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Abstract

This paper is concerned with the construction of optimized grids and approximation
spaces for elliptic pseudodi�erential operators of arbitrary order� Based on the framework
of tensor�product biorthogonal wavelet bases and stable subspace splittings� we construct
operator adapted �nite element subspaces with less dimension than the standard full grid
spaces that keep the approximation order of the standard full grid spaces provided that cer�
tain additional regularity assumptions on the solution are ful�lled� Speci�cally for operators
of positive order� the dimension is O��J 	 independent of the dimension n of the problem
compared to O��Jn	 for the full grid space� Also� for operators of negative order the overall
complexity is signi�cantly in favor of the new approximation spaces� We give complexity
estimates for the case of continuous linear information� We show these results in a construc�
tive manner by proposing a �nite element method together with optimal preconditioning�
The theory covers elliptic boundary value problems as well as boundary integral equations�
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� Introduction

This paper is concerned with the construction of �nite element spaces for the approximate
solution of elliptic problems in Sobolev spaces Hs	
�� s � IR� This introductory section is
a summary of relevant background information on existing methods for the construction of
optimized grids for discretization purposes�
It is well�known that the ��complexity TWW��� We��� of solving Poissons equation in n di�
mensions and in the Sobolev space H�

� on a bounded domain is ��n� i�e�� it is exponentially
dependent on n� Hence for higher�dimensional problems a direct numerical solution on a regular
standard triangulation is prohibitive� To overcome the exponential dependence on n the idea of
reducing the dimension of the solution space considering only functions of higher regularity has
been presented in Z���� Using a hierarchical subspace decomposition based on tensor�products
of one�dimensional hierarchical bases of piecewise linear splines and the space of functions with
bounded mixed second derivative as solution space� subspaces with relatively large dimensions
that contribute only �little� to the error reduction can be identi�ed and omitted from the approx�
imation space� This idea has been well known for some time in approximation and interpolation
theory Bab��� BDJ��� Del��� Go��� Sm��� Te��� Te��� WW��� and attracted much attention
in last time Ka��� DKT��� Si��� SS���� Recently 	in connection with linear splines as basis
functions� in BG��� an approximation space for the discretization of Poissons equation with
dimension of the order O	�J� has been constructed� Here� J is the number of levels involved
in the multilevel discretization scheme� It has been shown that no loss in approximation power
occurs compared to the full grid� required the error is measured in the energy norm� i�e�� the
H��norm� If measured in the H��norm� the order of approximation deteriorates from O	���J�
for the full grid to O	���JJn����
Note that this construction of approximation spaces 	i�e�� the selection of subspaces� hinges on
the additional freedom that is provided by the tensor�product ansatz and on additional regularity
requirements� The resulting sequence of grid points and supports has also been used successfully
in connection with di�erent hierarchical basis functions� for example prewavelets and higher order
splines GO��� Bu��� BD��� Bu���� Recently� GOS��� used the sparse grid approach together
with prewavelets for the solution of boundary integral equations of order between ���� and
���� Note that the application of the sparse grid approach to boundary integral equations is
particularly tempting� as the matrix compression step� ensuring optimal work count� might be
avoided� Speci�cally the authors dealt with the single layer potential equation� They noticed�
that for operators of negative order� there appears a loss of approximation power due to the fact�
that the embedding Hs

mix � Hs of the Sobolev space Hs
mix with bounded mixed s�th derivative

in the isotropic Sobolev space Hs for positive s is reversed in the negative case�
In this paper we extend these ideas to pseudodi�erential operators of arbitrary order and to
approximation spaces spanned by biorthogonal wavelet systems� The sparse grids presented in
the literature thus far are based on Lp�norms or on the H��norm� i�e�� on the Laplace operator�
We will base the construction of approximation spaces on the Hs�norm� s � IR� and will thus
extend these ideas to the whole scale of Sobolev spaces� This enables us to de�ne optimized
approximation spaces for elliptic operators acting on arbitrary Hs spaces� In the construction
procedure of the approximation spaces there is a need for the decoupling of the subspaces arising
from the tensor�product ansatz and semicoarsing in coordinate directions� In Bu��� BG��� this
has been done by simply applying the triangle inequality� In this paper we rely directly on
norm estimates and norm equivalences that allow us to decouple the subspaces and moreover
ensure the stability of the resulting subspace splittings� Hence norm equivalences are not only
important for preconditioning� but can also be used as a source of information for discretization
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and subspace selection� This is of particular interest for operators with large ellipticity constants�
that lead to large constants in the estimates of the approximation error� Hence the constants in
the asymptotic estimates may dominate the error approximation for practical problem sizes�
In GOS��� it has been observed that adaptive sparse grid spaces lead to good approximation
rates for the single layer potential equation on a square� In O��� this phenomenon has been
studied theoretically in a simpli�ed setting via N �term best approximation� It turned out that
a selection of a N �term linear combination of tensor�product Haar basis leads to extremely good
approximation rates� The essential idea is to split the global solution u into a regular part ureg

