergence of the two-grid cycle [2.1] and then we interpret the full multigrid
cycle as a disturbed two-grid cycle.

The two-grid cycle (on finer level [ and coarser level [ + 1) with only pre-smoothing can
be written in operator form,

ez’t+1 — TZTGM<V1>€it — (I _ Pl(AlJrl)ilRlAl) (Ml)meit
= ((Al)_l — IDlAl_lel) (AlMlyl)elt,

where M; denotes the smoothing operator on level [. In the last step we have factored
the iteration into two steps, a smoothing step and a coarse grid correction step. From
the convergence properties of these two steps we derive the convergence of the two-grid
method. To this end, let A; : U — F and let the norms || - ||y and || - ||z as well as the
induced operator norms || - ||y r and || - || -y be available.

Definition 2.1 ([Hac8%], Definition 6.1.3) Let || - ||u and|| - ||r be given. M} is said to
posses the smoothing property if there exists functions n(v) and v(h) and a number K
such that

|AM |lvsr <nv)h " for alll <v < v(ly), | < lna, (2.10)

lim n(v) =0, (2.11)

V—00

v(h) = o0 or lim v(h) = occ. (2.12)
h—0

The functions n and v are independent of | or h;. The condition
NAM] |lvor < nw)h " for allv > 1,1 < L,

is described formally by v(h) = oo.

Note that an iteration that possesses the smoothing property is not necessarily conver-
gent.

Definition 2.2 ([Hac8)], Definition 6.1.6) The approximation property holds if there
1s some constant C' such that

|A = AL Ryl pow < ChY for all | < I (2.13)

with k from (12.10)).

If our smoother and coarse-grid correction satisfy these properties, we obtain two-grid-
convergence.

Theorem 2.2 ([Hac85], Theorem 6.1.7) Suppose the smoothing property and the
approzimation property[2.2. Let p > 0 be a fized number.
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2.2. Geometric Multigrid

1. In the case of v(h) = oo there is a number v such that the two-grid contraction
number satisfies
1M () |lyv < Cn(v) < p (2.14)

whenever v > v and | < l4z.

2. In the remaining case of v(h) — oo there arejL > 0 and v such that inequality
(2.14)) holds for allv < v < v(h;) and all hy < h. For such [ the interval [v,v(h;))
15 not empty.

3. Under condition 2 and for p < 1 one obtains convergence:
uft — U] = Al_lfl.

Note that the right hand side of (2.14)) is independent of [.
In the case or our model problem, we introduce the grid-depending scalar product

<u,v >= Z hu(x)v(z)
zEQ

where d is the spatial dimension of the domain. We need three vector norms

lulp = V<u,u>,

o=

in 2
luls = Z |6%@|3 | where @ = {u .1n "
<2 0in Qpn \ O
lul_s = sup{<u,v>: |v]y =1}
and the induced operator norms | - |o, | - |o=2, | - |220, | * los—2, | - |20, | - |—2——2. Here,

(@1, denotes the infinite continuation of 2, and 0% is the discrete difference of order «,
where « is a multi-index,

0o = 071 .00
W@y, .., Ty Ta) — (T, ., — Ry, Tg)

h
The smoothing property is satisfied with the following functions n(v).

6jU(.Z'1,...,$j,...,.1'd> =

e For the Richardson iteration, we have ([Hac85], Proposition 6.2.33)

2C 1
n(v) 2

TV 1)
where Cy satisfies |h?A;|o < Ca.

e For the w;- damped Jacobi method, we have ([Hac85], Proposition 6.2.11)

- C()l/y
n(v) = m

where Cj is chosen such that w; > Cio
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2. Algebraic Multigrid

e For the lexicographical Gauss-Seidel relaxation one can show ([Hac85], Proposition

6.2.25)
2 e 1o
o) =4 {?y — if v=1,2
CAVAR else.

To show the approximation property for this family of discretization, let ;.1 = R;A; P, —
Apy1 be the difference between the Galerkin projection and the coarse grid operator.
Furthermore, let R denote the trivial injection from level [ to level [ + 1.

One can show the following regularity statements ([Hac85], Section 6.3.2.2),

0141]-252 < Csh?
A7 20 < Cr, |A os2 < Cr
|Ai|l—20 < Cr, [Ailos2 <O
I — PR|s50 < Cih?
IRi| 25 < Cgr, |R'|2m2 < Ch |Ploso < Cp.

We now split
AT = PATLR = (1= PAGLRA) AT

= (1= RALRA) (1= BE) A7 = RAL 0 R A7

We estimate the three components in the last line,

I — PALNRAL < 1+|Po]A L RiAl < C,CrC.Ca

I+1 I+1

| ([ - BR’) Ao < OR2CR

[PlolA 0 R A e < CpCRCsC

and obtain the approximation property (2.14) with
C = (1+ C,CrC,C1)C1Cr + CpCEC5CH.

It remains to show the convergence of the whole multigrid cycle T;(vq,v5). This can
recursively be written as

D1 (v1,12) = Iﬁi]\ﬂ(ma 2) (2.15)
,I’l<1/1, VQ) = leTGM<I/1, VQ) —+ MlVQB (MlJrl (Vl, 1/2))’y A;_’_llRlAlMlyl. (216)

Hence, the multigrid iteration can be interpreted as a two-grid iteration plus a pertur-
bation. To estimate this perturbation, we need the following additional assumptions on
the smoother and the interpolation operators (which can be easily shown for our model
problem),

1S/ lvsu <Cs for all | < lpax, 0 < vw(hy) (2.17)

Q1_31Hu1+1HUHU <||Puriillvov <Cplluiillv—u- (2.18)
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2.2. Geometric Multigrid

We consider the case of pre-smoothing only, i.e. 5 = 0. By induction we already have
| M1 (v1,0)|lusu(ly for some ¢4y < 1. By (2.18) we have

AL RAM  lvso < CpllPAG RIAM oo

I+1

- QPHMZVI - (Afl - PlAz;l1Rl) AlMlV1||U—>U
= CplM = TN (11, 0)lusu-

We can now estimate (2.16|) by
1T (w1, ) lose < T omw + CF[[Misa (v1, 0) 17

where C* = CpCp(Cs + 1). Let now the norm of the two-grid method be bounded by
| TEM ||y~ < ¢, we obtain the recursion (I < lpax — 1)

G<C+07¢G, (2.19)
and (. 1 <.

Lemma 2.1 ([Hac85], Lemma 7.1.6) Assume C*y > 1. If
v—1 oL
Y > 2a C < Cmax =T (70 ) T, (220)
g

any solution of (2.19) is bounded by
< C* < 1.

where C* and ¢ are related by
C=( -0 (), ¢ <.
) — f)/ _ 1
In the case of the W-cycle (v = 2) the requirement (2.20) becomes
=9 (< o =
’7_ 9 — Smax ~— 40*

and all (; are bounded by
20
1++/1—-4(C*

The second part of ([2.20]) is not a very strong requirement, as we can always increase C'p
such that C* < % Now, we obtain the multigrid convergence theorem for the W-cycle.

G <

Theorem 2.3 ([Hac85], Theorem 7.1.2) Suppose v > 2, (2.17)), (2.18)), the smoothing
property from Deﬁm’tion and the approximation property from . Let ¢' € (0,1) be
a fixed number.
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2. Algebraic Multigrid

1. In the case of v(h) = oo, there is a number v such that the multi-grid contraction
number satisfies

T2 (v1, 0)llo—v < ¢" < L[| T3(v1, 0) v < %CH(V% (2.21)

whenever v > v, independently of | < liax.

2. In the remaining case of lim,_,ov(h) = oo there exist h >0 and v sugh that
Inequality (2.21) holds for all v € [v,v(ly,, 1)), provided that hyax—1 < h. For
such huyax—1 the interval [v, v(hy,,, 1)) is not empty.

One can show a dual result for the case of post-smoothing only ([Hac85], Theorem
7.1.7).

To show the convergence of the V-cycle, i.e. v = 1, in a general setting we refer to
[BD85].

In this section, we have seen how a geometric multigrid method for a simple model
problem can be constructed. In addition, we have given an outline of the convergence
proof. The coarsening process, the construction of the interpolation operator and the
choice of the coarse grid operator however all required the knowledge of the underlying
PDE as well as the discretization grid. Now the question arises whether we can automate
this process and employ the fine level matrix A; only to obtain a complete multigrid
hierarchy, i.e. a family of grids €2;, system matrices A;, interpolation and restriction
matrices P, R; and smoothing operators M;. The remainder of this chapter will deal
with these issues.

2.3. AMG setup

algorithm 2.3 AmgSetup(Q, A, int, Nyin Linaz, L, { A, {PHH RS
begin
QL Q; N, =10Y
Ay A,
for{ < 1to L., — 1 do
split Q! into C'UFY;
set QL « CL Ny = |QHFL;
build P, : RN+ — RN,
set R = (PZ)T;
compute Ay 1 <+ RAP;
if || < N,uin then break; fi;
od;
L+ 1+1;
end.
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2.4. Smoothing

For any algebraic multigrid method, we first have to create the multigrid hierarchy
before we can start the solving iteration. The latter part, called the solve (or solution)
phase is identical to the geometrical multigrid cycle (see Algorithm . During the
first part, called the setup phase, we create the sequence of grids {Q'}F |, the inter-grid
transfer operators { P} and {R;}/=' as well as the operators {A4;}£,. A brief sketch
of the AMG setup process is outlined in Algorithm In the following sections, we
describe in detail each component of the setup process.

2.4. Smoothing

Before we can construct an adequate algebraic multigrid hierarchy for a given system
matrix A € RVM*N  we first have to understand the reduction of the error during the
smoothing iterations. To this end, we need to establish a criterion that allows us to
separate the smooth (or slow-to-converge) error components from the oscillating compo-
nents. In the case of a symmetric positive definite operator A, where D € RY*¥ denotes
the diagonal part of A, we can define three inner products that help us to classify the
error,

Definition 2.3 ([Sti99/, Section 2.2)

(u,v)o = (Du,v) (2.22)
(u,v); = (Au,v) (2.23)
(u,v)y := (D 'Au, Av) (2.24)

and the respective discrete norms ||ullo, |[ull1 and ||ully for all u,v € RY.

The equivalence factors between these norms can be estimated as follows,

Lemma 2.2 ([Sti99], Lemma 3.1) Let A be symmetric and positive definite, let D be
the diagonal part of A. Then, for all e € RV :

lell < llellollellz; llellz < p(D*A)llelly,  llelly < p(D~"A)llells. (2.25)
The eigenvectors ¢; of D™ A and the corresponding eigenvalues \; satisfy
loall3 = Aillgilli, and [lgilli = Nilloills. (2.26)

We now formulate the smoothing property of a smoothing operator M in terms of these
norms.

Definition 2.4 ([Sti99], Section 3.2) An operator M satisfies the smoothing property
with respect to A, if we have a o > 0 such that for all e € RN holds,

1Mell < [lell} — ollell? (2.27)
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2. Algebraic Multigrid

From this definition we see that error components e that satisfy |le|l2 < ||e]|1 will not
be reduced efficiently by M. In terms of the eigenvalues and eigenvectors of D71A,
|@ill2 < ||¢s]]1 implies A; ~ 0 by (2.26)).

Before we further analyze the smooth components, we first note that damped Jacobi
relaxation and Gauss-Seidel relaxation satisfy property .

Theorem 2.4 ([Sti99], Theorem 5.1)
Let A be symmetric, positive definite and let w € RN be an arbitrary vector, w; > 0 for
all i. We define v_ and 7y,

1 1
1= max{e S wylay |} and vy = max{—— 3" wlay]).

g W; Q4 < W; Ay
1<t

j>i
Then, the Gauss-Seidel iteration M = I — (L + D)™ A or S=1— (U + D)"'A, where
L (U) denotes the lower (upper) triangular part of A, satisfies the smoothing property

: _ 1
" with o = m

Theorem 2.5 ([Sti99], Theorem 3.2)
Let A be symmetric positive definite and n > p(D™*A). Then, the damped Jacobi relaz-

ation M = I —wD™'A satisfies the smoothing property (2.27) with o = w(2 — wn) for

any 0 < w < % The optimal relaxation parameter is given by w* = %, i this case also

O':l.
n

For two important classes of matrices we now give a more detailed characterization of
the smooth error components.

2.4.1. M-Matrices

Definition 2.5 A matric A € R™" is called M matrix if it satisfies the following
properties,

e a; >0 foralli=1,...,n,
®© a;; <0 foralli,j=1,...n, 1 # 7,
e A is non-singular,

o the entries of A~! are non-negative.

The smooth error components satisfy ||ella < |le]|1. Together with |le||? < |lellollell2
(12.25) we get
lefly < [leflo for e # 0.

which can be expanded as follows

1
el = Z%@i@j:§Z—aia’(€z’—€j)2+zsi€3>
i,J i

i?j
where s; = E ;-
J
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2.4. Smoothing

Figure 2.3.: Error after 10 Gauss-Seidel iterations for a finite difference discretization of
—Ugze — 0.001 - uy,, randomly chosen starting vector.

Hence, we have on average for each t =1,... N,
2
a;j(e; — e;)
Yy _ERGTEL <o
ji i

As all a;;, ¢ # j have the same sign, we can conclude that an algebraically smooth error
only varies slowly along the large couplings —a;; > 0.

Example 2.1 We consider the anisotropic problem
—€ly, — 1, = fin Q=(0,1)
u = gon 0f)

for ¢ < 1. From Figure [2.3] we see that after a few smoothing steps the error in y-
direction only varies slowly between neighboring points, while we have huge oscillations
in x-direction.

2.4.2. Essentially positive definite operators

In many applications, for example when discretizing mixed derivatives, we cannot expect
that all off-diagonal entries of the matrix A are non-positive. If however the positive
entries are relatively small, the results from the M-matrix case still can be applied.

Definition 2.6 ([Sti99], Section 5.3.2) A matriv A € RN*Y s called an essentially
positive matrix, if there exists a constant ¢ > 0, such that for all e € RY

Z —ai(e; — ;) > CZ —a; (e — ej)’. (2.28)
2% 2

where

a-.
K 0 otherwise.

- {aij ifaij <0
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2. Algebraic Multigrid

Figure 2.4.: Error after 5 Gauss-Seidel iterations on randomly chosen start vector for the
Laplace operator (left) and the problem with mixed derivatives (right).

Remark 2.1 For an essentially positive matrix, each row containing off-diagonal non-
zero entries has at least one negative off-diagonal entry.

Using the notation of the previous subsection, we get the following estimate for alge-
braically smooth error,

g Dl =)+ ) il < Y aue]
i i ‘

which again means this error component varies slowly in the direction of strong negative
couplings a;; < 0 and that the positive connections do not play an important role. This
is also motivated by the following example.

Example 2.2 [Stii99] We consider a problem with mixed derivatives, —Au + g, dis-
cretized using a 9-point finite difference scheme on an uniform grid of mesh size h. We
employ the stencil

1 —-0.25 -1 +0.25
72 -1 4 —1
+0.25 -1 —-0.25],

The resulting matrix fulfills condition (2.28) with ¢ = 0.5. As can be seen from figure
the positive couplings resulting from the mixed derivatives do not have an influence
on the error.

Remark 2.2 In the case of large positive connections (i.e. the matrix A does not fulfill
property ), algebraically smooth errors can oscillate in the direction of these cou-
plings. For example, when considering nearly weakly diagonally dominant matrices, we
get the following estimate for algebraically smooth error ([Stii99], Section 3.3.3)

Z _@i_j(ei —¢)° n Z a:;(ei +e;)? <1
— aiie? — aiie? ’
J#i j#i

which implies that e; = —e; if a;;/ay is relatively large.
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Figure 2.5.: Strong couplings for finite difference discretizations. The left picture shows
the strong connections for an isotropic operator A. In case of the second
image, we have strong connections only in y direction (see Example .
The figure on the right hand side shows the strong connections for Example
if a threshold o < 0.25 is used.

2.5. Strong Couplings

algorithm 2.4 AmgStrongCouplings(A, S, ST)

begin
fori < 1to N do
for j € N; do
if —a;; > o maxgy —ai;
then
ST« ST u{i};
fi;
od;
od;
end

In the previous section, we have seen that for symmetric positive M-matrices and
essentially positive matrices, the algebraically smooth error e varies slowly in the di-
rection of the large negative off-diagonal matrix entries a;j, i.e. ¢; = e;. We will use
this observation for the construction of the interpolation (prolongation) operator and,
in consequence, for the coarsening process. Therefore we introduce the concept of the

strong coupling,

Definition 2.7 ([St99], Section 7.1) Let 0 < v < 1 be fized.
1. A point j is strongly coupled to another point i # j, if

—a;; > a- Iilax{—aik}.

(2.29)
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2. Algebraic Multigrid

2. We introduce the following notation

Si = {jeQ: —a;>a- Iilix{—aik}} the strong couplings i,  (2.30)
SI' = {j€Q:ieS;} the set of all points strongly coupled toi. (2.31)

To be more demonstrative, we can consider S; as the dependencies of i, i.e. the smooth
error e; depends in particular on the error e; at the strongly connected neighbors j € ;.
On the other hand, S! can be seen as the influence of i. The union of all S; can be
interpreted as a directed, unweighted graph where the vertices are given by the grid
points ¢ € 2 and an edge is established between two points ¢ and j if j € S;. We
denote this graph and its connectivity matrix with S. S7 is defined similarly. Note that
even for symmetric operators A, the connectivity matrix S is not necessarily symmetric.
Consider for example the following very simple example (o = 0.25),

L 21 -1 0 010
A= | -1 11 —01), s=[100
0 —01 0.2 010

In Algorithm [2.4] we give the algorithm for computing the strong connections. An
example for two strength graphs is given in Figure 2.5

Remark 2.3 A slightly different way to define the strong couplings is to use the in-
equality
|aij| = o Iggx|aik| (2.32)

instead of . In this case all couplings beyond a certain threshold are considered
coarse, even the positive ones. This may especially be useful in the case of essentially
positive matrices, where for every large positive connection ¢ <— j there is also a path
of strong negative connections ¢ <— k < j. So instead of the more expensive detection
of these paths, we simply take the large positive connection. It is also possible to use
different thresholds o~ and a™ for the positive and negative connections.

2.6. Coarsening according to Ruge and Stiiben

As in the geometric case, the coarse grid Q! = C! should meet two demands:
1. The smooth error components e should be well represented on '+,

2. The coarse grid should be a constant (independent of |Q!|) factor smaller than the
fine grid.

Now, algebraic multigrid is often used if geometric multigrid fails, i.e. a geometrically
obtained coarsening like mesh width doubling does not reflect the behavior of smooth
error components very well. This can for example be due to anisotropies in the operator
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Figure 2.6.: Coarsening process for a 5-point stencil. The numbers denote the weights
of still undecided points, the red points belong to the coarse grid and the
white points belong to the fine grid. Updated weights are given in blue.
The blue edges indicate which connections are considered within the graph

at the current step. Note that the strength matrix is symmetric here.
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2. Algebraic Multigrid

(see e.g. Example or different PDE coefficients in different parts of the domain.
Furthermore, the geometry of the discretization domain may not allow a straightforward
coarsening.

Instead of relying on geometrical information, the key to the construction of an algebraic
coarse grid is to use the information that we know about the structure of the smooth
error. In the previous section, we have already seen that for relevant PDE problems the
smooth error varies slowly along the strong connections. In other words, the value e; at
a point i € {2 can easily be approximated from the values of strongly connected points
j € S;. The coarsening demands mentioned above can now be expressed in terms of S.

C1 For any fine grid point ¢ € F' and every strongly connected point j € S; let either
j be a coarse grid point, or j itself depend on a coarse grid point k € S; N C.

C2 Let C' be a maximal set so that two points in C' are not strongly connected to each
other.

The first condition ensures that for any fine grid point ¢ € F' all strong connections are
reflected in the coarsening process, not only those that directly lead to a coarse grid point
j € C. The reason for this is the that we will construct the interpolation operators (see
Section to interpolate along the strong connections, i.e. the value at a fine grid point
¢ € I" will be interpolated from the values e;, where j is contained in the set of strongly
connected coarse neighbors S; N C'. On the other hand, the value e; at any strongly
connected coarse grid point £ € S; should be represented in the interpolation scheme.
Now, as long as e, k € S; N F, also depends on and interpolates from e;,j € S; N C, e
cannot differ “too much” from these e; and hence from e;.

If C fulfills Condition , it is called a mazimal independent set (MIS). An indepen-
dent set I C V in a graph (V, E) is a set of vertices such that two vertices i,7 € [
are not directly connected to each other, i.e. there is no edge (7,j) in . A maximal
independent set is an independent set I such that no additional vertex ¢ can be added
to I without loosing the independent set property. This should not be confused with
a maximum independent set, which is an independent set with a maximum number of
vertices. The task of constructing a coarse grid hence turns into the task of finding a
maximal independent set, for which many greedy algorithms are available, e.g. [Lub86].
In this particular case, however, the set of coarse grid points has to satisfy condition
to ensure the robustness of the interpolation. Therefore, the construction of coarse grids
is split into two phases. In the first phase, an independent set is created. The second
phase then enforces condition [CI] thereby sacrificing the independent nature of the set
C.

In Algorithm we give the first phase of the classical coarsening algorithm. Most
important here is that we assign a weight \; to each point ¢, which measures the “use-
fulness” of i as coarse grid point. Before starting the iteration, we initialize \; to the
number of points j that depend on i, i.e. |ST| (Figure 2.6(a)). A point with maximal
weight is chosen and added to the set of coarse grid points C' (Figure [2.6(b)). Then, all
neighbors j that depend on i (j € ST) can interpolate from i and hence we assign them
to the set of fine grid points (Figure [2.6(c)). On the other hand, interpolation should
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2.6. Coarsening according to Ruge and Stiiben

algorithm 2.5 AmgPhasel(Q, S, ST, C, F) (JRS8T], algorithm A2)
begin
U+ Q,
C + 0;
F «
fori € Q do \; < |ST|; od;
while max;cp \; # 0 do
i < argmaxjey A;; pick coarse grid point
C+CU{i}; U+ U\{i};
for j € S NU do

F«+— FU{j}; U«<U\{j}; add neighbors to fine grid
for k€ S;NU do
e — M+ 1 increase weights of neighbors of neighbors
od;
od;
for € S;NU do
Aj =N =1 decrease weights of point that influence i
od;
od;
F <+ FUU,
end

be from a large portion of connection of j, not only one strong coupling (see Section
for an intensive discussion). This motivates us to increase, for all newly assigned fine
grid points j, the weight of all k& € S; such that they are more likely to become coarse
in future iterations (Figure [2.6(d))).

Furthermore, as ¢ is now coarse, the strong connections of i, S; are not needed for in-
terpolation anymore. Hence, we can reduce the weights A; for all j € S; if j is still
undecided. Then, we restart the iteration and again pick a point with maximal weight
Ai (Figure [2.6(e)]) until all points are assigned either fine or coarse (Figure [2.6(1))). It is
easy to see that the iteration needs at most O(N - nzr?) steps, where N is the number
of unknowns and nzr the maximal number of nonzeros per row, which is assumed to be
small and independent of N for relevant PDE problems.

The second phase algorithm [2.6] which is derived from Algorithm A3 in [RS8T], takes
as input the C'/ F-splitting determined by the first pass. We loop over all fine grid points
1 € F and their strongly coupled fine neighbors 7 € S; N F. Then we check whether
these points share a common C-point, i.e. a point k such that both k € S; and k € S;.
If such a k does not exist, either ¢ or j is added to the set of coarse grid points, where
1 is given precedence if two or more additional coarse points would be needed to ensure
stability for interpolating e;. This algorithm also takes O(n - nzr?) operations (outer
iteration O(n), inner iteration and S; N.S; N C' = @) check each O(nzr)).
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(a) Strong Couplings (b) After first coarsening (c) After second coarsening

phase (red points are coarse) phase (red and green points
are coarse)

Figure 2.7.: Finite difference discretization of a PDE with a jumping diffusion coefficient
(Example . The blue line gives the phase boundary; the arrows denote
a strong coupling only in the indicated direction.

algorithm 2.6 AmgPhasell(Q2, S, C, F')

begin
for i € F' do
C « 0;
for j € S;N F do
if S;NsS;NC =0
then
if C ()
then change i, because otherwise 2 points need to be changed
C+ CU{i};
F— F\{i};
GOTO NEXTi;
else j could be an interpolation point for ¢
C«{ik
fi;
fi;

od;

C« CUC;

F«+ F\ C:

NEXTi :

od;
end
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2.7. Aggressive Coarsening

Figure 2.8.: Standard coarsening for a three-dimensional Laplacian. The blue points are
fine grid points, the red and green points belong to the coarse grid. On
the coarse level, the point in the center has connections to 18 other points.
After the application of aggressive coarsening using the sets 5’52’2), all green
points are also fine grid points and the original 7-point stencil is recovered
on the coarse level.

Example 2.3 We consider the PDE

—V - n(z,y)Vu(z,y) = f(z,y)

on a square domain with Dirichlet boundary conditions, and

oy 1Ty >09
T =
I3 1000 else.

In Figurewe show the strong couplings (a = 0.25) for a finite difference discretiza-
tion. The blue line indicates the phase boundary for . We see that the strength matrix
is not symmetric (the arrows denote the strong couplings that are only present in one
direction). Figure [2.7(b)| shows the coarse grid (red points) after phase I (Algorithm
of the coarsening scheme. We see that the fine grid points at the upper right side
to the phase boundary are strongly dependent on the points at the lower left side of
the boundary, these points however are also fine grid points that do not depend on the
same set of coarse grid points, thus violating condition [CI] Algorithm repairs this
problem by inserting the green points in Figure [2.7(c)l

2.7. Aggressive Coarsening

In geometric multigrid settings, the coarse grid operator is usually just the discretization
of the underlying problem on a smaller mesh, hence the number of nonzeros per matrix
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2. Algebraic Multigrid

row will be roughly the same on all levels. In consequence, the memory requirements
per level decrease proportional to the mesh size.

In AMG (but also in the case of semi-algebraical approaches [Den82]), the coarse grid
operator is computed from the transfer operators and the fine grid operator,

A = RIAP,.

This approach establishes many connections, i.e. matrix entries, between points that
were previously far away from each other. The matrix A;.; may have the same number
or even more nonzeros than A;. This not only increases the storage requirements, but
also the compute time for a matrix-vector multiplication (which is proportional to the
overall number of nonzeros in a matrix), the computation of A, itself and the setup
on the next coarser level.

Example 2.4 We consider the simple case of a 7 point isotropic finite difference stencil
in three spatial dimensions, e.g. the discretization of the Laplacian, see Figure|2.8, Using
classical Ruge-Stiiben coarsening, we obtain a coarse grid with N/2 vertices, where N
is the size of the fine grid (We ignore any boundary conditions for these considerations).
We assume that interpolation directly follows the strong connections. Now, on the next
coarser level, each matrix row contains 19 non-zero values. In consequence, the matrix
on level 2 has O(9.5 - N) non-trivial entries , comparing to only O(7N) on the finest
level.

A way around this is to allow smaller coarse grids, i.e. with less coarse grid points. To
this end, however, we have to give up coarsening principle and replace it by a weaker
condition [SMYHOG],

C1’ Let any fine grid point ¢ € F' be strongly connected to at least one coarse grid
point j € C.

As we have already pointed out in the previous section, a stable AMG interpolation
scheme requires that all strong connections of a fine grid point ¢ € F' are reflected in
the prolongation operator. Now, Condition does not guarantee us that the strongly
connected fine grid points k € S; N F' are strongly connected to the set S; N C, i.e. the
coarse grid points directly connected to i. We can however at least be sure that k£ has
a strong connection to at least one coarse grid point v € Sy N C. The idea is then to
interpolate the value at ¢ € F' not only from the directly coupled coarse grid points
S; N C, but also from the set of indirectly coupled points

U seno).
keS;NF

In Sections - we will give various approaches to long-range interpolation.
In the remainder of this section, we describe the aggressive coarsening approach ([Stii99],
Section 7.1.2). This algorithm requires an extended concept of strength.
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2.8. Interpolation

Definition 2.8 The point i is strongly n-connected to another point j along a path of
length m if there exists a sequence of variables i, 41,12, ..., %, Such that iy € S;, for
allk=0,....m—1and ig =1, i, = J.

For q>1, m > 1, i is strongly n-connected to j # i w.r.t. (q,m) is there exists at least
q paths of length < m such that i is strongly n-connected to j along each of these paths.
Analogously to we then define the sets Si(q’m)

Si(q’m) ={j € Q: i strongly n-connected to j w.r.t (g,m)}.

It is clear that S; = 51(1,1). For aggressive coarsening, usually the sets Si(m) or 552’2)
are used. However, the computation of qu’m) (and its transpose (Si(q’m))T may be quite
expensive. Instead a more practical approach is to employ the standard coarsening
algorithm twice. First, the coarsening process is applied using the sets S; as usual.
Then, we only regard the coarse points ¢ € C' and the strong connection paths between
them,

Si(q’m) = {j € C': i strongly n-connected to j w.r.t (¢,m)}.

These sets S}q’m) are then fed into a second run of the coarsening scheme and we
obtain the final set of coarse grid points. Returning to our 3D Laplacian example (Figure
, we compute the sets 51(2’2) for the green points and see that they are strongly n-
coupled to the red points w.r.t (2,2). Hence, an additional coarsening pass only leaves
the red points on the coarse grid.

In Section [3.3| we will introduce additional coarsening schemes that only satisfy condition
[CT] The advantage of these algorithms is that they can easily be parallelized.

2.8. Interpolation

After the coarse grid points and hence the coarse space have been determined, we need
to construct the interpolation operator P : RN+ — RN and the restriction operator
R : RN — RM+1, Throughout this section, we will use the following notation,
E;,={j#i: a; #0} set of neighbors of i.

C; = S5;NC set of strongly connected coarse grid points of i.

FP=S5,NF set of strongly connected fine grid points of <.

EY =FE;\S; set of weakly connected neighbors of i.

I; set of interpolatory points for i.

In the following, without loss of generality we assume that each fine grid point ¢ € F
has at least one strong connection a;;, j € S;. If this is not the case, the error at this
point is assumed to be reduced efficiently by smoothing only.

2.8.1. Limit case: Direct solver

Before we proceed to practically useful interpolation schemes, we first show that for a
special choice of the interpolation and smoothing operators ([Stii99], Section 2.3), the
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2. Algebraic Multigrid

two-grid method with one post-smoothing step
ettt =M (I — PAElRA) e’
as well as the two-grid method with one pre-smoothing step
et = (I — PAEIRA) Me™
turn into direct solvers, i.e. we have
(I — PAalRA) M=M (I — PAalRA) =0

We assume that we have been given a C/F-splitting of = CUF. Then, we re-arrange
the coarse and fine components of u, f and A into coarse and fine components,

Arr AFC) (UF) (f F)
A — = — .
B (AC’F Acc) \uc fe /
In the following we only assume that A and App are invertible. (ThiAs is always the case

if A is symmetric positive definite). We define a special smoother M that only acts on
the fine grid points,

it+1 —1 it
Up = App (fF - AFCUC)

it+1 o 1t
U = ug.

For the error propagation we have

il 1 it
ep = —Aup (Apcec)
i+l it
ec = eg.

Furthermore, letting Icc be the identity matrix on the coarse variables, define the fol-
lowing restriction and interpolation operators, by

A — A Arc A ~1
p— () = (lee —ApbAcr) (2.33)

Now, for any restriction operator operator of the form

R=(Rcr Icc)

a straightforward calculation shows that the coarse grid operator equals the Schur com-
plement,
Ac = RAP = Acc — AcrAppArc
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2.8. Interpolation

which is invertible as Apr and A are. Furthermore, the two-grid cycle with one post-
smoothing step reduces the error to zero,

(I - ]5A51RA> M =0,
i.e. we have constructed a direct solver. The same also holds for the cycle
M (1 - PAglf%A) ., Ac = RAP = Acc — AcpAzhApc
where P is an arbitrary interpolation operator of the form

P=(Per Ioc).

These smoothing and interpolation operators are not practically useful (we would need
to compute the inverse of App). except in some rare cases. (For example, consider a
finite difference discretization of Poisson equation in one spatial dimension yielding a
tri-diagonal matrix. Here App becomes diagonal if every other point belongs to the
coarse grid.) However, these results indicate that we should approximate —(Arp) ™' Arc
to obtain an efficient interpolation. Furthermore, we have a justification to use the
Galerkin ansatz Ac = RAP for the coarse grid operator. In section [2.9] we will further
discuss the consequences of this choice.

2.8.2. Approximation properties

Like in the geometric case (see Section especially Definition we need, in addi-
tion to a smoothing property, an approximation property to show convergence of the
multigrid cycle. Again, we formulate this property in terms of the norms |Jul|? = u” Au
and |Jul|3 = uT AD™! Au.

In the remainder of this section, we restrict ourselves again to the class of M-matrices
(Definition and essentially positive matrices (Definition [2.6). First, we consider a
two-grid method with one post-smoothing step,

" = MTe" = M (I — PAZ'RA) €.
We assume that the two-grid correction operator T' = (I — PA@IRA) satisfies

ITeli < el (2.34)
I Tell} < 7lTel3 (2.35)

for some 7 > 0 independent of e. Furthermore, we assume that the smoother M satisfies

the smoothing property (2.27)),

1Mell < [lell} — ollell2

where o > 0 is again independent of e. Then we obtain (see also [Stii99], Theorem 4.1)

o
|MTell? < |[Tel} = o|Tely < (1= 2) [ Tell? < llell (2.36)
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2. Algebraic Multigrid

In the following, we will formulate conditions on the interpolation operator such that
is satisfied. For a more extensive discussion, we refer to [Stii99], Chapter 4. In-
equality , on the other hand, can be shown for any full-rank interpolation operator.
This will be done in Section 2.9

We now translate into a condition on the interpolation operator. Again, assuming
a splitting of €2 into C' and F is given, we re-arrange all relevant operators into coarse
and fine blocks,

Prr  Prc Apr Arc Drr 0 €r
P = , A= , D= , e=
(PCF Pcc> <ACF Acc 0  Dcc ec
and define the O-inner product and norm restricted to the F-variables,

(%y)o,p = 2" Dpry, [zllo.r = <x7x)0,F'

Theorem 2.6 [Sti99], Theorem 4.2
If the C/F-splitting and the interpolation Prc are such that, for all e,

ler — Preecllor < 7lelly (2.37)

with T being independent of e, then ([2.35|) is satisfied.
In terms of the eigenvalues A and eigenvectors ¢ of D~ A, (2.37) becomes

l¢F — Preoclls » < TAl9ll5

(see ) We conclude that especially for the small eigenvalues, the corresponding
eigenvectors should be approximated exactly by the interpolation. These eigenmodes
correspond to the smooth error components that cannot be handled efficiently by the
smoother, see and the discussion thereafter. Moreover, in the limit case of zero row
sum matrices, the smallest eigenvalue equals zero and the corresponding eigenvector is
the constant vector throughout the domain. This eigenvector then must be approximated
exactly. In practical examples, the matrices often have zero row sums except these rows
that involve a boundary condition. For these linear systems, it is also important that
locally constant vectors are interpolated exactly, a property that we always will enforce
for the interpolation operators introduced in the next subsections.

In the remainder of this section, we restrict ourselves again to the class of M-matrices
(Definition and essentially positive matrices (Definition . As we have seen in
Sections - for this type of matrices algebraically smooth errors vary slowly along
the strong couplings,

c _
3 Z —ag;(e; —e;)’ + Z sie? < Z aie?.
2,] % %
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2.8. Interpolation

This motivates us to approximate the error ¢; at a fine grid point ¢ by a weighted average
of its strongly connected coarse neighbors j € Cj,

oy
o — eitieC (2.39)
2 jesine Wige; else.

To give an indication on how the weights w;; should be chosen, we again look at the
smooth error characterization in term of the norms || - ||; and || - ||2,

e"AD Ae = |le|l3 < |le||]] = e Ae

s rI'DYr <« elr,

or, on average for each 7, we have that the scaled residual is much smaller than the error,
2
T

0 0

|Tz

To obtain the actual interpolation weights w;;, we hence approximate

;€5 + Z aijej =T; = 0 (239)
JEE;
by
e; + Z W;;€; = 0. (240)
JEE;

Now, we formulate a sufficient condition for (2.37)) in terms of the interpolation weights
Wi -

Theorem 2.7 ([RS8, Theorem 5.3) Let A be symmetric positive definite and assume,
for any given set C' of C-points, that P is of the form with w;; > 0 and Zj w;; <
1. Then property is satisfied if the following two inequalities hold with 7 > 0
independently of e,

Zzaiiwm‘(ei —e;)” < —Z —ai)(e; — ex)?, (2.41)
T Z (Z azk> (2.42)

> all =3 wi)e

i€F k
Note that Condition (2.42)) implies that for zero row sum matrices (>, a; = 0), the
sum of all interpolation weights », wy, for an ¢ € F should be one. In other words, a
constant vector should be interpolated to a constant vector.

IA
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2. Algebraic Multigrid

ANAN

Oo\oo
\’\\

\ . J\
C—<C Q \:\\ O
Q <\§ \c
N SN,

(a) Direct interpolation (b) (Modified) classical inter- (c) Standard and extended in-

polation terpolation

Figure 2.9.: Comparison of interpolation methods for the mixed problem from Example
The red dots denote the coarse grid points, the blue circle is the fine
grid point whose value is to be interpolated. The blue arrows show how the
values are interpolated directly and indirectly from the coarse to the fine
grid points.

2.8.3. Direct Interpolation

The first and simplest ansatz to obtain an interpolated value for ¢;, i € F', is just to set
I; = C}, i.e. only to interpolate directly from strongly connected coarse grid points and
compute, for all j € C;,

1 D her, Qik
Wi = =S a4y (2.43)
Qi; Zkeci Aik
. > keE, Gik . .
Here, the correction factor ﬁ is needed to ensure that in the case of zero row sum
kec; %i
matrices (where a;; = — ), .p @), the sum over all interpolation weights equals one,

Zwﬁ:_iwz%zl

JEC; i1 ZkGCi ik jeC;

which implies that a constant vector on the coarse grid will be interpolated to a con-
stant vector on the fine grid. We have pointed out in the last subsection that this is
crucial for an efficient AMG interpolation operator. In the next theorem, we show how
the distribution of coarse interpolatory points around a fine grid point ¢ influences the
constant 7. Note that if we have rows with negative row sum, 7 becomes dependent on
the smallest row sum as well as the smallest eigenvalue of A. On the other hand, for the
class of weakly diagonally dominant matrices, can be satisfied with uniform 7 if
the sets of interpolatory points are large enough.

Theorem 2.8 ([Sti99], Theorem 4.3 - 4.4)
Let the symmetric M-matriz A satisfy Zj aij > —c for some ¢ > 0 and assume e’ Ae >
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2.8. Interpolation

eel'e for all e with some € > 0. With fized 7 > 1, select a C/F-splitting so that, for each
i € F, there is a set of interpolatory points I; C C N {j € E; : a;; # 0} satisfying

Sl = = 3 gl (2.44)

JEL JEE;

Then the interpolation (2.38) with weights (2.43)) satisfies (2.37) with T replaced by some
7 =7(e,¢,7). As a function of € and ¢, we have T — oo if either ¢ — oo or e — 0. If
Zj a;; >0, then T =T.

If we have strong negative and positive connections, the denominator Zkeci G;, May
become (close to) zero. To avoid this instability we separate the positive and negative
connections. To this end, we split the set of strongly connected coarse grid points into
two sets of interpolatory points,

Cc: = {]ECZ aij<0}

(2

ct = {jeCZ CLij>0}

(2

e; + E U)Z»;Gj—F E wgejzo,
J J

We rewrite ([2.40)),

where
1 Gy
Qi Zke(f ik
1 a,

If a matrix row 4 only contains negative (positive) off-diagonal entries, then C;" = )
(C; = () and we set the corresponding correction factor to zero. In the case of M-
matrices, this definition of direct interpolation is identical to the construction above.
The approximation property is also a direct extension of the previous result.

Theorem 2.9 ([Sti99], Theorem 4.6) Let A > 0 and t; = ai; — 3 _ e, |aij] > 0. With
fized T > 1, select a C/F-splitting such that the following holds for each i € F: If
{j€Ei: a;; <0} #0, there is a set C; C CN{j € E;: a;; <0} satisfying

1 _
Z |aij| > p Z |aij|7
jeC; JEE;
and, if {j € E; : a;; >0} # 0, there is a set C; C CN{j € E;: a;; > 0} satisfying
1
PIEIESD A
ject JEE;

Then the interpolation (2.38)) with weights satisfies (2.37)).
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2. Algebraic Multigrid

The largest drawback of the direct interpolation scheme is the fact that only the strong
connections to directly coupled coarse grid points are used, a;; : j € C;. The smooth
error e; at @ € F however also depends on the smooth error e, at another £ € F?
if 7 is strongly coupled to k. For example, in Figure [2.9(a)| we give the interpolation
directions for the second order with mixed derivatives of Example 2.2l We see that for
the interpolation of the blue fine grid points, only three of the six strong couplings are
used. More precisely, in , we need 7 > %.

