
Algebraic Multigrid (AMG)
for

Saddle Point Systems

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch–Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich–Wilhelms–Universität Bonn

vorgelegt von

Bram Metsch

aus

Haarlem

Bonn 2013

Angefertigt mit Genehmigung der Mathematisch–Naturwissenschaftlichen Fakultät der
Rheinischen Friedrich–Wilhelms–Universität Bonn

1. Gutachter: Prof. Dr. Michael Griebel

2. Gutachter: Prof. Dr. Carsten Burstedde

Tag der Promotion: 03.07.2013

Erscheinungsjahr: 2013

Abstract

We introduce an algebraic multigrid method for the solution of matrices with saddle
point structure. Such matrices e.g. arise after discretization of a second order partial
differential equation (PDE) subject to linear constraints.
Algebraic multigrid (AMG) methods provide optimal linear solvers for many applications
in science, engineering or economics. The strength of AMG is the automatic construction
of a multigrid hierarchy adapted to the linear system to be solved. However, the scope
of AMG is mainly limited to symmetric positive definite matrices. An essential feature
of these matrices is that they define an inner product and a norm. In AMG, matrix-
dependent norms play an important role to investigate the action of the smoother, to
verify approximation properties for the interpolation operator and to show convergence
for the overall multigrid cycle. Furthermore, the non-singularity of all coarse grid oper-
ators in a AMG hierarchy is ensured by the positive definiteness of the initial fine level
matrix.
Saddle point matrices have positive and negative eigenvalues and hence are indefinite.
In consequence, if conventional AMG is applied to these matrices, the method will not
always converge or may even break down if a singular coarse grid operator is computed.
In this thesis, we describe how to circumvent these difficulties and to build a stable
saddle point AMG hierarchy. We restrict ourselves to the class of Stokes-like problems,
i.e. saddle point matrices which contain a symmetric positive definite submatrix that
arises from the discretization of a second order PDE.
Our approach is purely algebraic, i.e. it does not require any information not contained in
the matrix itself. We identify the variables associated to the positive definite submatrix
block (the so-called velocity components) and compute an inexact symmetric positive
Schur complement matrix for the remaining degrees of freedom (in the following called
pressure components). Then, we employ classical AMG methods for these definite oper-
ators individually and obtain an interpolation operator for the velocity components and
an interpolation operator for the pressure matrix.
The key idea of our method is to not just merge these interpolation matrices into a sin-
gle prolongation operator for the overall system, but to introduce additional couplings
between velocity and pressure. The coarse level operator is computed using this “sta-
bilized” interpolation operator. We present three different interpolation stabilization
techniques, for which we show that they resulting coarse grid operator is non-singular.
For one of these methods, we can prove two-grid convergence. The numerical results
obtained from finite difference and finite element discretizations of saddle point PDEs
demonstrate the practical applicability of our approach.

Contents

1. Introduction 1

2. Algebraic Multigrid 11
2.1. Relaxation Solvers . 12
2.2. Geometric Multigrid . 16
2.3. AMG setup . 24
2.4. Smoothing . 25
2.5. Strong Couplings . 29
2.6. Coarsening according to Ruge and Stüben 30
2.7. Aggressive Coarsening . 35
2.8. Interpolation . 37
2.9. The coarse grid operator . 56
2.10. Two-grid convergence: The non-symmetric case 58
2.11. AMG: Not just point coarsening . 61
2.12. AMG for systems of elliptic PDEs . 70

3. Parallel AMG 87
3.1. Minimum Subdomain Blocking, Third pass coarsening 92
3.2. CLJP coarsening schemes . 94
3.3. PMIS and HMIS coarsening schemes . 99
3.4. CGC coarsening . 102
3.5. Outlook: CGC-ML coarsening . 107

4. AMG for Saddle Point Systems 115
4.1. Stokes equations . 115
4.2. Discretization of Saddle Point PDEs . 119
4.3. Iterative solvers for Saddle Point Systems 132
4.4. Towards AMG . 136
4.5. The smoother I: An inexact Uzawa scheme 140
4.6. The smoother II: An algebraic Vanka-type smoother 143
4.7. Interpolation and Coarse Grid Correction: General Remarks 152
4.8. The coarse grid operator I: Auto-stabilizing coarsening and Two-level

convergence . 157
4.9. The coarse grid operator II: A sparser stable coarse operator 165
4.10. The coarse grid operator III: F-stabilization 168
4.11. Setup of the AMG hierarchy for saddle point systems 172

v

Contents

5. Numerical Results 175
5.1. Finite difference examples . 176
5.2. Mantle Convection . 186

6. Conclusions and Outlook 197

A. A positive definite reformulation of the Uzawa smoother 199

vi

1. Introduction

Many scientific, engineering or economic processes can be described using a partial
differential equation (PDE). In general form, a second order linear partial differential
equation can be written as [Bra97]

−
d∑

i,j=1

aij(x)
∂

∂xi

∂

∂xj
u(x) +

∑
i=1

bi(x)
∂

∂xi
u(x) + c(x)u(x) = f(x) (1.1)

where the coefficient functions aij (i, j = 1, . . . , d), bi (i = 1, . . . , d), c, the solution u and
the right hand side f map from the domain Ω ⊂ Rd into the set of real numbers R. A
well-known example for a PDE is Poisson’s equation on a domain Ω ⊂ Rd,

−∆u = f in Ω, u = g on ∂Ω. (1.2)

This PDE is e.g. used in electrostatics to find an electric potential for a given charge
distribution. It is often considered as the prototype elliptic partial differential equation.
(A PDE is called elliptic at x if the matrix A(x) = (aij(x))di,j=1 is positive definite.)
So far, we have considered scalar unknowns u. In many cases, the unknown is a vector-
valued function, i.e. u : Ω → Rd. Then, we are no longer dealing with a single partial
differential equation of the form (1.1), but rather with a system of partial differential
equations. A prominent example is given by the incompressible Navier–Stokes equations,
that describe the velocity u : (0, T]× Ω→ Rd and the pressure p : (0, T]× Ω→ Rd of a
fluid in a domain Ω ⊂ Rd (d = 2, 3) subject to an external force f at the time t ∈ (0, T],

∂

∂t
u− ν∇ · (∇u) + (u · ∇) u +∇p = f, (1.3)

−∇ · u = 0. (1.4)

Here (1.3) already contains a system of d scalar (non-linear) partial differential equations
(one for each spatial component of the velocity vector field), while (1.4) is a scalar
equation.
A simpler, linear form of (1.3)–(1.4) can be used if the fluid has high viscosity, i.e.
ν →∞. Then, the non-linear term (u · ∇) u can be neglected. If we assume that u and
p are stationary, i.e. do not depend on the time t, we obtain Stokes’ equations,

−∇ · (∇u) +∇p = f, (1.5)

−∇ · u = 0. (1.6)

Stokes’ equations can be considered as the prototype of a saddle point system. The
solution (u, p) of (1.5)–(1.6) is not the minimizer of a quadratic functional (as in the

1

1. Introduction

case of elliptic partial differential equations), but a saddle point.

The analytical solution of a partial differential equation is usually not available except
in very rare cases. Instead, we aim to approximately solve the partial differential equa-
tion(s) numerically. To this end, we discretize the partial differential equation. We
construct a mesh Ωh for the domain Ω depending on a mesh width h and represent the
values of the continuous unknown u and right hand side f by vectors u and f , where
the entries of these vectors represent the value of the corresponding function at a cer-
tain point of the mesh as in finite difference discretization or a coefficient inside a finite
element ansatz. In the case of a linear PDE, the differential operator is replaced by a
matrix K whose entries reflect the coefficients aij, bi, and c. Hence we have translated
the linear partial differential equation into a linear system of equations Ku = f .
To obtain an approximate solution of the PDE, we have to solve a linear system of
equations. Direct linear solvers like LU or QR decomposition are not the first choice
in this area. Letting N denote the length of the vectors u and f , a direct method re-
quires O(N3) floating point operations for the solution. In other words, if we double our
problem size (e.g. if we request a finer resolution of the discretization) the compute time
grows by a factor of 8. In addition, direct methods need to store the full N ×N matrix,
but the discretization matrices of partial differential equations are usually sparse, i.e.
they only contain a small (fixed) number of non-zero entries per row independent of N
due to the locality of differential operators. Sparse matrix storage formats allow us to
exploit this structure and to efficiently use the memory available in our computer. The
usage of a direct solver would impose a much more severe limit on the mesh width than
the problem discretization itself.
From these arguments it is clear that we need a linear solver that only requires O(N)
compute time and storage. Iterative solvers that employ one or few applications of sparse
matrix-vector computations per iteration can be carried out using O(N) operations per
step, but are not always able to reduce the error by a fixed factor independent of the
problem size. For example, for the well-known Jacobi and Gauss-Seidel iterations the
convergence speed depends on the condition of the matrix, which in turn depends on
the PDE coefficients and the discretization width h. However, for symmetric positive
definite matrices K these methods are good smoothers, i.e. they very quickly remove
oscillating parts from the error and leave a smooth component.
The key idea of multigrid methods (MG) is that after smoothing, the low-frequency er-
ror can be represented using less degrees of freedom, NC < N . To this end, after a few
smoothing steps the current residual rit = f −Kuit is transferred to a coarse mesh ΩH ,
fH ← Rrit using a linear restriction operator R, and a coarse linear system KHeH = fH
is solved. The solution is then used to update the fine grid iterate, uit ← uit+PeC , where
P denotes a linear prolongation operator. The coarse solution eC itself can be computed
recursively, i.e. after a few smoothing steps the resulting residual is transferred to an
even coarser level and so on, until the system is so small that it can be directly solved.
The question remains how the coarse mesh ΩH and the matrices KH , PH and RH are
constructed. In geometric multigrid, ΩH can e.g. be obtained by doubling the mesh
width, H = 2h. The coarse grid matrix KH is then computed as discretization of the

2

PDE on this coarse mesh, while for the restriction operator R and the interpolation or
prolongation matrix P we can e.g. use linear interpolation or injection.
A drawback of geometric multigrid is that the construction of the coarse mesh and the
coarse matrix require the knowledge of the underlying PDE as well as the geometry of
Ω. Furthermore, a simple isotropic coarsening of the mesh might not well reflect the
structure of the smoothed error, especially in the case of anisotropic or jumping PDE
coefficients aij (where a “smooth error” may still contain certain oscillations). To cir-
cumvent these difficulties, algebraic multigrid methods (AMG) have been developed.
The key ingredients to AMG are operator-dependent interpolation operators P together
with a Galerkin coarse grid operator KH := P TKP [Den82] and automatic operator-
dependent coarsening [BMR82, BMR84]. These components allow us to construct robust
solvers for a wide class of problems, especially if K is a positive definite M-matrix. Such
matrices often arise in the discretization of second order partial differential equations.
All information needed to build the multigrid hierarchy is obtained from the matrix on
the finest level K1 = K. In order to apply the multigrid cycle, we need to employ a
setup phase. On each level l, we need to carry out the following steps depending on the
matrix Kl:

• Construct the next coarser mesh Ωl+1.

• Build a prolongation matrix Pl.

• Compute the coarse grid matrix Kl+1 ← P T
l KlPl.

We stop if the matrix Kl+1 is small enough, i.e. it is feasible to be treated by a direct
method (or few iterations of the smoother). With this AMG hierarchy available, we can
now start the multigrid cycle.
In the past years, AMG has been further developed. One notable development is
smoothed aggregation [VMB94, VMB96], where the coarse mesh is obtained from the
fine mesh by aggregating fine nodes instead of picking coarse nodes as a subset of the
fine nodes. The Bootstrap AMG approach [Bra01, FV04, BBKL11] tries to generalize
AMG ideas to a wider class of problems. Many efforts have also been put in the paral-
lelization of the AMG setup case, in particular the parallel coarse grid generation, see
e.g. [MY06] for an overview.
AMG was at first developed for scalar systems, but already in [Rug86] it was demon-
strated that it can also be used for the solution of systems of elliptic partial differential
equations (here, a problem arising from linear elasticity). A further approach to AMG
for linear elasticity, where the rigid body modes are preserved in the AMG hierarchy
was given by [Oel01, GOS03]. A systematic introduction to AMG for systems of elliptic
PDEs as well as applications in semiconductor industry is given in [Cle04].
All of these system AMG techniques rely on the fact that after discretization the matrix
K is symmetric positive definite, as in the case of a single elliptic PDE, and thus defines
an inner product and norm. This is an essential feature for AMG:

• For symmetric positive definite matrices, we have a smoothing property for the
Jacobi Gauss–Seidel and SOR iterations,

3

1. Introduction

• if in addition the matrix has M-matrix structure (which is the case in many PDE
applications), we know how the smoothed error behaves w.r.t. the matrix entries,

• the coarse grid matrix KH = P TKP computed by the Galerkin product is also
symmetric positive definite and thus non-singular,

• we have a variational property for the coarse grid operator, which, together with
the smoothing property, guarantees convergence.

A saddle point matrix K is indefinite and we cannot rely on the properties above.
Instead, we must

• identify suitable smoothers for saddle point systems,

• construct restriction, interpolation and coarse grid operators such that the coarse
grid matrix is invertible,

• show convergence in terms of a suitable norm.

Still, system AMG is applied to saddle point matrices even if all the points mentioned
above are not clear. We refer e.g. to [LSAC08] for a CFD example or to [GKW11], where
a smoothed aggregation AMG is extended to a full AMG solver for a fluid-structure in-
teraction problem.
There are few approaches to AMG dedicated to saddle point problems. A smoothed ag-
gregation method for contact problems is presented in [Ada04]. The method introduced
in [LOS04] was used to solve a saddle point system arising from a particle method, where
the boundary conditions cannot be easily eliminated and are included as constraints.
In [Wab03, Wab04, Wab06], an algebraic multigrid method for the Oseen equations is
constructed. The Oseen equations arise from a linearization of the Navier-Stokes equa-
tions. This AMG method is used inside a finite element computational fluid dynamics
(CFD) solver. The stability (invertibility) of the coarse systems is shown using geomet-
rical properties.
So far, there exists no AMG for saddle point matrices that is truly algebraic, i.e. does
not need geometric information for the hierarchy setup or the stability proofs and hence
can be applied to a wide class of problems. The method introduced in this thesis fills
this gap.

Contribution of this thesis We introduce an algebraic multigrid (AMG) method for
Stokes-type saddle point matrices of the form

K :

(
V ,
W

)
→
(
V
W

)
, Kx = y

where

K =

(
A BT

B −C

)
, x =

(
u
p

)
and y =

(
f
g

)
.

4

In the following, calligraphic letters denote operators defined on the space V ×W . Here,
“Stokes-type” means that A ∈ RN×N is the discretization of an (elliptic) second order
partial differential equation, while B ∈ RM×N is e.g. given by a discrete divergence
operator. In other words, we are looking for the solution of a partial differential equa-
tion subject to a linear constraint equation. In consequence, we can assume that we
know how to construct the algebraic multigrid components (coarse grid, interpolation,
restriction and coarse grid operator) for the A matrix part.
In this thesis, we describe how to extend AMG to the whole coupled matrix K. Our
method will be purely algebraic, i.e. we do not require any information from the geom-
etry or the discretization mesh to carry out the AMG setup procedure.
As with every AMG method, we first choose a suitable smoother. The first alternative
is an inexact Uzawa method introduced in [SZ03]. Each relaxation step is given by

u∗ = uit + Â−1
(
f − Auit −BTpit

)
pit+1 = pit + Ŝ−1

(
Bu∗ − Cpit − g

)
uit+1 = uit + Â−1

(
f − Auit −BTpit+1

)
,

where Â is an easily invertible matrix such that Â−A is symmetric positive definite. A
common choice for Â is the scaled (block) diagonal of A. The symmetric positive definite
matrix Ŝ is chosen such that Ŝ −BÂ−1BT − C is also symmetric positive definite.
The second option is to employ an algebraic Vanka smoother [Van86, SZ03]. Here, we
solve, for j = 1, . . . ,M , small linear systems of the form(

Âj BT
j

Bj Ĉj

)(
u(j)

p(j)

)
=

(
f(j)

g(j)

)
,

where Âj ∈ RNj×Nj , Bj ∈ RMj×Nj , Ĉj ∈ RMj×Mj and Nj � N as well as Mj � M .
We use the solution vectors u(j) and p(j) to update the iterates uit and pit. The small
right hand side vectors f(j) and g(j) are derived from the residuals f − Auit − BTpit

and g − Buit + Cpit, respectively. These residuals can either be computed after each
subsystem solve (multiplicative application) or after all subsystems have been visited
(additive application). For a special choice of Âj, Bj and Ĉj, the additive version
coincides with the inexact Uzawa smoother.
The error propagation operator of the inexact Uzawa method motivates us to consider
the block diagonal matrix (

A 0

0 BÂ−1BT + C

)
.

as starting point for the construction of the coarse grid and interpolation operators for the
saddle point matrix K. We hence compute a coarse grid and a tentative prolongation RT

V
for the operator A and a coarse grid and an interpolation matrix RT

W for the symmetric
positive semi-definite matrix BÂ−1BT + C to obtain a block diagonal interpolation
operator

RT =

(
RT
V 0

0 RT
W

)
.

5

1. Introduction

We can however not simply use the Galerkin ansatz for the coarse grid operator,

KC ←
(
RV 0
0 RW

)(
A B
BT −C

)(
RT
V 0

0 RT
W

)
as this can lead to a singular matrix.
For saddle point problems the stability (and thus the invertibility) of the discrete system
is usually shown by means of a so-called inf-sup condition: Let there exist constants
c, d > 0 such that

sup
06=u∈V

uBTp

‖u‖A
≥ c‖p‖W − d

(
pTCp

) 1
2 for all p ∈ W .

We use this inequality on the finest level l = 1 (i.e. for the original matrix K = K1) to
show an inf-sup condition for all levels l = 2, . . . , L of the AMG hierarchy by induction.
To this end, we need to construct coupled interpolation operators P . Here, we introduce
three variants.

1. The first variant is to apply the inexact Uzawa smoother to the tentative block
diagonal operator RT . We obtain

P =

(
I −Â−1BT

0 I

)(
I 0

Ŝ−1B I

)(
I − Â−1A 0

0 I − Ŝ−1
(
BÂ−1BT + C

))(RT
V 0

0 RT
W

)

and a “Petrov-Galerkin” coarse grid operator

KC ← RKP .

In this case, we can show not only the stability of the coarse matrix KC , but also
two-grid convergence. On the downside, this variant introduces many non-zero
entries in the prolongation matrix P and hence also in the coarse matrix KC . To
circumvent this problem, we introduce two sparser alternatives.

2. The second option is to compute

P =

(
I −Â−1BT

0 I

)(
RT
V 0

0 RT
W

)
,

and use a Galerkin coarse grid operatorKC ← PTKP . The additional prolongation
coupling term −Â−1BT implies an additional stability term in the lower right block
of the coarse matrix KC .

3. Finally, we can employ the decomposition of the grid for the velocity variables
u ∈ RN into coarse and fine variables to obtain an even sparser variant of the

6

last stabilization technique. To this end, letting ÂFF and BF denote the por-
tion of Â and B associated with the fine velocity variables and RT

V,CF denote the
interpolation from coarse to fine points, we compute

P =

IFF 0 −Â−1
FFB

T
F

0 ICC 0
0 0 I

RT
V,CF 0
ICC 0
0 RT

W

 .

Again we use the Galerkin coarse grid operator KC ← PTKP .

An important ingredient for all of the stability proofs is the approximation property for
the velocity variables, which is expressed by the inequality

‖uF −RT
FCuC‖2

D,F ≤ τ‖u‖2
A. (1.7)

Here, we assume again that u is decomposed into its coarse and fine parts uC and
uF , while RT

FC denotes the interpolation from the coarse to the fine variables. Letting
DF be the part of the diagonal of A associated with the fine grid points, we define
‖uF‖2

D,F := uTFDFuF and the energy norm ‖u‖2
A := uTAu. Inequality 1.7 needs to be

shown for the tentative velocity interpolation matrix

RT
V =

(
RT
FC

ICC

)
.

In case of the direct and classical AMG interpolation techniques, the approximation
property was already shown in [RS87, Stü99]. For more complex schemes (modified
classical interpolation, extended(+i) interpolation, Jacobi interpolation), we prove the
approximation property in this thesis.
To summarize, we are able to construct an algebraic multigrid hierarchy for saddle point
problems based on AMG techniques applied to the matrices A and BÂ−1BT +C, where
the coarse grids and tentative transfer operators can be set up independently for each of
these positive (semi-)definite matrices. The final interpolation operator introduces an
additional coupling, which helps to ensure the stability of the coarse grid.

Outline of this thesis

• In Chapter 2 we give a systematic introduction to algebraic multigrid (AMG)
methods. After a short recapitulation of iterative methods and, in particular, ge-
ometric multigrid, we focus on classical AMG by Ruge and Stüben [RS87]. We
describe the algorithms of the AMG setup phase as well as their mathematical
background. A special focus is placed on the derivation of approximation proper-
ties for the interpolation operators for modified classical, extended(+i) and Jacobi
interpolation in Section 2.8.
After this introduction, we describe the convergence theory for non-symmetric
AMG by [Not10]. This convergence theory will form the basis for the two-level
convergence proof of one of our saddle point AMG approaches.

7

1. Introduction

For sake of completeness, we also shortly introduce three alternative AMG meth-
ods, namely AMGe, smoothed aggregation, and Bootstrap AMG.
We conclude this chapter with a summary of algebraic multigrid for systems of
elliptic PDEs. Following [Cle04], we introduce unknown-based and point-based
AMG and give smoothing and approximation properties for these techniques.

• In Chapter 3, we discuss the difficulties of parallel AMG, especially concerning the
coarsening process. Various parallel coarsening algorithms are described together
with their respective advantages and disadvantages. Then, we recapitulate our
results from [Met04, GMOS06, GMS06], where we have introduced the parallel
coarse grid classification (CGC) algorithm and give an extension for large numbers
of processors first introduced in [GMS08].

• Chapter 4 forms the core of this thesis. After an introduction to saddle point
systems (in particular, Stokes-like equations), we discuss the role of the inf-sup
condition for both the continuous as well as the discrete equations. We present
finite element and finite difference discretization techniques that satisfy an inf-sup
condition and then give an overview of previous approaches to algebraic multigrid
for saddle point systems.
We start the description of our saddle point AMG with an inexact Uzawa method
and an algebraic Vanka smoother introduced by [SZ03]. Then, we introduce our
algebraic stabilization techniques and show that the coarse grid operator remains
stable. We also give the two-grid convergence proof for one of these methods.

• In Chapter 5 we show the numerical performance of our saddle point AMG. We
conduct experiments with both finite difference and finite element discretizations
of saddle point systems.

• We summarize our results in 6 and give an outlook for further research.

8

Acknowledgments At this point I would like to thank all people who have contributed
to the completion of this thesis. First, my gratitude goes to my adviser Prof. Dr. Michael
Griebel who introduced me to this theme and provided the excellent working conditions
at the institute. Also, I want to thank Prof. Dr. Carsten Burstedde for providing the
second opinion for this thesis as well as giving me access and introducing me to the Rhea
mantle convection software.
A cordial “thank you” is directed to all colleagues at the Institute for Numerical Simula-
tion, in particular to my former office mate Dr. Markus Holtz. I would like to thank Jutta
Adelsberger, Markus Burkow, Margrit Klitz, Dr. Christian Rieger, Alexander Rüttgers,
Ralph Thesen, and Peter Zaspel for proofreading parts of this thesis. A special thanks
goes to Prof. Dr. Marc Alexander Schweitzer and Dr. Christian Rieger and for providing
many insightful ideas and the numerous fruitful mathematical discussions.
A substantial part of the work described in this thesis was supported by the Collaborative
Research Center (SFB) 611 at the University of Bonn, which is gratefully appreciated.
On a personal level, I will always be thankful to my wife Ute and my children Hendrik
and Joris for their long patience and their understanding.

9

2. Algebraic Multigrid

In this chapter we introduce the construction of algebraic multigrid methods (AMG),
where we focus on the setup phase, i.e. the construction of the multigrid hierarchy
(coarse grids, coarse grid operators and transfer operators). We assume that a smoother
is available and can be carried out on all levels using information from the respective
system matrix only (e.g. simple relaxation schemes like Jacobi or Gauss-Seidel). We
use the smoother and its error reduction behavior to construct the remaining AMG
components. This is described in more detail in the following sections, see also [Stü99]
and [Met04].
Before we proceed, we first introduce the notation used throughout this chapter. We
denote the level index by l = 1, . . . , Lmax where 1 is the finest and Lmax the coarsest
level. On each level l, we have a linear system of equations Alul = fl, or, in components,∑

j∈Ωl

aliju
l
j = f li

(
i ∈ Ωl

)
.

where Ωl is the grid (index set) on level l and Nl := |Ωl| denotes its cardinality. In the
simplest case, Ωl can be split disjointly into the set of coarse grid points C l and fine
grid points F l, Ωl = C l∪̇F l. The set of coarse grid points defines the grid on the next
coarser level: Ωl+1 := C l. The elements of Ωl+1 can also be formed by more advanced
means, e.g. by forming unions of the members of Ωl. To transfer information between
two consecutive grids Ωl and Ωl+1, we introduce a prolongation operator Pl : Ωl+1 → Ωl

and a restriction operator Rl : Ωl → Ωl+1. We omit the level index l if no mix-up is
possible.
In many cases, the matrix A is symmetric positive (semi-) definite,

A = AT and xTAx > (≥) 0 for all x 6= 0

We us the notation A > 0 for a symmetric positive definite A and A ≥ 0 for a symmetric
positive semi-definite operator. We write A > B if A−B is symmetric positive definite.
λmax(A) and λmin(A) denote the largest and the smallest eigenvalue of a matrix A (if all
eigenvalues of A are real). The smallest and largest singular value of A are denoted by
σmin(A) and σmax(A).
We start this chapter with a short introduction to the multigrid concept and geometric
multigrid methods. We first stress that the term “multigrid” does not refer to a single
algorithm, but rather categorizes a whole class of methods that can be used to accelerate
the speed of convergence of classical iterative solvers like Gauss-Seidel-iteration. Their
key idea here lies in the observation that after a few steps of such a method, the error is
“smooth” in the sense that it can be represented with less degrees of freedom than the

11

2. Algebraic Multigrid

original problem. Hence, this part of the error can be eliminated by solving a smaller
linear system of equations. For a comprehensive introduction to multigrid methods, we
refer to [TOS01].

2.1. Relaxation Solvers

Before we proceed to multigrid techniques, we first summarize some basic facts about
Richardson-like iterative solution methods. In the simplest case, this iteration takes the
form

uit+1 = uit + ω
(
f − Auit

)
for some damping parameter ω > 0. In terms of the error eit = u− uit the iteration can
be rewritten as

eit+1 = Meit = (I − ωA) eit.

From this equation it becomes clear that in the case of a symmetric, positive definite
operator A, the iteration converges if and only if the spectral radius ρ(M) = ρ(I − ωA)
(also called the convergence factor of M) is strictly smaller than one. This is the case
if ω < 2

λmax(A)
. To estimate the convergence speed, we also need to consider the (`2-)

condition number κ2(A) = λmax(A)
λmin(A)

: The eigenvalues of the iteration are contained in

the interval [1 − ωλmax(A), 1 − ωλmin(A)]. For large numbers of κ2(A), i.e. λmin(A) �
λmax(A), the largest eigenvalue of the iteration tends towards one and the convergence
slows down. If however λmin(A) ≈ λmax(A), fast convergence is possible for a properly
chosen relaxation parameter ω. In particular, for symmetric positive matrices A, the
optimal relaxation parameter is given by ([Hac91], Theorem 4.4.3)

ωopt =
2

λmax + λmin

(2.1)

which yields a convergence factor of

ρ(Mωopt) =
κ2(A)− 1

κ2(A) + 1
=
λmax − λmin

λmax + λmin

. (2.2)

This observation motivates to reformulate the problem to reduce the condition number
κ2(A): Instead of solving the equation Au = f , we solve the equivalent equation

BAu = Bf,

where the non-singular matrix B is an approximation to A−1 that can be easily applied
(or even explicitly constructed) such that the condition number κ2(BA) � κ2(A). For
example, we can take B = D−1 = diag(A)−1 and obtain the damped Jacobi relaxation,

uit+1 = uit + ωD−1
(
f − Auit

)
.

A sufficient criterion for convergence of the undamped (ω = 1) iteration is given by
([Hac91], Theorem 4.4.11)

2D > A > 0.

12

2.1. Relaxation Solvers

If this condition is not fulfilled, a damping parameter 0 < ω < 1 is necessary such that
2
ω
D > A ([Hac91], Theorem 4.4.14). This is the case for most discretizations obtained

from elliptical PDE problems.
A second commonly used choice for B is B = (L + D)−1, where L is the strict lower
triangular part of A,

Lij =

{
aij if j < i

0 else.

Inside the so-called Gauss-Seidel iteration uit 7→ uit+1, the algorithm loops over the
components uiti of uit in the following way,

uit+1
i = uiti + a−1

ii

(
fi −

∑
j<i

aiju
it+1
j −

∑
j≥i

aiju
it
j

)
. (2.3)

Here, the new value for uj is already used to determine ui if j < i. Of course, instead
of (D + L)−1 one can also use (D + U)−1 as preconditioner, where U is the strictly
upper triangular part of A. Moreover, the decomposition of the non-diagonal part of A
into L and A − D − L can also be made depending on the underlying problem or the
geometry of the discretized domain (for example, the iteration may run “checkerboard-
wise” through the domain). The Gauss-Seidel iteration converges for any positive definite
matrix A ([Hac91], Theorem 4.4.18). The damped variant, which is named successive
over-relaxation (SOR), converges for any 0 < ω < 2 ([Hac91], Theorem 4.4.21). The
convergence factor for any SOR scheme can be derived from the convergence factor of the
Jacobi iteration applied to the same problem. This can be seen from Young’s Theorem
([Hac91], Theorem 5.6.5), which not only applies to the point-wise Gauss-Seidel iteration
described above but also to more general settings of the following form,

uit+1 = MSOR
ω uit +NSOR

ω f (2.4)

A = D − L− U, L̂ = D−1L, Û = D−1U (2.5)

MSOR
ω = (I − ωL̂)−1

(
(1− ω)I + ωÛ

)
, NSOR

ω = ω(I − ωL̂)−1D−1. (2.6)

Theorem 2.1 ([Hac91], Theorem 5.6.5) Let the SOR iteration (2.4) satisfy the follow-
ing conditions

1. 0 < ω < 2

2. The associated Jacobi iteration MJAC = I −D−1A has only real eigenvalues.

3. β = ρ(MJAC) < 1

4. D and I − ωL̂ are non-singular

5. The eigenvalues of zL̂+ 1
z
Û , z ∈ C \ {0} are independent of z.

13

2. Algebraic Multigrid

Then,

1. The iteration (2.4) converges.

2. The convergence rate is given by

ρ(MSOR
ω) =

{
1− ω + ω2β2

2
+ ωβ

√
1− ω + ω2β2

4
if 0 < ω ≤ ωopt

w − 1 if ωopt ≤ ω < 2

where ωopt =
2

1 +
√

1− β2
.

3. The convergence factor ρ(MSOR
ω) attains its minimum at ω = ωopt.

4. For ω ≤ ωopt, ρ(MSOR
ω) is an eigenvalue of MSOR

ω .

5. If ω ≥ ωopt, the norm of all eigenvalues of MSOR
ω is ω − 1.

From this theorem we immediately see that in the case of undamped Gauss-Seidel it-
eration (ω = 1), we have ρ(MSOR

1) = β2, i.e. the Gauss-Seidel method converges twice
as fast as the Jacobi relaxation. For the optimal parameter ωopt (which is always larger
than one in nontrivial cases), we have

ρ(MSOR
ωopt) =

1−
√

1− β2

1 +
√

1 + β2

In the following, we show the convergence behavior for the solution of a simple model
problem. We consider Poisson’s equation together with Dirichlet boundary conditions
on a square,

−∆u = f in Ω = (0, 1)2, (2.7)

u = g on ∂Ω, (2.8)

where f and g are continuous functions and u ∈ C2(Ω) is the sought solution function.
We discretize this equation on an equidistant grid Ωh with mesh size h (see Figure 2.1(a)
using a 5-point finite difference stencil,

1

h2

 −1
−1 4 −1

−1


h

and obtain a linear system of N = (n − 1)2 equations, where n = 1/h, 1 which can be
written in matrix-vector-form,

Au = f.

1Note that we have eliminated the equations on the discretized boundary

14

2.1. Relaxation Solvers

(a) Discretization grid (b) Coarse grid (c) Interpolation directions

Figure 2.1.: Finite difference discretization grids for the model problem ∆u = f on the
square [0, 1]2. Here, we have h = 0.125 and n = 8. The first figure shows
the discretization on the finest level (the Dirichlet boundary conditions have
already been eliminated), in the second figure we indicate the coarse grid
points with the larger dots and the arrows in the third figure indicate how
the interpolated values at the fine grid points are computed.

To estimate the convergence speed of the various iterations, we need to know the eigen-
values of the matrix A. These are given by

λ(k,l) =
4

h2

(
sin2

(
kπh

2

)
+ sin2

(
kπh

2

))
, for k, l = 1, . . . , n− 1

with the respective eigenvectors

φ
(k,l)
ij =

h

2
sin(ikπh) sin(jlπh).

From this we easily see that

λmin(A) = λ(1,1) =
8

h2
sin2(

πh

2
) and λmax(A) = λ(n−1,n−1) =

8

h2
cos2(

πh

2
).

It is clear that A is symmetric positive definite, so we conclude that the Richardson
iteration M converges for ω < h2

4 cos2(πh
2

)
whereas the optimal relaxation parameter (2.1)

is given by ωopt = h2

4
. In this case, the relaxation converges with

ρ(MJAC) = 1− 2 sin2(
πh

2
) = cos πh. (2.9)

For this model problem, undamped Jacobi iteration MJAC = I−D−1A for A just means
Richardson relaxation for the re-scaled matrix h2

4
A. Hence, (2.9) also applies here.

The point-wise (lexicographic or checkerboard-wise) Gauss-Seidel method converges with
the square rate of the Jacobi iteration, i.e. in this case

ρ(MGS) = ρ(MJAC)2 = cos2 πh = 1− sin2 πh.

15

2. Algebraic Multigrid

If we employ the SOR method with the optimal damping parameter 2
1+sin(πh)

(cf. The-

orem 2.1), we obtain a convergence factor of

ρ(MSOR
ωopt) =

1− sin(πh)

1 + sin(πh)
.

For a specific problem discretized using a mesh width h, one is often interested in the
convergence order, which is the smallest ξ such that ρ(M) can be expanded as follows,
([Hac91], Remark 3.3.3)

ρ(M) = 1− Chξ +O(h2ξ)

for a constant C independent of h. For the Jacobi, the Gauss-Seidel and the optimally
weighted SOR iteration, a Taylor expansion gives us the following convergence orders
for the model problem,

ρ(MJAC) = 1− π2/2h2 +O(h4)

ρ(MGS) = 1− π2h2 +O(h4)

ρ(MSOR
ωopt) = 1− 2πh+O(h2).

Hence, with increasing accuracy (and thus diminishing mesh width h), the convergence
factors deteriorate and more iterations are necessary to obtain a given error.
To determine the overall computational costs, we also need to estimate the floating
point operations per iteration. In most relevant applications, the matrix A is sparsely
populated, i.e. the number of non-zero entries per row Ai of A is small and independent
on the size of the matrix,

nonzeros(A) < CAN.

For the model problem, we have CA = 5. It is easy to see that the Richardson, Jacobi,
Gauss- Seidel and SOR methods require O(CA) scalar additions and multiplications to
update a variable xi, hence we need O(N) = O(1

h2
) operations for a single iteration.

In a nutshell, if we use these methods to solve a linear system with N unknown scalar
variables and O(N) non-zero entries in the matrix, the computational work grows super-
linearily in terms of N . We cannot expect that a single iteration can be carried out with
less than O(N) operations (actually, the computation of the residual f − Au already
requires this amount of work), hence, to obtain a solver that only needs O(N) overall
computations, we must seek for a method that, in each iteration, reduces the error by a
fixed factor ρ < 1 that does not depend on the number of unknowns N (or h). This can
be accomplished by multigrid methods, which are explained in the next section.

2.2. Geometric Multigrid

Multigrid methods can be seen as an acceleration of simple iterative schemes. To describe
this mechanism, we perform an iteration of the ω-damped Jacobi relaxation method to
obtain iterate uit+1 from iterate uit,

uit+1 = uit + ωD−1(f − Auit).

16

2.2. Geometric Multigrid

Consequently, the error eit = u − uit (here u denotes the exact solution) is propagated
by

eit+1 =
(
I − ωD−1A

)
eit.

We return to our Poisson problem example (2.7)–(2.8) from the previous section and
decompose the error in terms of the eigenbasis of A. For the eigenvalues

λij =

(
1− 1

2
cos(iπh)− 1

2
cos(jπh)

)
(i, j = 1, . . . n− 1)

and eigenvectors
φi,j = sin(iπx) sin(jπy), (x, y) ∈ Ωh

the error propagation reads as follows,

φk+1
i,j =

(
1− ω

(
1− 1

2
cos(iπh)− 1

2
cos(jπh)

))
φk

i. e. for small values of i and j we have φk+1 ≈ φk, while φk rapidly diminishes for large
i or j. Now, we have a decomposition of e in the oscillating part of the error (the span
of the eigenvectors φij for large i and j) and the smooth part of the error (the span of
φij for small i and j). While it is generally not feasible to carry out this decomposition
(actually, it would be at least as expensive as solving the system Ax = b), we still can
employ this knowledge and conclude that the slow-to-converge error can be represented
with less degrees of freedom than the dimension of the original problem N . Now the
question arises how we can obtain a smaller basis that represents this error well. We
study the point-wise error propagation of the Jacobi iteration at the (interior) mesh
point i, j,

ek+1
i,j = eki,j −

ω

4

(
4eki,j − eki,j−1 − eki−1,j − eki+1,j − eki,j+1

)
and see that letting ω = 1 the new iterate ek+1

i,j is just the average of the old iterate

eki±1,j±1 at the neighboring grid points. (For other values of ω we obtain an interpolation
between the old iterate and this average). Hence, we can conclude that during the Jacobi
iteration, the error at each point tends to the average of the error at its neighbors.
This motivates us to discretize the smooth error by forming averages of the fine grid
error. As outlined above, we only need a quarter of degrees of freedom for the smooth
error. Hence, we construct a coarse mesh Ω2h by doubling the mesh size h → 2h in
every spatial direction, see Figure 2.1(b) and obtain a grid with NC = bn

2
c × bn

2
c. To

establish a mapping between the coarse and the fine mesh, we need two transfer operators
P : RNC → RN and R : RN → RNC . We first construct the prolongation or interpolation
operator P . Its image has to represent the smooth error components well, so it is natural
to choose the following interpolation scheme,

(Pe)k,l =


ei,j if k = 2i and l = 2j
ei,j+ei+1,j

2
if k = 2i− 1 and l = 2j

ei,j+ei,j+1

2
if k = 2i and l = 2j − 1

ei,j+ei,j+1+ei+1,j+ei+1,j+1

4
if k = 2i− 1 and l = 2j − 1

17

2. Algebraic Multigrid

i.e. at the coarse grid points we just employ an injection and at all other points we form
averages of the errors at nearby coarse grid points, see Figure 2.1(c). For the restriction
operator R, we have different options. First, we can only take the value at the coarse
grid points, i.e.

(Re)i,j = e2i,2j.

Another possibility is to form averages during restriction. This can for example be done
with the so-called full weighting operator,

(Re)i,j =
1

16
(4e2i,2j + 2(e2i,2j−1 + e2i−1,2j + e2i+1,2j + e2i,2j+1)

+ (e2i−1,2j−1 + e2i−1,2j+1 + e2i+1,2j−1 + e2i+1,2j+1))

which is up to a scaling factor the transpose of the prolongation operator. Other restric-
tion operators are also possible.
Finally, we need a coarse linear system. We discretize the PDE on the coarse grid and
obtain a coarse system matrix AC of size N/4×N/4 (again, all Dirichlet boundary con-
ditions are eliminated and AC is regular). We can now solve a defect correction equation
in the following way: We first restrict the defect to the coarse grid

fC = Rrit = R
(
f − Auit

)
.

Then, we solve a coarse defect equation,

ACuc = fc.

Finally, we update the fine grid solution uit using the coarse approximation to the error
uC ,

uit+1 = uit + PuC .

In terms of the error eit, this correction can be written as

eit+1 =
(
I − PA−1

C RA
)
eit,

i.e. we again have an error propagation of the form (I −BA). Note however that in this
case B = PA−1

C R is not invertible (though AC is) and hence the spectral radius ρ(I −
PA−1

C RA) cannot be expected to be strictly smaller than one. To obtain a convergent
method, the coarse grid correction needs to be combined with one or more smoothing
iterations.
In Algorithm 2.1 we give the two-grid cycle. In general, however, the application of
a direct solver for the coarse system ACuC = fC is still too expensive. Instead, we
compute an approximation to uC using the two-grid algorithm with ACuC = fC as
fine grid system. We recursively extend this procedure until the coarse system is small
enough such that it can be efficiently solved using a direct solver or even by few steps of
an iterative method. Now, we have constructed a multigrid algorithm 2.2. Note that the
recursive application can be carried out once (µ = 1, V-cycle) twice (µ = 2, W-cycle) or
combinations hereof depending on the level index l, see Figure 2.2.

18

2.2. Geometric Multigrid

Figure 2.2.: V-cycle (left) and W-cycle (right)

algorithm 2.1 Two-grid cycle MG(A, f, u)

begin
for ν ← 1 to ν1 do u← Su; od; pre-smoothing
r ← f − Au; residual
fC ← Rr; restriction

uC ← (AC)−1 fC ; coarse grid correction
u← u+ PuC ; update solution
for ν ← 1 to ν2 do u← Su; post-smoothing
end

algorithm 2.2 multigrid algorithm MG(Al, fl, ul)

begin
for ν ← 1 to ν1 do ul ←Mlul; od; pre-smoothing
rl ← fl − Alul; residual
fl+1 ← Rlrl; restriction

coarse grid correction
if l + 1 = lmax

then

ul+1 ← (Al+1)−1 fl+1; apply directly
else

for µ← 1 to µ do
MG(Al+1, fl+1, ul+1)); solve recursively

od;
fi;
ul ← ul + Plul+1; update solution
for ν ← 1 to ν2 do ul ←Mlul; od; post-smoothing

end

19

2. Algebraic Multigrid

For sake of completeness, we now outline the classical multigrid convergence proof scheme
as introduced by Wolfgang Hackbusch in the Chapters 6 and 7 of [Hac85]. First, we
show the convergence of the two-grid cycle 2.1 and then we interpret the full multigrid
cycle 2.2 as a disturbed two-grid cycle.
The two-grid cycle (on finer level l and coarser level l+ 1) with only pre-smoothing can
be written in operator form,

eit+1 = T TGMl (ν1)eit =
(
I − Pl(Al+1)−1RlAl

)
(Ml)

ν1eit

=
(
(Al)

−1 − PlA−1
l+1Rl

)
(AlM

ν1
l)eit,

where Ml denotes the smoothing operator on level l. In the last step we have factored
the iteration into two steps, a smoothing step and a coarse grid correction step. From
the convergence properties of these two steps we derive the convergence of the two-grid
method. To this end, let Al : U → F and let the norms ‖ · ‖U and ‖ · ‖F as well as the
induced operator norms ‖ · ‖U→F and ‖ · ‖F→U be available.

Definition 2.1 ([Hac85], Definition 6.1.3) Let ‖ · ‖U and‖ · ‖F be given. Mν
l is said to

posses the smoothing property if there exists functions η(ν) and ν̄(h) and a number κ
such that

‖AlMν
l ‖U→F ≤ η(ν)h−κl for all 1 ≤ ν < ν̄(hl), l < lmax, (2.10)

lim
ν→∞

η(ν) = 0, (2.11)

ν̄(h) =∞ or lim
h→0

ν̄(h) =∞. (2.12)

The functions η and ν̄ are independent of l or hl. The condition

‖AlMν
l ‖U→F ≤ η(ν)h−κl for all ν ≥ 1, l < lmax,

is described formally by ν̄(h) =∞.

Note that an iteration that possesses the smoothing property is not necessarily conver-
gent.

Definition 2.2 ([Hac85], Definition 6.1.6) The approximation property holds if there
is some constant C such that

‖A−1
l − PlA

−1
l+1Rl‖F→U ≤ Chκl for all l < lmax (2.13)

with κ from (2.10).

If our smoother and coarse-grid correction satisfy these properties, we obtain two-grid-
convergence.

Theorem 2.2 ([Hac85], Theorem 6.1.7) Suppose the smoothing property 2.1 and the
approximation property 2.2. Let ρ > 0 be a fixed number.

20

2.2. Geometric Multigrid

1. In the case of ν̄(h) = ∞ there is a number ν such that the two-grid contraction
number satisfies

‖T TGMl (ν)‖U→U ≤ Cη(ν) ≤ ρ (2.14)

whenever ν ≥ ν and l < lmax.

2. In the remaining case of ν̄(h) → ∞ there are h̄ > 0 and ν such that inequality
(2.14) holds for all ν ≤ ν < ν̄(hl) and all hl ≤ h̄. For such l the interval [ν, ν̄(hl))
is not empty.

3. Under condition 2 and for ρ < 1 one obtains convergence:

uitl → ul = A−1
l fl.

Note that the right hand side of (2.14) is independent of l.
In the case or our model problem, we introduce the grid-depending scalar product

< u, v >=
∑
x∈Ωh

hdu(x)v(x)

where d is the spatial dimension of the domain. We need three vector norms

|u|0 =
√
< u, u >,

|u|2 =

∑
|α|≤2

|δαũ|20

 1
2

where ũ =

{
u in Ωh

0 in Qh \ Ωh

|u|−2 = sup{< u, v >: |v|2 = 1}

and the induced operator norms | · |0, | · |0→2, | · |2→0, | · |0→−2, | · |−2→0, | · |−2→−2. Here,
Qh denotes the infinite continuation of Ωh and δα is the discrete difference of order α,
where α is a multi-index,

δα := δα1
1 . . . δαdd ,

δju(x1, . . . , xj, . . . , xd) :=
u(x1, . . . , xj, . . . , xd)− u(x1, . . . , xj − h, . . . , xd)

h

The smoothing property is satisfied with the following functions η(ν).

• For the Richardson iteration, we have ([Hac85], Proposition 6.2.33)

η(ν) =
2CA

1 +
√

2

1

(ν + 1)2
,

where CA satisfies |h2
lAl|0 ≤ CA.

• For the ωl- damped Jacobi method, we have ([Hac85], Proposition 6.2.11)

η(ν) =
C0ν

ν

(ν + 1)ν+1

where C0 is chosen such that ωl ≥ 1
C0

.

21

2. Algebraic Multigrid

• For the lexicographical Gauss-Seidel relaxation one can show ([Hac85], Proposition
6.2.25)

η(ν) = 4

{
2
3ν

if ν = 1, 2;

1
2

√
(ν−2)ν−2

νν
else.

To show the approximation property for this family of discretization, let δl+1 = RlAlPl−
Al+1 be the difference between the Galerkin projection and the coarse grid operator.
Furthermore, let R

′
denote the trivial injection from level l to level l + 1.

One can show the following regularity statements ([Hac85], Section 6.3.2.2),

|δl+1|−2→2 ≤ Cδh
2

|A−1
l |−2→0 ≤ CR, |A−1

l |0→2 ≤ CR

|Al|−2→0 ≤ CL, |Al|0→2 ≤ CL

|I − PlR
′ |2→0 ≤ CIh

2

|Rl|−2→−2 ≤ CR, |R
′ |2→2 ≤ C

′

R, |Pl|0→0 ≤ CP .

We now split

A−1
l − PlA

−1
l+1Rl =

(
I − PlA−1

l+1RlAl
)
A−1
l

=
(
I − PlA−1

l+1RlAl
) (
I − PlR

′
)
A−1
l − PlA

−1
l+1δl+1R

′
A−1
l

We estimate the three components in the last line,

|I − PlA−1
l+1RlAl|0 ≤ 1 + |Pl|0|A−1

l+1RlAl|0 ≤ CpCRCrCA

|
(
I − PlR

′
)
A−1
l |0 ≤ CIh

2
lCR

|Pl|0|A−1
l+1δl+1R

′
A−1
l |0 ≤ CPC

2
RCδC

′

R

and obtain the approximation property (2.14) with

C = (1 + CpCRCrCA)CICR + CPC
2
RCδC

′

R.

It remains to show the convergence of the whole multigrid cycle Tl(ν1, ν2). This can
recursively be written as

Tlmax−1(ν1, ν2) = T TGMlmax−1(ν1, ν2) (2.15)

Tl(ν1, ν2) = T TGMl (ν1, ν2) +Mν2
l Pl (Ml+1(ν1, ν2))γ A−1

l+1RlAlM
ν1
l . (2.16)

Hence, the multigrid iteration can be interpreted as a two-grid iteration plus a pertur-
bation. To estimate this perturbation, we need the following additional assumptions on
the smoother and the interpolation operators (which can be easily shown for our model
problem),

‖Sνl ‖U→U ≤CS for all l < lmax, 0 < νν(h1) (2.17)

C−1
P ‖ul+1‖U→U ≤‖Pul+1‖U→U ≤CP‖ul+1‖U→U . (2.18)

22

2.2. Geometric Multigrid

We consider the case of pre-smoothing only, i.e. ν2 = 0. By induction we already have
‖Ml+1(ν1, 0)‖U→Uζγl+1 for some ζl+1 < 1. By (2.18) we have

‖A−1
l+1RlAlM

ν1
l ‖U→U ≤ CP‖PlA−1

l+1RlAlM
ν1
l ‖U→U

= CP‖Mν1
l −

(
A−1
l − PlA

−1
l+1Rl

)
AlM

ν1
l ‖U→U

= CP‖Mν1
l − T

TGM
l (ν1, 0)‖U→U .

We can now estimate (2.16) by

‖Tl(ν1, 0)‖U→U ≤ ‖T TGMl ‖U→U + C∗‖Ml+1(ν1, 0)‖γU→U .

where C∗ = CPCP (CS + 1). Let now the norm of the two-grid method be bounded by
‖T TGMl ‖U→U ≤ ζ, we obtain the recursion (l < lmax − 1)

ζl ≤ ζ + C∗ζγl+1 (2.19)

and ζlmax−1 ≤ ζ.

Lemma 2.1 ([Hac85], Lemma 7.1.6) Assume C∗γ > 1. If

γ ≥ 2, ζ ≤ ζmax =
γ − 1

γ
(γC∗)−

1
γ−1 , (2.20)

any solution of (2.19) is bounded by

ζl ≤ ζ∗ < 1.

where ζ∗ and ζ are related by

ζ = ζ∗ − C∗(ζ∗)γ, ζ∗ ≤ γ

γ − 1
ζ.

In the case of the W-cycle (γ = 2) the requirement (2.20) becomes

γ = 2, ζ ≤ ζmax =
1

4C∗

and all ζl are bounded by

ζl ≤
2ζ

1 +
√

1− 4ζC∗
.

The second part of (2.20) is not a very strong requirement, as we can always increase CP

such that C∗ < 1
γ
. Now, we obtain the multigrid convergence theorem for the W-cycle.

Theorem 2.3 ([Hac85], Theorem 7.1.2) Suppose γ ≥ 2, (2.17), (2.18), the smoothing
property from Definition 2.1 and the approximation property from 2.2. Let ζ ′ ∈ (0, 1) be
a fixed number.

23

2. Algebraic Multigrid

1. In the case of ν̄(h) =∞, there is a number ν such that the multi-grid contraction
number satisfies

‖Tl(ν1, 0)‖U→U ≤ ζ ′ < 1, ‖Tl(ν1, 0)‖U→U ≤
γ

γ − 1
Cη(ν), (2.21)

whenever ν ≥ ν, independently of l < lmax.

2. In the remaining case of limh→0 ν̄(h) = ∞ there exist h̄ > 0 and ν such that
Inequality (2.21) holds for all ν ∈ [ν, ν̄(hlmax−1)), provided that hmax−1 ≤ h̄. For
such hmax−1 the interval [ν, ν̄(hlmax−1)) is not empty.

One can show a dual result for the case of post-smoothing only ([Hac85], Theorem
7.1.7).
To show the convergence of the V-cycle, i.e. γ = 1, in a general setting we refer to
[BD85].
In this section, we have seen how a geometric multigrid method for a simple model
problem can be constructed. In addition, we have given an outline of the convergence
proof. The coarsening process, the construction of the interpolation operator and the
choice of the coarse grid operator however all required the knowledge of the underlying
PDE as well as the discretization grid. Now the question arises whether we can automate
this process and employ the fine level matrix A1 only to obtain a complete multigrid
hierarchy, i.e. a family of grids Ωl, system matrices Al, interpolation and restriction
matrices Pl, Rl and smoothing operators Ml. The remainder of this chapter will deal
with these issues.

2.3. AMG setup

algorithm 2.3 AmgSetup(Ω, A, int,NminLmax, L, {Al}Ll=1, {Pl}L−1
l=1 {Rl}L−1

l=1)

begin
Ω1 ← Ω; N1 = |Ω1|
A1 ← A;
for l← 1 to Lmax − 1 do

split Ωl into C l∪̇F l;
set Ωl+1 ← C l; Nl+1 = |Ωl+1|;
build Pl : RNl+1 → RNl ;

set Rl =
(
P l
)T

;
compute Al+1 ← RlAlPl;
if |Ωl+1| ≤ Nmin then break; fi;

od;
L← l + 1;

end.

24

2.4. Smoothing

For any algebraic multigrid method, we first have to create the multigrid hierarchy
before we can start the solving iteration. The latter part, called the solve (or solution)
phase is identical to the geometrical multigrid cycle (see Algorithm 2.2). During the
first part, called the setup phase, we create the sequence of grids {Ωl}Ll=1, the inter-grid
transfer operators {Pl}L−1

l=1 and {Rl}L−1
l=1 as well as the operators {Al}Ll=1. A brief sketch

of the AMG setup process is outlined in Algorithm 2.3. In the following sections, we
describe in detail each component of the setup process.

2.4. Smoothing

Before we can construct an adequate algebraic multigrid hierarchy for a given system
matrix A ∈ RN×N , we first have to understand the reduction of the error during the
smoothing iterations. To this end, we need to establish a criterion that allows us to
separate the smooth (or slow-to-converge) error components from the oscillating compo-
nents. In the case of a symmetric positive definite operator A, where D ∈ RN×N denotes
the diagonal part of A, we can define three inner products that help us to classify the
error,

Definition 2.3 ([Stü99], Section 2.2)

(u, v)0 := (Du, v) (2.22)

(u, v)1 := (Au, v) (2.23)

(u, v)2 := (D−1Au,Av) (2.24)

and the respective discrete norms ‖u‖0, ‖u‖1 and ‖u‖2 for all u, v ∈ RN .

The equivalence factors between these norms can be estimated as follows,

Lemma 2.2 ([Stü99], Lemma 3.1) Let A be symmetric and positive definite, let D be
the diagonal part of A. Then, for all e ∈ RN :

‖e‖2
1 ≤ ‖e‖0‖e‖2, ‖e‖2

2 ≤ ρ(D−1A)‖e‖2
1, ‖e‖2

1 ≤ ρ(D−1A)‖e‖2
0. (2.25)

The eigenvectors φi of D−1A and the corresponding eigenvalues λi satisfy

‖φi‖2
2 = λi‖φi‖2

1, and ‖φi‖2
1 = λi‖φi‖2

0. (2.26)

We now formulate the smoothing property of a smoothing operator M in terms of these
norms.

Definition 2.4 ([Stü99], Section 3.2) An operator M satisfies the smoothing property
with respect to A, if we have a σ > 0 such that for all e ∈ RN holds,

‖Me‖2
1 ≤ ‖e‖2

1 − σ‖e‖2
2 (2.27)

25

2. Algebraic Multigrid

From this definition we see that error components e that satisfy ‖e‖2 � ‖e‖1 will not
be reduced efficiently by M . In terms of the eigenvalues and eigenvectors of D−1A,
‖φi‖2 � ‖φi‖1 implies λi ≈ 0 by (2.26).
Before we further analyze the smooth components, we first note that damped Jacobi
relaxation and Gauss-Seidel relaxation satisfy property (2.27).

Theorem 2.4 ([Stü99], Theorem 3.1)
Let A be symmetric, positive definite and let w ∈ RN be an arbitrary vector, wi > 0 for
all i. We define γ− and γ+,

γ− := max
i
{ 1

wiaii

∑
j<i

wj|aij|} and γ+ := max
i
{ 1

wiaii

∑
j>i

wj|aij|}.

Then, the Gauss-Seidel iteration M = I − (L + D)−1A or S = I − (U + D)−1A, where
L (U) denotes the lower (upper) triangular part of A, satisfies the smoothing property
(2.27) with σ = 1

(1+γ−)(1+γ+)
.

Theorem 2.5 ([Stü99], Theorem 3.2)
Let A be symmetric positive definite and η ≥ ρ(D−1A). Then, the damped Jacobi relax-
ation M = I − ωD−1A satisfies the smoothing property (2.27) with σ = ω(2 − ωη) for
any 0 < ω < 2

η
. The optimal relaxation parameter is given by ω∗ = 1

η
, in this case also

σ = 1
η
.

For two important classes of matrices we now give a more detailed characterization of
the smooth error components.

2.4.1. M-Matrices

Definition 2.5 A matrix A ∈ Rn×n is called M matrix if it satisfies the following
properties,

• aii > 0 for all i = 1, . . . , n,

• aij ≤ 0 for all i, j = 1, . . . n, i 6= j,

• A is non-singular,

• the entries of A−1 are non-negative.