and a singular part using � that is
u � ureg � using�

and to approximate the regular part on a rather sparse grid� The singular part has to be
treated via additional grid points where it is necessary� The idea is that a few wavelets of high
level clustered around the singularity will su�ce� while relatively sparse grids are enough to
treat the smooth parts of the solution� The singular part has to be treated either by adaptive
re�nement techniques using a�posteriori local error estimators or indicators or 	if possible� by
adapting the approximation space to the solution by using a�priori available information about
for example edge or corner singularities of the solution� Adaptive re�nement techniques using
a�posteriori local error estimators or indicators have been studied especially with respect to �nite
element discretizations of partial di�erential equations BM��� BR��� BW��� V��� and integral
equations St��� Dahl��� and have proven to be very powerful especially for problems with low
global Sobolev smoothness due to edge or corner singularities or singular perturbed operators
or not su�ciently smooth right hand sides� We refer to the recent papers Dahm��� DDD���
DeV��� where excellent results were obtained using N �term best approximation� However� these
techniques pose huge technical problems connected with mesh re�nement strategies especially
in higher dimensions� Therefore a combination of adaptivity to capture the non�smooth parts
of the solution and a relatively sparse grid for the smooth parts seems to be a very promising
approach� compare GOS��� O���� In this paper we focus on �nding approximation spaces for
problems with regular solution 	or for the smooth part of the solution� and on determining the
complexity of obtaining such a solution�
The remainder of this paper is as follows� Section � introduces some notation� collects basic
facts about biorthogonal wavelet bases and tensor�product spaces and describes the motivations
for the construction of optimized grids� Section � contains some theory about norm equivalences
in Sobolev spaces� In Section � we make use of the results of the two preceding sections� There
the optimized spaces are de�ned and estimates on the dimension of the optimized spaces and
their order of approximation are given� Section � contains remarks on the complexity of solving
elliptic equations for the case that continuous linear information is permissible� that is� sti�ness
matrix as well as load vector can be computed exactly� We show these results in a constructive
manner by proposing a �nite element method working with the optimized approximation spaces
together with a multilevel preconditioned iterative solver� Section � discusses applications to
two elliptic problems� the Poisson problem and the single layer potential equation� At the end
of the paper we indicate further modi�cations of the construction of the optimized grids and
summarize the main conclusions and open problems� Speci�cally we derive modi�cations of the
optimized spaces by incorporating additional information from the operators considered� This
leads to the de�nition of for example anisotropic sparse grids R���� Furthermore we discuss
the potential possibilities of incorporating a�priori known information about singularities of the
solution into the construction process of optimized grids�
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� Motivation and Assumptions

Let us denote byHt	Tn�� t � IR� a scale of Sobolev spaces on the n�dimensional torus� and L�	Tn�
the space of L��integrable functions on Tn� see Ad���� For ease of presentation and in order
to avoid restrictions on the smoothness exponent t we restrict ourselves to the n�dimensional
torus in the �rst parts of this paper� Applications to non�periodic problems will be discussed in
section �� We represent Tn by the n�dimensional cube

T �� �� ��� Tn � T � T � � � � � T

where opposite faces are identi�ed� When t � ��Ht	Tn� is de�ned as the dual of H�t	Tn�� i�e��

Ht	Tn� �� 	H�t	Tn���� 	��

When the meaning is clear from the context� we will write Ht instead of Ht	Tn� and we proceed
analogously for other function spaces�
Consider an elliptic variational problem� Given f � H�s � �nd u � Hs such that

a	u� v� � 	f� v� �v � Hs� 	��

where a is a symmetric positive de�nite form satisfying

a	v� v� � kvk�Hs� 	��

Here x � y means that there exist C�� C� independent of any parameters x or y may depend on�
such that

C� � y 	 x 	 C� � y�

	Clearly� the lower estimate a	u� u� 
 � � kuk�Hs in 	�� is in general not ful�lled for problems
on the torus without additional constraints ensuring uniqueness of the solution of 	��� In the
following we will assume that the solution of the variational problem 	�� is unique� Note however
that for the construction of optimized grids� we will only need the upper estimate in 	����
In the rest of the paper C denotes a generic constant which may depend on the smoothness
assumptions and on the dimension n of the problem� but does not depend on the number of levels
J � In the following multi�indices 	vectors� are written boldface� for example j for 	j�� � � � � jn��
Inequalities like l 	 t or l 	 � are to be understood componentwise�
Model examples for 	�� would be the variational form of

� the biharmonic equation 	s � ��
��u � f�

which has applications in plate bending and shell problems�

� the 	anisotropic� Helmholtz equation 	s � ��

�r �Kru� cu � f on Tn� 	��

where K	x� � I and �C � � � � 	 c	x� 	 C� modelling for example the single phase �ow
in a porous medium with permeability K� or a di�usion process in a 	possibly� anisotropic
medium characterized by the di�usion tensor K�

� the hypersingular equation 	s � �
��

�

c

Z
Tn

	

	nx

	

	ny

�
�

jx� yj

�
� g	y�dy � f	x��
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� Fredholm equations of the second kind 	s � ��

g	x��
Z
Tn

k	x� y� g	y�dy � f	x��

with given kernel function k de�ned on Tn � Tn� speci�cally the double layer potential
equation

g	x��
�

c

Z
Tn

ny � 	y � x�

jx� yj�
g	y�dy � f	x��

arising from a reformulation of Laplace�s equation via the indirect method�

� the single layer potential equation 	s � ��
��

�

c

Z
Tn

g	y�

jx� yj
dy � f	x�� 	��

The Galerkin method to solving problem 	�� numerically is to select a �nite dimensional subspace
from Hs  L� and to solve the variational problem in this subspace instead of Hs� It is well�
known that the most e�cient way of solving such problems exploits the interaction of several
scales of discretization� These multilevel schemes use a sequence of closed nested subspaces
S� � S� � � � � � Hs  L� of the basic Hilbert space Hs� whose union is dense in Hs� Fixing a
basis of SJ �nally leads to a linear system of equations

AJxJ � bJ 	��

of dimension dim	SJ�� Here AJ is called sti�ness matrix and bJ is the load vector� Storage
requirements and computation time mostly exclude the use of direct solvers� since dim	SJ� is
usually very large� Speci�cally for full grid spaces with subdivision rate two it holds dim	SJ� �
O	�J�n�� That is� the dimension of SJ grows exponentially with the dimension n�
In order to iteratively solve 	�� or 	��� respectively� the following problems and questions arise�
Accuracy requirements necessitate a �ne partitioning of Tn � i�e�� dim	SJ� is large� Is it possible
to select SJ as a subspace of the full grid space with dim	SJ� only polynomialy dependent on
the dimension n� compared to an exponential dependence on n of the dimension of the full grid
space� Such a choice of a �nite element space would require that one can identify those basis
functions that add most to an accurate representation of the solution of the variational problem�
For di�erential operators� the resulting linear systems are sparse if the basis functions have
local support� However� the discretization of integral operators results in most cases in discrete
systems that are dense� I�e�� on a regular full grid� with O	�nJ� unknowns the discrete operator
has O	��nJ� entries� This makes matrix�vector multiplications� as they are needed in iterative
methods� prohibitively expensive for large n or large d and enforces the use of bases that result
in nearly sparse matrices� e�g� biorthogonal wavelet bases with a su�cient number of vanishing
moments� Then� most entries in these matrices are close to zero and can be replaced by zero
without destroying the order of approximation 	compression� DJP��� DPS����
Let us recall the de�nition of the tensor�product of two separable Hilbert�spaces H with associ�
ated bilinear form a	�� �� and �H with bilinear form �a	�� ��� see for example Wei���� Let fejgmj���

f�eig
�m
i�� be complete orthonormal systems in H and �H� Then fej��eig is a complete orthonormal

system in
H � �H �� f

X
j�i


ij ej � �ei �
X
j�i


�ij ��g 	��

�



with scalar product

a� �a

��X
j�i


ij ej � �ei�
X
k��


�k� ek � �e�

�A �
X
j�i


ji

�
ji�

We identify the tensor�product H � �H with a function space over the corresponding product
domain via the mapping

f � �f �� f	x� �f	�x��

E�g�� a basis in H � �H is given by f�j	x� � ej�	x���ej�	x�� � � 	 j 	 	m� �m�g� These de�nitions
extend naturally to higher dimensions n � ��
The �nite element spaces considered here are tensor�products of univariate function spaces�
Starting from a one�dimensional splitting L� �

L
j�� Sj we assume that the complement spaces

Wj � Sj � Sj�� 	��

of Sj�� in Sj are spanned by some L��stable bases

Wj � spanf�jk � k � �jg� 	��

where �j is some �nite dimensional index set de�ned from the subdivision rate of successive
re�nement levels� Here we stick to dyadic re�nement� Furthermore we assume that

k
X
k��j

Ck�jkkL� � kfCkgkk����j� 	���

where as usual k
P

k��j Ck�jkkL� denotes the norm induced from the scalar product on L� and

kfCkgkk
�
����j�

�
P

k��j jCkj
��

Let there be given a biorthogonal system �f  �jk � k � �j � j � IN�g� i�e��

h�jk�  �j�k�i � jj�kk� � j� j� � IN�� k � �j � k
� � �j� � 	���

Assuming that �f�jk� k � �j � j � IN�� g forms a Riesz�basis in L�� i�e��

k
X

j�k��j

Cjk�jkkL� � kfCjkgjkk���j�IN�k��j�� 	���

every u � H has a unique expansion

u �
�X
j��

X
k��j

hu�  �jki�jk �
�X
j��

X
k��j

hu� �jki  �jk 	���

and the biorthogonal system also forms a Riesz�basis in L��
Let us recall the notion of vanishing moments� In one dimension �jk and  �jk are said to have
vanishing moments of order N�  N respectively� ifZ