In the following sections, we construct interpolation operators that employ all strong
couplings ay.

2.8.4. Classical and Modified classical interpolation

In this section, we describe an interpolation technique that, for each fine grid point
i € F, takes into account all strong connections a;;, k € S; regardless whether k is
coarse or fine. Still, we only interpolate from the directly connected coarse grid points
j € C;. To determine the weights, however, we also follow the paths

Ryl
if 7 € S; and k € S;. Remember from the coarsening criterion that, for each fine
k € F?, there must be a coarse j € C such that j € S; as well as j € Si, i.e. there must
be a common coarse point j for the strongly connected fine grid points points ¢ and k.
Now, we again approximate ([2.39)),

Aii€; = — E ;€5 = — E ;€5 — g Qik€r — E ;€.
JjEE; JjeC; keFy leEY

First, we replace Zle pw @€ by Zle g Qil€i (though the assumption e; ~ e¢; may seem
strange for weakly coupled points I, we need this to ensure that constants are interpolated
exactly). Then, we replace each e, k € F, by

ep & ———— Z agje;. (2.47)
Zmec

JEC

We obtain the interpolation weights [HMY02]

wi; = — ! gt Y (2.48)
Q4 + ZZGE;" (%] kEFS ZmeC Qm

For symmetric positive M-matrices, we can show (2.37)) using the following variant of
Theorem 5.5 from [RS87],

Theorem 2.10 Let ( > 0 be a fized number. Assume, for any symmetric, weakly
diagonally dominant M-matriz A, that the C-points and S; NC' (i € F') are picked such
that, for each k and j € C; with i € Fy;, we have

CZ —Qp = Z — Ay (2.49)
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a) Z —ap; = 2, Z —ag, = 1.25

(C) Z —Qrp; = 1.25, Z —Qky = 1

(e) E —Qr = 1.25,

Z —Qfy = 2

2.8. Interpolation

(b) Y —ap =125 > —ag, =2

leC; vE Fj

“O—0

O

(d) Z —Qr; = 1.25, Z —Aky —

leC; vEFy;

1.25 \d\ ‘
2N
— X \‘k

(f) Z —Qk] = 2, Z —Aky — 1.25

leC; ’UEFk]'

Figure 2.10.: (Modified) classical interpolation for the mixed problem from Example .
We want to interpolate the value at the blue point i. The red dots denote
the sets C;, the ruled nodes show the sets Fy; for different constellations of
k and j. The red arrows indicate the weights ay;, [ € C;, while the black
arrows correspond to the weights ay,, v € Fy;.
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2. Algebraic Multigrid

where Fiy ={ve F: jeS,NC, ke S,NF}. Second, let the strength threshold o be
chosen such that for a fired T > 1 we have, for each i € I,

> —an > Z —aj (2.50)

1€S; ]EE

Then, the interpolation (2.38) with weights (2.48) satisfies (2.37) with some T = 7((,T)

that does not depend on A.

Before we proceed to the proof, we first explain the role of Fj;. This set contains, for
a given pair j € C, k € F, the fine grid points v that have strong connections to both
j and k. Now, condition demands that, for a fine grid point ¢ that is strongly
coupled to another fine grid point k, the total amount of coupling from this point & to
the set of directly coupled coarse grid points for i, C;, is (up to the factor ¢) larger than
the sum of the couplings to other fine grid points v which have strong couplings to the
same 7 and k. In Figure we give the sets Fy; for six different constellations of k
and j as well as the quantities of .

The second condition ensures that for each fine grid point ¢ the sum of the strong
connections dominates the sum of the weak connections. In contrast to (2.44]), we do
not require that these strong connections all lead to a coarse interpolatory point.
Proof: As A is diagonally dominant, we have a; = — Zje g, @ij + b, where b; > 0.

Using (2.50) we estimate the denominator of (2.48)),
1 1
@i + ajx = by — aijx > b+ — —Qij 2> —Qj
Z k Z k - Z i= 7

keEY kesS; JEE;

Hence, we have

S (S - S (o D )

a w @
i€F JEC; ier dii T ZkeEi ik kEEY JEC; keFy?
()

which proves (2.42). To show ([2.41), first note that w;; is always positive. We again use
Wi + Y pepw Qi > ~a;; and obtain, by (e; — e;)? < 2[(e; — ex)? + (e — €;)?],

IN

Qi Ak 5 (e-
(2

aiiwij(ei — €j)2 S —Taij(ei — 6]')2 — 27 — €k)2 + (ek — 6]')2} .

kEFs ZmGCZ Akm
i

We take the sum over ¢ € F, j € C; and obtain

_ZZ Z z:t;k;k —ep)? Z Z —ai)(e; — ep)?.

i€F jeC; keFs i€F keFy

46



2.8. Interpolation
Regarding the remaining term, use the definition of Fj; to rewrite

DI e CEIEID D) DD D

(—ak;)(ex — €;)°

i€F jeC; keF? 2 mec, a’“m keF jeC icFy, Zmec Gk
< OO (—ar)(er —¢)
keF jeC

where we have used ([2.49) in the last inequality. Combining the last three estimates and
expanding the sum over all © € F' and j € C, we obtain (2.41)),

DY anwilei —e;)? < (Br+210) > (—aiy) (e: — ).
i€F jeC ,J

In the case of positive and negative off-diagonal connections, the sum ZmeCi A AY
approach zero. To circumvent this potential instability, we modify the interpolation
formula as follows [HMY02],

1 ik
aj+ Yy S N— (2.51)

’LUij = —
aj; + ZleE;ﬂ i here > mec, Akm

where

S ) if sign(ax;) = —sign(ag)
& 0 else.

With this modification, we can show stability for essentially positive and weakly diago-
nally dominant matrices A. Note that in this case we always have ax; = ay;.

Theorem 2.11 Let ¢ > 0 be a fired number. Assume, for any symmetric, weakly
diagonally dominant positive matriz A, that the C-points and C; (i € F') are picked such
that, for each k and j € C; with © € Fy;, we have

Y —ag > > —ay, (2.52)

leC; UGFkJ‘

where Fyj ={ve F: je€S5,NC, ke S,NF} and ay is defined as above. Second, let
the strength threshold o be chosen such that for a fixed = > 1 we have, for each i € F,

Z — Qi > % Z —Q;j

i€S; JjEeE;

Then, the interpolation ([2.38)) with weights (2.51)) satisfies (2.37) with some T = 7(¢,T)

that does not depend on A.
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2. Algebraic Multigrid

Proof: Inequality (2.42)) is proven as in the previous case. Regarding (2.41]), we start
with

ik

kEFS 2mec, @k
1

< _Tai ( _or Z ( azkak]k ) [(61 B ek)Q + (ek . ej)2]

keF? mEC

a;w;j(e; — Gj)2 < —Ta;i(e; — €j)2 — 27 [(ei - ek)Q + (e — Gjﬂ

. Aifa B a.,a, . .
It is easy to see that [ =—%— = %% Hence, we can proceed as in the
ZmECi Apem ZmECi Apem

M-matrix case and obtain
Z Zaiiwij(ei — 6j)2 S (3’7' + 27'5) Z (—CLZ_]) (62‘ — 6]’)2.
i€F jeC %,

Now, we use the fact that A is essentially positive (2.28)),
ey (—ag)(es —e;)” <Y (—ai)(e; — )
12 12
and obtain ([2.41]),
317 + 27’5
DD awwile—e;)* < — > (—aiy) (ei — ;).
2%

ieF jeC

2.8.5. Standard Interpolation

The standard interpolation scheme ([Sti199], Section 7.2.1) also takes into account, for
any fine grid point ¢« € F', all strong connections a;;, j € S;. In contrast to the direct
and classical interpolation methods described above, the set of interpolatory points for
¢ is not necessarily a subset of S; but may also include points in S,, v € F?. In other
words, the interpolation stencil for i reaches to points that are only connected via an
intermediate point v,

R
We call this kind of interpolation distance-two interpolation.
To derive an interpolation rule for a fine grid point ¢ € F', we first consider all its strongly
connected fine neighbors v € F}? and replace,

1
€y < — QAykCk -
a/’U’U
kEE,
We obtain a modification of ([2.39)),
JEE;
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2.8. Interpolation

where

Q= 3 Sk if kg

Ayov

G = vers
ik — > wlkif ke FP
k#veFf VU
veFy?
¢ = culJa
veF?
Ei = {jGE@'idz‘j<0}>Ei+:{j€Ei:dij>0}
Co = {jeC:ay<0}, CF={jeCi: a; >0}

and apply the direct interpolation rules to this approximation ({2.53),

1 Dperr Gy .

Qg Zkec Az

1> ay, s
wgz__;ﬁ_L%mew. (2.55)

Qi Zkec azk

Again, if one of the sets C;” or C;" is empty, then we set w;; =0 (wj; =0).

2.8.6. Extended Interpolation

FEztended interpolation [SENMYO0S] is a distance-two interpolation scheme based on the
modified classical distance-one interpolation (2.51]). The only difference is that inter-
polation, for any fine grid point 4, is not only from the directly connected coarse grid
points j € C; but also from all j € Cy if k € F/, i.e., we use the same interpolation set
C; as in the case of standard interpolation,

kEFy

We obtain the interpolation weights (cf.(2.51))

1 A,k
Wi = — a; + —_— (2.56)
! it i\ > e
Qi lepw il peps 2emeC; Tkm

for all j € C;, where again

_ agj if sign(ag;) = —sign(ag)
ki —
0 else.
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2. Algebraic Multigrid

(a) Extended interpolation (b) Extended+i interpolation

Figure 2.11.: Extended and extended+i interpolation weights for the finite difference
discretization of a 1D Laplace. The red points denote the coarse grid
points.

The interpolation property for these weights (2.56) can be seen from the following
straightforward extension of Theorem [2.11| (note the definition of F}).

Theorem 2.12 Let ( > 0 be a fivred number. Assume, for any symmetric, weakly
diagonally dominant positive matriz A, that the C-points and C; (i € F') are picked such
that, for each k and j € F} with i € Fy;, we have

Q:Z —ay; > Z —ay, (2.57)

leéi UEF)W'

where Fr; = {v € F: jeC,y k& F*} and ay is defined as above. Second, let the
strength threshold o be chosen such that for a fixed T > 1 we have, for each i € F,

Z — Qi 2> % Z —Qij

1€S; JEE;

Then, the interpolation (2.38|) with weights (2.56)) satisfies (2.37) with some T = 7((, T)
that does not depend on A.

As illustrated by the following example from this interpolation technique has however a
minor approximation deficiency that already arises in very simple situations.

Example 2.5 [SENMY08] Consider a finite difference discretization of Poisson’s equa-
tion in one spatial dimension and let the coarsening be as depicted in Figure [2.11} In

this case, formula gives us the interpolation weights (Figure
wig = 1/2, wiz = 1/2, wog = 1/2 wo3 = 1/2,
where we would expect
wig = 2/3, wiz = 1/3, wy = 1/3, wez =2/3 (2.58)

which would be given if standard interpolation (2.54)) were used.
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2.8. Interpolation

To circumvent this difficulty, we use a different approximation for the error at strongly
connected fine grid points k € F?. Instead of (2.47)) we substitute

1
e <

S meciofi) @ s
meC;U{i} km jec;u{i}

i.e. we also include the connections ay; that lead from k back to ¢ here. Then we apply the
extended interpolation procedure as described above and obtain the following weights,

1 Qi Qg
J
i keFy Zmeélu{z} Akm

(2.59)

for all j € C;, where

N ik Qi
Qi = Qi + E i + E S
leEZyJ k’eFiS lECiU{i} Kl

This is called extended+i interpolation [SENMYO0S8]. In case of Example [2.5, we obtain

the correct weights (2.58)), see Figure 2.11(b)|

To show the approximation property of extended-+i interpolation, we conclude this sec-
tion with the following result.

Theorem 2.13 Let ¢ > 0 be a fired number. Assume, for any symmetric, weakly
diagonally dominant essentially positive matriz A, that the C-points and C; (i € F') are
picked such that, for each k and j € F} with i € F};, we have

CZ —ay > Z —ay, (2.60)

1eC; VEF;

where ij ={velF: je Cy, k€ F2}. Furthermore, let the strength threshold o be
chosen such that for a fized T > 1 we have, for each i € F,

1
i > s
DD S
kESi ]EEi
and, for each i € F' and k € F? such that az <0,
> oz 3
T

jEOi JEE;

Then, the interpolation ([2.38)) with weights (2.59) satisfies (2.37) with some T = 7(¢,T)
that does not depend on A.
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2. Algebraic Multigrid

Proof: We first consider the denominator a; (let 0 < b; = a;; + Zke B, Qik 88 before and
note that a;; = a;.)),

dii = a;+ E Qi + E iy~ ——

keEw keFs ZleC’ u{i} gl
- b Z @ik + z : zk Z a-
kES; keFy 1eC;u{i} Ykl
a, .
= + - ki
= b= aw— ) ai- ) a 1——2 =
keC; keFy keFy leC;u{i} Ykl

We then estimate, using (2.60) and ay; > >z, 0y = €D ie, O

O _ et 21e6; 1

1— — = — > — — > .
Zle@u{z‘} Qg Zleéiu{i} Qg Zle@ ay + queﬁkj ag,  1+¢

We can now continue,

vV
o

|
(]
8
>

|
] !
S
S+
|
+|-
T~
]
s

kcC; ke F? keFs
bi=Eec, ik~ Skers 420 1 1
Z PE— i ik = bl ik,
(gl g
1
= o Qi
r(1+0)

Hence, we can prove (2.42)) as before,

a..

2 & 2

E (077} 1—2 Wi | € = E &— Q45 + E aik—i—g aij—i—g ik | €;
i

ieF e, iR kEEY jec; kEFs
2
< 7(1+4+¢) E (E aij) €; -
J

Inequality ([2.41)) can be shown using the same techniques as for Theorems and

2.8.7. Multi-Pass Interpolation

We now consider an interpolation scheme that is especially used in conjunction with
aggressive coarsening, i.e. in situations where not every fine grid point ¢« € F' is strongly
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2.8. Interpolation

Figure 2.12.: Multi-pass interpolation for a 5-point stencil. The red, magenta and brown
points denote the coarse grid points, the blue points denote the fine grid
points. The value at the dark blue points is interpolated directly, all lighter
blue points are interpolated indirectly. The red, magenta and brown lines
indicate the interpolation influence of each coarse grid point.
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2. Algebraic Multigrid

algorithm 2.7 Multi-pass interpolation ([St1199], Section 7.2.2)

1. For all i € F with C; # 0, apply direct interpolation (2.45{2.46)) to obtain the
interpolation weights w;;, j € I; := C; and define F'* as the set of all these points
1. If F* = F, then stop.

2. For all i € F'\ F* for which S; N F** is not empty, identify all k£ € F™* that belong
to S;. Then, for each such k, replace in (2.39)),

e < E Wi;€5

JEIk

and set I, = Uke SinF* I;,. Then, we construct an interpolation formula for these
¢ similar to the case of standard interpolation. After the interpolation has been
constructed for all : € F C F*, S; N F* # (), we add these points to F*.

3. If F* = F, we stop. Otherwise we continue the iteration with the previous step.

coupled to a coarse grid point j € C. In this case, we first use direct interpolation for
all points k € F' that have a strong connection to a coarse grid point j € C. Then, such
a point k can be used to derive interpolation formulas for fine grid points ¢ € F' such
that £ € S;. This process is continued until we have constructed the interpolation for
each fine grid point, see Algorithm

This interpolation technique ensures that we have a prolongation for each fine grid point
as long as there is a (arbitrarily long) strong path from each fine grid point to a coarse
grid point. However, depending on the layout of the coarse grid the interpolation for
some fine grid points ¢ may only be piecewise constant. For example, consider the
situation in Figure [2.12

2.8.8. Jacobi Interpolation

In contrast to the previously described interpolation methods, the Jacobi interpolation
scheme [St1199] does not build a prolongation operator from scratch, but can be used to
improve an existing one. To this end, one or more (partial) Jacobi steps are applied to
the interpolation matrix.

Let 4 > 1. Given an interpolation operator P*~! with interpolation weights wf,;l
we obtain P* by relaxing the rows that belong to a fine grid point i. The modified
interpolation weights wi; (i € F,j € C') read as follows,

wo__ o p—l -1 § : pu—1 .

keF
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2.8. Interpolation

or, written in terms of the block matrices as defined in Subsection [2.8.1

I - — —_
P = <PC“C> . Phe = Pic' = Dip (AFFP;«“LCI + Aro) - (2.61)
FC

It is easy to see that if P*~! satisfies the interpolation property (2.37), then so does P*.

Theorem 2.14 Let A be a positive definite, weakly diagonally dominant matriz and let
Pr=1 satisfy the interpolation approzimation property (2.37) with constant T = 7. Then
the Jacobi interpolation (2.61)) satisfies (2.37) with 7 < 77 + 427 + 2.

Proof: We consider the left hand side of (2.37)) and use (2.61)),
_ T _
ler — Prceclls e = (er — Phg'ec)” Drr (er — Pig'ec)
_ T _
+ (AFFPFCIGC + AFcec) DFllp (AFFP/},fcle() + AFCQC)
_ T _
+ 2 (BF — chlec) (AFFP;;CIGC + Apcec) (262)
<ller — Pc'eclls r + | ArrPhc'ec + Arcecl,

+2ller — P ecllopllArr Prc ec + Arcec||p-t (2.63)
By induction we have ({2.37)) for all u > 1,
-1 -
ler — Phc ecllor < 7llellt.
On the other hand, we can split

||AFFP1{£(§1€C + AFCGCHDE}«‘ < [[ArrF (ng*leC - eF) “DE} +llArrer + AFCBCHD;}”'
(2.64)
We have (see also (12.25)),

UpApp D Appu < p(DppApp)*u’ Depu,
hence we can estimate the first summand of ,
1Arr(Prc'ec —er)lip; < p(DrpArr)ller — Prc'ecllor < V7p(DrpAre)|elr.
Regarding the second summand, we note that
_ (AFFeF + AFCeC)T <DF}7 0) (AFFep + Apceg)
Acrer + Accec 0 0) \Acrer + Accec

Aprer + Apcec g Dy 0 Aprer + Arcec
Acrer + Accec 0 Daé Acrer + Accec

|Arprer + AFC’GCHQD}—?;

IN

= [el3
< p(DA)elly.

%)



2. Algebraic Multigrid

For weakly diagonally dominant matrices, we have p(DppArr) < p(D71A) < 2. Hence
we obtain for ([2.64)),

|ArrPlic'ec + Arcecllpps < (2VF + V) lell. (2.65)
We combine (2.63) and (22.65) to obtain the result,
ler = Pheeclip < (7 + @VF + V22 + 2V72VF +v2)) [l

2.8.9. Truncation of Interpolation

The long range interpolation methods described in this section share one major disad-
vantage: They can substantially enlarge the set of interpolatory points I; (i € F) and
hence the number of non-zero elements per matrix row for the interpolatory matrix P.
This also affects the coarse grid operator A, which is computed as A® = PTAP. In
consequence, the matrices A; become less and less sparse as the level index [ becomes
larger.

However, interpolation weights w;; that lead to points j “far away” from ¢ (i.e. there is
no direct connection a;; # 0) may be much smaller than the weights for nearby points
k. This is especially true if there is only a single path i <— v < j, a;, # 0, au # 0.
In this case, the influence of the error e; on e; is of less relevance than the influence of
er where wy, is large. Hence, we can drop these small interpolation weights, however,
we need to take care that the row sums of all interpolatory weights remain unchanged
([Sti99], Section 7.2.4).

To compute the new interpolatory sets I = f:’ U fl-_ and weights w;;, we have again to
distinguish between positive and negative weights to prevent divisions by (near-) zero,

I'={jell: w;>emax,wy} I; ={j €l : wy; <eminwy}
erf kel

Zk€1+ Wik

kit Wik

kel— Wik

2kei— Wik

0 else.

wgj if wi; > €MAX ¢+ Wik

Wiy = Wij if Wi < emmkeli— Wik

where € is an user-defined parameter, typically e = 0.2.

Remark 2.4 Another approach is to limit the number of non-zero elements per inter-
polation matrix row and only to take the largest (absolute) values.

2.9. The coarse grid operator

The remaining task in the setup phase on level [ is to construct the operator A;,; for
the next level [ + 1. Unlike the geometric case, as discussed in section [2.2] we cannot
obtain A;,; from a discretization on the underlying grid Q1. as the latter is just an
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2.9. The coarse grid operator

index set without any geometric information attached to it.
Instead, as already indicated in section [2.8.1 we use the Galerkin ansatz for the coarse
grid operator,

A = RIAP, (2.66)

where the restriction R; is obtained as the transpose of the interpolation,
R =P (2.67)

In Section [2.8.1] we employed a special smoother and a special construction of one of

the transfer operators to obtain a direct solver with just two levels. This solver required
the computation of A.p, i.e. the part of A; that corresponds to the fine grid points
i € F'. In general, this is not feasible. We can however show that for any full-rank
interpolation operator Pj, the Galerkin product is the “optimal” choice for the

coarse grid operator in the sense that the two-grid correction
ehew — Tvleold — [I - Pl (Al+1)71 RZAI] €Old

minimizes the error within the range of F,. To show this, first note that 7; is an orthog-
onal projector w.r.t the inner product (-,-),, i.e.

T12 = Tl and (Tlv ')1 = ('7 Tl)l

which can be easily seen from a straightforward calculation. The following theorem then
gives us the desired result.

Theorem 2.15 ([Sti99/, Theorem 2.2) Let (-, ) be any inner product with corresponding
norm || - ||and let the matriz T be symmetric w.r.t. (-,-) and T?> =T. Then we have

o rng(T) Lrng(I —T)

e Foruerng(T) and v € rng(I —T) we have ||u + v|* = ||ul* + ||v||?
o 17 =1

o For all u: || Tu|| = min,epmgr—1) || — v||.

We note that rng(I—1;) = rng(P,;) and obtain that, in our setting, the last line translates
to
[Tie]ly = minfle; — P ],
€i+1

i.e. the coarse grid correction minimizes the energy norm of the error over all possible
corrections within the range of the interpolation operator P,. This is called the varia-
tional principle.

The next lemma helps us to extend the convergence proof from the two-grid setting to
complete V-cycles.
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2. Algebraic Multigrid

Lemma 2.3 ([Sti99], Lemma 2.2) Let the exact coarse-grid correction

€lr1 = A_l RlAlel

I+1

be replaced by any approrimate coarse-grid correction €41 satisfying

e — €l < el
where ||-||1 is taken w.r.t Aiy. Then the approzimate two-grid correction T still satisfies

HTZ||1 <1

With this lemma, we see that a V-cycle never diverges as long as the smoothers on all
levels [ satisfies || M;||; < 1. This is always the case if M, satisfies the smoothing property
(12.27)),

[Mellf < [le]lf = ollell3

which is satisfied for most relevant applications if we use a damped Jacobi or Gauss-
Seidel smoother, as previously shown in Section [2.4]

Remark 2.5 To show the variational principle, the only condition on the interpolation
is that it has full (column) rank. While it is clear that a truncation of the interpolation
operator as described in section does not change the rank and hence we still obtain
a convergent method, this is not guaranteed if we truncate the Galerkin operator. How-
ever, recent developments (e.g. collocation coarse approzimation [WY09]) indicate that
it still may be useful to sparsify the coarse grid matrix, i.e. to use a non-Galerkin coarse
grid operator. There are two main reasons for this. First, the number of nonzero entries
per matrix row tends to grow as [ increases, i.e. more and more direct connections be-
tween previously distant nodes are introduced. Hence, the matrices on the coarser levels
cannot be considered “sparse” any more, while they are still too large to be efficiently
treated by direct solvers and a single step of an iterative solver requires more than a lin-
ear amount of computations. This issue is even more severe on parallel computers, where
a certain part of the non-zero matrix entries introduces couplings to off-processor nodes.
In consequence, to carry out a matrix-vector (or matrix-matrix) multiplication, a data
transfer is needed, which is relatively expensive compared to on-processor computations.

2.10. Two-grid convergence: The non-symmetric case

In this section, we demonstrate how to show the convergence of a two-grid algebraic
multilevel hierarchy in the case of a non-symmetric fine grid operator A. In this case, it
is not required that the restriction operator R equals the transpose of the interpolation
operator P. For example, it might be useful to first derive an interpolation operator P
based on the transpose of A, AT and then set the restriction as the transpose of P, ie.
R = PT. For details on the construction of AMG hierarchies for non-symmetric systems,
we refer to [MOOS].
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2.10. Two-grid convergence: The non-symmetric case

The convergence proof described here is not only useful for non-symmetric systems. As
we will show in Section 4.8 it also forms the core of the two-grid convergence proof for
one variant of (symmetric) saddle point system AMG.

The convergence theory described in this section has been introduced in [Not10]. It is
based on the symmetric two-grid AMG convergence theory form [FV04]. In this section,
we cite the main result as well as a corollary that will be important for our saddle point
AMG.

Theorem 2.16 ([Noti0], Theorem 2.1) Let A be a non-singular N x N matriz. Let P
be a N x N¢o matriz of rank N¢o and let R be a No x N matriz of rank N¢, such that
Ac = RAP is non-singular. Let My, Ms be N x N matrices and vy, vy be non-negative
integers, such that (I — M{A)" (I — MyA)” — I is non-singular. Let Q be the matrix
such that

I—-Q 'A=(I—MA"(I— MA)"

and assume that

Qc = RQP
1s non-singular. The matrix
AT'Q (I — 7g) (2.68)
where
To = PQ:'RQ
has eigenvalue 0 with multiplicity No and N—N¢ nonzero eigenvalues. Letting py, ..., UN—nN,

be these nonzero eigenvalues, the following propositions hold:

1. The iteration matriz

T = (I — MyA)” (I — PAZ'RA) (I — M A)" (2.69)

has eigenvalues 1 — vyt ..., 1 — V]?/'l—ch plus N times the eigenvalue 0.

2. For any (N — N¢) x N matrix Z and any N x (N — N¢) matriz S such that the

matrices
(g) and (P S)

are non-singular, (ZAS) — (ZAP) A;' (RAS) is non-singular and the matriz
((ZAS) — (ZAP) A5 (RAS)) ™ ZX (I —mg) S (2.70)
has eigenvalues pi1, ..., un_nN.-

3. For any N x Ne matriz P and for any Nx x N matriz R. the matriz
A~ (1 - f’R) QI — 7o) (1 - PR) (2.71)

has the same eigenvalues as (2.68), that is, pi,..., un—nNg, plus N¢ times the
ergenvalue 0.
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2. Algebraic Multigrid

o(T) z=1

Figure 2.13.: Eigenvalue estimate of the two-grid error propagation matrix 7" as defined

in Corollary .

4. The matrices

(I —ma) QA (2.72)
Q7 YA(I —7ma) (2.73)
(I —mA)QTA(I —7n) (2.74)
where
A = PAElRA
have eigenvalues puy*, . .. ,,u]_Vl_NC, plus N¢ times the eigenvalue 0.

5. For all wi, i =1,...,Ny_n,, there exist some z; € CV such that Rz; = 0 and

VHIA 2 = uiv? Q72 for allv e CV . PPV = 0. (2.75)

6. If, in addition, R = PH and there is no v € CV such that Pv = 0 and v A~y =
vAQ7 v =0, then, for1=1,..., Ny_n,

e vAav Al 0 eQV\ {0}, Plo=0,0"A" #£0 and v Qv £ 0
Hi vHQ1v ’ ’ '
(2.76)

We now look at the special case R = P, i.e. the classical choice for the restriction
operator as the (conjugate) transpose of the interpolation operator. In this case, we can
derive more specific bounds on the eigenvalues of the error propagation 7.

Corollary 2.1 ([Notil], Corollary 2.1) If, in addition to the assumptions of Theorem
R = PH and there is no v € CV such that v A~ v = vQ v =0, then,

o(T) C {1 — Zig_iz s v e CV\{0}, v A 0 #£ 0 and v7 Qv # O} u{0}. (2.77)
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2.11. AMG: Not just point coarsening

In particular, if A, Q) are Hermitian positive definite, then the p; are real positive

o(T) C [1 = Amax (@A) 1 — Ain (Q71A)] U {0} (2.78)
and
—1 _ . 1
p(T) < max <Amx (@A) —1,1 i, m) : (2.79)

On the other hand, if Q) is Hermitian positive and if
lal —Q 'Allg < a (2.80)
for some positive o, then
AeoT)=1—-a—-)<a (2.81)

From statement we see that the two-grid method T converges if a@ < % In this
case, all eigenvalues of T' lie within a disc of radius % around the point (%, 0) € C, see
Figure 2.13] where A = 1 is not possible as this would imply v7Q~'v = 0, see (2.77).
Note that inequality is equivalent to

1
I— =0 'Alp <1
| aQ e <

i.e. to obtain o = % we require that the “over-relaxed” smoother I — 2Q~'A still con-

2
verges,
11 —2Q "Allg < 1.

In other cases, an appropriate damping of the smoother would be required.

2.11. AMG: Not just point coarsening

We now summarize three AMG variants that do not follow the classical Ruge-Stiiben
setup outlined throughout this chapter. First, we introduce element agglomeration AMG
(AMGe), a geometric-algebraic approach for finite element discretizations that employs
information from the mesh in addition to the matrix entries. Smoothed aggregation
groups together adjacent fine grid points into one coarse node (i.e. we do not partition
into “coarse” and “fine” grid points here). Then, from a tentative interpolation operator
(e.g. a constant value per group), the final interpolation matrix is derived by an addi-
tional smoothing process applied to the tentative prolongation. Finally, the Bootstrap
AMG approach aims to identify the smooth (i.e. slow-to-converge) error components
by analyzing the smoothing action and then construct the interpolation operator to be
well-fitted to these errors.
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2. Algebraic Multigrid

AVA

Figure 2.14.: Agglomerated finite element mesh. Each color indicates an aggregate. The

coarse vertices are indicated by the black dots.

algorithm 2.8 Element agglomeration AMGe ([JV01], Algorithm 4.1)

e initiate. Set w(y) <— 0 for all faces 7.

e global search. Find a face v with maximal w(%); set E <« (J;

1.
2.

Set E <+~ E'Ue; U ey, where v = €1 U ey, and set wpayx ¢ w(7), w(y) < —1;

Increment w(7y;) < w(y1) + 1 for all faces 1 such that w(v;) # —1 and 7, is
a neighbor of ~;

Increment w(vs) < w(vs) + 1 for all faces v, such that w(yy) # —1, 72 is a
neighbor of 7, and v, and ~ are the faces of a common element;

From the neighbors of v, choose a face v* with a maximal w(~*); if w(y*) >
Wmax, Set v = v*, and go to step ;

. If all neighbors of v have smaller weight than wy,.y, the agglomerated element

E is complete; set w(y) = —1 for all faces of the elements e contained in E;
go to global search;
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2.11. AMG: Not just point coarsening

2.11.1. AMGe

Element-based AMG (AMGe) is an approach to AMG especially for operators A that
arise from finite element discretizations but do not have M-matrix properties. The con-
vergence theory as well as the construction of the interpolation operators was introduced
by Brezina et. al. in [BCET00], while the coarsening algorithm (here called element ag-
glomeration) was described in [JVOI].

In the following, we assume that, in addition to the fine grid matrix A, we are given

e a set of fine grid degrees of freedom (dofs) D = {i},

e a set of fine grid elements & = {e}, where each element is given as a set of dofs
e ={i;}j<1.
e the element stiffness matrices {Ac}eee;, -

In Algorithm we give the agglomeration process for the two-dimensional case. Note
that this procedure only depends on the finite element geometry and does not take into
account the matrix A. Hence, it is not possible to reflect anisotropies or coefficient
jumps inside the operator. To overcome this problem, an additional measure a(v) can
be assigned to each face. Then, a threshold can be defined to forbid agglomerating two
elements if the weight of their common face is too high, see [JV01], Section 4 for details.
After the agglomeration process, we need to identify the coarse faces and the coarse
vertices [JVO1].

e Any maximal intersection E; N E; for different coarse elements E; # E; is called a
coarse face F'. In addition, the coarse boundary faces are given by the (maximal)
intersections E; NI. The set of all faces is denoted by F¢.

e Consider each coarse face F' € F as a set of dofs {i}. For each i, compute the
intersection | e Fo F'. The minimal nonempty intersections form the coarse vertices

V={V}.

In the simplest case (scalar PDE), each coarse vertex consists of just a single degree of
freedom.

As in the Ruge-Stiiben case, we let the interpolation at the coarse vertices V' € V be
given by the identity, such that the interpolation operator takes the form

Prc
P = :
(1cc)
The entries of Pro are computed recursively. To this end, define for each fine grid vertex
i

e a neighborhood Q(i) = (J,.z E of all agglomerated elements that contain ;

e a minimal set N (i) = (),cz £ of all agglomerated elements that contain i.
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2. Algebraic Multigrid

The sets N (i) are, by definition, non-empty. In addition, we define the boundary of each
ON (i),

e if N (i) is an element E, then N (i) is the union of all faces of E;

e if N(i) is a face, then ON (i) consists of all vertices that belong to more than one
face;

e in all other cases ON (i) consists of all vertices in N (7).

Now, for any minimal set N (¢) for which we know the interpolated values at its boundary
ON (i), we can compute the prolongation for all dofs j € N(i) (e.g. for a face F' we
compute the interpolation for its dofs from the interpolation weights at its boundary
vertices). We consider the corresponding element stiffness matrices of all (fine mesh)
elements e C €(7) contained in the neighborhood €2(7) and assemble the matrix Ag),

Aquy = ec;(i) A = (Abi AbZ) FON(i) ’

where we have rearranged Aq(;) with respect to the boundary 0N (i) and the remaining
points (i) \ ON(i). Now, assume that the interpolation Pyy(; at the boundary ON(7)
is already computed, we construct the interpolation for all j € N (i) from

Ajiej + ApPongee =0
and obtain, for all j € N (i) \ ON(i), k € ON(i)) the weights (cf. (2.33))) [JV01]
wik = — (A7 AwPone) | -

To this end, A;; must be invertible. This is always the case if the basis vectors for the
null-space of Aq(;) are linear independent if restricted to dN (i) ([JVO1], Lemma 2.2).
In other words, the boundary N (i) must be “large enough” to contain the kernel com-
ponents of Ag(;y. We can also interpret this restriction as the requirement that (near-)
zero energy components must be contained within the range of the prolongation. For a
detailed analysis of energy minimization properties for smoothed aggregation interpola-
tion operators, we refer to [BCET00] and [JVO1].

A generalization of AMGe interpolation that does not require access to the element
stiffness matrices is called element-free AMGe [HVO1].

2.11.2. Smoothed Aggregation

While in classical Ruge-Stiitben AMG the coarse mesh is constructed by selecting a subset
Qi = ' c Q) in smoothed aggregation (SA) multigrid [VMB94] [VMB96] there are
no designated “coarse” or “fine” points. Instead, we group neighboring vertices i € Q!
into N¢ disjoint aggregates Q! = QU . .. UQ;, where the size of each subset (! is much
smaller than the grid O}, || < |Q!|. Now, each aggregate Q! is represented by a single
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2.11. AMG: Not just point coarsening
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Figure 2.15.: Aggregation procedure for the finite difference mesh from Example [2.2|
Each colored area shows an aggregate.

algorithm 2.9 Aggregation algorithm ([VMB94], Algorithm 2)
begin
initialize U <+ €); j < 0;
while 4 5; C U do find disjoint aggregates
J—J+ 1L
od
forkzl,...,jdoék%Ck;
while 37 € U and 1 < k < j such that S; N G}, # () do add points to aggregates

Ck < Ck U {Z},
U<« U\{i};
od
od
while U # () do parition remaining points into aggregates
J=J+ 1
U+U \ Cj;
od

end
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2. Algebraic Multigrid

algorithm 2.10 Tentative interpolation algorithm ([VBMOI], Algorithm 4.1)

For the given system of aggregates {Qé ;V:’ 1 and the n; xr matrix B; satisfying PllBl = By,

we create a prolongator P, a matrix By satisfying (22.83]) and supernodes on level [ + 1
as follows,

1. Let né denote the number of degrees of freedom associated with aggregate Qé

Partition the n! x r matrix B; into blocks Bé- of size né xr,j=1,...,N' each

corresponding to the set of (fine) degrees of freedom on an aggregate Qé

. Decompose Bé = Qé-Ré, where Qé- € R™*" is an orthogonal matrix, and Ré- € R™"

is an upper triangular matrix.

. Create the tentative prolongator P, and the coarse “zero energy modes” By, by

Q. 0 ... 0 R
- Lo R!
b = O 92 . | Bwi= :2
0 ... 0 Q. Ry

l . . .
. For each aggregate (2;, the coarsening gives rise to r degrees of freedom on the

coarse level (the j-th block column of B). These degrees of freedom define the
j-th coarse level supernode.
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2.11. AMG: Not just point coarsening

vertex k € Q! on the next coarser level [ + 1.
The aggregation procedure is given in Algorithm [2.9] It builds aggregates of strongly
connected points, where, in contrast to we use a slightly different concept of
strength,

S; =47+ lay| > ayfagag;} U {i}. (2.82)
Note that here the strength matrix is symmetric if A is symmetric and that each set S;
also contains the point ¢ itself. The algorithm itself is divided in three steps: First, we
identify sets of strongly coupled points S; that are completely undecided, i.e. no member
of §; is already part of a patch. Such a S; then forms a new patch C;. If no such set can
be created, we proceed with the second step: We attach still undecided points 2 € U to
a strongly connected patch Cy, if there exists one. During the third pass, any remaining
points are grouped into additional aggregates. In Figure [2.15, we show the first and
second pass of the aggregation algorithm applied to the finite difference discretization
for the mixed problem from Example [2.2] Here, we are finished after the second pass
and no undecided points remain.
As in the case of Ruge-Stitben AMG, the range of the interpolation should contain the
low-energy (smooth) error components e, i.e. the ||e||; = 1, see the discussion in Section
A particular property of smoothed aggregation is that these error components can
be explicitly prescribed. To this end, we provide a matrix B € R¥'*". The r columns of
B form a basis of the error space that we require to be exactly interpolated on all levels,
ie.

rngB C rngP! for alll = 1,... L — 1 where Pt = P, - P,-...- P,

1511 is the concatenated tentative interpolation operator from level [ 4+ 1 to level 1. We
do not need to explicitly compute this matrix, instead we recursively define a version B,
on all levels [, (letting B; = B), )

PB,.1 = B. (2.83)

We construct the columns of B;,; from B; together with the tentative interpolation
operator P}, see Algorithm .

In the most simple case, which is for example applicable if A is the discretization of a
second-order partial differential equation, we can choose » = 1 and a constant vector B,

Hence we enforce that on each patch Qé constant vectors are interpolated exactly. How-

ever, sharp jumps can occur at the interface of two patches, such that the range of B, is
not completely contained within the space of the low-energy modes of A;.
We overcome this issue by an additional smoothing of the interpolation operator and
define [VBMO1],
41 ~
P=(I--—M"1A)P.
! ( s l) l
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where \; > p(M; ' 4;) and
T -
M= (R) P

Here, M, ensures that the smoothed interpolation P! only depends on the range of

Py, while the specific choice of the latter operator is irrelevant. The scaling factor 3i,\l

minimizes the spectral radius p(M;.} Aj41) for the next level [ + 1, see [VBMOI] for a
theoretical analysis.

2.11.3. Bootstrap AMG

algorithm 2.11 Compatible Relaxation [Liv04], [FV04]
initializeU + Q; C <+ 0; F «+ Q;
while U # ) do

fori € C' do €Y + 0; od;

for i € F do €Y < rand(0,1); od;

for j =1to v do

el Mel™t apply smoother
for i € C do e} < 0; leave coarse variables unchanged
od;

U {ieF: >0y,
C+CU {indepéndent set of U}; F + Q\ C;
od;

All previously described AMG techniques rely on certain assumptions on the system
to solve, in particular that the relaxation scheme used in the multigrid cycle leaves
behind smooth error components that vary slowly along the strong negative couplings. In
practice, this applies to a wide class of second-order elliptic partial differential equations
but may not hold for other interesting problems, e.g. the bi-harmonic operator A? or the
gauge Laplacian, which is a component of the lattice Dirac operator used in quantum
chromodynamics (QCD) computations. We refer to [Kah09] and [BBKL11] for a detailed
discussion and only give a brief description. The gauge Laplacian is given by the stencil

0 -U; 0
AU)=[-U 4+m U |,
0 U/ ™ 0

where U = {U7 € U(1),pu = 1,y, 2 € Q}, e, and e, denote the unit vectors in z and y
direction, respectively, and m is a constant chosen such that the resulting matrix is posi-
tive definite. If U = 1 across the computational domain and m = 0, the gauge Laplacian
equals a scaled discrete Laplacian, while for a stochastic distribution of U, the gauge
variables U are not necessarily correlated and the support of low energy eigenmodes
of A becomes small, i.e., it is not obvious how to approximate these eigenvectors on a
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2.11. AMG: Not just point coarsening

coarser mesh.

