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Abstract. In this paper we present a three-dimensional Navier–Stokes solver for incompressible
two-phase flow problems with surface tension and apply the proposed scheme to the simulation of
droplet-deformation. Our approach employs a standard finite difference/finite volume discretization
on uniform Cartesian staggered grids and uses Chorin’s projection approach. The free surface between
the two fluid phases is tracked with a level set technique. Here, the interface conditions are implicitly
incorporated into the momentum equations by the continuum surface force method. Surface tension
is evaluated using a smoothed delta function and third order interpolation. The problem of mass
conservation for the two phases is treated by a reinitialization of the level set function employing a
regularized signum function and a global fixed point iteration. All convective terms are discretized
by a WENO scheme of fifth order. Altogether, our approach exhibits a second order convergence
away from the free surface. The discretization of surface tension requires a smoothing scheme near
the free surface which leads to a first order convergence in the smoothing region.

We discuss the details of the proposed numerical scheme and present the results of several nu-
merical experiments concerning mass conservation, convergence of curvature and the application of
our solver to the simulation of droplet-deformation due to a shear flow in three space dimensions.
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1. Introduction. Many problems in fluid flow applications require the consid-
eration of two incompressible immiscible fluids and, consequently, the treatment of
the free surface between these two phases. Important examples are the deforma-
tion of liquid-gas interfaces by aerodynamical forces as it occurs in spray injection
and atomization in liquid propulsion [32]. A reference problem in dispersion science,
emulsification and mixing is the deformation of a liquid droplet due to a surrounding
shear flow. In such mesoscopic flow problems, when the characteristic length scale of
the flow is relatively small, surface tension effects cannot be neglected as in (most)
macroscopic flows. The forces due to surface tension play an essential role for the over-
all dynamics and determine the deformation behavior of the interface. This class of
applications pose a number of challenges to numerical methods. The most substantial
is the representation of the moving interface which separates the two different fluid
phases and their associated material properties like density and viscosity, and the
appropriate treatment of surface tension effects.

Classical approaches to the tracking of moving interfaces are the Marker and Cell
(MAC) schemes [2,11,12,20,22,24,36,46,47] where the two fluid phase are explicitly
represented by massless marker particles and the interface needs to be reconstructed
from the distribution of the marker particles. The accurate representation of the
moving interface however requires a large number of marker particles and thereby
a substantial computational effort. In the Volume of Fluid (VOF) technique [4, 13,
23, 25, 30, 33, 34, 37] the characteristic functions of the two fluid domains are directly
approximated on the underlying mesh by a piecewise constant function. Hence, the
reconstruction of a smooth interface, i.e., the accurate computation of curvature which
is necessary for simulations involving surface tension effects, is not straightforward
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in VOF and requires sophisticated interpolation schemes [18, 19]. This drawback is
overcome in the level set (LS) approach [38,39,42] where the characteristic functions
of the two fluid phases are approximated by the sign of a smooth scalar function, so
that the interface is given by the zero-level set of this smooth function. Due to this
smooth approximation the computation of curvature is straightforward.

The movement of the interface, however, may lead to a substantial distortion of
the level set function over time; i.e., its gradient may become very large or very small
near the interface which can adversely effect the stable evaluation of surface tension
terms. To overcome this issue a so-called reinitialization step must be performed.
Here, the current level set function is replaced by a smoother, less distorted function
which has (approximately) the same zero-level set. This however may compromise
the mass conservation properties of the numerical scheme. A widely used and very
successful approach is the reinitialization by a signed distance function, see e.g. [1,
7, 8, 35, 45]. Such a simple reinitialization technique, however, introduces numerical
diffusion to the solution which leads to a deterioration of the volume conservation, i.e.
mass conservation in incompressible flow. To this end, several modified reinitialization
methods have been developed to improve mass conservation [17,40,41,44]. However,
the interplay between these techniques and the convergence behavior of surface tension
terms within a full two-phase flow solver is not completely understood.

The second major challenge encountered in the simulation of multi-phase flows
on the mesoscale is the numerical treatment of surface tension effects which cannot
be neglected. One approach to the treatment of surface tension is by variational
techniques based on the Laplace–Beltrami operator on the free surface [3,14,15,26,27].
Another widely used approach is the Continuum Surface Force (CSF) scheme [5, 47].
Here, surface tension, i.e., the respective interface condition, is modeled as a body
force acting on grid cells that contain the interface. This approach was introduced in
the context of VOF and MAC methods but it is directly applicable to the level set
approach as well [45]. Even though, the CSF approach is reported to be quite robust,
to our knowledge, the convergence behavior of surface tension terms approximated by
the CSF in conjunction with a level set method within a full two-phase flow solver is
also not completely understood.

In this paper we present a fully three-dimensional incompressible Navier–Stokes
solver for two-phase flow problems based on Chorin’s projection approach on staggered
Cartesian grids, the level set technique and the CSF scheme for the treatment of
surface tension effects. To cope with the issue of mass conservation we employ an
improved reinitialization scheme essentially due to [45] in conjunction with a fifth order
WENO scheme and an additional fixed point iteration to enforce the conservation of
the global mass explicitly. We apply our solver to simulate the deformation of a
droplet in three dimensions due to a shear flow.

The remainder of this paper is organized as follows: The employed mathematical
model is presented in section 2. Here, we implement the coupling of the Navier–
Stokes equations for two flow phases by classical interface conditions which incorporate
surface tension. To this end, we discuss the CSF method in the context of the level
set method (LSM). The discretization of the coupled model is presented in some
detail in section 3. The Navier–Stokes equations as well as the transport equation
for the level set function are discretized in time using an Adams–Bashford method
of second order, whereas the reinitialization of the level set function is discretized in
time using an explicit third order Runge–Kutta scheme. The discretization in space
employs a standard finite difference / finite volume approach on a staggered uniform
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grid. Furthermore, we use a signed distance function in the level set representation of
the free surface, a fifth order WENO scheme for all convective terms, a higher order
interpolation scheme for the level set function, and an improved reinitialization scheme
including a global fixed point iteration to enforce mass conservation. In section 4 we
present the results of several numerical experiments for model problems concerning
mass conservation, convergence of curvature and convergence of the complete two-
phase flow scheme. Finally, we consider the deformation of a liquid droplet due to a
surrounding shear flow. We conclude with some remarks in section 5.