IR

xr�jk	x�dx � �� r � �� � � � � N � ��
Z
IR

xr  �jk	x�dx � �� r � �� � � � �  N � �� 	���

Note that due to the biorthogonality of the basis functions 	i�e� due to 	���� the number
of vanishing moments N of the biorthogonal basis f  �jkg is exactly the order of polynomial
reproduction of the wavelet basis f�jkg and vice versa� It is well known DPS��� Sc��� that
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the number of vanishing moments governs the compression capacity of a wavelet and that the
order of polynomial reproduction governs the approximation power� Estimates of the order of
approximation are mainly based on the local L��stability 	��� and an inequality of Jackson type
which in turn depends on estimates of the coe�cients hu�  �jki� i�e� on a moment condition for
the dual wavelet� For purposes of compression� one usually assumes speci�c decay properties
of the Schwarz�kernel of the pseudodi�erential operator under consideration� Then estimates of
the size of the entries a	�jk� �lm� of the Galerkin sti�ness matrix are obtained by expansions of
the Schwarz�kernel in a polynomial basis together with the cancellation properties of the primal
wavelets �jk DPS��� DJP����
One of the merits of biorthogonal wavelets is that the number of vanishing moments can be
chosen independently of the order of polynomial exactness� We will see later on that it is the
number of vanishing moments of the dual wavelets  �jk that governs the form of the resulting
optimized grids� if we pose speci�c assumptions on the solution of the variational problem�
Let

S � ��i��Si and
 S � ��i��

 Si

with  Si �� �ij��f
 �jk� k � �jg� Moreover� we assume that the �jk and  �jk are scaled and delated

versions of single scale functions 	mother wavelets� �� and  ��� i�e�

�jk	x� � �
j
���	

x� k

��j
� and  �jk	x� � �

j
�  ��	

x� k

��j
�� 	���

We assume the following conditions to hold�

� direct estimate 	estimate of Jackson type� approximation order m�

inf
uj�Sj

ku� ujkL� 	 C��jmjujHm �u � Hm 	���

for some m � IN with � 	m�

� inverse estimate 	Bernstein inequality�

kujkHr 	 C�jrkujkL� �uj � Sj 	���

for some r � IR with r � 	�� m��

We also assume that similar relations hold for the dual system  S with parameters  m and  r�
Then the validity of the following norm equivalences can be infered from 	��� and 	���� see
Dahm��� O����

kuk�Ht �
�X
j��

kwjk
�
Ht �

�X
j��

��tjkwjk
�
L� for t � 	� r� r� 	���

where

u �
�X
j��

wj � wj � Wj � 	���

	For t � � the L��convergence in 	��� has to be replaced by distributional convergence�� Note
that 	��� with t � � together with the local stability 	��� enforces the global stability

kukL� � kfhu�  �jkigjkk���j�IN�k��j��

i�e�� 	���� The two�sided estimate 	��� allows to characterize smoothness properties of a function
from the properties of a multiscale decomposition� It is a consequence of approximation theory

�



1

2

3

1

2 3

j

j

2

1

(1,1)

(1,2)

(1,3)

(3,1)

(3,2)

(3,3)

(2,2)

(2,1)

(2,3)

1

2

3

1

2 3

j

j

2

1

(1,1)

(1,2)

(1,3)

(3,1)

(2,2)

(2,1)

Figure �� Index sets of the full grid space V ��
� 	left� and of the sparse grid space V �

� 	right�

in Sobolev spaces together with interpolation and duality arguments O��� Dahm���� Moreover�
it states that bilinear forms a	�� �� satisfying the two�sided estimate 	�� are spectrally equivalent
to the sum of the bilinear forms ��sj	�� ��L� on Wj � Wj induced from the right hand side of
	���� A similar result holds for the analogous construction using the dual wavelets instead of the
primal ones� This leads to the range t � 	�r�  r�� See Dahm��� for an overview over multiscale
methods dealing with biorthogonal wavelets�
For the higher�dimensional case n � �� let j � ZZn	� j � 	j�� � � � � jn�� be given� and consider the
tensor�product partition with uniform step size ��ji into the i�th coordinate direction� ByWj we
denote the corresponding function space of tensor�products of one dimensional function spaces�
i�e�

Wj �� Wj� � � � ��Wjn �

A basis of Wj is given by �k�Ijf�jk	x� � �j�k�	x�� � � � � � �jnkn	xn�g�
Given an index set IJ � ZZn	� J � IN� we consider the approximation spaces