To generalize AMG for a wider class of problems, several approaches have been suggested
to both improve the coarsening process as well as the construction of the interpolation
operator. The key idea to the construction of the coarse grid is, given a C/F-splitting,
to apply the smoother to the homogeneous equation Ae = 0 while keeping the variables
e; = 0 at the coarse grid points ¢ € C' constant. Then, if this smoothing process does
not converge at acceptable speed, a subset of the fine grid points I C F' is transferred to
the coarse grid. We repeat this process until we obtain a desired smoothing rate. This
process is called compatible relazation, see Algorithm for details. The smoothing
factor obtained from the compatible relaxation process gives an indication for the two-
grid AMG convergence rate and can be controlled by the parameter 6, see [Liv04] and
[EV04] for details.

A general form of interpolation can be derived from the minimization of a least-squares
functional. This was already suggested in [Bra(Ol] and further developed in [Kah09] and
[BBKLII]. Given a set of linear independent smooth vectors e',... e (these can for
example be derived from the compatible relaxation process), the goal is to obtain an
accurate interpolation for these vectors in a least-square sense, i.e., to minimize, for all
fine grid points ¢ € F', the functional

K 2
E k § k

k=1 Jel;

with respect to the interpolatory weights w;;. Here I; C C' denotes the set of interpo-
latory points for ¢+ € F. The weights w; > 0 can e.g. be chosen such that the energy
(ek, Ae*) of the vectors e is reflected within the least squares functional.

It is even possible to let the multigrid solver improve itself. To this end, a tentative
AMG hierarchy is used within a multilevel eigensolver to identify low-energy eigen-
modes. Then, if needed, the interpolation operators are adapted (by the least-squares
method described above) to better approximate these vectors. For details of this boot-
strap AMG method, we refer to [Kah09] and [BBKLII].

Finally, it should be mentioned that compatible relaxation is not restricted to point-wise
C/F coarsening. More generally, one can define the coarse space in terms of some re-
striction operator R : RM — RM+1 Additionally, let F' : RM+1=N 5 RM be such that
RF = 0, i.e. the range of F' defines the “fine grid space”, for which the error must be
damped efficiently by smoothing. A compatible relaxation step (that leaves the coarse
vectors unchanged) for some smoother I — Q! A then reads

= (1 F(FTQF) ™ F"A) e

A detailed description and error convergence estimates are given in [FV04].
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2.12. AMG for systems of elliptic PDEs

In this section, we describe various approaches to the construction of AMG hierarchies for
operators A that arise from the discretization of systems of partial differential equations,

L(ug,...,um) =f

where u;,i = 1,..., M are scalar functions, u; : Q — R, Q C R%. The right hand side f is
a vector-valued function, f : Q — RM.

We will use the term physical unknown for the u;, i = 1,..., M, as in most applications,
each u; is the discrete variant of a physical quantity. For example, in a fluid dynamics
simulation, we might have the quadruple

<u17 uz, us, p)

where uy, up and us describe the velocity components in the x, y and z spatial direction,
respectively, while p describes the pressure.
We now give an example of an elliptic system of partial differential equations.

Example 2.6 (Linear Elasticity) [Bra97, [Oel01] [GOS03] We consider a solid Q C R?
with boundary 9Q = I'oUI';, which is fixed at the boundary I'y. We seek for the vector u
that describes the displacement of this solid subject to an external force f and a surface
force g on I';. To this end, we define the strain tensor ¢; = %(&uj + 0;u;) =: Du,
which describes the deformation of the solid, and the stress tensor o, which in this case
is linearly related to the strain tensor, € = iE”a — % trol. The (material-dependent)
Poisson ration v € [0,0.5) is determined as the ratio between transversal and radial
deformation. Young’s modulus F describes the elasticity of the material. Now, the

deformation u is the minimizer of the energy functional

1
/(—e:a—f-u)dQ—I—/ g - udl’y
o \2 ry

where € : 0 = Z?jzl €;;0:5. We eliminate the stress o and rewrite e = Du to obtain a
weak formulation of the problem: Find u € Hf, = {v e H'(Q)": v|r, = 0} such that

/Du:CDde:/f-de—/ g - vdl'y forallveH%O.
Q Q Iy

where C' depends on v and E.
The solution u is not scalar, but has three physical unknowns, namely the displacement
in x- y- and z- direction, respectively.

Throughout this section, we assume that the discretization of L leads to a symmetric
positive definite matrix A. In the following, we describe three approaches to AMG for
systems of equations. Each one of them has its own advantages and disadvantages, and
the choice on which particular method to use for a specific problem has to be made with
some knowledge of the underlying problem (or the structure of the matrix A) in mind.
For a detailed introduction to AMG for elliptic systems of equations, we refer to [Cle04].
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? ¢ ¢ ® w
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(a) Staggered discretization (b) Discretization of the u (c) Discretization of the v com-
mesh component ponent

Figure 2.16.: A finite difference staggered grid with two physical unknowns. On the
left, we give the mesh cells as well as the discretization positions for each
physical unknown. The middle and the right picture show the connections
of a discrete operator (e.g. the Laplacian) for each of the unknowns.

2.12.1. Variable-based AMG (VAMG)

The first approach is just to ignore the fact that A arises from the discretization of
a system of partial differential equations. Instead, we apply the algebraic multigrid
setup phase as described in the previous sections “as-is” to the matrix A. This so-called
variable-based AMG (|Cle04], Section 3.2) will only work well if A is a M-matrix or an
essentially positive matrix, see Sections [2.4.1| and [2.4.2] In practice, regarding systems
of PDEs this requires that the couplings between the different physical unknowns are
very weak.

2.12.2. Unknown-based AMG (UAMG)

In unknown-based AMG (|Cle04], Section 3.3), scalar AMG algorithms are applied to
each physical unknown u; separately. To apply this method, a variable-to-unknown
mapping (VU mapping) has to be provided. Having a discrete vector v € RY, this
mapping identifies, for each entry wu;, the physical unknown j € {1,... M} that v,
belongs to. In other words, we disjointly divide the index set Q = QU .. UQpvy, where
each ()}; contains the indices corresponding to discretization of the physical unknown u;.
Now, we reorder the matrix such that it is sorted by the physical unknowns. We obtain
a block structure,

A[1,1] A[1,2] e A[LM}
A A oA

Ao [_2,1] [_2,21 ' 2,M] 7 (2.84)
A[MJ] A[M,Q] cee A[MvM]
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2. Algebraic Multigrid

where each matrix block Ay 5, 4,7 = 1,..., M describes the couplings between the physi-
cal unknowns ¢ and j. For example, in Figure[2.16] we have two physical unknowns that
are discretized at different positions. The connectivity structure of Ap jj is depicted in
red and the connectivity structure of A9 is shown in blue.

We note that the matrix blocks Ay ;1,7 # j are not necessarily square, as the discretiza-
tion meshes ;) for different physical unknowns may not have the same size.

Each diagonal block Aj; ;) can be viewed as the discretization of a scalar equation for the
i-th unknown. In unknown-based AMG, we build the AMG around these scalar blocks.
More precisely, for each i = 1,..., M, we carry out the following steps,

1. extract a strength matrix Sp; from the matrix entries of Ay ;,
2. construct a C/F-splitting Cp; U F};€;) based on Sp,

3. build an interpolation operator P : R — RI@l and a restriction operator
R[i] = P[?]

Now, we can merge the per-unknown coarse grids into a global coarse grid,

M
c=Jcu,
=1

and we assemble the global interpolation (the so-called multiple-unknown (MU) inter-
polation) operator and the restriction operator,

Py 0 ...0 Ry 0 ...0
p=| Y a0 | gV T (2.85)
0 ... 0 Pu 0 ... 0 R

Finally, we compute the coarse grid operator by the Galerkin product (full Galerkin),
A® = RAP.

A different way to define the coarse grid operator is to employ the diagonal block entries
Ay only (block Galerkin), i.e.

je_| 0 Bp 0 Apy 0 Py
ST U U ) Lo
0 ... 0 Rpm 0 ... 0 Awum 0 ... 0 Pu

The resulting coarse grid matrix AC is block diagonal and thus sparser than the full
Galerkin product. Hence, the computational cost on the coarser levels can be reduced,
but the variational principle (Theorem [2.15)) is violated.
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2.12. AMG for systems of elliptic PDEs

As we have pointed out, the unknown-AMG approach treats each physical unknown
separate. Hence, the coarse grids, transfer operators and coarse grid operators can be
adapted to the specific properties (e.g. anisotropies, coefficient jumps, ...) inside each
physical property, as these are reflected within the diagonal matrix blocks Aj; ;. Also, it
is not required that the different physical unknowns are discretized on a common mesh.
On the downside, information between different unknowns (the entries inside the off-
diagonal block matrices Ay ;), @ # j) is completely ignored. If these entries are large,
the resulting AMG hierarchy may loose its efficiency as not all relevant information is
reflected.

To investigate the two-grid convergence of the unknown AMG approach, we introduce
the block diagonal matrix A,,

A[l,l} O e O
O (2:36)
: . 0
0 . 0 A[M,M]-

A, is symmetric positive definite for symmetric positive definite A and hence defines a
scalar product,
(u,v), , = u" Ayv.

The associated norm is denoted with || - ||,1. Now, we can formulate the approxima-
tion property for unknown-wise AMG, which is just a slight deviation from the scalar
approximation property needed in Theorem (2.6)).

Lemma 2.4 ([Cle0/], Lemma 5.6)
Let A > 0 and and a VU mapping be given. If the C/F-splitting and interpolation Ppc
are such that the T-condition of MU-interpolation (2.12.2)),

ler = Preeclls,r < ullells (2.87)
is fulfilled with T, being independent of e, then (2.35)),
[Tel|} < 7(|Tell3, (2.88)

is satisfied with 7 = 7,p (A7 A,). (T = (I — PAZ'RA) denotes the two-grid correction
operator.)

Together with the smoothing property ([2.27)),
[Mell} < llellf = allell,
we obtain the following result for the two-grid cycle with one post-smoothing step.

Lemma 2.5 ([Cle0j|], Lemma 3.7)
Let A > 0 and a VU mapping be given. Let M satisfy the smoothing property (2.27)).
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2. Algebraic Multigrid

Furthermore, assume the C/F-splitting and interpolation to be such that the condition
(12.87) is fulfilled with some T, being independent of e. Then

IMT|, < (/1 -2
Ji-2

is satisfied with 7 = T,p(A7'A,) > 0.

The smoothing property does not reflect the decomposition of A into the matrix
blocks Ajij. However, the AMG hierarchy is build solely using information from the
diagonal blocks Ajj;. More precisely, we implicitly use heuristics that rely on the alge-
braic smoothness of the error with respect to each Aj; separately. Hence, to obtain an
efficient interplay between smoothing and coarse grid correction, we should formulate
the smoothing property in this sense.

Definition 2.9 [Cle0j)]
An operator M satisfies the unknown-smoothing property with respect to A > 0 and a
gwen VU mapping, if we have a o, > 0 such that for all e holds,

[Mellf < flellf . — oullellz. (2.89)
Here, the scalar product (u,v), , := u"A,D~'A,v and the associated norm || - [|o,, are
defined w.r.t A,. Now, we can estimate the two-grid correction operator with one post-
smoothing step M T in terms of || - ||,,1 instead of || - ||1.

Theorem 2.17 ([Cle04)], Theorem 3.9) Let A > 0 and M satisfy the unknown-smoothing
property (2.89). Furthermore, assume the C/F-splitting and interpolation be such that
the T1,-condition (2.87)) of MU-interpolation is fulfilled with 7, being independent of e.

Then
IMT s < V/p(ATA)p(A7 A 1 - 2 (2.90)

with 7 = T,p(A7 A)2p ((A 1A)?).

The factor
pu = p(A7 AL (AT A)

can be interpreted as an indication of the strength of unknown cross-couplings, i.e. how
well the spectrum of A is captured by A,. If p, is large, the overall convergence may
deteriorate. Note, however, that the bound ([2.90)) is not sharp.

Remark 2.6 A variant on unknown-based AMG method for linear elasticity problems
is described in [BKMY10]. Here, first a multiple-unknown interpolation is com-
puted, which is then augmented by couplings between different physical unknowns to
capture the rigid body modes, which form the kernel of the matrix.
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2.12. AMG for systems of elliptic PDEs

2.12.3. Point-Based AMG

The other main approach to the construction of AMG for systems of partial differential
equations is to arrange the variables by points instead of physical unknowns. Then,
the coarse grid, the interpolation and the coarse grid operator are obtained from the
coarsening of these points. This approach is called point-based AMG ([Cle04], Section

3.4)
In this case, we first need a variable-to-point mapping (VP mapping) that assigns a point
j € Q:={1,...,m} to each entry u; of a vector u € RY. Again, we obtain a disjoint

decomposition of {2 = Q(l)U . UQ(m) and a block structure of the matrix A,

A(Ll) A(1,2) N A(l’m)
A A oo Apm
A — (?71) (.212) . (2'1 ) ’ (2.91)
Amyy Amz) - Awmm)
where each A ;), 4, j = 1,...,m describes the connections between all physical quantities

that are discretized at the points ¢ and j. Note that not all physical unknowns need to
exist at each point, so the off-diagonal matrices A ;), i # j, might be non-square.

Block smoothing We employ the block structure of the matrix to define block re-
laxation schemes, which are straightforward extensions of the point-wise Jacobi and
Gauss-Seidel iterations. Define the block diagonal matrix

A(l,l) 0 c 0
pp=| O Aea 0 (2.92)
0 - 0 A(m’m)

and the block lower triangular matrix

0 0 .0
Lp = A<.271> 0 Q
A(m@) - A(m,m—l) 0

Then, in terms of the error propagation matrix, the damped block Jacobi smoother is
given by
M =1-wDp'A

and the block Gauss-Seidel iteration by

M=1—(Dp+Lp) A
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2. Algebraic Multigrid

To formulate the smoothing property for the block smoothers, we introduce the inner
products ([Cle04], Section 2.4.5)

(u,v)po = (Dpu,v) (2.93)
(u,v)pa = (Dp'Au, Av) (2.94)

and the respective discrete norms ||ul|po, and ||lul|pg, cf. Definition 2.3 Note that we
do not need to define an inner product (u,v)p;. As in (2.25) we have

lelli < llellpollellpz,  llellba < (DT Allellf,  llelli < p(D~ A)llellpp-  (2.95)

We are now ready to define a smoothing property in terms of these norms.

Definition 2.10 ([Cle0j|], Section 3.4.1.1) An operator M satisfies the point-smoothing
property with respect to A > 0, if we have a o > 0 such that for all e holds,

[Melf < lle]l¥ = ollell5.. (2.96)

The smoothing property for Gauss-Seidel and damped Jacobi iteration can be shown
analogous to the scalar case.

Theorem 2.18 ([Ocl01], Theorem 3.1)

Let the block matriz A be symmetric, positive definite and all Ay ;) € RM*M - Burther-
more, let M =1 — (Lp+ Dp)'A or M =1— (Up+ Dp) A, where Lp (Up) denotes
the lower (upper) block triangular part of A, || - || an operator norm induced by a fixed
vector norm for RM, let w € R™ be an arbitrary vector, w; > 0 for all i. Then, the block
Gauss-Seidel iteration M satisfies the smoothing property with o = %{H. Here,
~v_ and v, are defined by

¥ = fg@;{ D willAGh Ay H} and 7 —g@;ﬂ{ > willAgh A II}

]<z j>Z

Theorem 2.19 (cf. Theorem Let the block matrix A be symmetric positive definite
and n > p(Dp'A). Then, the damped Jacobi relaxation S = I — wDp' A satisfies the
smoothing property (2.96) with o = w(2—wn) for any 0 < w < % The optimal relazation

parameter is given by w* = L, in in this case also o = 1.
n’ n

Point Coarsening As mentioned above, the coarsening is carried out on the set of
points €, i.e. @ = CUF. The classical Ruge-Stiiben coarsening algorithm |2 . however,
requires a strength matrix S e R™™ defined on the point set Q. To compute the
strength matrix, we first need a so-called primary matriz A € R™™ from which S can
be computed as described in Section [2.5]

We now give the most common approaches to the construction of A.
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2.12. AMG for systems of elliptic PDEs

1. The entries @;j, i,7 =1,...,m of A are computed using the block structure ([2.91)).
A widely used ansatz is to compute the norms of the blocks,

For the diagonal entry, we have the possibility of either computing the norm of the
diagonal, i.e. G; := || A5 or using the negative sum of the off-diagonal entries,

A= {_Zﬁéi agj if 32550 #0

1 else.

The latter has the advantage that A is guaranteed to be a symmetric positive
definite M-matrix.

Note that all off-diagonal entries are negative. One could also take into account
the definiteness of the sub matrices, i.e.

Aol if A, > 0.
Qs {” )l if Aij >0 for i # j, (2.98)

—||A(Z-7j)|| else

and compute a; either as ||A4; ;|| or a;; == i |@;;|. This would make some theo-
retical considerations easier, but only if all off-diagonal blocks A; ; are symmetric
and at least semi-definite, see [Cle04], Section 3.4.4. However, the computation of
is significantly more expensive than ([2.97)).

The question remains which norm to choose in (2.97)). For theoretical consider-
ations, the Euclidean norm ||Al|g = \/Amax(ATA) is the easiest to handle. In
practice, the Frobenius norm or the row sum norm are often used as they are easy

to compute. It is also possible to use quantities like the largest (absolute) element
in each block or the sum of all elements.

2. We can designate one of the physical unknowns uy to lead the coarsening, i.e.
A= Alg.k), where A, ) is the matrix block corresponding to unknown &, cf. .
In this case it is desirable that the unknown k is “representative” for the whole
system, i.e. that k is present at each point ¢ and its sparsity pattern resembles the
block sparsity pattern of [2.91} that is, ayj’k] # 0 if the matrix block A ;) is not
empty. We refer to [Cle04], Section 3.4.2.1 and the references therein for a more
detailed explanation.

3. Another approach, related to the previous one, is to provide an external scalar
matrix A which is not computed or extracted from A. In this case, we also need
to build a hierarchy for A analogously to the hierarchy of A to obtain this infor-
mation on the coarser levels. A common choice is to employ a discretization of the
Laplacian on the same mesh. This approach is for example being used to build an
AMG hierarchy inside a CFD solver [LSACOS].
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2. Algebraic Multigrid

4. If geometric information is available, the primary matrix can also be obtained from
the coordinate vectors x; of the discretization points,

1

Goi — —
N |z — v

Again, the diagonal entry is computed as the negative sum over all off-diagonal
entries, a; = — Y ;i @ij. Note that the block sparsity pattern of A is copied to A.

More sophisticated approaches that also reflect the positions of the points to each
other are possible, see [Cle04], Section 3.4.2.4.

We now apply the strength algorithm to the primary matrix A and obtain a strength
matrix S € R™*™. Here, as in (2.32)), we consider the absolute values of A, i.e. we set
s;; = 1 if and only if

|ai;| > Oé'fggf@k\-

As mentioned above, A only has non-positive off-diagonal entries if it is constructed as
a norm- or distance based primary matrix.

Interpolation for point-based AMG [t remains to construct the interpolation opera-
tor. Again, there are different approaches available. First, we introduce some notation

(as in Section

Ey={j#i: Auj #0} set of neighbors of i.
é = S NC  set of strongly connected coarse grid points of i.
~Z = S;NF set of strongly connected coarse grid points of i.
E“’ =E; \ S, set of weakly connected neighbors of 4.
I, set of interpolatory points for i.

Block interpolation The first option is to extend the scalar interpolation formulas
to the block structure (block interpolation, [Cle04], Section 3.4.3.1). This is the most
“natural” choice if we use a block smoother and the matrix blocks are also used to
compute the strength matrix. Analogously to the construction of scalar interpolation
operators as described in [2.8] we approximate

Agiean + Z Aijyeq) =ra = 0. (2.100)
JEE;
by the sum
cw+ ) Wageq =0. (2.101)
jEEi

Note that we now deal with blocks instead of scalars. e(;y and r(;) describe the parts of e
and r that are associated with the point ¢, i.e. they are vectors of size M;, the number of
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2.12. AMG for systems of elliptic PDEs

physical unknowns present at the point 7. A(; j) and Wy, ;) are matrices of size M; x M;.
The general form of a block interpolation operator is given by (cf. (2.38))

aifieC
€i) = o e < (2.102)
> jesine Wige) else.

In the following, we assume that all physical unknowns k € 1,..., M are present at all

points 7 = 1,...,m, which, in consequence, means that all matrix blocks A, ;) are square.
We first introduce the block version of direct interpolation (2.43)) [Ocl01, [GOS03]. The
weights then read
-1
-1
Wiy = =A% | D Auw Ak | A (2.103)

keE; keC,

Note that this construction is only possible if (Z red, A(Lk)) is invertible. (Ag, is
always non-singular due to the symmetric positive definiteness of A.) To circumvent this
restraint, we can replace the normalization matrices (Zke B A(i’k)) and (Z reC, A(i’k)) -

by diagonal m X m-matrices that have the same row sums (if not equal to zero), i.e. for
each block row ¢ we define ([Cle04], Section 3.4.3.1)

j. P if P 7 0 P i if g £ 0
kk " ) kk
1 else. 1 else.

where

M M
Tk = E,E :akl ) rkk'_E:E :akl )

je; 1=1 jel, =1

C\M
and A ;) = <al(f|’3 )> . The formula for I; ; then reads
=1

—1
-1 pk; P
Wiy = _A(z‘,li) Ry, (Rkk) Aijy.

This variant is cheaper to compute than (2.103]) and can also easily be applied to the
case of non-square A ;. The sum of the interpolation weights Zj Wi ;) is however
not necessarily the identity, hence constant vectors may not be interpolated exactly (cf.
(2.42))).

Theoretically, the block direct interpolation can also be carried out with separate renor-
malization scalings for positive and non-positive semi-definite weights, cf. —
To this end, we define

E- = {je E; - Ay <0}
Ef = {jek: Agjy > 0}
Cr = {jel: Ay < 0}
Cf = {jeCi: Auj >0}
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and we compute the interpolatory weights as follows,

keEf kec;
-1
Wij = _Aé,li) Z A(i,k:) Z A(i,k) A(i,j) else. (2.105)
keE\E} keC\C;"

Note that the indefinite submatrices are treated together with the negative (semi-) def-
inite ones. This requires us however to determine the definiteness of each submatrix
Agij), 1 # 7, see and the discussion thereafter.

For sake of completeness, we give the approximation property for the block direct inter-
polation schemes. To this end, we first define

Toy = Awn+ Y, Aiw— Y A

keE\E; keEf
pi = Z Wi lle + (11 — Z Wik + Z Wiiwlle
kel; kel kel

T{;) can be seen as the block-version counterpart of ¢; = a; — ). E; |a;;| from Theorem
2.9 We now give the straightforward analogs of (2.36]) and (2.37)) for block AMG. First,
let us look at the convergence of the two-grid cycle with one post-smoothing step. To
this end, let T'= I — PAElRA be the exact coarse grid correction step, where the coarse
grid operator is given by the Galerkin product Ac = RAP.

Theorem 2.20 ([Cle0j|], Theorem 3.11)
Let A > 0 and M satisfy the point-smoothing property (2.96). Furthermore, assume the
C/F-splitting and the interpolation be such that for all e

ITelli < 7llel? (2.106)

with some T > 0 being independent of e. Then T > o and

IMT|, < (J1-2.
Ji-2

Theorem 2.21 ([Cle04)], Theorem 3.12)
If A>0 and M and the C/F-splitting and interpolation Ppcy are such that for all e

ler — Prcec||popr < Tllell? (2.107)

with some T > 0 being independent of e, then (2.1006)) is satisfied.

The following theorem gives sufficient criteria for (2.107) in the case of block direct
interpolation schemes.
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Theorem 2.22 ([Cle04)], Corollary 3.1) .
Let A>0, E; = EF UE; and T > 0 for all i € Q. Select a C/F-splitting and set a
I; for each i € F.

1. If Prc can be defined by (2.105)-(2.104)), then

pi =Y Waple + 1Az Tolle

Jjel;
with T(;) defined by (2.106). If for all i € F the inequalities

TAmin(T)) = pike(Awy) 1Tl e

. 1 -1
and TAmin(_A(i,j)) Z ,UJinE<A(Z71)) P Z A(i,j) Z A(i,j) fOT’ all] S ];,
| keE; 1 Lkep ]
- 4 -1
and TAmin(Aiy) = Hike(Aug) p Z Ay Z A j) for all j € I,
| keE; | ke P;"

hold with a T > 1 not depending on i and j, the T-condition (2.107)) is fulfilled.

2. If Pre can be defined by (2.103)), then

= > IWeaplle + |1+ A5, (ZAm) 0

JEL; JEE;

with

-1
D) = (Z A(m)) > Aww — Y Auw

keE; keE; keE;

If for all v € F' the inequalities

TAmin(T(0) = pare(Ag)|[Aga + <ZA(1])(I)(i)|‘E

JEE;
1-1
and TAmin(—Auy) = Hike(Ags) Z A ) Z A j) foralljel,
LkEE; LkEP;
E
1-1
and TAmin(AGy) = Hike(Aa)) Z A Z A j) for all j € I,
LkeE; | ke P, 5

hold with a T > 1 not depending on @ and j, the T-condition (2.107|) is fulfilled.
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The first part of this theorem can only be applied if all off-diagonal matrices A ;) are
symmetric and either positive or negative semi-definite. If all A, < 0, i # 0, then
® ;) = I and both statements of this theorem coincide.

If Auin(T(5)) = 0, e.g. one of the equations in block row 4 has a zero row sum, the
conditions in Theorem [2.22| require that also p; = 0. This essentially means that
Zke[; Wik — Zke[j Wik = 1, i.e. constant vectors are interpolated exactly.

Remark 2.7 If, in Theorem we replace all A(; ;) with the diagonal matrices Dy; ;) =
diag(A,)), we obtain that the respective interpolation operators satisfy the same kind
of approximation property as in the scalar case ([2.37)),

ler — Prceclls r < llelli-

Remark 2.8 The block direct interpolation scheme can also be used inside
an AMG methods for solving the equations arising in linear elasticity computations.
Within this context, it is important that the interpolation preserves the so-called rigid
body modes, i.e. the translations and rotations, as these vectors form the kernel of the
operator considered. It can be shown [Oel01) [GOS03] that exactly interpolates
the rigid body modes if used in conjunction with a suitable coarsening scheme.

Of course, it is also possible to derive block interpolation counterparts for the more
sophisticated interpolation schemes describes in Section 2.8, For example, the block
version of the classical interpolation scheme employs the following weights [hyp],

-1

-1
W) =— | Aao + D Aw Aap+ D (Z A(km)) Ay Awg)

leEY keFs \meC;
(2.108)
Note that the denominators may become singular. To prevent this, we have to make
two modifications.

1. If Zmec,- A(,m) 1s singular for a k € F, then the strong coupling Sy, is treated as
a weak coupling, i.e. we add A ) to Agi) + > cpw Aqy instead of computing the

indirect weight (Zmeci A(km))_l A Ar,j) in the rightmost term of (2.108]).

2. If Aggy+ Y cpw Ay is singular (after the possible modification described above),

it is replaced by the identity. Another option is to only use A@li) here, as this can
always be carried out.

To save computational costs, one can also interpolate within each physical unknown. To
this end, let Dy, jy = diag(A j)) be the diagonal of the block A; j) (not to be confused
with Dp!). Then the interpolation formula reads

-1

—1
Wig == | Daay+ D Do Dijy+ Y (Z D(k,m>> D ey D(r,j)

leEY keF? \meC;

(2.109)
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The same modifications as above need to be carried out to prevent inversions of singular
blocks. A hybrid version of this two approaches was already described in a very early
paper [Rug86],

-1

W =— | Aeo+ D AwnBu Aap+ Y AawBursy | - (2.110)
leE\C keE\C

where the B ) , k & C;, j € C; U {i} are diagonal matrices defined by

p(k2d) n
. = Lp=v
pksd) — 2iec;ugsy by

e 0 else.

Compared to ([2.108]), this saves some computations as we only need to compute a single
full matrix block inversion per block row. Note that we do not distinguish between weak
and strong connections between fine grid points here.

Multiple-unknown interpolation The second approach to the construction of the inter-
polation is to compute a multiple-unknown interpolation as described in Section
([Cle04], Section 3.4.3.2). That is, after computing the C/F-splitting of the points,
Q = CUF, we extend these sets as well as the strength matrix S to the set of all vertices
Q,

C = {k € Q where k € Q) and i € C'}

F:{kEQWherekEQ(i) and i € F}

Sp = {l € Q where k € Q(i), le Q(j) and j € g(i)}.
Then, we can compute the interpolation unknown-wise using one of the scalar interpo-
lation schemes described in Section [2.8] Note that we now may have strong couplings
J € S; where the corresponding matrix entry a;; = 0, or, more generally, the set of strong

couplings S; for an ¢ € €2 may not reflect the large off-diagonal matrix entries of the row
(aij);.vzl at all. Hence, the interpolation may be inaccurate in these cases.

Single-unknown interpolation Finally, it is also possible to derive the interpolation

by means of the primary matrix A. We apply a scalar interpolation routine from Section
to A (together with S, C,F ) and obtain a scalar interpolation operator P. This
operator and the C/F splitting are then extended to the whole domain (2,

C = {kEQWherekEQ(i) andieé},
F = {ke€Q where k € Q(i) and 7 € F},
P = Pij where k € Q(i)> le Q(j)’

where P = (pi1)ycq, jec and P = (Dij)icqr, jee- We obtain interpolation weights that are
identical for all physical unknowns at the same point i (single-unknown interpolation
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2. Algebraic Multigrid

[Cle04], Section 3.4.3.3). Again, the interpolation is carried out unknown-wise, but
modifications are possible (and may be required) if not all unknowns are present at each
grid point, see [Cle04], Section 4.3.2.2 for details.

We conclude this paragraph with some theoretical approximation properties of single-
unknown direct interpolation in the case of a primary matrix defined by Euclidean norms.

Theorem 2.23 ([Cle04], Theorem 3.14 and Corollary 3.3) Let A > 0, E; = E UE;
and Tz > 0 (2.106) for all i € Q2. Select a C/F-splitting and set a I; for each i € F'.
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1. Let A be defined by ([2.98),

) 1Az if Ay > 0. A
ij = { A, ’ fori#j, @i = ||Auyle

—[|A@plle else

and the interpolation weights be derived from A by direct interpolation with weight

separation (2.45) - (2.46),

1 5 Qi
! @i Zkeé; @i,
1 Y pes, G
~+ kebk; Yk ~ .p~
W = ——=———F Qiif a;; > 0. (2.112)
’ Gii Y opec G
If for alli € F
ti=Aaplle = > 1Aunle >0, (2.113)
k}EEi
as well as the inequalities
TAmin(Ts) = 4
> ker 1A lle "
and TAmin(—Auy) > [Auglle ke TN forallj eI,

Zkec; 1A mll
ZkeEj [AGk e
Zkecj' [AGk 2

hold with a T > 1 not depending on i and j, the T-condition (2.107)),

for all j € I,

1

and TAmin(Aij) > [ Auplle

ler — Proeclbor < 7llelli

18 fulfilled.

2. Let A be defined by ([2.97),

aij = —||Auplle fori#j, iy = ||Auylle-



2.12. AMG for systems of elliptic PDEs
and the interpolation weights be derived from A by direct interpolation ([2.43)),

If for alli € F
Ao lle — & Z |Agwlle >0,

k‘eEi

where
> e 1Az = 2ieer 1Aan e

> kee, 1Aanlle

¢; = (2.115)

as well as the inequalities

TAnn(Tw) = [Aualle =6 ) [Aaw s
keE;
2ken 1 Aam e
Zke(}i ||A(i7k)||E
ke,
Zkeci

hold with a T > 1 not depending on © and j, the T-condition (2.107)) is fulfilled.
3. Let A be defined by (2.95),

s i |Aujlle if Ai; > 0.
’ —|Aujlle else

v

for all j ef;,

and TAmin(— A j)) A lle

Ainle

and TAmin(AGy)) = [[Aeylle for all j € IN;F,

Ainlle

fori# g, ;= Z —Qj,

J#i

and the interpolation weights be derived from A by direct interpolation with weight
separation (2.111)) - (2.112)), If for all i € F' the inequalities

> Ayl el Ayl e ZkeE; | Aiwlle
N ZkEEi Amlle Zkeqf | Aimle
HA(@'J)‘ E”A(i,i)”E ZkeEj HA(Z‘,k)”E

hold with a T > 1 not depending on i and j, the T-condition (2.107) is fulfilled.
(Note that t; =0 (2.113)) here.)

4. Let A be defined by ([2.97),

Qij = _HA(i,j)”E fori#j, a; = Z —
J#i

and T Amin(—Ag5)) for all j € fi_,

and T Amin (A ) for all j € ff,
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2. Algebraic Multigrid

and the interpolation weights be derived from A by direct interpolation (2.114)). If
forallie F
1—¢;i=0

where ¢; is defined by (2.115)), as well as the inequalities

Thnin(Tiy) 2 (1= 6 Aualle
1A el Al
> ke,
| Ag.]
Zkeci

hold with a T > 1 not depending on i and j, the T-condition (2.107)) is fulfilled.

and T)\min<—A(i’j)) > for all j € fi_,

Aimlle

ellAun e

and T)\min(A(iJ)) A(‘ k) |

v

forall j € I,

Remark 2.9 If we replace A(;; with its diagonal Dy; ;) in all of the statements above,
we obtain the classical approximation property (2.37)),

ler — Prceclls r < llellr-

instead of (2.107)).

Finally, regardless of the coarsening and interpolation strategy chosen, the coarse grid
operator is computed by the Galerkin ansatz,

Ac = RAP.

As already mentioned, we also might need to transfer the primary matrix to the coarse
level (especially if we employ an externally-defined primary matrix that cannot be ex-
tracted from A, but have a single-unknown transfer matrix P available),

Ao = RAP.
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3. Parallel AMG

In the last chapter, especially in Sections 2.9 we introduced the AMG setup proce-
dure according to Ruge and Stiiben. Recall from Algorithm that on each level [ we
have to

1. determine the set of strong couplings S; for all i € Q;

2. based on the sets S;, disjointly divide Q! into the set of coarse grid points C* and
fine grid points F' and set Q! = O

3. construct the prolongation matrix P and set the restriction R; := P
4. compute the coarse grid operator A, := RjAP,.

Now, the question arises how these steps can be parallelized on a multiple instruc-
tion, multiple data (MIMD) parallel computer, i.e. on a machine where each processor
has exclusive access to its own memory and operates independently of the others, while
communication between different processors is performed by message passing (e.g. imple-
mented in MPI [MPI]). This class of parallel computers ranges from multi-core desktop
PCs to recent petascale supercomputers.

Let us assume that on the finest level we have a non-overlapping partitioning

Q' =000, (3.1)

where np denotes the number of processes. This partitioning can e.g. be generated by a
mesh partitioning method like Metis [KK99], Parmetis [KK97] or Zoltan [DBHT02].

ol

For each Qé, we define the set of boundary points 09!, and the set of inner points Q,

p7
by

892 = {ieQé:EIjteq, q#psuchthatjESi},

ol

_ ol !

Q, = Q,\00,
Note that we only consider strong couplings across boundaries here, i.e. a point i € Q;,
which has a non-zero connection a;; to a point j & Qé, is still considered as an interior
point if all of its strongly connected neighbors S; are contained within Qi,.
In Figure we give a simple example of a finite difference discretization mesh dis-
tributed among four processors.
We assume that the matrix A is distributed row-wise, i.e. on all processors p =1,...,np

and for all ¢ € 2, the row a; := (aij)?zl is stored on processor p. This storage is mostly
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3. Parallel AMG

Figure 3.1.: Distribution of a 5 point finite difference grid among four processors. The red
lines denote the processor boundaries, the blue area indicates the processor
boundary points 892.

done by means of a parallel compressed sparse row (CSR) matrix format as it is e.g.

used in PETSc [BGMS97], hypre [CCF98] or Trilinos [HBHT05]. In these formats, the

part of A that resides on processor p, here denoted by Ay, is organized in two blocks,
A) = (Adiag Aogsa)

where Agiq, contains all local couplings a;j, ¢, 7 € €2, and A,frq contains all a;;, 7 € €2,
and j € 2, and each of the Ay and Ayfpq is a CSR matrix. Regarding the vectors u
and f needed in the solution phase, each entry u; and f; is stored on the processor p
with i € Qﬁ,.
For most components of the setup phase, it is obvious how a parallel computation can
be carried out. To obtain the strong couplings for i € Qé, we only need access to the
row a;. The same holds for the computation of the direct interpolation weights w;;,
i€ F, je C (see Section . For other interpolation operators, we need access to
the rows ay, corresponding to strongly coupled fine grid points k € F; even if k resides
on another processor. We obtain these rows in a single communication step before we
start computing the interpolation weights, see Algorithm

For multi-pass interpolation (Section and Jacobi interpolation (Section 2.8.8), a
communication of the updated weights is required between two iterations of the respec-
tive algorithm.

The computation of the coarse grid operator as it is carried out in hypre is outlined in
Algorithm [3.2] Here, we do not transpose the prolongation P, in parallel to obtain R,
but instead exploit the fact that the blocks Pclliag and Polffd are available. We take the

biao and Rf,ffd. In addition,

transpose of each of these blocks individually, obtaining R,
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algorithm 3.1 Parallel computation of the interpolation operator

1. On each processor p = 1,...,np, identify the fine grid points F'"* := F N, and
the strongly coupled remote fine grid points

s s l
Foy« J F\9,

i€ Flp
2. For all k € F(‘;), obtain the row ay.

3. Compute the interpolation weights for all i € F' according to the chosen inter-
polation method (see Sections [2.8.4}2.8.6|).

: I pl Al+l
algorithm 3.2 AmgParallelRAP(A(,, P, A ") [hyp]

begin
! 1 \T 1\
transpose Rdiag +— (Pdmg) s Rofrd < (Poffd) :
communication: obtain P/, = (P}), for all nonzero columns k of AL,

re-organize P! , = <Pl

l .
ext,diag Pext,offd )
compute RAP! — Ry Aoy - Pl

diag diag

l l l
+ Roffd ’ Adiag ’ Poffd

l l ! l l ! :
+Rotra Aopra Pestdiag t Bogra Aopra Pewtofras
communication: distribute RAP!, . among owning processors, receive RAP' ;

ext?
re-organize RAPY, = (RAPL, 44, RAP.,,570)

emote

I+1 l l l l l l l .

Compl’Ite Adiag — Rdmg ’ Adiag ’ Pdiag + Rdiag ’ Aoffd ’ Pewt,diag + RAP@J:t,diag’

I+1 l l l l l l l .

ComPUte Adiag — Rdiag ’ Adiag ’ Poffd + Rdiag ’ Aoffd ’ Pext,diag + RAPext,offcb
I+1 I+1 I+1 .
Ag < (Admg AOffd> 7

end
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3. Parallel AMG

for all non-zero columns k in Aéffd, we need to communicate the respective row pk.

We denote the sub-matrix consisting of these rows by P!, and split it into P! and

ext,diag
Ploct,offd according to the column distribution of P(lp) into Pdliag and Polffd. Then, the

[
triple matrix product on each processor can be written as a block triple matrix product,

R )25 P!
Al—i—l = ( ldm!]) . Ald Al nE ( . diag l of fd )
Roffd ( " o/ ) Pext,diag Pert,offd

We see that we also partially compute remote rows, i.e. parts of A® that will not be
stored on the local processor. These products (whose leftmost factor is Rf)ffd) need to
be distributed among the processors owning the respective rows and then need to be
added to the locally computed rows there.

All these steps can be easily parallelized, though some communication is needed. The
same is true for the multigrid cycle (Algorithm , where all of the communication
is contained in the parallel matrix-vector and parallel norm computations. The only
obstacle here is the Gauss-Seidel smoother , which is replaced by a block Jacobi

smoothing scheme

-1

l !
Qqy 0 0 Ay
M=I-| 0o - o0 : . (3.2)
l l
0 0 Quy Ay

Letting Agiag = Ldiag+ Daiag+Udiag be the decomposition of the diagonal part of A, into
the lower triangular, diagonal and upper triangular part , we set Ql(p) = Laiag + Ddiag-
In terms of the scalar values u;, we obtain the following relaxation scheme,

u T =l +at | fi - Z agul — Z auitt — Z agul | . (3.3)
JE JEQL, j<i JEQL,5>i

This means that if for an i € Qi,, all connections to remote points are zero, i.e. a;; =
0 for all j ¢ Qé, then the value w; is relaxed Gauss-Seidel like. The other points
(at the processor boundaries) are updated rather additively. A communication step is
required after each sweep is complete. It is, of course, also possible to use backward
or symmetric sweeps inside each processor domain. For a more detailed discussion of
parallel smoothers, we refer to [MY04], MY06].
The parallel creation of suitable coarse grids, however, is a major challenge in the process
of constructing the AMG hierarchy. The coarse grid selection algorithm cannot
be carried out in parallel, as the following actions need to be performed within each
iteration:

1. select a suitable undecided point ¢ with maximal weight \; and add it to the coarse
grid C,

2. assign all undecided neighbors j that strongly depend on i, j € S] to the fine grid,

90



(a) Ruge-Stiiben coarsening applied to each pro- (b) Third pass coarsening
cessor subdomain only

Figure 3.2.: Ruge-Stiiben coarsening and third pass coarsening applied to a 5-point dis-
cretization of the Laplace operator, distributed among 4 processors. De-
picted are the C/F-splittings on the finest level, where the blue squares
indicate the fine grid points ¢ € F', and the red squares indicate the coarse
grid points j € C.