The smooth error components satisfy ‖e‖2 � ‖e‖1. Together with ‖e‖2
1 ≤ ‖e‖0‖e‖2

(2.25) we get
‖e‖1 � ‖e‖0 for e 6= 0.

which can be expanded as follows

‖e‖2
1 =

∑
i,j

aijeiej =
1

2

∑
i,j

−aij(ei − ej)2 +
∑
i

sie
2
i ,

where si :=
∑
j

aij.

26

2.4. Smoothing

Figure 2.3.: Error after 10 Gauss-Seidel iterations for a finite difference discretization of
−uxx − 0.001 · uyy, randomly chosen starting vector.

Hence, we have on average for each i = 1, . . . , N ,∑
j 6=i

−aij(ei − ej)
2

aiie2
i

� 1.

As all aij, i 6= j have the same sign, we can conclude that an algebraically smooth error
only varies slowly along the large couplings −aij � 0.

Example 2.1 We consider the anisotropic problem

−εuxx − uyy = f in Ω = (0, 1)2

u = g on ∂Ω

for ε � 1. From Figure 2.3 we see that after a few smoothing steps the error in y-
direction only varies slowly between neighboring points, while we have huge oscillations
in x-direction.

2.4.2. Essentially positive definite operators

In many applications, for example when discretizing mixed derivatives, we cannot expect
that all off-diagonal entries of the matrix A are non-positive. If however the positive
entries are relatively small, the results from the M-matrix case still can be applied.

Definition 2.6 ([Stü99], Section 3.3.2) A matrix A ∈ RN×N is called an essentially
positive matrix, if there exists a constant c > 0, such that for all e ∈ RN∑

i,j

−aij(ei − ej)2 ≥ c
∑
i,j

−a−ij(ei − ej)2. (2.28)

where

a−ij =

{
aij if aij < 0

0 otherwise.

27

2. Algebraic Multigrid

Figure 2.4.: Error after 5 Gauss-Seidel iterations on randomly chosen start vector for the
Laplace operator (left) and the problem with mixed derivatives (right).

Remark 2.1 For an essentially positive matrix, each row containing off-diagonal non-
zero entries has at least one negative off-diagonal entry.

Using the notation of the previous subsection, we get the following estimate for alge-
braically smooth error,

c

2

∑
i,j

−a−ij(ei − ej)2 +
∑
i

sie
2
i �

∑
i

aiie
2
i

which again means this error component varies slowly in the direction of strong negative
couplings a−ij � 0 and that the positive connections do not play an important role. This
is also motivated by the following example.

Example 2.2 [Stü99] We consider a problem with mixed derivatives, −∆u + uxy dis-
cretized using a 9-point finite difference scheme on an uniform grid of mesh size h. We
employ the stencil

1

h2

−0.25 −1 +0.25
−1 4 −1

+0.25 −1 −0.25


h

.

The resulting matrix fulfills condition (2.28) with c = 0.5. As can be seen from figure
2.4, the positive couplings resulting from the mixed derivatives do not have an influence
on the error.

Remark 2.2 In the case of large positive connections (i.e. the matrix A does not fulfill
property (2.28)), algebraically smooth errors can oscillate in the direction of these cou-
plings. For example, when considering nearly weakly diagonally dominant matrices, we
get the following estimate for algebraically smooth error ([Stü99], Section 3.3.3)∑

j 6=i

−
a−ij(ei − ej)2

aiie2
i

+
∑
j 6=i

a+
ij(ei + ej)

2

aiie2
i

� 1,

which implies that ei ≈ −ej if a+
ij/aii is relatively large.

28

2.5. Strong Couplings

Figure 2.5.: Strong couplings for finite difference discretizations. The left picture shows
the strong connections for an isotropic operator A. In case of the second
image, we have strong connections only in y direction (see Example 2.1).
The figure on the right hand side shows the strong connections for Example
2.2 if a threshold α ≤ 0.25 is used.

2.5. Strong Couplings

algorithm 2.4 AmgStrongCouplings(A, S, ST)

begin
for i← 1 to N do

for j ∈ Ni do
if −aij ≥ α ·maxk 6=i−aik

then
Si ← Si ∪ {j};
STj ← STj ∪ {i};

fi;
od;

od;
end

In the previous section, we have seen that for symmetric positive M-matrices and
essentially positive matrices, the algebraically smooth error e varies slowly in the di-
rection of the large negative off-diagonal matrix entries aij, i.e. ei ≈ ej. We will use
this observation for the construction of the interpolation (prolongation) operator and,
in consequence, for the coarsening process. Therefore we introduce the concept of the
strong coupling,

Definition 2.7 ([Stü99], Section 7.1) Let 0 < α < 1 be fixed.

1. A point j is strongly coupled to another point i 6= j, if

− aij ≥ α ·max
k 6=i
{−aik}. (2.29)

29

2. Algebraic Multigrid

2. We introduce the following notation

Si := {j ∈ Ω : −aij ≥ α ·max
k 6=i
{−aik}} the strong couplings i, (2.30)

STi := {j ∈ Ω : i ∈ Sj} the set of all points strongly coupled to i. (2.31)

To be more demonstrative, we can consider Si as the dependencies of i, i.e. the smooth
error ei depends in particular on the error ej at the strongly connected neighbors j ∈ Si.
On the other hand, STi can be seen as the influence of i. The union of all Si can be
interpreted as a directed, unweighted graph where the vertices are given by the grid
points i ∈ Ω and an edge is established between two points i and j if j ∈ Si. We
denote this graph and its connectivity matrix with S. ST is defined similarly. Note that
even for symmetric operators A, the connectivity matrix S is not necessarily symmetric.
Consider for example the following very simple example (α = 0.25),

A =
1

h2

2.1 −1 0
−1 1.1 −0.1
0 −0.1 0.2

 , S =

0 1 0
1 0 0
0 1 0

 .

In Algorithm 2.4 we give the algorithm for computing the strong connections. An
example for two strength graphs is given in Figure 2.5.

Remark 2.3 A slightly different way to define the strong couplings is to use the in-
equality

|aij| ≥ α ·max
k 6=i
|aik| (2.32)

instead of (2.29). In this case all couplings beyond a certain threshold are considered
coarse, even the positive ones. This may especially be useful in the case of essentially
positive matrices, where for every large positive connection i ← j there is also a path
of strong negative connections i ← k ← j. So instead of the more expensive detection
of these paths, we simply take the large positive connection. It is also possible to use
different thresholds α− and α+ for the positive and negative connections.

2.6. Coarsening according to Ruge and Stüben

As in the geometric case, the coarse grid Ωl+1 = C l should meet two demands:

1. The smooth error components e should be well represented on Ωl+1.

2. The coarse grid should be a constant (independent of |Ωl|) factor smaller than the
fine grid.

Now, algebraic multigrid is often used if geometric multigrid fails, i.e. a geometrically
obtained coarsening like mesh width doubling does not reflect the behavior of smooth
error components very well. This can for example be due to anisotropies in the operator

30

2.6. Coarsening according to Ruge and Stüben

(a) Initialized weights (b) First coarse grid point (c) Neighbors set to fine

(d) Update weights for neigh-
bors of neighbors

(e) Second coarse grid point (f) Neighbors set to fine

(g) Update weights for neigh-
bors of neighbors

(h) Third coarse grid point (i) Final coarse grid

Figure 2.6.: Coarsening process for a 5-point stencil. The numbers denote the weights
of still undecided points, the red points belong to the coarse grid and the
white points belong to the fine grid. Updated weights are given in blue.
The blue edges indicate which connections are considered within the graph
at the current step. Note that the strength matrix is symmetric here.

31

2. Algebraic Multigrid

(see e.g. Example 2.1) or different PDE coefficients in different parts of the domain.
Furthermore, the geometry of the discretization domain may not allow a straightforward
coarsening.
Instead of relying on geometrical information, the key to the construction of an algebraic
coarse grid is to use the information that we know about the structure of the smooth
error. In the previous section, we have already seen that for relevant PDE problems the
smooth error varies slowly along the strong connections. In other words, the value ei at
a point i ∈ Ω can easily be approximated from the values of strongly connected points
j ∈ Si. The coarsening demands mentioned above can now be expressed in terms of S.

C1 For any fine grid point i ∈ F and every strongly connected point j ∈ Si let either
j be a coarse grid point, or j itself depend on a coarse grid point k ∈ Si ∩ C.

C2 Let C be a maximal set so that two points in C are not strongly connected to each
other.

The first condition ensures that for any fine grid point i ∈ F all strong connections are
reflected in the coarsening process, not only those that directly lead to a coarse grid point
j ∈ C. The reason for this is the that we will construct the interpolation operators (see
Section 2.8) to interpolate along the strong connections, i.e. the value at a fine grid point
i ∈ F will be interpolated from the values ej, where j is contained in the set of strongly
connected coarse neighbors Si ∩ C. On the other hand, the value ek at any strongly
connected coarse grid point k ∈ Si should be represented in the interpolation scheme.
Now, as long as ek, k ∈ Si ∩ F , also depends on and interpolates from ej, j ∈ Si ∩ C, ek
cannot differ “too much” from these ej and hence from ei.
If C fulfills Condition C2, it is called a maximal independent set (MIS). An indepen-
dent set I ⊂ V in a graph (V,E) is a set of vertices such that two vertices i, j ∈ I
are not directly connected to each other, i.e. there is no edge (i, j) in E. A maximal
independent set is an independent set I such that no additional vertex i can be added
to I without loosing the independent set property. This should not be confused with
a maximum independent set, which is an independent set with a maximum number of
vertices. The task of constructing a coarse grid hence turns into the task of finding a
maximal independent set, for which many greedy algorithms are available, e.g. [Lub86].
In this particular case, however, the set of coarse grid points has to satisfy condition C1
to ensure the robustness of the interpolation. Therefore, the construction of coarse grids
is split into two phases. In the first phase, an independent set is created. The second
phase then enforces condition C1, thereby sacrificing the independent nature of the set
C.

In Algorithm 2.5 we give the first phase of the classical coarsening algorithm. Most
important here is that we assign a weight λi to each point i, which measures the “use-
fulness” of i as coarse grid point. Before starting the iteration, we initialize λi to the
number of points j that depend on i, i.e. |STi | (Figure 2.6(a)). A point with maximal
weight is chosen and added to the set of coarse grid points C (Figure 2.6(b)). Then, all
neighbors j that depend on i (j ∈ STi) can interpolate from i and hence we assign them
to the set of fine grid points (Figure 2.6(c)). On the other hand, interpolation should

32

2.6. Coarsening according to Ruge and Stüben

algorithm 2.5 AmgPhaseI(Ω, S, ST , C, F) ([RS87], algorithm A2)

begin
U ← Ω;
C ← ∅;
F ← ∅;
for i ∈ Ω do λi ← |STi |; od;
while maxi∈U λi 6= 0 do

i← arg maxj∈U λj; pick coarse grid point
C ← C ∪ {i}; U ← U \ {i};
for j ∈ STi ∩ U do

F ← F ∪ {j}; U ← U \ {j}; add neighbors to fine grid
for k ∈ Sj ∩ U do

λk ← λk + 1; increase weights of neighbors of neighbors
od;

od;
for j ∈ Si ∩ U do

λj ← λj − 1; decrease weights of point that influence i
od;

od;
F ← F ∪ U ;

end

be from a large portion of connection of j, not only one strong coupling (see Section 2.8
for an intensive discussion). This motivates us to increase, for all newly assigned fine
grid points j, the weight of all k ∈ Sj such that they are more likely to become coarse
in future iterations (Figure 2.6(d)).
Furthermore, as i is now coarse, the strong connections of i, Si are not needed for in-
terpolation anymore. Hence, we can reduce the weights λj for all j ∈ Si if j is still
undecided. Then, we restart the iteration and again pick a point with maximal weight
λi (Figure 2.6(e)) until all points are assigned either fine or coarse (Figure 2.6(i)). It is
easy to see that the iteration needs at most O(N · nzr2) steps, where N is the number
of unknowns and nzr the maximal number of nonzeros per row, which is assumed to be
small and independent of N for relevant PDE problems.
The second phase algorithm 2.6, which is derived from Algorithm A3 in [RS87], takes

as input the C/F -splitting determined by the first pass. We loop over all fine grid points
i ∈ F and their strongly coupled fine neighbors j ∈ Si ∩ F . Then we check whether
these points share a common C-point, i.e. a point k such that both k ∈ Si and k ∈ Sj.
If such a k does not exist, either i or j is added to the set of coarse grid points, where
i is given precedence if two or more additional coarse points would be needed to ensure
stability for interpolating ei. This algorithm also takes O(n · nzr2) operations (outer
iteration O(n), inner iteration and Sj ∩ Si ∩ C = ∅ check each O(nzr)).

33

2. Algebraic Multigrid

(a) Strong Couplings (b) After first coarsening
phase (red points are coarse)

(c) After second coarsening
phase (red and green points
are coarse)

Figure 2.7.: Finite difference discretization of a PDE with a jumping diffusion coefficient
(Example 2.3). The blue line gives the phase boundary; the arrows denote
a strong coupling only in the indicated direction.

algorithm 2.6 AmgPhaseII(Ω, S, C, F)

begin
for i ∈ F do

C̃ ← ∅;
for j ∈ Si ∩ F do

if Sj ∩ Si ∩ C = ∅
then

if C̃ 6= ∅
then change i, because otherwise 2 points need to be changed

C ← C ∪ {i};
F ← F \ {i};
GOTO NEXTi;

else j could be an interpolation point for i

C̃ ← {j};
fi;

fi;
od;

C ← C ∪ C̃;

F ← F \ C̃;
NEXTi :

od;
end

34

2.7. Aggressive Coarsening

Figure 2.8.: Standard coarsening for a three-dimensional Laplacian. The blue points are
fine grid points, the red and green points belong to the coarse grid. On
the coarse level, the point in the center has connections to 18 other points.
After the application of aggressive coarsening using the sets Ŝ

(2,2)
i , all green

points are also fine grid points and the original 7-point stencil is recovered
on the coarse level.

Example 2.3 We consider the PDE

−∇ · η(x, y)∇u(x, y) = f(x, y)

on a square domain with Dirichlet boundary conditions, and

η(x, y) =

{
1 if x+ y > 0.9

1000 else.

In Figure 2.7(a) we show the strong couplings (α = 0.25) for a finite difference discretiza-
tion. The blue line indicates the phase boundary for η. We see that the strength matrix
is not symmetric (the arrows denote the strong couplings that are only present in one
direction). Figure 2.7(b) shows the coarse grid (red points) after phase I (Algorithm
2.5) of the coarsening scheme. We see that the fine grid points at the upper right side
to the phase boundary are strongly dependent on the points at the lower left side of
the boundary, these points however are also fine grid points that do not depend on the
same set of coarse grid points, thus violating condition C1. Algorithm 2.6 repairs this
problem by inserting the green points in Figure 2.7(c).

2.7. Aggressive Coarsening

In geometric multigrid settings, the coarse grid operator is usually just the discretization
of the underlying problem on a smaller mesh, hence the number of nonzeros per matrix

35

2. Algebraic Multigrid

row will be roughly the same on all levels. In consequence, the memory requirements
per level decrease proportional to the mesh size.
In AMG (but also in the case of semi-algebraical approaches [Den82]), the coarse grid
operator is computed from the transfer operators and the fine grid operator,

Al+1 = RlAlPl.

This approach establishes many connections, i.e. matrix entries, between points that
were previously far away from each other. The matrix Al+1 may have the same number
or even more nonzeros than Al. This not only increases the storage requirements, but
also the compute time for a matrix-vector multiplication (which is proportional to the
overall number of nonzeros in a matrix), the computation of Al+1 itself and the setup
on the next coarser level.

Example 2.4 We consider the simple case of a 7 point isotropic finite difference stencil
in three spatial dimensions, e.g. the discretization of the Laplacian, see Figure 2.8. Using
classical Ruge-Stüben coarsening, we obtain a coarse grid with N/2 vertices, where N
is the size of the fine grid (We ignore any boundary conditions for these considerations).
We assume that interpolation directly follows the strong connections. Now, on the next
coarser level, each matrix row contains 19 non-zero values. In consequence, the matrix
on level 2 has O(9.5 · N) non-trivial entries , comparing to only O(7N) on the finest
level.

A way around this is to allow smaller coarse grids, i.e. with less coarse grid points. To
this end, however, we have to give up coarsening principle C1 and replace it by a weaker
condition [SMYH06],

C1’ Let any fine grid point i ∈ F be strongly connected to at least one coarse grid
point j ∈ C.

As we have already pointed out in the previous section, a stable AMG interpolation
scheme requires that all strong connections of a fine grid point i ∈ F are reflected in
the prolongation operator. Now, Condition C1’ does not guarantee us that the strongly
connected fine grid points k ∈ Si ∩ F are strongly connected to the set Si ∩ C, i.e. the
coarse grid points directly connected to i. We can however at least be sure that k has
a strong connection to at least one coarse grid point v ∈ Sk ∩ C. The idea is then to
interpolate the value at i ∈ F not only from the directly coupled coarse grid points
Si ∩ C, but also from the set of indirectly coupled points⋃

k∈Si∩F

(Sk ∩ C) .

In Sections 2.8.5 - 2.8.8 we will give various approaches to long-range interpolation.
In the remainder of this section, we describe the aggressive coarsening approach ([Stü99],
Section 7.1.2). This algorithm requires an extended concept of strength.

36

2.8. Interpolation

Definition 2.8 The point i is strongly n-connected to another point j along a path of
length m if there exists a sequence of variables i0, i1, i2, . . . , im such that ik+1 ∈ Sik for
all k = 0, . . . ,m− 1 and i0 = i, im = j.
For q ≥ 1, m ≥ 1, i is strongly n-connected to j 6= i w.r.t. (q,m) is there exists at least
q paths of length ≤ m such that i is strongly n-connected to j along each of these paths.
Analogously to (2.30) we then define the sets S

(q,m)
i

S
(q,m)
i = {j ∈ Ω : i strongly n-connected to j w.r.t (q,m)}.

It is clear that Si = S
(1,1)
i . For aggressive coarsening, usually the sets S

(1,2)
i or S

(2,2)
i

are used. However, the computation of S
(q,m)
i (and its transpose (S

(q,m)
i)T may be quite

expensive. Instead a more practical approach is to employ the standard coarsening
algorithm 2.5 twice. First, the coarsening process is applied using the sets Si as usual.
Then, we only regard the coarse points i ∈ C and the strong connection paths between
them,

Ŝ
(q,m)
i = {j ∈ C : i strongly n-connected to j w.r.t (q,m)}.

These sets Ŝ
(q,m)
i are then fed into a second run of the coarsening scheme 2.5 and we

obtain the final set of coarse grid points. Returning to our 3D Laplacian example (Figure

2.8), we compute the sets S
(2,2)
i for the green points and see that they are strongly n-

coupled to the red points w.r.t (2, 2). Hence, an additional coarsening pass only leaves
the red points on the coarse grid.
In Section 3.3 we will introduce additional coarsening schemes that only satisfy condition
C1’. The advantage of these algorithms is that they can easily be parallelized.

2.8. Interpolation

After the coarse grid points and hence the coarse space have been determined, we need
to construct the interpolation operator P : RNl+1 → RNl and the restriction operator
R : RNl → RNl+1 . Throughout this section, we will use the following notation,
Ei = {j 6= i : aij 6= 0} set of neighbors of i.

Ci = Si ∩ C set of strongly connected coarse grid points of i.
F s
i = Si ∩ F set of strongly connected fine grid points of i.

Ew
i = Ei \ Si set of weakly connected neighbors of i.

Ii set of interpolatory points for i.
In the following, without loss of generality we assume that each fine grid point i ∈ F
has at least one strong connection aij, j ∈ Si. If this is not the case, the error at this
point is assumed to be reduced efficiently by smoothing only.

2.8.1. Limit case: Direct solver

Before we proceed to practically useful interpolation schemes, we first show that for a
special choice of the interpolation and smoothing operators ([Stü99], Section 2.3), the

37

2. Algebraic Multigrid

two-grid method with one post-smoothing step

eit+1 = M
(
I − PA−1

C RA
)
eit

as well as the two-grid method with one pre-smoothing step

eit+1 =
(
I − PA−1

C RA
)
Meit

turn into direct solvers, i.e. we have(
I − PA−1

C RA
)
M = M

(
I − PA−1

C RA
)

= 0

We assume that we have been given a C/F-splitting of Ω = C∪̇F . Then, we re-arrange
the coarse and fine components of u, f and A into coarse and fine components,

Au =

(
AFF AFC
ACF ACC

)(
uF
uC

)
=

(
fF
fC

)
= f.

In the following we only assume that A and AFF are invertible. (This is always the case
if A is symmetric positive definite). We define a special smoother M̂ that only acts on
the fine grid points,

uit+1
F = A−1

FF

(
fF − AFCuitC

)
uit+1
C = uitC .

For the error propagation we have

eit+1
F = −A−1

FF

(
AFCe

it
C

)
eit+1
C = eitC .

Furthermore, letting ICC be the identity matrix on the coarse variables, define the fol-
lowing restriction and interpolation operators, by

P̂ =

(
−A−1

FFAFC
ICC

)
, R̂ =

(
ICC −A−1

FFACF
)

(2.33)

Now, for any restriction operator operator of the form

R =
(
RCF ICC

)
a straightforward calculation shows that the coarse grid operator equals the Schur com-
plement,

AC = RAP̂ = ACC − ACFA−1
FFAFC

38

2.8. Interpolation

which is invertible as AFF and A are. Furthermore, the two-grid cycle with one post-
smoothing step reduces the error to zero,(

I − P̃A−1
C RA

)
M̃ = 0,

i.e. we have constructed a direct solver. The same also holds for the cycle

M̃
(
I − PA−1

C R̃A
)
, AC = R̂AP = ACC − ACFA−1

FFAFC

where P is an arbitrary interpolation operator of the form

P =
(
PCF ICC

)
.

These smoothing and interpolation operators are not practically useful (we would need
to compute the inverse of AFF). except in some rare cases. (For example, consider a
finite difference discretization of Poisson equation in one spatial dimension yielding a
tri-diagonal matrix. Here AFF becomes diagonal if every other point belongs to the
coarse grid.) However, these results indicate that we should approximate −(AFF)−1AFC
to obtain an efficient interpolation. Furthermore, we have a justification to use the
Galerkin ansatz AC = RAP for the coarse grid operator. In section 2.9 we will further
discuss the consequences of this choice.

2.8.2. Approximation properties

Like in the geometric case (see Section 2.2, especially Definition 2.2) we need, in addi-
tion to a smoothing property, an approximation property to show convergence of the
multigrid cycle. Again, we formulate this property in terms of the norms ‖u‖2

1 = uTAu
and ‖u‖2

2 = uTAD−1Au.
In the remainder of this section, we restrict ourselves again to the class of M-matrices
(Definition 2.5) and essentially positive matrices (Definition 2.6). First, we consider a
two-grid method with one post-smoothing step,

eit+1 = MTeit = M
(
I − PA−1

C RA
)
eit.

We assume that the two-grid correction operator T =
(
I − PA−1

C RA
)

satisfies

‖Te‖2
1 ≤ ‖e‖2

1 (2.34)

‖Te‖2
1 ≤ τ‖Te‖2

2 (2.35)

for some τ > 0 independent of e. Furthermore, we assume that the smoother M satisfies
the smoothing property (2.27),

‖Me‖2
1 ≤ ‖e‖2

1 − σ‖e‖2
2

where σ > 0 is again independent of e. Then we obtain (see also [Stü99], Theorem 4.1)

‖MTe‖2
1 ≤ ‖Te‖2

1 − σ‖Te‖2
2 ≤

(
1− σ

τ

)
‖Te‖2

1 ≤ ‖e‖2
1. (2.36)

39

2. Algebraic Multigrid

In the following, we will formulate conditions on the interpolation operator such that
(2.35) is satisfied. For a more extensive discussion, we refer to [Stü99], Chapter 4. In-
equality (2.34), on the other hand, can be shown for any full-rank interpolation operator.
This will be done in Section 2.9.
We now translate (2.35) into a condition on the interpolation operator. Again, assuming
a splitting of Ω into C and F is given, we re-arrange all relevant operators into coarse
and fine blocks,

P =

(
PFF PFC
PCF PCC

)
, A =

(
AFF AFC
ACF ACC

)
, D =

(
DFF 0

0 DCC

)
, e =

(
eF
eC

)
and define the 0-inner product and norm restricted to the F -variables,

(x, y)0,F = xTDFFy, ‖x‖0.F =
√

(x, x)0,F .

Theorem 2.6 [Stü99], Theorem 4.2
If the C/F-splitting and the interpolation PFC are such that, for all e,

‖eF − PFCeC‖2
0,F ≤ τ‖e‖2

1 (2.37)

with τ being independent of e, then (2.35) is satisfied.

In terms of the eigenvalues λ and eigenvectors φ of D−1A, (2.37) becomes

‖φF − PFCφC‖2
0,F ≤ τλ‖φ‖2

0

(see (2.26)). We conclude that especially for the small eigenvalues, the corresponding
eigenvectors should be approximated exactly by the interpolation. These eigenmodes
correspond to the smooth error components that cannot be handled efficiently by the
smoother, see (2.27) and the discussion thereafter. Moreover, in the limit case of zero row
sum matrices, the smallest eigenvalue equals zero and the corresponding eigenvector is
the constant vector throughout the domain. This eigenvector then must be approximated
exactly. In practical examples, the matrices often have zero row sums except these rows
that involve a boundary condition. For these linear systems, it is also important that
locally constant vectors are interpolated exactly, a property that we always will enforce
for the interpolation operators introduced in the next subsections.
In the remainder of this section, we restrict ourselves again to the class of M-matrices
(Definition 2.5) and essentially positive matrices (Definition 2.6). As we have seen in
Sections 2.4 - 2.5, for this type of matrices algebraically smooth errors vary slowly along
the strong couplings,

c

2

∑
i,j

−a−ij(ei − ej)2 +
∑
i

sie
2
i �

∑
i

aiie
2
i .

40

2.8. Interpolation

This motivates us to approximate the error ei at a fine grid point i by a weighted average
of its strongly connected coarse neighbors j ∈ Ci,

ei =

{
ei if i ∈ C∑

j∈Si∩C wijej else.
(2.38)

To give an indication on how the weights wij should be chosen, we again look at the
smooth error characterization in term of the norms ‖ · ‖1 and ‖ · ‖2,

eTAD−1Ae = ‖e‖2
2 � ‖e‖2

1 = eTAe

⇔ rTD−1r � eT r,

or, on average for each i, we have that the scaled residual is much smaller than the error,

|ri|2

aii
� |ei| · |ri|

|ri|
aii
� |ei|.

To obtain the actual interpolation weights wij, we hence approximate

aiiei +
∑
j∈Ei

aijej = ri = 0. (2.39)

by

ei +
∑
j∈Ei

wijej = 0. (2.40)

Now, we formulate a sufficient condition for (2.37) in terms of the interpolation weights
wij.

Theorem 2.7 ([RS87], Theorem 5.3) Let A be symmetric positive definite and assume,
for any given set C of C-points, that P is of the form (2.38) with wij ≥ 0 and

∑
j wij ≤

1. Then property (2.37) is satisfied if the following two inequalities hold with τ > 0
independently of e,∑

i∈F

∑
j∈C

aiiwij(ei − ej)2 ≤ τ

2

∑
i,k

(−aik)(ei − ek)2, (2.41)

∑
i∈F

aii(1−
∑
k

wik)e
2
i ≤ τ

∑
i

(∑
k

aik

)
e2
i . (2.42)

Note that Condition (2.42) implies that for zero row sum matrices (
∑

k aik = 0), the
sum of all interpolation weights

∑
k wik for an i ∈ F should be one. In other words, a

constant vector should be interpolated to a constant vector.

41

2. Algebraic Multigrid

(a) Direct interpolation (b) (Modified) classical inter-
polation

(c) Standard and extended in-
terpolation

Figure 2.9.: Comparison of interpolation methods for the mixed problem from Example
2.2. The red dots denote the coarse grid points, the blue circle is the fine
grid point whose value is to be interpolated. The blue arrows show how the
values are interpolated directly and indirectly from the coarse to the fine
grid points.

2.8.3. Direct Interpolation

The first and simplest ansatz to obtain an interpolated value for ei, i ∈ F , is just to set
Ii = Ci, i.e. only to interpolate directly from strongly connected coarse grid points and
compute, for all j ∈ Ci,

wij = − 1

aii

∑
k∈Ei aik∑
k∈Ci aik

aij. (2.43)

Here, the correction factor
∑
k∈Ei

aik∑
k∈Ci

aik
is needed to ensure that in the case of zero row sum

matrices (where aii = −
∑

k∈Ei aik), the sum over all interpolation weights equals one,

∑
j∈Ci

wij = − 1

aii

∑
k∈Ei aik∑
k∈Ci aik

∑
j∈Ci

aij = 1

which implies that a constant vector on the coarse grid will be interpolated to a con-
stant vector on the fine grid. We have pointed out in the last subsection that this is
crucial for an efficient AMG interpolation operator. In the next theorem, we show how
the distribution of coarse interpolatory points around a fine grid point i influences the
constant τ . Note that if we have rows with negative row sum, τ becomes dependent on
the smallest row sum as well as the smallest eigenvalue of A. On the other hand, for the
class of weakly diagonally dominant matrices, (2.37) can be satisfied with uniform τ if
the sets of interpolatory points are large enough.

Theorem 2.8 ([Stü99], Theorem 4.3 - 4.4)
Let the symmetric M-matrix A satisfy

∑
j aij ≥ −c for some c ≥ 0 and assume eTAe ≥

42

2.8. Interpolation

εeT e for all e with some ε > 0. With fixed τ ≥ 1, select a C/F-splitting so that, for each
i ∈ F , there is a set of interpolatory points Ii ⊂ C ∩ {j ∈ Ei : aij 6= 0} satisfying∑

j∈Ii

|aij| ≥
1

τ

∑
j∈Ei

|aij|. (2.44)

Then the interpolation (2.38) with weights (2.43) satisfies (2.37) with τ replaced by some
τ̃ = τ̃(ε, c, τ). As a function of ε and c, we have τ̃ → ∞ if either c → ∞ or ε → 0. If∑

j aij ≥ 0, then τ̃ = τ .

If we have strong negative and positive connections, the denominator
∑

k∈Ci aik may
become (close to) zero. To avoid this instability we separate the positive and negative
connections. To this end, we split the set of strongly connected coarse grid points into
two sets of interpolatory points,

C−i = {j ∈ Ci : aij < 0}
C+
i = {j ∈ Ci : aij > 0}

We rewrite (2.40),

ei +
∑
j

w−ijej +
∑
j

w+
ijej = 0,

where

w−ij = − 1

aii

∑
k∈Ei a

−
ik∑

k∈C−i
a−ik

aij if aij < 0 (2.45)

w+
ij = − 1

aii

∑
k∈Ei a

+
ik∑

k∈C+
i
a+
ik

aij if aij > 0. (2.46)

If a matrix row i only contains negative (positive) off-diagonal entries, then C+
i = ∅

(C−i = ∅) and we set the corresponding correction factor to zero. In the case of M-
matrices, this definition of direct interpolation is identical to the construction above.
The approximation property is also a direct extension of the previous result.

Theorem 2.9 ([Stü99], Theorem 4.6) Let A > 0 and ti = aii −
∑

j∈Ei |aij| ≥ 0. With
fixed τ ≥ 1, select a C/F -splitting such that the following holds for each i ∈ F : If
{j ∈ Ei : aij < 0} 6= ∅, there is a set C−i ⊂ C ∩ {j ∈ Ei : aij < 0} satisfying∑

j∈C−i

|aij| ≥
1

τ

∑
j∈Ei

|a−ij|,

and, if {j ∈ Ei : aij > 0} 6= ∅, there is a set C+
i ⊂ C ∩ {j ∈ Ei : aij > 0} satisfying∑

j∈C+
i

aij ≥
1

τ

∑
j∈Ei

a+
ij.

Then the interpolation (2.38) with weights (2.45-2.46) satisfies (2.37).

43

2. Algebraic Multigrid

The largest drawback of the direct interpolation scheme is the fact that only the strong
connections to directly coupled coarse grid points are used, aij : j ∈ Ci. The smooth
error ei at i ∈ F however also depends on the smooth error ek at another k ∈ F s

i

if i is strongly coupled to k. For example, in Figure 2.9(a) we give the interpolation
directions for the second order with mixed derivatives of Example 2.2. We see that for
the interpolation of the blue fine grid points, only three of the six strong couplings are
used. More precisely, in (2.44), we need τ ≥ 20

9
.

In the following sections, we construct interpolation operators that employ all strong
couplings ajk.

2.8.4. Classical and Modified classical interpolation

In this section, we describe an interpolation technique that, for each fine grid point
i ∈ F , takes into account all strong connections aik, k ∈ Si regardless whether k is
coarse or fine. Still, we only interpolate from the directly connected coarse grid points
j ∈ Ci. To determine the weights, however, we also follow the paths

i
aik← k

akj← j.

if j ∈ Sk and k ∈ Si. Remember from the coarsening criterion C1 that, for each fine
k ∈ F s

i , there must be a coarse j ∈ C such that j ∈ Si as well as j ∈ Sk, i.e. there must
be a common coarse point j for the strongly connected fine grid points points i and k.
Now, we again approximate (2.39),

aiiei = −
∑
j∈Ei

aijej = −
∑
j∈Ci

aijej −
∑
k∈F si

aikek −
∑
l∈Ewi

ailel.

First, we replace
∑

l∈Ewi
ailel by

∑
l∈Ewi

ailei (though the assumption el ≈ ei may seem
strange for weakly coupled points l, we need this to ensure that constants are interpolated
exactly). Then, we replace each ek, k ∈ F s

i , by

ek ←
1∑

m∈Ci akm

∑
j∈Ci

akjej. (2.47)

We obtain the interpolation weights [HMY02]

wij = − 1

aii +
∑

l∈Ewi
ail

aij +
∑
k∈F si

aikakj∑
m∈Ci akm

 . (2.48)

For symmetric positive M-matrices, we can show (2.37) using the following variant of
Theorem 5.5 from [RS87],

Theorem 2.10 Let ζ > 0 be a fixed number. Assume, for any symmetric, weakly
diagonally dominant M-matrix A, that the C-points and Si ∩ C (i ∈ F) are picked such
that, for each k and j ∈ Ci with i ∈ Fkj, we have

ζ
∑
l∈Ci

−akl ≥
∑
v∈Fkj

−akv (2.49)

44

2.8. Interpolation

(a)
∑
l∈Ci

−akl = 2,
∑

v∈Fkj

−akv = 1.25 (b)
∑
l∈Ci

−akl = 1.25,
∑

v∈Fkj

−akv = 2

(c)
∑
l∈Ci

−akl = 1.25,
∑

v∈Fkj

−akv = 1 (d)
∑
l∈Ci

−akl = 1.25,
∑

v∈Fkj

−akv =

1.25

(e)
∑
l∈Ci

−akl = 1.25,
∑

v∈Fkj

−akv = 2 (f)
∑
l∈Ci

−akl = 2,
∑

v∈Fkj

−akv = 1.25

Figure 2.10.: (Modified) classical interpolation for the mixed problem from Example 2.2.
We want to interpolate the value at the blue point i. The red dots denote
the sets Ci, the ruled nodes show the sets Fkj for different constellations of
k and j. The red arrows indicate the weights akl, l ∈ Ci, while the black
arrows correspond to the weights akν , ν ∈ Fkj.

45

2. Algebraic Multigrid

where Fkj = {v ∈ F : j ∈ Sv ∩ C, k ∈ Sv ∩ F}. Second, let the strength threshold α be
chosen such that for a fixed τ ≥ 1 we have, for each i ∈ F ,∑

i∈Si

−aik ≥
1

τ

∑
j∈Ei

−aij (2.50)

Then, the interpolation (2.38) with weights (2.48) satisfies (2.37) with some τ̃ = τ̃(ζ, τ)
that does not depend on A.

Before we proceed to the proof, we first explain the role of Fkj. This set contains, for
a given pair j ∈ C, k ∈ F , the fine grid points v that have strong connections to both
j and k. Now, condition (2.49) demands that, for a fine grid point i that is strongly
coupled to another fine grid point k, the total amount of coupling from this point k to
the set of directly coupled coarse grid points for i, Ci, is (up to the factor ζ) larger than
the sum of the couplings to other fine grid points v which have strong couplings to the
same j and k. In Figure 2.9(b), we give the sets Fkj for six different constellations of k
and j as well as the quantities of (2.49).
The second condition (2.50) ensures that for each fine grid point i the sum of the strong
connections dominates the sum of the weak connections. In contrast to (2.44), we do
not require that these strong connections all lead to a coarse interpolatory point.
Proof: As A is diagonally dominant, we have aii = −

∑
j∈Ei aij + bi, where bi ≥ 0.

Using (2.50) we estimate the denominator of (2.48),

aii +
∑
k∈Ewi

aik = bi −
∑
k∈Si

aik ≥ bi +
1

τ

∑
j∈Ei

−aij ≥
1

τ
aii

Hence, we have

∑
i∈F

aii

(
1−

∑
j∈Ci

wij

)
e2
i =

∑
i∈F

aii
aii +

∑
k∈Ewi

aik

aii +
∑
k∈Ewi

aik +
∑
j∈Ci

aij +
∑
k∈F si

aik

 e2
i

≤ τ
∑
i

(∑
j

aij

)
e2
i

which proves (2.42). To show (2.41), first note that wij is always positive. We again use
aii +

∑
k∈Ewi

aik ≥ 1
τ
aii and obtain, by (ei − ej)2 ≤ 2 [(ei − ek)2 + (ek − ej)2],

aiiwij(ei − ej)2 ≤ −τaij(ei − ej)2 − 2τ
∑
k∈F si

aikakj∑
m∈Ci akm

[
(ei − ek)2 + (ek − ej)2

]
.

We take the sum over i ∈ F, j ∈ Ci and obtain

−
∑
i∈F

∑
j∈Ci

∑
k∈F si

aikakj∑
m∈Ci akm

(ei − ek)2 =
∑
i∈F

∑
k∈F si

(−aik)(ei − ek)2.

46

2.8. Interpolation

Regarding the remaining term, use the definition of Fkj to rewrite

−
∑
i∈F

∑
j∈Ci

∑
k∈F si

aikakj∑
m∈Ci akm

(ek − ej)2 =
∑
k∈F

∑
j∈C

∑
i∈Fkj

aik∑
m∈Ci akm

(−akj)(ek − ej)2

≤ ζ
∑
k∈F

∑
j∈C

(−akj)(ek − ej)2

where we have used (2.49) in the last inequality. Combining the last three estimates and
expanding the sum over all i ∈ F and j ∈ C, we obtain (2.41),∑

i∈F

∑
j∈C

aiiwij(ei − ej)2 ≤ (3τ + 2τζ)
∑
i,j

(−aij) (ei − ej)2.

In the case of positive and negative off-diagonal connections, the sum
∑

m∈Ci akm may
approach zero. To circumvent this potential instability, we modify the interpolation
formula as follows [HMY02],

wij = − 1

aii +
∑

l∈Ewi
ail

aij +
∑
k∈F si

aikākj∑
m∈Ci ākm

 . (2.51)

where

ākj =

{
akj if sign(akj) = −sign(akk)

0 else.

With this modification, we can show stability for essentially positive and weakly diago-
nally dominant matrices A. Note that in this case we always have ākj = a−kj.

Theorem 2.11 Let ζ > 0 be a fixed number. Assume, for any symmetric, weakly
diagonally dominant positive matrix A, that the C-points and Ci (i ∈ F) are picked such
that, for each k and j ∈ Ci with i ∈ Fkj, we have

ζ̃
∑
l∈Ci

−a−kl ≥
∑
v∈Fkj

−a−kv (2.52)

where Fkj = {v ∈ F : j ∈ Sv ∩ C, k ∈ Sv ∩ F} and ākl is defined as above. Second, let
the strength threshold α be chosen such that for a fixed τ ≥ 1 we have, for each i ∈ F ,

∑
i∈Si

−aik ≥
1

τ

∑
j∈Ei

−aij

Then, the interpolation (2.38) with weights (2.51) satisfies (2.37) with some τ̃ = τ̃(ζ, τ)
that does not depend on A.

47

2. Algebraic Multigrid

Proof: Inequality (2.42) is proven as in the previous case. Regarding (2.41), we start
with

aiiwij(ei − ej)2 ≤ −τaij(ei − ej)2 − 2τ
∑
k∈F si

aikākj∑
m∈Ci ākm

[
(ei − ek)2 + (ek − ej)2

]
≤ −τa−ij(ei − ej)2 − 2τ

∑
k∈F si

(
aika

−
kj∑

m∈Ci a
−
km

)− [
(ei − ek)2 + (ek − ej)2

]

It is easy to see that

(
aika

−
kj∑

m∈Ci
a−km

)−
=

a−ika
−
kj∑

m∈Ci
a−km

. Hence, we can proceed as in the

M-matrix case and obtain∑
i∈F

∑
j∈C

aiiwij(ei − ej)2 ≤ (3τ + 2τ ζ̃)
∑
i,j

(
−a−ij

)
(ei − ej)2.

Now, we use the fact that A is essentially positive (2.28),

c
∑
i,j

(−a−ij)(ei − ej)2 ≤
∑
i,j

(−aij)(ei − ej)2

and obtain (2.41),∑
i∈F

∑
j∈C

aiiwij(ei − ej)2 ≤ 3τ + 2τ ζ̃

c

∑
i,j

(−aij) (ei − ej)2.

2.8.5. Standard Interpolation

The standard interpolation scheme ([Stü99], Section 7.2.1) also takes into account, for
any fine grid point i ∈ F , all strong connections aij, j ∈ Si. In contrast to the direct
and classical interpolation methods described above, the set of interpolatory points for
i is not necessarily a subset of Si but may also include points in Sv, v ∈ F s

i . In other
words, the interpolation stencil for i reaches to points that are only connected via an
intermediate point v,

i
aiv← v

avj← j.

We call this kind of interpolation distance-two interpolation.
To derive an interpolation rule for a fine grid point i ∈ F , we first consider all its strongly
connected fine neighbors v ∈ F s

i and replace,

ev ← −
1

avv

∑
k∈Ev

avkek.

We obtain a modification of (2.39),

âiiei +
∑
j∈Êi

âijej ≈ 0. (2.53)

48

2.8. Interpolation

where

âik =


aik −

∑
v∈F si

aivavk
avv

if k 6∈ F s
i

−
∑

k 6=v∈F si

aivavk
avv

if k ∈ F s
i .

Êi = Ei ∪
⋃
v∈F si

Ev

Ĉi = Ci ∪
⋃
v∈F si

Cv

Ê−i = {j ∈ Ei : âij < 0}, Ê+
i = {j ∈ Ei : âij > 0}

Ĉ−i = {j ∈ Ci : âij < 0}, Ĉ+
i = {j ∈ Ci : âij > 0}

and apply the direct interpolation rules to this approximation (2.53),

w−ij = − 1

âii

∑
k∈Ê+

i
â−ik∑

k∈Ĉ−i
â−ik

âij if j ∈ Ĉ−i (2.54)

w+
ij = − 1

âii

∑
k∈Ê−i

â+
ik∑

k∈Ĉ−i
â+
ik

âij if j ∈ Ĉ+. (2.55)

Again, if one of the sets Ĉ−i or Ĉ+
i is empty, then we set w−ij = 0 (w+

ij = 0).

2.8.6. Extended Interpolation

Extended interpolation [SFNMY08] is a distance-two interpolation scheme based on the
modified classical distance-one interpolation (2.51). The only difference is that inter-
polation, for any fine grid point i, is not only from the directly connected coarse grid
points j ∈ Ci but also from all j ∈ Ck if k ∈ F s

i , i.e., we use the same interpolation set
Ĉi as in the case of standard interpolation,

Ĉi = Ci ∪
⋃
k∈F si

Ck.

We obtain the interpolation weights (cf.(2.51))

wij = − 1

aii +
∑

l∈Ewi
ail

aij +
∑
k∈F si

aikākj∑
m∈Ĉi ākm

 (2.56)

for all j ∈ Ĉi, where again

ākj =

{
akj if sign(akj) = −sign(akk)

0 else.

49

2. Algebraic Multigrid

(a) Extended interpolation (b) Extended+i interpolation

Figure 2.11.: Extended and extended+i interpolation weights for the finite difference
discretization of a 1D Laplace. The red points denote the coarse grid
points.

The interpolation property for these weights (2.56) can be seen from the following
straightforward extension of Theorem 2.11 (note the definition of F̂ s

i).

Theorem 2.12 Let ζ > 0 be a fixed number. Assume, for any symmetric, weakly
diagonally dominant positive matrix A, that the C-points and Ci (i ∈ F) are picked such
that, for each k and j ∈ F s

i with i ∈ Fkj, we have

ζ̃
∑
l∈Ĉi

−a−kl ≥
∑
v∈F̂kj

−a−kv (2.57)

where F̂kj = {v ∈ F : j ∈ Ĉv, k ∈ F s
v } and ākl is defined as above. Second, let the

strength threshold α be chosen such that for a fixed τ ≥ 1 we have, for each i ∈ F ,∑
i∈Si

−aik ≥
1

τ

∑
j∈Ei

−aij

Then, the interpolation (2.38) with weights (2.56) satisfies (2.37) with some τ̃ = τ̃(ζ, τ)
that does not depend on A.

As illustrated by the following example from this interpolation technique has however a
minor approximation deficiency that already arises in very simple situations.

Example 2.5 [SFNMY08] Consider a finite difference discretization of Poisson’s equa-
tion in one spatial dimension and let the coarsening be as depicted in Figure 2.11. In
this case, formula (2.56) gives us the interpolation weights (Figure 2.11(a))

w10 = 1/2, w13 = 1/2, w20 = 1/2 w23 = 1/2,

where we would expect

w10 = 2/3, w13 = 1/3, w20 = 1/3, w23 = 2/3 (2.58)

which would be given if standard interpolation (2.54) were used.

50

2.8. Interpolation

To circumvent this difficulty, we use a different approximation for the error at strongly
connected fine grid points k ∈ F s

i . Instead of (2.47) we substitute

ek ←
1∑

m∈Ci∪{i} akm

∑
j∈Ci∪{i}

akjej,

i.e. we also include the connections aki that lead from k back to i here. Then we apply the
extended interpolation procedure as described above and obtain the following weights,

wij = − 1

ãii

aij +
∑
k∈F si

aikākj∑
m∈Ĉi∪{i} ākm

 (2.59)

for all j ∈ Ĉi, where

ãii = aii +
∑
l∈Ewi

ail +
∑
k∈F si

aikāki∑
l∈Ĉi∪{i} ākl

.

This is called extended+i interpolation [SFNMY08]. In case of Example 2.5, we obtain
the correct weights (2.58), see Figure 2.11(b).
To show the approximation property of extended+i interpolation, we conclude this sec-
tion with the following result.

Theorem 2.13 Let ζ > 0 be a fixed number. Assume, for any symmetric, weakly
diagonally dominant essentially positive matrix A, that the C-points and Ci (i ∈ F) are
picked such that, for each k and j ∈ F s

i with i ∈ Fkj, we have

ζ
∑
l∈Ĉi

−a−kl ≥
∑
v∈Fkj

−a−kv (2.60)

where F̂kj = {v ∈ F : j ∈ Ĉv, k ∈ F s
v }. Furthermore, let the strength threshold α be

chosen such that for a fixed τ ≥ 1 we have, for each i ∈ F ,∑
k∈Si

−aik ≥
1

τ

∑
j∈Ei

−aij

and, for each i ∈ F and k ∈ F s
i such that aik < 0,

∑
j∈Ĉi

−akj ≥
1

τ ∗

∑
j∈Ei

−aij

Then, the interpolation (2.38) with weights (2.59) satisfies (2.37) with some τ̃ = τ̃(ζ, τ)
that does not depend on A.

51

2. Algebraic Multigrid

Proof: We first consider the denominator ãii (let 0 ≤ bi = aii +
∑

k∈Ei aik as before and

note that āik = a−ik)),

ãii = aii +
∑
k∈Ewi

aik +
∑
k∈F si

aik
āki∑

l∈Ĉi∪{i} ākl

= bi −
∑
k∈Si

aik +
∑
k∈F si

a−ik
a−ki∑

l∈Ĉi∪{i} a
−
kl

= bi −
∑
k∈Ci

aik −
∑
k∈F si

a+
ik −

∑
k∈F si

a−ik

(
1− a−ki∑

l∈Ĉi∪{i} a
−
kl

)

We then estimate, using (2.60) and a−ki ≥
∑

v∈F̂kj a
−
kv ≥ ζ

∑
l∈Ĉi a

−
kl,

1− a−ki∑
l∈Ĉi∪{i} a

−
kl

=

∑
l∈Ĉi a

−
kl∑

l∈Ĉi∪{i} a
−
kl

≥
∑

l∈Ĉi a
−
kl∑

l∈Ĉi a
−
kl +

∑
v∈F̂kj a

−
kv

≥ 1

1 + ζ
.

We can now continue,

bi −
∑
k∈Ci

aik −
∑
k∈F si

a+
ik −

∑
k∈F si

a−ik

(
1− a−ki∑

l∈Ĉi∪{i} a
−
kl

)

≥ bi −
∑
k∈Ci

aik −
∑
k∈F si

a+
ik −

1

1 + ζ

∑
k∈F si

a−ik

bi−
∑
k∈Ci

aik−
∑
k∈Fs

i
a+ik≥0

≥ 1

1 + ζ

(
bi −

∑
k∈Si

aik

)
≥ 1

τ(1 + ζ)

(
bi −

∑
k∈Ei

aik

)

=
1

τ(1 + ζ)
aii.

Hence, we can prove (2.42) as before,

∑
i∈F

aii

1−
∑
j∈Ĉi

wij

 e2
i =

∑
i∈F

aii
ãii

aii +
∑
k∈Ewi

aik +
∑
j∈Ci

aij +
∑
k∈F si

aik

 e2
i

≤ τ(1 + ζ)
∑
i

(∑
j

aij

)
e2
i .

Inequality (2.41) can be shown using the same techniques as for Theorems 2.10 and 2.11.

2.8.7. Multi-Pass Interpolation

We now consider an interpolation scheme that is especially used in conjunction with
aggressive coarsening, i.e. in situations where not every fine grid point i ∈ F is strongly

52

2.8. Interpolation

Figure 2.12.: Multi-pass interpolation for a 5-point stencil. The red, magenta and brown
points denote the coarse grid points, the blue points denote the fine grid
points. The value at the dark blue points is interpolated directly, all lighter
blue points are interpolated indirectly. The red, magenta and brown lines
indicate the interpolation influence of each coarse grid point.

53

2. Algebraic Multigrid

algorithm 2.7 Multi-pass interpolation ([Stü99], Section 7.2.2)

1. For all i ∈ F with Ci 6= ∅, apply direct interpolation (2.45-2.46) to obtain the
interpolation weights wij, j ∈ Ii := Ci and define F ∗ as the set of all these points
i. If F ∗ = F , then stop.

2. For all i ∈ F \ F ∗ for which Si ∩ F ∗ is not empty, identify all k ∈ F ∗ that belong
to Si. Then, for each such k, replace in (2.39),

ek ←
∑
j∈Ik

wkjej

and set Ii =
⋃
k∈Si∩F ∗ Ik. Then, we construct an interpolation formula for these

i similar to the case of standard interpolation. After the interpolation has been
constructed for all i ∈ F ⊂ F ∗, Si ∩ F ∗ 6= ∅, we add these points to F ∗.

3. If F ∗ = F , we stop. Otherwise we continue the iteration with the previous step.

coupled to a coarse grid point j ∈ C. In this case, we first use direct interpolation for
all points k ∈ F that have a strong connection to a coarse grid point j ∈ C. Then, such
a point k can be used to derive interpolation formulas for fine grid points i ∈ F such
that k ∈ Si. This process is continued until we have constructed the interpolation for
each fine grid point, see Algorithm 2.7.
This interpolation technique ensures that we have a prolongation for each fine grid point
as long as there is a (arbitrarily long) strong path from each fine grid point to a coarse
grid point. However, depending on the layout of the coarse grid the interpolation for
some fine grid points i may only be piecewise constant. For example, consider the
situation in Figure 2.12.

2.8.8. Jacobi Interpolation

In contrast to the previously described interpolation methods, the Jacobi interpolation
scheme [Stü99] does not build a prolongation operator from scratch, but can be used to
improve an existing one. To this end, one or more (partial) Jacobi steps are applied to
the interpolation matrix.
Let µ ≥ 1. Given an interpolation operator P µ−1 with interpolation weights wµ−1

ik

we obtain P µ by relaxing the rows that belong to a fine grid point i. The modified
interpolation weights wµij (i ∈ F, j ∈ C) read as follows,

wµij = wµ−1
ij − a−1

ii

(∑
k∈F

wµ−1
kj + aij

)
,

54

2.8. Interpolation

or, written in terms of the block matrices as defined in Subsection 2.8.1,

P µ =

(
ICC
P µ
FC

)
, P µ

FC = P µ−1
FC −D

−1
FF

(
AFFP

µ−1
FC + AFC

)
. (2.61)

It is easy to see that if P µ−1 satisfies the interpolation property (2.37), then so does P µ.

Theorem 2.14 Let A be a positive definite, weakly diagonally dominant matrix and let
P µ−1 satisfy the interpolation approximation property (2.37) with constant τ = τ̃ . Then
the Jacobi interpolation (2.61) satisfies (2.37) with τ ≤ 7τ̃ + 4

√
2τ̃ + 2.

Proof: We consider the left hand side of (2.37) and use (2.61),

‖eF − P µ
FCeC‖

2
0,F =

(
eF − P µ−1

FC eC
)T
DFF

(
eF − P µ−1

FC eC
)

+
(
AFFP

µ−1
FC eC + AFCeC

)T
D−1
FF

(
AFFP

µ−1
FC eC + AFCeC

)
+ 2

(
eF − P µ−1

FC eC
)T (

AFFP
µ−1
FC eC + AFCeC

)
(2.62)

≤‖eF − P µ−1
FC eC‖2

0,F + ‖AFFP µ−1
FC eC + AFCeC‖2

D−1
FF

+ 2‖eF − P µ−1
FC eC‖0,F‖AFFP µ−1

FC eC + AFCeC‖D−1
FF

(2.63)

By induction we have (2.37) for all µ ≥ 1,

‖eF − P µ−1
FC eC‖2

0,F ≤ τ̃‖e‖2
1.

On the other hand, we can split

‖AFFP µ−1
FC eC + AFCeC‖D−1

FF
≤ ‖AFF

(
P µ−1
FC eC − eF

)
‖D−1

FF
+ ‖AFF eF + AFCeC‖D−1

FF
.

(2.64)
We have (see also (2.25)),

uTFAFFD
−1
FFAFFu ≤ ρ(D−1

FFAFF)2uTDFFu,

hence we can estimate the first summand of (2.64),

‖AFF (P µ−1
FC eC − eF)‖D−1

FF
≤ ρ(D−1

FFAFF)‖eF − P µ−1
FC eC‖0,F ≤

√
τ̃ ρ(D−1

FFAFF)‖e‖1.

Regarding the second summand, we note that

‖AFF eF + AFCeC‖2
D−1
FF

=

(
AFF eF + AFCeC
ACF eF + ACCeC

)T (
D−1
FF 0
0 0

)(
AFF eF + AFCeC
ACF eF + ACCeC

)
≤

(
AFF eF + AFCeC
ACF eF + ACCeC

)T (
D−1
FF 0
0 D−1

CC

)(
AFF eF + AFCeC
ACF eF + ACCeC

)
= ‖e‖2

2

≤ ρ(D−1A)‖e‖2
1.

55

2. Algebraic Multigrid

For weakly diagonally dominant matrices, we have ρ(D−1
FFAFF) ≤ ρ(D−1A) ≤ 2. Hence

we obtain for (2.64),

‖AFFP µ−1
FC eC + AFCeC‖D−1

FF
≤ (2
√
τ̃ +
√

2)‖e‖1. (2.65)

We combine (2.63) and (2.65) to obtain the result,

‖eF − P µ
FCeC‖

2
0,F ≤

(
τ̃ + (2

√
τ̃ +
√

2)2 + 2
√
τ̃(2
√
τ̃ +
√

2)
)
‖e‖2

1.

2.8.9. Truncation of Interpolation

The long range interpolation methods described in this section share one major disad-
vantage: They can substantially enlarge the set of interpolatory points Ii (i ∈ F) and
hence the number of non-zero elements per matrix row for the interpolatory matrix P .
This also affects the coarse grid operator AC , which is computed as AC = P TAP . In
consequence, the matrices Al become less and less sparse as the level index l becomes
larger.
However, interpolation weights wij that lead to points j “far away” from i (i.e. there is
no direct connection aij 6= 0) may be much smaller than the weights for nearby points
k. This is especially true if there is only a single path i ← v ← j, aiv 6= 0, avk 6= 0.
In this case, the influence of the error ej on ei is of less relevance than the influence of
ek where wik is large. Hence, we can drop these small interpolation weights, however,
we need to take care that the row sums of all interpolatory weights remain unchanged
([Stü99], Section 7.2.4).
To compute the new interpolatory sets Îi = Î+

i ∪ Î−i and weights ŵij, we have again to
distinguish between positive and negative weights to prevent divisions by (near-) zero,

Î+
i = {j ∈ I+

i : wij ≥ εmax
k∈I+i

, wik} Î−i = {j ∈ I−i : wij ≤ εmin
k∈I−i

wik}

ŵij =


∑
k∈I+ wik∑
k∈Î+ wik

wij if wij ≥ εmaxk∈I+i wik∑
k∈I− wik∑
k∈Î− wik

wij if wij ≤ εmink∈I−i wik

0 else.

where ε is an user-defined parameter, typically ε = 0.2.