VJ ��
X
j�IJ

Wj� 	���

Here� J is the maximal level in VJ � i�e� ji 	 J� i � �� � � � � n �j � IJ � Associated with rectangular
index sets I��J �� fjjj� 	 Jg are the full grid spaces

V ��
J ��

M
jjj��J

Wj� J � �� 	���

The so called sparse grid space

V �
J ��

M
jjj��J	n��

Wj� J � � 	���

is associated with the index set I�J �� fjjj� 	 J�n��g� The approximation spaces V ��
J and V �

J

will turn out to be special choices of a family of approximation spaces V T
J that are adapted to

Sobolev spaces� Speci�cally� V �
J will turn out to be the appropriate choice for H�� See Figure �

for the index sets of the full and the sparse grid spaces V ��
� and V �

� in the two�dimensional
case�
The dimensions of Wj� V

��
J and V �

J are 	note that we count only interior grid points�

jWjj � �jjj��n� 	���
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jV ��
J j � 	�J � ��n � O	�Jn� 	���

and

jV �
J j � �J

�
Jn��

	n� ��!
�O	Jn���

�
� 	���

see Bu��� BG���� e�g� The estimates of jWjj and jV ��
J j are clear� The estimate of jV �

J j is
straightforward and will follow as a byproduct of the estimate of the dimensions of the spaces
from a more general class of spaces in section ����
In this paper we introduce index sets that are optimized with respect to Sobolev norms and
spaces with bounded mixed derivatives� Note that the dimension of the sparse grid space V �

J

compares favorable with the dimension of the full grid space� especially for higher dimensions�
Statements about the usefulness of the sparse grid space for discretization purposes require es�
timates of the approximation power� It will be shown in section � that for certain classes of
smooth functions and for operators of positive order� the order of approximation of the sparse
grid space is the same as for the space V ��

J � It is even possible to use a subspace of the sparse
grid space without loosing the optimal order of approximation� Compare also Bu��� BG��� for
partial results in this direction for the case s � � and �nite element spaces of piecewise linear
splines� For operators of negative order� we will show that the interplay between the dimension
of the approximation space and the order of approximation is still in favor for the optimized
approximation spaces�

Now� we de�ne the spaces Ht�l
mix� They �x the smoothness assumptions we consider� Note that

we consider smoothness assumptions on the solution u or on the right hand side f 	that in turn
leads to smoothness assumptions on u� of the variational problem� This leads us to the de�nition
of more general spaces than the standard Sobolev spaces Ht�

De
nition� Let t � IR	
� � l � IR� t � l 
 �� � � 	�� � � � � �� and ei � 	�� � � � � �� �� �� � � � � �� the i�th

unit�vector in IRn�
Ht�l

mix	T
n� �� Ht�	le�

mix 	Tn�  � � �  Ht�	len
mix 	Tn�� 	���

where
Hk

mix	T
n� �� Hk� 	T �� � � ��Hkn 	T ��

Furthermore we write
Ht

mix	T
n� �� Ht	T �� � � ��Ht	T �� t 
 �� 	���

These are spaces of dominating mixed derivative� For t � INn the space Ht
mix possesses the

equivalent norm
kuk�Ht

mix
�

X
��k�t

ku�k�k�L� � 	���

Here� u�k� is the generalized mixed derivative �jkj�

�k� ����kn
u� For example u�t�����t� is the nt�th or�

der mixed derivative and describes the additional smoothness requirements for the space Ht
mix

compared to the larger isotropic Sobolev space Ht�
Note that the relations

Ht
mix � Ht � H

t�n
mix for t 
 �

and
H

t�n
mix � Ht � Ht

mix for t 	 �

hold� See ST��� for problems connected with these spaces and further references�
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The spaces Ht�l
mix are special cases of the spaces

H
�t������tn�
mix�� 	Tn� �� Ht�

mix	T
n�  � � �  Htn

mix	T
n�� 	���

where ti � IRn� ti 
 �� � 	 i 	 n� On the other hand the standard Sobolev spaces Ht	Tn� as
well as the spaces Ht

mix	T
n� with dominating mixed derivative are special cases of the spaces

Ht�l
mix	T

n� de�ned in 	���� We have

Ht	Tn� � H��t
mix	T

n� 	���

and
Ht

mix	T
n� � Ht��

mix	T
n�� 	���

Indeed� for t � IR	
� we have the representation

H��t
mix	T

n� � H
�t���������
mix 	Tn�  � � �H

���������t�
mix 	Tn�

� Hte�
mix	T

n� � � �Hten
mix	T

n�

� Ht	Tn� 	���

where

H
�������������������
mix 	Tn� �� L�	T �� � � �� L�	T ��Ht	T �� L�	T �� � � �� L�	T �� 	���

To prove the last equality in 	���� choose an orthogonal basis of Ht	T � and use the de�nition
of the tensor�product via orthonormal systems 	��� More precisely� using periodic continuation
to IR and the fact that for example fsin	n	�x� � ���g de�nes a complete orthonormal system
in L�	T � and Ht	T � it is clear that every u � Ht	Tn� can be represented as a Fourier sine
series and 	��� follows directly from the de�nition of the tensor product 	�� and the de�nition
of intersection of Hilbert spaces� Note that similar results hold for problems with Dirichlet or
Neumann boundary conditions and certain cases of mixed boundary conditions� See GO��� for
more details and some examples� Equation 	��� is clear from the de�nition of Ht

mix	T
n� in 	����

A norm on Ht�l
mix	T

n� can be de�ned directly via

kuk�
Ht�l
mix

�
X

��i�n

kuk�
H
t��lei
mix

�

Hence� the spaces Ht�l
mix from 	��� give a uni�ed framework for the study of the special cases

Ht � H��t
mix and Ht

mix � Ht��
mix�

� Norm equivalences

To get norm equivalences analogous to 	��� in n 
 � dimensions� we use the above representation
of Ht and Ht

mix as tensor�products of �D spaces and intersections�
We use the notation fV " ag to denote a Hilbert space V equipped with the scalar�product a	�� ���
Consider a collection of Hilbert spaces Hl� l � �� � � � � n� n � IN and a collection of closed sub�
spaces Vli � Hl such that topologically Hl �

P
i Vli� An additive subspace splitting fHl" alg �P

ifVli" blig is called stable if the norm equivalence al	u� u� � jkukj� � infui�Hli
u�
P

i
ui
	bli	ui� ui��

holds true� i�e� the characteristic numbers

�min�l � min
� 	�u�Hl

al	u� u�

jkukj�
� �max�l � max

�	�u�Hl

al	u� u�

jkukj�
� �l �

�max�l

�min�l

are �nite and positive� We cite two Propositions from GO���� 	Note that we extend them from
the two�dimensional to the n�dimensional case��

��



Proposition � If the splittings

fHl" alg �
X
i

fVli" blig� l � f�� � � � � ng� n � IN

are stable and possess the condition number �l� respectively� then the tensor�product splitting

fH� �H� � � � ��Hn" a� � � � �� ang �
X
i�

� � �
X
in

fV�i� � � � �� Vnin " b�i� � � � �� bning

is also stable and possesses the condition number
Qn

l�� �l�

See GO��� for a proof in the �D case� The extension to the n�dimensional case is straightfor�
ward� Therefore we omit it here�

Proposition � Let there be given sequences f�ligi� l � �� � � � � n� n � IN� Suppose that the split�
tings

fHl" alg �
X
i

fVi"�libg� l � �� � � � � n�

are stable and that the sums are direct� Then� for all �l � �� l � �� � � � � n� the splitting

fH�  � � �Hn"��a� � � � �� �nang �
X
i

fVi" 	����i � � � �� �n�ni�bg 	���

is stable with condition number � 	 maxf�max��������max�ng
minf�min��������min�ng

�

Proof� See GO��� for a proof in the �D case� The n�dimensional case is analogous� We give it
here for the sake of completeness�
Since the splittings are into direct sums� every u � H�  � � � Hn has a unique representation
u �

P
i ui with respect to fVig such that

���max�lal	u� u� 	
X
i

�lib	ui� ui� 	 ���min�lal	u� u�� l � �� � � � � n�

Multiplying with �l and adding these two�sided inequalities givesX
l

�l�
��
max�lal	u� u� 	

X
i

	����i � � � �� �n�ni�b	ui� ui� 	
X
l

�l�
��
min�lal	u� u��

Hence P
l �lal	u� u�

maxlf�max�lg
	
X
i

	����i � � � �� �n�ni�b	ui� ui� 	

P
l �lal	u� u�

minlf�min�lg

which shows that the splitting 	��� is stable with characteristic numbers

�min 
 ��max
l
f�max�lg� �max 	 ��min

l
f�min�lg� � �

maxlf�max�lg

minlf�min�lg
�

�

Combining the above representation 	��� of Ht	Tn�� t 
 �� with these Propositions and the
stability result 	��� in one dimension we come up with the following norm equivalence and
stable splitting of Ht	Tn��

��



Theorem � Let u � Ht	Tn�� u �
P

j wj� wj � Wj �for t � � with distributional convergence�
and let the above assumptions ���� and ��	� on the validity of a Jackson and a Bernstein
inequality for the primal as well as the dual system hold� Then

kuk�Ht �
X
j

��tjjj�kwjk
�
L� for t � 	� r� r�� 	���

where jjj� � max
��i�n

ji�

Proof� In the one�dimensional case we have from 	���

kuk�Ht�T � �
�X
j��

��tjkwjk
�
L��T �� � 	 t � r� u �

�X
j��

wj � wj � Wj � u � H
t	T �

and from 	���

kukL� � kfhu�  �jligjlk���j�IN�l�Ij�� u �
�X
j��

wj � wj � Wj � u � L
�	T ��

This shows the stability of the �D splittings

fHt	T �" k�k�Ht�T �	T �g �
X
j

fWj " �
�tjk�k�L�	T �g

and
fL�	T �" k�k�L�	T �g �

X
j

fWj " k�k
�
L�	T �g�

From Proposition � we obtain the stability of the splittings

fH
���������t���������
mix " 	�� ��L� � � � �� 	�� ��L� � a	�� ��� 	�� ��L� � � � �� 	�� ��L�g