3. for all undecided neighbors k € S; of these newly created fine grid points, increase
their weights \;,

4. for all strongly coupled undecided neighbors j € S;, decrease the weights A;.

We see that we need to update the weights A\ of all undecided points two layers away
from the newly chosen coarse grid point i, see also Figures [2.6(b)H2.6(d)} This update
(as well as the update of the status of ¢ and the status of all newly created fine grid
points j € ST) needs to be performed after each iteration. Even if this was feasible, we
still had to deal with race hazards: e.g. process p would set point j to fine while process
q would concurrently assign j to the coarse grid.

If we just apply Algorithm on each processor subdomain Qﬁ, and do not change the
status or weight of remote points j € sz, q # p, we can obtain undesirable coarse
grids, where condition is not satisfied. For example, in Figure we see that
we have many strong couplings between fine grid points across the processor boundary,
while these points do not share a common coarse grid point to interpolate from. Several
approaches to parallel coarsening have been developed in the past. A first idea is to
keep the classical Ruge-Stiiben algorithm on each processor and to fix the inconsistencies
described above. Two methods that follow this approach are described in Section [3.1]
Other parallel coarsening schemes use parallel independent set algorithms to find a coarse
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3. Parallel AMG

grid. We discuss them in Sections [3.2H3.3] We introduce our parallel AMG approach
in Section [3.4, Our approach is based on Ruge-Stiiben coarsening, but instead of fixing
inconsistencies at the subdomain boundaries, our method (mostly) avoids unwanted
situations. An extension of our method for very large supercomputers is outlined in
Section . We also refer to [MY06] for an overview over parallel algebraic multigrid.
As in Chapter [2| we omit the level index [ if it is not needed.

Remark 3.1 As mentioned above, the parallel AMG algorithms presented here are de-
signed for MIMD parallel computers. In the past years, the power of graphics processor
units (GPUs) has increasingly been employed to accelerate computations on worksta-
tions as well as on computer clusters. These kind of processors however follow a single
instruction, multiple data (SIMD) design, i.e. a single instruction can efficiently be ap-
plied to a large amount of data synchronously. Any efficient parallel algorithm for GPU
computation needs to exploit this setup, which leads to different programming tech-
niques compared to classical parallel AMG. A detailed description is beyond the scope
of this chapter, we instead refer to [BDO12] for an approach to AMG on GPUs.

3.1. Minimum Subdomain Blocking, Third pass
coarsening

We first address a class of parallel coarsening schemes that, based on the classical Ruge-
Stiiben coarsening algorithm, ensure a stable interpolation for all fine grid points by
means of an additional coarsening step at the subdomain interfaces. While the Minimum
Subdomain Blocking (MSB) scheme coarsens the boundary first and then proceeds to
the interior, Third Pass Coarsening (RS3) first coarsens the interior and then fixes the
boundaries.

Minimum Subdomain Blocking The Minimum Subdomain Blocking scheme [KS99]
allows parallel coarsening with minimal communication between the processes. First,
each processor p applies the classical Ruge-Stiiben algorithm (first and optionally second
pass) to the set of boundary points 0€2,, see Algorithm . Then, the interior of each
subdomain is coarsened. Hence, each point of the boundary is either a coarse point
or is strongly coupled to a coarse boundary point. All strong couplings which cross a

algorithm 3.3 AmgMSB(€2,,, Sy, 5(7;), C,, F)

begin
AmgPhasel (09, S, ST, C,, F,);
AmgPhasell (02, S, C,, F},);
AmgPhasel (2, S, ST, C,, F,); where C' and F' are not newly initialized
AmgPhasell(2,, S, C,, F},);
end
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3.1. Minimum Subdomain Blocking, Third pass coarsening

subdomain boundary are however ignored in this approach. On the one hand, this can
lead to a unphysical coarse grid structure near a boundary if the direction of strength
is orthogonal to the boundary (in this case, the MSB algorithm needs to assign every
boundary point to the coarse grid as all connections within the boundary are weak).
On the other hand, and even more severe, there is no possibility to check whether two
strongly connected fine grid points ¢ € €, and j € S; N €),, ¢ # p share a common
strongly coupled coarse grid point. The resulting interpolation operator may not be
stable even if an interpolation formula for all fine grid points can be found.

Third pass Coarsening The Third Pass (RS3) coarsening scheme [HMY02] is a straight-
forward parallel extension of the classical Ruge-Stiiben coarsening scheme. In contrast
to the subdomain blocking described before, a processor subdomain boundary treatment
is applied after the coarsening of the interior is done.

First, each processor p applies both phases of the Ruge-Stiiben algorithm to its sub-
domain €2, including all of its boundary 0€),. We note that we initialize the weights
A; for the first phase to the global values, i.e. \; := |S]| even if ST contains non-local
points. For each processor p, we obtain a splitting into coarse grid points C),, and fine
grid points F,. While every 7 € F}, has at least one strong connection to a j € C,, there
still may exist strong fine-to—fine (F' — F') couplings across the boundary for which the
occurrence of a common C-point is not yet checked.

To remove these inconsistencies at the subdomain interfaces, first every processor p gath-
ers the coarse/fine-splitting of its adjacent ghost points (J;cq Si\ €2,. Then, in a local
step, processor p now applies the second pass (Algorithm [2.6]) restricted to its boundary
as well as to the ghost points,

0_Qp = an U (UiEQpSi \ Qp> .

We denote the set of coarse grid points generated in this third pass with C’p. Note that
for a common interface Q_Qp N 6_Qq the coarse grid points designated by processes p and
q do not necessarily match. Hence after a second communication step, the following
strategy decides on the final splitting: Every processor keeps the coarse grid points
created by itself (i.e. C, and C’p) and adds all coarse grid points éq N Q, designated by
lower rank processors ¢ < p. Hence, the final set of coarse grid points for processor p is

C,u{lJC N}

q<p

While a slight load imbalance is possible, this approach ensures a stable interpolation
formula for all fine grid points throughout the domain. We sketch the RS3 approach in
Algorithm . In Figure we show an example of the RS3 coarsening algorithm
applied to a 5-point discretization of the Laplacian. The additional points inserted after
the third pass can be seen at the processor interfaces.
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algorithm 3.4 AmgRS3(52,, S, C,, F},)
begin
C, = Cy;
AmgPhasell(09,, S, C,, F,);
for ¢ > p do
send C’p M, to processor g; communication
od
for ¢ < p do
receive C, N Q, from processor ¢; communication
C, <+ C,UC,NQy;
od;
end

3.2. CLJP coarsening schemes

In contrast to the previously described methods, the CLJP coarsening scheme [HMY02]
is an a priori parallel coarsening algorithm. The main idea is to form the coarse grid
as the union of multiple, in parallel constructed, independent sets D C 2. To describe

this algorithm, we first write the strong couplings as an influence matrix S = (Sij)f,vj:l,
where
1 ifje SZ’,
S = JEo (3.4)
0 otherwise.

This matrix defines a directed graph on the set of points 2. As in the Ruge-Stiiben
case, we assign a weight w; to each node ¢ €  and initialize it such that it measures
the “usefulness” of this point as a coarse point, i.e. w; = |S}| . The CLJP algorithm,
however, requires adjacent nodes to have different weights. To this end, we add a random
component g; € [0,1) and obtain w; = |S!| + o;.

We now construct the independent set D. A vertex i of the graph is added to D if its
weight w; is larger than the weights w; of all adjacent neighbors j € S; U ST. Then, the
weights of all vertices j ¢ D are modified using the following heuristics,

H1 D-points, i.e. newly created coarse grid points, do not require interpolation. If j
influences a D-point i, we reduce the weight w; by one and remove the edge S;;
from the graph.

H2 If both k£ and j depend on a D-point ¢ (i € S; N Sk) and k depends on j (j € Sk),
we reduce w; by one and remove Si; from the graph, as the value at k can be
interpolated from ¢ directly.

If the weight of a vertex is less than one, it is not needed for interpolation. We remove
this vertex from the graph and add the corresponding point to the set of fine grid points
F. After the heuristics have been applied to all undecided nodes j, we add D to C
and remove all vertices in D as well as all incident edges from the graph. Now, a
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Figure 3.3.: Discretization grid of a 9-point stencil after application of the first (left)
and second (right) heuristics of the CLJP algorithm. The numbers indicate
the weights w; (without the added random number). Arrows indicate the
direction of influence, lines without arrays indicate bidirectional influence.
Fine grid points are blue, D-points red.
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communication step is needed to update the weights and the current C'/F distribution.
Then, we continue choosing a new set D until the whole domain is split into C' and F'.

In Figure [3.3| we show the meshes of a 9-point stencil after the application of both
heuristics, respectively. We give the overall CLJP program in Algorithm [3.5] The CLJP
algorithm runs entirely in parallel. Moreover, if the random number assignment does
not depend on the domain decomposition, the C'/F-splitting will also be independent
of the parallel layout. Furthermore, depending on the fine grid matrix (direction of
anisotropy /diffusion coefficients etc.) the CLJP process can coarsen up to a single point
without the need for some subdomain agglomeration on coarser levels. As a neighbor
of a coarse grid point is, however, not forced to become a fine grid point, this method
produces denser coarse grids than the Ruge-Stiiben algorithm. This can e.g. be seen

from Figure [3.4(a)l

CLJP-c coarsening The CLJP-in-color (CLJP-c) [AIb06) [AIb07] approach is a mod-
ification of the CLJP algorithm which aims at overcoming the issues described above.
First, we observe that the results of the CLJP algorithm depend heavily on the random
numbers (7). These random numbers are needed for tie-breaking only, so the question
arises whether one could utilize another tie-breaking mechanism that employs informa-
tion about the graph.

Here, the key idea is to first color the graph, i.e. to assign a color to each node
such that two adjacent nodes do not have the same color. Now, we assign a weight
cw = (c—1)/]c| € [0,1) to each color ¢ and add it to the vertex weight, i.e. in Algorithm
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(a) CLJP coarsening (b) Falgout coarsening

Figure 3.4.: CLJP and Falgout coarsening schemes applied to a 5-point discretization
of the Laplace operator, distributed among 4 processors. Depicted are the
C/F-splittings on the finest level, where the blue squares indicate the fine
grid points ¢ € F' and the red squares the coarse grid points j € C.
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Figure 3.5.: CLJP-c coarsening for a 9-point stencil. We assume that the green color
corresponds to the highest augmentation weight (3.5))
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algorithm 3.5 CLJP algorithm CLJP(Q, S, ST,C, F, D)

begin
C + 0;
F « 0,
for i € Q) do
w(i) < |S]| + o (i);
od;
while CU F # Q) do
ifD=1(
then
for i € Q do
if w(i) > w(j) forall j € S;UST
then
D« DU {i};
fi;
od;
fi;
fori € D do
for j € .5; do
w(j) < w(y) — 1L
Si +— Si\{7};
od;
for j € ST do
for k € SJT do
if ke ST
then
w(j) < w(j) —1;
SjT +— SJT\{k},
fi;
od;
S« SI\{ih
od;
od;
for i € Q) do
if w(i) <1 then F' « FU{i} fi;
od;
C <+ CuUD;
D « (;
od;
end;

heuristics [H1

heuristics [H2
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3.5 we replace the step
w(i) = [8]] + o (d)

by
w(i) = |SF| + cw(color(i)). (3.5)

Here, ¢; denotes the set of all colors (represented by integers) in the graph. Figure
3.5| shows the coloring of a nine-point stencil. We assume that the green nodes have
obtained the highest augmentation and see that after the first CLJP iteration, most of
the interior is already partitioned into coarse and fine points.

algorithm 3.6 AmgFalgout(92, S, ST, C, F)

begin
AmgPhasel(Q,, S, ST, C,, Fp); where the \; are initialized globally
AmgPhasell(2,, S, C,, F},);
D, < C, N §Qy;
D= UZZ 1 Dy; no communication, each processor just manages its own part of D
C <+ 0;
F « 0
AmgCLJP(Q, S, ST, C, F, D); parallel algorithm
end

Falgout’s coarsening scheme Falgout’s coarsening process [HMY02] is a hybrid coars-
ening scheme that comprises the classical Ruge-Stiiben algorithm as well as the CLJP
algorithm.

Again, like the RS3 algorithm, every processor applies the first and optionally second
pass of the Ruge-Stiiben algorithm to its local subdomain (with global weight initializa-

tion). The resulting coarse grid points in the interior 2, = Q, \ 02, then form the first
independent set for the CLJP algorithm, i.e. D = C NU,,. This special initialization

eliminates most inner edges of the graph restricted to €, in the first CLJP iteration.
Thus, only few additional coarse grid points will be added to the interior during further
CLJP steps. Hence, the coarse grid structure there is very similar to a Ruge-Stiiben
one. Near the boundaries 0€),, however, the coarse grid is completely constructed by
the CLJP algorithm.

On coarser levels, if the ratio of boundary to interior points increases, the coarsening
becomes more and more CLJP-like. Again, it is possible to coarsen up to a single point
for appropriate operators. We give the pseudo-code of Falgout’s method in Algorithm
. In Figure , we show an example of the Falgout algorithm applied to a five-
point stencil. We clearly see a denser coarse grid near the boundaries, while the interior
of each subdomain is coarsening Ruge-Stiiben like.
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3.3. PMIS and HMIS coarsening schemes

3.3. PMIS and HMIS coarsening schemes

We continue with another coarsening method based on parallel maximal independent
set techniques. The PMIS coarsening scheme is a simplification of the CLJP algorithm,
while the HMIS algorithm is its respective counterpart of Falgout’s coarsening method
[SMYHOG].

The aim of the algorithms is to produce smaller coarse grids than the CLJP counter-
parts. As in the case of Ruge-Stiiben based aggressive coarsening (Section , we relax
condition [CI] and only require that condition holds:

C1’ Let ¢ € F'. Then there exists at least one j € S; N C.

N
i,j=1"

1 ifjes;,
Sij:{ 1 gy €

0 otherwise,

Again, we define the influence matrix S = (5;;) where

and construct the undirected graph G = (V, E') where
V=Qand E={(i,j) e VxV|S;=1orS; =1}

As in the CLJP method (Algorithm [3.5)), we introduce vertex weights w; = |SI| + o (i),
where (i) € [0,1) is a uniformly distributed random number. First, we eliminate all
isolated points from the graph, i.e. all i € V that satisfy |ST| = 0. Then, we proceed
to the main PMIS iteration: We choose an independent set I from G, where i € [ if
w(i) > w(j) for all j: (i,7) € E. I is then added to the set of coarse grid points C,
while all strongly dependent points {j € V. C I | 3i € [ : (j,i) € E} join the set of
fine grid points F. The newly created coarse and fine grid points are removed from the
graph and the iteration starts over, see Algorithm

The main difference to the CLJP algorithm is that strongly influenced neighbors of
newly created coarse grid points are immediately assigned to the set of fine grid points.
While this is also done in the classical Ruge-Stiiben scheme, here no weights are up-
dated and hence strongly connected —yet undecided— points of these fine grid points
are not more likely to become coarse grid points. Moreover, the PMIS algorithm does
not include a second pass that checks whether two strongly connected fine grid points
share a common C-point to interpolate from. In consequence, interpolation may suffer
from a loss of stability and either long-range interpolation schemes (like extended inter-
polation, see Section [2.8.6) must be used or the resulting AMG hierarchy can only be
used as preconditioner for a Krylov subspace iteration. On the other hand, the PMIS
algorithm produces sparse coarse grids (see e.g. Figure and is a truely parallel
algorithm that can construct a coarse grid regardless of the domain decomposition.

Analogous to Falgout’s coarsening method, the HMIS coarsening scheme is a combi-
nation of classical Ruge-Stiiben coarsening and the PMIS algorithm. In this case, only
the first pass of the Ruge-Stiiben algorithm is carried out to obtain the first indepen-
dent set for the PMIS algorithm. The second pass does not make sense here, as the
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3. Parallel AMG

algorithm 3.7 PMIS algorithm AmgPMIS(Q, S, ST, C, F,I)

begin
C + 0
F+—{jeQ: S]T:(Z)};
V=Q\F;
E={(j)eVxV:ieSorjebs}
forv €V do
w(i) = |ST| + o (i):
od;
while C'U F' # €2 do
if [ ==
then
fori e V do
if w(i) >w(j) foralljeV: (i,j) € E
then
I —TU{i};
fi;
od;
fi;
fori € D do
for je STNV CIdo
F—FU{j}
V< VA{L
od;
od;
C<+ CUl,
V<« V\I
I+ 0;
od;
end;

algorithm 3.8 AmgHMIS(2, S, ST, C, F)
begin
AmgPhasel(Q,, S, ST, C,, Fp); where the \; are initialized globally

I, < Cp, N Qy;

I = U;ﬁ s no communication, each processor just manages its own part of

C «+ 0;

F < 0;

AmgPMIS(Q, S, ST, C, F, I); parallel algorithm
end
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3.3. PMIS and HMIS coarsening schemes

(a) PMIS coarsening (b) HMIS coarsening

Figure 3.6.: PMIS and HMIS coarsening schemes applied to a 5-point discretization of
the Laplace operator, distributed among 4 processors. Depicted are the
C/F-splittings on the finest level, where the blue squares indicate the fine
grid points ¢ € F' and the red squares the coarse grid points j € C.

PMIS scheme only aims to enforce condition [CT’} not [CI} Again, we initialize the first

independent set [ = C'N Upép using the interior coarse grid points constructed by the
Ruge-Stiiben algorithm and proceed with the PMIS iteration. The HMIS method is
outlined in Algorithm an example is shown in Figure We clearly see that
the coarsening at the processor boundaries is sparser than in the interior (in contrast to
Falgout’s coarsening algorithm, where the opposite is true, cf. Figure [3.4(b))).

Remark 3.2 Aggressive coarsening variants of the PMIS and HMIS algorithms are de-
scribed in [MY10]. As in the case of Ruge-Stiiben aggressive coarsening, these algorithms
employ the concept of strong n-connections (Definition . The strength matriz S™ is
then defined as follows,

om _ )4 if i depends on j w.r.t. (¢, m),
+ 0 otherwise.

In practice, usually the cases | =2 and p =1 or p = 2 are used. For p = 1, the coarse
grid can be constructed by two subsequent applications of PMIS/HMIS to the strength
matrix S . The grid obtained by the first run (denoted by C’) serves as input for the
second application, where the vertex weights are now derived from the matrix 2 N C.
Note that in the second stage, isolated points may not be removed first, as they could
serve as the only interpolation point for a whole region within the domain. Like in
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Figure 3.7.: Resulting coarse grids for the problem with mixed derivatives from Example
constructed by three different initial choices. The green points indicate
the respective coarse grid points, the red point indicates the first coarse grid
point chosen.

the sequential case, aggressive coarsening requires long-range interpolation techniques
to ensure an accurate coarse grid correction.

Remark 3.3 We note that, like in the CLJP-c case, it is also possible to use a graph
coloring instead of random numbers for tie-breaking [AIb0T7].

Remark 3.4 Parallel maximal independent set algorithms are also used within parallel
smoothed aggregation algorithms (Section [2.11.2)), see [TT00].

3.4. CGC coarsening

In this section, we describe the coarse grid classification (CGC) algorithm introduced

n [Met04, [GMOS06, [GMS06]. As with the RS3 and MSB methods, we employ the
classical Ruge-Stiiben coarsening algorithm. Here, instead of repairing the coarse grid
structure at the processor interfaces, we create coarse grids that (mostly) match at these
boundaries. The remaining inconsistencies can be removed by a simplified version of the
RS3 boundary fixing mechanism.

In our parallel coarsening method, we exploit a characteristic of the Ruge-Stiiben al-
gorithm that is closely related to its sequential nature. We recall that this classical
algorithm determines the coarse grid points in dependence of the previously selected
points. Hence, we can guide the coarsening process by changing the initial choice for the
first coarse grid point. In Figure we give an example of three different coarse grids
resulting from different initial choices. Note that in the sequential case, the quality of the
resulting coarse grids with respect to multigrid convergence and memory requirements
is very similar. Hence, there is no special advantage of using either one of these coarse
grids in a sequential computation. On the other hand, we have an additional degree
of freedom in our coarse grid selection process. We can use this freedom to compose a
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3.4. CGC coarsening

global coarse grid from the coarse grids we have constructed for each processor subdo-
main (2, individually.
More precisely our approach works as follows: First, we independently construct multiple
coarse grids on each processor domain by running the classical algorithm multiple times
with different initial coarse grid points. Note that this procedure is computationally
efficient, since the classical Ruge—Stiiben algorithm requires only a very small amount
of compute time compared with the construction of the transfer and coarse grid opera-
tors, while a well-constructed grid can save a large amount of time during the operator
construction and in the multigrid cycle.
After the construction of these coarse grids on all processors, we need to select exactly
one grid for each processor domain such that the union of these coarse grids forms a
suitable coarse grid for the whole domain. We achieve this by defining a weighted graph
whose vertices represent the grids constructed by the multiple coarsening runs. Fdges
are defined between vertices which represent grids on neighboring processor domains.
Each edge weight measures the quality of the boundary constellation if these two grids
are chosen to be part of the composed grid. Finally, we use this graph to choose one
coarse grid for each processor subdomain which automatically matches with most of its
neighbors.

In our implementation, see Algorithm [3.9] each processor p first determines the maxi-

algorithm 3.9 CGC algorithm CGC(S, ST, ng, {C;}4,,{F;}}%,)
for j < 1to || do \; < |S]|; od;
Co < 0; Apax < argmaxpeq A
do
U Q\U<;t Ci;
if maxyey Ak < Amax then break; fi;
it it+1; Fy<0; Cy < 0;
do
J 4 arg maxgey A;
if \; =0 then break; fi;
Cit +— C U{j}; A < 0;
for k € SJT NU do
Fy < Fy U{k}; A < 0;
forl € S, NU do A\ + A\ +1; od;
od;
for k€ S;NU do A\, <~ A\ — 1; od;
od;
od
ng < it;

mal weight Ajay of all points 7 € €2,. As mentioned earlier, every point with this weight
can be chosen as an initial point for the classical coarsening algorithm. We choose one
particular point ¢ and construct a coarse grid C(,) ;. We now re-initialize the weights
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3. Parallel AMG

Figure 3.8.: Three possible C'/F-constellations at a processor’s domain boundary. The
red points belong to C', the blue points belong to F'.

Ai := |S7] of all remaining points i € Q\ C,)1 to their original values. From these
points, we select another point j with weight Ama and construct a second coarse grid
C(p),2 starting with this point. Only points not contained in C(;); may be inserted into
Cp 2, 1.e. we construct disjoint coarse grids. We repeat these steps as long as there is a
point with weight A,.« that is not already a member of a coarse grid C,) ;. Note that
the number of iterations is bounded by the maximal number of strong couplings |S;]
over all points ¢ € ,,, which in turn is bounded by the maximal stencil width. Hence,
the number of constructed grids ng, per processor p is independent of the number of
unknowns N and the number of processors np. Note that the coarse grids that are
constructed later may be of inferior quality compared to the first ones but the selection
mechanism described in the following will avoid these grids.ﬂ

Now, we have obtained ng, valid coarse grids {C(,);};% on each processor p. To deter-
mine which grid to choose on each processor, we construct a directed, weighted graph
G = (V, E) whose vertices represent the created coarse grids,

np

Vp = {C(p),i}izl,...,ngpa V= U V;"

p=1

The set of edges E consists of all pairs (v,u), v € V,, u € V, such that ¢ € S, is a
neighboring processor of p,

E={U U @w). B=E,

qESy vEV), ueVy p=1

where S, is defined as the set of processors ¢ with points j which strongly influence
points ¢ on processor p, i.e.

S, ={qg#p: FieQ, jeQ,: je s}

To determine the weight y(e) of the edge e = (v,u), we consider the nodes v € V,,
u € V,. Each of these particular nodes represents a local C'/F-splitting (C,, F},) for €2,
and (C,, F,) for Q,, respectively. Together they form a C/F-splitting for the domain
2, U Q,. At the processor subdomain boundary, three grid configurations can occur,

IThe initially chosen point ¢ still has some influence on the constructed coarse grids due to our disjoint
construction. This may lead to some matching problems in applications where the coarse grids have
special structure, e.g. strong anisotropies.
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Figure 3.9.: Application of the CGC algorithm to a 5-point stencil, distributed among 4
processors. The figure on the left shows the assignment of the points to the
coarse grids. The figure on the right shows the weighted graph.

see Figure We denote by coc the number of strong C' — C-couplings (left), by
co,r the number of strong C' — F-couplings (center) and by cpp the number of strong
F — F-couplings (right). Based on these classes of couplings, we define the edge weight

v(e) == cecvoo + (cor + cro)Yor + CrrYFF

with ye.c, Yor, 7rr € R defined as follows: The most important case is the F' — F-
coupling case. Here, two fine grid points ¢ € F, and j € F| are strongly coupled,
which can lead to two problems: These two points may not have a common C-point
to interpolate from, which violates condition . On the other hand, even if is
satisfied, we have to transfer the matrix rows a; and a; to construct a stable interpolation
operator. Therefore, this situation must be avoided, which motivates us to penalize
strong [’ — F-couplings with a large negative weight vpp := —8.

The strong C'—C-couplings should also be avoided because they can increase the operator
and the grid complexity. We therefore set y¢ ¢ := —1. In the remaining case, which
can be considered as the (optimal) sequential coarsening scenario, we do not add an
additional weight, i.e. yop := 0.

Figure shows the graph G = (V, E) obtained by our CGC algorithm for a 5-point

discretization of the Laplacian. We can observe that constellations with C'—C—couplings
and F' — F—couplings are heavily penalized, while constellations with C' — F'—couplings
are weighted by zero only.
Since we now have constructed the graph G of admissible local grids, we can use it to
choose a particular coarse grid for each processor such that the union of these local grids
automatically matches at subdomain boundaries. Observe that the number of vertices
is related to the number of processors np only; i.e., it is much smaller than the number
of unknowns N. Furthermore, the cardinality of E is small compared to N since edges
are only constructed between neighboring processors. Thus, we can transfer the whole
graph onto a single processor without large communication costs.
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3. Parallel AMG

(a) Sequential coarsening on one processor (b) CGC coarsening

Figure 3.10.: CGC coarsening applied to a 5-point discretization of the Laplace operator,
distributed among 4 processors (right), compared to sequential coarsening
on one processor (left). Depicted are the C/F-splittings on the finest level,
where the blue squares indicate the fine grid points ¢ € F' and the red
squares the coarse grid points j € C.
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3.5. Outlook: CGC-ML coarsening

On this processor, we choose exactly one node v, from each subset V,, C V with the
following scheme: We denote by C the set of the selected local coarse grids.

1. First, we define heavy edges or couplings H, between the nodes v of the graph,
where p denotes the processor which v belongs to (i.e. v € V},),

H, 1= Uges, {w [7(v, w) = maxy(v,u)} and H] = {w | v € H,}.
ucVy

The heavy edges indicate which coarse grid on processor ¢ can be fitted best to the
coarse grid represented by v € V,,. We assign a weight A\, to each node v, where
A\, = |H,|+|HT|. This weight indicates how many coarse grids on other processors
can be fitted to the coarse grid represented by v.

2. For some processors p, all nodes v € V, might have weight A\, = 0. As this
means that there are no strong couplings across the subdomain boundary, any
grid constructed on this processor can be chosen. Here, we choose one arbitrary
v € V,, and remove V), from the graph.

3. We choose the node v € V,, with maximal weight, put it into C and remove the
subset V), from the graph, as a coarse grid for domain €2, is now determined. We
then increase the weight of each node w € H, U HI to the maximal weight of all
remaining nodes in the graph plus one (so that one of these will be chosen in the
next step), and repeat this step as long as the graph is not empty.

This procedure takes up to np steps, one for each processor domain, see Algorithm [3.10]
for details. After running the algorithm, we transfer the choice v, € C NV, back to
processor p. Now, the union of all elements in C defines the global consistent grid for
the complete domain, see Figure [3.10(b)] Here, this grid does not differ from the coarse
mesh produced by the sequential Ruge-Stiiben coarsening (Algorithm [2.5) applied to
the whole domain.

Recall that after applying the first phase of the Ruge-Stiiben coarsening, there may
exist a few fine grid points with strong connections to other fine grid points only. These
strong couplings are however very rare. In the sequential phase, this is corrected by the
second pass of the classical coarsening scheme. To correct these very few couplings across
processor boundaries, we employ a more straightforward method: We check whether a
fine grid point is strongly coupled to other fine grid points only and insert this point
into the coarse grid if that is the case. Hence, the CGC algorithm (essentially) employs
no special boundary treatment.

3.5. Outlook: CGC-ML coarsening

The contents of the following section have been previously published in [GMSO0S].

The main advantage of CGC over other parallel AMG coarsening schemes is that the
constructed coarse grids are very close to those produced by a sequential AMG. On the
other hand, the original CGC has one major drawback: The graph representing the
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algorithm 3.10 AmgCGCChoose(V, H,C)
begin
C « 0;
U+,
forv e U do \, + |H,| + |HT|; od;
forp < {1,...,np} do
if A\, =0 forallvel,

then
C + {v}; arbitrary v € V,
U U\ Vp;
fi;
od;
while U # ()
do
U $— arg maXyey Aw;
C + CU{v};
U U\ 'V, such that v € V;
Amax $— MaXyey s
forw e (H, UHT) NU do Ay < Apax + 1; 0d;
od;
end

candidate coarse grids needs to be transferred to a single processor. For large numbers
of processors (np £ 1000) this leads to large communication costs as well as a significant
run-time for the coarse grid selection Algorithm [3.10]

In this section, we outline an alternative which bypasses this costly communication step.
To this end, we reduce the size of the graph by a coarsening process that collapses vertices
which already represent well-matching grids, i.e. we construct a multilevel hierarchy
of graphs. This coarsening process can be carried out in parallel and only requires
communication inside small subsets of all involved processors. On the coarse levels
of this hierarchy, the vertices now represent candidate coarse grids on unions of the
processor subdomains. As before, the edge weights penalize connections between non-
matching grids.

As the graph becomes coarser, we agglomerate it on fewer and fewer processors. Finally,
we can choose a single vertex in the coarsest graph that represents a candidate coarse
grid on a large part (or even all) of the computational domain. By this choice, all
candidate coarse grids which were recursively collapsed into this vertex are designated
to be a part of the global coarse grid.

In the following, we will describe this algorithm in more detail. We construct the graph
G = (V,E) as described in the last section. In addition, we assign a weight to each
vertex which denotes the number of processor subdomains covered by the coarse grid
represented by this vertex. Naturally, this weight is initialized with 1.

We do not transfer the whole graph onto a single processor. Instead, we proceed as
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follows:

1 We agglomerate the graph on a subset of the processors, see Figure[3.11(b)l Hence,
a part of the edges (in this case, the vertical edges) does not cross the processor
boundaries any more.

2 Now, we can employ an edge matching on the inner edges of each processor
subdomain, see Figure [3.11(c)l We match each vertex u to a vertex v that is

not already matched and for which the edge is least penalized, i.e. w(u,v) =
min,,, (u,w)EWw(u7w>'

3 We collapse the matched vertices and merge the edge sets, see Figure . Each
vertex now represents a candidate coarse grid on a union of processor subdomains.
Accordingly, we update the vertex weights, i,e, the number of subdomains covered.
The edge set of each vertex u is the union of the edge sets of the vertices v, w
that were collapsed into u: E, < FE, U E,. Note that we never create an edge
between two vertices which represent candidate coarse grids on the same processor
subdomain. If two edges are collapsed into the same edge, we add their edge
weights.

4 We repeat the previous step until no further matching is possible. Then, we again
agglomerate the graph on a smaller subset of processors. If we are already on a
single processor and cannot match further, we stop, see Figure |3.11(e)| —3.11(f)!

We have obtained a small set of vertices on a single processor. Now, we choose one vertex
u such that it covers a maximal number of processor subdomains and mark it, see Figure
. Then, we mark the vertices v and w that were collapsed into u. We recursively
proceed to refine this choice until we have reached the original graph, see [3.12(b)| —
. Now on each processor subdomain, the candidate coarse grid represented by
the marked vertex is selected as a coarse grid for this processor subdomain and we
obtain a coarse grid for the global discretization domain as depicted in Figure
During this refinement process, we must ensure that one vertex is marked per processor
subdomain on each level of the graph hierarchy. In consequence, this will guarantee
that after finishing the refinement, we have selected one candidate coarse grid on each
processor subdomain. In our implementation, we proceed as follows: At each step in
the refinement process where more processors are involved as in the previous step (i.e. a
processor agglomeration was performed in the matching phase), we determine if a vertex
is marked on each processor. If this is not the case, we mark the vertex that is most
heavily coupled to the marked vertices on neighboring processors.

Numerical Results We conclude this section with an example computed on the JUBL
supercomputer at the Forschungszentrum Jiilich. This IBM BlueGene/L cluster, which
was in service between 2005 and 2008, consisted of 8192 compute nodes which were
connected by a three-dimensional torus for local communication and a tree-shaped net-
work for collective communication. JUBL performed 36.49 Tera-flop/s in the LINPACK
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Figure 3.13.: Distribution of the diffusion coefficient for problem (3.6]).

benchmark and held the 8th position on the Top 500 list in June 2006.

Each compute node contained two Power 440 processors running at a clock speed of
700MHz and provided 512MB of memory. This small amount of memory necessitates
algorithms with little memory overhead, which can be a strong limitation in the case of
parallel AMG especially for three-dimensional computations.

We consider an elliptic PDE on a unit cube,

—V-a(x,y,2)Vu=f (3.6)

with Dirichlet boundary conditions. The value of the coefficient a(z,y, ) is depicted in
Figure We discretize the PDE on a finite difference mesh with 31 x 31 x 31 points
per processor subdomain. We compare the CGC-ML algorithm with the original CGC
algorithm as well as the HMIS parallel coarsening algorithm (Algorithm [3.8)). In the
latter case, we use a hybrid coarsening process where the CLJP algorithm is employed
on the coarsest levels of the AMG hierarchy. For the CGC-ML algorithm, we merged
eight processor subdomains per agglomeration step. To limit the memory overhead, we
do not include the second stage of the Ruge-Stiiben coarsening process in the CGC and
CGC-ML cases, and we use modified classical interpolation (see Section[2.8.4). A (more
stable) long-range interpolation scheme was not feasible due to the memory limitations
— even if we truncated the interpolation operator. As strength threshold in (2.29), we
set @ = 0.25. On each level of the multigrid hierarchy, we employ a hybrid Gauss-
Seidel /Jacobi smoother.

In this example, we use AMG as a preconditioner for the conjugate gradient method.
We start the iterations with a zero initial vector ug and stop if the residual r;; = f— Auy;
drops below 1078 measured in the {?>-norm.

As can be seen from Table [3.1], the CGC-ML algorithm yields a significant run-time
benefit compared to the original CGC algorithm. The HMIS coarsening scheme is even
faster and produces less memory overhead than the CGC variants (Table . However,
the grids produced by this method are too sparse to provide an accurate interpolation
of the smooth error. In consequence, the iterations needed to reduce the residual below
le — 8 increase for a larger problem size as can be seen from Table [3.4 For 1728 and
4096 processors (372 x 372 x 372 and 496 x 496 x 496 unknowns respectively), 1000
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np HMIS-CLJP

CGC CGC-ML
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1
8

64
216
512
1,728
4,096

0.70
1.32
1.61
1.88
1.82
1.87
2.07

0.66
1.58
297
3.27
4.83
75.20
529.00

0.66
1.59
2.70
3.03
3.30
6.91
19.30

Table 3.1.: Setup time in seconds

np HMIS-CLJP CGC CGC-ML

1 2.64 264 2.64

8 2711 2.78 2.77

64 275 2.95 2.88
216 270 2.86 2.86
512 2711 2.88 2.88
1,728 273 3.07 2.97
4,096 2712 291 2.92

Table 3.2.: Operator Complexity

np HMIS-CLJP CGC CGC-ML

1 1.11 1.11 1.11

8 2.10  2.56 2.76

64 6.76  4.69 4.94
216 9.13  5.22 6.03
512 16.10  6.64 6.46
1,728 - 28.30 19.00
4,096 — 29.80 27.60

Table 3.3.: Solution time in seconds

np HMIS-CLJP CGC CGC-ML

1 12 12 12

8 20 24 26

64 61 36 41
216 7 39 44
512 144 49 44
1,728 — 151 101
4,096 — 123 83

Table 3.4.: Tterations

Table 3.5.: Numerical Results for problem ({3.6)).

iterations were not sufficient to reach this threshold. The CGC variants also need more
iterations here, but the increase is less severe. In turn, the solution phase CPU timings
for the CGC variants are lower than those of the HMIS-coarsened AMG hierarchy, see

Table 3.3
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4. AMG for Saddle Point Systems

In the following, we consider saddle point systems of the shape

K : (%) N G’V) Ko =y (4.1)

K — (g fgé) - <Z) and y — (g) (4.2)

Here, A is a symmetric positive semi-definite N x N-matrix, C' is a symmetric positive
semi-definite M x M matrix and B € RM*N_ Ag an important class of saddle point
systems arises within the context of fluid dynamics, we will refer to u € V as the velocity
component(s) and p € W as the pressure component.

This chapter is organized as follows. First, in Section we introduce Stokes’ equations
as a model saddle point problem and discuss conditions for the existence and uniqueness
of a solution. We proceed with finite difference and finite element discretizations for
saddle point problems in Section Classical iterative solution methods for saddle
point problems are described in Section [4.3] In Section [4.4] we address several previous
approaches to the construction of AMG for saddle point problems, before we start in-
troducing our saddle point AMG. We first give a detailed description of our smoother
in Sections Afterwards, we discuss the construction of stable (invertible) pro-
longation and coarse grid operators in Sections [£.7H4.10] We conclude this chapter with
the overall setup procedure for saddle point AMG, see Section [4.11]

where

4.1. Stokes equations

The Stokes problem is one of the most-known systems of partial differential equations
(PDEs) with saddle point structure. It models the velocity u and the pressure p of a
viscous flow in a domain Q C R? (d = 2 or d = 3) subject to an external force f,

-V-(Vu)+Vp = f (4.3)
~V-u = 0

subject to to the boundary conditions

u(z) = r(z)foralx elp (4.5)

g—;(:y) —np(z) = s(z)forallzely (4.6)
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4. AMG for Saddle Point Systems

where 0Q = I'pUI'y and n denotes the outer normal vector on I'yy. Note that the ve-
locity u is a vector-valued function of dimension d, while p has scalar values.

The equations (4.3)—(4.4) have a unique solution (u, p) only if both the Dirichlet bound-
ary I'p and the Neumann boundary I'y are non-trivial. However, in many applications
we have 0€) = I'p, i.e. the velocity of the fluid is prescribed on the whole boundary. In
this case, while there is still a unique solution for the Velocity, the pressure is unique up
to a constant c, i.e. for any solution ( ) of (4.3 . - u*, p* + c) is also a solution
for any constant function c € C'(Q).

The Stokes problem belongs to the class of saddle point problems. The solution of ([4.3)-
is not a minimizer of a quadratic functional, but represents a saddle point. In the
following, we give a general formulation of this kind of problems.

We consider the Hilbert spaces V and W as well as the corresponding dual spaces V' and
W' Let < -,- >yyxv and < -, - >wxw denote the bi-linear forms given by

<u,f >yey="f(u) and < p,g >wxw=g(p),

foralueV,feV, peW, and ge W.
Given a linear operator A : V — V' and f € V/, we seek the minimizer of

(u, Au—f)y .\ (4.7)

N | —

but, in contrast to the elliptic case, we need to satisfy a constraint
(w,Bu —g)y,w =0 forallw e W, (4.8)

where g € W and B : V — W' is a linear operator. The adjoint operator B’ : W — V' is
defined by < v, B'w >yyv=< w,Bv >yw,w forallveV, weW.