Remark 2.4 Another approach is to limit the number of non-zero elements per inter-
polation matrix row and only to take the largest (absolute) values.

2.9. The coarse grid operator

The remaining task in the setup phase on level l is to construct the operator Al+1 for
the next level l + 1. Unlike the geometric case, as discussed in section 2.2, we cannot
obtain Al+1 from a discretization on the underlying grid Ωl+1, as the latter is just an

56

2.9. The coarse grid operator

index set without any geometric information attached to it.
Instead, as already indicated in section 2.8.1, we use the Galerkin ansatz for the coarse
grid operator,

Al+1 = RlAlPl, (2.66)

where the restriction Rl is obtained as the transpose of the interpolation,

Rl = P T
l . (2.67)

In Section 2.8.1 we employed a special smoother and a special construction of one of
the transfer operators to obtain a direct solver with just two levels. This solver required
the computation of A−1

FF , i.e. the part of Al that corresponds to the fine grid points
i ∈ F l. In general, this is not feasible. We can however show that for any full-rank
interpolation operator Pl, the Galerkin product (2.66) is the “optimal” choice for the
coarse grid operator in the sense that the two-grid correction

enew = Tle
old =

[
I − Pl (Al+1)−1RlAl

]
eold

minimizes the error within the range of Pl. To show this, first note that Tl is an orthog-
onal projector w.r.t the inner product (·, ·)1, i.e.

T 2
l = Tl and (Tl·, ·)1 = (·, ·Tl)1

which can be easily seen from a straightforward calculation. The following theorem then
gives us the desired result.

Theorem 2.15 ([Stü99], Theorem 2.2) Let (·, ·) be any inner product with corresponding
norm ‖ · ‖and let the matrix T be symmetric w.r.t. (·, ·) and T 2 = T . Then we have

• rng(T) ⊥ rng(I − T)

• For u ∈ rng(T) and v ∈ rng(I − T) we have ‖u+ v‖2 = ‖u‖2 + ‖v‖2

• ‖T‖ = 1

• For all u: ‖Tu‖ = minv∈rng(I−T) ‖u− v‖.

We note that rng(I−Tl) = rng(Pl) and obtain that, in our setting, the last line translates
to

‖Tlel‖1 = min
ēl+1

‖el − Plēl+1‖,

i.e. the coarse grid correction minimizes the energy norm of the error over all possible
corrections within the range of the interpolation operator Pl. This is called the varia-
tional principle.
The next lemma helps us to extend the convergence proof from the two-grid setting to
complete V-cycles.

57

2. Algebraic Multigrid

Lemma 2.3 ([Stü99], Lemma 2.2) Let the exact coarse-grid correction

el+1 = A−1
l+1R

lAlel

be replaced by any approximate coarse-grid correction ẽl+1 satisfying

‖el+1 − ẽl+1‖1 ≤ ‖el+1‖1

where ‖·‖1 is taken w.r.t Al+1. Then the approximate two-grid correction T̃ l still satisfies

‖T̃l‖1 ≤ 1.

With this lemma, we see that a V-cycle never diverges as long as the smoothers on all
levels l satisfies ‖Ml‖1 ≤ 1. This is always the case if Ml satisfies the smoothing property
(2.27),

‖Mle‖2
1 ≤ ‖e‖2

1 − σ‖e‖2
2

which is satisfied for most relevant applications if we use a damped Jacobi or Gauss-
Seidel smoother, as previously shown in Section 2.4.

Remark 2.5 To show the variational principle, the only condition on the interpolation
is that it has full (column) rank. While it is clear that a truncation of the interpolation
operator as described in section 2.8.9 does not change the rank and hence we still obtain
a convergent method, this is not guaranteed if we truncate the Galerkin operator. How-
ever, recent developments (e.g. collocation coarse approximation [WY09]) indicate that
it still may be useful to sparsify the coarse grid matrix, i.e. to use a non-Galerkin coarse
grid operator. There are two main reasons for this. First, the number of nonzero entries
per matrix row tends to grow as l increases, i.e. more and more direct connections be-
tween previously distant nodes are introduced. Hence, the matrices on the coarser levels
cannot be considered “sparse” any more, while they are still too large to be efficiently
treated by direct solvers and a single step of an iterative solver requires more than a lin-
ear amount of computations. This issue is even more severe on parallel computers, where
a certain part of the non-zero matrix entries introduces couplings to off-processor nodes.
In consequence, to carry out a matrix-vector (or matrix-matrix) multiplication, a data
transfer is needed, which is relatively expensive compared to on-processor computations.

2.10. Two-grid convergence: The non-symmetric case

In this section, we demonstrate how to show the convergence of a two-grid algebraic
multilevel hierarchy in the case of a non-symmetric fine grid operator A. In this case, it
is not required that the restriction operator R equals the transpose of the interpolation
operator P . For example, it might be useful to first derive an interpolation operator P̂
based on the transpose of A, AT and then set the restriction as the transpose of P̂ , i.e.
R = P̂ T . For details on the construction of AMG hierarchies for non-symmetric systems,
we refer to [MO08].

58

2.10. Two-grid convergence: The non-symmetric case

The convergence proof described here is not only useful for non-symmetric systems. As
we will show in Section 4.8, it also forms the core of the two-grid convergence proof for
one variant of (symmetric) saddle point system AMG.
The convergence theory described in this section has been introduced in [Not10]. It is
based on the symmetric two-grid AMG convergence theory form [FV04]. In this section,
we cite the main result as well as a corollary that will be important for our saddle point
AMG.

Theorem 2.16 ([Not10], Theorem 2.1) Let A be a non-singular N ×N matrix. Let P
be a N × NC matrix of rank NC and let R be a NC × N matrix of rank NC, such that
AC = RAP is non-singular. Let M1, M2 be N ×N matrices and ν1, ν2 be non-negative
integers, such that (I −M1A)ν1 (I −M2A)ν2 − I is non-singular. Let Q be the matrix
such that

I −Q−1A = (I −M1A)ν1 (I −M2A)ν2

and assume that
QC = RQP

is non-singular. The matrix
A−1Q (I − πQ) (2.68)

where
πQ = PQ−1

C RQ

has eigenvalue 0 with multiplicity NC and N−NC nonzero eigenvalues. Letting µ1, . . . , µN−NC
be these nonzero eigenvalues, the following propositions hold:

1. The iteration matrix

T = (I −M2A)ν2
(
I − PA−1

C RA
)

(I −M1A)ν1 (2.69)

has eigenvalues 1− ν−1
1 , . . . , 1− ν−1

N−NC , plus NC times the eigenvalue 0.

2. For any (N −NC)×N matrix Z and any N × (N −NC) matrix S such that the
matrices (

R
Z

)
and

(
P S

)
are non-singular, (ZAS)− (ZAP)A−1

C (RAS) is non-singular and the matrix(
(ZAS)− (ZAP)A−1

C (RAS)
)−1

ZX (I − πQ)S (2.70)

has eigenvalues µ1, . . . , µN−NC .

3. For any N ×NC matrix P̃ and for any NX ×N matrix R̃. the matrix

A−1
(
I − P̃R

)
Q (I − πQ)

(
I − PR̃

)
(2.71)

has the same eigenvalues as (2.68), that is, µ1, . . . , µN−NC , plus NC times the
eigenvalue 0.

59

2. Algebraic Multigrid

1

y

x
0.5

z=1σ()T

Figure 2.13.: Eigenvalue estimate of the two-grid error propagation matrix T as defined
in Corollary 2.1.

4. The matrices

(I − πA)Q−1A (2.72)

Q−1A (I − πA) (2.73)

(I − πA)Q−1A (I − πA) (2.74)

where
πA = PA−1

C RA

have eigenvalues µ−1
1 , . . . , µ−1

N−NC , plus NC times the eigenvalue 0.

5. For all µi, i = 1, . . . , NN−NC , there exist some zi ∈ CN such that Rzi = 0 and

V HA−1zi = µiv
HQ−1zi for all v ∈ CN : PHV = 0. (2.75)

6. If, in addition, R = PH , and there is no v ∈ CN such that PHv = 0 and vHA−1v =
vHQ−1v = 0, then, for 1 = 1, . . . , NN−NC

µi ∈
{
vHA−1v

vHQ−1v
: v ∈ QN \ {0}, PHv = 0, vHA−1v 6= 0 and vHQ−1v 6= 0

}
.

(2.76)

We now look at the special case R = PH , i.e. the classical choice for the restriction
operator as the (conjugate) transpose of the interpolation operator. In this case, we can
derive more specific bounds on the eigenvalues of the error propagation T .

Corollary 2.1 ([Not10], Corollary 2.1) If, in addition to the assumptions of Theorem
2.16, R = PH and there is no v ∈ CN such that vHA−1v = vHQ−1v = 0, then,

σ(T) ⊂
{

1− vHQ−1v

vHA−1v
: v ∈ CN \ {0}, vHA−1v 6= 0 and vHQ−1v 6= 0

}
∪ {0}. (2.77)

60

2.11. AMG: Not just point coarsening

In particular, if A, Q are Hermitian positive definite, then the µi are real positive

σ(T) ⊂
[
1− λmax

(
Q−1A

)
, 1− λmin

(
Q−1A

)]
∪ {0} (2.78)

and

ρ(T) ≤ max

(
λmax

(
Q−1A

)
− 1, 1− 1

maxi µi

)
. (2.79)

On the other hand, if Q is Hermitian positive and if

‖αI −Q−1A‖Q ≤ α (2.80)

for some positive α, then

λ ∈ σ(T)⇒ |1− α− λ| ≤ α. (2.81)

From statement (2.81) we see that the two-grid method T converges if α ≤ 1
2
. In this

case, all eigenvalues of T lie within a disc of radius 1
2

around the point
(

1
2
, 0
)
∈ C, see

Figure 2.13, where λ = 1 is not possible as this would imply vHQ−1v = 0, see (2.77).
Note that inequality (2.80) is equivalent to

‖I − 1

α
Q−1A‖Q ≤ 1

i.e. to obtain α = 1
2

we require that the “over-relaxed” smoother I − 2Q−1A still con-
verges,

‖I − 2Q−1A‖Q ≤ 1.

In other cases, an appropriate damping of the smoother would be required.

2.11. AMG: Not just point coarsening

We now summarize three AMG variants that do not follow the classical Ruge-Stüben
setup outlined throughout this chapter. First, we introduce element agglomeration AMG
(AMGe), a geometric-algebraic approach for finite element discretizations that employs
information from the mesh in addition to the matrix entries. Smoothed aggregation
groups together adjacent fine grid points into one coarse node (i.e. we do not partition
into “coarse” and “fine” grid points here). Then, from a tentative interpolation operator
(e.g. a constant value per group), the final interpolation matrix is derived by an addi-
tional smoothing process applied to the tentative prolongation. Finally, the Bootstrap
AMG approach aims to identify the smooth (i.e. slow-to-converge) error components
by analyzing the smoothing action and then construct the interpolation operator to be
well-fitted to these errors.

61

2. Algebraic Multigrid

Figure 2.14.: Agglomerated finite element mesh. Each color indicates an aggregate. The
coarse vertices are indicated by the black dots.

algorithm 2.8 Element agglomeration AMGe ([JV01], Algorithm 4.1)

• initiate. Set w(γ)← 0 for all faces γ.

• global search. Find a face γ with maximal w(γ); set E ← ∅;
1. Set E ← E ∪ e1 ∪ e2, where γ = e1 ∪ e2, and set wmax ← w(γ), w(γ)← −1;

2. Increment w(γ1)← w(γ1) + 1 for all faces γ1 such that w(γ1) 6= −1 and γ1 is
a neighbor of γ;

3. Increment w(γ2) ← w(γ2) + 1 for all faces γ2 such that w(γ2) 6= −1, γ2 is a
neighbor of γ, and γ2 and γ are the faces of a common element;

4. From the neighbors of γ, choose a face γ∗ with a maximal w(γ∗); if w(γ∗) ≥
wmax, set γ = γ∗, and go to step 1;

5. If all neighbors of γ have smaller weight than wmax, the agglomerated element
E is complete; set w(γ) = −1 for all faces of the elements e contained in E;
go to global search;

62

2.11. AMG: Not just point coarsening

2.11.1. AMGe

Element-based AMG (AMGe) is an approach to AMG especially for operators A that
arise from finite element discretizations but do not have M-matrix properties. The con-
vergence theory as well as the construction of the interpolation operators was introduced
by Brezina et. al. in [BCF+00], while the coarsening algorithm (here called element ag-
glomeration) was described in [JV01].
In the following, we assume that, in addition to the fine grid matrix A, we are given

• a set of fine grid degrees of freedom (dofs) DF = {i},

• a set of fine grid elements EF = {e}, where each element is given as a set of dofs
e = {ij}nej=1.

• the element stiffness matrices {Ae}e∈Ef .

In Algorithm 2.8 we give the agglomeration process for the two-dimensional case. Note
that this procedure only depends on the finite element geometry and does not take into
account the matrix A. Hence, it is not possible to reflect anisotropies or coefficient
jumps inside the operator. To overcome this problem, an additional measure α(γ) can
be assigned to each face. Then, a threshold can be defined to forbid agglomerating two
elements if the weight of their common face is too high, see [JV01], Section 4 for details.
After the agglomeration process, we need to identify the coarse faces and the coarse
vertices [JV01].

• Any maximal intersection Ei ∩Ej for different coarse elements Ei 6= Ej is called a
coarse face F . In addition, the coarse boundary faces are given by the (maximal)
intersections Ei ∩ Γ. The set of all faces is denoted by FC .

• Consider each coarse face F ∈ F as a set of dofs {i}. For each i, compute the
intersection

⋂
i∈FC F . The minimal nonempty intersections form the coarse vertices

V = {V }.

In the simplest case (scalar PDE), each coarse vertex consists of just a single degree of
freedom.
As in the Ruge-Stüben case, we let the interpolation at the coarse vertices V ∈ V be
given by the identity, such that the interpolation operator takes the form

P =

(
PFC
ICC

)
.

The entries of PFC are computed recursively. To this end, define for each fine grid vertex
i,

• a neighborhood Ω(i) =
⋃
i∈E E of all agglomerated elements that contain i;

• a minimal set N(i) =
⋂
i∈E E of all agglomerated elements that contain i.

63

2. Algebraic Multigrid

The sets N(i) are, by definition, non-empty. In addition, we define the boundary of each
∂N(i),

• if N(i) is an element E, then ∂N(i) is the union of all faces of E;

• if N(i) is a face, then ∂N(i) consists of all vertices that belong to more than one
face;

• in all other cases ∂N(i) consists of all vertices in N(i).

Now, for any minimal set N(i) for which we know the interpolated values at its boundary
∂N(i), we can compute the prolongation for all dofs j ∈ N(i) (e.g. for a face F we
compute the interpolation for its dofs from the interpolation weights at its boundary
vertices). We consider the corresponding element stiffness matrices of all (fine mesh)
elements e ⊂ Ω(i) contained in the neighborhood Ω(i) and assemble the matrix AΩ(i),

AΩ(i) =
∑
e⊂Ω(i)

Ae =

(
Aii Aib
Abi Abb

)
}Ω(i) \ ∂N(i)
}∂N(i)

,

where we have rearranged AΩ(i) with respect to the boundary ∂N(i) and the remaining
points Ω(i) \ ∂N(i). Now, assume that the interpolation P∂N(i) at the boundary ∂N(i)
is already computed, we construct the interpolation for all j ∈ N(i) from

Aiiej + AibP∂N(i)ec = 0

and obtain, for all j ∈ N(i) \ ∂N(i), k ∈ ∂N(i)) the weights (cf. (2.33)) [JV01]

wjk = −
(
A−1
ii AibP∂N(i)

)∣∣
j
.

To this end, Aii must be invertible. This is always the case if the basis vectors for the
null-space of AΩ(i) are linear independent if restricted to ∂N(i) ([JV01], Lemma 2.2).
In other words, the boundary ∂N(i) must be “large enough” to contain the kernel com-
ponents of AΩ(i). We can also interpret this restriction as the requirement that (near-)
zero energy components must be contained within the range of the prolongation. For a
detailed analysis of energy minimization properties for smoothed aggregation interpola-
tion operators, we refer to [BCF+00] and [JV01].
A generalization of AMGe interpolation that does not require access to the element
stiffness matrices is called element-free AMGe [HV01].

2.11.2. Smoothed Aggregation

While in classical Ruge-Stüben AMG the coarse mesh is constructed by selecting a subset
Ωl+1 = C l ⊂ Ωl, in smoothed aggregation (SA) multigrid [VMB94] [VMB96] there are
no designated “coarse” or “fine” points. Instead, we group neighboring vertices i ∈ Ωl

into NC disjoint aggregates Ωl = Ωl
1∪̇ . . . ∪̇Ωl

j, where the size of each subset Ωl
k is much

smaller than the grid Ωl
l, |Ωl

k| � |Ωl|. Now, each aggregate Ωl
k is represented by a single

64

2.11. AMG: Not just point coarsening

(a) First pass (b) Second pass

Figure 2.15.: Aggregation procedure for the finite difference mesh from Example 2.2.
Each colored area shows an aggregate.

algorithm 2.9 Aggregation algorithm ([VMB94], Algorithm 2)

begin
initialize U ← Ω; j ← 0;
while ∃ Si ⊂ U do find disjoint aggregates

j ← j + 1;
Cj ← Si;
U ← U \ Cj;

od

for k = 1, . . . , j do C̃k ← Ck;

while ∃ i ∈ U and 1 ≤ k ≤ j such that Si ∩ C̃k 6= ∅ do add points to aggregates
Ck ← Ck ∪ {i};
U ← U \ {i};

od
od
while U 6= ∅ do parition remaining points into aggregates

j ← j + 1;
Cj ← Si ∩ U ;
U ← U \ Cj;

od
end

65

2. Algebraic Multigrid

algorithm 2.10 Tentative interpolation algorithm ([VBM01], Algorithm 4.1)

For the given system of aggregates {Ωl
j}
Nl
j=1 and the nl×r matrix Bl satisfying P̃ 1

l Bl = B1,

we create a prolongator P̃l, a matrix Bl+1 satisfying (2.83) and supernodes on level l+ 1
as follows,

1. Let nlj denote the number of degrees of freedom associated with aggregate Ωl
j.

Partition the nl × r matrix Bl into blocks Bl
j of size nlj × r, j = 1, . . . , N l, each

corresponding to the set of (fine) degrees of freedom on an aggregate Ωl
j.

2. Decompose Bl
j = Ql

jR
l
j, where Ql

j ∈ Rnlj×r is an orthogonal matrix, and Rl
j ∈ Rr×r

is an upper triangular matrix.

3. Create the tentative prolongator P̃l and the coarse “zero energy modes” Bl+1 by

P̃l =


Ql

1 0 . . . 0

0 Ql
2

. . .
...

...
.

...
0 . . . 0 Ql

N l

 , Bl+1 =


Rl

1

Rl
2

...
Rl
N l

 .

4. For each aggregate Ωl
j, the coarsening gives rise to r degrees of freedom on the

coarse level (the j-th block column of P̃l). These degrees of freedom define the
j-th coarse level supernode.

66

2.11. AMG: Not just point coarsening

vertex k ∈ Ωl+1 on the next coarser level l + 1.
The aggregation procedure is given in Algorithm 2.9. It builds aggregates of strongly
connected points, where, in contrast to (2.29) we use a slightly different concept of
strength,

Si =
{
j : |aij| ≥ α

√
aiiajj

}
∪ {i}. (2.82)

Note that here the strength matrix is symmetric if A is symmetric and that each set Si
also contains the point i itself. The algorithm itself is divided in three steps: First, we
identify sets of strongly coupled points Si that are completely undecided, i.e. no member
of Si is already part of a patch. Such a Si then forms a new patch Cj. If no such set can
be created, we proceed with the second step: We attach still undecided points i ∈ U to
a strongly connected patch Ck, if there exists one. During the third pass, any remaining
points are grouped into additional aggregates. In Figure 2.15, we show the first and
second pass of the aggregation algorithm applied to the finite difference discretization
for the mixed problem from Example 2.2. Here, we are finished after the second pass
and no undecided points remain.
As in the case of Ruge-Stüben AMG, the range of the interpolation should contain the
low-energy (smooth) error components e, i.e. the ‖e‖1 ≈ 1, see the discussion in Section
2.4. A particular property of smoothed aggregation is that these error components can
be explicitly prescribed. To this end, we provide a matrix B ∈ RN1×r. The r columns of
B form a basis of the error space that we require to be exactly interpolated on all levels,
i.e.

rngB ⊂ rngP̃ 1
l for alll = 1, . . . , L− 1 where P̃ 1

l = P̃1 · P̃2 · . . . · P̃l.
P̃ 1
l is the concatenated tentative interpolation operator from level l + 1 to level 1. We

do not need to explicitly compute this matrix, instead we recursively define a version Bl

on all levels l, (letting B1 = B),
P̃lBl+1 = Bl. (2.83)

We construct the columns of Bl+1 from Bl together with the tentative interpolation
operator P̃l, see Algorithm 2.10.
In the most simple case, which is for example applicable if A is the discretization of a
second-order partial differential equation, we can choose r = 1 and a constant vector B,

B =


1
1
...
1

 .

Hence we enforce that on each patch Ωl
j constant vectors are interpolated exactly. How-

ever, sharp jumps can occur at the interface of two patches, such that the range of P̃l is
not completely contained within the space of the low-energy modes of Al.
We overcome this issue by an additional smoothing of the interpolation operator and
define [VBM01],

Pl =

(
I − 4

3

1

λl
M−1

l Al

)
P̃l.

67

2. Algebraic Multigrid

where λl ≥ ρ(M−1
l Al) and

Ml =
(
P̃l

)T
P̃l,

Here, Ml ensures that the smoothed interpolation P l only depends on the range of
P̃l, while the specific choice of the latter operator is irrelevant. The scaling factor 4

3λl

minimizes the spectral radius ρ(M−1
l+1Al+1) for the next level l + 1, see [VBM01] for a

theoretical analysis.

2.11.3. Bootstrap AMG

algorithm 2.11 Compatible Relaxation [Liv04], [FV04]

initializeU ← Ω; C ← ∅; F ← Ω;
while U 6= ∅ do

for i ∈ C do e0
i ← 0; od;

for i ∈ F do e0
i ← rand(0, 1); od;

for j = 1 to ν do
ej ←Mej−1 apply smoother
for i ∈ C do eνi ← 0; leave coarse variables unchanged
od;

U ← {i ∈ F :
|eνi |
|eν−1
i | > θ};

C ← C ∪ {independent set of U}; F ← Ω \ C;
od;

All previously described AMG techniques rely on certain assumptions on the system
to solve, in particular that the relaxation scheme used in the multigrid cycle leaves
behind smooth error components that vary slowly along the strong negative couplings. In
practice, this applies to a wide class of second-order elliptic partial differential equations
but may not hold for other interesting problems, e.g. the bi-harmonic operator ∆2 or the
gauge Laplacian, which is a component of the lattice Dirac operator used in quantum
chromodynamics (QCD) computations. We refer to [Kah09] and [BBKL11] for a detailed
discussion and only give a brief description. The gauge Laplacian is given by the stencil

A(U) =

 0 −U z
y 0

−U z−ex
x 4 +m U z

y

0 U
z−ey
y 0

 ,

where U = {U z
µ ∈ U(1), µ = x, y, z ∈ Ω}, ex and ey denote the unit vectors in x and y

direction, respectively, and m is a constant chosen such that the resulting matrix is posi-
tive definite. If U = 1 across the computational domain and m = 0, the gauge Laplacian
equals a scaled discrete Laplacian, while for a stochastic distribution of U , the gauge
variables U z

µ are not necessarily correlated and the support of low energy eigenmodes
of A becomes small, i.e., it is not obvious how to approximate these eigenvectors on a

68

2.11. AMG: Not just point coarsening

coarser mesh.
To generalize AMG for a wider class of problems, several approaches have been suggested
to both improve the coarsening process as well as the construction of the interpolation
operator. The key idea to the construction of the coarse grid is, given a C/F-splitting,
to apply the smoother to the homogeneous equation Ae = 0 while keeping the variables
ei = 0 at the coarse grid points i ∈ C constant. Then, if this smoothing process does
not converge at acceptable speed, a subset of the fine grid points I ⊂ F is transferred to
the coarse grid. We repeat this process until we obtain a desired smoothing rate. This
process is called compatible relaxation, see Algorithm 2.11 for details. The smoothing
factor obtained from the compatible relaxation process gives an indication for the two-
grid AMG convergence rate and can be controlled by the parameter θ, see [Liv04] and
[FV04] for details.
A general form of interpolation can be derived from the minimization of a least-squares
functional. This was already suggested in [Bra01] and further developed in [Kah09] and
[BBKL11]. Given a set of linear independent smooth vectors e1, . . . , eK (these can for
example be derived from the compatible relaxation process), the goal is to obtain an
accurate interpolation for these vectors in a least-square sense, i.e., to minimize, for all
fine grid points i ∈ F , the functional

K∑
k=1

ωk

(
eki −

∑
j∈Ii

wije
k
j

)2

with respect to the interpolatory weights wij. Here Ii ⊂ C denotes the set of interpo-
latory points for i ∈ F . The weights ωk > 0 can e.g. be chosen such that the energy
(ek, Aek) of the vectors ek is reflected within the least squares functional.
It is even possible to let the multigrid solver improve itself. To this end, a tentative
AMG hierarchy is used within a multilevel eigensolver to identify low-energy eigen-
modes. Then, if needed, the interpolation operators are adapted (by the least-squares
method described above) to better approximate these vectors. For details of this boot-
strap AMG method, we refer to [Kah09] and [BBKL11].
Finally, it should be mentioned that compatible relaxation is not restricted to point-wise
C/F coarsening. More generally, one can define the coarse space in terms of some re-
striction operator R : RNl → RNl+1 . Additionally, let F : RNl+1−Nl → RNl be such that
RF = 0, i.e. the range of F defines the “fine grid space”, for which the error must be
damped efficiently by smoothing. A compatible relaxation step (that leaves the coarse
vectors unchanged) for some smoother I −Q−1A then reads

eit+1 =
(
I − F

(
F TQF

)−1
F TA

)
eit.

A detailed description and error convergence estimates are given in [FV04].

69

2. Algebraic Multigrid

2.12. AMG for systems of elliptic PDEs

In this section, we describe various approaches to the construction of AMG hierarchies for
operators A that arise from the discretization of systems of partial differential equations,

L(u1, . . . , uM) = f

where ui, i = 1, . . . ,M are scalar functions, ui : Ω→ R, Ω ⊂ Rd. The right hand side f is
a vector-valued function, f : Ω→ RM .
We will use the term physical unknown for the ui, i = 1, . . . ,M, as in most applications,
each ui is the discrete variant of a physical quantity. For example, in a fluid dynamics
simulation, we might have the quadruple

(u1, u2, u3, p)

where u1, u2 and u3 describe the velocity components in the x, y and z spatial direction,
respectively, while p describes the pressure.
We now give an example of an elliptic system of partial differential equations.

Example 2.6 (Linear Elasticity) [Bra97, Oel01, GOS03] We consider a solid Ω ⊂ R3

with boundary ∂Ω = Γ0∪̇Γ1, which is fixed at the boundary Γ0. We seek for the vector u
that describes the displacement of this solid subject to an external force f and a surface
force g on Γ1. To this end, we define the strain tensor εij = 1

2
(∂iuj + ∂jui) =: Du,

which describes the deformation of the solid, and the stress tensor σ, which in this case
is linearly related to the strain tensor, ε = 1+ν

E
σ − ν

E
trσI. The (material-dependent)

Poisson ration ν ∈ [0, 0.5) is determined as the ratio between transversal and radial
deformation. Young’s modulus E describes the elasticity of the material. Now, the
deformation u is the minimizer of the energy functional∫

Ω

(
1

2
ε : σ − f · u

)
dΩ +

∫
Γ1

g · udΓ1

where ε : σ =
∑3

i,j=1 εijσij. We eliminate the stress σ and rewrite ε = Du to obtain a

weak formulation of the problem: Find u ∈ H1
Γ0

= {v ∈ H1(Ω)3 : v|Γ0 = 0} such that∫
Ω

Du : CDvdΩ =

∫
Ω

f · vdΩ−
∫

Γ1

g · vdΓ1 for all v ∈ H1
Γ0
.

where C depends on ν and E.
The solution u is not scalar, but has three physical unknowns, namely the displacement
in x- y- and z- direction, respectively.

Throughout this section, we assume that the discretization of L leads to a symmetric
positive definite matrix A. In the following, we describe three approaches to AMG for
systems of equations. Each one of them has its own advantages and disadvantages, and
the choice on which particular method to use for a specific problem has to be made with
some knowledge of the underlying problem (or the structure of the matrix A) in mind.
For a detailed introduction to AMG for elliptic systems of equations, we refer to [Cle04].

70

2.12. AMG for systems of elliptic PDEs

(a) Staggered discretization
mesh

(b) Discretization of the u
component

(c) Discretization of the v com-
ponent

Figure 2.16.: A finite difference staggered grid with two physical unknowns. On the
left, we give the mesh cells as well as the discretization positions for each
physical unknown. The middle and the right picture show the connections
of a discrete operator (e.g. the Laplacian) for each of the unknowns.

2.12.1. Variable-based AMG (VAMG)

The first approach is just to ignore the fact that A arises from the discretization of
a system of partial differential equations. Instead, we apply the algebraic multigrid
setup phase as described in the previous sections “as-is” to the matrix A. This so-called
variable-based AMG ([Cle04], Section 3.2) will only work well if A is a M-matrix or an
essentially positive matrix, see Sections 2.4.1 and 2.4.2. In practice, regarding systems
of PDEs this requires that the couplings between the different physical unknowns are
very weak.

2.12.2. Unknown-based AMG (UAMG)

In unknown-based AMG ([Cle04], Section 3.3), scalar AMG algorithms are applied to
each physical unknown ui separately. To apply this method, a variable-to-unknown
mapping (VU mapping) has to be provided. Having a discrete vector u ∈ RN , this
mapping identifies, for each entry ui, the physical unknown j ∈ {1, . . . ,M} that ui
belongs to. In other words, we disjointly divide the index set Ω = Ω[1]∪̇ . . . ∪̇Ω[M], where
each Ω[i] contains the indices corresponding to discretization of the physical unknown ui.
Now, we reorder the matrix such that it is sorted by the physical unknowns. We obtain
a block structure,

A =


A[1,1] A[1,2] . . . A[1,M]

A[2,1] A[2,2] . . . A[2,M]
...

...
. . .

...
A[M,1] A[M,2] . . . A[M,M]

 , (2.84)

71

2. Algebraic Multigrid

where each matrix block A[i,j], i, j = 1, . . . ,M describes the couplings between the physi-
cal unknowns i and j. For example, in Figure 2.16, we have two physical unknowns that
are discretized at different positions. The connectivity structure of A[1,1] is depicted in
red and the connectivity structure of A[2,2] is shown in blue.
We note that the matrix blocks A[i,j], i 6= j are not necessarily square, as the discretiza-
tion meshes Ω[i] for different physical unknowns may not have the same size.
Each diagonal block A[i,i] can be viewed as the discretization of a scalar equation for the
i-th unknown. In unknown-based AMG, we build the AMG around these scalar blocks.
More precisely, for each i = 1, . . . ,M, we carry out the following steps,

1. extract a strength matrix S[i] from the matrix entries of A[i,i],

2. construct a C/F-splitting C[i] ∪ F[i]Ω[i] based on S[i],

3. build an interpolation operator P[i] : R|C[i]| → R|Ω[i]|, and a restriction operator
R[i] = P T

[i].

Now, we can merge the per-unknown coarse grids into a global coarse grid,

C =
M⋃
i=1

C[i],

and we assemble the global interpolation (the so-called multiple-unknown (MU) inter-
polation) operator and the restriction operator,

P =


P[1] 0 . . . 0

0 P[2]
. . .

...
...

. 0
0 . . . 0 P[M]

 , R =


R[1] 0 . . . 0

0 R[2]
. . .

...
...

. 0
0 . . . 0 R[M]

 . (2.85)

Finally, we compute the coarse grid operator by the Galerkin product (full Galerkin),

AC = RAP.

A different way to define the coarse grid operator is to employ the diagonal block entries
A[i,i] only (block Galerkin), i.e.

ÃC =


R[1] 0 . . . 0

0 R[2]
. . .

...
...

. 0
0 . . . 0 R[M]



A[1,1] 0 . . . 0

0 A[2,2]
. . .

...
...

. 0
0 . . . 0 A[M,M]



P[1] 0 . . . 0

0 P[2]
. . .

...
...

. 0
0 . . . 0 P[M]

 .

The resulting coarse grid matrix ÃC is block diagonal and thus sparser than the full
Galerkin product. Hence, the computational cost on the coarser levels can be reduced,
but the variational principle (Theorem 2.15) is violated.

72

2.12. AMG for systems of elliptic PDEs

As we have pointed out, the unknown-AMG approach treats each physical unknown
separate. Hence, the coarse grids, transfer operators and coarse grid operators can be
adapted to the specific properties (e.g. anisotropies, coefficient jumps, ...) inside each
physical property, as these are reflected within the diagonal matrix blocks A[i,i]. Also, it
is not required that the different physical unknowns are discretized on a common mesh.
On the downside, information between different unknowns (the entries inside the off-
diagonal block matrices A[i,j], i 6= j) is completely ignored. If these entries are large,
the resulting AMG hierarchy may loose its efficiency as not all relevant information is
reflected.
To investigate the two-grid convergence of the unknown AMG approach, we introduce
the block diagonal matrix Au,

Au =


A[1,1] 0 . . . 0

0 A[2,2]
. . .

...
...

. 0
0 . . . 0 A[M,M].

 (2.86)

Au is symmetric positive definite for symmetric positive definite A and hence defines a
scalar product,

(u, v)u,1 := uTAuv.

The associated norm is denoted with ‖ · ‖u,1. Now, we can formulate the approxima-
tion property for unknown-wise AMG, which is just a slight deviation from the scalar
approximation property needed in Theorem (2.6).

Lemma 2.4 ([Cle04], Lemma 3.6)
Let A > 0 and and a VU mapping be given. If the C/F-splitting and interpolation PFC
are such that the τ -condition of MU-interpolation (2.12.2),

‖eF − PFCeC‖2
0,F ≤ τu‖e‖2

u,1 (2.87)

is fulfilled with τu being independent of e, then (2.35),

‖Te‖2
1 ≤ τ‖Te‖2

2, (2.88)

is satisfied with τ = τuρ (A−1Au). (T =
(
I − PA−1

C RA
)

denotes the two-grid correction
operator.)

Together with the smoothing property (2.27),

‖Me‖2
1 ≤ ‖e‖2

1 − σ‖e‖2
2,

we obtain the following result for the two-grid cycle with one post-smoothing step.

Lemma 2.5 ([Cle04], Lemma 3.7)
Let A > 0 and a VU mapping be given. Let M satisfy the smoothing property (2.27).

73

2. Algebraic Multigrid

Furthermore, assume the C/F-splitting and interpolation to be such that the condition
(2.87) is fulfilled with some τu being independent of e. Then

‖MT‖1 ≤
√

1− σ

τ

is satisfied with τ = τuρ(A−1Au) ≥ σ.

The smoothing property (2.27) does not reflect the decomposition of A into the matrix
blocks A[i,j]. However, the AMG hierarchy is build solely using information from the
diagonal blocks A[i,i]. More precisely, we implicitly use heuristics that rely on the alge-
braic smoothness of the error with respect to each A[i,i] separately. Hence, to obtain an
efficient interplay between smoothing and coarse grid correction, we should formulate
the smoothing property in this sense.

Definition 2.9 [Cle04]
An operator M satisfies the unknown-smoothing property with respect to A > 0 and a
given VU mapping, if we have a σu > 0 such that for all e holds,

‖Me‖2
1 ≤ ‖e‖2

1,u − σu‖e‖2
2,u. (2.89)

Here, the scalar product (u, v)u,2 := uTAuD
−1Auv and the associated norm ‖ · ‖2,u are

defined w.r.t Au. Now, we can estimate the two-grid correction operator with one post-
smoothing step MT in terms of ‖ · ‖u,1 instead of ‖ · ‖1.

Theorem 2.17 ([Cle04], Theorem 3.9) Let A > 0 and M satisfy the unknown-smoothing
property (2.89). Furthermore, assume the C/F-splitting and interpolation be such that
the τu-condition (2.87) of MU-interpolation is fulfilled with τu being independent of e.
Then

‖MT‖u,1 ≤
√
ρ(A−1Au)ρ(A−1

u A)

√
1− σu

τ̃
(2.90)

with τ̃ = τuρ(A−1Au)
2ρ ((A−1

u A)2).

The factor

ρu := ρ(A−1Au)ρ(A−1
u A)

can be interpreted as an indication of the strength of unknown cross-couplings, i.e. how
well the spectrum of A is captured by Au. If ρu is large, the overall convergence may
deteriorate. Note, however, that the bound (2.90) is not sharp.

Remark 2.6 A variant on unknown-based AMG method for linear elasticity problems
is described in [BKMY10]. Here, first a multiple-unknown interpolation (2.12.2) is com-
puted, which is then augmented by couplings between different physical unknowns to
capture the rigid body modes, which form the kernel of the matrix.

74

2.12. AMG for systems of elliptic PDEs

2.12.3. Point-Based AMG

The other main approach to the construction of AMG for systems of partial differential
equations is to arrange the variables by points instead of physical unknowns. Then,
the coarse grid, the interpolation and the coarse grid operator are obtained from the
coarsening of these points. This approach is called point-based AMG ([Cle04], Section
3.4)
In this case, we first need a variable-to-point mapping (VP mapping) that assigns a point
j ∈ Ω̃ := {1, . . . ,m} to each entry ui of a vector u ∈ RN . Again, we obtain a disjoint
decomposition of Ω = Ω(1)∪̇ . . . ∪̇Ω(m) and a block structure of the matrix A,

A =


A(1,1) A(1,2) . . . A(1,m)

A(2,1) A(2,2) . . . A(2,m)
...

...
. . .

...
A(m,1) A(m,2) . . . A(m,m)

 , (2.91)

where each A(i,j), i, j = 1, . . . ,m describes the connections between all physical quantities
that are discretized at the points i and j. Note that not all physical unknowns need to
exist at each point, so the off-diagonal matrices A(i,j), i 6= j, might be non-square.

Block smoothing We employ the block structure of the matrix to define block re-
laxation schemes, which are straightforward extensions of the point-wise Jacobi and
Gauss-Seidel iterations. Define the block diagonal matrix

DP :=


A(1,1) 0 . . . 0

0 A(2,2)
. . . 0

...
.

...
0 . . . 0 A(m,m)

 (2.92)

and the block lower triangular matrix

LP :=


0 0 . . . 0

A(2,1) 0
. . . 0

...
.

...
A(m,1) . . . A(m,m−1) 0


Then, in terms of the error propagation matrix, the damped block Jacobi smoother is
given by

M = I − ωD−1
P A

and the block Gauss-Seidel iteration by

M = I − (DP + LP)−1A.

75

2. Algebraic Multigrid

To formulate the smoothing property for the block smoothers, we introduce the inner
products ([Cle04], Section 2.4.5)

(u, v)P,0 := (DPu, v) (2.93)

(u, v)P,2 := (D−1
P Au,Av) (2.94)

and the respective discrete norms ‖u‖P,0, and ‖u‖P,2, cf. Definition 2.3. Note that we
do not need to define an inner product (u, v)P,1. As in (2.25) we have

‖e‖2
1 ≤ ‖e‖P,0‖e‖P,2, ‖e‖2

P,2 ≤ ρ(D−1A)‖e‖2
1, ‖e‖2

1 ≤ ρ(D−1A)‖e‖2
P,0. (2.95)

We are now ready to define a smoothing property in terms of these norms.

Definition 2.10 ([Cle04], Section 3.4.1.1) An operator M satisfies the point-smoothing
property with respect to A > 0, if we have a σ > 0 such that for all e holds,

‖Me‖2
1 ≤ ‖e‖2

1 − σ‖e‖2
P,2. (2.96)

The smoothing property for Gauss-Seidel and damped Jacobi iteration can be shown
analogous to the scalar case.

Theorem 2.18 ([Oel01], Theorem 3.1)
Let the block matrix A be symmetric, positive definite and all A(i,j) ∈ RM×M. Further-
more, let M = I − (LP + DP)−1A or M = I − (UP + DP)−1A, where LP (UP) denotes
the lower (upper) block triangular part of A, ‖ · ‖ an operator norm induced by a fixed
vector norm for RM, let w ∈ Rm be an arbitrary vector, wi > 0 for all i. Then, the block
Gauss-Seidel iteration M satisfies the smoothing property (2.96) with σ = 1

γ−γ+
. Here,

γ− and γ+ are defined by

γ− := max
1≤i≤m

{
1

wi

∑
j≤i

wj‖A−1
(i,i)A(i,j)‖

}
and γ+ := max

1≤i≤m

{
1

wi

∑
j≥i

wj‖A−1
(i,i)A(i,j)‖

}
.

Theorem 2.19 (cf. Theorem 2.5) Let the block matrix A be symmetric positive definite
and η ≥ ρ(D−1

P A). Then, the damped Jacobi relaxation S = I − ωD−1
P A satisfies the

smoothing property (2.96) with σ = ω(2−ωη) for any 0 < ω < 2
η
. The optimal relaxation

parameter is given by ω∗ = 1
η
, in in this case also σ = 1

η
.

Point Coarsening As mentioned above, the coarsening is carried out on the set of
points Ω̃, i.e. Ω̃ = C̃∪̇F̃ . The classical Ruge-Stüben coarsening algorithm 2.5, however,
requires a strength matrix S̃ ∈ Rm×m defined on the point set Ω̃. To compute the
strength matrix, we first need a so-called primary matrix Ã ∈ Rm×m from which S̃ can
be computed as described in Section 2.5.
We now give the most common approaches to the construction of Ã.

76

2.12. AMG for systems of elliptic PDEs

1. The entries ãij, i, j = 1, . . . ,m of Ã are computed using the block structure (2.91).
A widely used ansatz is to compute the norms of the blocks,

ãij := −‖A(i,j)‖ for i 6= j. (2.97)

For the diagonal entry, we have the possibility of either computing the norm of the
diagonal, i.e. ãii := ‖A(i,i)‖ or using the negative sum of the off-diagonal entries,

Ãi,i :=

{
−
∑

j 6=i ãij if
∑

j 6=i ãij 6= 0

1 else.

The latter has the advantage that Ã is guaranteed to be a symmetric positive
definite M-matrix.
Note that all off-diagonal entries are negative. One could also take into account
the definiteness of the sub matrices, i.e.

ãij :=

{
‖A(i,j)‖ if Ai,j ≥ 0.

−‖A(i,j)‖ else
for i 6= j, (2.98)

and compute ãii either as ‖Ai,i‖ or ãi,i :=
∑

j 6=i |ãij|. This would make some theo-
retical considerations easier, but only if all off-diagonal blocks Ai,j are symmetric
and at least semi-definite, see [Cle04], Section 3.4.4. However, the computation of
(2.98) is significantly more expensive than (2.97).
The question remains which norm to choose in (2.97). For theoretical consider-
ations, the Euclidean norm ‖A‖E =

√
λmax(ATA) is the easiest to handle. In

practice, the Frobenius norm or the row sum norm are often used as they are easy
to compute. It is also possible to use quantities like the largest (absolute) element
in each block or the sum of all elements.

2. We can designate one of the physical unknowns u[k] to lead the coarsening, i.e.

Ã = A[k,k], where A[k,k] is the matrix block corresponding to unknown k, cf. (2.84).
In this case it is desirable that the unknown k is “representative” for the whole
system, i.e. that k is present at each point i and its sparsity pattern resembles the
block sparsity pattern of 2.91, that is, a

[k,k]
ij 6= 0 if the matrix block A(i,j) is not

empty. We refer to [Cle04], Section 3.4.2.1 and the references therein for a more
detailed explanation.

3. Another approach, related to the previous one, is to provide an external scalar
matrix Ã which is not computed or extracted from A. In this case, we also need
to build a hierarchy for Ã analogously to the hierarchy of A to obtain this infor-
mation on the coarser levels. A common choice is to employ a discretization of the
Laplacian on the same mesh. This approach is for example being used to build an
AMG hierarchy inside a CFD solver [LSAC08].

77

2. Algebraic Multigrid

4. If geometric information is available, the primary matrix can also be obtained from
the coordinate vectors xi of the discretization points,

ãij = − 1

|xi − yj|
if i 6= j and A(i,j) 6= 0. (2.99)

Again, the diagonal entry is computed as the negative sum over all off-diagonal
entries, ãii = −

∑
j 6=i ãij. Note that the block sparsity pattern of A is copied to Ã.

More sophisticated approaches that also reflect the positions of the points to each
other are possible, see [Cle04], Section 3.4.2.4.

We now apply the strength algorithm 2.4 to the primary matrix Ã and obtain a strength
matrix S̃ ∈ Rm×m. Here, as in (2.32), we consider the absolute values of Ã, i.e. we set
sij = 1 if and only if

|ãij| ≥ α ·max
k 6=i
|ãik|.

As mentioned above, Ã only has non-positive off-diagonal entries if it is constructed as
a norm- or distance based primary matrix.

Interpolation for point-based AMG It remains to construct the interpolation opera-
tor. Again, there are different approaches available. First, we introduce some notation
(as in Section 2.8),
Ẽi = {j 6= i : A(i,j) 6= 0} set of neighbors of i.

C̃i = S̃i ∩ C̃ set of strongly connected coarse grid points of i.

F̃ s
i = S̃i ∩ F̃ set of strongly connected coarse grid points of i.

Ẽw
i = Ẽi \ S̃i set of weakly connected neighbors of i.

Ĩi set of interpolatory points for i.

Block interpolation The first option is to extend the scalar interpolation formulas
to the block structure (block interpolation, [Cle04], Section 3.4.3.1). This is the most
“natural” choice if we use a block smoother and the matrix blocks are also used to
compute the strength matrix. Analogously to the construction of scalar interpolation
operators as described in 2.8, we approximate

A(i,i)e(i) +
∑
j∈Ẽi

A(i,j)e(j) = r(i) = 0. (2.100)

by the sum

e(i) +
∑
j∈Ẽi

W(i,j)e(j) = 0. (2.101)

Note that we now deal with blocks instead of scalars. e(i) and r(i) describe the parts of e
and r that are associated with the point i, i.e. they are vectors of size Mi, the number of

78

2.12. AMG for systems of elliptic PDEs

physical unknowns present at the point i. A(i,j) and W(i,j) are matrices of size Mi ×Mj.
The general form of a block interpolation operator is given by (cf. (2.38))

e(i) =

{
e(i) if i ∈ C̃∑

j∈S̃i∩C̃W(i,j)e(j) else.
(2.102)

In the following, we assume that all physical unknowns k ∈ 1, . . . ,M are present at all
points i = 1, . . . ,m, which, in consequence, means that all matrix blocks A(i,j) are square.
We first introduce the block version of direct interpolation (2.43) [Oel01, GOS03]. The
weights then read

W(i,j) = −A−1
(i,i)

∑
k∈Ẽi

A(i,k)

∑
k∈C̃i

A(i,k)

−1

A(i,j). (2.103)

Note that this construction is only possible if
(∑

k∈C̃i A(i,k)

)
is invertible. (A(i,i) is

always non-singular due to the symmetric positive definiteness of A.) To circumvent this

restraint, we can replace the normalization matrices
(∑

k∈Ẽi A(i,k)

)
and

(∑
k∈C̃i A(i,k)

)−1

by diagonal m×m-matrices that have the same row sums (if not equal to zero), i.e. for
each block row i we define ([Cle04], Section 3.4.3.1)

R̃Ei
kk :=

{
r̃Eikk if r̃kk 6= 0

1 else.
, R̃Pi

kk :=

{
r̃Pikk if r̃kk 6= 0

1 else.
,

where

r̃Eikk :=
∑
j∈Ẽi

M∑
l=1

a
(i,j)
kl , r̃Iikk :=

∑
j∈Ĩi

M∑
l=1

a
(i,j)
kl ,

and A(i,j) =
(
a

(i,j)
kl

)M

k,l=1
. The formula for Wi,j then reads

W(i,j) = −A−1
(i,i) R̃

Ei
kk

(
R̃Pi
kk

)−1

Ai,j).

This variant is cheaper to compute than (2.103) and can also easily be applied to the
case of non-square A(i,j). The sum of the interpolation weights

∑
jW(i,j) is however

not necessarily the identity, hence constant vectors may not be interpolated exactly (cf.
(2.42)).
Theoretically, the block direct interpolation can also be carried out with separate renor-
malization scalings for positive and non-positive semi-definite weights, cf. (2.45)-(2.46)
To this end, we define

Ẽ−i := {j ∈ Ẽi : A(i,j) ≤ 0}
Ẽ+
i := {j ∈ Ẽi : A(i,j) ≥ 0}

C̃−i := {j ∈ C̃i : A(i,j) ≤ 0}
C̃+
i := {j ∈ C̃i : A(i,j) ≥ 0}

79

2. Algebraic Multigrid

and we compute the interpolatory weights as follows,

Wij = −A−1
(i,i)

∑
k∈E+

i

A(i,k)

∑
k∈C+

i

A(i,k)

−1

A(i,j) if A(i,j) ≥ 0. (2.104)

Wij = −A−1
(i,i)

 ∑
k∈Ei\E+

i

A(i,k)

 ∑
k∈C\C+

i

A(i,k)

−1

A(i,j) else. (2.105)

Note that the indefinite submatrices are treated together with the negative (semi-) def-
inite ones. This requires us however to determine the definiteness of each submatrix
A(i,j), i 6= j, see (2.98) and the discussion thereafter.
For sake of completeness, we give the approximation property for the block direct inter-
polation schemes. To this end, we first define

T(i) := A(i,i) +
∑

k∈Ei\E+
i

A(i,k) −
∑
k∈E+

i

A(i,k).

µi :=
∑
k∈Ii

‖W(i,k)‖E + ‖I −
∑
k∈I−i

W(i,k) +
∑
k∈I+i

W(i,k)‖E

T(i) can be seen as the block-version counterpart of ti = aii −
∑

j∈Ei |aij| from Theorem
2.9. We now give the straightforward analogs of (2.36) and (2.37) for block AMG. First,
let us look at the convergence of the two-grid cycle with one post-smoothing step. To
this end, let T = I−PA−1

C RA be the exact coarse grid correction step, where the coarse
grid operator is given by the Galerkin product AC = RAP .

Theorem 2.20 ([Cle04], Theorem 3.11)
Let A > 0 and M satisfy the point-smoothing property (2.96). Furthermore, assume the
C/F-splitting and the interpolation be such that for all e

‖Te‖2
1 ≤ τ‖e‖2

P,2 (2.106)

with some τ > 0 being independent of e. Then τ ≥ σ and

‖MT‖1 ≤
√

1− σ

τ
.

Theorem 2.21 ([Cle04], Theorem 3.12)
If A > 0 and M and the C/F-splitting and interpolation P(FC) are such that for all e

‖eF − PFCeC‖2
P,0,F ≤ τ‖e‖2

1 (2.107)

with some τ > 0 being independent of e, then (2.106) is satisfied.

The following theorem gives sufficient criteria for (2.107) in the case of block direct
interpolation schemes.

80

2.12. AMG for systems of elliptic PDEs

Theorem 2.22 ([Cle04], Corollary 3.1)
Let A > 0, Ei = E+

i ∪ E−i and T(i) ≥ 0 for all i ∈ Ω̃. Select a C/F-splitting and set a
Ii for each i ∈ F .

1. If PFC can be defined by (2.105)-(2.104), then

µi =
∑
j∈Ii

‖W(i,j)‖E + ‖A−1
(i,i)T(i)‖E

with T(i) defined by (2.106). If for all i ∈ F the inequalities

τλmin(T(i)) ≥ µiκE(A(i,i))‖T(i)‖E

and τλmin(−A(i,j)) ≥ µiκE(A(i,i)) ρ

∑
k∈E−i

A(i,j)

∑
k∈P−i

A(i,j)

−1 for all j ∈ I−i ,

and τλmin(A(i,j)) ≥ µiκE(A(i,i)) ρ

∑
k∈E+

i

A(i,j)

∑
k∈P+

i

A(i,j)

−1 for all j ∈ I+
i ,

hold with a τ ≥ 1 not depending on i and j, the τ -condition (2.107) is fulfilled.

2. If PFC can be defined by (2.103), then

µi =
∑
j∈Ii

‖W(i,j)‖E +

∥∥∥∥∥I + A−1
(i,i)

(∑
j∈Ei

A(i,j)

)
Φ(i)

∥∥∥∥∥
E

with

Φ(i) :=

(∑
k∈Ei

A(i,k)

)−1
∑
k∈E−i

A(i,k) −
∑
k∈E+

i

A(i,k)

 .

If for all i ∈ F the inequalities

τλmin(T(i)) ≥ µiκE(A(i,i))‖A(i,i) +

(∑
j∈Ei

A(i,j)

)
Φ(i)‖E

and τλmin(−A(i,j)) ≥ µiκE(A(i,i))

∥∥∥∥∥∥
[∑
k∈Ei

A(i,j)

][∑
k∈Pi

A(i,j)

]−1
∥∥∥∥∥∥
E

for all j ∈ I−i ,

and τλmin(A(i,j)) ≥ µiκE(A(i,i))

∥∥∥∥∥∥
[∑
k∈Ei

A(i,j)

][∑
k∈Pi

A(i,j)

]−1
∥∥∥∥∥∥
E

for all j ∈ I+
i ,

hold with a τ ≥ 1 not depending on i and j, the τ -condition (2.107) is fulfilled.

81

2. Algebraic Multigrid

The first part of this theorem can only be applied if all off-diagonal matrices A(i,j) are
symmetric and either positive or negative semi-definite. If all A(i,j) ≤ 0, i 6= 0, then
Φ(i) = I and both statements of this theorem coincide.
If λmin(T(i)) = 0, e.g. one of the equations in block row i has a zero row sum, the
conditions in Theorem 2.22 require that also µi = 0. This essentially means that∑

k∈I−i
W(i,k) −

∑
k∈I+i

W(i,k) = I, i.e. constant vectors are interpolated exactly.

Remark 2.7 If, in Theorem 2.22, we replace all A(i.i) with the diagonal matrices D(i,i) =
diag(A(i,i)), we obtain that the respective interpolation operators satisfy the same kind
of approximation property as in the scalar case (2.37),

‖eF − PFCeC‖2
0,F ≤ τ‖e‖2

1.

Remark 2.8 The block direct interpolation scheme (2.103) can also be used inside
an AMG methods for solving the equations arising in linear elasticity computations.
Within this context, it is important that the interpolation preserves the so-called rigid
body modes, i.e. the translations and rotations, as these vectors form the kernel of the
operator considered. It can be shown [Oel01, GOS03] that (2.103) exactly interpolates
the rigid body modes if used in conjunction with a suitable coarsening scheme.

Of course, it is also possible to derive block interpolation counterparts for the more
sophisticated interpolation schemes describes in Section 2.8. For example, the block
version of the classical interpolation scheme employs the following weights [hyp],

W(i,j) = −

A(i,i) +
∑
l∈Ewi

A(i,l)

−1A(i,j) +
∑
k∈F si

(∑
m∈Ci

A(k,m)

)−1

A(i,k)A(k,j)

 .

(2.108)
Note that the denominators may become singular. To prevent this, we have to make
two modifications.

1. If
∑

m∈Ci A(k,m) is singular for a k ∈ F s
i , then the strong coupling Sik is treated as

a weak coupling, i.e. we add A(i,k) to A(i,i) +
∑

l∈Ewi
A(i,l) instead of computing the

indirect weight
(∑

m∈Ci A(k,m)

)−1
A(i,k)A(k,j) in the rightmost term of (2.108).

2. If A(i,i) +
∑

l∈Ewi
A(i,l) is singular (after the possible modification described above),

it is replaced by the identity. Another option is to only use A−1
(i,i) here, as this can

always be carried out.

To save computational costs, one can also interpolate within each physical unknown. To
this end, let D(i,j) = diag(A(i,j)) be the diagonal of the block A(i,j) (not to be confused
with DP !). Then the interpolation formula reads

W(i,j) = −

D(i,i) +
∑
l∈Ewi

D(i,l)

−1D(i,j) +
∑
k∈F si

(∑
m∈Ci

D(k,m)

)−1

D(i,k)D(k,j)

 .

(2.109)

82

2.12. AMG for systems of elliptic PDEs

The same modifications as above need to be carried out to prevent inversions of singular
blocks. A hybrid version of this two approaches was already described in a very early
paper [Rug86],

W(i,j) = −

A(i,i) +
∑

l∈Ei\C

A(i,l)B(l,i)

−1A(i,j) +
∑

k∈Ei\C

A(i,k)B(k,j)

 . (2.110)

where the B(k,j) , k 6∈ Ci, j ∈ Ci ∪ {i} are diagonal matrices defined by

b(k,j)
νµ =


b
(k,j)
νν∑

l∈Ci∪{i}
b
(k,l)
νν

if µ = ν

0 else.

Compared to (2.108), this saves some computations as we only need to compute a single
full matrix block inversion per block row. Note that we do not distinguish between weak
and strong connections between fine grid points here.

Multiple-unknown interpolation The second approach to the construction of the inter-
polation is to compute a multiple-unknown interpolation as described in Section 2.12.2
([Cle04], Section 3.4.3.2). That is, after computing the C/F-splitting of the points,
Ω̃ = C̃∪̇F̃ , we extend these sets as well as the strength matrix S̃ to the set of all vertices
Ω,

C = {k ∈ Ω where k ∈ Ω̃(i) and i ∈ C̃}
F = {k ∈ Ω where k ∈ Ω̃(i) and i ∈ F̃}

Sk = {l ∈ Ω where k ∈ Ω̃(i), l ∈ Ω̃(j) and j ∈ S̃(i)}.