2. Mathematical Model. The behavior of two immiscible incompressible fluids
is governed by the incompressible Navier–Stokes equations defined on an open set
Ω = Ω1 ∪ Ω2 ∪ Γf ⊂ R3 with Lipschitz boundary Γ := ∂Ω. Here Ω1 and Ω2 denote
the subdomains associated with the two different fluid phases, respectively. The free
interface between the two fluid phases is denoted by Γf := ∂Ω1 ∩ ∂Ω2. The two
fluid domains Ω1 and Ω2, and the free interface Γf depend on time. The temporal
evolution of each of the fluids is described by the classical Navier–Stokes equations in
its respective subdomain Ωi for t ∈ [0, T ]; i.e., we have

ρi
D~ui
Dt

= −∇pi +∇ · (µiSi) + ρi~g in Ωi,

∇ · ~ui = 0 in Ωi,
~ui|Γ = 0 in [0,T] ,

~ui|t=0 = u0i in Ωi,

(2.1)

where i ∈ {1, 2} indicates the considered fluid phase. Furthermore, ~ui denotes the
velocity-field, pi the pressure, µi the dynamic viscosity, ρi the density, and ~g the
volume force. The viscous stress tensor is given by Si := ∇~ui + {∇~ui}T and the
material derivative by D(~ui)

Dt := ∂t(~ui) + (~ui · ∇)~ui. The values of µi and ρi in each
phase are assumed to be constant. However, the system (2.1) is not complete without
some additional conditions imposed on the free interface Γf .

The basic assumption in continuum mechanics for the free boundary Γf is that
it can be regarded as a sharp interface; i.e., the interface is a two-dimensional surface
which separates the two flow regions. For immiscible fluids this can be justified by
dimension analysis, see [31] for a detailed discussion. Hence, our two-phase flow model
contains a jump in density and a jump in viscosity across the free surface. A conse-
quence of this assumption is that the interface possesses no mass. Consequently, the
net stress vanishes along the interface. Furthermore, the velocity must be continuous
across the free surface, i.e., ~u1 = ~u2 on Γf . For a more detailed discussion see [31].
The surface tension boundary conditions at the interface Γf between the two fluid
phases are given by

(T1 −T2) · ~n = σκ~n, (T1 −T2) · ~t =
∂σ

∂~t
, and (T1 −T2) · ~s =

∂σ

∂~s
,

where Ti := −piI + µiSi denotes the stress tensor, σ is the surface tension coefficient
determined by the physical properties of the considered fluids, and ~n := ~n1 = −~n2

denotes the surface normal on Γf , i.e., the outer normal on ∂Ω1. The local curvature
κ is given by

κ =
1
Rt

+
1
Rs

(2.2)

with the radii Rt and Rs of curvature along coordinates t and s as shown in Figure 2.1.
Since we assume that the material properties µi and ρi are constant in each Ωi, the
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Figure 2.1. Curvature for surface tension computation.

surface tension coefficient σ is constant throughout the whole domain Ω. Therefore,
the conditions on the interface Γf reduce to

~u1 = ~u2, (2.3)
(T1 −T2) · ~n = σκ~n, (2.4)
(T1 −T2) · ~t = 0, (2.5)
(T1 −T2) · ~s = 0. (2.6)

Throughout this paper, we consider surface tension forces in normal direction only.
Hence, we complete the Navier–Stokes equations (2.1) in each of the subdomains Ωi
with the interface conditions (2.3) and (2.4) whereas the tangential conditions (2.5)
and (2.6) are not explicitly enforced. Altogether, the complete model for two-phase
flow problems including surface tension considered in this paper is given by

ρi
D~ui
Dt

= −∇pi +∇ · (µiSi) + ρi~g in Ωi,

∇ · ~ui = 0 in Ωi,
~ui|Γ = 0 in [0,T] ,

~ui|t=0 = u0i in Ωi
~u1 = ~u2 on Γf ,

(T1 −T2) · ~n = σκ~n on Γf ,

(2.7)

for i ∈ {1, 2}.

2.1. Formulation of Surface Tension within the Momentum Equations.
To couple the two-phase-flow Navier–Stokes equations (2.1) with the free surface
boundary conditions (2.4), we start from the integral form of (2.1)∫

Ωi

ρi
D(~ui)
Dt

d~x =
∫
∂Ωi

Ti · ~n dF +
∫

Ωi

ρi~g d~x (2.8)

for i ∈ {1, 2}. Summation of both momentum equations (2.8) yields

ρ1

∫
Ω1

D~u

Dt
d~x+ ρ2

∫
Ω2

D~u

Dt
d~x =∫

∂Ω

T · ~n dF −
∫

Γf

[T] · ~n dF + ρ1

∫
Ω1

~g d~x+ ρ2

∫
Ω2

~g d~x
(2.9)

where T := T1χΩ1 + T2χΩ2 is defined with the help of the characteristic functions
χΩ1 and χΩ2 associated with the fluid domains Ω1 and Ω2 respectively. Furthermore,
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[T] denotes the jump in the stress tensor T , i.e., [T] = T1 −T2, at the interface Γf .
With (2.4) and the Gauß Theorem, we obtain∫

∂Ω

T · ~n dF =
∫

Ω

∇ ·T d~x. (2.10)

Since T is discontinuous at the free surface due to the jump in the viscosity, relation
(2.10) is to be understood in the sense of distributions.

With (2.3), the velocity-field ~u = ~u1χΩ1 + ~u2χΩ2 for viscous fluids is continuous
on Ω and we can write

ρ1

∫
Ω1

D~u

Dt
d~x+ ρ2

∫
Ω2

D~u

Dt
d~x =

∫
Ω

ρ
D~u

Dt
d~x. (2.11)

Now we substitute (2.10) and (2.11) into (2.9) and obtain the integral formulation of
incompressible two-phase flow with surface tension∫

Ω

ρ
D~u

Dt
d~x =

∫
Ω

∇ ·T d~x−
∫

Γf

σκ~n dF +
∫

Ω

ρ~g d~x. (2.12)

The advantage of (2.12) is that the boundary condition for surface tension is im-
plicitly contained in the momentum equation. However, it is still formulated as a
free boundary integral. For the discretization we convert this free boundary integral
to a volume integral via the CSF approach [5, 47]. Then, we can easily couple the
momentum equation with a level set formulation which does not require an explicit
reconstruction of the free surface. Note that this is in contrast to VOF methods where
a reconstruction of Γf is required even with a CSF formulation.

2.2. The CSF-approach in the LSM. The CSF model was first proposed by
Brackbill et al. [5] for VOF methods and by Unverdi et al. [47] for MAC methods.
We now give a short description of the CSF approach in the framework of the level
set method, see [45] for details.

The aim is to provide a unified formulation of (2.7) on the compete domain Ω;
i.e., we will eliminate the explicit interface conditions in (2.7). To this end, we start
from the two-phase flow equations in integral form (2.12). There, surface tension
is included as a source-term on the right-hand side. Since our discretization will be
based on the differential expression of the Navier–Stokes equations, this free boundary
integral needs to be converted into a volume integral and, by passing to the limit of
infinitesimally small volumes, we then obtain the associated differential expression of
the Navier–Stokes equations.