We introduce the Lagrange multiplier p € W to combine (4.7)) and into a single
Lagrange functional

L(u,p) = = (u,Au—f)y .\ + (P, Bu— )\ - (4.9)

1
2
It is easy to see that L(u, p) is not bounded. Hence, a solution (u*, p*) of

(v,Au+B'p—f)y,, = OforallveV
(w,Bu—g)y,w = OforallweW

is only a saddle point (not a minimizer) of L(u, p), i.e. we have
L(u*,p) < L(u*,p*) < L(u,p”)

for all u € V, p € W, see [Bra9d7] or [Hac86] for details.
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4.1. Stokes equations

Existence and uniqueness of a solution As in the case of elliptic partial differential
equations, we formulate necessary and sufficient conditions for the existence and unique-

ness of a solution to (4.7)—(4.8))

Let the spaces V and W be equipped with norms || - ||v and || - |lw. We consider the

system of equations
A B u f
(6 5) ()= () w0

Furthermore, we define the nullspace of B,
Vo={veV: Bv=0}. (4.11)

As Vq is a closed set, we can decompose V = Vo @&V, , where V| = V. For the dual
space V' we have V' = V([ & V', where

Vo={VeV: (V,v)=0forallveV,},
Vi ={V/eV: (V,v) =0 for all v € Vp}.

Using these subspaces, we can decompose A,
A — Ao AoL
Ao ALl

A001V0—>V6, AOL:VL_>V67 Al01V0—>Vl, ALLZVL—>V,¢.

where

Theorem 4.1 ([Hac86G], Theorem 12.2.7) The saddle point system (4.10) has a unique
solution for all f € V' if and only if the inverses

Ag Vo — Vo and (B) " : V| —» W (4.12)
exist.
In terms of the norms || - [|v, || - |lw, can be expressed as [Hac80]
Aug, v
o;ﬁiul(}gvo oiegv W > a>0, (4.13)
inf sup (Bw,v) > ¢>0. (4.14)

0#peW o vev |[pllwllvlv

The first inequality is fulfilled if the bilinear form (A-.,-) is elliptic w.r.t. V or Vy, see
[Hac86], Corollary 12.2.10. The latter inequality is called Ladyzenskaya-Babuska-Brezzi
(LBB) condition or inf-sup-condition [Bre74]. In the following sections, we will see that
this condition is not only required in the continuous case, but also plays an important
role to show the stability of a discretization as well as the stability of coarse grid systems
within a saddle point multigrid hierarchy.
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4. AMG for Saddle Point Systems

Weak formulation In this paragraph, we shortly outline the weak formulation of the
Stokes problem. As ansatz and test spaces for the velocity we use

Hp(Q)* = {ve H'(Q)": v, =r} (4.15)
Hp ()" = {ve H(Q)*:vr, =0}. (4.16)

while for the pressure we use L?(Q2). Now, the weak form of (4.3)—(4.4) together with
the boundary conditions (4.5)—(4.6|) reads as follows.
Find u € HL(Q)¢ and p € L*(Q) such that

/Vu:Vv—/pV~v = /f-v—l—/ s-v forall v e Hy, (Q), (4.17)
Q Q Q M~
/ rV-u = 0forallre L*(Q), (4.18)
Q

where Vu : Vv = Zle Vu; - Vy; is the component-wise scalar product.

We now formulate the invertibility conditions for 7. To this end, we restrict
ourselves to the case of zero boundary conditions on I'p. We use V := H}EO(Q)d as
ansatz space and note that Hp, (Q)¢ C V'. From the theory of elliptic partial differential
equations, we know that

a: Hp () x H ()" = R, a(u,v) := / Vu: Vv
Q

is continuous and coercive over Hy, () x Hy, (Q)%, hence it follows that holds.
It remains to formulate the inf-sup condition (4.14)). Here, we must distinguish between
two cases depending on the boundary conditions @f.

In the case of €2 = I'p, the pressure solution is unique only up to a constant. This is
reflected by the definition of W,

w::{pewﬂ): /Qp:o},

equipped with the usual L?-norm. By this definition, the only constant function in W is
identical to zero. Otherwise, if Iy # @, then we set W = L?(Q). The inf-sup condition

reads 5
inf  sup bRl 5 oy (4.19)
O#Pewo;éveHgo(Q)d ”p”L2(Q)HVHHé0(Q)d

where the inner product b(v,p) : Hy, (Q)? x L*(Q) — R is defined by

b(v,p) := /QpV-v.

We refer to [Hac86] and [Bra97] for a more detailed description as well as for sufficient
criteria to establish the LBB condition (4.19)).
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4.2. Discretization of Saddle Point PDEs

(a) Velocity stencil (b) Pressure derivatives (c) Checkerboard instability

Figure 4.1.: Finite difference discretization grids for the Stokes problem Au = f on the
square [0, 1]2.

4.2. Discretization of Saddle Point PDEs

In this section, we outline various finite difference (FD) and finite element (FE) dis-
cretization schemes for saddle point problems, especially for the Stokes’ equation. As
in the continuous case, it is important that the discrete operators A and B satisfy an
inf-sup condition . Moreover, in the case of a non-trivial Neumann boundary [y,
the matrix B” should have full rank, while in the case of Dirichlet boundary conditions
everywhere the kernel of BT should just represent the constant pressure, which in most
cases means that the kernel of B” is spanned by a constant vector. Unfortunately, the
most obvious discretization schemes are not suitable.

4.2.1. Finite Difference Discretization

We start with finite difference discretizations. For sake of simplicity, let us assume
Q = (0,1)%. We choose a mesh width h < 1 and cover Q with an equidistant grid with
1

n + 1 points per spatial dimension (where n = ),

Qp={r=(21,...,00)" €Q: ;=73 -h, i €{0,...,n}}. (4.20)

In the following, we assume 02 = Ip, i.e. we only have Dirichlet boundary conditions.
A first approach is to discretize the quantities u and p at the grid points in €, i.e. in
the case of d = 2 we set

w; j := uy(ih, jh), v; j := uz(th, jh), pi; = p(ih, jh),
fij = f1(th, jh), gi; = fa(ih, jh)

To achieve an appropriate accuracy, we employ a central difference scheme for the pres-
sure and the usual 5 point (two dimensions) or 7 point (three dimensions) FD stencil
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4. AMG for Saddle Point Systems

for the velocity. For example, in two spatial dimension we obtain the following algebraic

equations for each 7,7 = 1,...,n — 1 (see Figure 4.1(a)H4.1(b))),

1 1
7w (A g — Wij1 — Wis1j — Wir1j — Wijr1) +or (Piv1j — Picry)  =fig,  (421)
1 1
e (4vij — Vijo1 — Vic1j — Vit1j — Vijt1) +op (Pije1 — Pij—1)  =Yij, (4.22)
1
o (UiJrl,j —Uj15 + Vi1 — 'Uz',jfl) =0. (4.23)

Boundary entries (i.e. g, Unj, %i0s, Uin), Vo5 Unyjsr Vi0s) v1,,) are replaced by their
respective values r and transferred to the right hand side, such that these are no longer
contained in the vectors u and v.

Note that the discretization of the derivatives % and g—z at (x;,y;) does not involve the
discrete value p; ;, but these derivatives are computed from the neighbors p;11 ;, pi—15,
Pij+1, Pij—1. Likewise, the discrete divergence only employs the values ;i1 j,

Ui—1j, Vit14, and v;_1 ;. In matrix-vector notation, we obtain a linear system

0 Ay BY vl =1y (4.24)
By By 0 P 0

where the matrix blocks A; and A, are obtained from the discretization stencil

1
ﬁ—lél—l

-1
while the BI and BI parts are originated from the stencils
1

1 1
%[—1 0 1] and o _01 ,

respectively.
We now look at the equations at the point (i + 1, j). They take the form

1 1

pp (Rliy = Uivro1 = Uig = Uiz — Uirrge1) o (Divzg — Pig) =i+,
1 1

2 (4Vig1j — Vig1j-1 — Vij — Vigaj — Vir1j1) +% (Pit1jt1 = Pit1j-1)  =Gi+1
1

oy (Uit2g = Ui + Viszg = Vi) =0.

We see that the derivative % is discretized using the values at ¢, j and 142, j and that the
divergence term involves w2 j, Ui, Vito,;, and v; ;, i.e. in comparison to (4.21)—(4.23)),
a completely disjoint set of discretization points (and hence discrete values u, v, p) is

120



4.2. Discretization of Saddle Point PDEs

used. The same phenomenon can be observed throughout the whole discrete domain €.
More precisely, any discrete pressure value p; ; is only coupled to pressure values “two
points away”, i.e. p;j—2, Di—2j, Pi—2,j, and p; j1o, see Figure . In consequence, the
matrix B can be decomposed into two decoupled parts Bogq and Beye, such that (after
re-arrangement of rows and columns),

_ (Boaa O
B_(o BW)'

Simple observations (consider e.g. (#.21)—(4.23)) show that the kernels of both BZ,, and
BT contain the constant value. In consequence, the matrix BT has a two-dimensional

nullspace,

ker BT = Span (podda peven)

1if i+ j odd
where (Poda)i; = 0 if i 4 j even

where (peven)ij = 0if i+ 7 odd

{1 if + + 7 even
This space forms a checkerboard-wise pattern across the domain, see Figure .
Hence, this phenomena is called checkerboard instability.

A remedy against this problem is to use a staggered mesh, i.e. to discretize the velocity
components and the pressure variables at different locations. We describe this technique
in the two-dimensional case here, but it is also applicable to three spatial dimensions
(see e.g. [GDNOS]).

As before, we use the mesh €2, as defined in , but we now consider it rather as a
union of cells

Qi; = {(z,y) €eQ: (i—-1)-h<z<i-hy (j—1)-h<z<j-h;},

where i,7 = 1,...,n, see Figure 4.2(a)l We discretize the pressure variables at the
centers of these cells,

o () o)

and let p;; = p ((z — %) h, (j — %) h) The velocity component u (z-direction) and the
first component of the right hand side are discretized at the centers of the interfaces
between two adjacent cells in z-direction,

o () o 1]
= o(n(i-a)).
- (o-1))

1\}

uij
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4. AMG for Saddle Point Systems
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(a) Staggered grid with point (¢,7) and (b) Velocity stencil for Au (ih,j — %h)
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Figure 4.2.: Staggered grid discretization for the Stokes problem Awu = f on the square
[0, 1]%.
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4.2. Discretization of Saddle Point PDEs

Likewise, the velocity component v and the right hand side component f, are discretized
at the interfaces between two adjacent cells in y-direction,

Q, = {<(i_jh%)h)), i=1,...,n; j:O,...,n}
w = (1= D)),
i~ o((i- ) ).

For each of these sets, we define the interior by

Q0 :=Q,N(0,1)% Q°:=Q,N(0,1)7
i.e. we take away the first and the last points of €2, in z-direction, and the first and last
points in y-direction of €2, .
We now have exactly one pressure value per cell €; ;. The pressure derivatives Q—E and

% are now approximated by the differences between two adjacent cells (Figures [4.2(c)

9y
and [12()),

@ . Pi+1,j — Pij
r h
@ _ Pij+1 — Dij
Y - h

fori=1,....,.n—1, j=1,...,n,
fori=1,...,n, j=1,....,n—1,

which shows that these finite difference terms can be seen as central differences for the
pressure derivative at the points in €27 and €27, respectively.
We can now discretize the impulse equations. We obtain one scalar equation for all

i=1,...,n—1,7=1,...,n (Figure 4.2(b))),

1 1
2 (4ui,j — U1 — Ui—1,5 — Ujp1,5 — Ui,j+1> + h (pi+1,j - pi,j) = fijs (4.25)
and one equation for each i =1,...,n, 7 =1,...,n — 1 (Figure 4.2(d))),
1 1
7z (Wig = Vije1 = Vieag = Uiy — Vig) + o (Piger = Pig) = Gig, (4.26)

Finally, the continuity term is discretized per cell (i,7 = 1,...,n) (Figure |4.2(f))),

1

oy (Wi = im1 + Vi = vig—1) = 0.

The latter equation can be seen as an incompressibility constraint for each cell: It
requires that the sum of all ingoing and outgoing fluid matter is equal to zero.

It remains to eliminate the boundary entries from the equations above. The treatment
of Dirichlet boundary conditions is straightforward for u if + = 0 or = 1, and for v if
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4. AMG for Saddle Point Systems

y =0 or y = 1. In other cases, some extrapolation is needed. For example, the Dirichlet
boundary value r(z,0) for u at y = 0 is used to replace u; ¢ by linear extrapolation,
w0 = 2r(ih,0) — u; 1.

Substituting into (4.25)) we obtain

1 1

ﬁ (5Uz‘,1 — Uj—1,1 — Ui+1,1 — Ui,z) + E (pz‘+171 - pm) = le
Regarding Neumann boundary conditions, let us assume that these are imposed for
x = 1. We discretize (4.6) by

1 1 .
o (Unt1,j — Un—1,5) — 5 (Pn+1y +Pny) = si1(1,7),
1

%(Un,j_vnfl,J) = SQ(Ljh)a

and insert these into (4.25)—(4.26|) (here, (4.25) is also needed for i = n). We obtain for
all j=1,...,n—1,

1 2 2 .
ﬁ (4Un,j — Upj—1 — 2Up—1; — Un,j+1) - Epn,j = fn,j + Esl(ld)?

1 1 2 .
o (3Vn,j = Vnjo1 = Unj — Unjy1) + 7 (Prji1 = Pnj) = Gnj + ES2(1,Jh)-

Note that we can rescale the first equation by 0.5 to obtain a symmetric operator A (if
all of the boundary at = 1 is included in I'y).
We again obtain a linear system of the form (4.24))

0 A2 Bg (% = g\,
B, By 0 P 0

but the stencils for the BT and BI blocks are different. They now read
1 111

To formulate the inf-sup condition for the two-dimensional case, we restrict ourselves
again to the case of zero Dirichlet boundary conditions on the whole of 9€2. We define
three mesh-dependent inner products [SS97],

n
(p7 Q>07Qp = h2 Z pl,] : Qi,j7

i,j=1
n
(u, “/)mu = Z(Um — Ui—1,5) - (u;,j - U§_1,j) + (i — uij-1) - (u;,j - u;’,j—1>’
i,j=1
n
(v, U/)mv = Z(Um — Vi-1y) - (’U;j - Uz{—l,j) + (vig — vij-1) - (U;,j - U;j—l)'
i,j=1
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4.2. Discretization of Saddle Point PDEs

These bilinear forms and their induced norms |- |lo.0,, || ||1,0. || -[/1,0,, can be interpreted
as mesh-dependent counterparts of the L? and H' inner products and norms. We define
L*(9),) as the space of all discrete functions over ,,

L3(@,) = {p: 9, — R}
Furthermore, we define the space of all functions with zero mean over €,,,
Lg(€) = {p € L*() : (p, 1) = 0}
and the spaces Hj(€,) and H}(£,),

Hy(Q) = {u:Q, — R, ulr =0},
Hi(Q,) = {v:Q, =R, v|p =0}

Theorem 4.2 ([SS97l], Theorem 4) There exists a positive constant ¢, which is indepen-
dent of h, such that

(Blu + B2U7p)g7Qp

sup

2 C||p||2 for all p € L2(Q ). (4.27)
weHY (), veri@) 1Ulf a, + V113 q, 0,2, 2(Q,

Straightforward calculations show that (Byu + Bgv,p)aﬂp = h* (u"Bf +v"B}) p and
[ullf q, + v3q, = h? (v Ayu+ 0" Ayv). Hence we obtain, in terms of the discrete al-

1‘(1)1 ;1)2) and B = (Bl BQ),

gebraic vectors u, v, and p and operators (matrices) A = (

(W™, 0T) B p)"
sup

> ¢||p||% for all p € L3(9,). (4.28)
w€HE (Qu), vEHE () (uT,vT)A (u)
v

where || - || denotes the Euclidean norm.

4.2.2. Finite Elements for Saddle Point Systems

We now turn ourselves to finite element (FE) methods for saddle point problems. As in
the case of finite differences, a straightforward extension of scalar discretizations is not
sufficient to achieve stability and thus invertibility of the algebraic system.

First, we define discrete (finite-dimensional) spaces V, C V and W, C W and the
corresponding bases,

Vi, = span{¢;:i=1,...,N} (4.29)
Wy = span{¢;:i=1,...,M}. (4.30)
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4. AMG for Saddle Point Systems

The variables u and p can be represented as

N M
up = Zui¢ia P= Zwi¢i-
=1 =1

From the weak formulation (see Section [4.1)) we obtain a linear system of equations,

N M

> wja(gi¢) + > pib(di, ;) —(f,¢;) foralli=1,... N, (4.31)
=1 =1

JN J
> uib(¢;, vi) — (g, ) foralli=1,..., M, (4.32)
j=1

or, in matrix-vector notation,

A BT\ (u\ _[f
B 0)\p) \y
where the entries of A = (a;;) € RY*Y and B = (b;;) € RM*Y are given by

3(¢i7¢j)=/ﬂv¢i:V¢j forallé,j =1,..., M,
bij —b(¢j,wi)—/ﬂzw~¢j foralli=1,...,M, j=1,...,N,

and u = (UJ)] 1P = (pj)] 1 f fz i=1 9 (gl>z 1 where

/cbz 6 = /wzg

Note that the ¢; are vector-valued functions, i.e. they map into a d-dimensional space.
In the most common cases however we choose to have distinguished basis functions per
dimension, i.e.

0

¢i = | ¥

0
where ¢; is a scalar-valued function. In consequence, in case of the Stokes equation the
matrix A has no non-zero couplings between different velocity components.

Example 4.1 Let a finite element mesh for the domain Q = (0,1)? be constructed as
in Figure We use a lexicographical ordering of the nodes (z;,y;) and construct a
nodal basis {p;}7_; (i.e. wi(x;,y;) = d;; for alli,j = 1,...,n) where all p; are piecewise
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4.2. Discretization of Saddle Point PDEs

21 22 23 24 25

16 N\J17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

Figure 4.3.: Finite element mesh on the domain Q = [0,1]*> with lexicographical node
numbering.

linear functions on the triangles 7 such that (z;,v;) € T and zero on all other triangles.
Now, we extend these ¢; to a basis for discrete velocity and pressure space,

Cbz‘:(%) forve=1,...,25,
0
0 .
gbi:( ) for ¢+ = 26, ...,50,
Pi—25
Vi = @i fori=1,...,25,

Furthermore, we assume that we have imposed Dirichlet boundary conditions on the
whole boundary 092. In consequence, all degrees of freedom for the velocity variables u
and v vanish on the boundary, hence the corresponding ansatz and test functions can
be removed from the discrete spaces. We obtain

Vi, = span{¢; i€ {7,8,9,12,13,14,17,18,19,32, 33,34, 37, 38,39, 42, 43, 44}}

25
Wy = span{wi:izl,...,%}ﬂ{/ Zwﬂﬂi:O}.
[0,1]2

=1

Now , the discrete pressure space W, has dimension 24 ( 25 degrees of freedom at the
nodes minus one for the constant function), while the velocity space V), only has 18
degrees of freedom (9 for each component, as boundary values are already eliminated).
Hence, the matrix BT cannot be injective and the matrix

(5 )

To ensure a stable (invertible) system, we introduce discrete counterparts of (4.13))—
(4.14)), i.e. we require that these conditions hold for discrete spaces V, and W, and

is singular.
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4. AMG for Saddle Point Systems

discrete operators A and B,

A
inf  sup {Auo,v) > ap >0, (4.33)
0#u0€EVh,0 0£veV), HUO‘ Vi UHVh
B
Y A
0#£peEW), 0#£veEV), HpHWh ”UHVh

by, > 0. (4.34)

Here V0 is defined analogously to (4.11)),

Vh70 = {U € Vh : By = 0}

Theorem 4.3 ([Hac86], Theorem 12.3.6) Let a(-,-) : VXV = R and b(-,-) : W x V —
R be continuous,

a(u,v) < Collullvllvllv,  b(p,v) < Chllpliwllvilv

feV andg e W, and dim V), < oo. Brezzi’s conditions (4.33)—(4.34)) are sufficient and
necessary for the existence of a unique solution for the discrete problem (4.31)—(4.32)).
The discrete solution (u,p) satisfies

1 1
(Nl + pll)* < Co (AR + Nlglir) *

where CYy, depends on ay, and ¢y, as well as C, and Cy. If for a sequence of discretizations
we have
ap > a >0, bh2b>0

for all parameters h, then the discretization is called stable and the C} are bounded,

Cy, < C for all h.

In the case of Stokes’ equation with Dirichlet boundary conditions, we need V), C
(H}(2))? and Wy, C L3(2). For bounded €, (4.33)) is satisfied. The inf-sup condition

(4.34) translates into

b
inf  sup b(p.v) > b, > 0. (4.35)

0£pEWn 0vev;, [Pl 2@Vl 1 (@)

Alternatively, we can use a higher order ansatz for the pressure, W, C H'(Q). Then, if
Q is a Lipschitz bounded domain, the Poisson problem has H?-regularity and if we had
an approximation property of the form

1nf{||u — UhHHl(Q) Uy € Vh} S CAh||u||H2(Q) for all u € HQ(Q) N H&(Q)
as well as an inverse inequality

HuhHm(Q) S ClhilHuh”Lz(Q) fOI‘ all Up, € Vh,
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4.2. Discretization of Saddle Point PDEs

® O
o e’ O |

(a) P, — P, element (b) PyisoP2y — P1 el- (c) Bubble element (d) Crouzeix-Raviart

ement element

Figure 4.4.: Triangular reference elements for saddle point problems. The black dots
denote degrees of freedom for velocity, the blue dots denote pressure degrees
of freedom.

then the following condition is sufficient for (4.35)), see [Hac86], Theorem 12.3.8,

- |b(p, v)|
1n sup
0£peWnh 0vev, [Pl @)1Vl L2(0)

> by, > 0. (4.36)

In the following, we introduce some finite element methods that fulfill one of these inf-
sup conditions. One idea is to increase the number of degrees of freedom for the velocity
components, while another approach is to introduce an additional stability term. Beside
the techniques described in the following, there are many more approaches to create
stable finite element methods for saddle point systems. We refer to [GS98] and [ESWO05]
for a detailed introduction. We use the notation from [Wab03].

1 The first idea is to replace the piecewise linear ansatz functions for the velocity by
piecewise quadratic bases. We obtain
V), . piecewise d-dimensional quadratic elements for the triangulation 7y,

W, . piecewise linear elements for the triangulation 7p,.
(4.37)
This approach is called Taylor-Hood element, or P, — P; element, i.e. quadratic
ansatz functions for velocity and linear ansatz functions for pressure.

2 An alternative version of the Taylor-Hood element is denoted by PjisoP, — P;. We
uniformly refine the triangulation 7;, to obtain the triangulation 7» (new nodes

2
are created at the midpoints of each edge , see Figure |4.4(b)|) and use this refined
triangulation for the piecewise linear discretization of the velocity only.
V), : piecewise d-dimensional linear elements for the triangulation 7‘%7

4.38
W, . piecewise linear elements for the triangulation 7. ( )

3 Another approach is to enrich the space V), by one bubble function per triangle
T € T. For example, in two spatial dimensions we define,

(Pbubble(xu 3/) = :cy(l — T = 3/)

129



4. AMG for Saddle Point Systems

on the reference element {z,y > 0, x +y < 1} and wpuppe = 0 else. The discrete
spaces Vj, and W, for this so-called MINT element (Figure 4.4(c))) are then defined
by

V.l . linear combinations of piecewise scalar linear elements

and bubble functions for the triangulation 7y,
Vi = (V)Y (4.39)
W, : piecewise linear elements for the triangulation 7j,.

For each triangle 7', the scalar products f Ooubble,7®i are nonzero only for those
p; that correspond to the nodes of the triangle 7. Hence, it is easy to eliminate
the degrees of freedom that belong to the bubble function and to obtain a linear
system for the nodal functions only. This introduces an additional nonzero matrix
block —C' in the lower right part of K.

4 The Crouzeix-Raviart element or P — P, element employs a non-conforming
ansatz for the velocity, i.e. V), ¢ HY(Q)%

Vb {u, € L*(Q)? : vy, is piecewise linear per triangle 7 € Ty,

vy, is continuous at the midpoint of all element edges (faces) }
Vi = (V1 (4.40)

W, . piecewise constant functions per triangle 7 € Tp,.

In contrast to the elements described above, the degrees of freedom for the velocity
are determined at the midpoints of the edges (faces) of the element. The pressure
is determined at the center of the triangle, see Figure . In an alternative
definition of this elements, the velocity basis is constructed such that all v, € V),

are divergence-free per element 7 € T, and the pressure component is eliminated,
see [Bra97].

Theorem 4.4 ([Hac86], Theorem 12.3.11 and Theorem 12.3.12) Let T), be a quasi-
uniform triangulation for the polygonally bounded domain 2 and let Vy, and W, be defined

by either (4.37), (4.38)), or (4.39)). Then, the stability criterion (4.36|) is satisfied. If, in

addition, Q is Lipschitz bounded and the Poisson problem is H*-reqular, then also (4.35))
holds.

Instead of adding degrees of freedom to the velocity space, we can introduce an additional
stability term into the lower right component of the matrix, i.e.

A BT
K= ,
B -C
where C' € RM™*M js a symmetric positive semi-definite matrix. In the case of 9Q =
[p, the (discretization of the) constant vector must lie within the nullspace of C. For
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4.2. Discretization of Saddle Point PDEs

a uniform grid, it is possible to use a discrete Laplacian (with Neumann boundary
conditions), i.e. instead of (4.18)) we discretize

N M
— ~ . 4 Ap2 o .
;/ﬂ%v ¢; — Bh ;/QV%V% Oforalli=1,..., M. (4.41)

This stabilization technique however involves a parameter [ that needs to be carefully
chosen. Moreover, in the case of non-uniform meshes the geometry of the mesh must
be reflected in the Laplacian (by introducing some anisotropy). A parameter-free and
more robust alternative is given by [BDGO06],

Cyy = / (0 — I, oy — Iy, (4.42)
Q

where II is the projection on the space of functions that are constant on each element.
In other words, C' is a mass matrix for the basis {¢); }, minus an averaging operator.

The stabilization techniques (4.41) and (4.42) can be applied not only to triangular
(2D) or tetrahedral (3D) elements (P, — P; elements), but also to rectangular and brick
elements (@1 — Q1-elements).

Lemma 4.1 ([BDGO0G], Corollary 2.4) Let Vi, and Wy, given by

Vi = ({veCQ): vlpeP(T) for al T C T} HHQ))
W, = {velC’Q): v|lr € A(T) for all T C T} NLQ),

in the case of simplicial elements, or,

Vi = ({vec®Q): vlp=00F"% o e€Qi(Thy)} N HYQ)"
Wy = {vel’Q): vlp=00F7" o€ Qi(Trey)} NLHQ)

in the case of quadrilateral and hexahedral elements. Here, Pi(T) denotes the space of
all linear polynomials on T and Q1(T,.r) denotes the space of all polynomials on the
reference element T,.; whose degree does not exceed 1 in each coordinate direction, and
F Ty — T is a bilinear or trilinear mapping. Furthermore, let the corresponding
Poisson problem be H?-reqular. Then, there exist constants ¢, and co independent on h
such that the weak inf-sup condition

pV v
sup fQ— > c1||pll ez — col|(I = ID)pl|r2) for all p € Wh, (4.43)

veEV ||U||H1(Q)d
holds.

We see that the stability matrix C' appears on the right hand side of the modified inf-sup
condition (4.43)). It remains to show that this condition is also sufficient for the solution
of the discrete problem Kz = y.
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4. AMG for Saddle Point Systems

Theorem 4.5 ([BDG06], Theorem 4.1)

1 If11: L*(Q) — L*(Q) is continuous (i.e. ||IIp|| 2@y < cullpllrz@ for allp € L*(Q),
we have

(u,0)"K(v,0) < ex (Il e + Ile@) (Il + lallz@) — (444)
for all (u,p) and (v,q) in V, X Wh,.
2 Under the assumptions of Lemma 4.1}, there exists some constant ¢ > 0 such that

(u,p)" K (v, q)
sup
0#£VEV), 0£gEW), HUHHI(Q)d + H(J“LQ(Q)

for all (u,p) € Vi x W,

> ¢ (lull e + Pl r2@) (4.45)

The message of this theorem is that the following variational problem is well-posed.
Seek (u,p) € Vi, x W), such that

u" Av+p" B +u'BTq —p'Cq=v"f +q"g for all (v,q) € Vi x W,

We have re-gained stability by adding an additional term. This idea will also play an
important role to ensure the stability of the coarse level systems for our saddle point
algebraic multigrid method.

4.3. lterative solvers for Saddle Point Systems

We now discuss several iterative solution methods for saddle point systems. First, we
introduce the generalized minimal residual (GMRES) algorithm, which, in exact arith-
metic, converges within m iterations for any non-singular matrix K € R™*™. Then, we
describe some iterative solvers and smoothers aimed at saddle point matrices.

4.3.1. GMRES

The generalized minimal residual (GMRES) method [SS86] is a generalization of the
minimal residual (MINRES) method introduced in [PS75]. While the latter requires
that K is symmetric and an optional preconditioner Q must be symmetric positive
definite, the GMRES method is not restricted to this case.
Both methods belong to the class of Krylov subspace methods. A Krylov subspace is
spanned by powers of K applied to the right hand side vy,

K"K, y) = span{y, Ky, ..., K"y},

After each iteration it, the current approximation z minimizes the residual over the
Krylov space,

Jmin |y = K|
xztej{zt(K’y)
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4.3. Iterative solvers for Saddle Point Systems

To this end, the GMRES algorithm constructs an orthonormal basis of X*(K, y). As the
number of iterations grows, this requires O(it - m) memory to store all of these vectors.
Hence, in practice one often restarts GMRES, i.e. after a certain amount of steps we
start the iteration with the current approximation z% as the initial guess and abandon
the previously created orthonormal vectors. In Algorithm [4.T]we give the preconditioned
restarted GMRES algorithm.

4.3.2. Uzawa methods

The Uzawa method is a well-known iterative solver for saddle point systems of the form
(4.1). In each iteration, the following equations are solved ([Bra97], algorithm 5.1),

Auit+1 — f - BTpit (446)

pit-l-l — pit 1o (Buzt o szt . g) ) (447)

Note that the previous velocity iterate v is not used at all, instead u*! is computed to

solve the momentum equation Au®*! + BTp" = f given the pressure iterate p*. Hence,

for convergence considerations, we only need to monitor the pressure p. We eliminate

u® from and obtain
P = it 4 (BA—IBT n C') (p _pit> 7

where p denotes the pressure part of the exact solution for . We have convergence
for o < m, see [Bra97].

A drawback of this method is that we must solve Au?*! = f — BTpi* within each
iteration, i.e. we need a direct or iterative solver, e.g. geometric or algebraic multigrid,
for A.

To circumvent this difficulty, one can choose to solve only inezactly, i.e. to replace

by o A A
A (uzt—i-l _ uzt) _ f _ Auzt _ BT zt’

where A is an easily invertible preconditioner for A, e.g. A = ol for some number «
(Arrow-Hurwicz method [AHUS5S]).

A symmetric version of the inexact Uzawa method is also possible. The iteration then
reads [Wab03|, [Zul02]

w =+ A7 (f - Aut — BTp") (4.48)

pz‘t—H _ pz‘t + S«—l (BU* . sz‘t o g) (449)

wittl = gt — A1 BTyt (p1 — pt) | (4.50)

i.e. we first compute a predictor velocity u* and then use it to determine v#*! and p®*!.
Note that can be rewritten as

Wt — it 4 A1 (f — Auit — BTp*+1) | (4.51)

We will further discuss the inexact symmetric Uzawa method in Section 4.5l The additive
version of our saddle point AMG smoother also belongs to this class.
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4. AMG for Saddle Point Systems

algorithm 4.1 GMRES(k,K, Q,y,x,tol) ([Wab03], algorithm 2.11)
begin
choose initial guess 2°;
'+ Q7 Yy — Ka%); apply preconditioner
21 ¢ lg';
¢ q"
while |z1| > tol do
for j < 1to k do form orthonormal basis
¢~ QK
for i < 1 to it do
hij < q - ¢
qj+1 — qj+1 o hz’,jqi;
od;
hjiy < la7;
ql — ‘qj_%r1|q]+1;
od
for j < 1to k do seek minimizer

2 2 .
d =\ /hi;+hias

h..
¢ i
S —hj*c'll’j;
hjj < d;
forv <7+ 1to k do
hjis=c-Tji+s- i
hjpri <= s hji—c-hjpg;
od;
Zj &= C- Zj;
Zj41 £ 8-z,
od;
Qp < —h'zkk;
for i < k to 1 do

1 k .
Q; < i (Zz — Zj:i-l—l h@jO&j) ;
od;
P — 2% + Zle a;q"; update iterate
rk — O~y — Kab); preconditioned residual
20 zF; Y — ok restart
21 = |0

1 1,.0.
gt < s

od;
end
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4.3. Iterative solvers for Saddle Point Systems

4.3.3. SIMPLE

The (semi-implicit method for pressure—linked equations (SIMPLE) method [PS72] [Pat80]
is another approach to circumvent the exact solution of (4.46|). We determine an auxil-
iary vector u* that satisfies

Au* :f—BT it’

where A is some approximation to A. To obtain the next velocity iterate ut1, we first
need to compute a pressure correction ¢*,
¢ =—aS™! (Bu” — Cp"t — g) , (4.52)

Here, S denotes an approximation to the Schur complement BD~'BT + (', where D is
the diagonal of A. The damping parameter a must be chosen such that no overshooting
occurs. Finally, we obtain the new iterates for velocity and pressure by

W=t —aD BT, T =t g (4.53)

It remains to define A~! and S, which describe the action of a linear solver. Depending
on the size and the shape of A and BD'B” + C, we might choose direct methods,
relaxation processes like Jacobi or Gauss—Seidel, or even (algebraic) multigrid methods.
Several variants of the SIMPLE method have been developed (SIMPLER, SIMPLEV,
SIMPLEC [VDR&4]). Note that, as in the exact Uzawa iteration, the previous velocity
iterate u' is not used to obtain u*! and p*.

4.3.4. Transforming Smoothers

The idea of transforming smoothers [Wit89, (Wit90] is to multiply the matrix I from the
left and the right by some non-singular matrices Ky and Kr and to apply a standard
smoothing method to the transformed system,

ZH =2t K7V (Kpy — K KKR2™) |
In terms of the original unknown x, we use x = IC}_zlz and re-write the iteration,
2 = 2" 4 KKK (y — Ka™)
A possible choice is ([Wit89], Section 3.1)

[ A-\BT (BA-'BT 4+ C)F
Ky =1, ICR:< ( +C) >

0 —(BA'B"+C)'F

with some positive definite matrix F. for example, one can take F' = (BA™'BT + (),
or a discretization of the Laplacian on the pressure grid. The transformed system takes

the form y
0
KKr = (B F) .
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4. AMG for Saddle Point Systems

A suitable smoother for the transformed system only needs to posses the smoothing
property for the diagonal blocks A and F' [Wit90], i.e. we can set

- Ky 0

(v &)
where Ky and Kp can be chosen e.g. to be the scaled diagonals (Jacobi), the diagonals
and the lower right blocks (Gauss—Seidel) or an incomplete LU discretization of A and
F, respectively. Under certain assumptions on the discretization, the smoothing ratio
for the transforming smoothers applied to a Stokes problem can be shown to range from
O(\/iﬁ) (damped Jacobi) to 0(1“7’;) (ILU), where it denotes the number of iterations

([Wit90], Theorems 3.1.4, 3.1.7, 3.2.1).

4.3.5. Braess—Sarazin smoother

In contrast to the exact Uzawa and the SIMPLE methods, the Braess—Sarazin smoother
[BS97] computes the iterates u*! and p"*! from the old velocity iterate u®. To this
end, let A=a diag(A), where « is chosen such that A > A Furthermore, let S be a
preconditioner or approximate solver for the Schur complement BA-'BT + C. Then we

can compute the iterates u®*! and pi*! as follows,
w =t AT (f - Au') (4.54)
Pttt = —S7l g — Bu'], (4.55)
ut =yt — AL BTt (4.56)
It can be shown that the Braess-Sarazin smoother possesses a smoothing ratio of O(%)

(IBS97], Lemma 3.2 and Theorem 5.1).

4.3.6. Vanka Smoothers

The smoother introduced in [Van86] treats velocity and pressure updates simultane-
ously. This method was first introduced within the context of a multigrid method for
staggered mesh discretizations of the Navier—Stokes equations. Here, a global symmetric
block Gauss—Seidel iteration processes all discretization cells. On each such cell, a small
saddle point system is solved to obtain an update for the pressure unknown and velocity
unknowns belonging to this cell.

The multiplicative variant of our smoother for saddle point AMG also belongs to this
class. We postpone a further discussion to Section [4.6]

4.4. Towards AMG

We now summarize some previous approaches to the algebraic construction of a multi-
grid hierarchy for saddle point systems.
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We start with an AMG method for constrained systems, especially contact problems,

[Ada0d] of the form )
%) 0)-(0)

where A is obtained from the discretization of a PDE and B comprises the constraint
equations (contacts). An AMG method for the A part is assumed to be available, that
is, we have a hierarchy of interpolation operators {P, ZL:_ll, coarse grid operators { A},
and smoothers denoted by M;, [ = 1,...,L. It remains to construct interpolation

operators { P} £, for the Lagrangian multipliers. Then, the overall coarse operator can

be constructed as
pr0N (A B\ (P 0
0 PlT B 0 0 B/

The main idea is to compute a symmetric auxiliary matrix G; for the Lagrangian mul-
tiplier space and to derive the coarse grid and the interpolation operator by using plain
unsmoothed aggregation AMG techniques (see Section [2.11.2)) applied to G;. Within

the context of contact problems, the ansatz
G, := BPP'Bf

is preferred, as this allows to maximize the angles between the coarse level constraints
B = PZTBIPZ, see [Ada04] for details. The constraint interpolation P, is constant per
aggregate and scaled such that PT P is the identity.

Smoothing is performed by either symmetric inexact Uzawa smoothing[4.3.2Jor a Schwarz
subdomain smoother, where each subdomain consists of a subset of the constraints as
well as the primal variables involved.

A special case is the saddle point AMG proposed in [LOS04]. Here the constraints
describe the Dirichlet boundary conditions for a reproducing kernel particle method
(RKPM) applied to an elliptic partial differential equation. More precisely, the entries

of B are computed by
bij = / i tr i
Mp

where the ansatz functions 1); are defined throughout the domain 2 and are used for
the discretization of the PDE, while the basis functions t; are defined on the boundary
I'p C 02. Here, tr denotes the trace operator on the boundary Ip.

The coarsening process for the constraints employs a matrix C' defined by

Cij = - &zlﬁy

Then, a smoothed aggregation algorithm [2.11.2] is applied to both A and C' to obtain
interpolation operators P and P for the ansatz and the constraint space, respectively.
the overall interpolation operator is assembled as

()
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4. AMG for Saddle Point Systems

and the coarse grid operator is computed by the Galerkin product PTP.
The smoother employed here takes the form of a Braess-Sarazin method (4.54)—(4.56)),
N e [BuD BT B (ut + wD N (f — Au™)) — g]
Wt it wD L — Autt) — wD BT,
that is a w-damped Jacobi iteration for the ansatz space, while a direct solver is used to
compute [BwD_lBT]_l.
In [Wab03], [Wab04], [Wab06], a monolithic semi-algebraic AMG approach to the so-

lution of the Navier-Stokes equations is described. To this end, the incompressible
Navier-Stokes equations

%u—uV~(Vu)+(u‘V)U+VP = f (4.57)
~V-u = 0 (4.58)

given on a domain Q C R?, d = 2, 3, are linearized to obtain the Oseen equations,

%u—uV-(Vu)—l—(w-V)u%—Vp = f (4.59)
—V.u = 0. (4.60)

Here, (assuming that the fluid is Newtonian, i.e. has a constant shear to stress ratio,)

the kinematic velocity v := % is defined as the quotient of the dynamic viscosity p and

the density p, which both depend on the material. As in the case of Stokes’ equations,
we additionally introduce boundary conditions on 9Q = IpUrl y,

u(z) = r(z)forall z €lp, (4.61)
V—n(JZ) —np(x) = s(z) forall z € Iy, (4.62)

and (as we consider an instationary problem), initial conditions for ¢ = 0,

U|t:0 = U, P|t:0 = Po- (4-63)

For a detailed introduction to these equations, we refer to [GS98] and [ESW05].
The linear Oseen equations f can be used inside a fixed point iteration for
—, where the newly introduced vector field w is set to the previous approx-
imation of u. Now, using a finite element discretization for the spatial variables and a
time-stepping scheme, we end up with a linear system of equations of the form

coe= (5" %) (5)= (1)

A(w) = 1M + Ap + coAc(w) + c3As(w) + cyAr(w) (4.64)

Here,
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consists of a mass matrix M which stems from the time discretization, a diffusion matrix
(Laplacian) Ap, non-symmetric convection and reaction matrices Ac(w) and Ag(w) and
a symmetric positive definite convection stabilization matrix Ag(w). Depending on the
discretization, C' is zero or a pressure stabilization matrix, see Section
Depending on the element chosen, the coarsening is either performed element-wise (i.e.
AMGe, cf. Section for the Crouzeix-Raviart element , or point-wise (clas-
sical Ruge-Stiiben) by coarsening the nodes of the finite element mesh. In case of a
P, — P,-stab discretization , the same coarse mesh is used for all physical un-
knowns u and p, while in case of the PjisoP, — Pl-element , the pressure mesh
is coarsened first and the velocity mesh at each level [ > 2 is identical to the pressure
mesh at level [ — 1|H In all cases, the interpolation is unknown-wise, i.e.