Then, we can compute the interpolation unknown-wise using one of the scalar interpo-
lation schemes described in Section 2.8. Note that we now may have strong couplings
j ∈ Si where the corresponding matrix entry aij = 0, or, more generally, the set of strong
couplings Si for an i ∈ Ω may not reflect the large off-diagonal matrix entries of the row
(aij)

N
j=1 at all. Hence, the interpolation may be inaccurate in these cases.

Single-unknown interpolation Finally, it is also possible to derive the interpolation
by means of the primary matrix Ã. We apply a scalar interpolation routine from Section
2.8 to Ã (together with S̃, C̃, F̃) and obtain a scalar interpolation operator P̃ . This
operator and the C/F splitting are then extended to the whole domain Ω,

C := {k ∈ Ω where k ∈ Ω̃(i) and i ∈ C̃},
F := {k ∈ Ω where k ∈ Ω̃(i) and i ∈ F̃},
pkl := p̃ij where k ∈ Ω̃(i), l ∈ Ω̃(j),

where P = (pkl)k∈Ω, l∈C and P̃ = (p̃ij)i∈Ω̃, j∈C̃ . We obtain interpolation weights that are
identical for all physical unknowns at the same point i (single-unknown interpolation

83

2. Algebraic Multigrid

[Cle04], Section 3.4.3.3). Again, the interpolation is carried out unknown-wise, but
modifications are possible (and may be required) if not all unknowns are present at each
grid point, see [Cle04], Section 4.3.2.2 for details.
We conclude this paragraph with some theoretical approximation properties of single-
unknown direct interpolation in the case of a primary matrix defined by Euclidean norms.

Theorem 2.23 ([Cle04], Theorem 3.14 and Corollary 3.3) Let A > 0, Ei = E+
i ∪ E−i

and T(i) ≥ 0 (2.106) for all i ∈ Ω̃. Select a C/F-splitting and set a Ii for each i ∈ F .

1. Let Ã be defined by (2.98),

ãij :=

{
‖A(i,j)‖E if Ai,j ≥ 0.

−‖A(i,j)‖E else
for i 6= j, ãii := ‖A(i,i)‖E

and the interpolation weights be derived from Ã by direct interpolation with weight
separation (2.45) - (2.46),

w̃−ij = − 1

ãii

∑
k∈Ẽi ã

−
ik∑

k∈C̃−i
ã−ik

ãij if ãij < 0, (2.111)

w̃+
ij = − 1

ãii

∑
k∈Ẽi ã

+
ik∑

k∈C̃−i
ã+
ik

ãijif ãij > 0. (2.112)

If for all i ∈ F̃
ti := ‖A(i,i)‖E −

∑
k∈Ẽi

‖A(i,k)‖E ≥ 0, (2.113)

as well as the inequalities

τλmin(T(i)) ≥ ti

and τλmin(−A(i,j)) ≥ ‖A(i,j)‖E

∑
k∈E−i

‖A(i,k)‖E∑
k∈C−i

‖A(i,k)‖E
for all j ∈ Ĩ−i ,

and τλmin(A(i,j)) ≥ ‖A(i,j)‖E

∑
k∈E+

i
‖A(i,k)‖E∑

k∈C+
i
‖A(i,k)‖E

for all j ∈ Ĩ+
i ,

hold with a τ ≥ 1 not depending on i and j, the τ -condition (2.107),

‖eF − PFCeC‖2
P,0,F ≤ τ‖e‖2

1

is fulfilled.

2. Let Ã be defined by (2.97),

ãij := −‖A(i,j)‖E for i 6= j, ãii := ‖A(i,i)‖E.

84

2.12. AMG for systems of elliptic PDEs

and the interpolation weights be derived from Ã by direct interpolation (2.43),

w̃ij = − 1

ãii

∑
k∈Ẽi ãik∑
k∈C̃i ãik

ãij (2.114)

If for all i ∈ F̃
‖A(i,i)‖E − φi

∑
k∈Ẽi

‖A(i,k)‖E ≥ 0,

where

φi :=

∑
k∈C−i

‖A(i,k)‖E −
∑

k∈C+
i
‖A(i,k)‖E∑

k∈Ci ‖A(i,k)‖E
(2.115)

as well as the inequalities

τλmin(T(i)) ≥ ‖A(i,i)‖E − φi
∑
k∈Ẽi

‖A(i,k)‖E

and τλmin(−A(i,j)) ≥ ‖A(i,j)‖E
∑

k∈Ei ‖A(i,k)‖E∑
k∈Ci ‖A(i,k)‖E

for all j ∈ Ĩ−i ,

and τλmin(A(i,j)) ≥ ‖A(i,j)‖E
∑

k∈Ei ‖A(i,k)‖E∑
k∈Ci ‖A(i,k)‖E

for all j ∈ Ĩ+
i ,

hold with a τ ≥ 1 not depending on i and j, the τ -condition (2.107) is fulfilled.

3. Let Ã be defined by (2.98),

ãij :=

{
‖A(i,j)‖E if Ai,j ≥ 0.

−‖A(i,j)‖E else
for i 6= j, ãii :=

∑
j 6=i

−ãij,

and the interpolation weights be derived from Ã by direct interpolation with weight
separation (2.111) - (2.112), If for all i ∈ F̃ the inequalities

and τλmin(−A(i,j)) ≥
‖A(i,j)‖E‖A(i,i)‖E∑

k∈Ei ‖A(i,k)‖E

∑
k∈E−i

‖A(i,k)‖E∑
k∈C−i

‖A(i,k)‖E
for all j ∈ Ĩ−i ,

and τλmin(A(i,j)) ≥
‖A(i,j)‖E‖A(i,i)‖E∑

k∈Ei ‖A(i,k)‖E

∑
k∈E+

i
‖A(i,k)‖E∑

k∈C+
i
‖A(i,k)‖E

for all j ∈ Ĩ+
i ,

hold with a τ ≥ 1 not depending on i and j, the τ -condition (2.107) is fulfilled.
(Note that ti = 0 (2.113) here.)

4. Let Ã be defined by (2.97),

ãij := −‖A(i,j)‖E for i 6= j, ãii :=
∑
j 6=i

−ãij

85

2. Algebraic Multigrid

and the interpolation weights be derived from Ã by direct interpolation (2.114). If
for all i ∈ F̃

1− φi = 0

where φi is defined by (2.115), as well as the inequalities

τλmin(T(i)) ≥ (1− φi)‖A(i,i)‖E

and τλmin(−A(i,j)) ≥
‖A(i,j)‖E‖A(i,i)‖E∑

k∈Ci ‖A(i,k)‖E
for all j ∈ Ĩ−i ,

and τλmin(A(i,j)) ≥
‖A(i,j)‖E‖A(i,i)‖E∑

k∈Ci ‖A(i,k)‖E
for all j ∈ Ĩ+

i ,

hold with a τ ≥ 1 not depending on i and j, the τ -condition (2.107) is fulfilled.

Remark 2.9 If we replace A(i,i) with its diagonal D(i,i) in all of the statements above,
we obtain the classical approximation property (2.37),

‖eF − PFCeC‖2
0,F ≤ τ‖e‖2

1.

instead of(2.107).

Finally, regardless of the coarsening and interpolation strategy chosen, the coarse grid
operator is computed by the Galerkin ansatz,

AC = RAP.

As already mentioned, we also might need to transfer the primary matrix to the coarse
level (especially if we employ an externally-defined primary matrix that cannot be ex-
tracted from A, but have a single-unknown transfer matrix P̃ available),

ÃC = R̃ÃP̃ .

86

3. Parallel AMG

In the last chapter, especially in Sections 2.3–2.9, we introduced the AMG setup proce-
dure according to Ruge and Stüben. Recall from Algorithm 2.3 that on each level l we
have to

1. determine the set of strong couplings Si for all i ∈ Ωl;

2. based on the sets Si, disjointly divide Ωl into the set of coarse grid points C l and
fine grid points F l and set Ωl+1 = C l;

3. construct the prolongation matrix Pl and set the restriction Rl := P T
l ;

4. compute the coarse grid operator Al+1 := RlAlPl.

Now, the question arises how these steps can be parallelized on a multiple instruc-
tion, multiple data (MIMD) parallel computer, i.e. on a machine where each processor
has exclusive access to its own memory and operates independently of the others, while
communication between different processors is performed by message passing (e.g. imple-
mented in MPI [MPI]). This class of parallel computers ranges from multi-core desktop
PCs to recent petascale supercomputers.
Let us assume that on the finest level we have a non-overlapping partitioning

Ω1 = Ω1
1∪̇ . . . ∪̇Ω1

np (3.1)

where np denotes the number of processes. This partitioning can e.g. be generated by a
mesh partitioning method like Metis [KK99], Parmetis [KK97] or Zoltan [DBH+02].

For each Ωl
p, we define the set of boundary points ∂Ωl

p, and the set of inner points
◦
Ω
l

p

by

∂Ωl
p =

{
i ∈ Ωl

p : ∃j ∈ Ωl
q, q 6= p such that j ∈ Si

}
,

◦
Ω
l

p = Ωl
p \ ∂Ωl

p.

Note that we only consider strong couplings across boundaries here, i.e. a point i ∈ Ωl
p,

which has a non-zero connection aij to a point j 6∈ Ωl
p, is still considered as an interior

point if all of its strongly connected neighbors Si are contained within Ωl
p.

In Figure 3.1 we give a simple example of a finite difference discretization mesh dis-
tributed among four processors.
We assume that the matrix A is distributed row-wise, i.e. on all processors p = 1, . . . , np
and for all i ∈ Ωp the row ai := (aij)

n
j=1 is stored on processor p. This storage is mostly

87

3. Parallel AMG

Figure 3.1.: Distribution of a 5 point finite difference grid among four processors. The red
lines denote the processor boundaries, the blue area indicates the processor
boundary points ∂Ωl

p.

done by means of a parallel compressed sparse row (CSR) matrix format as it is e.g.
used in PETSc [BGMS97], hypre [CCF98] or Trilinos [HBH+05]. In these formats, the
part of A that resides on processor p, here denoted by A(p), is organized in two blocks,

A(p) =
(
Adiag Aoffd

)
,

where Adiag contains all local couplings aij, i, j ∈ Ωp, and Aoffd contains all aij, i ∈ Ωp

and j 6∈ Ωp and each of the Adiag and Aoffd is a CSR matrix. Regarding the vectors u
and f needed in the solution phase, each entry ui and fi is stored on the processor p
with i ∈ Ωl

p.
For most components of the setup phase, it is obvious how a parallel computation can
be carried out. To obtain the strong couplings for i ∈ Ωl

p, we only need access to the
row ai. The same holds for the computation of the direct interpolation weights wij,
i ∈ F , j ∈ C (see Section 2.8.3). For other interpolation operators, we need access to
the rows ak corresponding to strongly coupled fine grid points k ∈ F s

i even if k resides
on another processor. We obtain these rows in a single communication step before we
start computing the interpolation weights, see Algorithm 3.1.
For multi-pass interpolation (Section 2.8.7) and Jacobi interpolation (Section 2.8.8), a

communication of the updated weights is required between two iterations of the respec-
tive algorithm.
The computation of the coarse grid operator as it is carried out in hypre is outlined in

Algorithm 3.2. Here, we do not transpose the prolongation Pl in parallel to obtain Rl,
but instead exploit the fact that the blocks P l

diag and P l
offd are available. We take the

transpose of each of these blocks individually, obtaining Rl
diag and Rl

offd. In addition,

88

algorithm 3.1 Parallel computation of the interpolation operator

1. On each processor p = 1, . . . , np, identify the fine grid points F l,p := F ∩ Ωl
p and

the strongly coupled remote fine grid points

F s
(p) ←

⋃
i∈F l,p

F s
i \ Ωl

p.

2. For all k ∈ F s
(p), obtain the row ak.

3. Compute the interpolation weights for all i ∈ F l,p according to the chosen inter-
polation method (see Sections 2.8.4–2.8.6).

algorithm 3.2 AmgParallelRAP(Al(p), P
l
(p), A

l+1
(p)) [hyp]

begin

transpose Rl
diag ←

(
P l
diag

)T
, Roffd ←

(
P l
offd

)T
;

communication: obtain P l
ext =

(
P l
k

)
k

for all nonzero columns k of Aloffd;

re-organize P l
ext =

(
P l
ext,diag P l

ext,offd

)
;

compute RAP l
remote ← Rl

offd · Aldiag · P l
diag +Rl

offd · Aldiag · P l
offd

+Rl
offd · Aloffd · P l

ext,diag +Rl
offd · Aloffd · P l

ext,offd;

communication: distribute RAP l
remote among owning processors, receive RAP l

ext;

re-organize RAP l
ext =

(
RAP l

ext,diag RAP l
ext,offd

)
;

compute Al+1
diag ← Rl

diag · Aldiag · P l
diag +Rl

diag · Aloffd · P l
ext,diag +RAP l

ext,diag;

compute Al+1
diag ← Rl

diag · Aldiag · P l
offd +Rl

diag · Aloffd · P l
ext,diag +RAP l

ext,offd;

Al+1
(p) ←

(
Al+1
diag Al+1

offd

)
;

end

89

3. Parallel AMG

for all non-zero columns k in Aloffd, we need to communicate the respective row plk.

We denote the sub-matrix consisting of these rows by P l
ext and split it into P l

ext,diag and

P l
ext,offd according to the column distribution of P l

(p) into P l
diag and P l

offd. Then, the
triple matrix product on each processor can be written as a block triple matrix product,

Al+1 =

(
Rl
diag

Rl
offd

)
·
(
Aldiag Aloffd

)
·
(

P l
diag P l

offd

P l
ext,diag P l

ext,offd

)
.

We see that we also partially compute remote rows, i.e. parts of AC that will not be
stored on the local processor. These products (whose leftmost factor is Rl

offd) need to
be distributed among the processors owning the respective rows and then need to be
added to the locally computed rows there.
All these steps can be easily parallelized, though some communication is needed. The
same is true for the multigrid cycle (Algorithm 2.1), where all of the communication
is contained in the parallel matrix-vector and parallel norm computations. The only
obstacle here is the Gauss-Seidel smoother (2.3), which is replaced by a block Jacobi
smoothing scheme

M l = I −

Q
l
(1) 0 0

0
. . . 0

0 0 Ql
(np)


−1Al(1)

...
Al(np)

 . (3.2)

Letting Adiag = Ldiag+Ddiag+Udiag be the decomposition of the diagonal part of A(p) into
the lower triangular, diagonal and upper triangular part , we set Ql

(p) = Ldiag + Ddiag.
In terms of the scalar values ui, we obtain the following relaxation scheme,

uit+1
i = uiti + a−1

ii

fi −∑
j 6∈Ωlp

aiju
it
j −

∑
j∈Ωlp, j<i

aiju
it+1
j −

∑
j∈Ωlp,j≥i

aiju
it
j

 . (3.3)

This means that if for an i ∈ Ωl
p, all connections to remote points are zero, i.e. aij =

0 for all j 6∈ Ωl
p, then the value ui is relaxed Gauss-Seidel like. The other points

(at the processor boundaries) are updated rather additively. A communication step is
required after each sweep is complete. It is, of course, also possible to use backward
or symmetric sweeps inside each processor domain. For a more detailed discussion of
parallel smoothers, we refer to [MY04, MY06].
The parallel creation of suitable coarse grids, however, is a major challenge in the process
of constructing the AMG hierarchy. The coarse grid selection algorithm 2.5 cannot
be carried out in parallel, as the following actions need to be performed within each
iteration:

1. select a suitable undecided point i with maximal weight λi and add it to the coarse
grid C,

2. assign all undecided neighbors j that strongly depend on i, j ∈ STi to the fine grid,

90

(a) Ruge-Stüben coarsening applied to each pro-
cessor subdomain only

(b) Third pass coarsening

Figure 3.2.: Ruge-Stüben coarsening and third pass coarsening applied to a 5-point dis-
cretization of the Laplace operator, distributed among 4 processors. De-
picted are the C/F-splittings on the finest level, where the blue squares
indicate the fine grid points i ∈ F , and the red squares indicate the coarse
grid points j ∈ C.

3. for all undecided neighbors k ∈ Sj of these newly created fine grid points, increase
their weights λj,

4. for all strongly coupled undecided neighbors j ∈ Si, decrease the weights λj.

We see that we need to update the weights λk of all undecided points two layers away
from the newly chosen coarse grid point i, see also Figures 2.6(b)–2.6(d). This update
(as well as the update of the status of i and the status of all newly created fine grid
points j ∈ STi) needs to be performed after each iteration. Even if this was feasible, we
still had to deal with race hazards: e.g. process p would set point j to fine while process
q would concurrently assign j to the coarse grid.
If we just apply Algorithm 2.5 on each processor subdomain Ωl

p and do not change the
status or weight of remote points j ∈ Ωl

q, q 6= p, we can obtain undesirable coarse
grids, where condition C1 is not satisfied. For example, in Figure 3.2(a) we see that
we have many strong couplings between fine grid points across the processor boundary,
while these points do not share a common coarse grid point to interpolate from. Several
approaches to parallel coarsening have been developed in the past. A first idea is to
keep the classical Ruge-Stüben algorithm on each processor and to fix the inconsistencies
described above. Two methods that follow this approach are described in Section 3.1.
Other parallel coarsening schemes use parallel independent set algorithms to find a coarse

91

3. Parallel AMG

grid. We discuss them in Sections 3.2–3.3. We introduce our parallel AMG approach
in Section 3.4. Our approach is based on Ruge-Stüben coarsening, but instead of fixing
inconsistencies at the subdomain boundaries, our method (mostly) avoids unwanted
situations. An extension of our method for very large supercomputers is outlined in
Section 3.5. We also refer to [MY06] for an overview over parallel algebraic multigrid.
As in Chapter 2, we omit the level index l if it is not needed.

Remark 3.1 As mentioned above, the parallel AMG algorithms presented here are de-
signed for MIMD parallel computers. In the past years, the power of graphics processor
units (GPUs) has increasingly been employed to accelerate computations on worksta-
tions as well as on computer clusters. These kind of processors however follow a single
instruction, multiple data (SIMD) design, i.e. a single instruction can efficiently be ap-
plied to a large amount of data synchronously. Any efficient parallel algorithm for GPU
computation needs to exploit this setup, which leads to different programming tech-
niques compared to classical parallel AMG. A detailed description is beyond the scope
of this chapter, we instead refer to [BDO12] for an approach to AMG on GPUs.

3.1. Minimum Subdomain Blocking, Third pass
coarsening

We first address a class of parallel coarsening schemes that, based on the classical Ruge-
Stüben coarsening algorithm, ensure a stable interpolation for all fine grid points by
means of an additional coarsening step at the subdomain interfaces. While the Minimum
Subdomain Blocking (MSB) scheme coarsens the boundary first and then proceeds to
the interior, Third Pass Coarsening (RS3) first coarsens the interior and then fixes the
boundaries.

Minimum Subdomain Blocking The Minimum Subdomain Blocking scheme [KS99]
allows parallel coarsening with minimal communication between the processes. First,
each processor p applies the classical Ruge-Stüben algorithm (first and optionally second
pass) to the set of boundary points ∂Ωp, see Algorithm 3.3. Then, the interior of each
subdomain is coarsened. Hence, each point of the boundary is either a coarse point
or is strongly coupled to a coarse boundary point. All strong couplings which cross a

algorithm 3.3 AmgMSB(Ωp, S(p), S
T
(p), Cp, Fp)

begin
AmgPhaseI(∂Ωp, S, S

T , Cp, Fp);
AmgPhaseII(∂Ωp, S, Cp, Fp);
AmgPhaseI(Ωp, S, S

T , Cp, Fp); where C and F are not newly initialized
AmgPhaseII(Ωp, S, Cp, Fp);

end

92

3.1. Minimum Subdomain Blocking, Third pass coarsening

subdomain boundary are however ignored in this approach. On the one hand, this can
lead to a unphysical coarse grid structure near a boundary if the direction of strength
is orthogonal to the boundary (in this case, the MSB algorithm needs to assign every
boundary point to the coarse grid as all connections within the boundary are weak).
On the other hand, and even more severe, there is no possibility to check whether two
strongly connected fine grid points i ∈ Ωp and j ∈ Si ∩ Ωq, q 6= p share a common
strongly coupled coarse grid point. The resulting interpolation operator may not be
stable even if an interpolation formula for all fine grid points can be found.

Third pass Coarsening The Third Pass (RS3) coarsening scheme [HMY02] is a straight-
forward parallel extension of the classical Ruge-Stüben coarsening scheme. In contrast
to the subdomain blocking described before, a processor subdomain boundary treatment
is applied after the coarsening of the interior is done.
First, each processor p applies both phases of the Ruge-Stüben algorithm to its sub-
domain Ωp, including all of its boundary ∂Ωp. We note that we initialize the weights
λi for the first phase to the global values, i.e. λi := |STi | even if STi contains non-local
points. For each processor p, we obtain a splitting into coarse grid points Cp and fine
grid points Fp. While every i ∈ Fp has at least one strong connection to a j ∈ Cp, there
still may exist strong fine–to–fine (F − F) couplings across the boundary for which the
occurrence of a common C-point is not yet checked.
To remove these inconsistencies at the subdomain interfaces, first every processor p gath-
ers the coarse/fine–splitting of its adjacent ghost points

⋃
i∈Ωp

Si \ Ωp. Then, in a local

step, processor p now applies the second pass (Algorithm 2.6) restricted to its boundary
as well as to the ghost points,

∂Ωp := ∂Ωp ∪
(
∪i∈ΩpSi \ Ωp

)
.

We denote the set of coarse grid points generated in this third pass with C̃p. Note that
for a common interface ∂Ωp ∩ ∂Ωq the coarse grid points designated by processes p and
q do not necessarily match. Hence after a second communication step, the following
strategy decides on the final splitting: Every processor keeps the coarse grid points
created by itself (i.e. Cp and C̃p) and adds all coarse grid points C̃q ∩ Ωp designated by
lower rank processors q < p. Hence, the final set of coarse grid points for processor p is

Cp ∪ {
⋃
q≤p

C̃q ∩ Ωp}.

While a slight load imbalance is possible, this approach ensures a stable interpolation
formula for all fine grid points throughout the domain. We sketch the RS3 approach in
Algorithm 3.4. In Figure 3.2(b) we show an example of the RS3 coarsening algorithm
applied to a 5-point discretization of the Laplacian. The additional points inserted after
the third pass can be seen at the processor interfaces.

93

3. Parallel AMG

algorithm 3.4 AmgRS3(Ωp, S, Cp, Fp)

begin

C̃p = Cp;

AmgPhaseII(∂Ωp, S, C̃p, Fp);
for q > p do

send C̃p ∩ Ωq to processor q; communication
od
for q < p do

receive C̃q ∩ Ωp from processor q; communication

Cp ← C̃p ∪ C̃q ∩ Ωp;
od;

end

3.2. CLJP coarsening schemes

In contrast to the previously described methods, the CLJP coarsening scheme [HMY02]
is an a priori parallel coarsening algorithm. The main idea is to form the coarse grid
as the union of multiple, in parallel constructed, independent sets D ⊂ Ω. To describe
this algorithm, we first write the strong couplings as an influence matrix S = (Sij)

N
i,j=1,

where

Sij :=

{
1 if j ∈ Si,
0 otherwise.

(3.4)

This matrix defines a directed graph on the set of points Ω. As in the Ruge-Stüben
case, we assign a weight wi to each node i ∈ Ω and initialize it such that it measures
the “usefulness” of this point as a coarse point, i.e. wi = |STi | . The CLJP algorithm,
however, requires adjacent nodes to have different weights. To this end, we add a random
component σi ∈ [0, 1) and obtain wi = |STi |+ σi.
We now construct the independent set D. A vertex i of the graph is added to D if its
weight wi is larger than the weights wj of all adjacent neighbors j ∈ Si ∪ STi . Then, the
weights of all vertices j 6∈ D are modified using the following heuristics,

H1 D-points, i.e. newly created coarse grid points, do not require interpolation. If j
influences a D-point i, we reduce the weight wj by one and remove the edge Sij
from the graph.

H2 If both k and j depend on a D-point i (i ∈ Sj ∩ Sk) and k depends on j (j ∈ Sk),
we reduce wj by one and remove Skj from the graph, as the value at k can be
interpolated from i directly.

If the weight of a vertex is less than one, it is not needed for interpolation. We remove
this vertex from the graph and add the corresponding point to the set of fine grid points
F . After the heuristics have been applied to all undecided nodes j, we add D to C
and remove all vertices in D as well as all incident edges from the graph. Now, a

94

3.2. CLJP coarsening schemes

Figure 3.3.: Discretization grid of a 9-point stencil after application of the first (left)
and second (right) heuristics of the CLJP algorithm. The numbers indicate
the weights wi (without the added random number). Arrows indicate the
direction of influence, lines without arrays indicate bidirectional influence.
Fine grid points are blue, D-points red.

communication step is needed to update the weights and the current C/F distribution.
Then, we continue choosing a new set D until the whole domain is split into C and F .

In Figure 3.3 we show the meshes of a 9-point stencil after the application of both
heuristics, respectively. We give the overall CLJP program in Algorithm 3.5. The CLJP
algorithm runs entirely in parallel. Moreover, if the random number assignment does
not depend on the domain decomposition, the C/F -splitting will also be independent
of the parallel layout. Furthermore, depending on the fine grid matrix (direction of
anisotropy/diffusion coefficients etc.) the CLJP process can coarsen up to a single point
without the need for some subdomain agglomeration on coarser levels. As a neighbor
of a coarse grid point is, however, not forced to become a fine grid point, this method
produces denser coarse grids than the Ruge-Stüben algorithm. This can e.g. be seen
from Figure 3.4(a).

CLJP-c coarsening The CLJP-in-color (CLJP-c) [Alb06, Alb07] approach is a mod-
ification of the CLJP algorithm which aims at overcoming the issues described above.
First, we observe that the results of the CLJP algorithm depend heavily on the random
numbers σ(i). These random numbers are needed for tie-breaking only, so the question
arises whether one could utilize another tie-breaking mechanism that employs informa-
tion about the graph.

Here, the key idea is to first color the graph, i.e. to assign a color to each node
such that two adjacent nodes do not have the same color. Now, we assign a weight
cw = (c−1)/|cl| ∈ [0, 1) to each color c and add it to the vertex weight, i.e. in Algorithm

95

3. Parallel AMG

(a) CLJP coarsening (b) Falgout coarsening

Figure 3.4.: CLJP and Falgout coarsening schemes applied to a 5-point discretization
of the Laplace operator, distributed among 4 processors. Depicted are the
C/F-splittings on the finest level, where the blue squares indicate the fine
grid points i ∈ F and the red squares the coarse grid points j ∈ C.

Figure 3.5.: CLJP-c coarsening for a 9-point stencil. We assume that the green color
corresponds to the highest augmentation weight (3.5)

96

3.2. CLJP coarsening schemes

algorithm 3.5 CLJP algorithm CLJP(Ω, S, ST , C, F,D)

begin
C ← ∅;
F ← ∅;
for i ∈ Ω do

w(i)← |STi |+ σ(i);
od;
while C ∪ F 6= Ω do

if D = ∅
then

for i ∈ Ω do
if w(i) > w(j) for all j ∈ Si ∪ STi

then
D ← D ∪ {i};

fi;
od;

fi;
for i ∈ D do

for j ∈ Si do heuristics H1
w(j)← w(j)− 1;
Si ← Si\{j};

od;
for j ∈ STi do heuristics H2

for k ∈ STj do
if k ∈ STi

then
w(j)← w(j)− 1;
STj ← STj \{k};

fi;
od;
STi ← STi \{j};

od;
od;
for i ∈ Ω do

if w(i) < 1 then F ← F ∪ {i} fi;
od;
C ← C ∪D;
D ← ∅;

od;
end;

97

3. Parallel AMG

3.5 we replace the step

w(i) = |STi |+ σ(i)

by

w(i) = |STi |+ cw(color(i)). (3.5)

Here, cl denotes the set of all colors (represented by integers) in the graph. Figure
3.5 shows the coloring of a nine-point stencil. We assume that the green nodes have
obtained the highest augmentation and see that after the first CLJP iteration, most of
the interior is already partitioned into coarse and fine points.

algorithm 3.6 AmgFalgout(Ω, S, ST , C, F)

begin
AmgPhaseI(Ωp, S, S

T , Cp, FP); where the λi are initialized globally
AmgPhaseII(Ωp, S, Cp, Fp);

Dp ← Cp ∩
◦
Ωp;

D =
⋃np
p=1Dp; no communication, each processor just manages its own part of D

C ← ∅;
F ← ∅;
AmgCLJP(Ω, S, ST , C, F,D); parallel algorithm

end

Falgout’s coarsening scheme Falgout’s coarsening process [HMY02] is a hybrid coars-
ening scheme that comprises the classical Ruge-Stüben algorithm as well as the CLJP
algorithm.
Again, like the RS3 algorithm, every processor applies the first and optionally second
pass of the Ruge-Stüben algorithm to its local subdomain (with global weight initializa-

tion). The resulting coarse grid points in the interior
◦
Ωp = Ωp \ ∂Ωp then form the first

independent set for the CLJP algorithm, i.e. D = C ∩ ∪p
◦
Ωp. This special initialization

eliminates most inner edges of the graph restricted to
◦
Ωp in the first CLJP iteration.

Thus, only few additional coarse grid points will be added to the interior during further
CLJP steps. Hence, the coarse grid structure there is very similar to a Ruge-Stüben
one. Near the boundaries ∂Ωp, however, the coarse grid is completely constructed by
the CLJP algorithm.
On coarser levels, if the ratio of boundary to interior points increases, the coarsening
becomes more and more CLJP-like. Again, it is possible to coarsen up to a single point
for appropriate operators. We give the pseudo-code of Falgout’s method in Algorithm
3.6. In Figure 3.4(b), we show an example of the Falgout algorithm applied to a five-
point stencil. We clearly see a denser coarse grid near the boundaries, while the interior
of each subdomain is coarsening Ruge-Stüben like.

98

3.3. PMIS and HMIS coarsening schemes

3.3. PMIS and HMIS coarsening schemes

We continue with another coarsening method based on parallel maximal independent
set techniques. The PMIS coarsening scheme is a simplification of the CLJP algorithm,
while the HMIS algorithm is its respective counterpart of Falgout’s coarsening method
[SMYH06].
The aim of the algorithms is to produce smaller coarse grids than the CLJP counter-
parts. As in the case of Ruge-Stüben based aggressive coarsening (Section 2.7), we relax
condition C1 and only require that condition C1’ holds:

C1’ Let i ∈ F . Then there exists at least one j ∈ Si ∩ C.

Again, we define the influence matrix S = (Sij)
N
i,j=1, where

Sij :=

{
1 if j ∈ Si,
0 otherwise,

and construct the undirected graph G = (V,E) where

V = Ω and E = {(i, j) ∈ V × V | Sij = 1 or Sji = 1}.

As in the CLJP method (Algorithm 3.5), we introduce vertex weights wi = |STi |+ σ(i),
where σ(i) ∈ [0, 1) is a uniformly distributed random number. First, we eliminate all
isolated points from the graph, i.e. all i ∈ V that satisfy |STi | = 0. Then, we proceed
to the main PMIS iteration: We choose an independent set I from G, where i ∈ I if
w(i) > w(j) for all j : (i, j) ∈ E. I is then added to the set of coarse grid points C,
while all strongly dependent points {j ∈ V ⊂ I | ∃i ∈ I : (j, i) ∈ E} join the set of
fine grid points F . The newly created coarse and fine grid points are removed from the
graph and the iteration starts over, see Algorithm 3.7.

The main difference to the CLJP algorithm is that strongly influenced neighbors of
newly created coarse grid points are immediately assigned to the set of fine grid points.
While this is also done in the classical Ruge-Stüben scheme, here no weights are up-
dated and hence strongly connected —yet undecided— points of these fine grid points
are not more likely to become coarse grid points. Moreover, the PMIS algorithm does
not include a second pass that checks whether two strongly connected fine grid points
share a common C-point to interpolate from. In consequence, interpolation may suffer
from a loss of stability and either long-range interpolation schemes (like extended inter-
polation, see Section 2.8.6) must be used or the resulting AMG hierarchy can only be
used as preconditioner for a Krylov subspace iteration. On the other hand, the PMIS
algorithm produces sparse coarse grids (see e.g. Figure 3.6(a)) and is a truely parallel
algorithm that can construct a coarse grid regardless of the domain decomposition.

Analogous to Falgout’s coarsening method, the HMIS coarsening scheme is a combi-
nation of classical Ruge-Stüben coarsening and the PMIS algorithm. In this case, only
the first pass of the Ruge-Stüben algorithm is carried out to obtain the first indepen-
dent set for the PMIS algorithm. The second pass does not make sense here, as the

99

3. Parallel AMG

algorithm 3.7 PMIS algorithm AmgPMIS(Ω, S, ST , C, F, I)

begin
C ← ∅;
F ← {j ∈ Ω : STj = ∅};
V = Ω \ F ;
E = {(i, j) ∈ V × V : i ∈ Sj or j ∈ Sj};
for i ∈ V do

w(i) = |STi |+ σ(i);
od;
while C ∪ F 6= Ω do

if I == ∅
then

for i ∈ V do
if w(i) > w(j) for all j ∈ V : (i, j) ∈ E

then
I ← I ∪ {i};

fi;
od;

fi;
for i ∈ D do

for j ∈ STi ∩ V ⊂ I do
F ← F ∪ {j};
V ← V \ {j};

od;
od;
C ← C ∪ I;
V ← V \ I;
I ← ∅;

od;
end;

algorithm 3.8 AmgHMIS(Ω, S, ST , C, F)

begin
AmgPhaseI(Ωp, S, S

T , Cp, FP); where the λi are initialized globally

Ip ← Cp ∩
◦
Ωp;

I =
⋃np
p=1 Ip; no communication, each processor just manages its own part of I

C ← ∅;
F ← ∅;
AmgPMIS(Ω, S, ST , C, F, I); parallel algorithm

end

100

3.3. PMIS and HMIS coarsening schemes

(a) PMIS coarsening (b) HMIS coarsening

Figure 3.6.: PMIS and HMIS coarsening schemes applied to a 5-point discretization of
the Laplace operator, distributed among 4 processors. Depicted are the
C/F-splittings on the finest level, where the blue squares indicate the fine
grid points i ∈ F and the red squares the coarse grid points j ∈ C.

PMIS scheme only aims to enforce condition C1’, not C1. Again, we initialize the first

independent set I = C ∩ ∪p
◦
Ωp using the interior coarse grid points constructed by the

Ruge-Stüben algorithm and proceed with the PMIS iteration. The HMIS method is
outlined in Algorithm 3.8, an example is shown in Figure 3.6(b). We clearly see that
the coarsening at the processor boundaries is sparser than in the interior (in contrast to
Falgout’s coarsening algorithm, where the opposite is true, cf. Figure 3.4(b)).

Remark 3.2 Aggressive coarsening variants of the PMIS and HMIS algorithms are de-
scribed in [MY10]. As in the case of Ruge-Stüben aggressive coarsening, these algorithms
employ the concept of strong n-connections (Definition 2.8). The strength matrix Sm is
then defined as follows,

Smij :=

{
q if i depends on j w.r.t. (q,m),

0 otherwise.

In practice, usually the cases l = 2 and p = 1 or p = 2 are used. For p = 1, the coarse
grid can be constructed by two subsequent applications of PMIS/HMIS to the strength
matrix S (3.4). The grid obtained by the first run (denoted by C̃) serves as input for the
second application, where the vertex weights are now derived from the matrix S2 ∩ C̃.
Note that in the second stage, isolated points may not be removed first, as they could
serve as the only interpolation point for a whole region within the domain. Like in

101

3. Parallel AMG

Figure 3.7.: Resulting coarse grids for the problem with mixed derivatives from Example
2.2 constructed by three different initial choices. The green points indicate
the respective coarse grid points, the red point indicates the first coarse grid
point chosen.

the sequential case, aggressive coarsening requires long-range interpolation techniques
to ensure an accurate coarse grid correction.

Remark 3.3 We note that, like in the CLJP-c case, it is also possible to use a graph
coloring instead of random numbers for tie-breaking [Alb07].

Remark 3.4 Parallel maximal independent set algorithms are also used within parallel
smoothed aggregation algorithms (Section 2.11.2), see [TT00].

3.4. CGC coarsening

In this section, we describe the coarse grid classification (CGC) algorithm introduced
in [Met04, GMOS06, GMS06]. As with the RS3 and MSB methods, we employ the
classical Ruge-Stüben coarsening algorithm. Here, instead of repairing the coarse grid
structure at the processor interfaces, we create coarse grids that (mostly) match at these
boundaries. The remaining inconsistencies can be removed by a simplified version of the
RS3 boundary fixing mechanism.

In our parallel coarsening method, we exploit a characteristic of the Ruge-Stüben al-
gorithm that is closely related to its sequential nature. We recall that this classical
algorithm determines the coarse grid points in dependence of the previously selected
points. Hence, we can guide the coarsening process by changing the initial choice for the
first coarse grid point. In Figure 3.7 we give an example of three different coarse grids
resulting from different initial choices. Note that in the sequential case, the quality of the
resulting coarse grids with respect to multigrid convergence and memory requirements
is very similar. Hence, there is no special advantage of using either one of these coarse
grids in a sequential computation. On the other hand, we have an additional degree
of freedom in our coarse grid selection process. We can use this freedom to compose a

102

3.4. CGC coarsening

global coarse grid from the coarse grids we have constructed for each processor subdo-
main Ωp individually.
More precisely our approach works as follows: First, we independently construct multiple
coarse grids on each processor domain by running the classical algorithm multiple times
with different initial coarse grid points. Note that this procedure is computationally
efficient, since the classical Ruge–Stüben algorithm requires only a very small amount
of compute time compared with the construction of the transfer and coarse grid opera-
tors, while a well-constructed grid can save a large amount of time during the operator
construction and in the multigrid cycle.
After the construction of these coarse grids on all processors, we need to select exactly
one grid for each processor domain such that the union of these coarse grids forms a
suitable coarse grid for the whole domain. We achieve this by defining a weighted graph
whose vertices represent the grids constructed by the multiple coarsening runs. Edges
are defined between vertices which represent grids on neighboring processor domains.
Each edge weight measures the quality of the boundary constellation if these two grids
are chosen to be part of the composed grid. Finally, we use this graph to choose one
coarse grid for each processor subdomain which automatically matches with most of its
neighbors.
In our implementation, see Algorithm 3.9, each processor p first determines the maxi-

algorithm 3.9 CGC algorithm CGC(S, ST , ng, {Ci}ngi=1, {Fi}
ng
i=1)

for j ← 1 to |Ω| do λj ← |STj |; od;
C0 ← ∅; λmax ← arg maxk∈Ω λk;
do

U ← Ω \
⋃
i≤itCi;

if maxk∈U λk < λmax then break; fi;
it← it+ 1; Fit ← ∅; Cit ← ∅;
do

j ← arg maxk∈U λk;
if λj = 0 then break; fi;
Cit ← Cit ∪ {j}; λj ← 0;
for k ∈ STj ∩ U do

Fit ← Fit ∪ {k}; λk ← 0;
for l ∈ Sk ∩ U do λl ← λl + 1; od;

od;
for k ∈ Sj ∩ U do λk ← λk − 1; od;

od;
od
ng ← it;

mal weight λmax of all points i ∈ Ωp. As mentioned earlier, every point with this weight
can be chosen as an initial point for the classical coarsening algorithm. We choose one
particular point ĩ and construct a coarse grid C(p),1. We now re-initialize the weights

103

3. Parallel AMG

Figure 3.8.: Three possible C/F -constellations at a processor’s domain boundary. The
red points belong to C, the blue points belong to F .

λi := |STi | of all remaining points i ∈ Ω \ C(p),1 to their original values. From these

points, we select another point j̃ with weight λmax and construct a second coarse grid
C(p),2 starting with this point. Only points not contained in C(p),1 may be inserted into
C(p),2, i.e. we construct disjoint coarse grids. We repeat these steps as long as there is a
point with weight λmax that is not already a member of a coarse grid C(p),it. Note that
the number of iterations is bounded by the maximal number of strong couplings |Si|
over all points i ∈ Ωp, which in turn is bounded by the maximal stencil width. Hence,
the number of constructed grids ngp per processor p is independent of the number of
unknowns N and the number of processors np. Note that the coarse grids that are
constructed later may be of inferior quality compared to the first ones but the selection
mechanism described in the following will avoid these grids.1

Now, we have obtained ngp valid coarse grids {C(p),i}ngpi=1 on each processor p. To deter-
mine which grid to choose on each processor, we construct a directed, weighted graph
G = (V,E) whose vertices represent the created coarse grids,

Vp := {C(p),i}i=1,...,ngp , V :=

np⋃
p=1

Vp.

The set of edges E consists of all pairs (v, u), v ∈ Vp, u ∈ Vq such that q ∈ Sp is a
neighboring processor of p,

Ep := {
⋃
q∈Sp

⋃
v∈Vp, u∈Vq

(v, u)}, E :=

np⋃
p=1

Ep,

where Sp is defined as the set of processors q with points j which strongly influence
points i on processor p, i.e.

Sp := {q 6= p : ∃i ∈ Ωp, j ∈ Ωq : j ∈ Si}.

To determine the weight γ(e) of the edge e = (v, u), we consider the nodes v ∈ Vp,
u ∈ Vq. Each of these particular nodes represents a local C/F -splitting (Cp, Fp) for Ωp

and (Cq, Fq) for Ωq, respectively. Together they form a C/F -splitting for the domain
Ωp ∪ Ωq. At the processor subdomain boundary, three grid configurations can occur,

1The initially chosen point ĩ still has some influence on the constructed coarse grids due to our disjoint
construction. This may lead to some matching problems in applications where the coarse grids have
special structure, e.g. strong anisotropies.

104

3.4. CGC coarsening

Figure 3.9.: Application of the CGC algorithm to a 5-point stencil, distributed among 4
processors. The figure on the left shows the assignment of the points to the
coarse grids. The figure on the right shows the weighted graph.

see Figure 3.8. We denote by cC,C the number of strong C − C-couplings (left), by
cC,F the number of strong C − F -couplings (center) and by cF,F the number of strong
F − F -couplings (right). Based on these classes of couplings, we define the edge weight

γ(e) := cC,CγC,C + (cC,F + cF,C)γC,F + cF,FγF,F

with γC,C , γC,F , γF,F ∈ R defined as follows: The most important case is the F − F -
coupling case. Here, two fine grid points i ∈ Fp and j ∈ Fq are strongly coupled,
which can lead to two problems: These two points may not have a common C-point
to interpolate from, which violates condition (C1). On the other hand, even if (C1) is
satisfied, we have to transfer the matrix rows ai and aj to construct a stable interpolation
operator. Therefore, this situation must be avoided, which motivates us to penalize
strong F − F -couplings with a large negative weight γF,F := −8.
The strong C−C-couplings should also be avoided because they can increase the operator
and the grid complexity. We therefore set γC,C := −1. In the remaining case, which
can be considered as the (optimal) sequential coarsening scenario, we do not add an
additional weight, i.e. γC,F := 0.
Figure 3.9 shows the graph G = (V,E) obtained by our CGC algorithm for a 5-point

discretization of the Laplacian. We can observe that constellations with C−C–couplings
and F − F–couplings are heavily penalized, while constellations with C − F–couplings
are weighted by zero only.
Since we now have constructed the graph G of admissible local grids, we can use it to
choose a particular coarse grid for each processor such that the union of these local grids
automatically matches at subdomain boundaries. Observe that the number of vertices
is related to the number of processors np only; i.e., it is much smaller than the number
of unknowns N . Furthermore, the cardinality of E is small compared to N since edges
are only constructed between neighboring processors. Thus, we can transfer the whole
graph onto a single processor without large communication costs.

105

3. Parallel AMG

(a) Sequential coarsening on one processor (b) CGC coarsening

Figure 3.10.: CGC coarsening applied to a 5-point discretization of the Laplace operator,
distributed among 4 processors (right), compared to sequential coarsening
on one processor (left). Depicted are the C/F-splittings on the finest level,
where the blue squares indicate the fine grid points i ∈ F and the red
squares the coarse grid points j ∈ C.

106

3.5. Outlook: CGC-ML coarsening

On this processor, we choose exactly one node vp from each subset Vp ⊂ V with the
following scheme: We denote by C the set of the selected local coarse grids.

1. First, we define heavy edges or couplings Hv between the nodes v of the graph,
where p denotes the processor which v belongs to (i.e. v ∈ Vp),

Hv := ∪q∈Sp{w |γ(v, w) = max
u∈Vq

γ(v, u)} and HT
v := {w | v ∈ Hw}.

The heavy edges indicate which coarse grid on processor q can be fitted best to the
coarse grid represented by v ∈ Vp. We assign a weight λv to each node v, where
λv = |Hv|+ |HT

v |. This weight indicates how many coarse grids on other processors
can be fitted to the coarse grid represented by v.

2. For some processors p, all nodes v ∈ Vp might have weight λv = 0. As this
means that there are no strong couplings across the subdomain boundary, any
grid constructed on this processor can be chosen. Here, we choose one arbitrary
v ∈ Vp and remove Vp from the graph.

3. We choose the node v ∈ Vp with maximal weight, put it into C and remove the
subset Vp from the graph, as a coarse grid for domain Ωp is now determined. We
then increase the weight of each node w ∈ Hv ∪HT

v to the maximal weight of all
remaining nodes in the graph plus one (so that one of these will be chosen in the
next step), and repeat this step as long as the graph is not empty.

This procedure takes up to np steps, one for each processor domain, see Algorithm 3.10
for details. After running the algorithm, we transfer the choice vp ∈ C ∩ Vp back to
processor p. Now, the union of all elements in C defines the global consistent grid for
the complete domain, see Figure 3.10(b). Here, this grid does not differ from the coarse
mesh produced by the sequential Ruge-Stüben coarsening (Algorithm 2.5) applied to
the whole domain.
Recall that after applying the first phase of the Ruge–Stüben coarsening, there may
exist a few fine grid points with strong connections to other fine grid points only. These
strong couplings are however very rare. In the sequential phase, this is corrected by the
second pass of the classical coarsening scheme. To correct these very few couplings across
processor boundaries, we employ a more straightforward method: We check whether a
fine grid point is strongly coupled to other fine grid points only and insert this point
into the coarse grid if that is the case. Hence, the CGC algorithm (essentially) employs
no special boundary treatment.

3.5. Outlook: CGC-ML coarsening

The contents of the following section have been previously published in [GMS08].
The main advantage of CGC over other parallel AMG coarsening schemes is that the
constructed coarse grids are very close to those produced by a sequential AMG. On the
other hand, the original CGC has one major drawback: The graph representing the

107

3. Parallel AMG

algorithm 3.10 AmgCGCChoose(V,H, C)
begin
C ← ∅;
U ← V ;
for v ∈ U do λv ← |Hv|+ |HT

v |; od;
for p← {1, . . . , np} do

if λv = 0 for all v ∈ Vp
then

C ← {v}; arbitrary v ∈ Vp
U ← U \ Vp;

fi;
od;
while U 6= ∅

do
v ← arg maxw∈U λw;
C ← C ∪ {v};
U ← U \ Vp such that v ∈ Vp;
λmax ← maxw∈U λw;
for w ∈

(
Hv ∪HT

v

)
∩ U do λw ← λmax + 1; od;

od;
end

candidate coarse grids needs to be transferred to a single processor. For large numbers
of processors (np ' 1000) this leads to large communication costs as well as a significant
run-time for the coarse grid selection Algorithm 3.10.
In this section, we outline an alternative which bypasses this costly communication step.
To this end, we reduce the size of the graph by a coarsening process that collapses vertices
which already represent well-matching grids, i.e. we construct a multilevel hierarchy
of graphs. This coarsening process can be carried out in parallel and only requires
communication inside small subsets of all involved processors. On the coarse levels
of this hierarchy, the vertices now represent candidate coarse grids on unions of the
processor subdomains. As before, the edge weights penalize connections between non-
matching grids.
As the graph becomes coarser, we agglomerate it on fewer and fewer processors. Finally,
we can choose a single vertex in the coarsest graph that represents a candidate coarse
grid on a large part (or even all) of the computational domain. By this choice, all
candidate coarse grids which were recursively collapsed into this vertex are designated
to be a part of the global coarse grid.
In the following, we will describe this algorithm in more detail. We construct the graph
G = (V,E) as described in the last section. In addition, we assign a weight to each
vertex which denotes the number of processor subdomains covered by the coarse grid
represented by this vertex. Naturally, this weight is initialized with 1.
We do not transfer the whole graph onto a single processor. Instead, we proceed as

108

3.5. Outlook: CGC-ML coarsening

(a) original graph (b) after agglomera-
tion

(c) heavy edge
matching

(d) collapsing ver-
tices and edges

(e) second agglomer-
ation step

(f) final collapsed
graph

Figure 3.11.: Graph clustering process. The graph is constructed by the CGC algo-
rithm to a 5-point finite-difference discretization of the Laplace operator
distributed among four processors (cf. Figure 3.9). The numbers in the
vertices denote the number of subdomains covered by the coarse grid, which
is represented by the respective vertex. The number at each edge denotes
the edge weight.

(a) Initial choice

(b) First refinement
step

(c) Second refine-
ment step

(d) Composed coarse
grid

Figure 3.12.: CGC-ML refinement process.

109

3. Parallel AMG

follows:

1 We agglomerate the graph on a subset of the processors, see Figure 3.11(b). Hence,
a part of the edges (in this case, the vertical edges) does not cross the processor
boundaries any more.

2 Now, we can employ an edge matching on the inner edges of each processor
subdomain, see Figure 3.11(c). We match each vertex u to a vertex v that is
not already matched and for which the edge is least penalized, i.e. ω(u, v) =
minw: (u,w)∈W ω(u,w).

3 We collapse the matched vertices and merge the edge sets, see Figure 3.11(d). Each
vertex now represents a candidate coarse grid on a union of processor subdomains.
Accordingly, we update the vertex weights, i,e, the number of subdomains covered.
The edge set of each vertex u is the union of the edge sets of the vertices v, w
that were collapsed into u: Eu ← Ev ∪ Ew. Note that we never create an edge
between two vertices which represent candidate coarse grids on the same processor
subdomain. If two edges are collapsed into the same edge, we add their edge
weights.

4 We repeat the previous step until no further matching is possible. Then, we again
agglomerate the graph on a smaller subset of processors. If we are already on a
single processor and cannot match further, we stop, see Figure 3.11(e) – 3.11(f).

We have obtained a small set of vertices on a single processor. Now, we choose one vertex
u such that it covers a maximal number of processor subdomains and mark it, see Figure
3.12(a). Then, we mark the vertices v and w that were collapsed into u. We recursively
proceed to refine this choice until we have reached the original graph, see 3.12(b) –
3.12(c). Now on each processor subdomain, the candidate coarse grid represented by
the marked vertex is selected as a coarse grid for this processor subdomain and we
obtain a coarse grid for the global discretization domain as depicted in Figure 3.12(d).
During this refinement process, we must ensure that one vertex is marked per processor
subdomain on each level of the graph hierarchy. In consequence, this will guarantee
that after finishing the refinement, we have selected one candidate coarse grid on each
processor subdomain. In our implementation, we proceed as follows: At each step in
the refinement process where more processors are involved as in the previous step (i.e. a
processor agglomeration was performed in the matching phase), we determine if a vertex
is marked on each processor. If this is not the case, we mark the vertex that is most
heavily coupled to the marked vertices on neighboring processors.

Numerical Results We conclude this section with an example computed on the JUBL
supercomputer at the Forschungszentrum Jülich. This IBM BlueGene/L cluster, which
was in service between 2005 and 2008, consisted of 8192 compute nodes which were
connected by a three-dimensional torus for local communication and a tree-shaped net-
work for collective communication. JUBL performed 36.49 Tera-flop/s in the LINPACK

110

3.5. Outlook: CGC-ML coarsening

Figure 3.13.: Distribution of the diffusion coefficient for problem (3.6).

benchmark and held the 8th position on the Top 500 list in June 2006.
Each compute node contained two Power 440 processors running at a clock speed of
700MHz and provided 512MB of memory. This small amount of memory necessitates
algorithms with little memory overhead, which can be a strong limitation in the case of
parallel AMG especially for three-dimensional computations.
We consider an elliptic PDE on a unit cube,

−∇ · a(x, y, z)∇u = f (3.6)

with Dirichlet boundary conditions. The value of the coefficient a(x, y, z) is depicted in
Figure 3.5. We discretize the PDE on a finite difference mesh with 31× 31× 31 points
per processor subdomain. We compare the CGC-ML algorithm with the original CGC
algorithm as well as the HMIS parallel coarsening algorithm (Algorithm 3.8). In the
latter case, we use a hybrid coarsening process where the CLJP algorithm is employed
on the coarsest levels of the AMG hierarchy. For the CGC-ML algorithm, we merged
eight processor subdomains per agglomeration step. To limit the memory overhead, we
do not include the second stage of the Ruge-Stüben coarsening process in the CGC and
CGC-ML cases, and we use modified classical interpolation (see Section 2.8.4). A (more
stable) long-range interpolation scheme was not feasible due to the memory limitations
– even if we truncated the interpolation operator. As strength threshold in (2.29), we
set α = 0.25. On each level of the multigrid hierarchy, we employ a hybrid Gauss-
Seidel/Jacobi smoother.
In this example, we use AMG as a preconditioner for the conjugate gradient method.
We start the iterations with a zero initial vector u0 and stop if the residual rit = f−Auit
drops below 10−8 measured in the l2-norm.

As can be seen from Table 3.1, the CGC-ML algorithm yields a significant run-time
benefit compared to the original CGC algorithm. The HMIS coarsening scheme is even
faster and produces less memory overhead than the CGC variants (Table 3.2). However,
the grids produced by this method are too sparse to provide an accurate interpolation
of the smooth error. In consequence, the iterations needed to reduce the residual below
1e − 8 increase for a larger problem size as can be seen from Table 3.4. For 1728 and
4096 processors (372 × 372 × 372 and 496 × 496 × 496 unknowns respectively), 1000

111

3. Parallel AMG

2−1.00 22.00 25.00 28.00 211.00

100.00

101.00

102.00

103.00

np

HMIS-CLJP
CGC

CGC-ML

(a) Setup time in seconds.

2−1.00 22.00 25.00 28.00 211.00
2.60

2.80

3.00

np

HMIS-CLJP
CGC

CGC-ML

(b) Operator complexity.

2−1.00 22.00 25.00 28.00 211.00

100.00

101.00

np

HMIS-CLJP
CGC

CGC-ML

(c) Solution time in seconds.

2−1.00 22.00 25.00 28.00 211.00
0.00

50.00

100.00

150.00

np

HMIS-CLJP
CGC

CGC-ML

(d) Iterations.

Figure 3.14.: Numerical Results for problem (3.6)

112

3.5. Outlook: CGC-ML coarsening

np HMIS-CLJP CGC CGC-ML
1 0.70 0.66 0.66
8 1.32 1.58 1.59

64 1.61 2.97 2.70
216 1.88 3.27 3.03
512 1.82 4.83 3.30

1,728 1.87 75.20 6.91
4,096 2.07 529.00 19.30

Table 3.1.: Setup time in seconds

np HMIS-CLJP CGC CGC-ML
1 2.64 2.64 2.64
8 2.71 2.78 2.77

64 2.75 2.95 2.88
216 2.70 2.86 2.86
512 2.71 2.88 2.88

1,728 2.73 3.07 2.97
4,096 2.72 2.91 2.92

Table 3.2.: Operator Complexity

np HMIS-CLJP CGC CGC-ML
1 1.11 1.11 1.11
8 2.10 2.56 2.76

64 6.76 4.69 4.94
216 9.13 5.22 6.03
512 16.10 6.64 6.46

1,728 − 28.30 19.00
4,096 − 29.80 27.60

Table 3.3.: Solution time in seconds

np HMIS-CLJP CGC CGC-ML
1 12 12 12
8 20 24 26

64 61 36 41
216 77 39 44
512 144 49 44

1,728 − 151 101
4,096 − 123 83

Table 3.4.: Iterations

Table 3.5.: Numerical Results for problem (3.6).

iterations were not sufficient to reach this threshold. The CGC variants also need more
iterations here, but the increase is less severe. In turn, the solution phase CPU timings
for the CGC variants are lower than those of the HMIS-coarsened AMG hierarchy, see
Table 3.3.

113

4. AMG for Saddle Point Systems

In the following, we consider saddle point systems of the shape

K :

(
V
W

)
→
(
V
W

)
, Kx = y (4.1)

where

K =

(
A BT

B −C

)
, x =

(
u
p

)
and y =

(
f
g

)
(4.2)

Here, A is a symmetric positive semi-definite N ×N -matrix, C is a symmetric positive
semi-definite M ×M matrix and B ∈ RM×N . As an important class of saddle point
systems arises within the context of fluid dynamics, we will refer to u ∈ V as the velocity
component(s) and p ∈ W as the pressure component.
This chapter is organized as follows. First, in Section 4.1 we introduce Stokes’ equations
as a model saddle point problem and discuss conditions for the existence and uniqueness
of a solution. We proceed with finite difference and finite element discretizations for
saddle point problems in Section 4.2. Classical iterative solution methods for saddle
point problems are described in Section 4.3. In Section 4.4 we address several previous
approaches to the construction of AMG for saddle point problems, before we start in-
troducing our saddle point AMG. We first give a detailed description of our smoother
in Sections 4.5–4.6. Afterwards, we discuss the construction of stable (invertible) pro-
longation and coarse grid operators in Sections 4.7–4.10. We conclude this chapter with
the overall setup procedure for saddle point AMG, see Section 4.11.