To this end, we construct a function φ such that the interface between the two
different fluids is the zero level set of φ, compare Figure 2.2. The interface is then
given by

Γf (t) = {~x : φ(~x, t) = 0}

for all times t ∈ [0, T ]. Note that there are arbitrarily many ways to define the level
set function φ away from the free surface. Here, we choose φ as a signed distance
function such that

φ(~x, t)

 < 0 if ~x ∈ Ω1

= 0 if ~x ∈ Γf
> 0 if ~x ∈ Ω2

(2.13)
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Figure 2.2. Elliptical zero-level set (left; bold line, top view), surface plot of a general level set
function with the same elliptical zero-level set (center), and a surface plot of a respective signed-
distance level set function (right).

hold and the Eikonal equation |∇φ| = 1 is fulfilled, compare Figure 2.2. With the help
of this level set function φ we can now easily define the density ρ and the viscosity µ
on the whole domain, i.e., of both fluid-phases. To this end, we set

ρ(φ) := ρ2 + (ρ1 − ρ2)H(φ) and µ(φ) := µ2 + (µ1 − µ2)H(φ)

where H(φ) denotes the Heaviside function which is defined as

H(φ) :=

 0 if φ < 0
1
2 if φ = 0
1 if φ > 0.

Now, with these φ-dependent material parameters, equation (2.12) can be expressed
as ∫

Ω

ρ(φ)
D~u

Dt
d~x =

∫
Ω

∇ ·T d~x−
∫
Γf

σκ~n dF +
∫
Ω

ρ(φ)~g d~x. (2.14)

Following Chang et al. [6] we now rewrite the free boundary integral as a volume
integral with the help of a Dirac δ-functional. Since ~n = ∇φ

|∇φ| and |∇φ| = 1, this
results in the identity∫

Γf

σκ~n dF =
∫

Ω

σκ(φ(~x))δ(φ(~x))∇φ(~x) d~x (2.15)

where δ denotes the one-dimensional Dirac δ-functional, i.e.
∫

R f(x)δ(x) dx = f(0)
for f : R → R, such that

∫
R3 δ(φ(~x)) d~x =

∫
Γf

1 ds. We substitute (2.15) into (2.14)
and obtain ∫

Ω

(
ρ(φ)

D~u

Dt
−∇ ·T + σκ(φ)δ(φ)∇φ− ρ(φ)~g

)
d~x = 0

which now only involves a volume integral. Since this relation holds for any arbitrary
volume Ω, we obtain the associated differential equation

ρ(φ)
D~u

Dt
−∇ ·T + σκ(φ)δ(φ)∇φ− ρ(φ)~g = 0.
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With the definition of the stress tensor T = −pI + µ(φ)S, this yields the equation

ρ(φ)
D~u

Dt
+∇p = ∇ · (µ(φ)S)− σκ(φ)δ(φ)∇φ+ ρ(φ)~g. (2.16)

In addition to (2.16) we need to take into account the continuity equation

∇ · u = 0, (2.17)

and the time-dependence of the free-surface Γf . This time-dependent movement is
modeled by a simple advection of the interface due to the underlying flow. Hence, we
complement (2.16) and (2.17) by the simple transport equation

∂tφ+ ~u · ∇φ = 0 (2.18)

for the level set function with initial value φ0(~x) = φ(~x, 0).

3. Numerical Method. In this section we present our overall numerical scheme
for the treatment of the two-phase flow equations with surface tension in three space
dimensions as given by (2.16), (2.17), and (2.18). The scheme is based on the well-
known projection method. It employs a semi-implicit time-stepping scheme and a
finite difference discretization in space on a staggered grid which is also used for the
approximation of the level set function. We begin with a short review of the classical
projection method before we cover the details of the incorporation of the level set
method into the projection scheme. Here, we need to be concerned with three major
issues: the movement of the interface and the conservation properties of the overall
scheme, the discontinuity of the material properties at the interface, and the accurate
approximation of the surface tension.

The movement of the free interface is modeled via the transport equation (2.18)
for the level set function φ. Here, we have to deal with the problem of volume and
mass conservation of the two different fluid phases. Hence, we employ a fifth order
WENO scheme for the evaluation of all convective terms and reinitialize the level set
function φ in every time-step to maintain the signed distance property of φ over time.
Furthermore, we use an additional fixed point iteration to enforce the conservation
of the global mass explicitly. Note that the discontinuity of the density and viscosity
at the interface may lead to spurious oscillations and instabilities, therefore we need
to be concerned with the development of an appropriate smoothing scheme for the
material properties. Moreover, it is essential to employ a higher order interpolation
scheme for the level set function to obtain an accurate approximation of the surface
tension. In the following we cover these issues in some more detail.

3.1. Time Discretization and Projection Method. A widely used and very
successful scheme for the solution of the incompressible Navier–Stokes equations is
the so-called projection method due to Chorin [9]. Here, the starting point is the con-
sideration of the time-discrete Navier–Stokes equations using a forward Euler scheme;
i.e., we compute the solution ~un+1 at time tn+1 from the solution ~un of the previous
time step. To obtain the solution of (2.16) under the constraint (2.17) in a single
Euler-step, we employ a two step approach. First, we compute an intermediate ve-
locity field ~u∗ via an explicit transport which may not yield ~u∗ to be divergence free.
Then, in a second step, we compute a correction ∇pn+1 of the intermediate velocity
field ~u∗ by the pressure Poisson equation which leads to a divergence free velocity
field ~un+1; i.e., we treat the pressure (and the level set function) implicitly.
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By an Euler time-discretization of (2.16) we obtain the intermediate velocity field
~u∗ as

~u∗ − ~un

δt
= −(~un · ∇)~un + ~g +

1
ρ(φn)

(
∇ · (µ(φn)Sn)− σκ(φn)δ(φn)∇φn

)
(3.1)

using the definition of the material derivative D(~ui)
Dt := ∂t(~ui) + (~ui · ∇)~ui. The

superscript n indicates the respective time step. With this definition, we can rewrite
the time-discrete Navier–Stokes equations as

~un+1 − ~u∗

δt
+
∇pn+1

ρ(φn+1)
= 0, (3.2)

∇ · ~un+1 = 0. (3.3)

Note that the level set function φn+1 at time step n + 1 must be available for the
definition of (3.2). To this end (2.18) must be solved for the (n+1)th time step prior
to the treatment of (3.2), see the next section for the construction of φn+1.

Now, we apply the divergence operator to equation (3.2), multiply by −1, and
with (3.3) we arrive at the pressure Poisson equation with the density field as diffusion
coefficient

−∇ ·
( 1
ρ(φn+1)

∇p̂n+1
)

= −∇ · ~u∗ (3.4)

where p̂n+1 := δtpn+1. We obtain appropriate boundary conditions for the pressure
Poisson equation by projecting the vector equation (3.2) onto the outer unit normal
of the domain boundary

∂pn+1

∂~n

∣∣∣∣
Γ

=
ρ

δt
(~u∗Γ − ~un+1

Γ ) · ~n.