Ppy 0 0 0

=¥ 0 0
&
P = 0 Py, O or P = 0 Py O 0
0 0 Py 0 0 Py, 0
0 0 0 Py
where each Py,,i=1,..., d is a scalar interpolation scheme. The coarse level system is

computed by the Galerkin product with two slight modifications: the coarse convection
stabilization term Ag;;; part needs to be rescaled,

AS’,Z—H = _PVZAS,ZPVZ
N+1

to prevent oscillations, and, in the case of the P1-P1-stab element, the matrix C;, 1 needs
to be computed as
—1
Ciy1 = WPVTVZCIPW“

where M; := P}, --- Pj, M Py, --- Py is the Galerkin projection of the fine level (pres-
sure) mass matrix M to level I, D, is the diagonal of one of the component blocks of
Ap,, and h is the mesh width on the finest level.

The stability of the coarse level systems, i.e. the existence of a discrete inf-sup condition
on all levels can only be shown with additional geometric information. In the case of
PlisoP2-elements, a rigorous analysis is not known and stability can only be motivated
heuristically. We refer to [Wab03], [Wab04], and [Wab06] for details. We now give the
stability lemma for the P1-P1-stab element, which will be the basis of our more general

stability results presented in Sections [4.8H4.10]

Lemma 4.2 ([Wab03], Lemma 4.3) Assume that for all elements 7 € Ty the diameter
h. fulfills
ah < h, < ah,

IFor stability reasons, it might be necessary to use the pressure mesh at level [ — 2 instead for { > 3
and let the velocity mesh at level 3 be identical to the finest mesh.
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4. AMG for Saddle Point Systems

with positive constants o and & and the discretization parameter h, and assume further
that Ap; is symmetric and of essentially positive type ([2.28)) and that for all v; € V' we
can find v, € Vi1 such that

lor = P I3, < Blull%,,, (4.65)

with some constant B. Then for all levels | € {1,..., L} there ezist positive ¢; and d

such that B
v 1
P> alpllag — di (07 Cp)? for all p € W

sup
ovevt V]l ap,
The approximation property is fulfilled for many of the classical AMG interpolation
operators, see Section m
In the remainder of this chapter, we describe the components of our algebraic multigrid
approach to saddle point problems. Unlike the ansatzes introduced above, we are not
restricted to specific discretizations or geometric information. We only need to know the
decomposition of the saddle point matrix /C,

A BT
K- ( 4L C) .
In many applications, the vector u describes discretization of two or three physical
quantities (e.g. the velocity components in different spatial directions). In consequence,
A itself is a discretization of a system of elliptic partial differential equations. We have
already presented three approaches to system AMG methods in Section [2.12} First,
one can ignore the decomposition into the physical unknowns and just apply AMG
to A (VAMG, Section . The second possibility is to split A by the physical
components (velocity directions) and to apply scalar AMG component-wise (UAMG,
Section . The third ansatz is to utilize additional information to sort the matrix
A by (discretization) points (PAMG, Section [2.12.3)). All of them can be combined with

the techniques described below to obtain an algebraic multigrid method for saddle point
systems.

4.5. The smoother I: An inexact Uzawa scheme

In this section, we introduce a convergence theory for a class of inexact Uzawa relaxation
schemes developed by [SZ03]. This theory can be applied to any predictor-corrector
scheme of the form (4.48)—(4.50)),

o= u

it +A—1 (f o Auz’t o BTpit)
pit+1 — it + S«—l (Bu* o C«pit _ g)
zt+

uitt A1 (f _ Autt — BTpit—H) 7

SIS

where A and S are symmetric positive definite matrices that serve as preconditioners
for A and BA™'BT + C respectively. We require that

A>Aand S >BA'BT +C (4.66)
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where F > F again means that the matrix £ — F' is positive definite.

Remark 4.1 A convergence theory is also possible for A< Aand S> BA'BT +(C
or A > A in combination with S < BA™!BT 4+ C. Then, we can even re-interpret the
smoother as an iteration over a symmetric positive definite matrix L,

M=1-Q7'L

A—A 0
Q_i< 0 S—BA—lBT—C)’

and the sign is chosen such that Q is positive definite. We refer to Appendix [A] as well
as [Zul00] and [Zul02] for a discussion of these cases.

where £ = QKK

The most basic approach to the choice of A and S is to use scaled versions of the
diagonals of A and BA™'BT + C such that is satisfied. In this case, their inverse
is still a diagonal matrix, which will be advantageous for our AMG setup.

Now, the indefinite matrix IC does not define an inner product and norm. Hence, unlike
the symmetric positive definite case, we cannot show an AMG convergence theory in

terms of the norms || - ||o, || - |1 and || - |2 induced by the scalar products (2.22) — (2.24)),
(u,v)o = (Du,v), (u,v); = (Au,v), (u,v)y = (D Au, Av)

which can only be defined for symmetric positive definite A with diagonal D.

To overcome this sticking point, we will introduce a symmetric positive definite matrix
Q that defines an inner product (-,-)g and a norm || - ||g. Not only can we estimate the
error propagation of the inexact Uzawa smoothers in terms of this norm, it also helps
us to transfer the convergence theory from Section to our setting.

First, we write the inexact Uzawa scheme in matrix form,

A

it+1 it it
u _ (v w1 [ () _ u s (A BT
(p> - (P) wr ((9) . <P) ) where o= (B BTATBT - S)

and introduce the corresponding error propagation matrix M,

M= (1 - lé—lic) . (4.67)

Lemma 4.3 (JSZ03], Lemma 1) Let A be a symmetric positive definite N x N matriz,
and S a symmetric positive M x M matriz, satisfying,

A>Aand S>C+ BA'BT

Then we have: )
The iteration matrizc M = I — K~1K can be written in the form

M =Q T MQ> (4.68)
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y

A

() z=1

0.5 1

Figure 4.5.: Eigenvalues of the normal matrix A as defined in Lemma[4.3, All eigenval-
ues reside on a circle with radius % around (%, 0), hence their absolute value
is less than one.

with the symmetric positive definite block diagonal matrix

A-A 0
Q"( 0 S—%?—BA*B%) (4.69)

and

M =0"NO,

where N is a normal matriz and O satisfies the conditions |0, < 1.
Moreover, for the spectrum o (N') we have:
1 1
z—=|==¢.
2 2

In Figure we give the location of the eigenvalues of A/. Together with ||O],, < 1
we have | M|, < 1. Now, from (4.68)) we see that the matrix M only differs from the
smoother’s iteration matrix M by a basis transform which is given by Q%, hence we can
show convergence in terms of the norm induced by Q. This is done more generally in
the following theorem, where we also consider the damped iteration

a(/\/)c{zeC:

My = (1—w) I +wM.

Theorem 4.6 ([SZ03], Theorem 2) Let A be a symmetric and positive N x N matriz,
and S a symmetric positive M x M matriz, satisfying .
Then we have

1 (1—w)I+wMlg<1

for all relazation factors w € [0,2], and

|(1—w)l+wMlg <1
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4.6. The smoother 1I: An algebraic Vanka-type smoother

for all relaxation factors w € (0,2). Here || - ||g denotes the matriz norm associated to
the scalar product

((u,p), (v, q)) = ((A _ A) u, v) + ((S o BA—lBT) P, q) L (470)

The statement from Theorem will serve as smoothing property in our convergence
analysis, which is outlined in Section [4.8]

One can also provide a smoothing property which is very similar to the smoothing
property for geometric multigrid methods as defined by Definition , especially .
This is done in the following theorem.

Theorem 4.7 (]SZ03], Theorem 3) Let A by a symmetric and positive definite N x N
matrixz, and S a symmetric positive definite M x M matriz, satisfying

A>Aand S>C+ BA BT,

Then X
M [ley, < o)1 — Klle,

where
2

1 1 ———  for even v,
(V) = 5 Y < by
2v=1\[v]/2 \/ = for odd v,

where (Z) denotes the binomial coefficient and [x]| denotes the largest integer smaller
than or equal to x € R.

Before we proceed to the construction of the interpolation and the coarse grid operators
as well as stability and convergence theory, we first will present a special implementation
of an inexact Uzawa method that fits within the convergence theory of this section.

4.6. The smoother ll: An algebraic Vanka-type
smoother

In this section, we describe a box relaxation scheme introduced in [SZ03]. This smoother
can be constructed without knowledge of the geometry or the discretization of the un-
derlying PDE. We will see that the additive version of this smoother can be interpreted
as an inexact Uzawa relaxation scheme, which allows us to apply the convergence theory
of the previous section. The multiplicative variant, on the other hand, belongs to the
class of Vanka smoothers [Van86].

First, we define an overlapping decomposition of the discrete velocity and pressure spaces

VY and W, o

Jj=1
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4. AMG for Saddle Point Systems

where V7 contains N; velocity variables and WY consists of M; pressure variables. We
need prolongation and restriction operators for each subspace (not to be confused with
prolongation and restriction in multigrid!). We denote these interpolation operators by

Vi V=V, Ve RV
WjIW‘j —>W, Wj GRMXMj.

For restriction, we just take their transpose, i.e. V}T and W]-T. V; and W; need to satisfy

M M
Z V;(V;))" = Inxn and Z W; (W' € RM*M non-singular (4.71)
j=1

J=1

which will be important to prove the convergence of the overall smoother. For each
subspace V' x WY, we solve local saddle point problems of the form

Aj BJT uigy\ V]T(f — Au® — BTpt) (4.72)
B; B;A7'BY —5;) \pyy)  \Wj(g— Bu"+Cp"). '

where ;) € RN, Py) € RMi, Aj e RNixN; B; e RMi*N; - and
Sj=B1(C; + BA]'BY),

where C; € RMi*Mi and 8 > 0 is a scaling parameter. Then, we update the global

solution according to
)= () () (o)
wn ) = (") + g . 473
() = (4 > (0 w,) (o (4.73)

In the following theorem, we give conditions on flj and B; under which the Schwarz

smoother defined by (4.72)) and (4.73)) turns into an inexact global Uzawa smoother.

Theorem 4.8 ([SZ03], Theorem 1) Assume that (4.71)) is satisfied, the matrices A;, S;
are symmetric and positive definite, and that there is a symmetric positive definite N x N
matriz A such that

VA=AV (4.74)
forallj=1,...,M. Furthermore, assume that the matrices B; obey the condition
WIB =BV} (4.75)

forallj=1,..., M.
Then we have
utL = it gt it = pit gt

where v and w® satisfy the equation
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4.6. The smoother 1I: An algebraic Vanka-type smoother

with .
A M -
. (A B A —
K= (B Bi-ipT_ s> and S = (Z W, S W; (4.76)
j=1
This theorem allows us to interpret the additive Vanka-type smoother (4.72)—(4.73) as
an inexact symmetric Uzawa smoother for the global problem (4.1]). Its iteration matrix
M is given by A
M=I-K'K
and convergence can be shown by Theorem [4.6]
We give the multiplicative iteration in Algorithm[4.2] In most cases, it is useful to carry

algorithm 4.2 VankaSmootherMult(K, {A;}2,, {B;}M,, {S; M AVHE AW L, £ g, u®, p™)

j=1> j=1»

begin
w0 o it
PO pit;
forj=1,..., M do
fioy = Vi (f = Aui ™ — Bpti);
gy = Wi (g = Buitd™1 + Cpita);

N T —1
(%)) (A B (f(j)) .
PG) B; B;A; Bl —5; 9G)

witd ¢ qiti=1 4 Viug;
it,j it,j—1 .
P T A Wipg)s
od;
yittl it M.
Y
pit+1 « pit,M.
Y
end

out a symmetric iteration, i.e. after a single sweep of Algorithm we carry out another
iteration, but traverse the subspaces from 7 = M down to j = 1. Unfortunately, a
convergence theory is not known [personal communication with Walter Zulehner, 2012].

We now describe how an overlapping decomposition of the discrete domain €2 (and
hence the discrete subspaces V7 and WY) can be constructed purely algebraically. We
employ the non-zero structure of the B matrix part: For each row b; of B, we identify
the non-zero entries b;; and define the subsets

j
QU = (8}’) ;o Y ={i: by #£0}, Q= {5} (4.77)
w
For any velocity index ¢, there typically exists more than one j with b;; # 0, hence
these subsets overlap. The number of velocity components per subdomain NV; equals
the number of non-zero entries in b;. For example, in a staggered grid finite difference
discretization of the Stokes or Navier-Stokes equations, each subdomain corresponds to
a discretization cell, which consists of a pressure unknown at the cell center and the

145



4. AMG for Saddle Point Systems

u

® + 6 + o - ® + O
LV 1 1 1 1
T T T T

p. +~ @& + O - ® + O
1 1 T 1 1
T T T T T
® + O - @ H ® + O
1 1 T 1 1
T T T T T
e + 6 O e T+ O
1 1 1 1 1
T T 1 T T
® + 6 + o - ® + O

Figure 4.6.: Discretization mesh for the Stokes equation in two spatial dimensions. The
pressure p is discretized at the centers of the cells, the velocities v and v
are discretized at the midpoints of of the cell borders. The red and the blue
box each represent a subdomain for the Vanka-type smoother.

velocity components at the cell borders, see Figure 4.6
In this case, the interpolation operator for the pressure is given by

W;:R — RY (4.78)
wW; = IV (4.79)

We define two interpolation operators for the velocity component,

V;,V; : RN RV (4.8
V; = diag (Ul)z':l,... N Il‘jﬂ (4.81
- 1
V; = diag (—) A (4.82)
Yi/i=1,..N

Here, I}; : U < V denotes the trivial injection. Each weight v; depends on the number
number of non-zero entries in the respective row of BT, or equivalently, the number of
subdomains €2, that contain i,

1 1
VI i # 0} \/#Q{};Z’GQ{)

(4.83)

(%

It is easy that V; and W; satisfy (4.71). Regarding ‘7j, note that we have

A 1fori=Fke QU
(V) =
ik 0 elsewhere.

To define the local matrices A; € RN*Ni| S. € R, B; € RN we first need a global
preconditioner A for A, which is assumed to be a diagonal matrix (e.g. the scaled
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diagonal of A such that A > A). Then we set

A; = VI6AV, (4.84)
B; = WIBV, (4.85)
S; = B cj + BA;'BY). (4.86)

where we choose 8 > 0 such that S > C' + BA~*BT. Straightforward calculations then
show that we have satisfied (4.71]), (4.74]), (4.75) and hence Theorem allows us to
apply the inexact Uzawa smoother’s convergence theory as given by Theorems [4.6| and

5]

Remark 4.2 In the case of point-based AMG (Section , the construction is
slightly different. In this case, let us assume for sake of simplicity that we have d
velocity components and one pressure component that are discretized at every point
j=1,..., M. This yields a block structure of IC,

Kay Kaz - Kawmn
o | fen Key oo Kaan
Koy Koz - Kouwn

where each KC(; jy has the form

T
By Cliy)

with block matrices A; ;) € Réxd, By € R™4 and Cuj) € R,

To define the subdomains QU), we replace, in (£.77), the definition of M, by

%, ={i: By # 0}

i.e. each subset Q{, contains all points ¢ for which at least one velocity variable has
a connection to the discretized pressure value at point j. Analogously, we define the

weights v; by
1 1

VI3 By # 0} \/#Qg) e
For A, we can either take the block diagonal matrix

A(Ll) O

(4.87)

(%

O A(M7M)

or just its diagonal. Then, we can define W;, V;, ‘7j, flj, B; and gj as in (4.78)—(4.86])
(Note that each c;; = Cf; ;) is just a single scalar). We will comment on which variant
to choose in Section [4.§]
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algorithm 4.3 VankaSmootherSetup(A4, B, C, {A; }}L, {B; L, {S; 1ML, AV L, {W; L))

begin

Q_w(—quU{Z‘gquizleQy\}qi

D <« diag(A);

Q 4 Amax (D_%AD_%) :
A« aD;
fori=1,...,N do

local and ghost velocity points

(parallel) power iteration

compute weights v;; depending on additive, multiplicative, parallel multiplicative

od
if (parallel computation)

obtain v; and ay; for all 7 € Qy, \ Qy,;

Awg) dmg@z‘i)ie@?

fi
for j € {yy, do

Vi diag(vz) . I:jf;

W; IW;’,

A — V A q)‘/J,

B « WTBVJ,

S; « (cj; + B;A; ' BY);
od;
S« diag(S;)M

]1’

B = Amax (S (BA—IBT n c) & ) .

for ] € qu do
S <—BSJ,
od;
end

each processor just keeps its own part

(parallel) power iteration
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In the multiplicative case, we are not restricted to the special scalings or .
Whether it is possible to use unscaled injection instead, i.e. v; =1 foralli=1,... N,
must be determined numerically.

We conclude this section with the parallel implementation of the smoother. To this end,
as in , let us assume that we have a non-overlapping decomposition of the velocity
and the pressure spaces among the np processors,

V=2U...0V,
W=WU...UW,,

and a corresponding decomposition of the index set 2, cf. (3.1)

— _ Qvl Qvnp

We store each submatrix
A; BT
. N 4.88
(Bj B;A;'BT — 5, (4.88)

on the processor g which contains the pressure variable j € )y, . Note that the corre-
sponding velocity subset V7 is not necessarily contained within the local variables. We
define the set of ghost velocity points for processor g,

Q%’;"St = {i ¢ Qy, : there exists a j € Qyy, such that b;; # 0}
Qy, = Qy, U

Hence, we need to obtain parts of A as well as the weights v; for all velocity variables
i € Qﬁ’,};“t Then, 1}) can be computed locally and the Ve_locity prolongation
operators V; maps into V, 1= {(u);cq, -} for all j € W, V; : VI =V,

In the additive case, the parallel application of the smoother is straightforward. The
communication takes place within the computation of the residual,

f A BT uz‘t
(5)-(5 Z) G)
Afterwards, each processor ¢ needs to obtain the velocity residuals for all ¢ E 95
Then, we can locally apply the restriction scalings and solve the systems (4.72 for all
J € Qy,. Afterwards, we apply the prolongation scalings and transfer the ve10c1ty up-
dates back to the owning processors.
As with the Gauss-Seidel iteration, the multiplicative smoother cannot be efficiently

parallelized. Inspired by block Jacobi smoothing (3.2)), we propose a hybrid addi-
tive/multiplicative smoother that only updates velocities between processors after a

ghost
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algorithm 4.4 ) o
VankaSmootherPar(KC, {4} jeq,y, : {Bj}icaw, 197 ieaw, » {Viticaw,» (Witieaw, [+ 9; u', p't)
begin

it T it
(g z.t) — (g ) - <g i% C> (g”) ; parallel residual computation

communication: receive ghost values of f(, and uéé

0
Ug) <_“<)

)1
'LtO .
p(a) p(tz)’
1,0 rit .
Y9) < 90y’
for j € Qyy, do
f(] VTth,] 1’
T zt] 1,
LLZ q )

ga)

(4) ) . .
(U(j)) o (Y B; (fu)).
PG) B BjA; B - S, ai )’

+ Viugy; local solution update

fzm <_ flt:J 1 — A Vyug) B WG residual update
gétf - ng;f ' = By Viug) + C(q W PG)’
od;

communication: transfer ghost values of u™®¥a! to owning processors;

Zt+1 Zt,‘qu ‘
—Uu
Ug) (q

it+1 ZtvﬁQW l.
Ply <P

end

+ received values;
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sweep is completed. Let

azk)zeﬂvq, k=1,....N

b

= (

B(q (b;—g)lEqu,J 1,0, M
( JEQWQ, k=1,....,N»
= (¢

JEQW,, r=1,....M>

denote the rows of A, BT, B, and C that reside on processor g, respectively (see Chapter
for a description of the parallel matrix format we use). Note that B(j;) is not the
transpose of B(,. We further define

the local and ghost part of A,% =

-----

the local and ghost part of BT,% =
the local part of u™, u’(z) =

the local and ghost part of u“,% =

(
(
(
(
the local part of pit,pé’;) = (p] JEQw, s
the local part of f*, f(ié) = (
the local and ghost part of f”,% = (") ica
(

the local part of git,gfg) = gét)jeﬂwq-

We give a single parallel smoothing sweep in Algorithm [£.4, Note that inside the itera-
tion, we update the residuals not only for the local velocity indices i € (2, , but also for

the ghost points i € Qgh”t After the iteration is complete, we transfer all ghost velocity
values back to the processors that own them. On the owning processor, we denote the
respective velocity indices with

89]}(} = {Z S qu : 3] Q qu : bji 7é 0}

For all i € d€)y,, we receive one or more velocity updates from another processor and
add it to u;.

The prolongation weights v; need to reflect the mixed additive/multiplicative updates
for these points. We suggest two options:

1 As in the additive case, let v; = ———=—= for all i € 0Qy,.
I{s: bméO}l

2 Use different weights for the same index ¢ depending on whether it is a local or
ghost point. More precisely, assuming that i € 92y, , we set

_ V{7 € Qw, : bji # 0}
VI € Qw by # 0}

(4.89)
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on processor ¢ and
1

"o V{7 € Qw by # 0}

. . host
on all processors ¢’ for which ¢ € Q5"
q

(4.90)

For all interior points i € Qy, \ 9y, we set v; = 1. Which option leads to the best result

must be determined experimentally. It also may occur that we must set v; = m
J:954
for all 7 € €2y, as in the additive case.

4.7. Interpolation and Coarse Grid Correction: General
Remarks

We now turn our attention to the coarse grid correction, the other main component of a
multigrid solver. As we have already pointed out in Chapter [2] the coarse grid correction
should be well-adapted to the smooth error components, i.e. the error components e
that are not reduced efficiently by the smoother,

Me =~ e.
For a well-fitted coarse grid correction, we need to construct three components:

1 A coarse grid Q! whose cardinality is less than the size of the fine grid Q' and is
well-suited to represent the smooth error components from level [,

2 restriction and prolongation operators
l I+1 I+1 !
R, € RIS p ¢ RIOTHXI

which transfer the error resp. the error correction between the fine discrete space
V! x W' and the coarse space V! x WL

3 a coarse grid operator

1+1 1+1
Ky € RIOHHXIQ

that describes the underlying problem on the coarse scale, i.e. in terms of the
smooth error components.

With these components, we can formulate the two-grid correction operator
7 — P (Kl+1)*1 RllCl,
and the multi-level correction

I—-"P </€1+1> B R,
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. 1
where (IClH) denotes the approximation to (IClH)*l by recursive application of the

multi-grid cycle.
We take again a look at the smoother M;,

“ A—1
et (1 —ATBY L0y (I=A"A ’
Mi=1-K; K= (0 I S7B, I 0 I—57" (BlfllelT+Cl) ’

(4.91)
The rightmost factor essentially performs a “Jacobi-like” sweep over the matrix

A 0
( 0 BA'BI + ol) ‘ (4.92)

This suggests to build a first guess for interpolation and coarse grid correction based on
the symmetric positive definite block matrix (4.92)), i.e.

1 build a (block) strength matrix S; based on the matrix blocks A; and BlAle +C,

. SVZ 0
Sl - ( O Swl) ’

2 construct a block interpolation operator

Pvl 0
h= ( 0 PWZ>
where Py and Py are obtained by applying one of the well-known interpolation
schemes for the symmetric positive matrices Ay and BlAl_lBlT + () from Section

23

3 compute the coarse grid operator
Ki1 = RGPy
where R; denotes the restriction operator.

While this approach seems straightforward, there are some issues that we need to deal
with. First, unlike the symmetric positive definite case, it is not clear whether ;y; is
invertible at all even if we set R; = P[.

Example 4.2 [Wab03] Let the Stokes equations on [0, 1]? with Dirichlet boundary con-
ditions be discretized using PisoP, — P; elements on an uniform mesh, , see Figure
We see that after one coarsening step on the velocity mesh (for both velocity com-
ponents) we obtain an instable situation as in Exampleif all pressure nodes are taken
into the coarse mesh.
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Figure 4.7.: Finite element mesh for a PyisoP>— P; discretization of the Stokes’ equations
on the domain Q = [0, 1}* (we assume Dirichlet boundary conditions on 99).
The black and the red dots denote the velocity nodes on the finest and the
first coarse mesh, the blue dots denote pressure nodes on both levels.

This example might seem exceptional, but it illustrates that the stability of the coarse
system is not automatically ensured. The second obstacle is that we have no variational
principle (see T heorem here, as IC does not define an inner product. In consequence,
we need a different approach to show two-grid convergence.

Remark 4.3 In Remark we stated that under certain assumptions it is possible to
re-interpret the smoother M as an iteration scheme over a symmetric positive definite
matrix £,

M=1-Q7'C

where Q is a block diagonal symmetric positive definite matrix. Using this formulation,
it is possible to apply the classical AMG convergence theory in terms of inner products
and norms defined by

(z,y)o :=2Qy, (2,9 :=xLy, (2,y)2:=2LQ 'Ly,

. £2) @20.

On the downside, to apply this theory we need either

A<A and S>BA'BT+C, or,
A>A and S<BA'B"+C,

which can become compute-intensive as we need to apply an eigensolver to determine
the correct scaling for A of S. (In contrast, to obtain both A > A and S > BABT 4+-C
a few cheap power iteration cycles or the application of Gershgorin’s circle theorem
are sufficient.) Furthermore, the variational principle shown in the norm defined by £
cannot be applied directly to the coarse grid operator obtained from PTXP. We refer
to Appendix [A] for a detailed discussion.

In the following sections, we will show how the invertibility of the coarse grid operator
can be ensured. To this end, we first assume that an inf-sup condition on the finest level
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[ =1 is available:
Let there exist constants ¢, d; > 0 such that, for all p € W* such that

Bf 1
sup e WS allpllwe — di (p"Cip)? for all p € W' (4.93)
ouey [[ull4,

From this inf-sup condition we will derive inf-sup conditions on all levels [ > 1 by

induction,
T

B 1
sup e RS allpllw — di (p" Cip)® for all p € W' (4.94)
0F£ueV! ||U||Az

for all p € W' and ¢;, d; > 0 independent of p.
Here, as in the remainder of this chapter, we define for a symmetric positive definite
matrix A an inner product and a norm,

(x,2) , = 2T Az, ||z]la =/ (2, 2) ,.

The inf-sup-condition (4.93)) on the finest level usually only can be obtained with knowl-
edge of the underlying problem. First, we need a norm || - ||yy1 for the pressure space on
the finest level W!. Usually, this norm is derived from a scalar product

(ZL’7 y)Ml = :BTMly

where M; is a “mass matrix” for the discrete pressure space such that || - [y := || - ||
can be interpreted as the discrete counterpart of a L2-norm. In Section [4.2] we have
introduced several stable discretization schemes as well as the corresponding inf-sup
conditions, which can be written in the form . The coarse mass matrices M,
[ > 1, are obtained from M; by recursive application of the Galerkin product

Ml+1 - P)TVZMZPWZ.

From (4.94]) we can, for each level [, prove the stability result for K; on all levels, which
is a generalization of Theorem 4.4 in [Wab03|] (see also Theorem [4.5). For sake of
completeness, we also give the proof.

Theorem 4.9 Suppose that (4.94)) holds. Then

sup (u7p)TICl(U> Q)
ozvevt, ogewt V], + llallm,

> G (lulla, + llplle,) for all (u,p) € V' x W', (4.95)

for some (; > 0 depending on [.

Proof: ([Wab03],pp. 56-57) For p € W!, choose an u* € V! such that the supremum in
(4.94) is attained. Note that this supremum is invariant under scaling of u*, so we are
free to scale u* such that

[ ]la, = NPl
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Let u € V. We apply (4.94)),

(u p) K (%) = uTAu* + p"Buu*
* * T 1/2
> —lullaflulla, + allu* ol = d (" Cip) " plIw,

1/2
= —llullallpllw, + cllplliy, —di (0" Cw) " llplla,

1 2 € 2 2 dl T dZE 2
> ol = Sl + allply, — 5p"Cop — S ol
where the last step can be seen from zy < M Now, we introduce the constants
1 € dl
0p=—, bOy=c¢c—=(14+d Oy = —
1 26, 2 Cl 2( + l)a 3 26

which are strictly positive as long as 0 < € < lifjll. We have

*

(w0 (' ) 2 ol + ol — 6"

We now consider a (v*, ¢*) of the form (v*, ¢*) = (u + Ju*, —p) with a parameter ¥,

W) = @ okl ) e ()

> ulld, +p" Cip — 901 [[ull%, + 96aIpl3y, — 06p" Cip.

Now, choose 0 < 1 < min <6i, ei.>’
1 3

*

(v ) Ko (g) > O (lulh, + 121 (4.96)

where 0, = min(1 — 96, 96,).
For our special choice of (v*, ¢*) we have

[o* ([ llg" gy = lutdu[[a+llpllag, < llulla+0la(a+lplhg < U+0) (fulla, + [lpl,) -

(4.97)
We combine (4.96) and (4.97)),

(w,p) K" q") o Oa Jlulla, + Il o ba
[ {la; + gl — 140 ulla, + ol — 2+ 20

(lJella, + llplh) -

Now, taking the supremum over (v, q) completes the proof,

sup (uap)TICl(an) > (uap)T’Cl(v*7q*>
ovent, ozqewt [[V]la, + llallv, — flv*[la, + llg* (I,

> C([[ufla, + llpllm,)

where ( = Qﬁ;;ﬁ.
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4.8. The coarse grid operator I: Auto-stabilizing coarsening and Two-level convergence

Remark 4.4 If the matrix A; is singular, we replace the term || - ||4, in (4.93), (4.94),
(4.95) and the proof thereafter by a norm | - ||4,, , where the matrix Ap, is non-singular
and Ap, > A;. Such an operator can always be constructed as A, is continuous.

In the following sections, we will give three different approaches to construct the inter-
polation operator as well as the coarse grid matrix. For one of them, we can also show
two-grid convergence.

4.8. The coarse grid operator |: Auto-stabilizing
coarsening and Two-level convergence

Our first approach to a stable coarse system is to formulate a “Petrov-Galerkin” type
coarse grid operator, which however still leads to a symmetric matrix. For this for-
mulation we can show two-grid convergence using the two-grid convergence theory for
non-symmetric matrices as outlined in Section [2.10]

A -1
We start with the operator £, = Q,;K; K,;, where the symmetric positive definite matrix
Q, is defined as in (4.69)),

i [Vl 0 s —1 _ B Al — Al 0
Q= (o —le) (’Cl Kl) B ( 0 S —BA!'Bf - Cl) '

The matrix £; can also be written in terms of K; and the inexact Uzawa smoother M;
(4.67),

o -1 I 0 s -1 I 0
L= QK K= (gj’ . IWZ) (k- ks 1) = (gjl ) ]Wl) KM

Now, assume that we have a prototype restriction R; available, which establishes no
couplings between the velocity and the pressure part, i.e.,

va 0
Rl o ( 0 Rwl) '
The error propagation operator 7; of the two-grid cycle for £; with one post-smoothing
step can now be reformulated,

T =M(I — R LL\RIL)
In 0 o (Iu 0
My — MR [R, ( v ]Wl> lCl/\/llRlT] R ( v ]Wl) KM,
= (I — P [RICP] ™ RiKy) M. (4.98)

Here, we have set

P = MR/ (4.99)
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4. AMG for Saddle Point Systems

which can be seen as a smoothed version of the prototype interpolation RY. We now have
obtained a two-grid method for the matrix K; with one pre-smoothing step which can
be interpreted as a two-grid method for the operator £;, where the smoothing operator

M =1-K K=I-97'%

can be written using a symmetric positive definite operator Q;. From Theorem we
know that

11 —29,'Li]lg, < 1.

Hence, Corollary implies that all eigenvalues \ of the two-grid error propagation
operator 7, satisfy |\ — %| < % In addition, the case A = 1 is impossible due to the
positive definiteness of Q;, see Corollary and the discussion thereafter.

It remains to show that the coarse operator

T
Kipr = RiKiPr = (A’“ o ) ,

Biin —Cra
where
Aip1 = Ry (Al(l — A7A) + (T — AATYBI ST BY(T - A;lAl)> R, (4.100)
Bipr = Ry (1 — (BAT'BT + Cl)§f1> Bi(I — A7'A)RY,, (4.101)
Cii1 = R (BAT'BI + @) (I — STYBAT'B] + Cl)> R, (4.102)

is non-singular. We will show that, in contrast to the (semi-)algebraic methods intro-
duced in Section [£.4], the regularity of the coarse system does not depend on geometric
properties or “matching” coarse grids for the velocity and pressure components. Instead,
the term (., stabilizes the coarse system.

Let the projection operator Il : Vi — V1 be such that HVzRglle = w41 for all
vi41 € VL Such an operator can always be constructed if the tentative prolongation
operator R]Tﬂ has full column rank.

Lemma 4.4 Let A; be symmetric positive definite. Assume that for all v; € V' we have

lon = (I = A ADRET%, < il (4.103)
IRG %, < Balluill?, (4.104)
UlUlTBngz_lBlUl < ol A (4.105)

for some constants oy, 1 > 0. Then, the inf-sup-condition on the fine level,

v BF 1
sup P> i, — di (o[ Cipr)? for all pr e W' (4.106)

ouev ||vill 4,
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4.8. The coarse grid operator I: Auto-stabilizing coarsening and Two-level convergence

implies an inf-sup-condition on the coarse level,

O Bl pi 1
sup o > crillpialle, — divs (P Criapisa)® for all pry € W
0#£v; 41 €EVIHL HvlJrl“Al+1

(4.107)
where
1
Cly1 = ¢ and diy1 = <\/ + max(d;, )) .
/32'(1"'0%) @2'(1"'01 v
and MlJrl = RWlMlR?;Vl
Proof: Our aim is to find a lower bound for the supremum
sup Uli:_1Bz€_1pl+1
0#£v; 11 €VIHL HvlJﬂHAHl
First, we need to estimate |[v;11|4,,,. To this end, we use (4.100)) re-write
||'Ul+1||?4l+1 = Uljjt,_lRVlAlelvl+l (4108)
— ’UZT+1RV1 (Al AlA AZ)RVZ’UlJrl (4109)
+ ol Ry (I — AAATYBEST BT — AP A)RD vy (4.110)

From A, > A, it is immediately clear that —vﬁlRw (A — Alfll_lAl)R]Tﬂle < 0 and the

term (4.109) can be omitted. To estimate (4.110[), we employ (4.105]),
- A1
Uﬁlel(I—AlA_l)B?Sl Bl( A IAZ)R];lUH—l
1
—UH_lel([ AZA )Al([ A 1A1)vavl+1

AZ>A1 ]_
T T
;UlJrlRVlAlelUH-l’
. 1 T .
We can hence estimate [[vj11]|4,,, < 4/1+ ;1||vavl+1]\Al and we obtain

T T T T
Vi1 B Vi Biiapia

sup > sup
OyéleeVl*l ||,Ul+1 HAZ+1 0¢vl+1evl+1 1 —|— HR lvl+1 HAZ

for all pi.; € WL, From the definition of Il it is clear that for any v, € V! we
have a (not necessarily unique) v; € V! such that v;4; = Iyuv;. This allows us to take
the supremum over v; instead of vy,

vl Bl ol T Bl prsa

H Bz+1pl+1

sup = sup > sup

0#£v; 41 EVIHL 1 + HR l/Ul+1HAl 0#£v, eVt _|_ O-_1H VlHVlleAl 0#£v, eVt 52 . (1 + 0—_1)“leAl
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4. AMG for Saddle Point Systems
where the last inequality is obtained from (4.104)). Now, we consider the nominator
vi T BE pryy = ol TG Ry (I — A A BE (1 — STHBAT BT + Cl)> R o,

where we insert

w0l B |1 87 (BAT B+ C) | Rlypia

to obtain
oI T, BT iy = o7 BT [1 o (Bl A7'BT + cl)] RYpi (4.111)
- [vl - (1 - A;lA) R@val]T BY [I — 5 (Bl/ll‘lBlT + Clﬂ RY prs.
(4.112)
We first regard ,

o T . o ~ o
[w - (1 - A;lA) Riglnvwl] AV A2 BT [1 Y (B,A;lBlT + Cl>] BT pri
R T . R 1/2
< {UZT 1= (1= A7) RET A1 = (1= A7 A) BETL vl}
R R T R R R 1/2
. {pg‘H Ry [1 . (BlAl-lBlT + cl)] BATBY [1 — 5 (BlAl-lBlT + C’l>] Rg’wpm}
We estimate the first factor,
R T . . 1/2
{of [r= (1= dpa) mpmy) A= (1= A7) Bn] )

1= (1= A7 A) RG]

A
< VB llully, - (4.113)

For the second factor, we employ p (gl_lﬂ <BA1_IBZT + Cl) SY1_1/2> <1

Pl Row [T =87 (BAT' BT + CZ)}T BAT B 1= 57 (BATB +C) | Rlypia
<l Ry {Blfll‘lBlT +C -2 (BlAl-lBlT + Cl> g1 (BlAl-lBlT + Cl>
+ (BlAle,T + Cl> St (BlAle,T + Cl> St (BlAle,T + Cl> }R%lpm
< pﬁlRWz{BzAl‘lBlT +C) — (BlAl—lBlT + Cl> S (BlAl—lBlT + Cl> }Rf\ﬂpm

= 1 Criapiia, (4.114)
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4.8. The coarse grid operator I: Auto-stabilizing coarsening and Two-level convergence

We combine (4.113)) and (4.114)) to obtain a lower limit for (4.112]),

A T A N
- o= (1- A7) Rpmty] - BT [1- 87 (BAT' BT + )] Rlpcs

1/2
> =/ B ||luill 4, (PL1Criapisn) (4.115)

We now consider (4.111]),

o B 1= 87 (BATBE + G| Rl

— ol BT RYpiys — vf BT S;! (BlAl‘lBlT + Cl> RIupisa, (4.116)
and estimate the subtrahend of (4.116)),
v BIS <B,Al‘ ‘B + Cl) Ryyipria

— I BTG Y28 1 <BlAlelT + cl) RT pias

N 1/2 . A o 1/2
< <UZTBZTSI_1BZUZ> : <plTHRWl (BlAl‘lBlT n C’l> § (BlAl‘lBlT n C’l> Rgvlle)

@.105) 1 T ~ T 1 N T 1/2
(4.117)

hence we can estimate (4.116)),

T BT [1 o (BlAl—lB,T + 0,)] RYpi
> UlTBlTRgvlle
- %U_lllleAl (e B (BAT'BE + € $7 (BAT BT+ C) Blpn)
(4.118)
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4. AMG for Saddle Point Systems

We are now ready to plug in the inf-sup-condition (4.106)) for B! and perform the
induction,

T T
Vi1 Bipia

sup
0#£v; 11 €VIFL ||Ul+1||Az+1
TH Bl
> sup v 1+1Pi+1
0FuEVLy [By - (1 + ) ||uilla,
@E115), [@1i8) 1 vI BI'RY piiq
> - [ sup % —V/B1 (131 Craprn)'?
62 . (1 —+ o'_l) 0#£v, EVy LIl A
1 —1 T T 1/2
- <p1+1RWl (BZA B + Cl> S (BZA Bl + Cl> Rwlpl+1) :|
\/_
{106) 1 1/2
> TR [ClHJDlHHMl+1 — dy (L R CiR i)™ — /B (P131Crapien)”
2 (L+ 7

- \/1_ (pH_lRWz (BZA BT cl) S (BZA BT cl) Rgvlle)l/Q]

It remains to show that, for all p.; € W,

1/2
d; (pzj;1RWlOlR%zpl+1) /

]' T —1 pT T 1/2
+ (leRWz (BlA BT + Cl> S (BlAl BT + Cl> Rwlpm)
Voo +1
<NV -
o VO2 — 1

This can be seen from

1/2
- max(dy, ) (pa1ol+lpl+1) .

1
Vo1

2
(ot o _tTye T

<1
r—y 1-4Z

for positive numbers z > y > 0. Here we have
z = pl Ry (BzAlelT + Cz) R ipii1,
Y = Pl B (BZA ‘Bl +Cl> S (BlAlelT"‘Cl) Riprst,
and = —y = p Ry Cria Ryupiia.

where we have used S; > (BZA lBT + Cl> (If lesz <BlA 1B + C’l> R%lpl_Fl =0,

for a pl+1 # 0, this implies B} Rwlpl+1 = CIRW,le = 0, in contradiction to (4.106]).)
We now have shown the inf-sup-condition for the coarse system with the constants

1 (v
Cle1 = + max(dj,
T B0 \/T |

=)

¢ and djyq =
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4.8. The coarse grid operator I: Auto-stabilizing coarsening and Two-level convergence

O
In the remainder of the section, we discuss how the assumptions of Lemma can be
fulfilled. First, we address condition , which can easily be satisfied if A4; is a
M-matrix or of essentially positive type and we employ point-wise coarsening for the
velocity (i.e II7 is the trivial injection from level [ + 1 into level [). Letting D; be the
diagonal of A;, we assume that the tentative interpolation operator RZQ is such that we
have an approximation property (cf. Theorem ,

lvr = Recvelp, r < Tl (4.119)

where ve and vp respectively denote the vector v; at the coarse grid and the fine grid
points, R}, denotes the block of R], that contains the interpolation weights for the fine
grid variables and ||v;|| p, r is the norm induced by D; restricted to the fine grid variables.
We then have

lvr = Ry Tyl [, < 7lluilf,- (4.120)

In addition, for an essentially positive type matrix we have
2
—UlTDl’Ul Z ’UlTAlUl (4121)
c

for some constant ¢ independent of v; (2.28). Combining these inequalities, we get
([Wab03], p. 54)

IR ywlla, = llalla, < o= BoTlyrola
< \[ o1 = Pullyroilo
<l

2
from which we conclude that || Py ILyivp||%, < Balui||%, (4.104) holds with 35 := (1 + ,/%T) .