4.1. Stokes equations

The Stokes problem is one of the most-known systems of partial differential equations
(PDEs) with saddle point structure. It models the velocity u and the pressure p of a
viscous flow in a domain Ω ⊂ Rd (d = 2 or d = 3) subject to an external force f,

−∇ · (∇u) +∇p = f (4.3)

−∇ · u = 0 (4.4)

subject to to the boundary conditions

u(x) = r(x) for all x ∈ ΓD (4.5)

∂u

∂n
(x)− np(x) = s(x) for all x ∈ ΓN (4.6)

115

4. AMG for Saddle Point Systems

where ∂Ω = ΓD∪̇ΓN and n denotes the outer normal vector on ΓN . Note that the ve-
locity u is a vector-valued function of dimension d, while p has scalar values.
The equations (4.3)–(4.4) have a unique solution (u, p) only if both the Dirichlet bound-
ary ΓD and the Neumann boundary ΓN are non-trivial. However, in many applications
we have ∂Ω = ΓD, i.e. the velocity of the fluid is prescribed on the whole boundary. In
this case, while there is still a unique solution for the velocity, the pressure is unique up
to a constant c, i.e. for any solution (u∗, p∗) of (4.3)–(4.4), (u∗, p∗ + c) is also a solution
for any constant function c ∈ C(Ω).
The Stokes problem belongs to the class of saddle point problems. The solution of (4.3)–
(4.4) is not a minimizer of a quadratic functional, but represents a saddle point. In the
following, we give a general formulation of this kind of problems.
We consider the Hilbert spaces V and W as well as the corresponding dual spaces V′ and
W′. Let < ·, · >V×V′ and < ·, · >W×W′ denote the bi-linear forms given by

< u, f >V×V′= f(u) and < p, g >W×W′= g(p),

for all u ∈ V, f ∈ V′, p ∈ W, and g ∈ W′.
Given a linear operator A : V→ V′ and f ∈ V′, we seek the minimizer of

1

2
〈u,Au− f〉V×V′ , (4.7)

but, in contrast to the elliptic case, we need to satisfy a constraint

〈w,Bu− g〉W×W′ = 0 for all w ∈ W, (4.8)

where g ∈ W′ and B : V→ W′ is a linear operator. The adjoint operator B′ : W→ V′ is
defined by < v,B′w >V×V′=< w,Bv >W×W′ for all v ∈ V, w ∈ W.
We introduce the Lagrange multiplier p ∈ W to combine (4.7) and (4.8) into a single
Lagrange functional

L(u, p) =
1

2
〈u,Au− f〉V×V′ + 〈p,Bu− g〉W×W′ . (4.9)

It is easy to see that L(u, p) is not bounded. Hence, a solution (u∗, p∗) of

〈v,Au + B′p− f〉V×V′ = 0 for all v ∈ V

〈w,Bu− g〉W×W′ = 0 for all w ∈ W

is only a saddle point (not a minimizer) of L(u, p), i.e. we have

L(u∗, p) ≤ L(u∗, p∗) ≤ L(u, p∗)

for all u ∈ V, p ∈ W, see [Bra97] or [Hac86] for details.

116

4.1. Stokes equations

Existence and uniqueness of a solution As in the case of elliptic partial differential
equations, we formulate necessary and sufficient conditions for the existence and unique-
ness of a solution to (4.7)–(4.8)
Let the spaces V and W be equipped with norms ‖ · ‖V and ‖ · ‖W. We consider the
system of equations (

A B′

B 0

)(
u
p

)
=

(
f
g

)
. (4.10)

Furthermore, we define the nullspace of B,

V0 = {v ∈ V : Bv = 0}. (4.11)

As V0 is a closed set, we can decompose V = V0 ⊕ V⊥, where V⊥ = V ⊥0 . For the dual
space V′ we have V′ = V′0 ⊕ V′⊥, where

V′0 = {v′ ∈ V′ : 〈v′, v〉 = 0 for all v ∈ V⊥},
V′⊥ = {v′ ∈ V′ : 〈v′, v〉 = 0 for all v ∈ V0}.

Using these subspaces, we can decompose A,

A =

(
A00 A0⊥
A⊥0 A⊥⊥

)
where

A00 : V0 → V′0, A0⊥ : V⊥ → V′0, A⊥0 : V0 → V′⊥, A⊥⊥ : V⊥ → V′⊥.

Theorem 4.1 ([Hac86], Theorem 12.2.7) The saddle point system (4.10) has a unique
solution for all f ∈ V ′ if and only if the inverses

A−1
00 : V′0 → V0 and (B′)

−1
: V′⊥ → W (4.12)

exist.

In terms of the norms ‖ · ‖V, ‖ · ‖W, (4.12) can be expressed as [Hac86]

inf
06=u0∈V0

sup
0 6=v∈V

〈Au0, v〉
‖u0‖V‖v‖V

≥ a > 0, (4.13)

inf
06=p∈W

sup
0 6=v∈V

〈B′w, v〉
‖p‖W‖v‖V

≥ c > 0. (4.14)

The first inequality is fulfilled if the bilinear form 〈A·, ·〉 is elliptic w.r.t. V or V0, see
[Hac86], Corollary 12.2.10. The latter inequality is called Ladyzenskaya-Babus̆ka-Brezzi
(LBB) condition or inf-sup-condition [Bre74]. In the following sections, we will see that
this condition is not only required in the continuous case, but also plays an important
role to show the stability of a discretization as well as the stability of coarse grid systems
within a saddle point multigrid hierarchy.

117

4. AMG for Saddle Point Systems

Weak formulation In this paragraph, we shortly outline the weak formulation of the
Stokes problem. As ansatz and test spaces for the velocity we use

H1
E(Ω)d := {v ∈ H1(Ω)d : v|ΓD = r} (4.15)

H1
E0

(Ω)d := {v ∈ H1(Ω)d : v|ΓD = 0}. (4.16)

while for the pressure we use L2(Ω). Now, the weak form of (4.3)–(4.4) together with
the boundary conditions (4.5)–(4.6) reads as follows.
Find u ∈ H1

E(Ω)d and p ∈ L2(Ω) such that∫
Ω

∇u : ∇v −
∫

Ω

p∇ · v =

∫
Ω

f · v +

∫
ΓN

s · v for all v ∈ H1
E0

(Ω)d, (4.17)∫
Ω

r∇ · u = 0 for all r ∈ L2(Ω), (4.18)

where ∇u : ∇v =
∑d

i=1∇ui · ∇vi is the component-wise scalar product.
We now formulate the invertibility conditions for (4.17)–(4.18). To this end, we restrict
ourselves to the case of zero boundary conditions on ΓD. We use V := H1

E0
(Ω)d as

ansatz space and note that H1
E0

(Ω)d ⊂ V′. From the theory of elliptic partial differential
equations, we know that

a : H1
E0

(Ω)d ×H1
E0

(Ω)d → R, a(u, v) :=

∫
Ω

∇u : ∇v

is continuous and coercive over H1
E0

(Ω)d ×H1
E0

(Ω)d, hence it follows that (4.13) holds.
It remains to formulate the inf-sup condition (4.14). Here, we must distinguish between
two cases depending on the boundary conditions (4.5)–(4.6).
In the case of ∂Ω = ΓD, the pressure solution is unique only up to a constant. This is
reflected by the definition of W,

W :=

{
p ∈ L2(Ω) :

∫
Ω

p = 0

}
,

equipped with the usual L2-norm. By this definition, the only constant function in W is
identical to zero. Otherwise, if ΓN 6= ∅, then we set W = L2(Ω). The inf-sup condition
reads

inf
0 6=p∈W

sup
06=v∈H1

E0
(Ω)d

|b(v, p)|
‖p‖L2(Ω)‖v‖H1

E0
(Ω)d

≥ c > 0 (4.19)

where the inner product b(v, p) : H1
E0

(Ω)d × L2(Ω)→ R is defined by

b(v, p) :=

∫
Ω

p∇ · v.

We refer to [Hac86] and [Bra97] for a more detailed description as well as for sufficient
criteria to establish the LBB condition (4.19).

118

4.2. Discretization of Saddle Point PDEs

(a) Velocity stencil (b) Pressure derivatives (c) Checkerboard instability

Figure 4.1.: Finite difference discretization grids for the Stokes problem ∆u = f on the
square [0, 1]2.

4.2. Discretization of Saddle Point PDEs

In this section, we outline various finite difference (FD) and finite element (FE) dis-
cretization schemes for saddle point problems, especially for the Stokes’ equation. As
in the continuous case, it is important that the discrete operators A and B satisfy an
inf-sup condition (4.14). Moreover, in the case of a non-trivial Neumann boundary ΓN ,
the matrix BT should have full rank, while in the case of Dirichlet boundary conditions
everywhere the kernel of BT should just represent the constant pressure, which in most
cases means that the kernel of BT is spanned by a constant vector. Unfortunately, the
most obvious discretization schemes are not suitable.

4.2.1. Finite Difference Discretization

We start with finite difference discretizations. For sake of simplicity, let us assume
Ω = (0, 1)d. We choose a mesh width h < 1 and cover Ω with an equidistant grid with
n+ 1 points per spatial dimension (where n = 1

h
),

Ωh :=
{
x = (x1, . . . , xd)

T ∈ Ω : xi = ji · h, ji ∈ {0, . . . , n}
}
. (4.20)

In the following, we assume ∂Ω = ΓD, i.e. we only have Dirichlet boundary conditions.
A first approach is to discretize the quantities u and p at the grid points in Ωh, i.e. in
the case of d = 2 we set

ui,j := u1(ih, jh), vi,j := u2(ih, jh), pi,j := p(ih, jh),

fi,j := f1(ih, jh), gi,j := f2(ih, jh)

To achieve an appropriate accuracy, we employ a central difference scheme for the pres-
sure and the usual 5 point (two dimensions) or 7 point (three dimensions) FD stencil

119

4. AMG for Saddle Point Systems

for the velocity. For example, in two spatial dimension we obtain the following algebraic
equations for each i, j = 1, . . . , n− 1 (see Figure 4.1(a)–4.1(b)),

1

h2
(4ui,j − ui,j−1 − ui−1,j − ui+1,j − ui,j+1) +

1

2h
(pi+1,j − pi−1,j) =fi,j, (4.21)

1

h2
(4vi,j − vi,j−1 − vi−1,j − vi+1,j − vi,j+1) +

1

2h
(pi,j+1 − pi,j−1) =gi,j, (4.22)

1

2h
(ui+1,j − ui−1,j + vi,j+1 − vi,j−1) =0. (4.23)

Boundary entries (i.e. u0,j, un,j, ui,0,, ui,n), v0,j, vn,j, vi,0,, v1,n) are replaced by their
respective values r and transferred to the right hand side, such that these are no longer
contained in the vectors u and v.
Note that the discretization of the derivatives ∂p

∂x
and ∂p

∂y
at (xi, yj) does not involve the

discrete value pi,j, but these derivatives are computed from the neighbors pi+1,j, pi−1,j,
pi,j+1, pi,j−1. Likewise, the discrete divergence (4.23) only employs the values ui+1,j,
ui−1,j, vi+1,j, and vi−1,j. In matrix-vector notation, we obtain a linear systemA1 0 BT

1

0 A2 BT
2

B1 B2 0

uv
p

 =

fg
0

 (4.24)

where the matrix blocks A1 and A2 are obtained from the discretization stencil

1

h2

 −1
−1 4 −1

−1


while the BT

1 and BT
2 parts are originated from the stencils

1

2h

[
−1 0 1

]
and

1

2h

 1
0
−1

 ,
respectively.
We now look at the equations at the point (i+ 1, j). They take the form

1

h2
(4ui+1,j − ui+1,j−1 − ui,j − ui+2,j − ui+1,j+1) +

1

2h
(pi+2,j − pi,j) =fi+1,j,

1

h2
(4vi+1,j − vi+1,j−1 − vi,j − vi+2,j − vi+1,j+1) +

1

2h
(pi+1,j+1 − pi+1,j−1) =gi+1,j,

1

2h
(ui+2,j − ui,j + vi+2,j − vi,j) =0.

We see that the derivative ∂p
∂x

is discretized using the values at i, j and i+2, j and that the
divergence term involves ui+2,j, ui,j, vi+2,j, and vi,j, i.e. in comparison to (4.21)–(4.23),
a completely disjoint set of discretization points (and hence discrete values u, v, p) is

120

4.2. Discretization of Saddle Point PDEs

used. The same phenomenon can be observed throughout the whole discrete domain Ωh.
More precisely, any discrete pressure value pi,j is only coupled to pressure values “two
points away”, i.e. pi,j−2, pi−2,j, pi−2,j, and pi,j+2, see Figure 4.1(b). In consequence, the
matrix B can be decomposed into two decoupled parts Bodd and Beven such that (after
re-arrangement of rows and columns),

B =

(
Bodd 0

0 Beven

)
.

Simple observations (consider e.g. (4.21)–(4.23)) show that the kernels of both BT
odd and

BT
even contain the constant value. In consequence, the matrix BT has a two-dimensional

nullspace,

kerBT = span (podd, peven)

where (podd)i,j =

{
1 if i+ j odd

0 if i+ j even

where (peven)i,j =

{
1 if i+ j even

0 if i+ j odd.

This space forms a checkerboard-wise pattern across the domain, see Figure 4.1(c).
Hence, this phenomena is called checkerboard instability.
A remedy against this problem is to use a staggered mesh, i.e. to discretize the velocity

components and the pressure variables at different locations. We describe this technique
in the two-dimensional case here, but it is also applicable to three spatial dimensions
(see e.g. [GDN98]).
As before, we use the mesh Ωh as defined in (4.20), but we now consider it rather as a
union of cells

Ωi,j := {(x, y) ∈ Ω : (i− 1) · h ≤ x ≤ i · h; (j − 1) · h ≤ x ≤ j · h; },

where i, j = 1, . . . , n, see Figure 4.2(a). We discretize the pressure variables at the
centers of these cells,

Ωp :=

{((
i− 1

2

)
h(

j − 1
2

)
h

)
, i, j = 1, . . . , n

}
,

and let pij = p
((
i− 1

2

)
h,
(
j − 1

2

)
h
)
. The velocity component u (x-direction) and the

first component of the right hand side are discretized at the centers of the interfaces
between two adjacent cells in x-direction,

Ωu :=

{(
ih

(j − 1
2
)h

)
, i = 0, . . . , n; j = 1, . . . , n

}
uij = u

(
ih,

(
j − 1

2

)
h

)
,

fij = f1

(
ih,

(
j − 1

2

)
h

)
.

121

4. AMG for Saddle Point Systems

(a) Staggered grid with point (i, j) and
cell Ω(i,j)

(b) Velocity stencil for ∆u
(
ih, j − 1

2h
)

(c) Pressure difference for ∂p
∂x

(
ih, j − 1

2h
)

(d) Velocity stencil for ∆v
(
i− 1

2h, j
)

(e) Pressure difference for ∂p
∂y

(
i− 1

2h, j
)

(f) Discrete divergence for the cell Ω(i,j)

Figure 4.2.: Staggered grid discretization for the Stokes problem ∆u = f on the square
[0, 1]2.

122

4.2. Discretization of Saddle Point PDEs

Likewise, the velocity component v and the right hand side component f2 are discretized
at the interfaces between two adjacent cells in y-direction,

Ωv :=

{(
(i− 1

2
)h)

jh

)
, i = 1, . . . , n; j = 0, . . . , n

}
vij = v

((
i− 1

2

)
h, jh

)
,

gij = f2

((
i− 1

2

)
h, jh

)
.

For each of these sets, we define the interior by

Ω◦u := Ωu ∩ (0, 1)2, Ω◦u := Ωv ∩ (0, 1)2,

i.e. we take away the first and the last points of Ωu in x-direction, and the first and last
points in y-direction of Ωv .
We now have exactly one pressure value per cell Ωi,j. The pressure derivatives ∂p

∂x
and

∂p
∂y

are now approximated by the differences between two adjacent cells (Figures 4.2(c)

and 4.2(e)),

∂p

x
≈ pi+1,j − pi,j

h
for i = 1, . . . , n− 1, j = 1, . . . , n,

∂p

y
≈ pi,j+1 − pi,j

h
for i = 1, . . . , n, j = 1, . . . , n− 1,

which shows that these finite difference terms can be seen as central differences for the
pressure derivative at the points in Ω◦u and Ω◦v, respectively.
We can now discretize the impulse equations. We obtain one scalar equation for all
i = 1, . . . , n− 1, j = 1, . . . , n (Figure 4.2(b)),

1

h2
(4ui,j − ui,j−1 − ui−1,j − ui+1,j − ui,j+1) +

1

h
(pi+1,j − pi,j) = fi,j, (4.25)

and one equation for each i = 1, . . . , n, j = 1, . . . , n− 1 (Figure 4.2(d)),

1

h2
(4vi,j − vi,j−1 − vi−1,j − vi+1,j − vi,j+1) +

1

h
(pi,j+1 − pi,j) = gi,j, (4.26)

Finally, the continuity term is discretized per cell (i, j = 1, . . . , n) (Figure 4.2(f)),

1

2h
(ui,j − ui−1,j + vi,j − vi,j−1) = 0.

The latter equation can be seen as an incompressibility constraint for each cell: It
requires that the sum of all ingoing and outgoing fluid matter is equal to zero.
It remains to eliminate the boundary entries from the equations above. The treatment
of Dirichlet boundary conditions is straightforward for u if x = 0 or x = 1, and for v if

123

4. AMG for Saddle Point Systems

y = 0 or y = 1. In other cases, some extrapolation is needed. For example, the Dirichlet
boundary value r(x, 0) for u at y = 0 is used to replace ui,0 by linear extrapolation,

ui,0 = 2r(ih, 0)− ui,1.

Substituting into (4.25) we obtain

1

h2
(5ui,1 − ui−1,1 − ui+1,1 − ui,2) +

1

h
(pi+1,1 − pi,1) = fi,1.

Regarding Neumann boundary conditions, let us assume that these are imposed for
x = 1. We discretize (4.6) by

1

2h
(un+1,j − un−1,j)−

1

2
(pn+1,j + pn,j) = s1(1, j),

1

2h
(vn,j − vn−1,j) = s2(1, jh),

and insert these into (4.25)–(4.26) (here, (4.25) is also needed for i = n). We obtain for
all j = 1, . . . , n− 1,

1

h2
(4un,j − un,j−1 − 2un−1,j − un,j+1)− 2

h
pn,j = fn,j +

2

h
s1(1, j),

1

h2
(3vn,j − vn,j−1 − vn,j − vn,j+1) +

1

h
(pn,j+1 − pn,j) = gn,j +

2

h
s2(1, jh).

Note that we can rescale the first equation by 0.5 to obtain a symmetric operator A (if
all of the boundary at x = 1 is included in ΓN).
We again obtain a linear system of the form (4.24)A1 0 BT

1

0 A2 BT
2

B1 B2 0

uv
p

 =

fg
0

 ,

but the stencils for the BT
1 and BT

2 blocks are different. They now read

1

h

[
−1 1

]
and

1

h

[
1
−1

]
.

To formulate the inf-sup condition for the two-dimensional case, we restrict ourselves
again to the case of zero Dirichlet boundary conditions on the whole of ∂Ω. We define
three mesh-dependent inner products [SS97],

(p, q)0,Ωp
:= h2

n∑
i,j=1

pi,j · qi,j,

(u, u′)1,Ωu
:=

n∑
i,j=1

(ui,j − ui−1,j) · (u′i,j − u′i−1,j) + (ui,j − ui,j−1) · (u′i,j − u′i,j−1),

(v, v′)1,Ωv
:=

n∑
i,j=1

(vi,j − vi−1,j) · (v′i,j − v′i−1,j) + (vi,j − vi,j−1) · (v′i,j − v′i,j−1).

124

4.2. Discretization of Saddle Point PDEs

These bilinear forms and their induced norms ‖·‖0,Ωp , ‖·‖1,Ωu , ‖·‖1,Ωv , can be interpreted
as mesh-dependent counterparts of the L2 and H1 inner products and norms. We define
L2(Ωp) as the space of all discrete functions over Ωp,

L2(Ωp) := {p : Ωp → R}

Furthermore, we define the space of all functions with zero mean over Ωp,

L2
0(Ωp) = {p ∈ L2(Ωp) : (p, 1)0 = 0}

and the spaces H1
0 (Ωu) and H1

0 (Ωv),

H1
0 (Ωu) := {u : Ωu → R, u|Γ = 0},

H1
0 (Ωv) := {v : Ωv → R, v|Γ = 0}.

Theorem 4.2 ([SS97],Theorem 4) There exists a positive constant c, which is indepen-
dent of h, such that

sup
u∈H1

0 (Ωu), v∈H1
0 (Ωv)

(B1u+B2v, p)
2
0,Ωp

‖u‖2
1,Ωu

+ ‖v‖2
1,Ωv

≥ c‖p‖2
0,Ωp for all p ∈ L2

0(Ωp). (4.27)

Straightforward calculations show that (B1u+B2v, p)
2
0,Ωp

= h4
(
uTBT

1 + vTBT
2

)
p and

‖u‖2
1,Ωu

+ ‖v‖2
1,Ωv

= h2
(
uTA1u+ vTA2v

)
. Hence we obtain, in terms of the discrete al-

gebraic vectors u, v, and p and operators (matrices) A =

(
A1 0
0 A2

)
and B =

(
B1 B2

)
,

sup
u∈H1

0 (Ωu), v∈H1
0 (Ωv)

(
(uT , vT)BTp

)2

(uT , vT)A

(
u
v

) ≥ c‖p‖2
E for all p ∈ L2

0(Ωp). (4.28)

where ‖ · ‖E denotes the Euclidean norm.

4.2.2. Finite Elements for Saddle Point Systems

We now turn ourselves to finite element (FE) methods for saddle point problems. As in
the case of finite differences, a straightforward extension of scalar discretizations is not
sufficient to achieve stability and thus invertibility of the algebraic system.
First, we define discrete (finite-dimensional) spaces Vh ⊂ V and Wh ⊂ W and the
corresponding bases,

Vh := span {φi : i = 1, . . . , N} (4.29)

Wh := span {ψi : i = 1, . . . ,M} . (4.30)

125

4. AMG for Saddle Point Systems

The variables u and p can be represented as

u1 =
N∑
i=1

uiφi, p =
M∑
i=1

wiψi.

From the weak formulation (see Section 4.1) we obtain a linear system of equations,

N∑
j=1

uja(φi, φj) +
M∑
j=1

pjb(φi, ψj) = 〈f, φi〉 for all i = 1, . . . , N, (4.31)

N∑
j=1

ujb(φj, ψi) = 〈g, ψi〉 for all i = 1, . . . ,M, (4.32)

or, in matrix-vector notation, (
A BT

B 0

)(
u
p

)
=

(
f
g

)
where the entries of A = (aij) ∈ RN×N and B = (bij) ∈ RM×N are given by

aij =a(φi, φj) =

∫
Ω

∇φi : ∇φj for all i, j = 1, . . . ,M,

bij =b(φj, ψi) =

∫
Ω

ψi∇ · φj for all i = 1, . . . ,M, j = 1, . . . , N,

and u = (uj)
N
j=1, p = (pj)

M
j=1, f = (fi)

N
i=1, g = (gi)

M
i=1, where

fi =

∫
Ω

φif, gi =

∫
Ω

ψig.

Note that the φi are vector-valued functions, i.e. they map into a d-dimensional space.
In the most common cases however we choose to have distinguished basis functions per
dimension, i.e.

φi =


0
...
ϕi
...
0


where ϕi is a scalar-valued function. In consequence, in case of the Stokes equation the
matrix A has no non-zero couplings between different velocity components.

Example 4.1 Let a finite element mesh for the domain Ω = (0, 1)2 be constructed as
in Figure 4.3. We use a lexicographical ordering of the nodes (xj, yj) and construct a
nodal basis {ϕj}nj=1 (i.e. ϕi(xj, yj) = δij for all i, j = 1, . . . , n) where all ϕj are piecewise

126

4.2. Discretization of Saddle Point PDEs

Figure 4.3.: Finite element mesh on the domain Ω = [0, 1]2 with lexicographical node
numbering.

linear functions on the triangles T such that (xi, yi) ∈ T̄ and zero on all other triangles.
Now, we extend these ϕi to a basis for discrete velocity and pressure space,

φi =

(
ϕi
0

)
for i = 1, . . . , 25,

φi =

(
0

ϕi−25

)
for i = 26, . . . , 50,

ψi = ϕi for i = 1, . . . , 25,

Furthermore, we assume that we have imposed Dirichlet boundary conditions on the
whole boundary ∂Ω. In consequence, all degrees of freedom for the velocity variables u
and v vanish on the boundary, hence the corresponding ansatz and test functions can
be removed from the discrete spaces. We obtain

Vh := span {φi : i ∈ {7, 8, 9, 12, 13, 14, 17, 18, 19, 32, 33, 34, 37, 38, 39, 42, 43, 44}}

Wh := span {ψi : i = 1, . . . , 25} ∩ {
∫

[0,1]2

25∑
i=1

wiψi = 0}.

Now , the discrete pressure space Wh has dimension 24 (25 degrees of freedom at the
nodes minus one for the constant function), while the velocity space Vh only has 18
degrees of freedom (9 for each component, as boundary values are already eliminated).
Hence, the matrix BT cannot be injective and the matrix(

A BT

B 0

)
is singular.

To ensure a stable (invertible) system, we introduce discrete counterparts of (4.13)–
(4.14), i.e. we require that these conditions hold for discrete spaces Vh and Wh and

127

4. AMG for Saddle Point Systems

discrete operators A and B,

inf
0 6=u0∈Vh,0

sup
06=v∈Vh

〈Au0, v〉
‖u0‖Vh‖v‖Vh

≥ ah > 0, (4.33)

inf
06=p∈Wh

sup
06=v∈Vh

〈B′w, v〉
‖p‖Wh

‖v‖Vh
≥ bh > 0. (4.34)

Here Vh,0 is defined analogously to (4.11),

Vh,0 := {v ∈ Vh : Bv = 0}.

Theorem 4.3 ([Hac86], Theorem 12.3.6) Let a(·, ·) : V × V→ R and b(·, ·) : W × V→
R be continuous,

a(u, v) ≤ Ca‖u‖V‖v‖V, b(p, v) ≤ Cb‖p‖W‖v‖V

f ∈ V′ and g ∈ W′, and dimVh <∞. Brezzi’s conditions (4.33)–(4.34) are sufficient and
necessary for the existence of a unique solution for the discrete problem (4.31)–(4.32).
The discrete solution (u, p) satisfies(

‖u‖2
V + ‖p‖2

W

) 1
2 ≤ Ch

(
‖f‖2

V′ + ‖g‖2
W′

) 1
2 ,

where Ch depends on ah and ch as well as Ca and Cb. If for a sequence of discretizations
we have

ah ≥ a > 0, bh ≥ b > 0

for all parameters h, then the discretization is called stable and the Ch are bounded,
Ch < C for all h.

In the case of Stokes’ equation with Dirichlet boundary conditions, we need Vh ⊂
(H1

0 (Ω))2 and Wh ⊂ L2
0(Ω). For bounded Ω, (4.33) is satisfied. The inf-sup condition

(4.34) translates into

inf
06=p∈Wh

sup
06=v∈Vh

|b(p, v)|
‖p‖L2(Ω)‖v‖H1(Ω)

≥ bh > 0. (4.35)

Alternatively, we can use a higher order ansatz for the pressure, Wh ⊂ H1(Ω). Then, if
Ω is a Lipschitz bounded domain, the Poisson problem has H2-regularity and if we had
an approximation property of the form

inf{‖u− uh‖H1(Ω) : uh ∈ Vh} ≤ CAh‖u‖H2(Ω) for all u ∈ H2(Ω) ∩H1
0 (Ω)

as well as an inverse inequality

‖uh‖H1(Ω) ≤ C1h
−1‖uh‖L2(Ω) for all uh ∈ Vh,

128

4.2. Discretization of Saddle Point PDEs

(a) P1 − P1 element (b) P1isoP22 − P1 el-
ement

(c) Bubble element (d) Crouzeix-Raviart
element

Figure 4.4.: Triangular reference elements for saddle point problems. The black dots
denote degrees of freedom for velocity, the blue dots denote pressure degrees
of freedom.

then the following condition is sufficient for (4.35), see [Hac86], Theorem 12.3.8,

inf
0 6=p∈Wh

sup
06=v∈Vh

|b(p, v)|
‖p‖H1(Ω)‖v‖L2(Ω)

≥ bh > 0. (4.36)

In the following, we introduce some finite element methods that fulfill one of these inf-
sup conditions. One idea is to increase the number of degrees of freedom for the velocity
components, while another approach is to introduce an additional stability term. Beside
the techniques described in the following, there are many more approaches to create
stable finite element methods for saddle point systems. We refer to [GS98] and [ESW05]
for a detailed introduction. We use the notation from [Wab03].

1 The first idea is to replace the piecewise linear ansatz functions for the velocity by
piecewise quadratic bases. We obtain

Vh : piecewise d-dimensional quadratic elements for the triangulation Th,
Wh : piecewise linear elements for the triangulation Th.

(4.37)
This approach is called Taylor-Hood element, or P2 − P1 element, i.e. quadratic
ansatz functions for velocity and linear ansatz functions for pressure.

2 An alternative version of the Taylor-Hood element is denoted by P1isoP2−P1. We
uniformly refine the triangulation Th to obtain the triangulation Th

2
(new nodes

are created at the midpoints of each edge , see Figure 4.4(b)) and use this refined
triangulation for the piecewise linear discretization of the velocity only.

Vh : piecewise d-dimensional linear elements for the triangulation Th
2
,

Wh : piecewise linear elements for the triangulation Th.
(4.38)

3 Another approach is to enrich the space Vh by one bubble function per triangle
T ∈ T . For example, in two spatial dimensions we define,

ϕbubble(x, y) := xy(1− x− y)

129

4. AMG for Saddle Point Systems

on the reference element {x, y ≥ 0, x + y ≤ 1} and ϕbubble = 0 else. The discrete
spaces Vh and Wh for this so-called MINI element (Figure 4.4(c)) are then defined
by

V 1
h : linear combinations of piecewise scalar linear elements

and bubble functions for the triangulation Th,

Vh :=
(
V 1
h

)d
, (4.39)

Wh : piecewise linear elements for the triangulation Th.

For each triangle T , the scalar products
∫
ϕbubble,Tϕi are nonzero only for those

ϕi that correspond to the nodes of the triangle T . Hence, it is easy to eliminate
the degrees of freedom that belong to the bubble function and to obtain a linear
system for the nodal functions only. This introduces an additional nonzero matrix
block −C in the lower right part of K.

4 The Crouzeix-Raviart element or P nc
1 − P0 element employs a non-conforming

ansatz for the velocity, i.e. Vh 6⊂ H1(Ω)d.

V 1
h : {vh ∈ L2(Ω)d : vh is piecewise linear per triangle τ ∈ Th,
vh is continuous at the midpoint of all element edges (faces) }

Vh :=
(
V 1
h

)d
(4.40)

Wh : piecewise constant functions per triangle τ ∈ Th.

In contrast to the elements described above, the degrees of freedom for the velocity
are determined at the midpoints of the edges (faces) of the element. The pressure
is determined at the center of the triangle, see Figure 4.4(d). In an alternative
definition of this elements, the velocity basis is constructed such that all vh ∈ Vh
are divergence-free per element τ ∈ Th and the pressure component is eliminated,
see [Bra97].

Theorem 4.4 ([Hac86], Theorem 12.3.11 and Theorem 12.3.12) Let Th be a quasi-
uniform triangulation for the polygonally bounded domain Ω and let Vh andWh be defined
by either (4.37), (4.38), or (4.39). Then, the stability criterion (4.36) is satisfied. If, in
addition, Ω is Lipschitz bounded and the Poisson problem is H2-regular, then also (4.35)
holds.

Instead of adding degrees of freedom to the velocity space, we can introduce an additional
stability term into the lower right component of the matrix, i.e.

K =

(
A BT

B −C

)
,

where C ∈ RM×M is a symmetric positive semi-definite matrix. In the case of ∂Ω =
ΓD, the (discretization of the) constant vector must lie within the nullspace of C. For

130

4.2. Discretization of Saddle Point PDEs

a uniform grid, it is possible to use a discrete Laplacian (with Neumann boundary
conditions), i.e. instead of (4.18) we discretize

−
N∑
j=1

∫
Ω

ψi∇ · φj − βh2

M∑
j=1

∫
Ω

∇ψi∇ψj = 0 for all i = 1, . . . ,M. (4.41)

This stabilization technique however involves a parameter β that needs to be carefully
chosen. Moreover, in the case of non-uniform meshes the geometry of the mesh must
be reflected in the Laplacian (by introducing some anisotropy). A parameter-free and
more robust alternative is given by [BDG06],

Cij :=

∫
Ω

(ψi − Πψi, ψj − Πψj), (4.42)

where Π is the projection on the space of functions that are constant on each element.
In other words, C is a mass matrix for the basis {ψj}M=1 minus an averaging operator.
The stabilization techniques (4.41) and (4.42) can be applied not only to triangular
(2D) or tetrahedral (3D) elements (P1−P1 elements), but also to rectangular and brick
elements (Q1 −Q1-elements).

Lemma 4.1 ([BDG06], Corollary 2.4) Let Vh and Wh given by

Vh :=
({
v ∈ C0(Ω) : v|T ∈ P1(T) for all T ⊂ T

}
∩H1

0 (Ω)
)d

Wh :=
{
v ∈ C0(Ω) : v|T ∈ P1(T) for all T ⊂ T

}
∩ L2

0(Ω),

in the case of simplicial elements, or,

Vh :=
({
v ∈ C0(Ω) : v|T = v̂ ◦ F−1; v̂ ∈ Q1(Tref)

}
∩H1

0 (Ω)
)d

Wh :=
{
v ∈ C0(Ω) : v|T = v̂ ◦ F−1; v̂ ∈ Q1(Tref)

}
∩ L2

0(Ω)

in the case of quadrilateral and hexahedral elements. Here, P1(T) denotes the space of
all linear polynomials on T and Q1(Tref) denotes the space of all polynomials on the
reference element Tref whose degree does not exceed 1 in each coordinate direction, and
F : Tref → T is a bilinear or trilinear mapping. Furthermore, let the corresponding
Poisson problem be H2-regular. Then, there exist constants c1 and c2 independent on h
such that the weak inf-sup condition

sup
v∈V

∫
Ω
p∇ · v

‖v‖H1(Ω)d
≥ c1‖p‖L2(Ω) − c2‖(I − Π)p‖L2(Ω) for all p ∈ Wh (4.43)

holds.

We see that the stability matrix C appears on the right hand side of the modified inf-sup
condition (4.43). It remains to show that this condition is also sufficient for the solution
of the discrete problem Kx = y.

131

4. AMG for Saddle Point Systems

Theorem 4.5 ([BDG06], Theorem 4.1)

1 If Π : L2(Ω)→ L2(Ω) is continuous (i.e. ‖Πp‖L2(Ω) ≤ cΠ‖p‖L2(Ω for all p ∈ L2(Ω),
we have

(u, p)TK(v, q) ≤ cK
(
‖u‖H1(Ω)d + ‖p‖L2(Ω)

) (
‖v‖H1(Ω)d + ‖q‖L2(Ω)

)
(4.44)

for all (u, p) and (v, q) in Vh ×Wh.

2 Under the assumptions of Lemma 4.1, there exists some constant ζ > 0 such that

sup
06=v∈Vh, 06=q∈Wh

(u, p)TK(v, q)

‖v‖H1(Ω)d + ‖q‖L2(Ω)

≥ ζ
(
‖u‖H1(Ω)d + ‖p‖L2(Ω)

)
(4.45)

for all (u, p) ∈ Vh ×Wh.

The message of this theorem is that the following variational problem is well-posed.
Seek (u, p) ∈ Vh ×Wh such that

uTAv + pTBv + uTBT q − pTCq = vTf + qTg for all (v, q) ∈ Vh ×Wh.

We have re-gained stability by adding an additional term. This idea will also play an
important role to ensure the stability of the coarse level systems for our saddle point
algebraic multigrid method.

4.3. Iterative solvers for Saddle Point Systems

We now discuss several iterative solution methods for saddle point systems. First, we
introduce the generalized minimal residual (GMRES) algorithm, which, in exact arith-
metic, converges within m iterations for any non-singular matrix K ∈ Rm×m. Then, we
describe some iterative solvers and smoothers aimed at saddle point matrices.

4.3.1. GMRES

The generalized minimal residual (GMRES) method [SS86] is a generalization of the
minimal residual (MINRES) method introduced in [PS75]. While the latter requires
that K is symmetric and an optional preconditioner Q must be symmetric positive
definite, the GMRES method is not restricted to this case.
Both methods belong to the class of Krylov subspace methods. A Krylov subspace is
spanned by powers of K applied to the right hand side y,

Kit(K, y) := span{y,Ky, . . . ,Kit−1y}.

After each iteration it, the current approximation xit minimizes the residual over the
Krylov space,

min
xit∈Kit(K,y)

‖y −Kxit‖E.

132

4.3. Iterative solvers for Saddle Point Systems

To this end, the GMRES algorithm constructs an orthonormal basis of Kit(K, y). As the
number of iterations grows, this requires O(it ·m) memory to store all of these vectors.
Hence, in practice one often restarts GMRES, i.e. after a certain amount of steps we
start the iteration with the current approximation xit as the initial guess and abandon
the previously created orthonormal vectors. In Algorithm 4.1 we give the preconditioned
restarted GMRES algorithm.

4.3.2. Uzawa methods

The Uzawa method is a well-known iterative solver for saddle point systems of the form
(4.1). In each iteration, the following equations are solved ([Bra97], algorithm 5.1),

Auit+1 = f −BTpit (4.46)

pit+1 = pit + σ
(
Buit − Cpit − g

)
. (4.47)

Note that the previous velocity iterate uit is not used at all, instead uit+1 is computed to
solve the momentum equation Auit+1 +BTpit = f given the pressure iterate pit. Hence,
for convergence considerations, we only need to monitor the pressure p. We eliminate
uit from (4.47) and obtain

pit+1 = pit + σ
(
BA−1BT + C

) (
p− pit

)
,

where p denotes the pressure part of the exact solution for (4.1). We have convergence
for σ < 2

‖BA−1BT+C‖ , see [Bra97].

A drawback of this method is that we must solve Auit+1 = f − BTpit within each
iteration, i.e. we need a direct or iterative solver, e.g. geometric or algebraic multigrid,
for A.
To circumvent this difficulty, one can choose to solve (4.46) only inexactly, i.e. to replace
(4.46) by

Â
(
uit+1 − uit

)
= f − Auit −BTpit,

where Â is an easily invertible preconditioner for A, e.g. Â = αI for some number α
(Arrow-Hurwicz method [AHU58]).
A symmetric version of the inexact Uzawa method is also possible. The iteration then
reads [Wab03, Zul02]

u∗ = uit + Â−1
(
f − Auit −BTpit

)
(4.48)

pit+1 = pit + Ŝ−1
(
Bu∗ − Cpit − g

)
(4.49)

uit+1 = u∗ − Â−1BTpit+1
(
pit+1 − pit

)
, (4.50)

i.e. we first compute a predictor velocity u∗ and then use it to determine uit+1 and pit+1.
Note that (4.50) can be rewritten as

uit+1 = uit + Â−1
(
f − Auit −BTpit+1

)
. (4.51)

We will further discuss the inexact symmetric Uzawa method in Section 4.5. The additive
version of our saddle point AMG smoother also belongs to this class.

133

4. AMG for Saddle Point Systems

algorithm 4.1 GMRES(k,K,Q,y,x,tol) ([Wab03], algorithm 2.11)

begin
choose initial guess x0;
q1 ← Q−1(y −Kx0); apply preconditioner
z1 ← |q1|;
q1 ← 1

z1
q1;

while |z1| > tol do
for j ← 1 to k do form orthonormal basis

qj+1 ← Q−1Kqj;
for i← 1 to it do

hi,j ← qi · qj+1;
qj+1 ← qj+1 − hi,jqi;

od;
hj+1,j ← |qj+1|;
q1 ← 1

|qj+1|q
j+1;

od
for j ← 1 to k do seek minimizer

d←
√
h2
j,j + h2

j+1,j;

c← hj,j
d

;

s← hj+1,j

d
;

hj,j ← d;
for i← j + 1 to k do

hj,i ← c · hj,i + s · hj+1,i;
hj+1,i ← s · hj,i − c · hj+1,i;

od;
zj ← c · zj;
zj+1 ← s · zj;

od;
αk ← zk

hk,k
;

for i← k to 1 do

αi ← 1
hi,i

(
zi −

∑k
j=i+1 hi,jαj

)
;

od;

xk ← x0 +
∑k

i=1 αiq
i; update iterate

rk ← Q−1(y −Kxk); preconditioned residual
x0 ← xk; r0 ← rk; restart
z1 ← |r0|;
q1 ← 1

z1
r0;

od;
end

134

4.3. Iterative solvers for Saddle Point Systems

4.3.3. SIMPLE

The (semi-implicit method for pressure–linked equations (SIMPLE) method [PS72, Pat80]
is another approach to circumvent the exact solution of (4.46). We determine an auxil-
iary vector u∗ that satisfies

Ãu∗ = f −BTpit,

where Ã is some approximation to A. To obtain the next velocity iterate uit+1, we first
need to compute a pressure correction q∗,

q∗ = −αŜ−1
(
Buit − Cpit − g

)
, (4.52)

Here, Ŝ denotes an approximation to the Schur complement BD−1BT + C, where D is
the diagonal of A. The damping parameter α must be chosen such that no overshooting
occurs. Finally, we obtain the new iterates for velocity and pressure by

uit+1 = u∗ − αD−1BT q∗, pit+1 = pit + q∗. (4.53)

It remains to define Â−1 and Ŝ−1, which describe the action of a linear solver. Depending
on the size and the shape of A and BD−1BT + C, we might choose direct methods,
relaxation processes like Jacobi or Gauss–Seidel, or even (algebraic) multigrid methods.
Several variants of the SIMPLE method have been developed (SIMPLER, SIMPLEV,
SIMPLEC [VDR84]). Note that, as in the exact Uzawa iteration, the previous velocity
iterate uit is not used to obtain uit+1 and pit.

4.3.4. Transforming Smoothers

The idea of transforming smoothers [Wit89, Wit90] is to multiply the matrix K from the
left and the right by some non-singular matrices KL and KR and to apply a standard
smoothing method to the transformed system,

zit+1 = zit + K̂−1
(
KLy −KLKKRzit

)
,

In terms of the original unknown x, we use x = K−1
R z and re-write the iteration,

xit+1 = xit +KRK̂−1KL
(
y −Kxit

)
.

A possible choice is ([Wit89], Section 3.1)

KL = I, KR =

(
I A−1BT

(
BA−1BT + C

)
F

0 −
(
BA−1BT + C

)−1
F

)
with some positive definite matrix F . for example, one can take F =

(
BA−1BT + C

)
,

or a discretization of the Laplacian on the pressure grid. The transformed system takes
the form

KKR =

(
A 0
B F

)
.

135

4. AMG for Saddle Point Systems

A suitable smoother for the transformed system only needs to posses the smoothing
property for the diagonal blocks A and F [Wit90], i.e. we can set

K̂ =

(
KU 0
0 KP

)
where KU and KP can be chosen e.g. to be the scaled diagonals (Jacobi), the diagonals
and the lower right blocks (Gauss–Seidel) or an incomplete LU discretization of A and
F , respectively. Under certain assumptions on the discretization, the smoothing ratio
for the transforming smoothers applied to a Stokes problem can be shown to range from
O(1√

it
) (damped Jacobi) to O(ln it√

it
) (ILU), where it denotes the number of iterations

([Wit90], Theorems 3.1.4, 3.1.7, 3.2.1).

4.3.5. Braess–Sarazin smoother

In contrast to the exact Uzawa and the SIMPLE methods, the Braess–Sarazin smoother
[BS97] computes the iterates uit+1 and pit+1 from the old velocity iterate uit. To this
end, let Â = α diag(A), where α is chosen such that Â > A. Furthermore, let Ŝ be a
preconditioner or approximate solver for the Schur complement BÂ−1BT +C. Then we
can compute the iterates uit+1 and pit+1 as follows,

u∗ = uit + Â−1
(
f − Auit

)
, (4.54)

pit+1 = −Ŝ−1 [g −Bu∗] , (4.55)

uit+1 = u∗ − Â−1BTpit+1. (4.56)

It can be shown that the Braess-Sarazin smoother possesses a smoothing ratio of O(1
it

)
([BS97], Lemma 3.2 and Theorem 5.1).

4.3.6. Vanka Smoothers

The smoother introduced in [Van86] treats velocity and pressure updates simultane-
ously. This method was first introduced within the context of a multigrid method for
staggered mesh discretizations of the Navier–Stokes equations. Here, a global symmetric
block Gauss–Seidel iteration processes all discretization cells. On each such cell, a small
saddle point system is solved to obtain an update for the pressure unknown and velocity
unknowns belonging to this cell.
The multiplicative variant of our smoother for saddle point AMG also belongs to this
class. We postpone a further discussion to Section 4.6.

4.4. Towards AMG

We now summarize some previous approaches to the algebraic construction of a multi-
grid hierarchy for saddle point systems.

136

4.4. Towards AMG

We start with an AMG method for constrained systems, especially contact problems,
[Ada04] of the form (

A BT

B 0

)(
u
λ

)
=

(
f
g

)
where A is obtained from the discretization of a PDE and B comprises the constraint
equations (contacts). An AMG method for the A part is assumed to be available, that
is, we have a hierarchy of interpolation operators {Pl}L−1

l=1 , coarse grid operators {Al}Ll=1

and smoothers denoted by Ml, l = 1, . . . , L. It remains to construct interpolation
operators {P̄l}Ll=1 for the Lagrangian multipliers. Then, the overall coarse operator can
be constructed as (

P T
l 0
0 P̄ T

l

)(
Al BT

l

Bl 0

)(
Pl 0
0 P̄l

)
.

The main idea is to compute a symmetric auxiliary matrix Gl for the Lagrangian mul-
tiplier space and to derive the coarse grid and the interpolation operator by using plain
unsmoothed aggregation AMG techniques (see Section 2.11.2) applied to Gl. Within
the context of contact problems, the ansatz

Gl := BlPlP
T
l B

T
l

is preferred, as this allows to maximize the angles between the coarse level constraints
Bl+1 = P̄ T

l BlPl, see [Ada04] for details. The constraint interpolation P̄l is constant per
aggregate and scaled such that P̄ T

l P̄l is the identity.
Smoothing is performed by either symmetric inexact Uzawa smoothing 4.3.2 or a Schwarz
subdomain smoother, where each subdomain consists of a subset of the constraints as
well as the primal variables involved.
A special case is the saddle point AMG proposed in [LOS04]. Here the constraints
describe the Dirichlet boundary conditions for a reproducing kernel particle method
(RKPM) applied to an elliptic partial differential equation. More precisely, the entries
of B are computed by

bij :=

∫
ΓD

ψ̃i trψj

where the ansatz functions ψj are defined throughout the domain Ω and are used for
the discretization of the PDE, while the basis functions ψ̃i are defined on the boundary
ΓD ⊂ ∂Ω. Here, tr denotes the trace operator on the boundary ΓD.
The coarsening process for the constraints employs a matrix C defined by

Cij :=

∫
ΓD

ψ̃iψ̃j.

Then, a smoothed aggregation algorithm 2.11.2 is applied to both A and C to obtain
interpolation operators P and P̄ for the ansatz and the constraint space, respectively.
the overall interpolation operator is assembled as

P =

(
P 0
0 P̄

)

137

4. AMG for Saddle Point Systems

and the coarse grid operator is computed by the Galerkin product PTKP .
The smoother employed here takes the form of a Braess-Sarazin method (4.54)–(4.56),

λit+1 ←
[
BωD−1BT

]−1 [
B
(
uit + ωD−1(f − Auit)

)
− g
]

uit+1 ← uit + ωD−1(f − Auit)− ωD−1BTλit+1,

that is a ω-damped Jacobi iteration for the ansatz space, while a direct solver is used to

compute
[
BωD−1BT

]−1
.

In [Wab03], [Wab04], [Wab06], a monolithic semi-algebraic AMG approach to the so-
lution of the Navier-Stokes equations is described. To this end, the incompressible
Navier-Stokes equations

∂

∂t
u− ν∇ · (∇u) + (u · ∇) u +∇p = f (4.57)

−∇ · u = 0 (4.58)

given on a domain Ω ⊂ Rd, d = 2, 3, are linearized to obtain the Oseen equations,

∂

∂t
u− ν∇ · (∇u) + (w · ∇) u +∇p = f (4.59)

−∇ · u = 0. (4.60)

Here, (assuming that the fluid is Newtonian, i.e. has a constant shear to stress ratio,)
the kinematic velocity ν := µ

ρ
is defined as the quotient of the dynamic viscosity µ and

the density ρ, which both depend on the material. As in the case of Stokes’ equations,
we additionally introduce boundary conditions on ∂Ω = ΓD∪̇ΓN ,

u(x) = r(x) for all x ∈ ΓD, (4.61)

ν
∂u

∂n
(x)− np(x) = s(x) for all x ∈ ΓN , (4.62)

and (as we consider an instationary problem), initial conditions for t = 0,

u|t=0 = u0, p|t=0 = p0. (4.63)

For a detailed introduction to these equations, we refer to [GS98] and [ESW05].
The linear Oseen equations (4.59)–(4.60) can be used inside a fixed point iteration for
(4.57)–(4.58), where the newly introduced vector field w is set to the previous approx-
imation of u. Now, using a finite element discretization for the spatial variables and a
time-stepping scheme, we end up with a linear system of equations of the form

K(w)x =

(
A(w) BT

B −C

)(
u
p

)
=

(
f
g

)
.

Here,
A(w) = c1M + AD + c2AC(w) + c3AS(w) + c4AR(w) (4.64)

138

4.4. Towards AMG

consists of a mass matrix M which stems from the time discretization, a diffusion matrix
(Laplacian) AD, non-symmetric convection and reaction matrices AC(w) and AR(w) and
a symmetric positive definite convection stabilization matrix AS(w). Depending on the
discretization, C is zero or a pressure stabilization matrix, see Section 4.2.2.
Depending on the element chosen, the coarsening is either performed element-wise (i.e.
AMGe, cf. Section 2.11.1) for the Crouzeix-Raviart element (4.40), or point-wise (clas-
sical Ruge-Stüben) by coarsening the nodes of the finite element mesh. In case of a
P1 − P1-stab discretization (4.41), the same coarse mesh is used for all physical un-
knowns u and p, while in case of the P1isoP2 − P1-element (4.38), the pressure mesh
is coarsened first and the velocity mesh at each level l ≥ 2 is identical to the pressure
mesh at level l − 11. In all cases, the interpolation is unknown-wise, i.e.

P =

PV(1) 0 0

0 PV(2) 0

0 0 PW

 or P =


PV(1) 0 0 0

0 PV(2) 0 0

0 0 PV(3) 0

0 0 0 PW


where each PV(i) , i = 1, . . . , d is a scalar interpolation scheme. The coarse level system is
computed by the Galerkin product with two slight modifications: the coarse convection
stabilization term AS,l+1 part needs to be rescaled,

AS,l+1 := d

√
nl
nl+1

P T
VlAS,lPVl

to prevent oscillations, and, in the case of the P1-P1-stab element, the matrix Cl+1 needs
to be computed as

Cl+1 :=
λmax(D−1

l Ml)

h2
P T
WlClPWl ,

where Ml := P T
Wl · · ·P T

W1
MPW1 · · ·PWl is the Galerkin projection of the fine level (pres-

sure) mass matrix M to level l, Dl is the diagonal of one of the component blocks of
AD,l, and h is the mesh width on the finest level.
The stability of the coarse level systems, i.e. the existence of a discrete inf-sup condition
on all levels can only be shown with additional geometric information. In the case of
P1isoP2-elements, a rigorous analysis is not known and stability can only be motivated
heuristically. We refer to [Wab03], [Wab04], and [Wab06] for details. We now give the
stability lemma for the P1-P1-stab element, which will be the basis of our more general
stability results presented in Sections 4.8–4.10.

Lemma 4.2 ([Wab03], Lemma 4.3) Assume that for all elements τ ∈ Th the diameter
hτ fulfills

αh ≤ hτ ≤ αh,

1For stability reasons, it might be necessary to use the pressure mesh at level l − 2 instead for l ≥ 3
and let the velocity mesh at level 3 be identical to the finest mesh.

139

4. AMG for Saddle Point Systems

with positive constants α and α and the discretization parameter h, and assume further
that AD,l is symmetric and of essentially positive type (2.28) and that for all vl ∈ V l we
can find Πlvl ∈ Vl+1 such that

‖vl − PVlΠl‖2
Dl
≤ β‖vl‖2

AD,l
, (4.65)

with some constant β. Then for all levels l ∈ {1, . . . , L} there exist positive cl and dl
such that

sup
06=v∈Vl

vBT
l p

‖v‖AD,l
≥ cl‖p‖Ml

− dl
(
pTClp

) 1
2 for all p ∈ W l.

The approximation property 4.65 is fulfilled for many of the classical AMG interpolation
operators, see Section 2.8.
In the remainder of this chapter, we describe the components of our algebraic multigrid
approach to saddle point problems. Unlike the ansatzes introduced above, we are not
restricted to specific discretizations or geometric information. We only need to know the
decomposition of the saddle point matrix K,

K =

(
A BT

B −C

)
.

In many applications, the vector u describes discretization of two or three physical
quantities (e.g. the velocity components in different spatial directions). In consequence,
A itself is a discretization of a system of elliptic partial differential equations. We have
already presented three approaches to system AMG methods in Section 2.12: First,
one can ignore the decomposition into the physical unknowns and just apply AMG
to A (VAMG, Section 2.12.1). The second possibility is to split A by the physical
components (velocity directions) and to apply scalar AMG component-wise (UAMG,
Section 2.12.2). The third ansatz is to utilize additional information to sort the matrix
A by (discretization) points (PAMG, Section 2.12.3). All of them can be combined with
the techniques described below to obtain an algebraic multigrid method for saddle point
systems.

4.5. The smoother I: An inexact Uzawa scheme

In this section, we introduce a convergence theory for a class of inexact Uzawa relaxation
schemes developed by [SZ03]. This theory can be applied to any predictor-corrector
scheme of the form (4.48)–(4.50),

u∗ = uit + Â−1
(
f − Auit −BTpit

)
pit+1 = pit + Ŝ−1

(
Bu∗ − Cpit − g

)
uit+1 = uit + Â−1

(
f − Auit −BTpit+1

)
,

where Â and Ŝ are symmetric positive definite matrices that serve as preconditioners
for A and BÂ−1BT + C respectively. We require that

Â > A and Ŝ > BÂ−1BT + C (4.66)

140

4.5. The smoother I: An inexact Uzawa scheme

where E > F again means that the matrix E − F is positive definite.

Remark 4.1 A convergence theory is also possible for Â < A and Ŝ > BÂ−1BT + C
or Â > A in combination with Ŝ < BÂ−1BT + C. Then, we can even re-interpret the
smoother as an iteration over a symmetric positive definite matrix L,

M = I −Q−1L

where L = QK̂−1K,

Q = ±
(
A− Â 0

0 Ŝ −BÂ−1BT − C

)
,

and the sign is chosen such that Q is positive definite. We refer to Appendix A as well
as [Zul00] and [Zul02] for a discussion of these cases.

The most basic approach to the choice of Â and Ŝ is to use scaled versions of the
diagonals of A and BÂ−1BT +C such that (4.66) is satisfied. In this case, their inverse
is still a diagonal matrix, which will be advantageous for our AMG setup.
Now, the indefinite matrix K does not define an inner product and norm. Hence, unlike
the symmetric positive definite case, we cannot show an AMG convergence theory in
terms of the norms ‖ · ‖0, ‖ · ‖1 and ‖ · ‖2 induced by the scalar products (2.22) – (2.24),

(u, v)0 = (Du, v), (u, v)1 = (Au, v), (u, v)2 = (D−1Au,Av)

which can only be defined for symmetric positive definite A with diagonal D.
To overcome this sticking point, we will introduce a symmetric positive definite matrix
Q that defines an inner product (·, ·)Q and a norm ‖ · ‖Q. Not only can we estimate the
error propagation of the inexact Uzawa smoothers in terms of this norm, it also helps
us to transfer the convergence theory from Section 2.10 to our setting.
First, we write the inexact Uzawa scheme in matrix form,(

u
p

)it+1

=

(
u
p

)it
+ K̂−1

((
f
g

)
−K

(
u
p

)it)
where K̂ =

(
Â BT

B BT Â−1BT − Ŝ

)
and introduce the corresponding error propagation matrix M,

M =
(
I − K̂−1K

)
. (4.67)

Lemma 4.3 ([SZ03], Lemma 1) Let Â be a symmetric positive definite N ×N matrix,
and Ŝ a symmetric positive M ×M matrix, satisfying,

Â > A and Ŝ > C +BÂ−1BT

Then we have:
The iteration matrix M = I − K̂−1K can be written in the form

M = Q−
1
2MQ

1
2 (4.68)

141

4. AMG for Saddle Point Systems

1

y

x
0.5

z=1Nσ()

Figure 4.5.: Eigenvalues of the normal matrix N as defined in Lemma 4.3. All eigenval-
ues reside on a circle with radius 1

2
around (1

2
, 0), hence their absolute value

is less than one.

with the symmetric positive definite block diagonal matrix

Q =

(
Â− A 0

0 Ŝ − C −BÂ−1BT

)
(4.69)

and
M = OTNO,

where N is a normal matrix and O satisfies the conditions ‖O‖l2 ≤ 1.
Moreover, for the spectrum σ (N) we have:

σ (N) ⊂
{
z ∈ C :

∣∣∣∣z − 1

2

∣∣∣∣ =
1

2

}
.