Thus, if we require ~un+1
Γ = ~u∗Γ, we obtain homogeneous Neumann boundary conditions

for the pressure

∂p̂n+1

∂~n

∣∣∣∣
Γ

= 0.

To ensure the existence of a solution, we also need to fulfill the compatibility condition

0 =
∫

Ω

∇ · ~u d~x =
∫

Γ

~u · ~n ds

which expresses the fact that the velocity on the boundary Γ must have a vanish-
ing total flux. Note that the employed space discretization must comply with this
requirement. Now, we can solve the system (3.4) for p̂n+1 = δtpn+1, at least up to
a constant. We fix this remaining degree of freedom in the pressure pn+1 via the
additional condition ∫

Ω

pn+1 d~x = 0

to ensure the comparability of the pressure results at different times tn. Finally, we
obtain a correction of the intermediate velocity field ~u∗ such that the velocities at
time tn+1

~un+1 = ~u∗ − 1
ρ(φn+1)

∇p̂n+1 (3.5)
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are now divergence free.
The extension of Chorin’s projection method to higher order multi-step time-

discretizations is straightforward. Throughout this paper we use a second order
Adams–Bashford scheme for the integration of the momentum equation (3.1), i.e.

~u∗ − ~un

δtn
=

1
2

(δtn + 2δtn−1

δtn−1
Ln − δtn

δtn−1
Ln−1

)
(3.6)

where δtn = tn − tn−1 denotes the length of the nth time step and Ln the right-hand
side of (3.1) evaluated at time tn.

3.2. Time Discretization and the Level Set Function. In the following
we consider the time discretization of the transport equation (2.18) for the level set
function φ and its effect on the signed distance property of φ. The discretization is
based on a second order Adams–Bashford scheme (3.6) for time discretization and a
fifth order WENO scheme [28,29] for the discretization of the convective term ~un ·∇φn.
Furthermore, we use a third order Lagrange interpolation scheme for the evaluation
of the velocities at the cell centers.

Note that in general the transport of the level set function φ due to (2.18) will
destroy its signed distance property. This property however is essential for the stable
approximation of surface tension. Hence, a transported level set function should not
be used directly for the approximation of curvature or the surface tension. Instead,
we refer to the transported level set function as an intermediate level set function φ∗;
i.e., the time-stepping scheme gives φ∗ and not φn+1 so that

φ∗ = φn +
δt

2
(3un · ∇φn − un−1 · ∇φn−1) (3.7)

To obtain a valid signed distance function φn+1 from φ∗ a reinitialization must be
employed. There exist a number of variants for the reinitialization of the level set
function, the one we employ in our implementation is essentially due to Sussman et
al. [45]. Here, we give a short review of this scheme for the sake of completeness.

Consider a given function φ∗(~x) whose zero-level set is the fluid interface. To gen-
erate the appropriate signed distance function φn+1(~x) with an approximately iden-
tical zero-level set as φ∗(~x), we discretize the following pseudo-transient Hamilton–
Jacobi problem

∂τd+ sign(φ∗)(|∇d| − 1) = 0 (3.8)

and evolve it to steady state with the initial value d(~x, 0) = φ∗(~x). Note that the
term sign(φ∗)|∇d| can be interpreted as motion along the normal direction away
from the zero level set. Since our numerical approach relies on the signed distance
property in the vicinity of the free surface only it is sufficient to compute the solution
of (3.8) in an ε(~x)-neighborhood of the zero-level set. This is also the region where
the largest deviation from the exact signed distance occurs due to the transport of
the level set function. The parameter ε(~x) must be chosen with respect to the spatial
resolution of the employed numerical scheme, see the next section. The Hamilton-
Jacobi reinitialization (3.8) is discretized using a third order TVD Runge–Kutta [43]
method in time and a fifth order WENO scheme in space.

For the numerical treatment of (3.8) it is advisable to employ a regularized signum
function since this leads to better conservation properties as well as a more stable
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Figure 3.1. Variables in a staggered grid. Figure 3.2. Numerical smoothing region
defined in (3.14) for the material parameters.

approximation.1 There exist various different regularization approaches, e.g. [40, 45].
In our implementation we employ the regularized signum function

s̃ign(φ∗) =
φ∗√

(φ∗)2 + |∇φ∗|2(δx2)
. (3.9)

due to Peng et al. [40]. In the discrete setting the parameter δx is replaced by the
spatial mesh-width h, see section 3.3. Since (3.9) takes the gradient of φ∗ into account
we obtain the discrete conservation of the sign of the level set function (in the grid
nodes). Note that the smoothed signum function (3.9) needs to be updated before
each Euler-substep in the Runge–Kutta scheme.

To further improve the conservation properties of our method we employ an ad-
ditional Picard iteration

φn+1 ← φn+1 + ω(V1(φ0)− V1(φn+1)) (3.10)

where V1(φ0) denotes the initial volume of Ω0
1 and V1(φn+1) :=

∫
Ω
H(φn+1) dx is

the volume of Ωn+1
1 after the reinitialization step to enforce the conservation of mass

globally over time.

3.3. Space Discretization. Let us now consider the numerical treatment of
the momentum equation. To this end, we need to specify the spatial discretization
scheme. Here, we employ a widely used finite difference/finite volume scheme on a
staggered grid to discretize the velocity field ~u := (u, v, w)T and the pressure p; i.e.,
the cell centers xi,j,k correspond to the pressure nodes whereas the cell-face centers
xi+ 1

2 ,j,k
, xi,j+ 1

2 ,k
, and xi,j,k+ 1

2
give the velocity nodes for u, v, and w, respectively,

see e.g. [20]. Furthermore, we discretize the level set function φ in the pressure nodes,
see Figure 3.1. Note that all discrete fields are denoted by a subscript h, e.g., the
discrete velocity in x-direction is given by uh and the discrete level set function by
φh.

The computation of the discrete intermediate velocity ~u∗h in (3.1) requires the dis-
cretization of the viscous terms ∇ · (µ(φnh)S

n
h) in the velocity nodes of the staggered

grid. Since the velocities are continuous for viscous fluids (and due to the use of a

1Note that this regularization scheme is independent of the smoothing of the material parameters
given in section 3.4 which is required for the treatment of surface tension effects only. However, we
always use a regularized signum function.
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smoothed viscosity, compare (3.11)) the first and second order derivatives are approx-
imated with central differences. Note however that we need to employ an appropriate
interpolation scheme to evaluate the discrete level set function φh in all velocity nodes,
i.e. in the cell-face centers, since φh is itself given in the pressure nodes, i.e. in the
cell centers. To this end, we use a third order Lagrange interpolation scheme.