To see (4.103), we first note that A, = aD; for some a > 1. Hence we can re-write the
left hand side of (4.103) as

\/a ”Ul — (I — Al_lAl)RnglelHDl S \/5 |:HUl — REZHW’UZHDZ + HRaHVlUZHAlDflAZ] .

We again use (4.120) to estimate the first summand. For the second summand, we

employ (2.25) and (4.104]),

[Budhn]| 4 o1, <\ (D7 AD | RG Tl a, </ Bep(D Al

2
Combining these estimates, we obtain (4.103) with 5 = « (\/F-i- \/52P(D11Al))

Note that a smaller (more accurately computed) value of « leads to a smaller value of
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4. AMG for Saddle Point Systems

B1, and, in consequence, a smaller value of d; .

For diagonally dominant matrices A;, we know that p(D;'A;) < 2. This spectral radius
may even be replaced by a much smaller constant if the tentative interpolation operator
R%Cl only maps into the space of smooth error components (w.r.t. A;), as for these ¢; we
have He”AlDflAz < |le]] 4,, see Section .

Regarding , the value of o1 depends on the interplay between BZST 'Bl'and Ay, i.e.
requires that low-energy modes of A; also correspond to low-energy-modes of Blgl_ 'Br
(if not, o7 must be chosen smaller or S, must be multiplied with a larger constant, at the
cost of a less efficient smoother). Apart from this, the stability proof does not depend
on the interplay between the velocity and the pressure spaces, in particular we do not
require anything on the interplay between the images of Rgl and R%l. This allows us to
set up the coarse grids for the velocity and the pressure part separately, while the term

Crit = Ry (BAT' BT + C) (1 — 57U BATBT + cl)> RY, (4.122)
ensures the stability.

Remark 4.5 In the case of a singular A;, we construct a matrix Ap, > A; and replace,
in (4.103)), (4.104) and the norm || - |4, by a norm [ - [[4, . In addition, in
(4.105)), we substitute A; by Ap,. On the other hand, in the term I — Al_lAl is
not modified. If A; is a weakly diagonally dominant matrix, such an Ap, can e.g. be
obtained by multiplying the diagonal of A; by 1+ € for an € > 0. Hence, it is still easy to
see using a slightly smaller constant ¢ and to show the prerequisites of Lemma
for essentially positive matrices.

Remark 4.6 As we usually have more than one velocity unknown, the A part itself is
the discretization of a system of elliptic partial differential equations. For these kind
of matrices, we have described various AMG approaches in Section [2.12] For the con-
siderations in this section (and in the next sections), we assumed that the tentative
interpolation operator Rgl was constructed using a variable-based AMG (Section
approach for A, i.e. we just ignored its decomposition according to physical unknowns.
If we employ unknown-based AMG (Section , the approximation property for

interpolation reads (2.87))
lvr = Prcvellor < Tulluilli

where || - ||, is induced by the block diagonal matrix A, that only contains
the couplings within each physical unknown. Inequality (4.119) then follows with 7 =
p(A7TA)T,.

In the case of point-based AMG (Section , where the matrix A is organized in
blocks A(; ;) corresponding to (discretization) points, we must distinguish between two
cases.

First, if the interpolation operator involves the full inverses of the diagonal block matrices

A(i ), we have an approximation property (2.107)

lvr = Prevelpor < TllvI
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4.9. The coarse grid operator 11: A sparser stable coarse operator

where || - || po,r is the norm induced by the block diagonal matrix Dp = diag(A,)):
([2.93)), restricted to the fine grid points. In this case, we need to define A, = aDp
with an appropriate scaling factor o to obtain the stability results in this and the fol-
lowing sections. In consequence the smoother should also be built around the block
diagonal matrix Al, see Remark [4.2| In the other case, where just the diagonal of A; is
inverted during prolongation setup, we have the classical approximation property [4.119]
see Remarks and Of course, we just use the diagonal in the smoother here.

4.9. The coarse grid operator Il: A sparser stable coarse
operator

In the last section we have introduced a stable coarse grid operator for the saddle point
problem. The stability was obtained by applying the smoothing operator (4.67))

M, = (1 . /Cflicl)

to a tentative block-wise prolongator

RL, 0
R ="V :
( 0 R%)
While we were able to show stability and two-grid convergence for this approach, we
have two more or less severe drawbacks. First, the application of the smoother

A 1—1
(I —A'BT I 0\ (I-ATA 0
M= (0 I SB, I 0 -5 <BlAlelT + C,) (4.123)

to the tentative interpolation operator R} heavily enlarges the number of non-zero en-
tries of the final interpolation operator P;:

First, a Jacobi-like iteration increases the radius of interpolation by the “stencil width”
of the operators A; and BZAI_IBZT + C; and then two additional coupling operators in-
troduce not only connections between the velocity and pressure parts, but together also
perform a further smoothing sweep over the velocity variables were the operator is given
by BTS1B.

Second, no interpolation truncation can be applied after this stabilization process, as
the restriction operator remains R; and a truncation of P; would destroy the symmetry
of ,Cl—f—l = RZICZPI.

In this section we introduce a different stabilization operator, which is applied to both
the prolongation and the restriction. Recall that in the last section, the prolonga-
tion smoothing resulted in a stabilization matrix Cj;; that contains terms of the kind
BlA 'Bf', see (#.122)). This motivates us to choose the simple ansatz

_ Ai-1pT
P = (é Az[ B > RY (4.124)
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4. AMG for Saddle Point Systems

to obtain the stabilized interpolation P;. A simple calculation shows that the coarse
matrix then reads

A (1-ad) B!

K =P'KP =R ; 1144 A
1 =P RKiP "\ g, ([—A[lz‘lz) BATAAT Bl 2B AT Bl - G

R

(4.125)
The stability of the coarse system K, is considered in the following lemma. Let again
Iy : V! — V1 be such that Iy R 01 = vigq for all vy € VI

Lemma 4.5 Let A; be symmetric positive definite. Assume that for all v; € V' we have

lor = (I = AT ARLTw|%, < Bsllul?, (4.126)
IRy Iul%, < Ballull, (4.127)

for some constants B3, 4 > 0. Then, the inf-sup-condition on the fine level,

v BF 1
sup 1Pl > allpdllvg, — di (pf Cipi)® for all pr € W' (4.128)

0#v V1 HUZHAZ

implies an inf-sup-condition on the coarse level,

v Bl pi 1
sup  — e > avillpialvg, = divt (P Cryapien)® for all pra € W
O;AleeVl“ Hvl‘i’1HA1+l

(4.129)
where
1 1
41 = ——¢ and dj 1 = — max(d;, \/F3).
+1 \/E +1 \/E ( )
and Ml+1 = RWLMZR)Q;VZ.
Proof: In this case, we have [|vii1]la,,, = [[RLvi41]l4,- Again, the definition of II)x

allows us to choose a not necessarily unique v; € V' such that v, = Il}uv;. Hence, we
can take the supremum over v; instead of v,

7}12_1BIT+1PI+1 o UlTHaBlﬁlle UlTﬂnglj;ﬂ?l-&-l A
sup o5 . 1 — T > ) (4.130)
0£v;41 €V ||vavl+1”Al 0#£v V! Hva vivi| 4, 0£v V! vV Ballvi]| a,

We re-write B, = (I — Alfll’l) Bl as in (4.125) and insert v, B R}, pi41 into the
nominator of the rightmost term of (4.130)),

o LBl apr = v BIR b (4.131)

~ T
- [Ul - (I - AI_IA> Rgzﬂvlvl] BlTRfvzle. (4.132)
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4.9. The coarse grid operator 11: A sparser stable coarse operator

We estimate (4.132),
A T
o= (1= A7) RG] A4 BE Ry
A1 T T3 11 T
< o= (1= A7 4) RiTyw| Ao = (1= A7) RG Ty
-pﬁlRWzBlAlefR%le.

From p(A; 1/2AA 1/2) < 1 we obtain BAT'A/AT'BT < B/A7'Bf and hence, cf.
(4.125),

Ry BiAT BT RL, < Ry (Cl + 2B AT BT — BJAT A AT BT ) RL, = Cry. (4.133)
The first factor can be estimated using ,
o= (1= A7 A) Ry "4 o= (1= A71A) Ry
= [[or = (1= 47*4) Bim| .
< V/Bsllvilla,s (4.134)
and combining and we obtain
[vl . (1 - A,—lA) R@val]TBITRYV;,pZH < vBsllvilla, - (pFaCriaprar) . (4.135)

Finally, we perform the induction,

T pT
Ul+1Bl+1pl+1

sup
Of,é’l)l+1€Vl+l |’Ul+1||Al+l
4'1>30 sup H Bl+1pl+1

0#£v, €V, \Y B4||Ul||Al

(14.135)) 1 [ UZTB;FRT 1 Di+1 1/2
> — | sup ——— — /3 (p[ Crapia
VB4 LOAv €V, ||Ul||Al ( o )
[@.128) 1 7 1/2 1/2
> 7 ClHPHlHMlH —dp (pljjy—lRWlClRTwllerl) — /B3 (pljjq-lcl+lpl+1) ]
VB L
1 7 ~ 1/2
> m _Cl||Pl+1||1v1lJrl —d (pza1ol+1pl+1) ]

where d = max(d;, \/F3).

We have shown the inf-sup-condition for the coarse system with the constants

Cl+1 = \/Lﬁ_cl and dl+1 = \/% max(dl, \/E) O

4 4

For a discussion on the conditions (4.126)) and (4.127] m, we refer to the previous section.
Note that we have no condition on the interplay (4.105)) between A; and B S !B, here.
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4.10. The coarse grid operator lll: F-stabilization

We again take a look at the coarse operator Ky (4.125) and note that the coarse
coupling operator

Bii = Ry B, ([ - A;lAl> R,

actually contains a Jacobi-like smoothed version of the velocity prolongation Rgl. Note
however, that in contrast to Jacobi interpolation as introduced in Section [2.8.8] here
also the rows corresponding to the coarse variables ¢ € C' are relaxed. While in the
case of of smoothed aggregation AMG methods (Section [2.11.2)), where we do not have
“coarse” and “fine” points but form aggregates of points to obtain the coarse level, this
can be seen as just an additional smoothing of the tentative interpolation operator, in
classical AMG we follow the principle that an error e; at a coarse grid point 7 € C should
be interpolated just by injection from its coarse counterpart, see Section [2.8] Now, the
question arises whether it would be sufficient, in (4.124)), to just introduce the coupling
for the fine velocity rows i € F NV, i.e.

Ipp 0 —AppBE\ [Ricp O
Pl == 0 ICC 0 ICC 0 . (4.136)
0 0 I 0 RL,

Here, like in Section [2.8.8] we have re-arranged the coarse and the fine velocity variables
v; such that we can write the operators A;, K; and RZT in block form,

’UF . AFF 0 AFF AFC’ Bg T R%Z)W’CF 0
v = < ) , A= ( - ) , Ki=|Acr Acc BL |, R/ =| Icc 0
ve 0 Ace Br Be -G 0 RI,

Here, Bo and Bp denote the parts of B that correspond to the coarse and fine velocity
variables, respectively. (The further considerations do not require us to separate the
pressure variables in our notation. Also note that for sake of readability we have omitted
the level index [ inside the matrix blocks.)

We now obtain the following coarse system,

K1 =PlKP = <1§l+1 BCZI;H > (4.137)
+1 —VYi+1
where
A1 = RycrArrRy, op + Ry crArc + Acr Ry, op + Acce, (4.138)
Biui = RywiBr (RQCF — A7k (AppRSop + AFC)) + Be, (4.139)
Cioi = Ry [Cl 4 2BpALBE + BFA;;AFFA;;BH RL,.  (4.140)

To see the relation to Jacobi interpolation as introduced in (2.61f) we rewrite the right

hand side of (4.139))

T _ A1 T
Bii1 = Ry (Br  Bo) (RWF Arr (?;CFRWF + AFC)) (4.141)
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4.10. The coarse grid operator 11I: F-stabilization

and conclude that, up to the choice of A rr, the rightmost matrix gives us a Jacobi inter-
polation operator for the velocity. Now, using the approximation result from Theorem
2.14] we can show the stability for this coarse system.

Lemma 4.6 Let A; be a symmetric positive definite matriz and let the projection on the
coarse level Ty be defined by
Iy = (0 Icc). (4.142)

Assume that for all v; € V' we have

2

IA

HUF — [RxT;,CF — fl}}: (AFFRQCF + AFC)} Vo i, ﬁ5||vl|’il (4.143)
|REmw’ < Bollully,  (4.144)

for some constants (s, B¢ > 0. Then, the inf-sup-condition on the fine level,

U BzT bi
sup

1
> allpillv, — di (0 Cipi)® for all p € W (4.145)
0Av EV1 HleAz

implies an inf-sup-condition on the coarse level,

T
v B pi 3 !
sup  ——————— > ¢y l[ps v, — disr (P11 Creapisn) ® for all pryq € W

0Fv; 41 €V ||Ul+1 ||Al+1
(4.146)

where

1
¢ and djy 1 = —= max(d;, \/Fs)-

1
=B, VBs

and Ml+1 == RWlMlevl'
Proof: The proof is very similar to the proof of Lemma [4.5]
We have |[vi1]|4,,, = || Ryuvis1]|4,- From the definition of Ty (4.142) it is clear that we

can rewrite any v, € V! as vy, = v, and, in the leftmost term of ([4.146)), take
the supremum over v; instead of vy,

T BT THT RT THT RT
U Brapier v IR, By pi vy IR, By pi

sup (4.147)

0#£v; 11 €V ‘|R€lvl+1|lAl N 0#£v eV! ||R£lHVlvl||Al - 0#£v eV! Vv BGHUZHAl

where we have used (4.144) in the last inequality. We insert +v,B] R}, p;41 into the
nominator of (4.147),

o I Bl pir = v Bl Ryupir — {v] [Bl Rl — LBl pi } - (4.148)

We now use the definition of By (4.141]),

- T
BT — (Rg,CF — App (AppRy cp + AFC)) (35) R
+1 — T BT Wi
cc C
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4. AMG for Saddle Point Systems

and replace B/ | in the rightmost term of ([4.148)),

o[BI Ry — I, By | pisa

T i-1 T T T
—or[(fer 2 ) = (Mher = Ark (e hon = A ] (8) R

Icc Icc
" . T
@) o | (Irr O RE op — AppArpRE op — AppArc BEN or
= {( 0 [CC> _ ( V,CF FF [CCV,CF FF (0 ICC) Bg szpz+1
Irp App (ApeREc + Arc) — R TUAYV2 o\ [AZM? 0\ (BT
— UZT FF FF \LFFLEC FC V,CF FF FF 1:; R, Pis1
0 0 0 0 0 0 B¢ w

<

N N 1/2
w—h&mmﬁﬂhﬂﬁm+hﬁhc -@W&ﬂﬁ%ﬂw

AFF

Together with (4.143) we have

vp = [ B o — Apk (AprRS cp + Arc) | vo

< Bsllvlla,-
ArF

F

From p(fll_l/QAl/All_l/Q) < 1 we also have p(A;},/QAFFAE,/Q) < 1. Hence we can conclude
Ry BrAZLBIRY, < Ry (OZ +2BpAZLBY - BFA;;AFFA;;B}“) RL, = Cipy
so that we can estimate the nominator of the rightmost term in (4.148]),
1/2
o[BI Ry — By | i </ Bslluilla, (911 Criapisn) (4.149)
Finally, we perform the induction as in the proof of the previous lemma,

T T
U Brapia
sup @—

0;ﬁvl+1evl+l Hvl+1||Al+l

s

o 11, Bl pia
0#£v €V, V BGHUZ ||Al
- T RT pPT
vy B/ R
sup 1 D Ly P+

Bs Lozwev  llulla,

V=
)
=
T

s

vz
=
‘H

- \/@ (szjr10z+1pl+1) 1/2}

(|4.145|) 1 r 1/2 1/2
> _5 CallﬂHMl+1 —d (palRWzClwale) -V Bs (pljllCallH) }
6 L
1
Z R

I ~ 1/2
\//6_6 _Cl||pl+1||Ml+1 —d (pljji—lol+1pl+1) }

where d = max(d;, v/Bs).

From the last line, we obtain the constants

1 1
Cly1 = ﬁcl and dj; 1 = ﬁmax(dl, vV Bs5)- O
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4.10. The coarse grid operator 11I: F-stabilization

To show inequality , note that in our implementation we have App = aDpp,
where Dpp denotes the part of the diagonal of A; corresponding to the fine grid variables
and o > 1 is chosen such that 4, > A;. Let us assume that A, is weakly diagonally
dominant and that our tentative interpolation operator R]@,CF satisfies ,

lvr = By, pevellp,.,. < Tlull, (4.150)

where 7 > 0 is independent of V. )
We follow the proof of Theorem First, we replace Apr = aDpp,

2

Up — [le;,CF — Apk (AFFR}Y;,CF + AFC)] vel| .

AFF
2

1
(ve — RY, cpve) + ED;} (AppRy o + Apc) ve

OCDFF

- (UF - Rg,CFUC)T aDpp (UF - R\Tﬂvc)

Tl

+ (AFFRg,CFUC -+ AFCUC) EDF}; (AFFR]I;,CFUC + AFCUC)
T _

+ 2 (UF — R;Z;7CFUC) DFFDF%r (AFFRg,CFUC’ + Apcvc)

1
a% a HUF - RgchUCHzFF + ||AFFR]7;,CFUC + AFC,UCHQD;;?

+2 HUF - RE’CFUC”DFF HAFFRE,CFUC + AFCUCHD;}T . (4151)

The second summand and the second factor in the last line of (4.151)) are further esti-
mated, (cf. (2.64]))

lAFFRY, crve + Apcvcllpor < |1 Arr (RY cpve — vr) lIp-1 + | Arror + Arcvelip;:
(4.152)
Regarding the first summand of (4.152)), we have (cf. (2.25))

|Arr(Ry cpve = ve)llp=1 < p(DppArr) v — Ry cpvellpe: < VTp(DrpAre)|luilla,-

The second summand in (4.152)) is estimated by

|Arprvr + Apcv ||2 — Appvr + Apcuc ’ D;%? 0\ (Arrvr + Arcve
FFUFR FCUClip-1 Acrvp + Acove 0  0) \Acrvr + Accve

Appvp + Apcve g Dpr 0 Appvp + Apcve
Acrvr + Accve 0 Daé Acrvr + Accve

2
Hvl”AlDl_lAl
< p(D7 Ao,

We use p(DppArr) < p(D;'A4;) < 2 for weakly diagonally dominant matrices A; and

obtain (cf. (2.65))
1ARFRY, cpve + Arcvellp-1 < (VT +V2) 0],
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4. AMG for Saddle Point Systems

We insert this result into (4.151)) and conclude that we have (4.143)), where
Bs = at + (2v7T + V2)* + 2V/7(2VT + V2).

In the case of point-based AMG with 4; = Dp (2.92)) (see Remark, we replace Dpp
by the part of Dp belonging to the fine grid points and || - ||, by || - ||po.r and employ

lvr = Prevellpor < Tllvli,

instead of (4.150)).

Note that the constant 5 depends on « so a smaller (more accurately computed) value
of o allows a smaller 5, and, in consequence, a smaller d; ;. Likewise, an accurate
interpolation operator R%, (where 7 in (4.150)) is small) also leads to a small d .
Regarding inequality , we refer to the discussion in Section Again, if A; is
singular, we replace the norm |[|-[| 4, by a suitable norm |- || 4,, , where Ap, is non-singular
and A D, > Al.

4.11. Setup of the AMG hierarchy for saddle point
systems

Now, we have all components ready to set up the AMG hierarchy for saddle point
problems. In algorithm we sketch the setup algorithm for saddle point AMG. First,
if the decomposition of €2 into velocity and pressure unknowns is not given by the user,
we automatically detect these subsets according to the respective diagonal entry of K.
Then, on each level we ﬁrs’g set up the smoother (Sections and and compute the
Schur complement 7' = BA~'BT 4+-C. After this is done, we carry out the classical AMG
coarsening and interpolation algorithms as in the case of scalar AMG, cf. Algorithm
this time applied to both the velocity and pressure components. Finally, we compute
the stabilized interpolation by , , or and the coarse grid operator
K:prl — RlT]Cl'Pl

Note that in most cases the velocity space V itself consists of multiple physical unknowns.
Hence, for the coarsening and interpolation for the matrix block A we have to choose
whether we employ variable-based AMG (Section 2.12.1)), unknown-based AMG (Section
, or point-based AMG (Section . In the latter case, we also have the
option to use the same coarse mesh for both velocity and pressure variables if the initial
discretization on level 1 also employs a common mesh (e.g. P;— P;-stab finite elements).
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4.11. Setup of the AMG hierarchy for saddle point systems

algorithm 4.5 AmgSaddleSetup(Q, K = (ki;)ij» Nmin, Lmaz, L, i1, {P S AR
begin

Q, —{jeQ:k; >0} Q«Q\Q,; or partitioning can be supplied by user
K1+ IC,

forl <+ 1to L.x —1do
A« (ké,j)z’,je%; B« (kﬁ,j)z‘e%,je%; C <+ (ké,j)j,jeQé;
VankaSmootherSeAtup(A7 B,C, {Aj}?ﬁl, {Bj}?ill, {Sj}?/[:ll, {Vj}ﬁl, {VVj}jw:ll)
compute T + BA™'BT + C;
AmgStrongCouplings(A, S,, ST);
AmgStrongCouplings(T’, S,, S]);
split Q! into CLUF! usingS,; see Section [2.6] or Chapter
split 2} into CLUF]) usingS,;
set QIFL « Ol Npyy = |QUFY;
set QLY < CL: My = [0
build velocity interpolation R, : RV+1 — RN using A; see Section 2.8
build pressure interpolation RY, : RMi+1 — RM: ysing T
compute P; according to (4.99), (4.124)), or (4.136);

if used (4.99)

then
va O .
Rl < ( 0 Rwl) ’

else
Rl < 'PZT7

fi;
compute K;1 + RIK/Py;
if [QLH U QLM < Ny then break; fi;
od;
L+ 1+1;
end.
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5. Numerical Results

In this chapter, we demonstrate the practicability of our saddle point AMG. We inves-
tigate the performance of our AMG using two finite difference model problems and one
finite element example.

We have implemented our saddle point AMG using the hypre software package |[hyp]
[CCF98]. An important component of this parallel linear solver suite is the BoomerAMG
algebraic multigrid solver and preconditioner for positive definite matrices. The ingredi-
ents of BoomerAMG include smoothers (Jacobi, Gauss—Seidel, SOR, polynomial), par-
allel coarse grid generation techniques (third pass coarsening, CLJP, Falgout’s scheme,
PMIS, HMIS, CGC(-E), compatible relaxation, ...), interpolation setup routines (di-
rect, modified classical, extended(+i), Jacobi, and may more). Furthermore, for systems
of elliptic PDEs both the unknown-based (UAMG) and the point-based (PAMG) ap-
proach are supported. For the latter, block smoothers and block interpolation routines
can be chosen.

For the numerical experiments presented in this chapter, we have set the following pa-
rameters, if not stated otherwise:

e The strength threshold (2.29)) is o = 0.25.
e We perform both phases of Ruge-Stiiben coarsening (Algorithms [2.5 and [2.6).

e As tentative interpolation for both velocity and pressure, we employ modified clas-
sical interpolation (2.51)) per physical unknown. The interpolation is not truncated.

e We stop the coarsening if the number of degrees of freedom is less than 1000. A
direct solver is used on the coarsest level.

In addition to the wall clock time consumed for the setup (Algorithm and solve
(Algorithm [2.2)) routines, we give two further quantities:

e The operator complexity

Lmaz

Cy = ==L
4 non-zeros (K;)

non-zeros (KC;)

gives an indication of the “memory overhead” required for the AMG hierarchy
compared to the original linear system.

e The convergence factor or convergence rate
. 1
th it

P = r_o )
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5. Numerical Results

Figure 5.1.: Diffusion coefficient for the SOLKY problem (/5.1)—(5.2))

where 7 := |y — Kz"| is the l;-norm of the residual.

If the right hand side ¥ is zero, we initialize 2° with random values and scale it such that
|zg| = 1. We stop the iteration if the residual norm r* is less than 1078. Otherwise, we
use a zero start vector 2° and terminate if r¥ < 107879,

5.1. Finite difference examples

We start with two geodynamic benchmark examples in two spatial dimensions, the
SOLKY and the SINKER problem. In both cases, we use a staggered grid (Section
to discretize the respective PDE on a square domain Q = [0,1]?>. We impose a
Neumann boundary condition (free outflow) for # = 1, while on all other boundary we
set zero Dirichlet conditions.

Example 5.1 SOLKY problem The first example is a variant of the SOLKY problem
[MMO8]. We solve the equations

-V -vVu+Vp=0 (5.1)
V-u=0

in Q = (0,1)?, where v is given by
v(z,y) = exp(2y),

see Figure [5.1]

Example 5.2 SINKER problem Here, we consider a problem with a jumping dif-
fusion coefficient v(z,y). The equations are as in (5.1)-(5.2), but v(z,y) is no longer
continuous. Instead, for 0.5 < z < 0.75 and 0.5 < y < 0.75, we have v(z,y) = vy,
while for the remainder of the domain we set v(z,y) = vy = 1, see Figure In our
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5.1. Finite difference examples

Figure 5.2.: Computational domain for the SINKER problem. The gray square indicates
the area where the diffusion coefficient v, while the in the remainder of the
domain the diffusion coefficient vy equals 1.

experiments, we let v, = 1075 1073, 1, 103, or 10°. In the case of v; = 1, we obtain a
Stokes problem.

All finite difference experiments were carried out on dual processor Intel Xeon 3.20 GHz
machines with 6GB RAM.

Two-level experiments In Sections [L.8H4.10] we have introduced three different sta-
bilization techniques for the coarse saddle point system,

e a full smoothing of the prolongation matrix P := MRT and a Petrov-Galerkin
approach to the coarse grid operator, K¢ := RKP (4.99);

_ A-lpT
e an application of the pressure—to—velocity coupling operator (é A It B, ) (4.124)

to the tentative prolongation and a Galerkin coarse grid ansatz,

e “F-stabilization”: as in the previous case, but restricted to the fine grid velocity

variables only (4.136))

Ipp 0 —ApLBE\ [Rbcp O
P[ - 0 1 cC 0 1, cC 0
0 0 I 0 RL

For the first variant, we were able to prove two-grid convergence if used in combination
with a single pre-smoothing step with the inexact Uzawa method (see Section [4.8)),
but this involves a substantial memory usage. The question arises whether the other ap-
proaches, especially F-stabilization, can also provide a converging method. To this end,
we numerically compare the three stabilization techniques as well as a unstabilized coarse

T
grid operator (where we just employ the block interpolation operators (’%V ROT )) We
W

consider three different mesh refinements: A 32x32 mesh (3,040 degrees of freedom),

177



5. Numerical Results

0 T 0 0 0

500 7 500 500 7 500
1000 7 1000 1000 1000
1500 7 1500 1500 7 1500
2000 7 2000 @ 2000 2000
2500 7 2500 2500 b 2500
3000C I I 3000 3000 I I 3000C L

0 500 1000 1500 0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
nz = 7409 nz = 84759 nz = 15220 nz = 11330

Figure 5.3.: Sparsity patterns of the tentative and stabilized interpolation operators on
the finest level for a Stokes problem discretized on a staggered finite dif-
ference mesh with 32 x 32 cells. From left to right: tentative interpolation
operator, fully smoothed prolongation (4.99)), pressure-to—velocity stabiliza-

tion (4.124]), F-stabilization (4.136|)

500

1000 1000

1500 N 8 N 1500 N W
[ 500 1000 1500 0 500 1000 1500 [ 500 1000 1500

nz = 106782 nz = 49924 nz =30152

Figure 5.4.: Sparsity patterns of the coarse grid operator on the first coarse level for a
Stokes problem discretized on a staggered finite difference mesh with 32 x 32
cells. From left to right: fully smoothed prolongation (4.99)), pressure-to—
velocity stabilization , F-stabilization (4.136))
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5.1. Finite difference examples

none full P2v F
Mesh dof | Cy p| Ca p| Ca p| Ca P
32x32 3,040 | 2.48 0.40 | 7.00 0.41 | 3.80 0.41 | 2.69 0.42
64 x 64 12,224 | 2.50 041 | 7.26 0.42 | 3.89 0.42 | 2.72 0.43
128x128 | 49,024 | 2.51 042 | 7.39 042 | 3.93 042 | 2.74 0.43

Table 5.1.: Operator complexity C'4 and convergence factor p for the two-grid itera-
tion applied to the SOLKY problem. The different stabilization techniques
are denoted by none (no stabilization), full (full prolongation smoothing and
Petrov-Galerkin coarse grid operator ), P2V (pressure—to—velocity cou-

pling (4.124)) and F (F-stabilization (4.136])).

a 64x64 mesh (12,224 degrees of freedom), and a 128x128 mesh (49,024 degrees of
freedom).

In Figure |5.3| we show the sparsity patterns and numbers of non-zero matrix entries for
a tentative interpolation operator R on the finest level (Stokes problem discretized on
32 x 32 cells) as well as the stabilized interpolation operator P; computed according to
(4.99), (4.124), and , respectively. We see that the full stabilization technique
produces a significantly denser interpolation operator than the other variants. Also, this
matrix includes couplings between the different velocity components that are not present
in the tentative prolongation and the sparser stabilization variants. All these drawbacks
carry over to the first coarse grid operator, see Figure [5.4] In Table we give
the operator complexity as well as the convergence factor for the SOLKY problem. We
see that all convergence rates are nearly equal, while the operator complexity differs
significantly depending on the stabilization technique chosen.

While for the SOLKY problem the two-level method without stabilization still con-
verged, this is not longer true for the SINKER problem if the diffusion coefficient has
a jump, see Table (right). We see however that the robustness of the stabilized
methods does not depend on the diffusion coefficients. Again, the the F-stabilization
approach involves an operator complexity that is only about 10 percent higher than the
unstabilized two-grid hierarchy, in contrast to the other stabilization techniques that
have a significantly higher memory overhead.

Multilevel experiments In the following, we turn our attention from the two-grid it-
eration with one additive pre-smoothing step to full V-cycles. We compare V (1,1),
V(3,3), V(5,5) with both additive, multiplicative and symmetric multiplicative smooth-
ing iterations. We first give the setup time and the operator complexity for the
algebraic multigrid hierarchies (Table [5.3). The full stabilization method already runs
out of memory for very small problem sizes. Not surprising, the setup without stabiliza-
tion is faster than the other variants and also has the least memory overhead. However,
without stabilization we only have convergence for the smallest problem size 32 x 32
and all other cycles diverge. In the following, we give the convergence figures for the
pressure—to—velocity coupling and F stabilization techniques.
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5. Numerical Results

none full P2v F

Mesh dof | 11 Ca p| Ca p| Ca p| Ca p
le 6 | 2.46 — 1697 041|379 041 | 268 0.41

le=3 | 2.46 — 1697 041 ] 3.79 041 | 2.68 0.41

32x32 3040 1 248 0.41 ] 6.99 0.41 | 3.80 0.41 | 2.69 041
led | 2.46 — | 6.95 041 | 3.77 042 | 2.68 0.42

1eb | 2.46 — | 6.95 041 | 3.77 042 | 2.68 0.42

1e=% | 2.50 — | 725 042 | 3.88 042 | 2.72 0.42

le=3 | 2.50 — | 7.25 042 | 3.88 042|272 0.42

64x64 | 12224 1 2.50 042 | 726 0.42 | 3.89 042 | 2.72 0.42
le? | 2.49 — | 7.24 042 | 3.87 042 | 2.72 0.42

1eb | 2.49 — | 724 042 | 3.87 042 | 2.72 0.42

le 0 | 2,51 — | 739 042|393 042 | 2.73 0.42

le™® | 2.51 — | 739 042|393 042 | 273 0.42

128x128 | 49024 1 251 042 | 739 0.42 | 393 042 | 274 0.42
le3 | 2.51 — | 739 042|392 042|273 0.42

1€ 2.51 — |1 739 042|392 042 | 2.73 0.42

Table 5.2.: Operator complexity C'y and convergence factor p for the two-grid iteration
applied to the SINKER problem. A dash denotes that the method did not
converge within 1000 iterations.

none full P2v F

Mesh dof tsetup CA tsetup CA tsetup C'A tsetup CA
32x32 3,040 | 4-1072 295 0.86 21.94 [ 6-1072 4.67 [ 4-1072 3.33
64x64 12,224 0.12 3.16 | 11847 44.59 0.35 5.13 0.20 3.61
128 %128 49,024 0.57 3.28 - — 1.72  5.29 0.96 3.77
256256 196,352 2.75 3.40 - — 8.98 5.44 5.54 3.92
512x512 785,920 10.82  3.48 — — 50.86 5.56 24.90 4.00
1024x1024 | 3,144,704 65.67 3.55 — — 269.09 5.65 141.31 4.08

Table 5.3.: Setup time 44, and operator complexity C4 for the AMG hierarchy com-
puted for the SOLKY problem.
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5.1. Finite difference examples

additive multiplicative symmetric multiplicative

Mesh V(1,1) V(3,3) V(5,5) | V(1,1) V(3,3) V(5,5) | V(1,1) V(3,3) V(5,5)
32x32 0.27 0.15 0.16 0.47 0.24 0.32 0.34 0.37 0.50
64 %64 — 3.00 1.38 — 4.03 2.26 — 2.23 3.27
128x128 — 24.13 9.76 34.38 13.57 - 12.60 18.79
256 %256 — — 45.54 — — 75.56 — 87.36 100.51
512x512 — — 252.74 — — 715.22 — 534.19 695.39
1024 %1024 — 1,009.49 — —  5,269.60 2,155.71  2,958.88

Table 5.4.: Solution time for the V-cycle iteration applied to the SOLKY problem
(Pressure—to—velocity coupling).

additive multiplicative symmetric multiplicative

Mesh V(,1) V(3,3) V(55 | V(1,1) V(3,3) V(55) | V(1,1) V(3,3) V(55)
32x32 0.56 0.06 0.03 0.57 0.06 0.03 0.28 0.03 0.02
64 %64 — 0.39 0.04 — 0.32 0.04 — 0.04 0.03
128x128 — 0.57 0.07 — 0.51 0.07 — 0.04 0.03
256 %256 — — 0.11 — 0.09 — 0.10 0.03
512x512 — — 0.18 — — 0.24 — 0.14 0.06
1024 x1024 — — 0.31 — — 0.45 — 0.10 0.08

Table 5.5.: Convergence factor for the V-cycle iteration applied to the SOLKY problem

(Pressure-to—velocity coupling).

From Tables[5.4H5.7| we learn that the V/(1, 1) is not sufficient to solve the problem ex-
cept for small problem sizes. Furthermore, the (non-symmetric) multiplicative smoother
has no advantage over the additive smoother. To obtain more robust convergence, we
have to employ symmetric multiplicative smoothing, (see Tables and . On the
other hand, despite the fact that its convergence factors are not completely independent
of the problem size, the V' (5,5) cycle with additive smoothing provides the fastest in
nearly all cases, see Tables[5.4 and [5.6f We mention here that for the multiplicative and
symmetric multiplicative smoothing methods we still had to employ the same scaling
factors as in the case of additive smoothing, cf. the discussion in Section

additive multiplicative symmetric multiplicative

Mesh V(1,1) V(3,3) V(5,5) | V(1,1) V(3,3) V(5,5) | V(1,1) V(3,3) V(5,5)
32x32 0.36 9-102 0.10 0.29 0.15 0.19 0.13 0.19 0.27
64 %64 — 0.75 0.82 — 0.94 1.31 1.35 1.26 1.86
128 x128 — 4.38 5.74 — 5.15 7.61 9.28 7.04 9.82
256256 — 49.87 27.87 — 53.12 39.90 — 34.66 60.34
512x512 — 1,748.63 173.15 — 233.39 — 204.31 271.25
1024x1024 — — 710.60 — — 1,506.32 1,462.72  1,786.08

Table 5.6.: Solution time for the V-cycle iteration applied to the SOLKY problem (F-

stabilization).
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—=— F-stabilization

Fr T T T T T T T T T T T
102.00 ;7 é
Loo | ]
E
~100:00 | i
1071.00 ; ;
= \\\1\6!100\ \\\1\6\\5'00\ \\\1\6\\6.00\ I
dof
(a) Setup time tgepup
—e— P2V coupling
—=— F-stabilization
FTT 1777 T T T T T T T T
10300 |
]_0_100 ;\ Ll Lol Lol L \\é
104.00 105.00 106.00
dof

(c) Solution time tsoe for the V(3,3) cycle
with symmetric multiplicative smoothing.
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(b) Solution time tsppe for the V(5,5) cycle
with additive smoothing.
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(d) Solution time tgope for the V(5,5) cycle
with symmetric multiplicative smoothing.

Figure 5.5.: Numerical Results for the SOLKY problem
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5.1. Finite difference examples

additive multiplicative symmetric multiplicative

Mesh V(1) V(3,3) V(55) | V(1,1) V(3,3) V(55) | V(1,1) V(3,3) V(5,5)
32x32 0.74 0.06 0.03 0.57 0.06 0.03 0.14 0.03 0.02
64x64 - 0.06 0.05 - 0.06 0.04 0.34 0.03 0.02
128x128 — 0.08 0.07 - 0.07 0.04 0.42 0.03 0.02
256x256 — 0.38 0.05 — 0.30 0.04 — 0.04 0.03
512x512 — 0.89 0.11 — — 0.08 — 0.05 0.03
1024x1024 — — 0.27 — — 0.17 - 0.11 0.04

Table 5.7.: Convergence factor for the V-cycle iteration applied to the SOLKY problem
(F-stabilization).

We already mentioned in Section that in contrast to pressure-to-velocity coupling,
the F-stabilization technique better fits into the context of classical AMG, with desig-
nated “coarse” and “fine” points. Comparing the numerical results in this section for
both variants (Tables 5.7, Figure |5.1)) we obtain a justification for this hypothe-
sis: F-stabilization performs better than pressure-to—velocity coupling both in terms
of memory overhead (operator complexity) as well as setup and solve timings. In the
remainder of this chapter, we will only us F-stabilization.

In Table[5.8 and Figure[5.6|we give the numerical results of the F-stabilization technique
applied within an AMG hierarchy computed for the SINKER problem. In contrast to
the two-level method, we now see that all relevant figures (setup time, operator complex-
ity, solution time, convergence factor) now depend on the coefficient ;. Not surprising,
we obtain the best results for the plain Stokes problem (v; = 1). It is also clear that
there is no “ideal” smoothing parameter set: In most cases, a V' (5,5) cycle with addi-
tive smoothing yields the fastest solution (even if the convergence factors for symmetric
multiplicative smoothing are lower), but for the 1024 x 1024 mesh and vy = +£10°, it is
not sufficient any more and symmetric multiplicative smoothing is required.