In Figure 4.5 we give the location of the eigenvalues of N . Together with ‖O‖`2 ≤ 1
we have ‖M‖`2 < 1. Now, from (4.68) we see that the matrix M only differs from the

smoother’s iteration matrixM by a basis transform which is given by Q 1
2 , hence we can

show convergence in terms of the norm induced by Q. This is done more generally in
the following theorem, where we also consider the damped iteration

Mω = (1− ω) I + ωM.

Theorem 4.6 ([SZ03], Theorem 2) Let Â be a symmetric and positive N ×N matrix,
and Ŝ a symmetric positive M ×M matrix, satisfying (4.66).
Then we have

‖ (1− ω) I + ωM‖Q ≤ 1

for all relaxation factors ω ∈ [0, 2], and

‖ (1− ω) I + ωM‖Q < 1

142

4.6. The smoother II: An algebraic Vanka-type smoother

for all relaxation factors ω ∈ (0, 2). Here ‖ · ‖Q denotes the matrix norm associated to
the scalar product

((u, p), (v, q)) =
((
Â− A

)
u, v
)

+
((
Ŝ − C −BÂ−1BT

)
p, q
)
. (4.70)

The statement from Theorem 4.6 will serve as smoothing property in our convergence
analysis, which is outlined in Section 4.8.
One can also provide a smoothing property which is very similar to the smoothing
property for geometric multigrid methods as defined by Definition 2.1, especially (2.10).
This is done in the following theorem.

Theorem 4.7 ([SZ03], Theorem 3) Let Â by a symmetric and positive definite N ×N
matrix, and Ŝ a symmetric positive definite M ×M matrix, satisfying

Â ≥ A and Ŝ ≥ C +BÂ−1BT .

Then

‖KMν‖`2 ≤ η0(ν)‖K̂ − K‖`2
where

η0(ν) =
1

2ν−1

(
ν − 1

[ν]/2

)
≤


√

2
π(ν−1)

for even ν,√
2
πν

for odd ν,

where
(
n
k

)
denotes the binomial coefficient and [x] denotes the largest integer smaller

than or equal to x ∈ R.

Before we proceed to the construction of the interpolation and the coarse grid operators
as well as stability and convergence theory, we first will present a special implementation
of an inexact Uzawa method that fits within the convergence theory of this section.

4.6. The smoother II: An algebraic Vanka-type
smoother

In this section, we describe a box relaxation scheme introduced in [SZ03]. This smoother
can be constructed without knowledge of the geometry or the discretization of the un-
derlying PDE. We will see that the additive version of this smoother can be interpreted
as an inexact Uzawa relaxation scheme, which allows us to apply the convergence theory
of the previous section. The multiplicative variant, on the other hand, belongs to the
class of Vanka smoothers [Van86].
First, we define an overlapping decomposition of the discrete velocity and pressure spaces
V and W , (

V
W

)
=

M⋃
j=1

(
Vj
Wj

)
,

143

4. AMG for Saddle Point Systems

where Vj contains Nj velocity variables and Wj consists of Mj pressure variables. We
need prolongation and restriction operators for each subspace (not to be confused with
prolongation and restriction in multigrid!). We denote these interpolation operators by

Vj : Vj → V , Vj ∈ RN×Nj

Wj :Wj →W , Wj ∈ RM×Mj .

For restriction, we just take their transpose, i.e. V T
j and W T

j . Vj and Wj need to satisfy

M∑
j=1

Vj(Vj)
T = IN×N and

M∑
j=1

Wj(Wj)
T ∈ RM×M non-singular (4.71)

which will be important to prove the convergence of the overall smoother. For each
subspace Vj ×Wj, we solve local saddle point problems of the form(

Âj BT
j

Bj BjÂ
−1
j BT

j − Ŝj

)(
u(j)

p(j)

)
=

(
V T
j (f − Auit −BTpit)
W T
j (g −Buit + Cpit).

)
(4.72)

where u(j) ∈ RNj , p(j) ∈ RMj , Âj ∈ RNj×Nj , Bj ∈ RMj×Nj , and

Ŝj = β−1(Cj +BjÂ
−1
j BT

j),

where Cj ∈ RMj×Mj and β > 0 is a scaling parameter. Then, we update the global
solution according to (

uit+1

pit+1

)
=

(
uit

pit

)
+

M∑
j=1

(
Vj 0
0 Wj

)(
u(j)

p(j)

)
. (4.73)

In the following theorem, we give conditions on Âj and Bj under which the Schwarz
smoother defined by (4.72) and (4.73) turns into an inexact global Uzawa smoother.

Theorem 4.8 ([SZ03], Theorem 1) Assume that (4.71) is satisfied, the matrices Aj, Sj
are symmetric and positive definite, and that there is a symmetric positive definite N×N
matrix Â such that

V T
j Â = ÂjV

T
j (4.74)

for all j = 1, . . . ,M . Furthermore, assume that the matrices Bj obey the condition

W T
j B = BjV

T
j (4.75)

for all j = 1, . . . ,M .
Then we have

uit+1 = uit + vit, pit+1 = pit + wit

where vit and wit satisfy the equation

K̂
(
vit

wit

)
=

(
f
g

)
−K

(
uit

pit

)

144

4.6. The smoother II: An algebraic Vanka-type smoother

with

K̂ =

(
Â BT

B BÂ−1BT − Ŝ

)
and Ŝ =

(
M∑
j=1

WjŜ
−1
j W T

j

)−1

(4.76)

This theorem allows us to interpret the additive Vanka-type smoother (4.72)–(4.73) as
an inexact symmetric Uzawa smoother for the global problem (4.1). Its iteration matrix
M is given by

M = I − K̂−1K
and convergence can be shown by Theorem 4.6.
We give the multiplicative iteration in Algorithm 4.2. In most cases, it is useful to carry

algorithm 4.2 VankaSmootherMult(K, {Âj}Mj=1, {Bj}Mj=1, {Ŝj}Mj=1, {Vj}Mj=1, {Wj}Mj=1, f, g, u
it, pit)

begin
uit,0 ← uit;
pit,0 ← pit;
for j = 1, . . . ,M do

f(j) = V T
j (f − Auit,j−1 −Bpit,j−1) ;

g(j) = W T
j (g −Buit,j−1 + Cpit,j−1) ;(

u(j)

p(j)

)
←

(
Âj BT

j

Bj BjÂj
−1
BT
k − Ŝj

)−1(
f(j)

g(j)

)
;

uit,j ← uit,j−1 + Vju(j);
pit,j ← pit,j−1 +Wjp(j);

od;
uit+1 ← uit,M ;
pit+1 ← pit,M ;

end

out a symmetric iteration, i.e. after a single sweep of Algorithm 4.2 we carry out another
iteration, but traverse the subspaces from j = M down to j = 1. Unfortunately, a
convergence theory is not known [personal communication with Walter Zulehner, 2012].

We now describe how an overlapping decomposition of the discrete domain Ω (and
hence the discrete subspaces Vj and Wj) can be constructed purely algebraically. We
employ the non-zero structure of the B matrix part: For each row bj of B, we identify
the non-zero entries bji and define the subsets

Ω(j) =

(
Ωj
V

Ωj
W

)
, Ωj

V = {i : bji 6= 0}, Ωj
W = {j}. (4.77)

For any velocity index i, there typically exists more than one j with bji 6= 0, hence
these subsets overlap. The number of velocity components per subdomain Nj equals
the number of non-zero entries in bj. For example, in a staggered grid finite difference
discretization of the Stokes or Navier-Stokes equations, each subdomain corresponds to
a discretization cell, which consists of a pressure unknown at the cell center and the

145

4. AMG for Saddle Point Systems

u

p

v

Figure 4.6.: Discretization mesh for the Stokes equation in two spatial dimensions. The
pressure p is discretized at the centers of the cells, the velocities u and v
are discretized at the midpoints of of the cell borders. The red and the blue
box each represent a subdomain for the Vanka-type smoother.

velocity components at the cell borders, see Figure 4.6.
In this case, the interpolation operator for the pressure is given by

Wj : R → RM (4.78)

Wj = IWWj . (4.79)

We define two interpolation operators for the velocity component,

Vj, V̂j : RNj → RN (4.80)

Vj = diag (vi)i=1,...,N · I
V
Vj . (4.81)

V̂j = diag

(
1

vi

)
i=1,...,N

· IVVj . (4.82)

Here, IVU : U ↪→ V denotes the trivial injection. Each weight vi depends on the number
number of non-zero entries in the respective row of BT , or equivalently, the number of
subdomains Ωj

V that contain i,

vi =
1√

|{j : bji 6= 0}|
=

1√
#Ωj

V : i ∈ Ωj
V

(4.83)

It is easy that Vj and Wj satisfy (4.71). Regarding V̂j, note that we have

(
V̂jV

T
j

)
ik

=

{
1 for i = k ∈ Ω(j)

0 elsewhere.

To define the local matrices Âj ∈ RNj×Nj , Ŝj ∈ R, Bj ∈ R1×Nj , we first need a global

preconditioner Â for A, which is assumed to be a diagonal matrix (e.g. the scaled

146

4.6. The smoother II: An algebraic Vanka-type smoother

diagonal of A such that Â > A). Then we set

Âj = V T
j ÂV̂j, (4.84)

Bj = W T
j BV̂j, (4.85)

Ŝj = β−1(cjj +BjÂ
−1
j BT

j). (4.86)

where we choose β > 0 such that Ŝ > C + BÂ−1BT . Straightforward calculations then
show that we have satisfied (4.71), (4.74), (4.75) and hence Theorem 4.8 allows us to
apply the inexact Uzawa smoother’s convergence theory as given by Theorems 4.6 and
4.7.

Remark 4.2 In the case of point-based AMG (Section 2.12.3), the construction is
slightly different. In this case, let us assume for sake of simplicity that we have d
velocity components and one pressure component that are discretized at every point
j = 1, . . . ,M . This yields a block structure of K,

K =


K(1,1) K(1,2) . . . K(1,M)

K(2,1) K(2,2) . . . K(2,M)
...

...
. . .

...
K(M,1) K(M,2) . . . K(M,M)

 ,

where each K(i,j) has the form

K(i,j) =

(
A(i,j) BT

(i,j)

B(i,j) C(i,j)

)
with block matrices A(i,j) ∈ Rd×d, B(i,j) ∈ R1×d, and C(i,j) ∈ R1×1.

To define the subdomains Ω(j), we replace, in (4.77), the definition of Ωj
V by

Ωj
V = {i : B(j,i) 6= 0}

i.e. each subset Ωj
V contains all points i for which at least one velocity variable has

a connection to the discretized pressure value at point j. Analogously, we define the
weights vi by

vi =
1√

|{j : B(j,i) 6= 0}|
=

1√
#Ωj

V : i ∈ Ωj
V

. (4.87)

For Â, we can either take the block diagonal matrixA(1,1) 0
. . .

0 A(M,M)

 ,

or just its diagonal. Then, we can define Wj, Vj, V̂j, Âj, Bj and Ŝj as in (4.78)–(4.86)
(Note that each cjj = C(j,j) is just a single scalar). We will comment on which variant
to choose in Section 4.8

147

4. AMG for Saddle Point Systems

algorithm 4.3 VankaSmootherSetup(A,B,C, {Âj}Mj=1, {Bj}Mj=1, {Ŝj}Mj=1, {Vj}Mj=1, {Wj}Mj=1)

begin
ΩVq ← ΩVq ∪ {i 6∈ ΩVq : ∃j ∈ ΩWq : bji 6= 0} local and ghost velocity points
D ← diag(A);

α← λmax

(
D−

1
2AD−

1
2

)
; (parallel) power iteration

Â← αD;
for i = 1, . . . , N do

compute weights vi; depending on additive, multiplicative, parallel multiplicative
od
if (parallel computation)

obtain vi and âii for all i ∈ ΩVq \ ΩVq ;

Â(q) ← diag(âii)i∈ΩVq
;

fi
for j ∈ ΩWq do

Vj ← diag(vi) · IVqVj ;
Wj ← I

Wq

Wj ;

Âj ← V T
j Â(q)V̂j;

Bj ← W T
j BV̂j;

Ŝj ← (cjj +BjÂ
−1
j BT

j);
od;

Ŝ ← diag(Ŝj)
M
j=1; each processor just keeps its own part

β ← λmax

(
Ŝ−

1
2

(
BÂ−1BT + C

)
Ŝ−

1
2

)
; (parallel) power iteration

for j ∈ ΩWq do

Ŝj ← βŜj;
od;

end

148

4.6. The smoother II: An algebraic Vanka-type smoother

In the multiplicative case, we are not restricted to the special scalings (4.83) or (4.87).
Whether it is possible to use unscaled injection instead, i.e. vi = 1 for all i = 1, . . . , N ,
must be determined numerically.
We conclude this section with the parallel implementation of the smoother. To this end,
as in (3.1), let us assume that we have a non-overlapping decomposition of the velocity
and the pressure spaces among the np processors,

V = V1∪̇ . . . ∪̇Vnp
W =W1∪̇ . . . ∪̇Wnp

and a corresponding decomposition of the index set Ω, cf. (3.1)

Ω = Ω1 ∪ . . . ∪ Ωnp =

(
ΩV1
ΩW1

)
∪ . . . ∪

(
ΩVnp
ΩWnp

)
.

We store each submatrix (
Âj BT

j

Bj BjÂ
−1
j BT

j − Ŝj

)
(4.88)

on the processor q which contains the pressure variable j ∈ ΩWq . Note that the corre-
sponding velocity subset Vj is not necessarily contained within the local variables. We
define the set of ghost velocity points for processor q,

Ωghost
Vq := {i 6∈ ΩVq : there exists a j ∈ ΩWq such that bji 6= 0}

ΩVq := ΩVq ∪ Ωghost
Vq

Hence, we need to obtain parts of Â as well as the weights vi for all velocity variables
i ∈ Ωghost

Vq Then, (4.84)–(4.86) can be computed locally and the velocity prolongation

operators Vj maps into Vq := {(ui)i∈ΩVq
} for all j ∈ Wq, Vj : Vj → Vq.

In the additive case, the parallel application of the smoother is straightforward. The
communication takes place within the computation of the residual,(

f
g

)
−
(
A BT

B −C

)(
uit

pit

)
.

Afterwards, each processor q needs to obtain the velocity residuals for all i ∈ Ωghost
Vq .

Then, we can locally apply the restriction scalings and solve the systems (4.72) for all
j ∈ ΩWq . Afterwards, we apply the prolongation scalings and transfer the velocity up-
dates back to the owning processors.

As with the Gauss-Seidel iteration, the multiplicative smoother cannot be efficiently
parallelized. Inspired by block Jacobi smoothing (3.2), we propose a hybrid addi-
tive/multiplicative smoother that only updates velocities between processors after a

149

4. AMG for Saddle Point Systems

algorithm 4.4
VankaSmootherPar(K, {Âj}j∈ΩWq , {Bj}j∈ΩWq , {Ŝj}j∈ΩWq , {Vj}j∈ΩWq , {Wj}j∈ΩWq , f, g, u

it, pit)

begin(
f it

git

)
←
(
f
g

)
−
(
A BT

B −C

)(
uit

pit

)
; parallel residual computation

communication: receive ghost values of f(q) and uit(q);

uit,0(q) ← uit(q);

pit,0(q) ← pit(q);

f it,0(q) ← f it(q);

git,0(q) ← git(q);

for j ∈ ΩWq do

f(j) = V T
j f

it,j−1
(q) ;

g(j) = W T
j g

it,j−1
(q) ;(

u(j)

p(j)

)
←

(
Âj BT

j

Bj BjÂj
−1
BT
k − Ŝj

)−1(
f(j)

g(j)

)
;

uit,j(q) ← uit,j−1
(q) + Vju(j); local solution update

pit,j(q) ← pit,j−1
(q) +Wjp(j);

f it,j(q) ← f it,j−1
(q) − A(q)Vju(j) −BT

(q)Wjp(j); residual update

git,j(q) ← git,j−1
(q) −B(q)Vju(j) + C(q)Wjp(j);

od;

communication: transfer ghost values of uit,|ΩWq | to owning processors;

uit+1
(q) ← u

it,|ΩWq |
(q) + received values;

pit+1
(q) ← p

it,|ΩWq |
(q) ;

end

150

4.6. The smoother II: An algebraic Vanka-type smoother

sweep is completed. Let

A(q) := (aik)i∈ΩVq , k=1,...,N ,

BT
(q) := (bTij)i∈ΩVq , j=1,...,M ,

B(q) := (bjk)j∈ΩWq , k=1,...,N ,

C(q) := (cjr)j∈ΩWq , r=1,...,M ,

denote the rows of A, BT , B, and C that reside on processor q, respectively (see Chapter
3 for a description of the parallel matrix format we use). Note that BT

(q) is not the
transpose of B(q). We further define

the local and ghost part of A,A(q) := (aik)i∈ΩVq , k=1,...,N ,

the local and ghost part of BT , BT
(q) := (bTij)i∈ΩVq , j=1,...,M ,

the local part of uit, uit(q) := (uiti)i∈ΩVq
,

the local and ghost part of uit, uit(q) := (uiti)i∈ΩVq
,

the local part of pit, pit(q) := (pitj)j∈ΩWq
,

the local part of f it, f it(q) := (f iti)i∈ΩVq
,

the local and ghost part of f it, f it(q) := (f iti)i∈ΩVq
,

the local part of git, git(q) := (gitj)j∈ΩWq
.

We give a single parallel smoothing sweep in Algorithm 4.4. Note that inside the itera-
tion, we update the residuals not only for the local velocity indices i ∈ ΩVq , but also for

the ghost points i ∈ Ωghost
Vq . After the iteration is complete, we transfer all ghost velocity

values back to the processors that own them. On the owning processor, we denote the
respective velocity indices with

∂ΩVq := {i ∈ ΩVq : ∃j 6∈ ΩWq : bji 6= 0}.

For all i ∈ ∂ΩVq , we receive one or more velocity updates from another processor and
add it to ui.
The prolongation weights vi need to reflect the mixed additive/multiplicative updates
for these points. We suggest two options:

1 As in the additive case, let vi = 1√
|{j:bji 6=0}|

for all i ∈ ∂ΩVq .

2 Use different weights for the same index i depending on whether it is a local or
ghost point. More precisely, assuming that i ∈ ∂ΩVq , we set

vi =

√
|{j ∈ ΩWq : bji 6= 0}|√
|{j ∈ ΩW : bji 6= 0}|

(4.89)

151

4. AMG for Saddle Point Systems

on processor q and

vi =
1√

|{j ∈ ΩW : bji 6= 0}|
(4.90)

on all processors q′ for which i ∈ Ωghost
Vq′

.

For all interior points i ∈ ΩVq \∂ΩVq we set vi = 1. Which option leads to the best result
must be determined experimentally. It also may occur that we must set vi = 1√

|{j:bji 6=0}|
for all i ∈ ΩVq , as in the additive case.

4.7. Interpolation and Coarse Grid Correction: General
Remarks

We now turn our attention to the coarse grid correction, the other main component of a
multigrid solver. As we have already pointed out in Chapter 2, the coarse grid correction
should be well-adapted to the smooth error components, i.e. the error components e
that are not reduced efficiently by the smoother,

Me ≈ e.

For a well-fitted coarse grid correction, we need to construct three components:

1 A coarse grid Ωl+1 whose cardinality is less than the size of the fine grid Ωl and is
well-suited to represent the smooth error components from level l,

2 restriction and prolongation operators

Rl ∈ R|Ωl|×|Ωl+1|, Pl ∈ R|Ωl+1|×|Ωl|

which transfer the error resp. the error correction between the fine discrete space
V l ×W l and the coarse space V l+1 ×W l+1,

3 a coarse grid operator
Kl+1 ∈ R|Ωl+1|×|Ωl+1|

that describes the underlying problem on the coarse scale, i.e. in terms of the
smooth error components.

With these components, we can formulate the two-grid correction operator

I − P l
(
Kl+1

)−1RlKl,

and the multi-level correction

I − Pl
(
K̃l+1

)−1

RlKl,

152

4.7. Interpolation and Coarse Grid Correction: General Remarks

where
(
K̃l+1

)−1

denotes the approximation to (Kl+1)−1 by recursive application of the

multi-grid cycle.
We take again a look at the smoother Ml,

Ml = I−K̂l
−1
Kl =

(
I −Â−1

l BT
l

0 I

)(
I 0

Ŝ−1
l Bl I

)(
I − Â−1

l Al 0

0 I − Ŝ−1
l

(
BlÂ

−1
l BT

l + Cl

)) .
(4.91)

The rightmost factor essentially performs a “Jacobi-like” sweep over the matrix(
Al 0

0 BlÂ
−1
l BT

l + Cl

)
. (4.92)

This suggests to build a first guess for interpolation and coarse grid correction based on
the symmetric positive definite block matrix (4.92), i.e.

1 build a (block) strength matrix Sl based on the matrix blocks Al and BlÂlB
T
l +Cl,

Sl =

(
SVl 0
0 SWl

)
,

2 construct a block interpolation operator

Pl =

(
PVl 0
0 PWl

)
where PVl and PWl are obtained by applying one of the well-known interpolation
schemes for the symmetric positive matrices AL and BlÂ

−1
l BT

l + Cl from Section
2.8,

3 compute the coarse grid operator

Kl+1 = RlKlPl

where Rl denotes the restriction operator.

While this approach seems straightforward, there are some issues that we need to deal
with. First, unlike the symmetric positive definite case, it is not clear whether Kl+1 is
invertible at all even if we set Rl = PTl .

Example 4.2 [Wab03] Let the Stokes equations on [0, 1]2 with Dirichlet boundary con-
ditions be discretized using P1isoP2−P1 elements on an uniform mesh, (4.38), see Figure
4.7. We see that after one coarsening step on the velocity mesh (for both velocity com-
ponents) we obtain an instable situation as in Example 4.1 if all pressure nodes are taken
into the coarse mesh.

153

4. AMG for Saddle Point Systems

Figure 4.7.: Finite element mesh for a P1isoP2−P1 discretization of the Stokes’ equations
on the domain Ω = [0, 1]2 (we assume Dirichlet boundary conditions on ∂Ω).
The black and the red dots denote the velocity nodes on the finest and the
first coarse mesh, the blue dots denote pressure nodes on both levels.

This example might seem exceptional, but it illustrates that the stability of the coarse
system is not automatically ensured. The second obstacle is that we have no variational
principle (see Theorem 2.15) here, asK does not define an inner product. In consequence,
we need a different approach to show two-grid convergence.

Remark 4.3 In Remark 4.1 we stated that under certain assumptions it is possible to
re-interpret the smoother M as an iteration scheme over a symmetric positive definite
matrix L,

M = I −Q−1L
where Q is a block diagonal symmetric positive definite matrix. Using this formulation,
it is possible to apply the classical AMG convergence theory in terms of inner products
and norms defined by

(x, y)0 := xQy, (x, y)1 := xLy, (x, y)2 := xLQ−1Ly,

cf. (2.22)–(2.24).
On the downside, to apply this theory we need either

Â < A and Ŝ > BÂ−1BT + C, or,

Â > A and Ŝ < BÂ−1BT + C,

which can become compute-intensive as we need to apply an eigensolver to determine
the correct scaling for Â of Ŝ. (In contrast, to obtain both Â > A and Ŝ > BÂ−1BT +C
a few cheap power iteration cycles or the application of Gershgorin’s circle theorem
are sufficient.) Furthermore, the variational principle shown in the norm defined by L
cannot be applied directly to the coarse grid operator obtained from PTKP . We refer
to Appendix A for a detailed discussion.

In the following sections, we will show how the invertibility of the coarse grid operator
can be ensured. To this end, we first assume that an inf-sup condition on the finest level

154

4.7. Interpolation and Coarse Grid Correction: General Remarks

l = 1 is available:
Let there exist constants c1, d1 > 0 such that, for all p ∈ W1 such that

sup
06=u∈V1

uBT
1 p

‖u‖A1

≥ c1‖p‖W1 − d1

(
pTC1p

) 1
2 for all p ∈ W1. (4.93)

From this inf-sup condition we will derive inf-sup conditions on all levels l > 1 by
induction,

sup
06=u∈Vl

uBT
l p

‖u‖Al
≥ cl‖p‖Wl − dl

(
pTClp

) 1
2 for all p ∈ W l. (4.94)

for all p ∈ W l and cl, dl > 0 independent of p.
Here, as in the remainder of this chapter, we define for a symmetric positive definite
matrix A an inner product and a norm,

〈x, x〉A := xTAx, ‖x‖A :=
√
〈x, x〉A.

The inf-sup-condition (4.93) on the finest level usually only can be obtained with knowl-
edge of the underlying problem. First, we need a norm ‖ · ‖W1 for the pressure space on
the finest level W1. Usually, this norm is derived from a scalar product

(x, y)M1 := xTM1y

where M1 is a “mass matrix” for the discrete pressure space such that ‖ · ‖W1 := ‖ · ‖M1

can be interpreted as the discrete counterpart of a L2-norm. In Section 4.2, we have
introduced several stable discretization schemes as well as the corresponding inf-sup
conditions, which can be written in the form (4.93). The coarse mass matrices Ml,
l > 1, are obtained from M1 by recursive application of the Galerkin product

Ml+1 = P T
WlMlPWl .

From (4.94) we can, for each level l, prove the stability result for Kl on all levels, which
is a generalization of Theorem 4.4 in [Wab03] (see also Theorem 4.5). For sake of
completeness, we also give the proof.

Theorem 4.9 Suppose that (4.94) holds. Then

sup
06=v∈Vl, 06=q∈Wl

(u, p)TKl(v, q)
‖v‖Al + ‖q‖Ml

≥ ζl (‖u‖Al + ‖p‖Ml
) for all (u, p) ∈ V l ×W l, (4.95)

for some ζl > 0 depending on l.

Proof: ([Wab03],pp. 56–57) For p ∈ W l, choose an u∗ ∈ V l such that the supremum in
(4.94) is attained. Note that this supremum is invariant under scaling of u∗, so we are
free to scale u∗ such that

‖u∗‖Al = ‖p‖Ml
.

155

4. AMG for Saddle Point Systems

Let u ∈ V l. We apply (4.94),(
u p

)
Kl
(
u∗

0

)
= uTAlu

∗ + pTBlu
∗

≥ −‖u‖Al‖u∗‖Al + cl‖u∗‖Al‖p‖Ml
− dl

(
pTClp

)1/2 ‖p‖Ml

= −‖u‖Al‖p‖Ml
+ cl‖p‖2

Ml
− dl

(
pTClp

)1/2 ‖p‖Ml

≥ − 1

2ε
‖u‖2

Al
− ε

2
‖p‖2

Ml
+ cl‖p‖2

Ml
− dl

2ε
pTClp−

dlε

2
‖p‖2

Ml

where the last step can be seen from xy ≤ x2/ε+εy2

2
. Now, we introduce the constants

θ1 =
1

2ε
, θ2 = cl −

ε

2
(1 + dl), θ3 =

dl
2ε

which are strictly positive as long as 0 < ε < 2cl
1+dl

. We have

(
u p

)
Kl
(
u∗

0

)
≥ −θ1‖u‖2

Al
+ θ2‖p‖2

Ml
− θ3p

TClp.

We now consider a (v∗, q∗) of the form (v∗, q∗) = (u+ ϑu∗,−p) with a parameter ϑ,(
u p

)
Kl
(
v∗

q∗

)
=

(
u p

)
Kl
(
u
−p

)
+ ϑ

(
u p

)
Kl
(
u∗

0

)
≥ ‖u‖2

Al
+ pTClp− ϑθ1‖u‖2

Al
+ ϑθ2‖p‖2

Ml
− ϑθ3p

TClp.

Now, choose 0 < ϑ < min
(

1
θ1
, 1
θ3

)
,

(
u p

)
Kl
(
v∗

q∗

)
≥ θ4

(
‖u‖2

Al
+ ‖p‖2

Ml

)
(4.96)

where θ4 = min(1− ϑθ1, ϑθ2).
For our special choice of (v∗, q∗) we have

‖v∗‖Al+‖q∗‖Ml
= ‖u+ϑu∗‖Al+‖p‖Ml

≤ ‖u‖Al+ϑ‖u∗‖Al+‖p‖Ml
≤ (1+ϑ) (‖u‖Al + ‖p‖Ml

) .
(4.97)

We combine (4.96) and (4.97),

(u, p)TKl(v∗, q∗)
‖v∗‖Al + ‖q∗‖Ml

≥ θ4

1 + ϑ

‖u‖Al + ‖p‖Ml

‖u‖Al + ‖p‖Ml

≥ θ4

2 + 2ϑ
(‖u‖Al + ‖p‖Ml

) .

Now, taking the supremum over (v, q) completes the proof,

sup
0 6=v∈Vl, 0 6=q∈Wl

(u, p)TKl(v, q)
‖v‖Al + ‖q‖Ml

≥ (u, p)TKl(v∗, q∗)
‖v∗‖Al + ‖q∗‖Ml

≥ ζ (‖u‖Al + ‖p‖Ml
)

where ζ = θ4
2+2ϑ

. �

156

4.8. The coarse grid operator I: Auto-stabilizing coarsening and Two-level convergence

Remark 4.4 If the matrix Al is singular, we replace the term ‖ · ‖Al in (4.93), (4.94),
(4.95) and the proof thereafter by a norm ‖ · ‖ADl , where the matrix ADl is non-singular
and ADl > Al. Such an operator can always be constructed as Al is continuous.

In the following sections, we will give three different approaches to construct the inter-
polation operator as well as the coarse grid matrix. For one of them, we can also show
two-grid convergence.

4.8. The coarse grid operator I: Auto-stabilizing
coarsening and Two-level convergence

Our first approach to a stable coarse system is to formulate a “Petrov-Galerkin” type
coarse grid operator, which however still leads to a symmetric matrix. For this for-
mulation we can show two-grid convergence using the two-grid convergence theory for
non-symmetric matrices as outlined in Section 2.10.

We start with the operator Ll = QlK̂l
−1
Kl, where the symmetric positive definite matrix

Ql is defined as in (4.69),

Ql =

(
IVl 0
0 −IWl

)(
K̂l
−1
−Kl

)
=

(
Âl − Al 0

0 Ŝl −BlÂ
−1
l BT

l − Cl

)
.

The matrix Ll can also be written in terms of Kl and the inexact Uzawa smoother Ml

(4.67),

Ll = QlK̂l
−1
Kl =

(
IVl 0
0 −IWl

)(
Kl −KlK̂l

−1
Kl
)

=

(
IVl 0
0 −IWl

)
KlMl.

Now, assume that we have a prototype restriction Rl available, which establishes no
couplings between the velocity and the pressure part, i.e.,

Rl =

(
RVl 0
0 RWl

)
.

The error propagation operator Tl of the two-grid cycle for Ll with one post-smoothing
step can now be reformulated,

Tl =Ml(I −RT
l L−1

l+1RlLl)

=Ml −MlRT
l

[
Rl

(
IVl 0
0 −IWl

)
KlMlRT

l

]−1

Rl

(
IVl 0
0 −IWl

)
KlMl

=
(
I − Pl [RlKlPl]−1RlKl

)
Ml. (4.98)

Here, we have set

Pl =MlRT
l (4.99)

157

4. AMG for Saddle Point Systems

which can be seen as a smoothed version of the prototype interpolationRT
l . We now have

obtained a two-grid method for the matrix Kl with one pre-smoothing step which can
be interpreted as a two-grid method for the operator Ll, where the smoothing operator

Ml = I − K̂l
−1
Kl = I −Q−1

l Ll

can be written using a symmetric positive definite operator Ql. From Theorem 4.6 we
know that

‖I − 2Q−1
l Ll‖Ql ≤ 1.

Hence, Corollary 2.1 implies that all eigenvalues λ of the two-grid error propagation
operator Tl satisfy |λ − 1

2
| ≤ 1

2
. In addition, the case λ = 1 is impossible due to the

positive definiteness of Ql, see Corollary 2.1 and the discussion thereafter.
It remains to show that the coarse operator

Kl+1 = RlKlPl =

(
Al+1 BT

l+1

Bl+1 −Cl+1

)
,

where

Al+1 = RVl
(
Al(I − Â−1

l Al) + (I − AlÂ−1
l)BT

l Ŝ
−1
l Bl(I − Â−1

l Al)
)
RT
Vl , (4.100)

Bl+1 = RWl

(
I − (BlÂ

−1
l BT

l + Cl)Ŝ
−1
l

)
Bl(I − Â−1

l Al)R
T
Vl , (4.101)

Cl+1 = RWl(BlÂ
−1
l BT

l + Cl)
(
I − Ŝ−1

l (BlÂ
−1
l BT

l + Cl)
)
RT
Wl , (4.102)

is non-singular. We will show that, in contrast to the (semi-)algebraic methods intro-
duced in Section 4.4, the regularity of the coarse system does not depend on geometric
properties or “matching” coarse grids for the velocity and pressure components. Instead,
the term Cl+1 stabilizes the coarse system.
Let the projection operator ΠVl : V l → V l+1 be such that ΠVlR

T
Vlvl+1 = vl+1 for all

vl+1 ∈ V l+1. Such an operator can always be constructed if the tentative prolongation
operator RT

Vl has full column rank.

Lemma 4.4 Let Al be symmetric positive definite. Assume that for all vl ∈ V l we have

‖vl − (I − Â−1
l Al)R

T
VlΠVlvl‖

2
Âl
≤ β1‖vl‖2

Al
(4.103)

‖RT
VlΠVlvl‖

2
Al
≤ β2‖vl‖2

Al
(4.104)

σ1v
T
l B

T
l Ŝ
−1
l Blvl ≤ vTl Alvl (4.105)

for some constants σ1, β1 > 0. Then, the inf-sup-condition on the fine level,

sup
06=vl∈V1

vlB
T
l pl

‖vl‖Al
≥ cl‖pl‖Ml

− dl
(
pTl Clpl

) 1
2 for all pl ∈ W l (4.106)

158

4.8. The coarse grid operator I: Auto-stabilizing coarsening and Two-level convergence

implies an inf-sup-condition on the coarse level,

sup
06=vl+1∈Vl+1

vl+1B
T
l+1pl+1

‖vl+1‖Al+1

≥ cl+1‖pl+1‖Ml+1
− dl+1

(
pTl+1Cl+1pl+1

) 1
2 for all pl+1 ∈ W l+1.

(4.107)
where

cl+1 =
1√

β2 · (1 + 1
σ1

)
cl and dl+1 =

1√
β2 · (1 + 1

σ1
)

(√
β1 + max(dl,

1
√
σ1

)

)
.

and Ml+1 = RWlMlR
T
Wl.

Proof: Our aim is to find a lower bound for the supremum

sup
06=vl+1∈Vl+1

vTl+1B
T
l+1pl+1

‖vl+1‖Al+1

.

First, we need to estimate ‖vl+1‖Al+1
. To this end, we use (4.100) re-write

‖vl+1‖2
Al+1

= vTl+1RVlAlR
T
Vlvl+1 (4.108)

− vTl+1RVl(Al − AlÂ−1
l Al)R

T
Vlvl+1 (4.109)

+ vTl+1RVl(I − AlÂ−1
l)BT

l Ŝ
−1
l Bl(I − Â−1

l Al)R
T
Vlvl+1. (4.110)

From Âl > Al it is immediately clear that −vTl+1RVl(Al − AlÂ−1
l Al)R

T
Vlvl+1 < 0 and the

term (4.109) can be omitted. To estimate (4.110), we employ (4.105),

vTl+1RVl(I − AlÂ−1
l)BT

l Ŝl
−1
Bl(I − Â−1

l Al)R
T
Vlvl+1

≤ 1

σ
vTl+1RVl(I − AlÂ−1

l)Al(I − Â−1
l Al)R

T
Vlvl+1

Âl>Al
≤ 1

σ
vTl+1RVlAlR

T
Vlvl+1.

We can hence estimate ‖vl+1‖Al+1
≤
√

1 + 1
σ1
‖RT
Vlvl+1‖Al and we obtain

sup
06=vl+1∈Vl+1

vTl+1B
T
l+1pl+1

‖vl+1‖Al+1

≥ sup
06=vl+1∈Vl+1

vTl+1B
T
l+1pl+1√

1 + 1
σ1
‖RT
Vlvl+1‖Al

for all pl+1 ∈ W l+1. From the definition of ΠVl it is clear that for any vl+1 ∈ V l+1 we
have a (not necessarily unique) vl ∈ V l such that vl+1 = ΠVlvl. This allows us to take
the supremum over vl instead of vl+1,

sup
06=vl+1∈Vl+1

vTl+1B
T
l+1pl+1√

1 + 1
σ1
‖RT
Vlvl+1‖Al

= sup
06=vl∈Vl

vTl ΠT
VlB

T
l+1pl+1√

1 + 1
σ1
‖RT
VlΠVlvl‖Al

≥ sup
06=vl∈Vl

vTl ΠT
VlB

T
l+1pl+1√

β2 · (1 + 1
σ1

)‖vl‖Al

159

4. AMG for Saddle Point Systems

where the last inequality is obtained from (4.104). Now, we consider the nominator

vTl ΠT
VlB

T
l+1pl+1 = vTl ΠT

VlRVl(I − AlÂ
−1
l)BT

l

(
I − Ŝ−1

l (BlÂ
−1
l BT

l + Cl)
)
RT
Wlpl+1,

where we insert
±vTl BT

l

[
I − Ŝ−1

l

(
BlÂ

−1
l BT

l + Cl

)]
RT
Wlpl+1

to obtain

vTl ΠT
VlB

T
l+1pl+1 = vTl B

T
l

[
I − Ŝ−1

l

(
BlÂ

−1
l BT

l + Cl

)]
RT
Wlpl+1 (4.111)

−
[
vl −

(
I − Â−1

l A
)
RT
VlΠVlvl

]T
BT
l

[
I − Ŝ−1

l

(
BlÂ

−1
l BT

l + Cl

)]
RT
Wlpl+1.

(4.112)

We first regard (4.112),[
vl −

(
I − Â−1

l A
)
RT
VlΠVlvl

]T
Â

1/2
l Â

−1/2
l BT

l

[
I − Ŝ−1

l

(
BlÂ

−1
l BT

l + Cl

)]
RT
Wlpl+1

≤
{
vTl

[
I −

(
I − Â−1

l A
)
RT
VlΠVl

]T
Âl

[
I −

(
I − Â−1

l A
)
RT
VlΠVl

]
vl

}1/2

·
{
pTl+1RWl

[
I − Ŝ−1

l

(
BlÂ

−1
l BT

l + Cl

)]T
BlÂ

−1
l BT

l

[
I − Ŝ−1

l

(
BlÂ

−1
l BT

l + Cl

)]
RT
Wlpl+1

}1/2

We estimate the first factor,{
vTl

[
I −

(
I − Â−1

l A
)
RT
VlΠVl

]T
Âl

[
I −

(
I − Â−1

l A
)
RT
VlΠVl

]
vl

}1/2

=
∥∥∥[I − (I − Â−1

l A
)
RT
VlΠVl

]
vl

∥∥∥
Âl

(4.103)

≤
√
β1 ‖vl‖Al . (4.113)

For the second factor, we employ ρ
(
Ŝ
−1/2
l

(
BÂ−1

l BT
l + Cl

)
Ŝ
−1/2
l

)
< 1,

pTl+1RWl

[
I − Ŝ−1

l

(
BlÂ

−1
l BT

l + Cl

)]T
BlÂ

−1
l BT

l

[
I − Ŝ−1

l

(
BÂ−1

l BT
l + Cl

)]
RT
Wlpl+1

≤ pTl+1RWl

{
BlÂ

−1
l BT

l + Cl − 2
(
BlÂ

−1
l BT

l + Cl

)
Ŝ−1
l

(
BlÂ

−1
l BT

l + Cl

)
+
(
BlÂ

−1
l BT

l + Cl

)
Ŝ−1
l

(
BlÂ

−1
l BT

l + Cl

)
Ŝ−1
l

(
BlÂ

−1
l BT

l + Cl

)}
RT
Wlpl+1

≤ pTl+1RWl

{
BlÂ

−1
l BT

l + Cl −
(
BlÂ

−1
l BT

l + Cl

)
Ŝ−1
l

(
BlÂ

−1
l BT

l + Cl

)}
RT
Wlpl+1

= pTl+1Cl+1pl+1, (4.114)

160

4.8. The coarse grid operator I: Auto-stabilizing coarsening and Two-level convergence

We combine (4.113) and (4.114) to obtain a lower limit for (4.112),

−
[
vl −

(
I − Â−1

l A
)
RT
VlΠVlvl

]T
BT
l

[
I − Ŝ−1

l

(
BlÂ

−1
l BT

l + Cl

)]
RT
Wlpl+1

≥ −
√
β1 ‖vl‖Al

(
pTl+1Cl+1pl+1

)1/2
(4.115)

We now consider (4.111),

vTl B
T
l

[
I − Ŝ−1

l

(
BlÂ

−1
l BT

l + Cl

)]
RT
Wlpl+1

= vTl B
T
l R

T
Wlpl+1 − vTl BT

l Ŝ
−1
l

(
BlÂ

−1
l BT

l + Cl

)
RT
Wlpl+1, (4.116)

and estimate the subtrahend of (4.116),

vTl B
T
l Ŝ
−1
l

(
BlÂ

−1
l BT

l + Cl

)
RT
Wlpl+1

= vTl B
T
l Ŝ
−1/2
l Ŝ

−1/2
l

(
BlÂ

−1
l BT

l + Cl

)
RT
Wlpl+1

≤
(
vTl B

T
l Ŝ
−1
l Blvl

)1/2

·
(
pTl+1RWl

(
BlÂ

−1
l BT

l + Cl

)
Ŝ−1
l

(
BlÂ

−1
l BT

l + Cl

)
RT
Wlpl+1

)1/2

(4.105)

≤ 1
√
σ1

‖vl‖Al ·
(
pTl+1RWl

(
BlÂ

−1
l BT

l + Cl

)
Ŝ−1
l

(
BlÂ

−1
l BT

l + Cl

)
RT
Wlpl+1

)1/2

,

(4.117)

hence we can estimate (4.116),

vTl B
T
l

[
I − Ŝ−1

l

(
BlÂ

−1
l BT

l + Cl

)]
RT
Wlpl+1

≥ vTl B
T
l R

T
Wlpl+1

− 1
√
σ1

‖vl‖Al ·
(
pTl+1RWl

(
BlÂ

−1
l BT

l + Cl

)
Ŝ−1
l

(
BlÂ

−1
l BT

l + Cl

)
RT
Wlpl+1

)1/2

(4.118)

161

4. AMG for Saddle Point Systems

We are now ready to plug in the inf-sup-condition (4.106) for BT
l and perform the

induction,

sup
06=vl+1∈Vl+1

vTl+1B
T
l+1pl+1

‖vl+1‖Al+1

≥ sup
06=vl∈Vl

vTl ΠT
VlB

T
l+1pl+1√

β2 · (1 + 1
σ1

)‖vl‖Al
(4.115),(4.118)

≥ 1√
β2 · (1 + 1

σ1
)

[
sup

06=vl∈Vl

vTl B
T
l R

T
Wlpl+1

‖vl‖Al
−
√
β1 (pl+1Cl+1pl+1)1/2

− 1
√
σ1

(
pTl+1RWl

(
BlÂ

−1
l BT

l + Cl

)
Ŝ−1
l

(
BlÂ

−1
l BT

l + Cl

)
RT
Wlpl+1

)1/2]
(4.106)

≥ 1√
β2 · (1 + 1

σ1
)

[
cl‖pl+1‖Ml+1

− dl
(
pTl+1RWlClR

T
Wlpl+1

)1/2 −
√
β1 (pl+1Cl+1pl+1)1/2

− 1
√
σ1

(
pTl+1RWl

(
BlÂ

−1
l BT

l + Cl

)
Ŝ−1
l

(
BlÂ

−1
l BT

l + Cl

)
RT
Wlpl+1

)1/2]
.

It remains to show that, for all pl+1 ∈ W l+1,

dl
(
pTl+1RWlClR

T
Wlpl+1

)1/2

+
1
√
σ1

(
pTl+1RWl

(
BlÂ

−1
l BT

l + Cl

)
Ŝ−1
l

(
BlÂ

−1
l BT

l + Cl

)
RT
Wlpl+1

)1/2

≤
√
σ2 + 1√
σ2 − 1

·max(dl,
1
√
σ1

)
(
pTl+1Cl+1pl+1

)1/2
.

This can be seen from

(
√
x+
√
y)2

x− y
=

1 +
√

2y
x

+ y
x

1− y
x

< 1

for positive numbers x > y > 0. Here we have

x = pTl+1RWl

(
BlÂ

−1
l BT

l + Cl

)
RT
Wlpl+1,

y = pTl+1RWl

(
BlÂ

−1
l BT

l + Cl

)
Ŝ−1
l

(
BlÂ

−1
l BT

l + Cl

)
RT
Wlpl+1,

and x− y = pTl+1RWlCl+1R
T
Wlpl+1.

where we have used Ŝl >
(
BlÂ

−1
l BT

l + Cl

)
. (If pTl+1RWl

(
BlÂ

−1
l BT

l + Cl

)
RT
Wlpl+1 = 0,

for a pTl+1 6= 0, this implies BT
l R

T
Wlpl+1 = ClR

T
Wlpl+1 = 0, in contradiction to (4.106).)

We now have shown the inf-sup-condition for the coarse system with the constants

cl+1 =
1√

β2 · (1 + 1
σ1

)
cl and dl+1 =

1√
β2 · (1 + 1

σ1
)

(√
β1 + max(dl,

1
√
σ1

)

)
.

162

4.8. The coarse grid operator I: Auto-stabilizing coarsening and Two-level convergence

�
In the remainder of the section, we discuss how the assumptions of Lemma 4.4 can be
fulfilled. First, we address condition (4.104), which can easily be satisfied if Al is a
M-matrix or of essentially positive type and we employ point-wise coarsening for the
velocity (i.e ΠT

l is the trivial injection from level l + 1 into level l). Letting Dl be the
diagonal of Al, we assume that the tentative interpolation operator RT

Vl is such that we
have an approximation property (cf. Theorem 2.6),

‖vF −RT
FCvC‖2

Dl,F
≤ τ‖vl‖2

Al
(4.119)

where vC and vF respectively denote the vector vl at the coarse grid and the fine grid
points, RT

FC denotes the block of RT
Vl that contains the interpolation weights for the fine

grid variables and ‖vl‖Dl,F is the norm induced by Dl restricted to the fine grid variables.
We then have

‖vl −RT
VlΠVlvl‖

2
Dl
≤ τ‖vl‖2

Al
. (4.120)

In addition, for an essentially positive type matrix we have

2

c
vTl Dlvl ≥ vTl Alvl (4.121)

for some constant c independent of vl (2.28). Combining these inequalities, we get
([Wab03], p. 54)

‖RT
VlΠVlvl‖Al − ‖vl‖Al ≤ ‖vl −RT

VlΠVlvl‖Al

≤
√

2

c
‖vl − PVlΠVlvl‖Dl

≤
√

2τ

c
‖vl‖Al

from which we conclude that ‖PVΠVlvl‖2
Al
≤ β2‖vl‖2

Al
(4.104) holds with β2 :=

(
1 +

√
2τ
c

)2

.

To see (4.103), we first note that Âl = αDl for some α > 1. Hence we can re-write the
left hand side of (4.103) as

√
α
∥∥∥vl − (I − Â−1

l Al)R
T
VlΠVlvl

∥∥∥
Dl
≤
√
α
[∥∥vl −RT

VlΠVlvl
∥∥
Dl

+
∥∥RT
VlΠVlvl

∥∥
AlD

−1
l Al

]
.

We again use (4.120) to estimate the first summand. For the second summand, we
employ (2.25) and (4.104),∥∥RT

VlΠVlvl
∥∥
AlD

−1
l Al
≤
√
ρ(D−1

l Al)‖RT
VlΠVlvl‖Al ≤

√
β2ρ(D−1

l Al)‖vl‖2
Al
.

Combining these estimates, we obtain (4.103) with β1 = α

(
√
τ +

√
β2ρ(D−1

l Al)

)2

.

Note that a smaller (more accurately computed) value of α leads to a smaller value of

163

4. AMG for Saddle Point Systems

β1, and, in consequence, a smaller value of dl+1.
For diagonally dominant matrices Al, we know that ρ(D−1

l Al) ≤ 2. This spectral radius
may even be replaced by a much smaller constant if the tentative interpolation operator
RT
Vl only maps into the space of smooth error components (w.r.t. Al), as for these el we

have ‖e‖AlD−1
l Al
� ‖e‖Al , see Section 2.4.

Regarding (4.105), the value of σ1 depends on the interplay between BlŜ
−1
l BT

l and Al, i.e.

requires that low-energy modes of Al also correspond to low-energy-modes of BlŜ
−1
l BT

l

(if not, σ1 must be chosen smaller or Ŝl must be multiplied with a larger constant, at the
cost of a less efficient smoother). Apart from this, the stability proof does not depend
on the interplay between the velocity and the pressure spaces, in particular we do not
require anything on the interplay between the images of RT

Vl and RT
Wl . This allows us to

set up the coarse grids for the velocity and the pressure part separately, while the term

Cl+1 = RWl(BlÂ
−1
l BT

l + Cl)
(
I − Ŝ−1

l (BlÂ
−1
l BT

l + Cl)
)
RT
Wl (4.122)

ensures the stability.

Remark 4.5 In the case of a singular Al, we construct a matrix ADl > Al and replace,
in (4.103), (4.104) and (4.120) the norm ‖ · ‖Al by a norm ‖ · ‖ADl . In addition, in

(4.105), we substitute Al by ADl . On the other hand, in (4.103) the term I − Â−1
l Al is

not modified. If Al is a weakly diagonally dominant matrix, such an ADl can e.g. be
obtained by multiplying the diagonal of Al by 1+ ε for an ε > 0. Hence, it is still easy to
see (4.121) using a slightly smaller constant c and to show the prerequisites of Lemma
4.4 for essentially positive matrices.

Remark 4.6 As we usually have more than one velocity unknown, the A part itself is
the discretization of a system of elliptic partial differential equations. For these kind
of matrices, we have described various AMG approaches in Section 2.12. For the con-
siderations in this section (and in the next sections), we assumed that the tentative
interpolation operator RT

Vl was constructed using a variable-based AMG (Section 2.12.1)
approach for A, i.e. we just ignored its decomposition according to physical unknowns.
If we employ unknown-based AMG (Section 2.12.2), the approximation property for
interpolation reads (2.87)

‖vF − PFCvC‖2
0,F ≤ τu‖vl‖2

u,1

where ‖ · ‖u,1 is induced by the block diagonal matrix Au (2.86) that only contains
the couplings within each physical unknown. Inequality (4.119) then follows with τ =
ρ(A−1Au)τu.
In the case of point-based AMG (Section 2.12.3), where the matrix A is organized in
blocks A(i,j) corresponding to (discretization) points, we must distinguish between two
cases.
First, if the interpolation operator involves the full inverses of the diagonal block matrices
A(i,i), we have an approximation property (2.107)

‖vF − PFCvC‖2
P,0,F ≤ τ‖v‖2

1

164

4.9. The coarse grid operator II: A sparser stable coarse operator

where ‖ · ‖P,0,F is the norm induced by the block diagonal matrix DP = diag(A(i,i))i
(2.93), restricted to the fine grid points. In this case, we need to define Âl = αDP

with an appropriate scaling factor α to obtain the stability results in this and the fol-
lowing sections. In consequence, the smoother should also be built around the block
diagonal matrix Âl, see Remark 4.2. In the other case, where just the diagonal of Al is
inverted during prolongation setup, we have the classical approximation property 4.119,
see Remarks 2.7 and 2.9. Of course, we just use the diagonal in the smoother here.

4.9. The coarse grid operator II: A sparser stable coarse
operator

In the last section we have introduced a stable coarse grid operator for the saddle point
problem. The stability was obtained by applying the smoothing operator (4.67)

Ml =
(
I − K̂l

−1
Kl
)

to a tentative block-wise prolongator

RT
l =

(
RT
Vl 0
0 RT

Wl

)
.

While we were able to show stability and two-grid convergence for this approach, we
have two more or less severe drawbacks. First, the application of the smoother

M =

(
I −Â−1

l BT
l

0 I

)(
I 0

Ŝ−1
l Bl I

)(
I − Â−1

l Al 0

0 I − Ŝ−1
l

(
BlÂ

−1
l BT

l + Cl

)) (4.123)

to the tentative interpolation operator RT
l heavily enlarges the number of non-zero en-

tries of the final interpolation operator Pl:
First, a Jacobi-like iteration increases the radius of interpolation by the “stencil width”
of the operators Al and BlÂ

−1
l BT

l + Cl and then two additional coupling operators in-
troduce not only connections between the velocity and pressure parts, but together also
perform a further smoothing sweep over the velocity variables were the operator is given
by BT Ŝ−1B.
Second, no interpolation truncation can be applied after this stabilization process, as
the restriction operator remains Rl and a truncation of Pl would destroy the symmetry
of Kl+1 = RlKlPl.
In this section we introduce a different stabilization operator, which is applied to both
the prolongation and the restriction. Recall that in the last section, the prolonga-
tion smoothing resulted in a stabilization matrix Cl+1 that contains terms of the kind
BlÂ

−1
l BT

l , see (4.122). This motivates us to choose the simple ansatz

Pl =

(
I −Â−1

l BT
l

0 I

)
RT
l (4.124)

165

4. AMG for Saddle Point Systems

to obtain the stabilized interpolation Pl. A simple calculation shows that the coarse
matrix then reads

Kl+1 = PTl KlPl = Rl

 Al

(
I − AlÂ−1

l

)
BT
l

Bl

(
I − Â−1

l Al

)
BlÂ

−1
l AÂ−1

l BT
l − 2BlÂ

−1BT
l − Cl

RT
l

(4.125)
The stability of the coarse system Kl+1 is considered in the following lemma. Let again
ΠVl : V l → V l+1 be such that ΠVlR

T
Vlvl+1 = vl+1 for all vl+1 ∈ V l+1.

Lemma 4.5 Let Al be symmetric positive definite. Assume that for all vl ∈ V l we have

‖vl − (I − Â−1A)RT
VlΠVlvl‖

2
Âl
≤ β3‖vl‖2

Al
(4.126)

‖RT
VlΠVlvl‖

2
Al
≤ β4‖vl‖2

Al
(4.127)

for some constants β3, β4 > 0. Then, the inf-sup-condition on the fine level,

sup
06=vl∈V1

vlB
T
l pl

‖vl‖Al
≥ cl‖pl‖Ml

− dl
(
pTl Clpl

) 1
2 for all pl ∈ W l (4.128)

implies an inf-sup-condition on the coarse level,

sup
06=vl+1∈Vl+1

vl+1B
T
l+1pl+1

‖vl+1‖Al+1

≥ cl+1‖pl+1‖Ml+1
− dl+1

(
pTl+1Cl+1pl+1

) 1
2 for all pl+1 ∈ W l+1.

(4.129)
where

cl+1 =
1√
β4

cl and dl+1 =
1√
β4

max(dl,
√
β3).

and Ml+1 = RWlMlR
T
Wl.

Proof: In this case, we have ‖vl+1‖Al+1
= ‖RT

Vlvl+1‖Al . Again, the definition of ΠVl
allows us to choose a not necessarily unique vl ∈ V l such that vl+1 = ΠVlvl. Hence, we
can take the supremum over vl instead of vl+1,

sup
0 6=vl+1∈Vl+1

vTl+1B
T
l+1pl+1

‖RT
Vlvl+1‖Al

= sup
06=vl∈Vl

vTl ΠT
VlB

T
l+1pl+1

‖RT
VlΠVlvl‖Al

(4.127)

≥ sup
06=vl∈Vl

vTl ΠT
VlB

T
l+1pl+1√

β4‖vl‖Al
(4.130)

We re-write BT
l+1 =

(
I − AlÂ−1

l

)
BT
l as in (4.125) and insert ±vlBT

l R
T
Wlpl+1 into the

nominator of the rightmost term of (4.130),

vTl ΠT
VlB

T
l+1pl+1 = vTl BlR

T
Wlpl+1 (4.131)

−
[
vl −

(
I − Â−1

l A
)
RT
VlΠVlvl

]T
BT
l R

T
Wlpl+1. (4.132)

166

4.9. The coarse grid operator II: A sparser stable coarse operator

We estimate (4.132),[
vl −

(
I − Â−1

l A
)
RT
VlΠVlvl

]T
Â

1/2
l Â

−1/2
l BT

l R
T
Wlpl+1

≤
[
vl −

(
I − Â−1

l A
)
RT
VlΠVlvl

]T
Âl

[
vl −

(
I − Â−1

l A
)
RT
VlΠVlvl

]
· pTl+1RWlBlÂ

−1
l BT

l R
T
Wlpl+1.