To be able to treat convection dominated flow problems, it is essential to employ
a higher order discretization for the convective terms. Here, we use a fifth order
WENO scheme [28, 29] for the treatment of all convective terms, see [10] for details.
This approach yields very good conservation properties even in the presence of large
velocity gradients and allows for a stable approximation of the curvature. Note that an
appropriate interpolation scheme for the velocities is required to apply the employed
fifth order WENO scheme. Again, we use a third order Lagrange interpolation.2

3.4. Smoothing, Surface Tension, Surface Normals and Curvature. So
far we have neglected the discontinuity of the density at the interface. Yet, a jump in
the diffusion coefficient in (3.4) can have a substantial adverse effect on the stability
and the accuracy of our numerical scheme. Hence, we need to develop an appropriate
smoothing scheme for the material properties, so that the density and the viscosity
are at least continuous across the interface. This smoothing scheme, however, should
not affect the approximation properties globally. Another issue here is of course the
discretization of the Dirac delta functional introduced by the CSF-approach.

To this end, let us consider the interface as having the thickness ε(~x) which is
proportional to the spatial mesh-width h, see Figure 3.2. Then, we replace the discrete
density ρ(φh) and the discrete viscosity µ(φh) by

ρε(φh) = ρ2 + (ρ1 − ρ2)Hε(φh) and µε(φh) = µ2 + (µ1 − µ2)Hε(φh) (3.11)

where Hε denotes a smoothed Heaviside function

Hε(φh(~x)) :=


0 if φh(~x) < −ε(~x),
1
2 (1 + φh(~x)

ε + 1
π sin(πφh(~x)

ε(~x) )) if |φh(~x)| ≤ ε(~x),
1 if φh(~x) > ε(~x).

(3.12)

The associated smoothed delta functional is given by the derivative of (3.12), i.e.

δε(φh(~x)) := ∂φh
Hε(φh(~x)) =

{
1

2ε(~x) (1 + cos(πφh(~x)
ε(~x) )) if |φh(~x)| ≤ ε(~x)

0 else.
(3.13)

According to [16] a space- and φh-dependent smoothing region must be employed to
account for mesh-alignment effects. We employ the smoothing region |φh(~x)| ≤ ε(~x)
with

ε(~x) = α(~x)h, where α(~x) := c
‖∇φh(~x)‖1
‖∇φh(~x)‖2

< C (3.14)

with c = 1.5 in our implementation.
The fundamental assumption for the above smoothing scheme is that the gradient

of the level set function is constant in the ε(~x)-region; i.e., that the contours of φh

2At the boundary of the computational domain we use a right- or left-weighted Lagrange in-
terpolation. Note that for the evaluation of this higher order interpolation scheme some velocity
values first need to be interpolated in the cell-face centers. Here, we use a two-dimensional Lagrange
interpolation of third order. Close to the boundary, we employ a bilinear interpolation.
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in the ε(~x)-region are symmetric to the zero-level set. Due to the choice of a signed
distance function in our implementation this assumption is automatically satisfied.

Note that we employ the smoothed Heaviside function in the approximation of
the volumes V1(φ0) and V1(φn+1) in the iteration (3.10). The respective integrals∫
Ω
Hε(φh) dx are approximated by a simple midpoint integration rule.
The use of the smoothed delta functional (3.13) reduces the quality of the approxi-

mation locally within the smoothing region by one order. To this end, consider a func-
tion g and its approximation gh with a pointwise approximation error g− gh of order
O(hp). Then, the smoothed error (g−gh)δε is of the order O(hp)O(ε(~x)−1) ≈ O(hp−1)
since ε(~x) ≈ h.

Finally, we must consider the approximation of the surface tension for the overall
discretization of the momentum equation (2.16). Recall that the surface tension force
enters as a singular source term which we converted to a volume integral using a delta
functional and the CSF-approach. Hence, the main ingredient in the approximation of
the surface tension is the use of the smoothed delta functional δε(φi) given in (3.13)
with ε defined in (3.14). This leads to a volumetric approximation of the surface
tension force with support in the ε-neighborhood of the free surface, i.e.,

σκδ(φ)~n ≈ σκhδε(φh)~nh.

Recall that the discrete unit normal ~nh on the interface is given by ~nh := ∇φh

|∇φh| and
the discrete curvature in three dimensions is defined as κh := ∇ · ~nh. Note that even
though we employ a signed distance function, i.e., |∇φh| = 1 in the ε-neighborhood
of the free surface, we compute ~nh by ∇φh

|∇φh| rather than just by ∇φh. Similarly, we
compute the discrete curvature κh by ∇ · ~nh rather than by ∆φh. This procedure
allows for a more stable approximation of the surface normals as well as the curvature
at cusps. Note that all differential operators in these computations are approximated
using central differences.

Now that the momentum equations are discretized, it remains to discretize the
pressure Poisson equation

−∇ · 1
ρε(φn+1

h )
∇p̂n+1

h = −∇ · ~u∗h (3.15)

where ρε(φn+1
h ) denotes the smoothed discrete density field (3.11) after the advection

step (3.7), the reinitialization (3.8) and the fixed point iteration (3.10). Since the
velocities of an viscous fluid flow are sufficiently smooth, we compute the right-hand
side of (3.15) with central differences. The left-hand side of (3.15) is discretized with
a standard seven-point-stencil in the cell centers where the smoothed density field is
evaluated in the cell-face centers via an interpolated level set function. According to
section 3.1, we complement the pressure equation with homogeneous Neumann bound-
ary conditions and enforce a vanishing mean for the pressure pn+1 = (δt)−1p̂n+1. For
the iterative solution of the resulting semi-definite diffusion equation we employ our
parallel algebraic multigrid solver solver [21].

3.5. Adaptive Time Step Control. Since we employ an explicit scheme for
the velocities we have to deal with a time step restriction due to the CFL-condition
for explicit schemes. The CFL-condition takes convection, viscosity, surface tension
and gravity into account and enforces that the discrete information can evolve no
further than one grid cell since the discrete difference equations consider only fluxes
between adjacent cells.
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With the definitions umax := maxi,j,k |ui+ 1
2 ,j,k
|, κmax := maxi,j,k |κi,j,k|, and

V := max
{
µ1

ρ1
,
µ2

ρ2

}( 2
(δx)2

+
2

(δy)2
+

2
(δz)2

)
the overall time step restriction for the u component of the velocity field can be
expressed as

δtu ≤ 2 Cu

where

Cu :=

((umax

δx
+ V

)
+

√(umax

δx
+ V

)2

+
4|g1|
δx

+
8 κmaxσ

α(ρ2 + ρ1)(δx)2

)−1

.

The bounds for δtv and δtw associated with the velocities in y- and z-direction involv-
ing Cv and Cw respectively are defined in an analogous way. Hence, we first obtain an
appropriate time step restriction δtu/v/w ≤ 2 Cu/v/w for each velocity component sep-
arately. The final time step restriction can then be computed easily as the minimum
of these three scalar bounds. This yields the overall time step restriction

δt ≤ 2 ξ min
Ω

(Cu, Cv, Cw)

with a safety factor ξ ∈ (0, 1]. Throughout this paper, we employ this adaptive time
step control using ξ = 0.3 in our computations.