We omitted the V(3,3) cycle with additive smoothing from the table, as this iteration
did not converge for any mesh size larger than 128 x 128 if 14 # 1.
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5. Numerical Results

additive symmetric multiplicative
V(5,5) V(3,3) V(5,5)
Mesh dof vy tsetup CA tsolve 14 tsolve 14 tsolve 14
1076 0.05 | 3.62 0.11  0.05 0.19 0.04 0.27 0.03
1073 0.04 | 3.62 0.12 0.05 0.19 0.04 0.27 0.03
32x32 3040 1 0.04 | 3.30 0.12 0.05 0.19 0.04 0.30 0.03
103 0.05 | 3.62 0.13 0.05 0.21 0.05 0.30 0.03
108 0.05 | 3.62 0.12 0.05 0.21 0.05 0.31 0.03
107F 0.22 | 3.89 1.12  0.05 1.41 0.05 2.03 0.03
1073 0.24 | 3.89 1.10 0.05 1.44 0.05 2.10 0.03
64 x 64 12224 1 0.20 | 3.61 1.05 0.06 1.27  0.05 1.86 0.03
103 0.23 | 4.02 0.85 0.06 1.62 0.06 2.38 0.05
108 0.23 | 4.02 0.79 0.06 1.61 0.06 2.37  0.05
10 1.09 | 4.03 7.73 0.10 8.62 0.06 12.02 0.03
1073 1.16 | 4.03 7.72 0.10 7.73 0.05 11.94 0.03
128128 49024 1 1.00 | 3.78 6.61 0.07 7.14  0.05 10.77  0.03
103 1.21 | 4.16 6.55 0.06 9.32  0.06 15.37 0.06
108 1.19 | 4.14 5.69 0.07 9.35 0.06 12,75 0.04
10~© 5.88 | 4.12 33.96 0.16 55.29 0.11 70.42  0.06
1073 5.73 | 4.10 44.24  0.27 60.60 0.15 68.75 0.06
256x256 196352 1 5.07 | 3.92 19.01 0.07 33.31 0.04 51.52  0.03
103 6.09 | 4.17 33.34  0.09 51.53 0.09 89.82  0.08
108 5.68 | 4.16 27.57 0.10 48.72  0.08 73.88 0.06
1076 28.89 | 4.17 217.88 0.30 386.00 0.21 47549  0.08
1073 27.26 | 4.17 294.90 0.32 531.14 0.28 494.96 0.13
512x512 785920 1 25.95 | 4.01 133.49 0.14 211.38 0.08 320.88 0.03
103 30.04 | 4.15 187.91 0.23 263.96 0.07 411.32 0.06
106 29.43 | 4.15 137.05 0.15 260.47 0.08 399.46 0.07
1075 [ 152.69 | 4.24 — — | 7,667.65 0.66 | 4,937.48 0.34
1073 | 154.05 | 4.25 | 2,254.40 0.60 | 4,036.61 0.45 | 3,548.96 0.23
1024 x1024 | 3144704 1 132.01 | 4.09 | 1,020.69 0.42 | 2,001.59 0.23 | 1,659.03 0.05
103 147.36 | 4.19 | 1,969.40 0.59 | 2,050.04 0.21 | 2,257.60 0.09
106 147.20 | 4.20 — — | 3,594.67 0.41 | 2,694.19 0.13
Table 5.8.: Numerical results for the SINKER problem. We show the mesh dimension,
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the degrees of freedom, the AMG setup time %4, the operator complex-
ity C'4 and the AMG solve time t4,,. as well as the convergence factor p
for V(3,3) and V(5,5) cycles with additive and symmetric multiplicative
smoothing.
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(d) Solve time tgoppe for the V(5,5) cycle with
symmetric multiplicative smoothing

Figure 5.6.: Numerical results for the SINKER problem
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5. Numerical Results

5.2. Mantle Convection

We conclude our numerical experiments with an example from earth mantle convection
simulation. We use our saddle point AMG as linear solver inside the parallel adaptive-
mesh mantle convection code Rhea [BGGT08, BSAT13|. In long timescales (millions of
years) the earth mantle is assumed to behave as a viscous fluid, whose (dimension-less)
velocity u, viscosity (T, u) pressure p and temperature T are described by

—V [u(T,u) (Vu+Vu")] + Vp = RaTe,, (5.3)
V-u =0, (5.4)

oT 9
Su T VT — . (5.5)

where e, is the unit vector in radial direction, v denotes the rate of internal heat gener-
ation, and the Rayleigh number is given by

apogAT(DRy)?

Ko

Ra =

where «, pg, 1o and k are the reference constants for thermal expansion, density, viscos-
ity, and thermal diffusivity, respectively; the temperature difference across a mantle with
relative thickness D is denoted by AT, and g is the gravitational acceleration. Here, we
have D = 0.45 and the earth radius is given by Ry = 6371km.

A streamline-upwind Petrov-Galerkin formulation is used to discretize (5.5)), see [BSAT13],
Section 3.4 for details. This leads to a system of ordinary differential equations, which is
integrated in time using an explicit first order scheme. Inside each time step, a solution
of the nonlinear Stokes system — must be computed. To this end, a Picard it-
eration is used to treat the non-linearity induced by the viscosity u(T,u). The linearized

version of ((5.3)—(5.4]) then reads in weak form:
Find u and p such that

/QH(VHVUT) : (vV+vVT)—/(V-v>p

2 Q
+/BQ[(p[—M(Vu+u))n]-v:/ﬂf-v for all v, (5.6)
—/(V-u)q:O for all q, (5.7)

Q

where f = RaTe,. On the boundary 0€2, free-slip boundary conditions are imposed, i.e.
u-n=0, v-n=0, s-[(pPI = p(Vu+u"))n] =0,

where n denotes an outer normal vector and s any tangential vector. Hence, inside
(5.6) the boundary integral term [, [(p/ — p (Vu +u”)) n] - v vanishes. Finally, we
discretize (5.6)—(5.7) on a (deformed) hexahedral finite element mesh using trilinear
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5.2. Mantle Convection
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Figure 5.7.: Finite element mesh (left) and temperature distribution (right) on a 45° x45°
section of the Earth mantle.

functions {;}; for all velocity components as well as the pressure. We obtain a linear

system of the form (4.1
A BT\ (u\ _[f
(5 %) ()= 3) e

where the components of the matrix C' are given by (4.42)

- /Q (6 — Tn, &; — T1,),

i.e. we have a ()7 — (Q11-stab discretization, for which the stability is shown in Theorem
4.9
In the following, we focus on the solution of .

More precisely, we consider a 45° x 45° section of a spherical shell, which is axially
symmetrical arranged around the z-axis, see Figure[5.7 We have re-scaled the geometry
such that the outer radius of the shell is given by Ry = 1, the inner radius is Ry = 0.55.
We impose a temperature distribution given by

T = min(1, exp(—50((z — 0.64)* + y* + 2?))
+exp(—50(z? + (y — 0.64)% + 2%))
+exp(=50(2® + y° + (2 — 0.64)%))).
In other words, we have three “hot blobs” centered at the positions (0.64,0,0), (0, 0.64, 0),
and (0,0,0.64), where only the first one is located inside the domain. In Figure

(right) we show a slice through the computational domain to give an indication of the
temperature distribution. The viscosity p is derived from the temperature by

p=exp(—EgT).
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5. Numerical Results

unknown frobenius abs sum schur
Level dof EO tsetup CA tsetup CA tsetup CA tsetup CA
0 0.50 1.21 0.46 1.13 048 1.14 0.57 1.23
3 2916 | 7.5 0.23 1.22 0.19 1.09 0.21 1.13 0.36  1.53
15 0.31 1.34 0.20 1.13 0.19 1.11 0.46 1.74
0 443 1.22 2.61 1.14 2.59 1.13 4.54 1.27
4 19652 | 7.5 548 1.27 291 1.15 2.81 1.14 5.63 1.33
15 8.44 1.36 299 1.14 3.03 1.14 10.33  2.21
0 22.49 1.27 19.12 1.21 16.47 1.16 29.72  1.37
5 143748 | 7.5 27.01 1.30 20.37 1.22 17.32  1.17 31.63 1.37
15 35.14 1.35 22.72  1.23 19.94 1.19 41.93 1.49
0 170.44 1.28 | 165.66 1.23 | 136.09 1.17 | 282.45 1.39
6 1098500 | 7.5 | 177.81 1.31 | 171.12 1.24 | 142.37 1.17 | 281.20 1.39
15 | 181.77 1.32 | 16848 1.25 | 136.40 1.18 | 278.20 1.41

Table 5.9.: Setup time %4c4,, and operator complexity C'4 for the AMG hierarchy to the
HOTBLOB problem. Depicted are the figures unknown-based coarsening
(Section [2.12.2)) and various point-based AMG coarsening methods (Section

9.12.3)), where the primary matrix A is given by the Frobenius norms of the
diffusion matrix blocks, the sum of all absolute values per diffusion matrix
block, or the approximate Schur complement BA='BT 4 C respectively. In

all cases, the interpolation is computed unknown-wise.

We will show simulations for Ey = 0, Ey = 7.5 and Ey = 15, respectively. The Rayleigh

number is given by Ra = le4.

All computations were carried out on the “SIEBENGEBIRGE” cluster at the Institute
for Numerical Simulation at the University of Bonn. This cluster consists of five SMP
nodes with four eight-core Intel Xeon X7560 2.226 GHz CPUs and 512GB RAM each,

connected by QDR 4x Infiniband (40Gb/s).

The solution of (5.8 is only unique up to a constant pressure function. We employ an
AMG-preconditioned GMRES iteration (Algorithm [4.1)), restarted after 20 steps. To
circumvent the singularity, inside each matrix-vector product inside the GMRES we

carry out the following steps,

1 we compute the inner product ¢ = M - p, where M is the lumped mass matrix and

p is the discrete pressure vector,

2 we add cpq to the first entry py of the pressure factor, where we use the penalty
factor ¢, = 10~ 3here,

3 we add ¢,q to all entries in p (for symmetry reasons).

As AMG is used as preconditioner here, we employ the parallel PMIS coarsening scheme
(Section 3.3)). For the @1 — Q) finite element discretization, all unknowns are located at

the same points. This allows us to employ point-based AMG approaches here.

We first compare unknown-based AMG (Section [2.12.2]) with three different
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5.2. Mantle Convection

unknown frobenius abs sum schur
Level dof EO tsolve it Lsolve it tsolve it tsolve it
0 0.53 14 0.52 13 0.51 13 0.40 11
3 2916 | 7.5 0.68 17 0.56 15 0.54 15 0.51 13
15 1.26 31 1.02 26 1.07 27 1.27 31
0 6.89 19 5.11 15 4.84 14 6.16 17
4 19652 | 7.5 7.54 20 5.83 16 5.73 16 6.96 18
15 14.91 32 8.45 22 9.53 23 29.45 20
0 139.15 33 76.21 20 68.22 19 76.85 16
) 143748 | 7.5 138.69 33 94.15 23 68.07 20 92.24 18
15 188.39 43 130.73 35 118.45 33 133.25 20
0 1,525.75 41 | 1,193.41 36 | 1,009.71 32 | 1,227.56 25
6 1098500 | 7.5 | 1,423.22 36 | 1,179.53 36 | 1,144.64 36 | 1,287.70 28
15 | 1,450.09 40 | 1,574.80 49 | 1,316.97 47 | 1,411.75 31

Table 5.10.: Solution time ¢4, and number of iterations for AMG-preconditioned GM-
RES(20) applied to the HOTBLOB problem. Depicted are the figures
unknown-based AMG (Section and various point-based AMG (Sec-
tion methods, where the primary matrix A is given by the Frobenius
norms of the diffusion matrix blocks, the sum of all absolute values per dif-
fusion matrix block, or the approximate Schur complement BA'BT + C ,
respectively.
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Figure 5.8.: Numerical Results for the HOTBLOB problem with FEy = 0
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Figure 5.9.: Numerical Results for the HOTBLOB problem with Ey = 7.5
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Figure 5.10.: Numerical Results for the HOTBLOB problem with Fy = 15
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5.2. Mantle Convection

point-based AMG variants (Section [2.12.3]). Remember that point-based AMG requires
a primary matriz A. We employ the structure of the matrix K,

Koy Kaz - Kawy
K @ .. K

K — (.271) (.22) ' (2.7M) 7
Koy Koy - Kouwn

where each K(; j) has the form
Ky = (A(ivj) B&'))
(2%} .
Big)  Clig)
To define the primary matrix A, we propose the following variants:
1 Use the Frobenius norm of A, @i; := || Ag )| r-

2 Define a;; as the sum over the absolute values of all entries in A j).

3 Compute the inexact Schur complement A := BA-'BT 4 C.

We use the primary matrix A to obtain to coarsen the mesh, where we stop the coarsening
if the number of points is less than 1000. Consequently, to obtain comparable results, for
the unknown-based AMG variants we stop if there are less than 4000 degrees of freedom
(we have three velocity and one pressure degree of freedom per point).
We employ multiple-unknown interpolation, i.e. the interpolation operator is computed
unknown-wise. As can be seen from Table [5.9] the variants using the Frobenius norm
and the sum over all absolute values per block allow a faster setup than unknown-
based coarsening. Especially for the last one we see that the operator complexity only
grows slightly with increasing problem size and is nearly independent of the viscosity
i = exp(EpT). In consequence, we obtain scalable setup timings, i.e. the computational
work per degree of freedom is nearly constant. The setup costs for the inexact Schur
complement primary matrix variant are higher than for unknown-based AMG.
In Table [5.10] we give the solution timings and the number of iterations. Here, for all
variants we have some dependence on the problem size as well as the viscosity. In nearly
all cases the point-based approaches are faster than unknown-based AM, see also Figures
b2H5.2

We now investigate whether the performance can be improved if we use point-based
interpolation instead of the multiple-unknown interpolation scheme. To this end, we fix
the primary matrix A to be computed using the sum of all absolute elements in each

block (the fastest variant in tables 5.10)). We compare

e multiple-unknown interpolation, i.e. modified classical interpolation computed per
physical unknown,

e single-unknown interpolation, where A is used to derive an interpolation operator
that is extended to the whole system,
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5. Numerical Results

multiple-unknown | single-unknown block diagonal block

Level dof EO tsetup C’A tsetup CA tsetup CA tsetup CA
0 0.48 1.14 0.46 1.14 0.46 1.25 0.46 1.25

3 2916 | 7.5 0.21 1.13 0.21 1.13 0.41 1.23 0.80 1.23
15 0.19 1.11 0.18 1.11 0.36  1.20 0.36 1.20

0 2.59 1.13 2.61 1.13 4.70 1.27 4.61 1.27

4 19652 | 7.5 2.81 1.14 2.80 1.14 5.13 1.30 491 1.30
15 3.03 1.14 2.98 1.14 5.02 1.31 5.05 1.31

0 16.47 1.16 16.11 1.16 75.86 1.51 57.66 1.42

5 143748 | 7.5 17.32 1.17 17.67 1.17 78.06 1.54 57.69 1.42
15 19.94 1.19 18.98 1.19 89.31 1.64 71.99 1.50

0 | 136.09 1.17 | 137.27 1.17 | 2,284.03 1.69 783.63 1.49

6 1098500 | 7.5 | 142.37 1.17 | 138.07 1.17 | 2,620.75 1.71 844.22 1.49
15 | 136.40 1.18 | 142.31 1.17 — 179 | 1,015.58 1.53

Table 5.11.: Setup time tse,, and operator complexity C4 for the AMG hierarchy to

the HOTBLOB problem. We give the numbers for multiple-unknown inter-

polation, single-unknown interpolation derived from the primary matrix A,

block interpolation using the full blocks and block interpolation using the

diagonal blocks. In all cases, the primary matrix A is computed using the

sum of the absolute values inside each diffusion matrix block.

multiple-unknown | single-unknown block diagonal block

Level dof EO tsolve it tsolve it tsolve it solve it
0 0.51 13 0.55 12 0.86 12 0.83 12

3 2916 | 7.5 0.54 15 0.68 14 095 14 1.00 15
15 1.07 27 1.19 27 1.93 28 1.85 28

0 4.84 14 4.73 13 7.88 14 7.78 14

4 19652 | 7.5 5.73 16 5.10 14 8.83 15 9.07 16
15 9.53 23 8.18 22 12.45 21 15.36 26

0 68.22 19 | 44.95 14 111.22 16 120.66 17

5 143748 | 7.5 68.07 20 | 54.49 15 127.56 18 148.68 21
15 118.45 33 | 93.13 25 340.27 43 24792 34

0 | 1,009.71 32 | 438.38 15 | 5,776.09 36 | 2,385.97 30

6 1098500 | 7.5 | 1,144.64 36 | 486.76 16 | 5,063.50 30 | 2,553.29 32
15 | 1,316.97 47 | 866.16 27 - — | 7,715.96 90

Table 5.12.: Solution time ¢, and number of iterations for AMG-preconditioned GM-
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RES(20) applied to the HOTBLOB problem. We give the numbers for

multiple-unknown interpolation, single-unknown interpolation derived from

the primary matrix A, block interpolation using the full blocks and block

interpolation using the diagonal blocks. In the case of (diagonal) block

interpolation, also a (diagonal) block smoother is used. In all cases, the

primary matrix A is computed using the sum of the absolute values inside

each diffusion matrix block.




5.2. Mantle Convection

Level dof | Ejy 1 8 16 32 64 128
0 16.11 3.68  2.86 2.56 — —
5 143748 | 7.5 17.67 3.76  3.22 2.68 - -

15 18.98 5.16  4.08 3.73 — —
0 137.27  21.79 13.75 8.41 — —
6 1098500 | 7.5 138.07  22.66 14.12 8.81 — —
15 142.31  25.17 15.52  10.61 — —
0 | 1,018.18 156.20 86.60 48.76  32.53  30.83
7 8586756 | 7.5 | 1,045.64 159.02 87.98  49.18 33.79  29.81
15 | 1,057.58 159.12 88.99 51.38 35.16  32.50

0 - — 352.22 192.62 113.74
8 67898372 | 7.5 — — — 42477 195.32 117.27
15 — — — — 193.81 120.61

Table 5.13.: Setup time te,, for the parallel AMG hierarchy to the HOTBLOB problem.
In the top row we give the number of processors. The primary matrix Ais
computed using the sum of the absolute values inside each diffusion matrix
block and single unknown modified classical interpolation is employed.

e block classical interpolation (2.108]) for the velocity,
e diagonal block classical interpolation (2.109) for the velocity,

where in the last two cases the pressure interpolation is computed separately using a
modified classical interpolation scheme. For the (diagonal) block interpolation schemes,
also a (diagonal) block Vanka smoother is used, see Remark [1.2]

From Table we learn that the setup time using a block interpolation variants is
significantly higher than point AMG with single- or multiple-unknown interpolation.
The resulting AMG hierarchy is also larger, while the solution is not accelerated at
all, see Table [5.12] Here, the additional costs for computing the block interpolation
operators do not pay off, rather the opposite is true. On the other hand, if we employ
single-unknown interpolation, we have the same setup timings and operator complexities
as in the case of multiple-unknown interpolation, but obtain a preconditioned GMRES
iteration that is very robust with respect to the problem size. We conclude this chapter
with some results obtained from parallel experiments. We again use the sums of all
absolute values inside each A(; j) matrix block to obtain the primary matrix A and
employ single-unknown interpolation.

In Table and we give the setup timings. While we have no perfect speed-up, we
still significantly benefit from a larger number of processors. The same holds for the
solution time (Table and Figure). Regarding the number of iterations (Table
we see a significant increase if we go from sequential to parallel computation. Remember
from Section that our smoother is a hybrid additive/multiplicative method in this
case: At the processor interfaces, we have a less efficient error reduction compared to
the interior of each domain. The Vanka subdomain interpolation scalings are computed

by (4.89)) and (4.90)), respectively.
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5. Numerical Results

Level dof | Ey 1 8 16 32 64 128
0 44.95 14.25 9.42 6.28 — —

5 143748 | 7.5 54.49 14.82 9.44 6.70 — —
15 93.13 24.74 13.52 9.72 — —

0 438.38 137.51  96.33 55.61 — —
6 1098500 | 7.5 486.76 146.52  90.07 57.06 — —
15 866.16 212.16  128.55 83.41 — —
0 | 4,896.55 1,073.85 745.90 480.81 294.03 182.69
7 8586756 | 7.5 | 7,275.45 1,105.01 599.86 459.91 303.35 157.96
15 | 6,971.72  2,380.60 994.01 557.28 299.91 179.22

0 - — 523490 258621 1,228.07
8 | 67898372 | 7.5 - - — 5,319.72 2,044.21 1,276.77
15 - - - — 2,693.43 1,302.38

Table 5.14.: Solve time tyye for parallel AMG-preconditioned GMRES(20) applied to
the HOTBLOB problem. In the top row we give the number of processors.
The primary matrix A is computed using the sum of the absolute values
inside each diffusion matrix block and single unknown modified classical
interpolation is employed.

Level dof | Ey 1 8 16 32 64 128
0 |14 28 35 41 — —
) 143748 | 7.5 | 15 29 35 43 — —

15 | 25 43 49 57 — —

6 1098500 | 7.5 | 16 33 38 46 — —
15 | 27 50 53 69 — —

7 8586756 | 7.5 | 27 33 35 48 55 47
15 | 27 75 55 58 53 53

0 - - — 69 63 36
8 67898372 | 75| — — — 56 49 58
|- - - = 65 60

Table 5.15.: Numbers of parallel AMG-preconditioned GMRES(20) iterations for the
HOTBLOB problem. In the top row we give the number of processors.
The primary matrix A is computed using the sum of the absolute values
inside each diffusion matrix block and single unknown modified classical
interpolation is employed.
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5.2. Mantle Convection

To summarize this chapter, we have demonstrated that our saddle point AMG, especially
the F-stabilization method, can be applied in practice even if theoretical convergence
questions remain open. We must however carefully choose the parameters (smoothing,
interpolation unknown or point AMG etc.) to obtain an efficient method.
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6. Conclusions and Qutlook

In this thesis, we have constructed an algebraic multigrid (AMG) method for matrices
with saddle point structure as they arise from the discretization of Stokes-like problems.
In contrast to previous approaches to AMG for saddle point problems, our method is
purely algebraic and does not need any additional geometric information.

The main idea is to employ a coupled interpolation operator, which leads to an addi-
tional stabilization term in the coarse grid matrix computed by the Galerkin product.
We have introduced three different approaches to construct such interpolation opera-
tors. In all of these cases, we start with a decoupled tentative interpolation matrix. The
first ansatz is to apply a full symmetric inexact Uzawa smoothing step to the tentative
prolongation to compute the final interpolation operator, while the restriction is just
the transpose of the tentative prolongation. Consequently, the coarse grid operator is
computed Petrov-Galerkin-wise and we were able to show two-grid convergence. The
disadvantage of this method is the huge memory requirement of the smoothed prolonga-
tion, which in turn also leads to large (in terms of non-zero entries) coarse grid operators.
This issue motivated us to abandon the full smoothing of the prolongation and only intro-
duce a coupling between velocity and pressure components that is sufficient to establish
a stabilization term on the next coarser level. This coupling term introduced additional
interpolation weights for the velocity variables, which now also interpolate from coarse
pressure variables. We have developed two variants of this approach. In the first case
(pressure-to—velocity coupling), all velocity variables receive additional updates from
the pressure space, while in the other case (F-stabilization) only the interpolation for
the designated fine grid points is altered.

For all our stabilization techniques, we were able to prove the stability and thus the in-
vertibility of the coarse level matrix by induction from the finest level, where we assume
that an inf-sup condition is given. Moreover, the only additional preconditions in these
stability proofs can easily be satisfied if the tentative velocity interpolation block is a
well-fitted AMG interpolation for the upper left (symmetric positive definite) matrix
block, i.e. satisfies a certain approximation property. While for the direct and classical
AMG interpolation these theoretical results are well-known, so far they were missing for
various elliptic AMG interpolation schemes that are commonly used, namely modified
classical interpolation, extended interpolation, extended+i interpolation, and Jacobi in-
terpolation. We have filled this gap and were able to verify an approximation property
also for these methods.

Our saddle point AMG is not just a specific method, but rather an extension that can
be wrapped around any existing AMG for symmetric positive definite matrices. Indeed,
during the setup phase we just need to employ AMG coarsening and interpolation tech-
niques to the upper left matrix block and an approximate (at least semi-definite) Schur
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complement. Our prolongation stabilization then creates an overall stable coarse matrix.
No geometric information or specific interplay between the coarse velocity and pressure
spaces is needed.

We investigated the numerical performance of our saddle point AMG in several finite dif-
ference and finite element examples. As expected, the Petrov-Galerkin approach with the
fully smoothed prolongation is not feasible due to the abundant memory requirements.
On the other hand, we demonstrated the robustness of the F-stabilization method, es-
pecially if the AMG cycle is used as preconditioner within a restarted GMRES method.

There is still much room for further investigations. So far we have focused on Ruge-
Stitben AMG, i.e. we have designated coarse and fine points and interpolated values
from coarse to fine. A first extension would be to apply our method in the context
of smoothed aggregation AMG [VMB94, VMB96], where the fine grid variables are
grouped in patches that form the coarse grid variables. The pressure—to—velocity cou-
pling stabilization technique seems to be especially fitted for this purpose. Second, we
have experienced that the efficiency of our AMG can be very sensitive to the choice
of parameters (additive or multiplicative smoothing, scaling within the multiplicative
smoother, number of smoothing steps, unknown or nodal coarsening, etc). To obtain a
real black-box solver, an automatic parameter fitting technique would be required. A re-
lated issue is the lack of an overall convergence theory, currently we just have a two-grid
convergence result that holds in the case of the most memory-consuming stabilization
approach and additive smoothing.

In summary, we have constructed an AMG method for Stokes-like problems. There are
however other important saddle point systems that arise in the context of optimization
problems subject to PDE constraints. The resulting matrices have a completely different
nature and require their own techniques. While some geometric multigrid methods have
been developed, an algebraic approach is still not known.
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A. A positive definite reformulation of
the Uzawa smoother

In this chapter, we describe under which conditions the inexact Uzawa smoother intro-
duced in Section can be rewritten as an iteration scheme over a symmetric positive
definite matrix. We will also discuss to which extent the definite reformulation can be
used to carry over AMG convergence theory for symmetric positive definite matrices to
saddle point systems.

As in Chapter , let the saddle point matrix IC be partitioned as follows ,

A BT u f
= (s o) o= () =)
where A and C' are symmetric positive semi-definite matrices. The iteration matrix of
the smoother is given by (4.67)),
M=I-K'K

where

6o A BT
~\B BA'BT-§
In the following, we will discuss two different cases,
1 A<Aand S>C+ BA'BT
2 A>Aand S <C+ BA'BT.

For the case C' = 0, the results presented in this chapter were first shown in [Zul02].
The case C' # 0 has been addressed to in [Zul00], although with weaker bounds on the
spectrum of M. The proofs presented here mainly follow the ideas from [Zul02].

Case 1 In the first case, we assume that there are constants as > 1,0 < f; < 1 such

that
A < A<a,A (A1)
/S < BA'BT 4+ p,C (A.2)
BAT'BT+C < S (A.3)
We first define an inner product
(u,v)g = u’ Qu, (A.4)
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A. A positive definite reformulation of the Uzawa smoother

where .
- A—A 0
Q_K_’C_< 0 S*—BA—lBT—C)'

The following theorem is an extension of Theorem 5.1 in [Zul02].

Theorem A.1 Let the positive definite A, A € RN*N & € RM*M  the positive semi-
definite C € RM*M qnd B € RMY satisfy (A1) - (A.3)). Then,

1 The iteration matric M = I — KK [.67) is symmetric w.r.t. (A4)

2 o(M) C[1—as,p] C(—o0,1), where

(2—a)(1=751) (2 —az)*(1 - B)
AR, [l

e " (g — 1)1 A

3 If ag < 2, then p(M) = ||[M]lg < 1
4 KK is spd wr.t. (AA) and o(K'K) C [1 — p, as] C (0,00)

The proof of this theorem heavily relies on the following lemma. For easier understand-
ing, we also give its proof.

Lemma A.1 ([Zul02], Lemma 3.1) Let A and F be symmetric, positive definite N x N -
matrices, B € RM*N 'S and G symmetric positive M x M matrices.
Assume that there are real numbers p1 < ps <0< p3 < pg < ps < pg with

©(p1) >0, p(p2) <0, w(ps) >0, ¢(ps) <0 (A.5)
where
p(p) = uB(pA - AF'A)'BT — uG - S (A.6)
and X
psb < A< pyF (A.7)

Then we have: If p is an eigenvalue of the generalized eigenvalue problem

A BT u Fu
. . - A.
(B BA-'B" - S) (p) g <GP) (8.8
then 11 € [p1, p2] U [p3, pa] U [ps, pe].

Proof: Let (u,p)" # (0,0)" and A be a solution of (A.§). Furthermore, let A & [ps, pa].
Then, from ({A.7)), we have that A\F'— A is either positive or negative definite and p # 0.
In this case we obtain from the first line in (A.8)

we (\F—A) BT
(\F—4) BT
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and insert it into the right hand side of u + A=1BTp = NA~1Fu,

u + flleTp = )\flleu,
R N N\ —1
Y <)\A . AF-1A> BTp.

We use this term to substitute u + AleTp in the second line of (A.8)) and obtain
~ N N\ 1 ~
AB <)\A . AF—lA) BTp — </\G v 5) p=0.

We multiply from the left with p” and obtain p?¢(A\)p = 0. Furthermore, as

1

ul'p </LA — AFlfl)_l uw=u" (A — ,uflAFflA)_ U

is monotone decreasing in p, pp(u)p is strictly decreasing outside [ps, ps]. Now, (A.5)
yields that A € [py, p2] or A € [p5, pe]. 0O

Remark A.1 It is easy to see that, for all p, pL(0)p < 0 and, for py > 0 satisfying
S < poGG, we have

“ N N\ —1 n
p o(—po)p=p"B (A + palAFflA) B"p + pop” Gp — p"'Sp > 0.

This shows the existence of of p; and py. Also, in combination with the monocity of
pLo(p)p, it follows that no positive eigenvalue of can be smaller than p3. Thus,
even if ps and/or pg satisfying cannot be found, we have an estimate from below
for all positive eigenvalues.

In the following, we will derive estimates for p, and ps to provide estimates for the
eigenvalues of the smoother.

Proof of Theorem .' From Q = K — K one easily obtains that QM = QI — I@’llC) =
—0KQ is symmetric.

We consider the eigenvalue problem with F=A—Aand G=8—C— BA'BT.
Then the function p(u) of has the form

o o o 11 ~ N
o) = B [pd — A(A = A) A BT+ pC+ pBAT BT — (u+ DS, (A9)

The iteration matrix M (4.67) of our smoother can be written as

Mo (A BT (A=A 0
~ \B BA'BT_§ 0 S—-C—-BA'BT

and its eigenvalues v correspond to the eigenvalues y = —% of (A.8). Hence, using the
notation of Lemmal[A.T] a sufficient criterion for the convergence of the smoother is given
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A. A positive definite reformulation of the Uzawa smoother

by ps < —1 and p3 > 1.
Assuming that ;4 < —1 and multiplying (A.2]) by — /;E L we obtain

—(u+ 1S < _gt]
5}

BAT'BT — (u+1)C, (A.10)

We insert (A.10) into (A.9) and obtain:

o o o 11 o 1 o
o(p) < B [pA ~ A(A = A)1A] BT~ C 4 uBATBT - %BA*BT.

1

We see that ¢(u) < —C <0 if

-1 .
u [MA ~A(A - A)*lA} Fud AT <0
1
o plpd—Aa- AT < BRI
b
which is equivalent to
pPLA> (41— ) (nA — A(A— A)~LA) (A.11)

~ A A ~

(note that from yu < —1 and A < A it follows that [MA —AA— A 1A < 0). We
multiply from both sides with A1/2 {0 obtain

pbil > (p+1 = pb)(ul — (A=1)71) (A.12)

where_/_l = A"Y24A-1/2 From the second inequality in (A.1]) we derive p(A4) < ap and
p(—(A—1)~") < — . In consequence, for i > —1_—1/31 (i.e. p+1—pupB; > 0), inequality
(A.12) is satisfied if and only if

1
ph > (p+1—pb)(p— )
Qg — 1
The negative root of the quadratic equation
B = (a1 - B — ——)
pp1r = (K KoL) g — 1
is given by
1 2 —as)(1 — 2 — an)?(1 — p1)?
Lo 0o e PUZAR o, na-sye (1 -0-a)

We have found an p* with ¢(u*) < 0. Hence, all negative eigenvalues of the generalized
eigenvalue problem ([A.8) satisfy u < p* < —1 and all positive eigenvalues v of the
smoother fulfill v < —% < 1.
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The positive eigenvalues of (A.8) satisfy, according to Lemma [Ad] > ps. The lower
bound is given by p3(A — A) < A respectively p3(A — I) < I. This is satisfied for

1

Oég—]_

p3 =

sowe have v < —L =1 — ay.

Statement 3 follows from Statement 2 and Statement 4 is a consequence of 1 and 2. [J
We now consider the damped iterative method M,, = (1 —w) +wM. This corresponds
to the eigenvalue problem ((A.8) with p = —~ To—7- Straightforward calculations show
that a sufficient condition for v > —1 is given by w < a% and v > 0 if w < a% On the

other hand, v < 1 for all positive values of w. Hence we obtain

Corollary A.1 The damped smoother M, = (1—w)+wM converges for allw € (0, a%)
If w e (0, a%), then the spectrum of M, is positive.

Case 2 We assume that there are constants a; > 0, 8 > 1 such that

wmA < A< A (A.13)
S < BA'BT4+(C (A.14)
BAT'BT + 3,0 < 3,8 (A.15)

As in the previous paragraph, we define an inner product

(z,y)o = 2" Qy, (A.16)

where

Q-l&—/c_(A_A 0 )

0 BA'BTL+Cc-8§

With these conditions and definitions, we are able to proof the following generalization
of Theorem 5.2 from [Zul02].

Theorem A.2 Let the symmetric positive definite AeRVN § e RMXM pe symmet-
ric positive semi-definite, A € RV*N C € RM*M gnd B € RMN satisfy (A.13) - (A.15)).
Then,

1 The iteration matric M = I — K=K is symmetric w.r.t. (A.10)

2 oc(M) C [—p, 1 —ay] C (—00,1), where

2-a)(B-1), [@-a)(B 17
s

+(1—ai)(B2 — 1)

p:

3 If By < 1+1/(3—2aq), then p(M) = ||M|g <1
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A. A positive definite reformulation of the Uzawa smoother

4 KK is symmetric positive definite w.r.t. (A.16) and o(K'K) C [a1,1+ p| C
(0, 00)

Proof: Again, it is clear that QM is symmetric. X A R
We now consider the eigenvalue problem (A.8) with F = A—Aand G = C+BA'BT-S.
The function p(u) (A.6) takes the form

~ ~

~ o -1 o
o(i) = uB [MA —A(A— A)—lA] BT — uC — uBA'BT + (u—1)3

The smoother can be written as

Mo (A BT TA-A 0
“\B BA'BT_§ 0 C+BA'BT_§

and its eigenvalues v correspond to the eigenvalues p = ll/ of . As in the first case
and again using the notation of Lemma[A.T] a sufficient criterion for the convergence of
the smoother is given by ps < —1 and p3 > 1.

We assume that © < —1 and reformulate into

w—1
2

(n—18 < BAT'BT 4 (u—1)C, (A.17)

As before, we insert (A.17)) into (A.9):

S, 11 . I
o) = B [pd = A(A— )'A| BT~ C - uBATBT 4 Mﬁ—BAlBT.

2

We obtain () < —C <0 for

o ~ N -1 — o
“ [MA ~A(A - A)—lA] < %ml

and completely on the lines of the first case we conclude that equality is obtained for

+ (I —a)(P = 1).

w 2

1 2-a)B—-1) \/(2 —o)?(Be — 1)

e 4

We have p < p* < —1 for the negative eigenvalues of (A.8) and, in consequence,
v > /% > —1 for the negative eigenvalues of the smoother.
The remainder of the proof is is analogous to the proof of Theorem O

Corollary A.2 The damped smoother M, = (1 — w) + wM converges for all w €

(0, ﬁ) If in addition w < /ﬁ, then the spectrum of M, is positive.
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These theorems allow us to interpret the inexact Uzawa-type smoothers as relaxation
schemes for the symmetric positive definite matrix £ = QK~!'X. The iteration matrix
can be rewritten as

M=I-K'K=I-9'

i.e. we employ Q as a “preconditioner” for £. In the following, we derive an algebraic
formulation of the smoothing property for Uzawa-type smoothers. As in the scalar case,
we introduce three inner products,

(u,v) == u"Qu, (u,v), :==u"Lv, (u,v), :=u"LO 'Luv (A.18)

and the respective norms |le||o, [le|l1, [le|l. With these norms, we can now formulate
the smoothing property as in the scalar case,

M el < llells — allells. (A.19)
A straightforward calculation shows
| Mel[? = lle = @ el = flell; — (Q(1 — K K)K ™ Ke, K Ke)
Hence, the smoothing property is equivalent to
Q<0 (2[ - I€*1K> . (A.20)

One immediately obtains inequality from the Theorems orWith o=2—qy
or o =1 — p, respectively.

Now, the question arises whether the coarse grid operator can also be constructed as in
the scalar case, i.e.

K¢ =PTKP. (A.21)

The coarse grid correction is then obtained by
¢ (1-P () PE) e, (A.22)

To measure the error reduction of this coarse grid correction in the norms ||e||o, |le||1, ||€]2
defined by the scalar products from (A.18]), we need to reformulate (A.22) in terms of
Q and L. To this end, let again £ = QKK and

T=0QK ' = (Klﬁ’l — I) = —M" (Case 1)

or

T = QK™ = (1 KK™') = M" (Case 2)

Furthermore, we assume that there exists an invertible 7 such that P77 = TPT. Then
we have

P(PLP) ' P'L = P(P'TKP) ' PITK
- P<7'PTICP>1 TPTK
— P(PTKP) T PIK
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A. A positive definite reformulation of the Uzawa smoother

i.e. the coarse grid correction for the operator £ equals the coarse grid correction for
K. Now, we can apply Theorem (for the two-grid case) and Lemma (for the
approximate correction) to obtain

efls < lellx

where ¢ is obtained from e by the exact or approximate coarse grid correction. Together
with the smoothing property (A.19) we get V-cycle convergence, see e.g. (2.36) and
[St199], Theorem 4.1,

~ ~ ~ o ~
Ipel? < 1iEl = ollel} < (1= 2) 11l < llell

Now, we discuss the conditions under which 7 can be constructed. To this end, we take
an arbitrary x € kerPT. Then, from

0=TPle=PI'Tx

we see that also Tx needs to be in the nullspace of PT (remember that 7T is invertible).
Vice versa, any x such that Tz € kerP? must satisfy € kerP?. In other words,
the nullspace of the restriction operator P? needs to be invariant under the action of
T = M7, Hence, to construct the interpolation operator P we first need to exactly
identify invariant subspaces under the smoothing operator M. Then, P needs to be
carefully set up such that its image (and the kernel of its transpose PT) are exactly
aligned along these subspaces.

In general, a prolongation matrix P that is constructed this way is not sparse. On
the other hand, it is not clear whether an invertible 7 such that PTT ~ TPT is only
approximate satisfied also gives a convergent method.

In the remainder of this chapter, we give two additional drawbacks of this approach to
a saddle point AMG. First, we need to construct one of the preconditioner A or S such
that

A < A (Case1)
or S < BA'BT 4+ (Case 2).

In practice, A and S are obtained from the scaled diagonals of A and BA~'BT + C
respectively. Now, to determine the correct scaling factor, we need to know the smallest
eigenvalue of

ATVRALYE or §712 (BATIBT 4 C) 5712,

i.e. we need to carry out an eigenvalue solver [BDD™00] which also may need a precon-
ditioner itself to converge fast enough. We hence may need to employ a scalar AMG
method for A or BA~'BT + C on each level just to obtain the correct scaling to set up
the smoother.

If we do not require a definite formulation, i.e. if we proceed as described in Section
we only need upper bounds on the dominant eigenvalues of

ATV2AATY? and §1/2 (BA‘lBT + (J) STV,
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Figure A.1.: Absolute eigenvalues of the inexact Uzawa smoother in the indefinite for-
mulation as well as the definite (Case 1) formulation with different damping
parameters.

As these bounds do not need to be very accurate, they can easily be obtained by a few
(unpreconditioned) power iterations or from Gershgorin’s circle theorem.

Another disadvantage of the definite smoothers is the fact that they generally must be
heavily damped to converge. In the first case, the damping parameter w needs to be
smaller that a% (or aig if one wants only positive eigenvalues). Now, according to ,

a is chosen such that A < A < a2/1, which implies that «s is proportional to the
condition number of A=1/2AA-1/2, In contrast, for the indefinite formulation we do not
need damping at all. We illustrate the effects of the damping in the following example
(For Case 2, similar considerations can be made).

Example A.1 On a square domain in two spatial dimensions, consider Stokes’ equation

—Au+Vp = f
-V-u = 0

with inflow /outflow boundary conditions on the western and eastern boundary and Neu-
mann boundary conditions on the other boundaries. We employ a staggered grid dis-
cretization with 25 pressure cells in each spatial direction, yielding a total of 1825 scalar
unknowns. In Figure we show the absolute eigenvalues of different formulations of

207



A. A positive definite reformulation of the Uzawa smoother

the inexact Uzawa smoother (note that the indefinite formulation leads to non-real eigen-
values). For the definite case, we consider both a damping parameter yielding a positive
spectrum (the red plot) as well as a damping parameter that is just small enough to
ensure convergence (the magenta colored line). We see that in the definite case, about a
third of the eigenvalues remains very near to 1 and the remaining eigenvalues are larger
than those of the indefinite formulation.

Summarizing this chapter, we have seen that the inexact Uzawa smoother can be refor-
mulated as an iteration method for a definite linear system L£. We are able to define
inner norms || - ||;, where ¢ = 0,1, 2, and show an algebraic smoothing property

IMellF < llelli = ollell2-

This does however not help us to completely carry over the AMG convergence theory
from symmetric positive definite (M-) matrices, as the variational property can only
be shown under a restrictive condition. Furthermore, the definite reformulations of the
smoother require both a compute-intensive setup and are slower than their indefinite
counterpart.
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