From ρ(Â
−1/2
l AlÂ

−1/2
l) < 1 we obtain BlÂ

−1
l AlÂ

−1
l BT

l < BlÂ
−1
l BT

l and hence, cf.
(4.125),

RWlBlÂ
−1
l BT

l R
T
Wl < RWl

(
Cl + 2BlÂ

−1
l BT

l −BlÂ
−1
l AlÂ

−1
l BT

l

)
RT
Wl = Cl+1. (4.133)

The first factor can be estimated using (4.126),[
vl −

(
I − Â−1

l A
)
RT
VlΠVlvl

]T
Âl

[
vl −

(
I − Â−1

l A
)
RT
VlΠVlvl

]
=
∥∥∥vl − (I − Â−1

l A
)
RT
VlΠVlvl

∥∥∥
Âl

≤
√
β3‖vl‖Al , (4.134)

and combining (4.133) and (4.134) we obtain[
vl −

(
I − Â−1

l A
)
RT
VlΠVlvl

]T
BT
l R

T
Wlpl+1 ≤

√
β3‖vl‖Al ·

(
pTl+1Cl+1pl+1

)1/2
. (4.135)

Finally, we perform the induction,

sup
06=vl+1∈Vl+1

vTl+1B
T
l+1pl+1

‖vl+1‖Al+1

(4.130)

≥ sup
06=vl∈Vl

vTl ΠT
VlB

T
l+1pl+1√

β4‖vl‖Al
(4.135)

≥ 1√
β4

[
sup

0 6=vl∈Vl

vTl B
T
l R

T
Wlpl+1

‖vl‖Al
−
√
β3

(
pTl+1Cl+1pl+1

)1/2
]

(4.128)

≥ 1√
β4

[
cl‖pl+1‖Ml+1

− dl
(
pTl+1RWlClR

T
Wlpl+1

)1/2 −
√
β3

(
pTl+1Cl+1pl+1

)1/2
]

≥ 1√
β4

[
cl‖pl+1‖Ml+1

− d̃
(
pTl+1Cl+1pl+1

)1/2
]

where d̃ = max(dl,
√
β3).

We have shown the inf-sup-condition for the coarse system with the constants

Cl+1 =
1√
β4

cl and dl+1 =
1√
β4

max(dl,
√
β3). �

For a discussion on the conditions (4.126) and (4.127), we refer to the previous section.
Note that we have no condition on the interplay (4.105) between Al and BT

l Ŝ
−1
l Bl here.

167

4. AMG for Saddle Point Systems

4.10. The coarse grid operator III: F-stabilization

We again take a look at the coarse operator Kl+1 (4.125) and note that the coarse
coupling operator

Bl+1 = RWlBl

(
I − Â−1

l Al

)
RT
Vl

actually contains a Jacobi-like smoothed version of the velocity prolongation RT
Vl . Note

however, that in contrast to Jacobi interpolation as introduced in Section 2.8.8, here
also the rows corresponding to the coarse variables i ∈ C are relaxed. While in the
case of of smoothed aggregation AMG methods (Section 2.11.2), where we do not have
“coarse” and “fine” points but form aggregates of points to obtain the coarse level, this
can be seen as just an additional smoothing of the tentative interpolation operator, in
classical AMG we follow the principle that an error ei at a coarse grid point i ∈ C should
be interpolated just by injection from its coarse counterpart, see Section 2.8. Now, the
question arises whether it would be sufficient, in (4.124), to just introduce the coupling
for the fine velocity rows i ∈ F ∩ V l, i.e.

Pl =

IFF 0 −Â−1
FFB

T
F

0 ICC 0
0 0 I

RT
V,CF 0
ICC 0
0 RT

Wl

 . (4.136)

Here, like in Section 2.8.8, we have re-arranged the coarse and the fine velocity variables
vl such that we can write the operators Âl, Kl and RT

l in block form,

vl =

(
vF
vC

)
, Âl =

(
ÂFF 0

0 ÂCC

)
, Kl =

AFF AFC BT
F

ACF ACC BT
C

BF BC −Cl

 , RT
l =

RT
V,CF 0
ICC 0
0 RT

Wl

 .

Here, BC and BF denote the parts of B that correspond to the coarse and fine velocity
variables, respectively. (The further considerations do not require us to separate the
pressure variables in our notation. Also note that for sake of readability we have omitted
the level index l inside the matrix blocks.)
We now obtain the following coarse system,

Kl+1 = PTl KlPl =

(
Al+1 BT

l+1

Bl+1 −Cl+1

)
(4.137)

where

Al+1 = RV,CFAFFR
T
V,CF +RV,CFAFC + ACFR

T
V,CF + ACC , (4.138)

Bl+1 = RWlBF

(
RT
V,CF − Â−1

FF

(
AFFR

T
V,CF + AFC

))
+BC , (4.139)

Cl+1 = RWl

[
Cl + 2BF Â

−1
FFB

T
F +BF Â

−1
FFAFF Â

−1
FFB

T
F

]
RT
Wl . (4.140)

To see the relation to Jacobi interpolation as introduced in (2.61) we rewrite the right
hand side of (4.139)

Bl+1 = RWl

(
BF BC

)(RT
V,CF − Â−1

FF

(
AFFR

T
V,CF + AFC

)
ICC

)
(4.141)

168

4.10. The coarse grid operator III: F-stabilization

and conclude that, up to the choice of ÂFF , the rightmost matrix gives us a Jacobi inter-
polation operator for the velocity. Now, using the approximation result from Theorem
2.14, we can show the stability for this coarse system.

Lemma 4.6 Let Al be a symmetric positive definite matrix and let the projection on the
coarse level ΠVl be defined by

ΠVl =
(
0 ICC

)
. (4.142)

Assume that for all vl ∈ V l we have∥∥∥vF − [RT
V,CF − Â−1

FF

(
AFFR

T
V,CF + AFC

)]
vC

∥∥∥2

ÂFF
≤ β5‖vl‖2

Al
(4.143)∥∥RT

VlΠVlvl
∥∥2

Al
≤ β6‖vl‖2

Al
(4.144)

for some constants β5, β6 > 0. Then, the inf-sup-condition on the fine level,

sup
06=vl∈V1

vlB
T
l pl

‖vl‖Al
≥ cl‖pl‖Ml

− dl
(
pTl Clpl

) 1
2 for all pl ∈ W l (4.145)

implies an inf-sup-condition on the coarse level,

sup
06=vl+1∈Vl+1

vl+1B
T
l+1pl+1

‖vl+1‖Al+1

≥ cl+1‖pl+1‖Ml+1
− dl+1

(
pTl+1Cl+1pl+1

) 1
2 for all pl+1 ∈ W l+1.

(4.146)
where

cl+1 =
1√
β6

cl and dl+1 =
1√
β6

max(dl,
√
β5).

and Ml+1 = RWlMlR
T
Wl.

Proof: The proof is very similar to the proof of Lemma 4.5.
We have ‖vl+1‖Al+1

= ‖RT
Vlvl+1‖Al . From the definition of ΠVl (4.142) it is clear that we

can rewrite any vl+1 ∈ V l+1 as vl+1 = ΠVlvl, and, in the leftmost term of (4.146), take
the supremum over vl instead of vl+1,

sup
06=vl+1∈Vl+1

vTl+1B
T
l+1pl+1

‖RT
Vlvl+1‖Al

= sup
06=vl∈Vl

vTl ΠT
VlB

T
l+1pl+1

‖RT
VlΠVlvl‖Al

≥ sup
06=vl∈Vl

vTl ΠT
VlB

T
l+1pl+1√

β6‖vl‖Al
(4.147)

where we have used (4.144) in the last inequality. We insert ±vlBT
l R

T
Wlpl+1 into the

nominator of (4.147),

vTl ΠT
VlB

T
l+1pl+1 = vTl B

T
l R

T
Wlpl+1 −

{
vTl
[
BT
l R

T
Wl − ΠT

VlB
T
l+1

]
pl+1

}
. (4.148)

We now use the definition of Bl+1 (4.141),

BT
l+1 =

(
RT
V,CF − Â−1

FF

(
AFFR

T
V,CF + AFC

)
ICC

)T (
BT
F

BT
C

)
RWl

169

4. AMG for Saddle Point Systems

and replace BT
l+1 in the rightmost term of (4.148),

vTl
[
BT
l R

T
Wl − ΠT

VlB
T
l+1

]
pl+1

= vTl

[(
IFF 0
0 ICC

)
−
(
RT
V,CF − Â−1

FF

(
AFFR

T
V,CF + AFC

)
ICC

)
ΠVl

]T (
BT
F

BT
C

)
RT
Wlpl+1

(4.142)
= vTl

[(
IFF 0
0 ICC

)
−
(
RT
V,CF − Â−1

FFAFFR
T
V,CF − Â−1

FFAFC
ICC

)(
0 ICC

)]T (BT
F

BT
C

)
RT
Wlpl+1

= vTl

(
IFF Â−1

FF

(
AFFR

T
FC + AFC

)
−RT

V,CF
0 0

)T (
Â

1/2
FF 0
0 0

)(
Â
−1/2
FF 0
0 0

)(
BT
F

BT
C

)
RT
Wlpl+1

≤
∥∥∥vF − [RT

V,CF − Â−1
FF

(
AFFR

T
V,CF + AFC

)]
vc

∥∥∥
ÂFF
·
(
RWlBF Â

−1
FFB

T
FR

T
Wl

)1/2

Together with (4.143) we have∥∥∥vF − [RT
V,CF − Â−1

FF

(
AFFR

T
V,CF + AFC

)]
vC

∥∥∥
ÂFF
≤
√
β5‖vl‖Al .

From ρ(Â
−1/2
l AlÂ

−1/2
l) < 1 we also have ρ(Â

−1/2
FF AFF Â

−1/2
FF) < 1. Hence we can conclude

RWlBF Â
−1
FFB

T
FR

T
Wl < RWl

(
Cl + 2BF Â

−1
FFB

T
F −BF Â

−1
FFAFF Â

−1
FFB

T
F

)
RT
Wl = Cl+1

so that we can estimate the nominator of the rightmost term in (4.148),

vTl
[
BT
l R

T
Wl − ΠT

VlB
T
l+1

]
pl+1 <

√
β5‖vl‖Al

(
pTl+1Cl+1pl+1

)1/2
. (4.149)

Finally, we perform the induction as in the proof of the previous lemma,

sup
06=vl+1∈Vl+1

vTl+1B
T
l+1pl+1

‖vl+1‖Al+1

(4.147)

≥ sup
06=vl∈Vl

vTl ΠT
VlB

T
l+1pl+1√

β6‖vl‖Al
(4.149)

≥ 1√
β6

[
sup

06=vl∈Vl

vTl B
T
l R

T
Wlpl+1

‖vl‖Al
−
√
β5

(
pTl+1Cl+1pl+1

)1/2
]

(4.145)

≥ 1√
β6

[
cl‖pl+1‖Ml+1

− dl
(
pTl+1RWlClR

T
Wlpl+1

)1/2 −
√
β5

(
pTl+1Cl+1pl+1

)1/2
]

≥ 1√
β6

[
cl‖pl+1‖Ml+1

− d̃
(
pTl+1Cl+1pl+1

)1/2
]

where d̃ = max(dl,
√
β5).

From the last line, we obtain the constants

cl+1 =
1√
β6

cl and dl+1 =
1√
β6

max(dl,
√
β5). �

170

4.10. The coarse grid operator III: F-stabilization

To show inequality (4.143), note that in our implementation we have ÂFF = αDFF ,
where DFF denotes the part of the diagonal of Al corresponding to the fine grid variables
and α > 1 is chosen such that Âl > Al. Let us assume that Al is weakly diagonally
dominant and that our tentative interpolation operator RT

V,CF satisfies (2.37),

‖vF −RT
V,FCvC‖2

DFF
≤ τ‖vl‖2

Al
(4.150)

where τ > 0 is independent of Vl.
We follow the proof of Theorem 2.14. First, we replace ÂFF = αDFF ,∥∥∥vF − [RT

V,CF − Â−1
FF

(
AFFR

T
V,CF + AFC

)]
vC

∥∥∥2

ÂFF

=

∥∥∥∥(vF −RT
V,CFvC

)
+

1

α
D−1
FF

(
AFFR

T
V,CF + AFC

)
vC

∥∥∥∥2

αDFF

=
(
vF −RT

V,CFvC
)T
αDFF

(
vF −RT

VlvC
)

+
(
AFFR

T
V,CFvC + AFCvC

)T 1

α
D−1
FF

(
AFFR

T
V,CFvC + AFCvC

)
+ 2

(
vF −RT

V,CFvC
)T
DFFD

−1
FF

(
AFFR

T
V,CFvC + AFCvC

)
α>1

≤ α
∥∥vF −RT

V,CFvC
∥∥2

DFF
+
∥∥AFFRT

V,CFvC + AFCvC
∥∥2

D−1
FF

+ 2
∥∥vF −RT

V,CFvC
∥∥
DFF

∥∥AFFRT
V,CFvC + AFCvC

∥∥
D−1
FF

. (4.151)

The second summand and the second factor in the last line of (4.151) are further esti-
mated, (cf. (2.64))

‖AFFRT
V,CFvC + AFCvC‖D−1

FF
≤ ‖AFF

(
RT
V,CFvC − vF

)
‖D−1

FF
+ ‖AFFvF + AFCvC‖D−1

FF
.

(4.152)
Regarding the first summand of (4.152), we have (cf. (2.25))

‖AFF (RT
V,CFvC − vF)‖D−1

FF
≤ ρ(D−1

FFAFF)‖vF −RT
V,CFvC‖DFF ≤

√
τρ(D−1

FFAFF)‖vl‖Al .

The second summand in (4.152) is estimated by

‖AFFvF + AFCvC‖2
D−1
FF

=

(
AFFvF + AFCvC
ACFvF + ACCvC

)T (
D−1
FF 0
0 0

)(
AFFvF + AFCvC
ACFvF + ACCvC

)
≤

(
AFFvF + AFCvC
ACFvF + ACCvC

)T (
D−1
FF 0
0 D−1

CC

)(
AFFvF + AFCvC
ACFvF + ACCvC

)
= ‖vl‖2

AlD
−1
l Al

≤ ρ(D−1A)‖vl‖2
Al
.

We use ρ(D−1
FFAFF) ≤ ρ(D−1

l Al) ≤ 2 for weakly diagonally dominant matrices Al and
obtain (cf. (2.65))

‖AFFRT
V,CFvC + AFCvC‖D−1

FF
≤ (2
√
τ +
√

2)‖v‖Al .

171

4. AMG for Saddle Point Systems

We insert this result into (4.151) and conclude that we have (4.143), where

β5 = ατ + (2
√
τ +
√

2)2 + 2
√
τ(2
√
τ +
√

2).

In the case of point-based AMG with Âl = DP (2.92) (see Remark 4.6), we replace DFF

by the part of DP belonging to the fine grid points and ‖ · ‖0,F by ‖ · ‖P,0,F and employ

‖vF − PFCvC‖2
P,0,F ≤ τ‖v‖2

1,

instead of (4.150).
Note that the constant β5 depends on α so a smaller (more accurately computed) value
of α allows a smaller β5, and, in consequence, a smaller dl+1. Likewise, an accurate
interpolation operator RT

Vl (where τ in (4.150) is small) also leads to a small dl+1.
Regarding inequality (4.144), we refer to the discussion in Section 4.8. Again, if Al is
singular, we replace the norm ‖·‖Al by a suitable norm ‖·‖ADl , where ADl is non-singular
and ADl > Al.

4.11. Setup of the AMG hierarchy for saddle point
systems

Now, we have all components ready to set up the AMG hierarchy for saddle point
problems. In algorithm 4.5 we sketch the setup algorithm for saddle point AMG. First,
if the decomposition of Ω into velocity and pressure unknowns is not given by the user,
we automatically detect these subsets according to the respective diagonal entry of K.
Then, on each level we first set up the smoother (Sections 4.5 and 4.6) and compute the
Schur complement T = BÂ−1BT +C. After this is done, we carry out the classical AMG
coarsening and interpolation algorithms as in the case of scalar AMG, cf. Algorithm 2.3,
this time applied to both the velocity and pressure components. Finally, we compute
the stabilized interpolation by (4.99), (4.124), or (4.136) and the coarse grid operator
Kl+1 ← RT

l KlPl.
Note that in most cases the velocity space V itself consists of multiple physical unknowns.
Hence, for the coarsening and interpolation for the matrix block A we have to choose
whether we employ variable-based AMG (Section 2.12.1), unknown-based AMG (Section
2.12.2), or point-based AMG (Section 2.12.3). In the latter case, we also have the
option to use the same coarse mesh for both velocity and pressure variables if the initial
discretization on level 1 also employs a common mesh (e.g. P1−P1-stab finite elements).

172

4.11. Setup of the AMG hierarchy for saddle point systems

algorithm 4.5 AmgSaddleSetup(Ω,K = (kij)i,j, Nmin, Lmax, L, {Kl}Ll=1, {Pl}L−1
l=1 , {Rl}L−1

l=1)

begin
Ω1
u ← {j ∈ Ω : kjj > 0}; Ω1

p ← Ω \ Ω1
u; or partitioning can be supplied by user

N1 ← |Ω1
u|; M1 ← |Ω1

p|;
K1 ← K;
for l← 1 to Lmax − 1 do

A← (kli,j)i,j∈Ωlu
; B ← (kli,j)i∈Ωlp,j∈Ωlu

; C ← (kli,j)i,j∈Ωlp
;

VankaSmootherSetup(A,B,C, {Âj}Ml
j=1, {Bj}Ml

j=1, {Ŝj}
Ml
j=1, {Vj}

Ml
j=1, {Wj}Ml

j=1)

compute T ← BÂ−1BT + C;
AmgStrongCouplings(A, Su, S

T
u);

AmgStrongCouplings(T, Sp, S
T
p);

split Ωl
u into C l

u∪̇F l
u usingSu; see Section 2.6 or Chapter 3

split Ωl
p into C l

p∪̇F l
p usingSp;

set Ωl+1
u ← C l

u; Nl+1 = |Ωl+1
u |;

set Ωl+1
p ← C l

p; Ml+1 = |Ωl+1
p |;

build velocity interpolation RT
Vl : RNl+1 → RNl using A; see Section 2.8

build pressure interpolation RT
Wl : RMl+1 → RMl using T ;

compute Pl according to (4.99), (4.124), or (4.136);
if used (4.99)

then

Rl ←
(
RVl 0
0 RWl

)
;

else
Rl ← PTl ;

fi;
compute Kl+1 ← RT

l KlPl;
if |Ωl+1

u ∪ Ωl+1
p | ≤ Nmin then break; fi;

od;
L← l + 1;

end.

173

5. Numerical Results

In this chapter, we demonstrate the practicability of our saddle point AMG. We inves-
tigate the performance of our AMG using two finite difference model problems and one
finite element example.
We have implemented our saddle point AMG using the hypre software package [hyp]
[CCF98]. An important component of this parallel linear solver suite is the BoomerAMG
algebraic multigrid solver and preconditioner for positive definite matrices. The ingredi-
ents of BoomerAMG include smoothers (Jacobi, Gauss–Seidel, SOR, polynomial), par-
allel coarse grid generation techniques (third pass coarsening, CLJP, Falgout’s scheme,
PMIS, HMIS, CGC(-E), compatible relaxation, . . .), interpolation setup routines (di-
rect, modified classical, extended(+i), Jacobi, and may more). Furthermore, for systems
of elliptic PDEs both the unknown-based (UAMG) and the point-based (PAMG) ap-
proach are supported. For the latter, block smoothers and block interpolation routines
can be chosen.
For the numerical experiments presented in this chapter, we have set the following pa-
rameters, if not stated otherwise:

• The strength threshold (2.29) is α = 0.25.

• We perform both phases of Ruge-Stüben coarsening (Algorithms 2.5 and 2.6).

• As tentative interpolation for both velocity and pressure, we employ modified clas-
sical interpolation (2.51) per physical unknown. The interpolation is not truncated.

• We stop the coarsening if the number of degrees of freedom is less than 1000. A
direct solver is used on the coarsest level.

In addition to the wall clock time consumed for the setup (Algorithm 2.3) and solve
(Algorithm 2.2) routines, we give two further quantities:

• The operator complexity

CA :=

∑Lmax
l=1 non-zeros (Kl)
non-zeros (K1)

gives an indication of the “memory overhead” required for the AMG hierarchy
compared to the original linear system.

• The convergence factor or convergence rate

ρ =

(
rit

r0

) 1
it

,

175

5. Numerical Results

Figure 5.1.: Diffusion coefficient for the SOLKY problem (5.1)–(5.2)

where rit := |y −Kxit| is the l2-norm of the residual.

If the right hand side y is zero, we initialize x0 with random values and scale it such that
|x0| = 1. We stop the iteration if the residual norm rit is less than 10−8. Otherwise, we
use a zero start vector x0 and terminate if rit < 10−8r0.

5.1. Finite difference examples

We start with two geodynamic benchmark examples in two spatial dimensions, the
SOLKY and the SINKER problem. In both cases, we use a staggered grid (Section
4.2.1) to discretize the respective PDE on a square domain Ω = [0, 1]2. We impose a
Neumann boundary condition (free outflow) for x = 1, while on all other boundary we
set zero Dirichlet conditions.

Example 5.1 SOLKY problem The first example is a variant of the SOLKY problem
[MM08]. We solve the equations

−∇ · ν∇u +∇p = 0 (5.1)

∇ · u = 0 (5.2)

in Ω = (0, 1)2, where ν is given by

ν(x, y) = exp(2y),

see Figure 5.1.

Example 5.2 SINKER problem Here, we consider a problem with a jumping dif-
fusion coefficient ν(x, y). The equations are as in (5.1)–(5.2), but ν(x, y) is no longer
continuous. Instead, for 0.5 ≤ x ≤ 0.75 and 0.5 ≤ y ≤ 0.75, we have ν(x, y) = ν1,
while for the remainder of the domain we set ν(x, y) = ν0 = 1, see Figure 5.2. In our

176

5.1. Finite difference examples

Figure 5.2.: Computational domain for the SINKER problem. The gray square indicates
the area where the diffusion coefficient ν1, while the in the remainder of the
domain the diffusion coefficient ν0 equals 1.

experiments, we let ν1 = 10−6, 10−3, 1, 103, or 106. In the case of ν1 = 1, we obtain a
Stokes problem.

All finite difference experiments were carried out on dual processor Intel Xeon 3.20 GHz
machines with 6GB RAM.

Two-level experiments In Sections 4.8–4.10, we have introduced three different sta-
bilization techniques for the coarse saddle point system,

• a full smoothing of the prolongation matrix P := MRT and a Petrov-Galerkin
approach to the coarse grid operator, KC := RKP (4.99);

• an application of the pressure–to–velocity coupling operator

(
I −Â−1

l BT
l

0 I

)
(4.124)

to the tentative prolongation and a Galerkin coarse grid ansatz,

• “F-stabilization”: as in the previous case, but restricted to the fine grid velocity
variables only (4.136)

Pl =

IFF 0 −Â−1
FFB

T
F

0 ICC 0
0 0 I

RT
V,CF 0
ICC 0
0 RT

W

 .

For the first variant, we were able to prove two-grid convergence if used in combination
with a single pre-smoothing step with the inexact Uzawa method 4.67 (see Section 4.8),
but this involves a substantial memory usage. The question arises whether the other ap-
proaches, especially F-stabilization, can also provide a converging method. To this end,
we numerically compare the three stabilization techniques as well as a unstabilized coarse

grid operator (where we just employ the block interpolation operators

(
RT
V 0

0 RT
W

)
). We

consider three different mesh refinements: A 32×32 mesh (3, 040 degrees of freedom),

177

5. Numerical Results

Figure 5.3.: Sparsity patterns of the tentative and stabilized interpolation operators on
the finest level for a Stokes problem discretized on a staggered finite dif-
ference mesh with 32 × 32 cells. From left to right: tentative interpolation
operator, fully smoothed prolongation (4.99), pressure–to–velocity stabiliza-
tion (4.124), F-stabilization (4.136)

Figure 5.4.: Sparsity patterns of the coarse grid operator on the first coarse level for a
Stokes problem discretized on a staggered finite difference mesh with 32×32
cells. From left to right: fully smoothed prolongation (4.99), pressure–to–
velocity stabilization (4.124), F-stabilization (4.136)

178

5.1. Finite difference examples

none full P2V F
Mesh dof CA ρ CA ρ CA ρ CA ρ
32×32 3,040 2.48 0.40 7.00 0.41 3.80 0.41 2.69 0.42
64×64 12,224 2.50 0.41 7.26 0.42 3.89 0.42 2.72 0.43

128×128 49,024 2.51 0.42 7.39 0.42 3.93 0.42 2.74 0.43

Table 5.1.: Operator complexity CA and convergence factor ρ for the two-grid itera-
tion applied to the SOLKY problem. The different stabilization techniques
are denoted by none (no stabilization), full (full prolongation smoothing and
Petrov-Galerkin coarse grid operator (4.99)), P2V (pressure–to–velocity cou-
pling (4.124)) and F (F-stabilization (4.136)).

a 64×64 mesh (12, 224 degrees of freedom), and a 128×128 mesh (49, 024 degrees of
freedom).
In Figure 5.3 we show the sparsity patterns and numbers of non-zero matrix entries for
a tentative interpolation operator R1 on the finest level (Stokes problem discretized on
32× 32 cells) as well as the stabilized interpolation operator P1 computed according to
(4.99), (4.124), and (4.136), respectively. We see that the full stabilization technique
produces a significantly denser interpolation operator than the other variants. Also, this
matrix includes couplings between the different velocity components that are not present
in the tentative prolongation and the sparser stabilization variants. All these drawbacks
carry over to the first coarse grid operator, see Figure 5.4. In Table 5.1 we give
the operator complexity as well as the convergence factor for the SOLKY problem. We
see that all convergence rates are nearly equal, while the operator complexity differs
significantly depending on the stabilization technique chosen.
While for the SOLKY problem the two-level method without stabilization still con-
verged, this is not longer true for the SINKER problem if the diffusion coefficient has
a jump, see Table 5.2 (right). We see however that the robustness of the stabilized
methods does not depend on the diffusion coefficients. Again, the the F-stabilization
approach involves an operator complexity that is only about 10 percent higher than the
unstabilized two-grid hierarchy, in contrast to the other stabilization techniques that
have a significantly higher memory overhead.

Multilevel experiments In the following, we turn our attention from the two-grid it-
eration with one additive pre-smoothing step 4.67 to full V-cycles. We compare V (1, 1),
V (3, 3), V (5, 5) with both additive, multiplicative and symmetric multiplicative smooth-
ing iterations. We first give the setup time and the operator complexity for the
algebraic multigrid hierarchies (Table 5.3). The full stabilization method already runs
out of memory for very small problem sizes. Not surprising, the setup without stabiliza-
tion is faster than the other variants and also has the least memory overhead. However,
without stabilization we only have convergence for the smallest problem size 32 × 32
and all other cycles diverge. In the following, we give the convergence figures for the
pressure–to–velocity coupling and F stabilization techniques.

179

5. Numerical Results

none full P2V F
Mesh dof ν1 CA ρ CA ρ CA ρ CA ρ

32×32 3040

1e−6 2.46 − 6.97 0.41 3.79 0.41 2.68 0.41
1e−3 2.46 − 6.97 0.41 3.79 0.41 2.68 0.41

1 2.48 0.41 6.99 0.41 3.80 0.41 2.69 0.41
1e3 2.46 − 6.95 0.41 3.77 0.42 2.68 0.42
1e6 2.46 − 6.95 0.41 3.77 0.42 2.68 0.42

64×64 12224

1e−6 2.50 − 7.25 0.42 3.88 0.42 2.72 0.42
1e−3 2.50 − 7.25 0.42 3.88 0.42 2.72 0.42

1 2.50 0.42 7.26 0.42 3.89 0.42 2.72 0.42
1e3 2.49 − 7.24 0.42 3.87 0.42 2.72 0.42
1e6 2.49 − 7.24 0.42 3.87 0.42 2.72 0.42

128×128 49024

1e−6 2.51 − 7.39 0.42 3.93 0.42 2.73 0.42
1e−3 2.51 − 7.39 0.42 3.93 0.42 2.73 0.42

1 2.51 0.42 7.39 0.42 3.93 0.42 2.74 0.42
1e3 2.51 − 7.39 0.42 3.92 0.42 2.73 0.42
1e6 2.51 − 7.39 0.42 3.92 0.42 2.73 0.42

Table 5.2.: Operator complexity CA and convergence factor ρ for the two-grid iteration
applied to the SINKER problem. A dash denotes that the method did not
converge within 1000 iterations.

none full P2V F
Mesh dof tsetup CA tsetup CA tsetup CA tsetup CA

32×32 3,040 4 · 10−2 2.95 0.86 21.94 6 · 10−2 4.67 4 · 10−2 3.33
64×64 12,224 0.12 3.16 118.47 44.59 0.35 5.13 0.20 3.61

128×128 49,024 0.57 3.28 − − 1.72 5.29 0.96 3.77
256×256 196,352 2.75 3.40 − − 8.98 5.44 5.54 3.92
512×512 785,920 10.82 3.48 − − 50.86 5.56 24.90 4.00

1024×1024 3,144,704 65.67 3.55 − − 269.09 5.65 141.31 4.08

Table 5.3.: Setup time tsetup and operator complexity CA for the AMG hierarchy com-
puted for the SOLKY problem.

180

5.1. Finite difference examples

additive multiplicative symmetric multiplicative
Mesh V (1, 1) V (3, 3) V (5, 5) V (1, 1) V (3, 3) V (5, 5) V (1, 1) V (3, 3) V (5, 5)
32×32 0.27 0.15 0.16 0.47 0.24 0.32 0.34 0.37 0.50
64×64 − 3.00 1.38 − 4.03 2.26 − 2.23 3.27

128×128 − 24.13 9.76 − 34.38 13.57 − 12.60 18.79
256×256 − − 45.54 − − 75.56 − 87.36 100.51
512×512 − − 252.74 − − 715.22 − 534.19 695.39

1024×1024 − − 1,009.49 − − 5,269.60 − 2,155.71 2,958.88

Table 5.4.: Solution time for the V-cycle iteration applied to the SOLKY problem
(Pressure–to–velocity coupling).

additive multiplicative symmetric multiplicative
Mesh V (1, 1) V (3, 3) V (5, 5) V (1, 1) V (3, 3) V (5, 5) V (1, 1) V (3, 3) V (5, 5)
32×32 0.56 0.06 0.03 0.57 0.06 0.03 0.28 0.03 0.02
64×64 − 0.39 0.04 − 0.32 0.04 − 0.04 0.03

128×128 − 0.57 0.07 − 0.51 0.07 − 0.04 0.03
256×256 − − 0.11 − − 0.09 − 0.10 0.03
512×512 − − 0.18 − − 0.24 − 0.14 0.06

1024×1024 − − 0.31 − − 0.45 − 0.10 0.08

Table 5.5.: Convergence factor for the V-cycle iteration applied to the SOLKY problem
(Pressure–to–velocity coupling).

From Tables 5.4–5.7 we learn that the V (1, 1) is not sufficient to solve the problem ex-
cept for small problem sizes. Furthermore, the (non-symmetric) multiplicative smoother
has no advantage over the additive smoother. To obtain more robust convergence, we
have to employ symmetric multiplicative smoothing, (see Tables 5.5 and 5.7). On the
other hand, despite the fact that its convergence factors are not completely independent
of the problem size, the V (5, 5) cycle with additive smoothing provides the fastest in
nearly all cases, see Tables 5.4 and 5.6. We mention here that for the multiplicative and
symmetric multiplicative smoothing methods we still had to employ the same scaling
factors as in the case of additive smoothing, cf. the discussion in Section 4.6.

additive multiplicative symmetric multiplicative
Mesh V (1, 1) V (3, 3) V (5, 5) V (1, 1) V (3, 3) V (5, 5) V (1, 1) V (3, 3) V (5, 5)
32×32 0.36 9 · 10−2 0.10 0.29 0.15 0.19 0.13 0.19 0.27
64×64 − 0.75 0.82 − 0.94 1.31 1.35 1.26 1.86

128×128 − 4.38 5.74 − 5.15 7.61 9.28 7.04 9.82
256×256 − 49.87 27.87 − 53.12 39.90 − 34.66 60.34
512×512 − 1,748.63 173.15 − − 233.39 − 204.31 271.25

1024×1024 − − 710.60 − − 1,506.32 − 1,462.72 1,786.08

Table 5.6.: Solution time for the V-cycle iteration applied to the SOLKY problem (F-
stabilization).

181

5. Numerical Results

104.00 105.00 106.00

10−1.00

100.00

101.00

102.00

dof

t s
et
u
p

P2V coupling
F-stabilization

(a) Setup time tsetup

104.00 105.00 106.00

10−1.00

100.00

101.00

102.00

103.00

dof

t s
o
lv
e

P2V coupling
F-stabilization

(b) Solution time tsolve for the V (5, 5) cycle
with additive smoothing.

104.00 105.00 106.00
10−1.00

100.00

101.00

102.00

103.00

dof

t s
o
lv
e

P2V coupling
F-stabilization

(c) Solution time tsolve for the V (3, 3) cycle
with symmetric multiplicative smoothing.

104.00 105.00 106.00

100.00

101.00

102.00

103.00

dof

t s
o
lv
e

P2V coupling
F-stabilization

(d) Solution time tsolve for the V (5, 5) cycle
with symmetric multiplicative smoothing.

Figure 5.5.: Numerical Results for the SOLKY problem

182

5.1. Finite difference examples

additive multiplicative symmetric multiplicative
Mesh V (1, 1) V (3, 3) V (5, 5) V (1, 1) V (3, 3) V (5, 5) V (1, 1) V (3, 3) V (5, 5)
32×32 0.74 0.06 0.03 0.57 0.06 0.03 0.14 0.03 0.02
64×64 − 0.06 0.05 − 0.06 0.04 0.34 0.03 0.02

128×128 − 0.08 0.07 − 0.07 0.04 0.42 0.03 0.02
256×256 − 0.38 0.05 − 0.30 0.04 − 0.04 0.03
512×512 − 0.89 0.11 − − 0.08 − 0.05 0.03

1024×1024 − − 0.27 − − 0.17 − 0.11 0.04

Table 5.7.: Convergence factor for the V-cycle iteration applied to the SOLKY problem
(F-stabilization).

We already mentioned in Section 4.10 that in contrast to pressure-to–velocity coupling,
the F-stabilization technique better fits into the context of classical AMG, with desig-
nated “coarse” and “fine” points. Comparing the numerical results in this section for
both variants (Tables 5.3–5.7, Figure 5.1) we obtain a justification for this hypothe-
sis: F-stabilization performs better than pressure–to–velocity coupling both in terms
of memory overhead (operator complexity) as well as setup and solve timings. In the
remainder of this chapter, we will only us F-stabilization.
In Table 5.8 and Figure 5.6 we give the numerical results of the F-stabilization technique

applied within an AMG hierarchy computed for the SINKER problem. In contrast to
the two-level method, we now see that all relevant figures (setup time, operator complex-
ity, solution time, convergence factor) now depend on the coefficient ν1. Not surprising,
we obtain the best results for the plain Stokes problem (ν1 = 1). It is also clear that
there is no “ideal” smoothing parameter set: In most cases, a V (5, 5) cycle with addi-
tive smoothing yields the fastest solution (even if the convergence factors for symmetric
multiplicative smoothing are lower), but for the 1024× 1024 mesh and ν1 = ±106, it is
not sufficient any more and symmetric multiplicative smoothing is required.
We omitted the V (3, 3) cycle with additive smoothing from the table, as this iteration
did not converge for any mesh size larger than 128× 128 if ν1 6= 1.

183

5. Numerical Results

additive symmetric multiplicative
V (5, 5) V (3, 3) V (5, 5)

Mesh dof ν1 tsetup CA tsolve ρ tsolve ρ tsolve ρ

32×32 3040

10−6 0.05 3.62 0.11 0.05 0.19 0.04 0.27 0.03
10−3 0.04 3.62 0.12 0.05 0.19 0.04 0.27 0.03

1 0.04 3.30 0.12 0.05 0.19 0.04 0.30 0.03
103 0.05 3.62 0.13 0.05 0.21 0.05 0.30 0.03
106 0.05 3.62 0.12 0.05 0.21 0.05 0.31 0.03

64×64 12224

10−6 0.22 3.89 1.12 0.05 1.41 0.05 2.03 0.03
10−3 0.24 3.89 1.10 0.05 1.44 0.05 2.10 0.03

1 0.20 3.61 1.05 0.06 1.27 0.05 1.86 0.03
103 0.23 4.02 0.85 0.06 1.62 0.06 2.38 0.05
106 0.23 4.02 0.79 0.06 1.61 0.06 2.37 0.05

128×128 49024

10−6 1.09 4.03 7.73 0.10 8.62 0.06 12.02 0.03
10−3 1.16 4.03 7.72 0.10 7.73 0.05 11.94 0.03

1 1.00 3.78 6.61 0.07 7.14 0.05 10.77 0.03
103 1.21 4.16 6.55 0.06 9.32 0.06 15.37 0.06
106 1.19 4.14 5.69 0.07 9.35 0.06 12.75 0.04

256×256 196352

10−6 5.88 4.12 33.96 0.16 55.29 0.11 70.42 0.06
10−3 5.73 4.10 44.24 0.27 60.60 0.15 68.75 0.06

1 5.07 3.92 19.01 0.07 33.31 0.04 51.52 0.03
103 6.09 4.17 33.34 0.09 51.53 0.09 89.82 0.08
106 5.68 4.16 27.57 0.10 48.72 0.08 73.88 0.06

512×512 785920

10−6 28.89 4.17 217.88 0.30 386.00 0.21 475.49 0.08
10−3 27.26 4.17 294.90 0.32 531.14 0.28 494.96 0.13

1 25.95 4.01 133.49 0.14 211.38 0.08 320.88 0.03
103 30.04 4.15 187.91 0.23 263.96 0.07 411.32 0.06
106 29.43 4.15 137.05 0.15 260.47 0.08 399.46 0.07

1024×1024 3144704

10−6 152.69 4.24 − − 7,667.65 0.66 4,937.48 0.34
10−3 154.05 4.25 2,254.40 0.60 4,036.61 0.45 3,548.96 0.23

1 132.01 4.09 1,020.69 0.42 2,001.59 0.23 1,659.03 0.05
103 147.36 4.19 1,969.40 0.59 2,050.04 0.21 2,257.60 0.09
106 147.20 4.20 − − 3,594.67 0.41 2,694.19 0.13

Table 5.8.: Numerical results for the SINKER problem. We show the mesh dimension,
the degrees of freedom, the AMG setup time tsetup, the operator complex-
ity CA and the AMG solve time tsolve as well as the convergence factor ρ
for V (3, 3) and V (5, 5) cycles with additive and symmetric multiplicative
smoothing.

184

5.1. Finite difference examples

104.00 105.00 106.00

10−1.00

100.00

101.00

102.00

dof

t s
et
u
p

ν1 = 10−6

ν1 = 10−3

ν1 = 1

ν1 = 103

ν1 = 106

(a) Setup time tsetup

104.00 105.00 106.00

10−1.00

100.00

101.00

102.00

103.00

dof

t s
o
lv
e

ν1 = 10−6

ν1 = 10−3

ν1 = 1

ν1 = 103

ν1 = 106

(b) Solve time tsolve for the V (5, 5) cycle with
additive smoothing

104.00 105.00 106.00
10−1.00

100.00

101.00

102.00

103.00

104.00

dof

t s
o
lv
e

ν1 = 10−6

ν1 = 10−3

ν1 = 1

ν1 = 103

ν1 = 106

(c) Solve time tsolve for the V (3, 3) cycle with
symmetric multiplicative smoothing

104.00 105.00 106.00

100.00

101.00

102.00

103.00

104.00

dof

t s
o
lv
e

ν1 = 10−6

ν1 = 10−3

ν1 = 1

ν1 = 103

ν1 = 106

(d) Solve time tsolve for the V (5, 5) cycle with
symmetric multiplicative smoothing

Figure 5.6.: Numerical results for the SINKER problem

185

5. Numerical Results

5.2. Mantle Convection

We conclude our numerical experiments with an example from earth mantle convection
simulation. We use our saddle point AMG as linear solver inside the parallel adaptive-
mesh mantle convection code Rhea [BGG+08, BSA+13]. In long timescales (millions of
years) the earth mantle is assumed to behave as a viscous fluid, whose (dimension-less)
velocity u, viscosity µ(T, u) pressure p and temperature T are described by

−∇
[
µ(T, u)

(
∇u +∇uT

)]
+∇p = RaTer, (5.3)

∇ · u = 0, (5.4)

∂T

∂t
+u · T−∇2T = γ. (5.5)

where er is the unit vector in radial direction, γ denotes the rate of internal heat gener-
ation, and the Rayleigh number is given by

Ra =
αρ0g∆T(DR0)3

κµ0

where α, ρ0, µ0 and κ are the reference constants for thermal expansion, density, viscos-
ity, and thermal diffusivity, respectively; the temperature difference across a mantle with
relative thickness D is denoted by ∆T, and g is the gravitational acceleration. Here, we
have D = 0.45 and the earth radius is given by R0 = 6371km.
A streamline-upwind Petrov-Galerkin formulation is used to discretize (5.5), see [BSA+13],
Section 3.4 for details. This leads to a system of ordinary differential equations, which is
integrated in time using an explicit first order scheme. Inside each time step, a solution
of the nonlinear Stokes system (5.3)–(5.4) must be computed. To this end, a Picard it-
eration is used to treat the non-linearity induced by the viscosity µ(T, u). The linearized
version of (5.3)–(5.4) then reads in weak form:
Find u and p such that∫

Ω

µ

2

(
∇u +∇uT

)
:
(
∇v +∇vT

)
−
∫

Ω

(∇ · v) p

+

∫
∂Ω

[(
pI − µ

(
∇u + uT

))
n
]
· v =

∫
Ω

f · v for all v, (5.6)

−
∫

Ω

(∇ · u) q = 0 for all q, (5.7)

where f = RaTer. On the boundary ∂Ω, free-slip boundary conditions are imposed, i.e.

u · n = 0, v · n = 0, s ·
[(

pI − µ
(
∇u + uT

))
n
]

= 0,

where n denotes an outer normal vector and s any tangential vector. Hence, inside
(5.6) the boundary integral term

∫
∂Ω

[(
pI − µ

(
∇u + uT

))
n
]
· v vanishes. Finally, we

discretize (5.6)–(5.7) on a (deformed) hexahedral finite element mesh using trilinear

186

5.2. Mantle Convection

Figure 5.7.: Finite element mesh (left) and temperature distribution (right) on a 45◦×45◦

section of the Earth mantle.

functions {ϕi}i for all velocity components as well as the pressure. We obtain a linear
system of the form (4.1) (

A BT

B −C

)(
u
p

)
=

(
f
0

)
(5.8)

where the components of the matrix C are given by (4.42)

cij :=

∫
Ω

(φi − Πφi, φj − Πφj),

i.e. we have a Q1−Q11-stab discretization, for which the stability is shown in Theorem
4.5.
In the following, we focus on the solution of (5.8).

More precisely, we consider a 45◦ × 45◦ section of a spherical shell, which is axially
symmetrical arranged around the x-axis, see Figure 5.7. We have re-scaled the geometry
such that the outer radius of the shell is given by R2 = 1, the inner radius is R1 = 0.55.
We impose a temperature distribution given by

T = min(1, exp(−50((x− 0.64)2 + y2 + z2))

+ exp(−50(x2 + (y − 0.64)2 + z2))

+ exp(−50(x2 + y2 + (z − 0.64)2))).

In other words, we have three “hot blobs” centered at the positions (0.64, 0, 0), (0, 0.64, 0),
and (0, 0, 0.64), where only the first one is located inside the domain. In Figure 5.7
(right) we show a slice through the computational domain to give an indication of the
temperature distribution. The viscosity µ is derived from the temperature by

µ = exp(−E0T).

187

5. Numerical Results

unknown frobenius abs sum schur
Level dof E0 tsetup CA tsetup CA tsetup CA tsetup CA

3 2916
0 0.50 1.21 0.46 1.13 0.48 1.14 0.57 1.23

7.5 0.23 1.22 0.19 1.09 0.21 1.13 0.36 1.53
15 0.31 1.34 0.20 1.13 0.19 1.11 0.46 1.74

4 19652
0 4.43 1.22 2.61 1.14 2.59 1.13 4.54 1.27

7.5 5.48 1.27 2.91 1.15 2.81 1.14 5.63 1.33
15 8.44 1.36 2.99 1.14 3.03 1.14 10.33 2.21

5 143748
0 22.49 1.27 19.12 1.21 16.47 1.16 29.72 1.37

7.5 27.01 1.30 20.37 1.22 17.32 1.17 31.63 1.37
15 35.14 1.35 22.72 1.23 19.94 1.19 41.93 1.49

6 1098500
0 170.44 1.28 165.66 1.23 136.09 1.17 282.45 1.39

7.5 177.81 1.31 171.12 1.24 142.37 1.17 281.20 1.39
15 181.77 1.32 168.48 1.25 136.40 1.18 278.20 1.41

Table 5.9.: Setup time tsetup and operator complexity CA for the AMG hierarchy to the
HOTBLOB problem. Depicted are the figures unknown-based coarsening
(Section 2.12.2) and various point-based AMG coarsening methods (Section
2.12.3), where the primary matrix Ã is given by the Frobenius norms of the
diffusion matrix blocks, the sum of all absolute values per diffusion matrix
block, or the approximate Schur complement BÂ−1BT + C, respectively. In
all cases, the interpolation is computed unknown-wise.

We will show simulations for E0 = 0, E0 = 7.5 and E0 = 15, respectively. The Rayleigh
number is given by Ra = 1e4.
All computations were carried out on the “SIEBENGEBIRGE” cluster at the Institute
for Numerical Simulation at the University of Bonn. This cluster consists of five SMP
nodes with four eight-core Intel Xeon X7560 2.226 GHz CPUs and 512GB RAM each,
connected by QDR 4x Infiniband (40Gb/s).
The solution of (5.8) is only unique up to a constant pressure function. We employ an
AMG-preconditioned GMRES iteration (Algorithm 4.1), restarted after 20 steps. To
circumvent the singularity, inside each matrix-vector product inside the GMRES we
carry out the following steps,

1 we compute the inner product q = M̄ · p, where M̄ is the lumped mass matrix and
p is the discrete pressure vector,

2 we add cpq to the first entry p0 of the pressure factor, where we use the penalty
factor cp = 10−3here,

3 we add cpq to all entries in p (for symmetry reasons).

As AMG is used as preconditioner here, we employ the parallel PMIS coarsening scheme
(Section 3.3). For the Q1−Q1 finite element discretization, all unknowns are located at
the same points. This allows us to employ point-based AMG approaches here.

We first compare unknown-based AMG (Section 2.12.2) with three different

188

5.2. Mantle Convection

unknown frobenius abs sum schur
Level dof E0 tsolve it tsolve it tsolve it tsolve it

3 2916
0 0.53 14 0.52 13 0.51 13 0.40 11

7.5 0.68 17 0.56 15 0.54 15 0.51 13
15 1.26 31 1.02 26 1.07 27 1.27 31

4 19652
0 6.89 19 5.11 15 4.84 14 6.16 17

7.5 7.54 20 5.83 16 5.73 16 6.96 18
15 14.91 32 8.45 22 9.53 23 29.45 20

5 143748
0 139.15 33 76.21 20 68.22 19 76.85 16

7.5 138.69 33 94.15 23 68.07 20 92.24 18
15 188.39 43 130.73 35 118.45 33 133.25 20

6 1098500
0 1,525.75 41 1,193.41 36 1,009.71 32 1,227.56 25

7.5 1,423.22 36 1,179.53 36 1,144.64 36 1,287.70 28
15 1,450.09 40 1,574.80 49 1,316.97 47 1,411.75 31

Table 5.10.: Solution time tsolve and number of iterations for AMG-preconditioned GM-
RES(20) applied to the HOTBLOB problem. Depicted are the figures
unknown-based AMG (Section 2.12.2) and various point-based AMG (Sec-
tion 2.12.3) methods, where the primary matrix Ã is given by the Frobenius
norms of the diffusion matrix blocks, the sum of all absolute values per dif-
fusion matrix block, or the approximate Schur complement BÂ−1BT + C,
respectively.

104.00 105.00 106.00

100.00

101.00

102.00

dof

t s
et
u
p

unknown
frobenius
abs sum

schur

(a) Setup time tsetup

104.00 105.00 106.00

100.00

101.00

102.00

103.00

dof

t s
o
lv
e

unknown
frobenius
abs sum

schur

(b) Solution time tsolve

Figure 5.8.: Numerical Results for the HOTBLOB problem with E0 = 0

189

5. Numerical Results

104.00 105.00 106.00
10−1.00

100.00

101.00

102.00

dof

t s
et
u
p

unknown
frobenius
abs sum

schur

(a) Setup time tsetup

104.00 105.00 106.00

100.00

101.00

102.00

103.00

dof

t s
o
lv
e

unknown
frobenius
abs sum

schur

(b) Solution time tsolve

Figure 5.9.: Numerical Results for the HOTBLOB problem with E0 = 7.5

104.00 105.00 106.00
10−1.00

100.00

101.00

102.00

dof

t s
et
u
p

unknown
frobenius
abs sum

schur

(a) Setup time tsetup

104.00 105.00 106.00

100.00

101.00

102.00

103.00

dof

t s
o
lv
e

unknown
frobenius
abs sum

schur

(b) Solution time tsolve

Figure 5.10.: Numerical Results for the HOTBLOB problem with E0 = 15

190

5.2. Mantle Convection

point-based AMG variants (Section 2.12.3). Remember that point-based AMG requires
a primary matrix Ã. We employ the structure of the matrix K,

K =


K(1,1) K(1,2) . . . K(1,M)

K(2,1) K(2,2) . . . K(2,M)
...

...
. . .

...
K(M,1) K(M,2) . . . K(M,M)

 ,

where each K(i,j) has the form

K(i,j) =

(
A(i,j) BT

(i,j)

B(i,j) C(i,j)

)
.

To define the primary matrix Ã, we propose the following variants:

1 Use the Frobenius norm of A(i,j), ãij := ‖A(i,j)‖F .

2 Define ãij as the sum over the absolute values of all entries in A(i,j).

3 Compute the inexact Schur complement Ã := BÂ−1BT + C.

We use the primary matrix Ã to obtain to coarsen the mesh, where we stop the coarsening
if the number of points is less than 1000. Consequently, to obtain comparable results, for
the unknown-based AMG variants we stop if there are less than 4000 degrees of freedom
(we have three velocity and one pressure degree of freedom per point).
We employ multiple-unknown interpolation, i.e. the interpolation operator is computed
unknown-wise. As can be seen from Table 5.9, the variants using the Frobenius norm
and the sum over all absolute values per block allow a faster setup than unknown-
based coarsening. Especially for the last one we see that the operator complexity only
grows slightly with increasing problem size and is nearly independent of the viscosity
µ = exp(E0T). In consequence, we obtain scalable setup timings, i.e. the computational
work per degree of freedom is nearly constant. The setup costs for the inexact Schur
complement primary matrix variant are higher than for unknown-based AMG.
In Table 5.10 we give the solution timings and the number of iterations. Here, for all
variants we have some dependence on the problem size as well as the viscosity. In nearly
all cases the point-based approaches are faster than unknown-based AM, see also Figures
5.2–5.2.

We now investigate whether the performance can be improved if we use point-based
interpolation instead of the multiple-unknown interpolation scheme. To this end, we fix
the primary matrix Ã to be computed using the sum of all absolute elements in each
block (the fastest variant in tables 5.9–5.10). We compare

• multiple-unknown interpolation, i.e. modified classical interpolation computed per
physical unknown,

• single-unknown interpolation, where Ã is used to derive an interpolation operator
that is extended to the whole system,

191

5. Numerical Results

multiple-unknown single-unknown block diagonal block
Level dof E0 tsetup CA tsetup CA tsetup CA tsetup CA

3 2916
0 0.48 1.14 0.46 1.14 0.46 1.25 0.46 1.25

7.5 0.21 1.13 0.21 1.13 0.41 1.23 0.80 1.23
15 0.19 1.11 0.18 1.11 0.36 1.20 0.36 1.20

4 19652
0 2.59 1.13 2.61 1.13 4.70 1.27 4.61 1.27

7.5 2.81 1.14 2.80 1.14 5.13 1.30 4.91 1.30
15 3.03 1.14 2.98 1.14 5.02 1.31 5.05 1.31

5 143748
0 16.47 1.16 16.11 1.16 75.86 1.51 57.66 1.42

7.5 17.32 1.17 17.67 1.17 78.06 1.54 57.69 1.42
15 19.94 1.19 18.98 1.19 89.31 1.64 71.99 1.50

6 1098500
0 136.09 1.17 137.27 1.17 2,284.03 1.69 783.63 1.49

7.5 142.37 1.17 138.07 1.17 2,620.75 1.71 844.22 1.49
15 136.40 1.18 142.31 1.17 − 1.79 1,015.58 1.53

Table 5.11.: Setup time tsetup and operator complexity CA for the AMG hierarchy to
the HOTBLOB problem. We give the numbers for multiple-unknown inter-
polation, single-unknown interpolation derived from the primary matrix Ã,
block interpolation using the full blocks and block interpolation using the
diagonal blocks. In all cases, the primary matrix Ã is computed using the
sum of the absolute values inside each diffusion matrix block.

multiple-unknown single-unknown block diagonal block
Level dof E0 tsolve it tsolve it tsolve it tsolve it

3 2916
0 0.51 13 0.55 12 0.86 12 0.83 12

7.5 0.54 15 0.68 14 0.95 14 1.00 15
15 1.07 27 1.19 27 1.93 28 1.85 28

4 19652
0 4.84 14 4.73 13 7.88 14 7.78 14

7.5 5.73 16 5.10 14 8.83 15 9.07 16
15 9.53 23 8.18 22 12.45 21 15.36 26

5 143748
0 68.22 19 44.95 14 111.22 16 120.66 17

7.5 68.07 20 54.49 15 127.56 18 148.68 21
15 118.45 33 93.13 25 340.27 43 247.92 34

6 1098500
0 1,009.71 32 438.38 15 5,776.09 36 2,385.97 30

7.5 1,144.64 36 486.76 16 5,063.50 30 2,553.29 32
15 1,316.97 47 866.16 27 − − 7,715.96 90

Table 5.12.: Solution time tsolve and number of iterations for AMG-preconditioned GM-
RES(20) applied to the HOTBLOB problem. We give the numbers for
multiple-unknown interpolation, single-unknown interpolation derived from
the primary matrix Ã, block interpolation using the full blocks and block
interpolation using the diagonal blocks. In the case of (diagonal) block
interpolation, also a (diagonal) block smoother is used. In all cases, the
primary matrix Ã is computed using the sum of the absolute values inside
each diffusion matrix block.

192

5.2. Mantle Convection

Level dof E0 1 8 16 32 64 128

5 143748
0 16.11 3.68 2.86 2.56 − −

7.5 17.67 3.76 3.22 2.68 − −
15 18.98 5.16 4.08 3.73 − −

6 1098500
0 137.27 21.79 13.75 8.41 − −

7.5 138.07 22.66 14.12 8.81 − −
15 142.31 25.17 15.52 10.61 − −

7 8586756
0 1,018.18 156.20 86.60 48.76 32.53 30.83

7.5 1,045.64 159.02 87.98 49.18 33.79 29.81
15 1,057.58 159.12 88.99 51.38 35.16 32.50

8 67898372
0 − − − 352.22 192.62 113.74

7.5 − − − 424.77 195.32 117.27
15 − − − − 193.81 120.61

Table 5.13.: Setup time tsetup for the parallel AMG hierarchy to the HOTBLOB problem.
In the top row we give the number of processors. The primary matrix Ã is
computed using the sum of the absolute values inside each diffusion matrix
block and single unknown modified classical interpolation is employed.

• block classical interpolation (2.108) for the velocity,

• diagonal block classical interpolation (2.109) for the velocity,

where in the last two cases the pressure interpolation is computed separately using a
modified classical interpolation scheme. For the (diagonal) block interpolation schemes,
also a (diagonal) block Vanka smoother is used, see Remark 4.2.
From Table 5.11 we learn that the setup time using a block interpolation variants is
significantly higher than point AMG with single- or multiple-unknown interpolation.
The resulting AMG hierarchy is also larger, while the solution is not accelerated at
all, see Table 5.12. Here, the additional costs for computing the block interpolation
operators do not pay off, rather the opposite is true. On the other hand, if we employ
single-unknown interpolation, we have the same setup timings and operator complexities
as in the case of multiple-unknown interpolation, but obtain a preconditioned GMRES
iteration that is very robust with respect to the problem size. We conclude this chapter
with some results obtained from parallel experiments. We again use the sums of all
absolute values inside each A(i,j) matrix block to obtain the primary matrix Ã and
employ single-unknown interpolation.
In Table 5.13 and we give the setup timings. While we have no perfect speed-up, we
still significantly benefit from a larger number of processors. The same holds for the
solution time (Table 5.14 and Figure). Regarding the number of iterations (Table 5.15)
we see a significant increase if we go from sequential to parallel computation. Remember
from Section 4.6 that our smoother is a hybrid additive/multiplicative method in this
case: At the processor interfaces, we have a less efficient error reduction compared to
the interior of each domain. The Vanka subdomain interpolation scalings are computed
by (4.89) and (4.90), respectively.

193

5. Numerical Results

Level dof E0 1 8 16 32 64 128

5 143748
0 44.95 14.25 9.42 6.28 − −

7.5 54.49 14.82 9.44 6.70 − −
15 93.13 24.74 13.52 9.72 − −

6 1098500
0 438.38 137.51 96.33 55.61 − −

7.5 486.76 146.52 90.07 57.06 − −
15 866.16 212.16 128.55 83.41 − −

7 8586756
0 4,896.55 1,073.85 745.90 480.81 294.03 182.69

7.5 7,275.45 1,105.01 599.86 459.91 303.35 157.96
15 6,971.72 2,380.60 994.01 557.28 299.91 179.22

8 67898372
0 − − − 5,234.90 2,586.21 1,228.07

7.5 − − − 5,319.72 2,044.21 1,276.77
15 − − − − 2,693.43 1,302.38

Table 5.14.: Solve time tsolve for parallel AMG-preconditioned GMRES(20) applied to
the HOTBLOB problem. In the top row we give the number of processors.
The primary matrix Ã is computed using the sum of the absolute values
inside each diffusion matrix block and single unknown modified classical
interpolation is employed.