4. Numerical Results. In this section we present the results of our numerical
experiments in three space dimensions. First we investigate the order of convergence
obtained for the approximation of the curvature by means of a diagonally transported
unit sphere. In particular we analyze the effect of the level set reinitialization and the
fixed point iteration on the convergence of the curvature and the mass conservation
properties of our numerical scheme. Then we examine the global order of convergence
of our overall numerical scheme for two-phase flow problems including surface tension
on the basis of a rising bubble test problem. Finally, we consider the deformation of
a liquid droplet due to a surrounding shear flow.

4.1. Mass Conservation and Convergence of Curvature. First, we investi-
gate the convergence behavior of our numerical scheme with respect to mass and cur-
vature considering the simple test-case of an advected unit sphere. Since the curvature
of the unit sphere is known analytically, we can directly compare the approximated
curvature with the exact solution.

To this end, we consider the domain Ω = [0, 4]3 which we discretize by a sequence
of uniformly refined equidistant grids. Furthermore, we employ periodic boundary
conditions on ∂Ω and a stationary velocity field

u(x, y, z) = 1, v(x, y, z) = 1, w(x, y, z) = 0.

As initial condition for the level set function we use the analytic distance function

φ(x, y, z) = 1−
√

(x− 2)2 + (y − 2)2 + (z − 2)2 (4.1)

whose zero-level set is a sphere with radius r = 1 centered at (2, 2, 2); i.e., we transport
the sphere over time along the diagonal in the xy-plane.
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Figure 4.1. Convergence history for the curvature.

10
5

10
6

10
7

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

mass conservation (T=4)

degrees of freedom

re
la

ti
ve

 e
rr

o
r

 

 

R−F−
R−F+
R+F−
R+F+

Figure 4.2. Convergence history for the relative error of mass.

In this experiment we consider four different configurations of our numerical
scheme to distinguish the effects on the convergence behavior associated with the
reinitialization step and the fixed point iteration; i.e., we perform the simulation
with/without reinitialization (3.8) and with/without fixed point iteration (3.10).

Recall that the curvature is defined as

κh(φh)(~x) = ∇ · ∇φh(~x)
‖∇φh(~x)‖

.

Let us furthermore define the following discrete error norms

eκ,hε (~x) :=
|κh(φh)(~x)− κh(φ)(~x)|

|κh(φ)(~x)|
, (4.2)

eκ,hε,1 :=
∑

~xi,|φh(~xi)|<α(~xi)h

eκ,hε (~xi), (4.3)

eκ,hε,∞ := max
~xi,|φh(~xi)|<α(~xi)h

eκ,hε (~xi), (4.4)

in the ε(~x)-region given by |φh(~xi)| < α(~xi)h = ε(~x), compare 3.14. Thus, we measure
the error not only on the interface but near the interface. Note that we do not employ
the smoothed delta functional δε in this computation. Recall that δε is required only
for the evaluation of surface tension force, it is not needed for the approximation of
the curvature.
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Table 4.1
Relative errors e and convergence rates ρ obtained for the curvature κ and mass m.

1/h dofh dofhε eκ,h
ε,1 ρκ,h

ε,1 eκ,h
ε,∞ ρκ,h

ε,∞ em,h
ε ρm,h

ε

reinitialization (−) fixed point (−)
25 15625 2214 7.034−3 − 3.890−2 − 3.130−4 −
50 125000 8928 1.288−3 1.218 5.236−3 1.438 1.521−4 0.346
100 1000000 35376 3.119−4 1.030 1.015−3 1.192 4.823−5 0.552
200 8000000 141440 7.773−5 1.003 2.271−4 1.080 1.244−5 0.651
400 64000000 565768 1.943−5 1.000 5.320−5 1.047 3.123−6 0.664

reinitialization (+) fixed point (−)
25 15625 2214 1.133−2 − 4.370−2 − 1.969−3 −
50 125000 8932 1.437−3 1.481 4.622−3 1.611 4.652−6 2.909
100 1000000 35380 3.128−4 1.108 9.112−4 1.180 4.289−5 −1.068
200 8000000 141440 7.769−5 1.005 2.147−4 1.043 1.220−5 0.604
400 64000000 565768 1.943−5 0.999 5.180−5 1.026 3.105−6 0.658

reinitialization (−) fixed point (+)
25 15625 2214 7.034−3 − 3.890−2 − 8.338−9 −
50 125000 8928 1.288−3 1.218 5.236−3 1.438 8.365−8 −1.109
100 1000000 35376 3.120−4 1.030 1.015−3 1.192 7.702−8 0.039
200 8000000 141436 7.773−5 1.003 2.271−4 1.080 9.244−8 −0.087
400 64000000 565768 1.943−5 1.000 5.320−5 1.047 9.727−8 −0.024

reinitialization (+) fixed point (+)
25 15625 2214 1.131−2 − 4.373−2 − 5.157−9 −
50 125000 8932 1.437−3 1.479 4.623−3 1.611 8.952−8 −1.373
100 1000000 35380 3.129−4 1.107 9.113−4 1.180 7.659−8 0.075
200 8000000 141436 7.769−5 1.005 2.147−4 1.043 9.238−8 −0.090
400 64000000 565768 1.943−5 0.999 5.180−5 1.026 9.725−8 −0.024

Furthermore, we measure the error with respect to the initial mass at time t = 4
via the discrete norms

mh,t
ε :=

∑
~xi,|φh(~xi)|<α(~xi)h

Hε(φth(~xi))h
3 , em,hε :=

|mh,t
ε −mh,0

ε |
|mh,0

ε |
. (4.5)

The respective algebraic convergence rates ρ are determined by

ρ := −
log e2h

eh

log dof2h

dofh

(4.6)

respectively.
Since we employ an absolute stopping criterion of 10−7 in the fixed point itera-

tion we anticipate to find a constant error emε when the fixed point iteration is used
independently of the reinitialization step. Due to the fact that we employ a constant
velocity field in this experiment the signed distance property of the level set function
is only slightly disturbed over time so that we anticipate to find very similar results
for the cases with/without reinitialization.

The results of our numerical study are summarized in Table 4.1 and Figures 4.1
and 4.2. The convergence rates ρmε are obtained with respect to the total number of
grid cells dof whereas the convergence rates ρκε are determined with respect to the
number of grid cells dofε in the ε(~x)-region. Since dofε ≈ h−2 the classical second
order convergence corresponds to ρ = 1. Analogously we obtain classical second order
convergence for the mass if ρ = 2

3 since dof ≈ h−3.
From the numbers displayed in Table 4.1 and the plots displayed in Figures 4.1

and 4.2 we can clearly observe this anticipated optimal convergence behavior of our
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Figure 4.3. Rising bubble without (upper row) and with (lower row) fixed point iteration for
improved mass conservation at times t = 0.075s (left column) and t = 0.15s (right column) for
h = 1/37. Depicted is a semi-transparent iso-surface of the zero-level set and a contour plot of the
v-velocity along the center plane.