Level dof E0 1 8 16 32 64 128

5 143748
0 14 28 35 41 − −

7.5 15 29 35 43 − −
15 25 43 49 57 − −

6 1098500
0 15 32 40 46 − −

7.5 16 33 38 46 − −
15 27 50 53 69 − −

7 8586756
0 21 32 43 51 55 52

7.5 27 33 35 48 55 47
15 27 75 55 58 53 53

8 67898372
0 − − − 69 63 56

7.5 − − − 56 49 58
15 − − − − 65 60

Table 5.15.: Numbers of parallel AMG-preconditioned GMRES(20) iterations for the
HOTBLOB problem. In the top row we give the number of processors.
The primary matrix Ã is computed using the sum of the absolute values
inside each diffusion matrix block and single unknown modified classical
interpolation is employed.

194

5.2. Mantle Convection

To summarize this chapter, we have demonstrated that our saddle point AMG, especially
the F-stabilization method, can be applied in practice even if theoretical convergence
questions remain open. We must however carefully choose the parameters (smoothing,
interpolation unknown or point AMG etc.) to obtain an efficient method.

195

6. Conclusions and Outlook

In this thesis, we have constructed an algebraic multigrid (AMG) method for matrices
with saddle point structure as they arise from the discretization of Stokes-like problems.
In contrast to previous approaches to AMG for saddle point problems, our method is
purely algebraic and does not need any additional geometric information.
The main idea is to employ a coupled interpolation operator, which leads to an addi-
tional stabilization term in the coarse grid matrix computed by the Galerkin product.
We have introduced three different approaches to construct such interpolation opera-
tors. In all of these cases, we start with a decoupled tentative interpolation matrix. The
first ansatz is to apply a full symmetric inexact Uzawa smoothing step to the tentative
prolongation to compute the final interpolation operator, while the restriction is just
the transpose of the tentative prolongation. Consequently, the coarse grid operator is
computed Petrov-Galerkin-wise and we were able to show two-grid convergence. The
disadvantage of this method is the huge memory requirement of the smoothed prolonga-
tion, which in turn also leads to large (in terms of non-zero entries) coarse grid operators.
This issue motivated us to abandon the full smoothing of the prolongation and only intro-
duce a coupling between velocity and pressure components that is sufficient to establish
a stabilization term on the next coarser level. This coupling term introduced additional
interpolation weights for the velocity variables, which now also interpolate from coarse
pressure variables. We have developed two variants of this approach. In the first case
(pressure–to–velocity coupling), all velocity variables receive additional updates from
the pressure space, while in the other case (F-stabilization) only the interpolation for
the designated fine grid points is altered.
For all our stabilization techniques, we were able to prove the stability and thus the in-
vertibility of the coarse level matrix by induction from the finest level, where we assume
that an inf-sup condition is given. Moreover, the only additional preconditions in these
stability proofs can easily be satisfied if the tentative velocity interpolation block is a
well-fitted AMG interpolation for the upper left (symmetric positive definite) matrix
block, i.e. satisfies a certain approximation property. While for the direct and classical
AMG interpolation these theoretical results are well-known, so far they were missing for
various elliptic AMG interpolation schemes that are commonly used, namely modified
classical interpolation, extended interpolation, extended+i interpolation, and Jacobi in-
terpolation. We have filled this gap and were able to verify an approximation property
also for these methods.
Our saddle point AMG is not just a specific method, but rather an extension that can
be wrapped around any existing AMG for symmetric positive definite matrices. Indeed,
during the setup phase we just need to employ AMG coarsening and interpolation tech-
niques to the upper left matrix block and an approximate (at least semi-definite) Schur

197

6. Conclusions and Outlook

complement. Our prolongation stabilization then creates an overall stable coarse matrix.
No geometric information or specific interplay between the coarse velocity and pressure
spaces is needed.
We investigated the numerical performance of our saddle point AMG in several finite dif-
ference and finite element examples. As expected, the Petrov-Galerkin approach with the
fully smoothed prolongation is not feasible due to the abundant memory requirements.
On the other hand, we demonstrated the robustness of the F-stabilization method, es-
pecially if the AMG cycle is used as preconditioner within a restarted GMRES method.

There is still much room for further investigations. So far we have focused on Ruge-
Stüben AMG, i.e. we have designated coarse and fine points and interpolated values
from coarse to fine. A first extension would be to apply our method in the context
of smoothed aggregation AMG [VMB94, VMB96], where the fine grid variables are
grouped in patches that form the coarse grid variables. The pressure–to–velocity cou-
pling stabilization technique seems to be especially fitted for this purpose. Second, we
have experienced that the efficiency of our AMG can be very sensitive to the choice
of parameters (additive or multiplicative smoothing, scaling within the multiplicative
smoother, number of smoothing steps, unknown or nodal coarsening, etc). To obtain a
real black-box solver, an automatic parameter fitting technique would be required. A re-
lated issue is the lack of an overall convergence theory, currently we just have a two-grid
convergence result that holds in the case of the most memory-consuming stabilization
approach and additive smoothing.
In summary, we have constructed an AMG method for Stokes-like problems. There are
however other important saddle point systems that arise in the context of optimization
problems subject to PDE constraints. The resulting matrices have a completely different
nature and require their own techniques. While some geometric multigrid methods have
been developed, an algebraic approach is still not known.

198

A. A positive definite reformulation of
the Uzawa smoother

In this chapter, we describe under which conditions the inexact Uzawa smoother intro-
duced in Section 4.5 can be rewritten as an iteration scheme over a symmetric positive
definite matrix. We will also discuss to which extent the definite reformulation can be
used to carry over AMG convergence theory for symmetric positive definite matrices to
saddle point systems.
As in Chapter 4, let the saddle point matrix K be partitioned as follows (4.2),

K =

(
A BT

B −C

)
, x =

(
u
p

)
and y =

(
f
g

)
where A and C are symmetric positive semi-definite matrices. The iteration matrix of
the smoother is given by (4.67),

M = I − K̂−1K

where

K̂ =

(
Â BT

B BÂ−1BT − Ŝ

)
In the following, we will discuss two different cases,

1 Â < A and Ŝ > C +BÂ−1BT

2 Â > A and Ŝ < C +BÂ−1BT .

For the case C = 0, the results presented in this chapter were first shown in [Zul02].
The case C 6= 0 has been addressed to in [Zul00], although with weaker bounds on the
spectrum of M. The proofs presented here mainly follow the ideas from [Zul02].

Case 1 In the first case, we assume that there are constants α2 > 1, 0 < β1 < 1 such
that

Â < A ≤ α2Â (A.1)

β1Ŝ ≤ BÂ−1BT + β1C (A.2)

BÂ−1BT + C < Ŝ (A.3)

We first define an inner product

(u, v)Q = uTQv, (A.4)

199

A. A positive definite reformulation of the Uzawa smoother

where

Q = K − K̂ =

(
A− Â 0

0 Ŝ −BÂ−1BT − C

)
.

The following theorem is an extension of Theorem 5.1 in [Zul02].

Theorem A.1 Let the positive definite A, Â ∈ RN×N , Ŝ ∈ RM×M , the positive semi-
definite C ∈ RM×M and B ∈ RM,N satisfy (A.1) - (A.3). Then,

1 The iteration matrix M = I − K̂−1K (4.67) is symmetric w.r.t. (A.4)

2 σ(M) ⊂ [1− α2, ρ] ⊂ (−∞, 1), where

ρ =
(2− α2)(1− β1)

2
+

√
(2− α2)2(1− β1)2

4
+ (α2 − 1)(1− β1)

3 If α2 < 2, then ρ(M) = ‖M‖Q < 1

4 K̂−1K is spd w.r.t. (A.4) and σ(K̂−1K) ⊂ [1− ρ, α2] ⊂ (0,∞)

The proof of this theorem heavily relies on the following lemma. For easier understand-
ing, we also give its proof.

Lemma A.1 ([Zul02], Lemma 3.1) Let Â and F be symmetric, positive definite N×N-
matrices, B ∈ RM×N , Ŝ and G symmetric positive M ×M matrices.
Assume that there are real numbers ρ1 ≤ ρ2 ≤ 0 < ρ3 ≤ ρ4 < ρ5 ≤ ρ6 with

ϕ(ρ1) ≥ 0, ϕ(ρ2) ≤ 0, ϕ(ρ5) ≥ 0, ϕ(ρ6) ≤ 0 (A.5)

where

ϕ(µ) = µB(µÂ− ÂF−1Â)−1BT − µG− Ŝ (A.6)

and

ρ3F ≤ Â ≤ ρ4F (A.7)

Then we have: If µ is an eigenvalue of the generalized eigenvalue problem(
Â BT

B BÂ−1BT − Ŝ

)(
u
p

)
= µ

(
Fu
Gp

)
(A.8)

then µ ∈ [ρ1, ρ2] ∪ [ρ3, ρ4] ∪ [ρ5, ρ6].

Proof: Let (u, p)T 6= (0, 0)T and λ be a solution of (A.8). Furthermore, let λ 6∈ [ρ3, ρ4].
Then, from (A.7), we have that λF − Â is either positive or negative definite and p 6= 0.
In this case we obtain from the first line in (A.8)

u =
(
λF − Â

)−1

BTp

200

and insert it into the right hand side of u+ Â−1BTp = λÂ−1Fu,

u+ Â−1BTp = λÂ−1Fu,

= λ
(
λÂ− ÂF−1Â

)−1

BTp.

We use this term to substitute u+ Â−1BTp in the second line of (A.8) and obtain

λB
(
λÂ− ÂF−1Â

)−1

BTp−
(
λG+ Ŝ

)
p = 0.

We multiply from the left with pT and obtain pTϕ(λ)p = 0. Furthermore, as

uTµ
(
µÂ− ÂF−1Â

)−1

u = uT
(
Â− µ−1ÂF−1Â

)−1

u

is monotone decreasing in µ, pTϕ(µ)p is strictly decreasing outside [ρ3, ρ4]. Now, (A.5)
yields that λ ∈ [ρ1, ρ2] or λ ∈ [ρ5, ρ6]. �

Remark A.1 It is easy to see that, for all p, pTϕ(0)p < 0 and, for ρ0 > 0 satisfying
Ŝ ≤ ρ0G, we have

pTϕ(−ρ0)p = pTB
(
Â+ ρ−1

0 ÂF−1Â
)−1

BTp+ ρ0p
TGp− pT Ŝp ≥ 0.

This shows the existence of of ρ1 and ρ2. Also, in combination with the monocity of
pTϕ(µ)p, it follows that no positive eigenvalue of (A.8) can be smaller than ρ3. Thus,
even if ρ5 and/or ρ6 satisfying (A.5) cannot be found, we have an estimate from below
for all positive eigenvalues.
In the following, we will derive estimates for ρ2 and ρ3 to provide estimates for the
eigenvalues of the smoother.

Proof of Theorem A.1: From Q = K−K̂ one easily obtains that QM = Q(I−K̂−1K) =
−QK̂Q is symmetric.
We consider the eigenvalue problem (A.8) with F = A− Â and G = Ŝ −C −BÂ−1BT .
Then the function ϕ(µ) of (A.6) has the form

ϕ(µ) = µB
[
µÂ− Â(A− Â)−1Â

]−1

BT + µC + µBÂ−1BT − (µ+ 1)Ŝ. (A.9)

The iteration matrix M (4.67) of our smoother can be written as

M = −
(
Â BT

B BÂ−1BT − Ŝ

)−1(
A− Â 0

0 Ŝ − C −BÂ−1BT

)
and its eigenvalues ν correspond to the eigenvalues µ = − 1

ν
of (A.8). Hence, using the

notation of Lemma A.1, a sufficient criterion for the convergence of the smoother is given

201

A. A positive definite reformulation of the Uzawa smoother

by ρ2 < −1 and ρ3 > 1.
Assuming that µ ≤ −1 and multiplying (A.2) by −µ+1

β1
we obtain

− (µ+ 1)Ŝ ≤ −µ+ 1

β1

BÂ−1BT − (µ+ 1)C. (A.10)

We insert (A.10) into (A.9) and obtain:

ϕ(µ) ≤ µB
[
µÂ− Â(A− Â)−1Â

]−1

BT − C + µBÂ−1BT − µ+ 1

β1

BÂ−1BT .

We see that ϕ(µ) ≤ −C ≤ 0 if

µ
[
µÂ− Â(A− Â)−1Â

]−1

+ µÂ−1 − µ+ 1

β1

Â−1 ≤ 0

⇔ µ
[
µÂ− Â(A− Â)−1Â

]−1

≤ µ+ 1− µβ1

β1

Â−1

which is equivalent to

µβ1Â ≥ (µ+ 1− µβ1)(µÂ− Â(A− Â)−1Â) (A.11)

(note that from µ ≤ −1 and Â < A it follows that
[
µÂ− Â(A− Â)−1Â

]
< 0). We

multiply from both sides with Â−1/2 to obtain

µβ1I ≥ (µ+ 1− µβ1)(µI − (Ā− I)−1) (A.12)

where Ā = Â−1/2AÂ−1/2. From the second inequality in (A.1) we derive ρ(Ā) ≤ α2 and
ρ(−(Ā−I)−1) ≤ − 1

α2−1
. In consequence, for µ ≥ − 1

1−β1 (i.e. µ+1−µβ1 > 0), inequality

(A.12) is satisfied if and only if

µβ1 ≥ (µ+ 1− µβ1)(µ− 1

α2 − 1
)

The negative root of the quadratic equation

µβ1 = (µ+ 1− µβ1)(µ− 1

α2 − 1
)

is given by

1

µ∗
= −(2− α2)(1− β1)

2
−
√

(2− α2)2(1− β1)2

4
+ (α2 − 1)(1− β1) ∈ (−1,−(1− β1)).

We have found an µ∗ with ϕ(µ∗) ≤ 0. Hence, all negative eigenvalues of the generalized
eigenvalue problem (A.8) satisfy µ ≤ µ∗ < −1 and all positive eigenvalues ν of the
smoother fulfill ν ≤ − 1

µ∗
< 1.

202

The positive eigenvalues of (A.8) satisfy, according to Lemma A.1, µ > ρ3. The lower
bound is given by ρ3(A− Â) ≤ Â respectively ρ3(Ā− I) ≤ I. This is satisfied for

ρ3 =
1

α2 − 1

so we have ν ≤ − 1
ρ3

= 1− α2.
Statement 3 follows from Statement 2 and Statement 4 is a consequence of 1 and 2. �
We now consider the damped iterative methodMω = (1− ω) + ωM. This corresponds
to the eigenvalue problem (A.8) with µ = − ω

ν+ω−1
. Straightforward calculations show

that a sufficient condition for ν > −1 is given by ω < 2
α2

and ν > 0 if ω < 1
α2

. On the
other hand, ν < 1 for all positive values of ω. Hence we obtain

Corollary A.1 The damped smootherMω = (1−ω)+ωM converges for all ω ∈ (0, 2
α2

).

If ω ∈ (0, 1
α2

), then the spectrum of Mω is positive.

Case 2 We assume that there are constants α1 > 0, β2 > 1 such that

α1Â ≤ A < Â (A.13)

Ŝ < BÂ−1BT + C (A.14)

BÂ−1BT + β2C ≤ β2Ŝ (A.15)

As in the previous paragraph, we define an inner product

(x, y)Q = xTQy, (A.16)

where

Q = K̂ − K =

(
Â− A 0

0 BÂ−1BT + C − Ŝ

)
.

With these conditions and definitions, we are able to proof the following generalization
of Theorem 5.2 from [Zul02].

Theorem A.2 Let the symmetric positive definite Â ∈ RN×N , Ŝ ∈ RM×M , the symmet-
ric positive semi-definite, A ∈ RN×N , C ∈ RM×M and B ∈ RM,N satisfy (A.13) - (A.15).
Then,

1 The iteration matrix M = I − K̂−1K is symmetric w.r.t. (A.16)

2 σ(M) ⊂ [−ρ, 1− α1] ⊂ (−∞, 1), where

ρ =
(2− α1)(β2 − 1)

2
+

√
(2− α1)2(β2 − 1)2

4
+ (1− α1)(β2 − 1)

3 If β2 < 1 + 1/(3− 2α1), then ρ(M) = ‖M‖Q < 1

203

A. A positive definite reformulation of the Uzawa smoother

4 K̂−1K is symmetric positive definite w.r.t. (A.16) and σ(K̂−1K) ⊂ [α1, 1 + ρ] ⊂
(0,∞)

Proof: Again, it is clear that QM is symmetric.
We now consider the eigenvalue problem (A.8) with F = Â−A andG = C+BÂ−1BT−Ŝ.
The function ϕ(µ) (A.6) takes the form

ϕ(µ) = µB
[
µÂ− Â(Â− A)−1Â

]−1

BT − µC − µBÂ−1BT + (µ− 1)Ŝ

The smoother can be written as

M =

(
Â BT

B BÂ−1BT − Ŝ

)−1(
Â− A 0

0 C +BÂ−1BT − Ŝ

)
and its eigenvalues ν correspond to the eigenvalues µ = 1

ν
of (A.8). As in the first case

and again using the notation of Lemma A.1, a sufficient criterion for the convergence of
the smoother is given by ρ2 < −1 and ρ3 > 1.
We assume that µ ≤ −1 and reformulate (A.15) into

(µ− 1)Ŝ ≤ µ− 1

β2

BÂ−1BT + (µ− 1)C. (A.17)

As before, we insert (A.17) into (A.9):

ϕ(µ) = µB
[
µÂ− Â(Â− A)−1Â

]−1

BT − C − µBÂ−1BT +
µ− 1

β2

BÂ−1BT .

We obtain ϕ(µ) ≤ −C ≤ 0 for

µ
[
µÂ− Â(A− Â)−1Â

]−1

≤ β2µ− µ+ 1

β2

Â−1

and completely on the lines of the first case we conclude that equality is obtained for

1

µ∗
= −(2− α1)(β2 − 1)

2
−
√

(2− α1)2(β2 − 1)2

4
+ (1− α1)(β2 − 1).

We have µ ≤ µ∗ < −1 for the negative eigenvalues of (A.8) and, in consequence,
ν ≥ 1

µ∗
> −1 for the negative eigenvalues of the smoother.

The remainder of the proof is is analogous to the proof of Theorem A.1. �

Corollary A.2 The damped smoother Mω = (1 − ω) + ωM converges for all ω ∈
(0, 2

ρ+1
). If in addition ω < 1

ρ+1
, then the spectrum of Mω is positive.

204

These theorems allow us to interpret the inexact Uzawa-type smoothers as relaxation
schemes for the symmetric positive definite matrix L = QK̂−1K. The iteration matrix
can be rewritten as

M = I − K̂−1K = I −Q−1L
i.e. we employ Q as a “preconditioner” for L. In the following, we derive an algebraic
formulation of the smoothing property for Uzawa-type smoothers. As in the scalar case,
we introduce three inner products,

(u, v)0 := uTQv, (u, v)1 := uTLv, (u, v)2 := uTLQ−1Lv (A.18)

and the respective norms ‖e‖0, ‖e‖1, ‖e‖2. With these norms, we can now formulate
the smoothing property as in the scalar case,

‖Me‖2
1 ≤ ‖e‖2

1 − σ‖e‖2
2. (A.19)

A straightforward calculation shows

‖Me‖2
1 = ‖e−Q−1Le‖2

1 = ‖e‖2
1 −

(
Q(2I − K̂−1K)K̂−1Ke, K̂−1Ke

)
Hence, the smoothing property is equivalent to

σQ ≤ Q
(

2I − K̂−1K
)
. (A.20)

One immediately obtains inequality (A.20) from the Theorems A.1 or A.2 with σ = 2−α2

or σ = 1− ρ, respectively.
Now, the question arises whether the coarse grid operator can also be constructed as in
the scalar case, i.e.

KC = PTKP . (A.21)

The coarse grid correction is then obtained by

ẽ←
(
I − P

(
KC
)−1PTK

)
e. (A.22)

To measure the error reduction of this coarse grid correction in the norms ‖e‖0, ‖e‖1, ‖e‖2

defined by the scalar products from (A.18), we need to reformulate (A.22) in terms of
Q and L. To this end, let again L = QK̂−1K and

T = QK̂−1 =
(
KK̂−1 − I

)
= −MT (Case 1)

or
T = QK̂−1 =

(
I −KK̂−1

)
=MT (Case 2).

Furthermore, we assume that there exists an invertible T̃ such that PTT = T̃ PT . Then
we have

P
(
PTLP

)−1PTL = P
(
PTT KP

)−1PTT K

= P
(
T̃ PTKP

)−1

T̃ PTK

= P
(
PTKP

)−1PTK

205

A. A positive definite reformulation of the Uzawa smoother

i.e. the coarse grid correction for the operator L equals the coarse grid correction for
K. Now, we can apply Theorem 2.15 (for the two-grid case) and Lemma 2.3 (for the
approximate correction) to obtain

‖ẽ‖1 ≤ ‖e‖1

where ẽ is obtained from e by the exact or approximate coarse grid correction. Together
with the smoothing property (A.19) we get V-cycle convergence, see e.g. (2.36) and
[Stü99], Theorem 4.1,

‖Mẽ‖2
1 ≤ ‖ẽ‖2

1 − σ‖ẽ‖2
2 ≤

(
1− σ

τ

)
‖ẽ‖2

1 ≤ ‖e‖2
1.

Now, we discuss the conditions under which T̃ can be constructed. To this end, we take
an arbitrary x ∈ kerPT . Then, from

0 = T̃ PTx = PTT x

we see that also T x needs to be in the nullspace of PT (remember that T is invertible).
Vice versa, any x such that T x ∈ kerPT must satisfy x ∈ kerPT . In other words,
the nullspace of the restriction operator PT needs to be invariant under the action of
T = ±MT . Hence, to construct the interpolation operator P we first need to exactly
identify invariant subspaces under the smoothing operator M. Then, P needs to be
carefully set up such that its image (and the kernel of its transpose PT) are exactly
aligned along these subspaces.
In general, a prolongation matrix P that is constructed this way is not sparse. On
the other hand, it is not clear whether an invertible T̃ such that PTT ≈ T̃ PT is only
approximate satisfied also gives a convergent method.
In the remainder of this chapter, we give two additional drawbacks of this approach to
a saddle point AMG. First, we need to construct one of the preconditioner Â or Ŝ such
that

Â < A (Case 1)

or Ŝ < BÂ−1BT + C (Case 2).

In practice, Â and Ŝ are obtained from the scaled diagonals of A and BÂ−1BT + C
respectively. Now, to determine the correct scaling factor, we need to know the smallest
eigenvalue of

Â−1/2AÂ−1/2 or Ŝ−1/2
(
BÂ−1BT + C

)
Ŝ−1/2,

i.e. we need to carry out an eigenvalue solver [BDD+00] which also may need a precon-
ditioner itself to converge fast enough. We hence may need to employ a scalar AMG
method for A or BÂ−1BT + C on each level just to obtain the correct scaling to set up
the smoother.
If we do not require a definite formulation, i.e. if we proceed as described in Section 4.5,
we only need upper bounds on the dominant eigenvalues of

Â−1/2AÂ−1/2 and Ŝ−1/2
(
BÂ−1BT + C

)
Ŝ−1/2.

206

Figure A.1.: Absolute eigenvalues of the inexact Uzawa smoother in the indefinite for-
mulation as well as the definite (Case 1) formulation with different damping
parameters.

As these bounds do not need to be very accurate, they can easily be obtained by a few
(unpreconditioned) power iterations or from Gershgorin’s circle theorem.
Another disadvantage of the definite smoothers is the fact that they generally must be
heavily damped to converge. In the first case, the damping parameter ω needs to be
smaller that 2

α2
(or 1

α2
if one wants only positive eigenvalues). Now, according to (A.1),

α2 is chosen such that Â < A < α2Â, which implies that α2 is proportional to the
condition number of Â−1/2AÂ−1/2. In contrast, for the indefinite formulation we do not
need damping at all. We illustrate the effects of the damping in the following example
(For Case 2, similar considerations can be made).

Example A.1 On a square domain in two spatial dimensions, consider Stokes’ equation

−∆u+∇p = f

−∇ · u = 0

with inflow/outflow boundary conditions on the western and eastern boundary and Neu-
mann boundary conditions on the other boundaries. We employ a staggered grid dis-
cretization with 25 pressure cells in each spatial direction, yielding a total of 1825 scalar
unknowns. In Figure A.1 we show the absolute eigenvalues of different formulations of

207

A. A positive definite reformulation of the Uzawa smoother

the inexact Uzawa smoother (note that the indefinite formulation leads to non-real eigen-
values). For the definite case, we consider both a damping parameter yielding a positive
spectrum (the red plot) as well as a damping parameter that is just small enough to
ensure convergence (the magenta colored line). We see that in the definite case, about a
third of the eigenvalues remains very near to 1 and the remaining eigenvalues are larger
than those of the indefinite formulation.

Summarizing this chapter, we have seen that the inexact Uzawa smoother can be refor-
mulated as an iteration method for a definite linear system L. We are able to define
inner norms ‖ · ‖i, where i = 0, 1, 2, and show an algebraic smoothing property

‖Me‖2
1 ≤ ‖e‖2

1 − σ‖e‖2
2.

This does however not help us to completely carry over the AMG convergence theory
from symmetric positive definite (M-) matrices, as the variational property can only
be shown under a restrictive condition. Furthermore, the definite reformulations of the
smoother require both a compute-intensive setup and are slower than their indefinite
counterpart.

208

List of Algorithms

2.1. Two-grid cycle MG(A, f, u) . 19
2.2. multigrid algorithm MG(Al, fl, ul) . 19
2.3. AmgSetup(Ω, A, int,NminLmax, L, {Al}Ll=1, {Pl}L−1

l=1 {Rl}L−1
l=1) 24

2.4. AmgStrongCouplings(A, S, ST) . 29
2.5. AmgPhaseI(Ω, S, ST , C, F) ([RS87], algorithm A2) 33
2.6. AmgPhaseII(Ω, S, C, F) . 34
2.7. Multi-pass interpolation ([Stü99], Section 7.2.2) 54
2.8. Element agglomeration AMGe ([JV01], Algorithm 4.1) 62
2.9. Aggregation algorithm ([VMB94], Algorithm 2) 65
2.10. Tentative interpolation algorithm ([VBM01], Algorithm 4.1) 66
2.11. Compatible Relaxation [Liv04], [FV04] 68

3.1. Parallel computation of the interpolation operator 89
3.2. AmgParallelRAP(Al(p), P

l
(p), A

l+1
(p)) [hyp] . 89

3.3. AmgMSB(Ωp, S(p), S
T
(p), Cp, Fp) . 92

3.4. AmgRS3(Ωp, S, Cp, Fp) . 94
3.5. CLJP algorithm CLJP(Ω, S, ST , C, F,D) 97
3.6. AmgFalgout(Ω, S, ST , C, F) . 98
3.7. PMIS algorithm AmgPMIS(Ω, S, ST , C, F, I) 100
3.8. AmgHMIS(Ω, S, ST , C, F) . 100
3.9. CGC algorithm CGC(S, ST , ng, {Ci}ngi=1, {Fi}

ng
i=1) 103

3.10. AmgCGCChoose(V,H, C) . 108

4.1. GMRES(k,K,Q,y,x,tol) ([Wab03], algorithm 2.11) 134
4.2. VankaSmootherMult(K, {Âj}Mj=1, {Bj}Mj=1, {Ŝj}Mj=1, {Vj}Mj=1, {Wj}Mj=1, f, g, u

it, pit) . . 145
4.3. VankaSmootherSetup(A,B,C, {Âj}Mj=1, {Bj}Mj=1, {Ŝj}Mj=1, {Vj}Mj=1, {Wj}Mj=1) 148
4.4.

VankaSmootherPar(K, {Âj}j∈ΩWq , {Bj}j∈ΩWq , {Ŝj}j∈ΩWq , {Vj}j∈ΩWq , {Wj}j∈ΩWq , f, g, u
it, pit)150

4.5. AmgSaddleSetup(Ω,K = (kij)i,j, Nmin, Lmax, L, {Kl}Ll=1, {Pl}L−1
l=1 , {Rl}L−1

l=1)
. 173

209

List of Figures

2.1. Finite difference discretization grids for the model problem ∆u = f on the
square [0, 1]2. Here, we have h = 0.125 and n = 8. The first figure shows
the discretization on the finest level (the Dirichlet boundary conditions
have already been eliminated), in the second figure we indicate the coarse
grid points with the larger dots and the arrows in the third figure indicate
how the interpolated values at the fine grid points are computed. 15

2.2. V-cycle (left) and W-cycle (right) . 19

2.3. Error after 10 Gauss-Seidel iterations for a finite difference discretization
of −uxx − 0.001 · uyy, randomly chosen starting vector. 27

2.4. Error after 5 Gauss-Seidel iterations on randomly chosen start vector for
the Laplace operator (left) and the problem with mixed derivatives (right). 28

2.5. Strong couplings for finite difference discretizations. The left picture
shows the strong connections for an isotropic operator A. In case of the
second image, we have strong connections only in y direction (see Exam-
ple 2.1). The figure on the right hand side shows the strong connections
for Example 2.2 if a threshold α ≤ 0.25 is used. 29

2.6. Coarsening process for a 5-point stencil. The numbers denote the weights
of still undecided points, the red points belong to the coarse grid and
the white points belong to the fine grid. Updated weights are given in
blue. The blue edges indicate which connections are considered within the
graph at the current step. Note that the strength matrix is symmetric here. 31

2.7. Finite difference discretization of a PDE with a jumping diffusion coeffi-
cient (Example 2.3). The blue line gives the phase boundary; the arrows
denote a strong coupling only in the indicated direction. 34

2.8. Standard coarsening for a three-dimensional Laplacian. The blue points
are fine grid points, the red and green points belong to the coarse grid.
On the coarse level, the point in the center has connections to 18 other
points. After the application of aggressive coarsening using the sets Ŝ

(2,2)
i ,

all green points are also fine grid points and the original 7-point stencil is
recovered on the coarse level. 35

2.9. Comparison of interpolation methods for the mixed problem from Exam-
ple 2.2. The red dots denote the coarse grid points, the blue circle is the
fine grid point whose value is to be interpolated. The blue arrows show
how the values are interpolated directly and indirectly from the coarse to
the fine grid points. 42

211

List of Figures

2.10. (Modified) classical interpolation for the mixed problem from Example
2.2. We want to interpolate the value at the blue point i. The red
dots denote the sets Ci, the ruled nodes show the sets Fkj for different
constellations of k and j. The red arrows indicate the weights akl, l ∈ Ci,
while the black arrows correspond to the weights akν , ν ∈ Fkj. 45

2.11. Extended and extended+i interpolation weights for the finite difference
discretization of a 1D Laplace. The red points denote the coarse grid points. 50

2.12. Multi-pass interpolation for a 5-point stencil. The red, magenta and
brown points denote the coarse grid points, the blue points denote the
fine grid points. The value at the dark blue points is interpolated directly,
all lighter blue points are interpolated indirectly. The red, magenta and
brown lines indicate the interpolation influence of each coarse grid point. 53

2.13. Eigenvalue estimate of the two-grid error propagation matrix T as defined
in Corollary 2.1. 60

2.14. Agglomerated finite element mesh. Each color indicates an aggregate.
The coarse vertices are indicated by the black dots. 62

2.15. Aggregation procedure for the finite difference mesh from Example 2.2.
Each colored area shows an aggregate. 65

2.16. A finite difference staggered grid with two physical unknowns. On the
left, we give the mesh cells as well as the discretization positions for each
physical unknown. The middle and the right picture show the connections
of a discrete operator (e.g. the Laplacian) for each of the unknowns. . . . 71

3.1. Distribution of a 5 point finite difference grid among four processors. The
red lines denote the processor boundaries, the blue area indicates the
processor boundary points ∂Ωl

p. 88

3.2. Ruge-Stüben coarsening and third pass coarsening applied to a 5-point
discretization of the Laplace operator, distributed among 4 processors.
Depicted are the C/F-splittings on the finest level, where the blue squares
indicate the fine grid points i ∈ F , and the red squares indicate the coarse
grid points j ∈ C. 91

3.3. Discretization grid of a 9-point stencil after application of the first (left)
and second (right) heuristics of the CLJP algorithm. The numbers indi-
cate the weights wi (without the added random number). Arrows indicate
the direction of influence, lines without arrays indicate bidirectional in-
fluence. Fine grid points are blue, D-points red. 95

3.4. CLJP and Falgout coarsening schemes applied to a 5-point discretization
of the Laplace operator, distributed among 4 processors. Depicted are
the C/F-splittings on the finest level, where the blue squares indicate the
fine grid points i ∈ F and the red squares the coarse grid points j ∈ C. . 96

3.5. CLJP-c coarsening for a 9-point stencil. We assume that the green color
corresponds to the highest augmentation weight (3.5) 96

212

List of Figures

3.6. PMIS and HMIS coarsening schemes applied to a 5-point discretization of
the Laplace operator, distributed among 4 processors. Depicted are the
C/F-splittings on the finest level, where the blue squares indicate the fine
grid points i ∈ F and the red squares the coarse grid points j ∈ C. 101

3.7. Resulting coarse grids for the problem with mixed derivatives from Ex-
ample 2.2 constructed by three different initial choices. The green points
indicate the respective coarse grid points, the red point indicates the first
coarse grid point chosen. 102

3.8. Three possible C/F -constellations at a processor’s domain boundary. The
red points belong to C, the blue points belong to F 104

3.9. CGC graph . 105

3.10. CGC coarsening applied to a 5-point discretization of the Laplace op-
erator, distributed among 4 processors (right), compared to sequential
coarsening on one processor (left). Depicted are the C/F-splittings on
the finest level, where the blue squares indicate the fine grid points i ∈ F
and the red squares the coarse grid points j ∈ C. 106

3.11. Graph clustering process. The graph is constructed by the CGC algo-
rithm to a 5-point finite-difference discretization of the Laplace operator
distributed among four processors (cf. Figure 3.9). The numbers in the
vertices denote the number of subdomains covered by the coarse grid,
which is represented by the respective vertex. The number at each edge
denotes the edge weight. 109

3.12. CGC-ML refinement process. 109

3.13. Distribution of the diffusion coefficient for problem (3.6). 111

3.14. Numerical Results for problem (3.6) . 112

4.1. Finite difference discretization grids for the Stokes problem ∆u = f on
the square [0, 1]2. 119

4.2. Staggered grid discretization for the Stokes problem ∆u = f on the square
[0, 1]2. 122

4.3. Finite element mesh on the domain Ω = [0, 1]2 with lexicographical node
numbering. 127

4.4. Triangular reference elements for saddle point problems. The black dots
denote degrees of freedom for velocity, the blue dots denote pressure de-
grees of freedom. 129

4.5. Eigenvalues of the normal matrix N as defined in Lemma 4.3. All eigen-
values reside on a circle with radius 1

2
around (1

2
, 0), hence their absolute

value is less than one. 142

4.6. Discretization mesh for the Stokes equation in two spatial dimensions.
The pressure p is discretized at the centers of the cells, the velocities u
and v are discretized at the midpoints of of the cell borders. The red and
the blue box each represent a subdomain for the Vanka-type smoother. . 146

213

List of Figures

4.7. Finite element mesh for a P1isoP2−P1 discretization of the Stokes’ equa-
tions on the domain Ω = [0, 1]2 (we assume Dirichlet boundary conditions
on ∂Ω). The black and the red dots denote the velocity nodes on the finest
and the first coarse mesh, the blue dots denote pressure nodes on both
levels. 154

5.1. Diffusion coefficient for the SOLKY problem (5.1)–(5.2) 176
5.2. Computational domain for the SINKER problem. The gray square indi-

cates the area where the diffusion coefficient ν1, while the in the remainder
of the domain the diffusion coefficient ν0 equals 1. 177

5.3. Interpolation sparsity patterns . 178
5.4. Coarse grid operator sparsity patterns 178
5.5. Numerical Results for the SOLKY problem 182
5.6. Numerical results for the SINKER problem 185
5.7. Finite element mesh (left) and temperature distribution (right) on a 45◦×

45◦ section of the Earth mantle. 187
5.8. Numerical Results for the HOTBLOB problem with E0 = 0 189
5.9. Numerical Results for the HOTBLOB problem with E0 = 7.5 190
5.10. Numerical Results for the HOTBLOB problem with E0 = 15 190

A.1. Absolute eigenvalues of the inexact Uzawa smoother in the indefinite for-
mulation as well as the definite (Case 1) formulation with different damp-
ing parameters. 207

214

List of Tables

3.1. Setup time in seconds . 113
3.2. Operator Complexity . 113
3.3. Solution time in seconds . 113
3.4. Iterations . 113
3.5. Numerical Results for problem (3.6). 113

5.1. Operator complexity CA and convergence factor ρ for the two-grid iter-
ation applied to the SOLKY problem. The different stabilization tech-
niques are denoted by none (no stabilization), full (full prolongation smooth-
ing and Petrov-Galerkin coarse grid operator (4.99)), P2V (pressure–to–
velocity coupling (4.124)) and F (F-stabilization (4.136)). 179

5.2. Operator complexity CA and convergence factor ρ for the two-grid itera-
tion applied to the SINKER problem. A dash denotes that the method
did not converge within 1000 iterations. 180

5.3. Setup time tsetup and operator complexity CA for the AMG hierarchy
computed for the SOLKY problem. 180

5.4. Solution time for the V-cycle iteration applied to the SOLKY problem
(Pressure–to–velocity coupling). 181

5.5. Convergence factor for the V-cycle iteration applied to the SOLKY prob-
lem (Pressure–to–velocity coupling). 181

5.6. Solution time for the V-cycle iteration applied to the SOLKY problem
(F-stabilization). 181

5.7. Convergence factor for the V-cycle iteration applied to the SOLKY prob-
lem (F-stabilization). 183

5.8. Numerical results for the SINKER problem 184
5.9. Setup time and operator complexity for the HOTBLOB problem 188
5.10. Solution time and GMRES iterations for the HOTBLOB problem 189
5.11. Setup time and operator complexity for the HOTBLOB problem 192
5.12. Setup time and operator complexity for the HOTBLOB problem 192
5.13. Parallel setup time for the HOTBLOB problem 193
5.14. Parallel solve time for the HOTBLOB problem 194
5.15. Parallel iteration numbers for the HOTBLOB problem 194

215

Bibliography

[Ada04] Mark F. Adams. Algebraic multigrid methods for constrained linear sys-
tems with applications to contact problems in solid mechanics. Numerical
Linear Algebra with Applications, 11(2-3):141–153, 2004.

[AHU58] Kenneth J. Arrow, Leonid Hurwicz, and Hirofumi Uzawa. Studies in Linear
and Non-Linear Programming. Stanford University Press, 1958.

[Alb06] David M. Alber. Modifying CLJP to select grid hierarchies with lower
operator complexities and better performance. Numerical Linear Algebra
With Applications, 13(2–3):87–104, 2006.

[Alb07] David M. Alber. Efficient Setup Algorithms for Parallel Algebraic Multigrid.
PhD thesis, University of Illinois, 2007.

[BBKL11] Achi Brandt, James Brannick, Karsten Kahl, and Ira Livshits. Bootstrap
AMG. SIAM Journal on Scientific Computing, 33(2):612–613, 2011.

[BCF+00] Marian Brezina, Andrew J. Cleary, Robert D. Falgout, Van Emden Henson,
Jim E. Jones, Thomas A. Manteuffel, Steve F. McCormick, and John W.
Ruge. Algebraic Multigrid Based on Element Interpolation (AMGe). SIAM
Journal on Scientific Computing, 22:1570–1592, 2000.

[BD85] Randolf E. Bank and Craig C. Douglas. Sharp estimates for multigrid rates
of convergence with general smoothing and acceleration. SIAM Journal on
Numerical Analysis, 22:617–633, 1985.

[BDD+00] Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der
Vorst, editors. Templates for the Solution of Algebraic Eigenvalue Problems:
A Practical Guide. SIAM, Philadelphia, 2000.

[BDG06] Pavel B. Bochev, Clark R. Dohrmann, and Max D. Gunzburger. Stabi-
lization of low-order mixed finite elements for the stokes equations. SIAM
Journal on Numerical Analysis, 44:82–101, 2006.

[BDO12] Nathan Bell, Steven Dalton, and Luke N. Olson. Exposing Fine-Grained
Parallelism in Algebraic Multigrid Methods. SIAM Journal on Scientific
Computing, 34(4):C123–C152, 2012.

[BGG+08] Carsten Burstedde, Omar Ghattas, Michael Gurnis, Georg Stadler, Eh Tan,
Tiankai Tu, Lucas C. Wilcox, and Shijie Zhong. Scalable adaptive mantle

217

Bibliography

convection simulation on petascale supercomputers. In Proceedings of the
2008 ACM/IEEE conference on Supercomputing, SC ’08, pages 62:1–62:15,
Piscataway, NJ, USA, 2008. IEEE Press.

[BGMS97] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F.
Smith. Efficient management of parallelism in object oriented numerical
software libraries. In Erlend Arge, Are Magnus Bruaset, and Hans Petter
Langtangen, editors, Modern Software Tools in Scientific Computing, pages
163–202. Birkhäuser Press, 1997.

[BKMY10] Allison H. Baker, Tzanio V. Kolev, and Ulrike Meier Yang. Improving
algebraic multigrid interpolation operators for linear elasticity problems.
Numerical Linear Algebra With Applications, 17(2–3):495517, 2010.

[BMR82] Achi Brandt, Steve McCormick, and John Ruge. Algebraic multigrid (amg)
for automatic multigrid solution with application to geodetic computations.
Technical report, Instute for Computational Studies, Colorado State Uni-
versity, Fort Collins, CO, 1982.

[BMR84] Achi Brandt, Steve McCormick, and John Ruge. Algebraic multigrid (amg)
for sparse matrix equations. In D.J. Evans, editor, Sparsity and Its Appli-
cations. Cambridge Univsity Press, 1984.

[Bra97] Dietrich Braess. Finite Elemente. Springer Verlag, Berlin Heidelberg New
York, 2 edition, 1997.

[Bra01] Achi Brandt. Multiscale scientific computation: Review 2001. In Multiscale
and Multiresolution Methods, pages 1–96. Springer Verlag, 2001.

[Bre74] Franco Brezzi. On the existence, uniqueness and approximation of saddle-
point problems arising from lagrangian multipliers. Revue francaiçe
d’automatique, informatique, recherche opérationelle. Analyse numérique,
8:129–151, 1974.

[BS97] Dietrich Braess and Regina Sarazin. An efficient smoother for the Stokes
problem. Applied Numerical Mathematics, 23:3–19, 1997.

[BSA+13] Carsten Burstedde, Georg Stadler, Laura Alisic, Lucas C. Wilcox, Eh Tan,
Michael Gurnis, and Omar Ghattas. Large-scale adaptive mantle convec-
tion simulation. Geophysical Journal International, 2013.

[CCF98] Edmond Chow, Andrew J. Cleary, and Robert D. Falgout. Design of the
hypre Preconditioner Library. In Proceedings of the SIAM Workshop on Ob-
ject Oriented Methods for Inter-operable Scientific and Engineering Com-
puting, 1998.

[Cle04] Tanja Clees. AMG Strategies for PDE Systems with Applications in Indus-
trial Semiconductor Simulation. Dissertation, Universität zu Köln, 2004.

218

Bibliography

[DBH+02] Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and
Courtenay Vaughan. Zoltan data management services for parallel dynamic
applications. Computing in Science and Engineering, 4(2):90–97, 2002.

[Den82] Joel E. Dendy, Jr. Black box multigrid. J. Comp. Phys., 48:366–386, 1982.

[ESW05] Howard Elman, David Silvester, and Andy Wathen. Finite Elements and
Fast Iterative Solvers. Numerical Simulation and Scientific Computation.
Oxford University Press, New York, 2005.

[FV04] Robert D. Falgout and Panayot S. Vassilevski. On generalizing the algebraic
multigrid framework. SIAM Journal on Numerical Analysis, 42(4):1669–
1693, 2004.

[GDN98] Michael Griebel, Thomas Dornseifer, and Tilman Neunhoeffer. Numerical
Simulation in Fluid Dynamics, a Practical Introduction. SIAM, Philadel-
phia, 1998.

[GKW11] Michael W. Gee, Ulrich Küttler, and Wolfgang A. Wall. Truly monolithic
algebraic multigrid for fluidstructure interaction. International Journal for
Numerical Methods in Engineering, 85(8):987–1016, 2011.

[GMOS06] Michael Griebel, Bram Metsch, Daniel Oeltz, and Marc Alexander
Schweitzer. Coarse grid classification: A parallel coarsening scheme for
algebraic multigrid methods. Numerical Linear Algebra with Applications,
13(2–3):193–214, 2006. Also available as SFB 611 preprint No. 225, Uni-
versität Bonn, 2005.

[GMS06] Michael Griebel, Bram Metsch, and Marc Alexander Schweitzer. Coarse
grid classification–Part II: Automatic coarse grid agglomeration for parallel
AMG. Preprint 271, Sonderforschungsbereich 611, Universität Bonn, 2006.

[GMS08] Michael Griebel, Bram Metsch, and Marc Alexander Schweitzer. Coarse
Grid Classification: AMG on Parallel Computers. In Gernot Münster, Diet-
rich Wolf, and Manfred Kremer, editors, NIC Symposium 2008, volume 39
of NIC Series, pages 299–306, February 2008. Also available as SFB 611
preprint No. 368, Universität Bonn, 2008.

[GOS03] Michael Griebel, Daniel Oeltz, and Marc Alexander Schweitzer. An Alge-
braic Multigrid Method for Linear Elasticity. SIAM Journal on Scientific
Computing, 25(2):385–407, 2003.

[GS98] Philip M. Gresho and Robert L. Sani. Incompressible Flow and the Finite
Element Method. John Wiley and Sons, Chichester, 1998.

[Hac85] Wolfgang Hackbusch. Multi-Grid Methods and Applications, volume 4 of
Springer Series in Computational Mathematics. Springer-Verlag, Berlin,
Heidelberg, 1985.

219

Bibliography

[Hac86] Wolfgang Hackbusch. Theorie und Numerik elliptischer Differentialgle-
ichungen. Teubner Studienbücher: Mathematik. B. G. Teubner, Stuttgart,
1986.

[Hac91] Wolfgang Hackbusch. Iterative Lösung großer schwachbesetzter Gle-
ichungssysteme, volume 69 of Leitfäden der angewandten Mathematik und
Mechanik LAMM. B. G. Teubner, Stuttgart, 1991.

[HBH+05] Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoek-
stra, Jonathan J. Hu, Tamara G. Kolda, Richard B. Lehoucq, Kevin R.
Long, Roger P. Pawlowski, Eric T. Phipps, Andrew G. Salinger, Heidi K.
Thornquist, Ray S. Tuminaro, James M. Willenbring, Alan Williams, and
Kendall S. Stanley. An overview of the trilinos project. ACM Transactions
on Mathematical Software, 31(3):397–423, 2005.

[HMY02] Van Emden Henson and Ulrike Meier Yang. BoomerAMG: a Parallel Alge-
braic Multigrid Solver and Preconditioner. Applied Numerical Mathemat-
ics, 41:155–177, 2002. Also available as technical report UCRL-JC-141495,
Lawrence Livermore National Laboratory, March 2001.

[HV01] Van Emden Henson and Panayot S. Vassilevski. Element-Free AMGe: Gen-
eral Algorithms for Computing Interpolation Weights in AMG. SIAM Jour-
nal on Scientific Computing, 23:629–650, 2001.

[hyp] hypre: high performance preconditioners. http://computation.llnl.

gov/casc/linear_solvers/sls_hypre.html.

[JV01] Jim E. Jones and Panayot S. Vassilevski. AMGe based on Element Ag-
glomeration. SIAM Journal on Scientific Computing, 23:109–133, 2001.

[Kah09] Karsten Kahl. Adaptive Algebraic Multigrid for Lattice QCD Computations.
Dissertation, Bergische Universität Wuppertal, 2009.

[KK97] George Karypis and Vipin Kumar. A Coarse-Grain Parallel Formulation of
Multilevel k-way Graph Partitioning Algorithm. In 8th SIAM Conference
on Parallel Processing for Scientific Computing, 1997.

[KK99] George Karypis and Vipin Kumar. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graph. SIAM Journal on Scientific Com-
puting, 20(1):359–392, 1999.

[KS99] Arnold Krechel and Klaus Stüben. Parallel Algebraic Multigrid Based on
Subdomain Blocking. Technical Report REP-SCAI-1999-71, GMD, Decem-
ber 1999.

[Liv04] Oren E. Livne. Coarsening by compatible relaxation. Numerical Linear
Algebra with Applications, 11:205–227, 2004.

220

http://computation.llnl.gov/casc/linear_solvers/sls_hypre.html
http://computation.llnl.gov/casc/linear_solvers/sls_hypre.html

Bibliography

[LOS04] Koung Hee Leem, Suely Oliveira, and David Stewart. Algebraic multigrid
(AMG) for saddle point systems from meshfree discretizations. Numerical
Linear Algebra with Applications, 11:293–308, 2004.

[LSAC08] Gregory Larson, Deryl Snyder, David Vanden Abeele, and Tanja Clees.
Application of single-level, pointwise algebraic, and smoothed aggregation
multigrid methods to direct numerical simulation of incompressible turbu-
lent flows. Computing and Visualization in Science, 11:27–40, 2008.

[Lub86] Michael Luby. A simple parallel algorithm for the maximal independent
set problem. SIAM J. Comp., 15:1036–1053, 1986.

[Met04] Bram Metsch. Ein paralleles graphenbasiertes algebraisches Mehrgitter-
verfahren. Diplomarbeit, Institut für Numerische Simulation, Universität
Bonn, 2004.

[MM08] Dave A. May and Louis Moresi. Preconditioned iterative methods for Stokes
flow problems arising in computational geodynamics. Physics of the Earth
and Planetary Interiors, 171:33–47, 2008.

[MO08] Scott P. MacLachlan and Cornelis W. Oosterlee. Algebraic Multigrid
solvers for complex–valued matrices. SIAM Journal on Scientific Com-
puting, 30(3):1548–1571, 2008.

[MPI] MPI Forum. Message Passing Interface (MPI) Forum Home Page. http:

//www.mpi-forum.org/.

[MY04] Ulrike Meier Yang. On the use of relaxation parameters in hybrid
smoothers. Numerical Linear Algebra with Applications, 11(2–3):155–172,
2004.

[MY06] Ulrike Meier Yang. Parallel Algebraic Multigrid Methods - High Perfor-
mance Preconditioners. In Are Magnus Bruaset and Alsal Tveito, editors,
Numerical Solution of Partial Differential Equations on Parallel Comput-
ers, volume 51 of Lecture Notes in Computational Science and Enigineering,
chapter 6, pages 209–236. Springer, 2006.

[MY10] Ulrike Meier Yang. On long-range interpolation operators for aggressive
coarsening. Numerical Linear Algebra with Applications, 17(2–3):453–472,
2010.

[Not10] Yvan Notay. Algebraic analysis of two-grid methods: The nonsymmetric
case. Numerical Linear Algebra with Applications, 17(1):7396, 2010.

[Oel01] Daniel Oeltz. Algebraische Mehrgittermethoden für Systeme partieller Dif-
ferentialgleichungen. Diplomarbeit, Institut für Angewandte Mathematik,
Universität Bonn, 2001.

221

http://www.mpi-forum.org/
http://www.mpi-forum.org/

Bibliography

[Pat80] Suhas V. Patankar. Numerical Heat Transfer and Fluid Flow. Taylor &
Francis, New York, 1980.

[PS72] Suhas V. Patankar and D. Brian Spalding. A calculation procedure for
heat and mass transfer in three-dimensional parabolic flows. International
Journal on Heat and Mass Transfer, 15:1787–1806, 1972.

[PS75] Chris C. Paige and Michael A. Saunders. Solution of Sparse Indefinite Sys-
tems of Linear Equations. SIAM Journal on Numerical Analysis, 12:617–
629, 1975.

[RS87] John Ruge and Klaus Stüben. Algebraic Multigrid. In Stephen F. Mc-
Cormick, editor, Multigrid Methods, Frontiers in Applied Mathematics,
chapter 4, pages 73–130. SIAM, Philadelphia, 1987.

[Rug86] John Ruge. AMG for Problems of Elasticity. Applied Mathematics and
Computation, 19:293–309, 1986.

[SFNMY08] Hans De Sterck, Robert D. Falgout, Joshua W. Nolting, and Ulrike
Meier Yang. Distance-two interpolation for parallel algebraic multigrid.
Numerical Linear Algebra With Applications, 15(2–3):115–139, 2008.

[SMYH06] Hans De Sterck, Ulrike Meier Yang, and Jeffrey J. Heys. Reducing com-
plexity in parallel algebraic multigrid preconditioners. SIAM Journal on
Matrix Analysis and Applications, 27(4):1019–1039, 2006.

[SS86] Yousef Saad and Martin H. Schultz. GMRES: a generalized minimal resid-
ual algorithm for solving nonsymmetric linear systems. SIAM Journal Sci-
entific and Statistical Computing, 7:856–869, 1986.

[SS97] Dongho Shin and John C. Strikwerda. Inf-sup conditions for finite-
difference approximations of the stokes equations. The ANZIAM Journal,
39(01):121–134, 1997.

[Stü99] Klaus Stüben. Algebraic Multigrid (AMG): An Introduction with Appli-
cations. Technical report, GMD - Forschungszentrum Informationstechnik
GmbH, March 1999. Also available as part of [TOS01].

[SZ03] Joachim Schöberl and Walter Zulehner. On Schwarz-type Smoothers for
Saddle Point Problems. Numerische Mathematik, 95(2):377–399, 2003.

[TOS01] Ulrich Trottenberg, Cornelis Oosterlee, and Anton Schüller. Multigrid. Aca-
demic Press, London, 2001.

[TT00] Ray S. Tuminaro and Charles Tong. Parallel smoothed aggregation multi-
grid: Aggregation strategies on massively parallel machines. In Jed Don-
nelley, editor, Proceedings of the 2000 ACM/IEEE conference on Super-
computing, 2000.

222

Bibliography

[Van86] S. Pratap Vanka. Block-Implicit Multigrid Solution of Navier-Stokes Equa-
tions in Primitive Variables. Journal of Computational Physics, 65:138–158,
1986.

[VBM01] Peter Vanek, Marian Brezina, and Jan Mandel. Convergence Analysis of
Algebraic Multigrid Based on Smoothed Aggregation. Numerische Mathe-
matik, pages 559–579, 2001.

[VDR84] Jeffrey P. Van Doormaal and George D. Raithby. Enhancements of the
SIMPLE method for prediciting incompressible fluid flows. Numerical
Heat Transfer: An International Journal of Computation and Methodol-
ogy, 7:147–163, 1984.

[VMB94] Peter Vanek, Jan Mandel, and Marian Brezina. Algebraic multigrid on
unstructered meshes. Technical Report 34, UCD/CCM, 1994.

[VMB96] Peter Vanek, Jan Mandel, and Marian Brezina. Algebraic multigrid based
on smoothed aggregation for second and fourth order elliptic problems.
Computing, pages 179–196, 1996.

[Wab03] Markus Wabro. Algebraic Multigrid Methods for the Numerical Simulation
of the Incompressible Navier-Stokes Equations. Dissertation, Institut für
Numerische Mathematik, Johannes Kepler Universität, Linz, 2003.

[Wab04] Markus Wabro. Coupled algebraic multigrid methods for the Oseen prob-
lem. Computing and Visualization in Science, 7:141–151, 2004.

[Wab06] Markus Wabro. AMGe-Coarsening Strategies and Application to the Oseen
Equations. SIAM Journal on Scientific Computing, 27:2077–2097, 2006.

[Wit89] Gabriel Wittum. Multi-Grid Methods for Stokes and Navier-Stokes Equa-
tions. Numerische Mathematik, 54:543–563, 1989.

[Wit90] Gabriel Wittum. On the Convergence of Multi-Grid Methods with Trans-
forming Smoothers. Numerische Mathematik, 57:15–38, 1990.

[WY09] Roman Wienands and Irad Yavneh. Collocation coarse approximation in
multigrid. SIAM Journal on Scientific Computing, 31(5):3643–3660, 2009.

[Zul00] Walter Zulehner. A Class of Smoothers for Saddle Point Problems. Com-
puting, 65:227–246, 2000.

[Zul02] Walter Zulehner. Analys of Iterative Methods for Saddle Point Problems:
A Unified Approach. Mathematics of Computation, 71(238):479–505, 2002.

223

	Introduction
	Algebraic Multigrid
	Relaxation Solvers
	Geometric Multigrid
	AMG setup
	Smoothing
	Strong Couplings
	Coarsening according to Ruge and Stüben
	Aggressive Coarsening
	Interpolation
	The coarse grid operator
	Two-grid convergence: The non-symmetric case
	AMG: Not just point coarsening
	AMG for systems of elliptic PDEs

	Parallel AMG
	Minimum Subdomain Blocking, Third pass coarsening
	CLJP coarsening schemes
	PMIS and HMIS coarsening schemes
	CGC coarsening
	Outlook: CGC-ML coarsening

	AMG for Saddle Point Systems
	Stokes equations
	Discretization of Saddle Point PDEs
	Iterative solvers for Saddle Point Systems
	Towards AMG
	The smoother I: An inexact Uzawa scheme
	The smoother II: An algebraic Vanka-type smoother
	Interpolation and Coarse Grid Correction: General Remarks
	The coarse grid operator I: Auto-stabilizing coarsening and Two-level convergence
	The coarse grid operator II: A sparser stable coarse operator
	The coarse grid operator III: F-stabilization
	Setup of the AMG hierarchy for saddle point systems

	Numerical Results
	Finite difference examples
	Mantle Convection

	Conclusions and Outlook
	A positive definite reformulation of the Uzawa smoother