Table 4.2
Parameter for rising bubble problem. Fluid1 denotes the bubble and fluid2 the surrounding fluid.

fluid1: µ1 = 2.5−4kg/ms, ρ1 = 1.00kg/m3 surface tension: σ = 5.0−3N/m
fluid2: µ2 = 5.0−4kg/ms, ρ2 = 1.01kg/m3 boundary conditions: slip

numerical scheme. As expected the error with respect to mass is constant < 10−7 if
the fixed point iteration with absolute stopping criterion is used; i.e., we find the rate
ρmε ≈ 0 due to the absolute stopping criterion. The reinitialization (R+) has almost
no effect on the convergence behavior in this example since the distance property
of the level set function is well-preserved over time due to the constant advection
velocity.

4.2. Convergence for Two-Phase Flow with Surface Tension. To deter-
mine the convergence behavior of the complete two-phase flow solver including surface
tension, we now consider a rising bubble reference problem. Here, a spherical bubble
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Table 4.3
Convergence study for rising bubble problem at time t = 0.075s.

1/h eu,h
∞ ρu,h

∞ eu,h
2 ρu,h

2 ev,h
∞ ρv,h

∞ ev,h
2 ρv,h

2 ew,h
∞ ρw,h

∞ ew,h
2 ρw,h

2
fixed point (−)

37 3.92−1 − 2.08−1 − 1.13−1 − 1.09−1 − 3.92−1 − 2.08−1 −
73 2.09−1 0.31 8.47−2 0.44 7.67−2 0.19 4.92−2 0.39 2.09−1 0.31 8.47−2 0.44
145 6.94−2 0.54 2.60−2 0.57 3.52−2 0.38 1.59−2 0.55 6.94−2 0.54 2.60−2 0.57

fixed point (+)
37 3.87−1 − 2.04−1 − 1.20−1 − 1.11−1 − 3.87−1 − 2.04−1 −
73 2.06−1 0.31 8.35−2 0.44 6.96−2 0.27 5.01−2 0.39 2.06−1 0.31 8.35−2 0.44
145 6.76−2 0.54 2.56−2 0.57 2.97−2 0.41 1.60−2 0.56 6.76−2 0.54 2.56−2 0.57

Table 4.4
Convergence study for rising bubble problem at time t = 0.075s.

1/h em,h
ε ρm,h

ε eφ,h
∞ ρφ,h

∞ eφ,h
2 ρφ,h

2 ep,h
∞ ρp,h

∞ ep,h
2 ρp,h

2
fixed point (−)

37 4.621−2 − 3.14−2 − 1.89−2 − 6.51−1 − 1.14−2 −
73 1.158−2 0.679 1.27−2 0.44 6.90−3 0.50 5.89−1 0.05 4.90−3 0.41
145 2.402−3 0.764 4.66−3 0.49 2.19−3 0.56 4.26−1 0.16 1.92−3 0.45

fixed point (+)
37 4.035−5 − 3.49−2 − 1.48−2 − 6.52−1 − 1.04−2 −
73 2.343−5 0.267 1.32−2 0.48 6.32−3 0.42 5.90−1 0.05 4.55−3 0.41
145 6.541−6 0.620 4.46−3 0.53 2.15−3 0.52 4.27−1 0.16 1.82−3 0.45

of a lighter fluid rises and deforms in a denser fluid due to gravitational forces. The
deformation behavior of the bubble is dominated by surface tension effects. Thus, we
must consider surface tension forces in our numerical scheme so that the smoothed
delta functional δε is employed in these computations. Furthermore, the deformation
of the spherical bubble is substantial over time so that a re-initialization step must be
employed to enforce the signed distance property of the level set function for all times.
To cope with the loss of mass due to the re-initialization of the level set function we
again employ a global fixed point iteration. For comparison we also give the results
obtained without the fixed point iteration.

We anticipate to find first order convergence near the free surface due to the
smoothing of the delta functional whereas away from the free surface we expect to
obtain a second order approximation since there, the smoothed delta functional is not
active. Hence, we expect to find a global approximation order close to two.

The physical properties of the considered fluids are given in Table 4.2. The
initial condition for the level set function φ corresponds to a spherical bubble with
its center located at (0.075m, 0.05m, 0.075m) and radius r = 0.025m. We consider
the computational domain Ω = [0, 0.15m]3 which we discretize by three uniformly
refined equidistant grids with mesh-width h = 1/37, 1/73, 1/145 together with the
equidistant time steps δth = 6.25−5, 2.50−4, 1.00−3, respectively.

Due to the lack of an analytical solution we employ a reference solution computed
on a grid with mesh-width 1/289 to assess the quality of our numerical scheme. To
this end we make the definitions

Eref
h (ψh) := Iref

h ψh − ψref ,

where Iref
h denotes a tri-linear interpolation of the data computed on a mesh with
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Figure 4.4. Phase diagram of droplet deformation with respect to the capillary number Ca
and Reynolds number Re. The stationary regime with constant topology is indicated by SCT, the
instationary regime where topological changes occur is indicated by ITC.

mesh-width h to the reference mesh,

‖ψref‖L2 :=
1

Nref

(Nref∑
i=1

|ψref(~xi)|2
)1/2

, ‖ψref‖L∞ := max
i=1,...,Nref

|ψref(~xi)|,

and

eψp,h :=
‖Eref

h (ψh)‖Lp

‖ψref‖Lp

. (4.7)

We consider the convergence of the velocities uh, vh, wh, the level set function φh,
and the pressure ph in this experiment. Again we determine the algebraic convergence
rates according to (4.6) so that classical second order convergence is obtained if ρ = 2

3 .
Since we must employ the smoothed delta functional to realize the surface tension in
our simulation we cannot expect to find ρ = 2

3 globally but we anticipate to find ρ
between 1

3 and 2
3 only. On finer grids we expect to find ρ being closer to 2

3 due to the
smaller discrete surface to volume ratio; i.e., the smaller impact of the smoothing of
the delta functional.

The measured relative errors (4.7) and the respective convergence rates (4.6)
are given in Tables 4.3 and 4.4. From the displayed numbers we can observe the
anticipated convergence behavior. We find convergence rates ρ between 1

3 and 2
3

approaching 2
3 with decreasing mesh-width for the velocities with respect to the L2-

norm and the L∞-norm. Furthermore, the results obtained for the u and w velocities
are identical due to the symmetry of the problem. The relative errors and convergence
rates attained for the level set function φ correspond very well to those of the velocities.
Again we find ρ between 1

3 and 2
3 approaching 2

3 on finer grids indicating a close to
second order convergence also for the level set function. The positive effect of the
fixed point iteration on the mass conservation is clearly visible from the measured
relative errors em,hε given in Table 4.4. We obtain roughly five digits accuracy in mass
with the fixed point iteration on all grids whereas without the fixed point iteration
we find only up to three digits accuracy. The convergence behavior of the pressure p
is as expected somewhat reduced due to the fact that the pressure is discontinuous
across the interface.

4.3. Deformation of a Droplet in Shear Flow. Let us finally apply the
presented numerical scheme to compute the deformation of a small droplet submitted
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Figure 4.5. Stationary results obtained for the four parameter settings (Ca, Re) = (0.25, 1.5),
(0.2, 4), (0.15, 10), and (0.1, 20) (top left to bottom right). Depicted are the configuration of the free
surface in the stationary limit. The respective pressure fields are color coded employing the same
scaling in all plots. The stationary limits are reached at times t = 203.34, t = 538.41, t = 829.68,
and t = 1649.36 (top to bottom). The simulation domain is 2 × 1 × 2 and the droplet has a radius
of r = 0.25. The mesh-width is (2/128, 1/64, 2/128).

to a shearing flow. To this end, we consider the idealized but representative reference
problem of a circular drop with radius rD sheared by a surrounding velocity field
[4, 33, 34]. Here, the deformation behavior depends on the material properties of the
two considered fluids and the employed shear rate γ̇. For instance, we can obtain a
steady state solution with a deformed (close to) elliptical droplet geometry in the case
of sufficiently large surface tension force. On the other hand, if the surface tension
force is too small to cope with the counteracting forces imposed by the shear flow,
the droplet undergoes a change in topology and may be ruptured and breaks into
daughter droplets [34].

Let us denote the viscosity of the surrounding fluid by νM and the viscosity of
the droplet by νD. The characteristic non-dimensional parameter of such a problem
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Figure 4.6. Stationary results obtained for the four parameter settings (Ca, Re) = (0.25, 1.5),
(0.2, 4), (0.15, 10), and (0.1, 20) (top left to bottom right). Depicted are zooms of the free surface
in the surrounding flow field along the center plane (right). The respective pressure fields are color
coded employing the same scaling in all plots. The stationary limits are reached at times t = 203.34,
t = 538.41, t = 829.68, and t = 1649.36 (top to bottom). The simulation domain is 2 × 1 × 2 and
the droplet has a radius of r = 0.25. The mesh-width is (2/128, 1/64, 2/128). For the parameters
(Ca, Re) = (0.25, 1.5), (0.2, 4) (top row) the flow field inside the droplet has a single vortex, whereas
for (Ca, Re) = (0.15, 10), (0.1, 20) (bottom row) we find two vortices.

is the capillary number

Ca :=
γ̇νMrD
σ

. (4.8)

The capillary number is a measure of the shear stress relative to the surface tension.
The deformation behavior of the droplet is qualitatively determined by the capillary
number Ca and the Reynolds number Re of the flow. According to [34] there are two
flow regimes: A stationary regime (SCT) where the droplet attains its initial topology,
and an instationary regime (ITC) where the droplet undergoes topological changes
and is ruptured into daughter droplets over time, see Figure 4.4.
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Figure 4.7. Instationary results obtained for the parameter setting (Ca, Re) = (0.15, 15).
Depicted are the configuration of the free surface at the times t = 0, t = 334.8, t = 379.2, t = 396.0,
t = 397.2, t = 416.40 (upper left to lower right). The simulation domain is 3× 1× 2 and the droplet
has a radius of r = 0.25. The mesh-width is (3/192, 1/64, 2/128).

First, we consider four representative parameter settings for the SCT-regime
with Reynolds numbers just below the respective critical values, namely (Ca,Re) =
(0.25, 1.5), (0.2, 4), (0.15, 10), and (0.1, 20). Note that these parameter choices were
also considered in [33,34] using a VOF-scheme. The final stationary results obtained
for these settings are given in Figures 4.5 and 4.6. These results compare very well
with those of [33, 34]. With increasing Reynolds number we also find a loss of sym-
metry of the droplet across the mid-plane and a stronger deviation of the droplet’s
geometry from an ellipsoidal shape. Furthermore, the flow field inside the droplet de-
velops multiple vortices with increasing Reynolds numbers, e.g. we find just a single
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Figure 4.8. Instationary results obtained for the parameter setting (Ca, Re) = (0.1, 25). De-
picted are the configuration of the free surface at the times t = 0, t = 178.8, t = 238.8, t = 330.0,
t = 358.8, t = 373.2, t = 394.8, t = 418.8 (top to bottom). The simulation domain is 14× 1× 2 and
the droplet has a radius of r = 0.25. The mesh-width is (14/896, 1/64, 2/128).

vortex for (Ca,Re) = (0.25, 1.5) and (Ca,Re) = (0.2, 4) and two vortices for the cases
of (Ca,Re) = (0.15, 10) and (Ca,Re) = (0.1, 20).

Let us now consider several configurations from the instationary ITC regime.
The results obtained for the parameter (Ca,Re) = (0.15, 15) are given in Figure 4.7.
Here, the droplet is stretched from spheroidal to ellipsoidal shape, then to a dumbbell
shape before it is ruptured into two daughter droplets. These daughter droplets then
converge to a steady state with respect to topology since surface tension is large
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enough to prevent further break-up in this parameter setting.
For the parameters (Ca,Re) = (0.1, 25) we anticipate to find a rupture of the

droplet into more and smaller droplets over time since the balance of the surface
tension and shear stress is valid up to large deformation. Thus, rupture occurs after
this elongation phase for a strongly stretched dumbbell shaped droplet. Here, the
ends pinch off and two rather large satellite droplets are spawned whose deformation
behavior is similar to the initial droplet. The surrounding shear flow further elon-
gates these three droplets and leads to further rupture of each of these droplets into
smaller daughter droplets. This principal process continues until surface tension ef-
fects dominate the deformation behavior of the resulting daughter droplets; i.e., when
the surface tension is larger than the shear stress. This anticipated behavior is clearly
observable from the contour plots given in Figure 4.8.

5. Concluding remarks. In this paper we presented an incompressible Navier–
Stokes solver for two-phase flow problems with surface tension in three dimensions.
Our scheme employs a standard staggered grid finite difference discretization and a
projection method with a fifth order WENO scheme.

The free surface between the two fluid phases is tracked with a level set approach.
Here, the interface conditions are implicitly incorporated into the momentum equa-
tions by the CSF method and surface tension is evaluated using a smoothed delta
functional and an appropriate third order interpolation scheme. Altogether, our ap-
proach exhibits a second order convergence away from the interface and a first order
convergence near the interface if the smoothed delta functional is employed; i.e., in
the presence of surface tension force. The results of our numerical experiments clearly
show this anticipated convergence behavior. Furthermore, the presented results ob-
tained for the deformation of a droplet in shear flow with moderate Reynolds numbers
correspond very well to those obtained by VOF-schemes and the experimental data
of [34].
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