�
P

jfWj� � � � ��Wjn " �
�tji	�� ��L� � � � �� 	�� ��L�g�

Now we represent Ht	Tn� as in 	��� and we apply Proposition �� Then� we obtain the stability
of the splitting

fHt	Tn�" k�k�Htg �
X
j

fWj " 	
nX
i��

��tji�k�k�L�g 	���

for nonnegative t � r� Because of ��tjjj� 	
Pn

i�� �
�tji 	 n��tjjj� for t 
 � we then have 	��� for

positive t� To obtain the validity of 	��� for � r � t � � note that the same reasoning as above
applied to the representation of u in the dual wavelet system shows that we have a similar result
for the spaces spanned by the dual wavelets for � 	 t �  r� By duality 	Ht�� � H�t the assertion
follows then for the range � r � t � � and hence for the whole range t � 	� r� r��
�

For the space H t
mix the following norm equivalence holds�

Theorem � Let u � Ht
mix� u �

P
j wj� wj � Wj and let the assumptions ���� and ��	� on the

validity of a Jackson and a Bernstein inequality for the primal as well as the dual system hold�
Then

kuk�Ht
mix

�
X
j

��tjjj�kwjk
�
L� for t � 	� r� r�� 	���

��



Proof� The two�sided estimate 	��� is a direct consequence of Proposition � and the de�nition
of the space Ht

mix as tensor�product of one�dimensional Hilbert spaces� Again we use the stable
�D splittings

fHt	T �" k�k�Ht�T �g �
X
j

fWj " �
�tjk�k�L�g

and
fL�	T �" k�k�L�g �

X
j

fWj " k�k
�
L�g

	which we get from 	��� and 	���� and Proposition � to obtain the stability of the splitting

fHt
mix" a	�� �� � � �� a	�� ��g

� fHt	T �� � � �� Ht	T �" a	�� ��� � � �� a	�� ��g

�
X
j

fWj� � � � ��Wjn " �
�tj�	�� ��L� � � � �� ��tjn	�� ��L�g

�
X
j

fWj� � � � ��Wjn " �
�tjjj�	�� ��L� � � � �� 	�� ��L�g�

This shows 	����
�

Note that under the assumptions of the Theorems � and � there hold similar relations for the
subspace splittings induced by the dual wavelets�

Remark � The norm equivalences in Theorems � and � are special cases of norm equivalences

for the spaces H
�t������tn�
mix�� from 	���� Again using Propositions � and � it is straightforward to

show that

kuk�
H
�t������tn�
mix��

�
X
j

�
nX
i��

��ht
i� ji

�
kwjk

�
L� for ti 
 ��� r � ti � r� 	���

Speci�cally for the spaces Ht�l
mix� t� l 
 ��� r � t � l � r� � 	 t � r� the norm equivalence 	���

reads

kuk�
H
t�l
mix

�
X
j

�
nX
i��

��tjjj�	�lji

�
kwjk

�
L� �

X
j

��tjjj�	�ljjj�kwjk
�
L� � 	���

Compared to 	���� 	���� the additional factors ��tjjj� or ��ljjj� in 	��� re�ect the di�erent smooth�
ness requirements� Note that for t � � or l � � we regain 	��� from Theorem � and 	��� from
Theorem �� respectively� Analogous relations hold for the dual spaces�

Remark � For the construction of optimized approximation spaces� we will use the upper
estimate from 	��� and the lower estimate in 	��� and 	����

Remark � One of the merits of the norm equivalences 	���� 	��� or the more general one 	���
is the fact that they lead directly to optimal preconditioning� For example� if one chooses the
scaled system f��sjlj��lk � jlj� 	 J�k � �lg as the basis in the �nite element approximation
space V ��

J � then the spectral condition numbers �	AJ � of the discretization matrices AJ �
f��sjl	l

�j�a	�lk� �l�k��gl�l��k�k� are bounded uniformly in J � i�e�

�	AJ � � O	��� 	���

see Be��� DK��� J���� This leads to fast iterative methods with convergence rates independent
of the number of unknowns of the approximation space� Note that this result can be trivially
extended to the case of discretization matrices built from arbitrary collections of scaled basis
functions�

��



� Optimized approximation spaces for Sobolev spaces

Suppose a symmetric elliptic variational problem 	�� and its variational formulation

a	uFE � v� � 	f� v� �v � VFE 	���

on a �nite element approximation space VFE � Hs are given� Then� we have due to the Hs�
ellipticity condition 	�� and Cea�s Lemmaq

a	u� uFE � u� uFE� � ku� uFEkHs � inf
v�VFE

ku� vkHs

for the error
p
a	u� uFE � u� uFE� between the solution u of the continuous problem 	�� and

the solution uFE of the approximate problem 	��� measured in the energy norm� In this section
we give bounds on the term

inf
v�VFE

ku� vkHs

for various choices of the approximation space VFE � under the constraint

u � Ht�l
mix� where �  r � s � t� l � r� � 	 t � r and t� l 
 ��

Speci�cally we are interested in the cases

u � Ht and u � Ht
mix� where �  r � s � t � r� t 
 ��

We de�ne grids and associated approximation spaces that are adapted to the parameter s and
to the constraint on the smoothness of the solution and give estimates on their dimension and
the order of approximation� The de�nition of the grids is motivated by the results of section ��
speci�cally on the norm equivalence 	��� and the special cases 	��� and 	���� We are particularly
interested in constructing approximation spaces that break the curse of dimensionality� that is
whose dimension is at most polynomially dependent on n�

��� Approximation spaces for problems with constraint on the solution

We �rst deal with the cases u � Ht and u � Ht
mix� More general cases will be discussed at the

end of section ������ see Theorem �� In this section let u �
P

j wj� where wj � Wj� Furthermore
let � r � s � t � r� Then Ht � Hs� For notational convenience we restrict ourselves to the case
t � �� Note that the case t � � could be covered with analogous reasoning�

����� Estimates on the order of approximation for the spaces V ��
J and V �

J

First of all we consider the order of approximation for the full grid case� Let u � Hs� Applying
the norm equivalence 	��� gives us

inf
v�V��J

ku� vk�Hs 	 ku�
X

jjj��J

wjk
�
Hs

����
�

X
jjj�	J

��sjjj�kwjk
�
L�

�
X

jjj�	J

���s�t�jjj���tjjj�kwjk
�
L�

	 max
jjj�	J

���s�t�jjj�
X

jjj�	J

��tjjj�kwjk
�
L� � 	���

��



To continue� we assume additional smoothness of the solution� i�e� u � Ht� Then we can apply
	��� once more� now with u � Ht� This yields

max
jjj�	J

���s�t�jjj�
X

jjj�	J

��tjjj�kwjk
�
L�

����
	 C � max

jjj�	J
���s�t�jjj�kuk�Ht 	 C � ���s�t��J	��kuk�Ht �

Altogether we have the standard error estimate

inf
v�V��J

ku� vk�Hs 	 C � ���s�t��J	��kuk�Ht for u � Ht and �  r � s � t � r� 	���

From the exponent on the right hand side we get O		s� t�J� as order of approximation� It is
easy to see that the order of approximation does not change when u � Ht

mix � Ht� i�e�

inf
v�V��

J

ku� vk�Hs 	 C � ���s�t��J	��kuk�Ht
mix

for �  r � s � t � r�

	For t � � we would have to assume u � Ht
mix  H

s here�� Note that we are implicitly using
several times the vanishing moment condition of the dual wavelets� which is implicitly contained
in the Jackson inequality 	����
Changing from the full grid space V ��

J to the approximation space V �
J changes the situation

signi�cantly� Applying again the norm equivalence 	��� gives for u � Hs

inf
v�V �

J

ku� vk�Hs 	 ku�
X

jjj��J	n��

wjk
�
Hs

����
�

X
jjj�	J	n��

��sjjj�kwjk
�
L�

�
X

jjj�	J	n��

���s�t�jjj���tjjj�kwjk
�
L� 	 max

jjj�	J	n��
���s�t�jjj�

X
jjj�	n	J��

��tjjj�kwjk
�
L� �

Now we again require u to be of higher regularity� i�e� u � Ht� This yields

max
jjj�	J	n��

���s�t�jjj�
X

jjj�	n	J��

��tjjj�kwjk
�
L�

����
	 C � max

jjj�	J	n��
���s�t�jjj�kuk�Ht 	 C � ���s�t����

�
n
����s�t�

J
n kuk�Ht

where we used in the last but one step that the maximum is obtained for jjj� � dJ	n��n e�
Altogether we have

inf
v�V �

J

ku� vk�Hs 	 C � ���s�t����
�
n
����s�t�

J
n kuk�Ht for u � Ht and �  r � s � t � r� 	���

Compared to the result for the full grid approximation space� the order of approximation dete�
riorates from O		s� t�J� to O		s� t�J�n��
However� for the smaller space Ht

mix � Ht and operators of positive order� i�e�� s 
 �� no loss
in the order of approximation occurs� if the full grid space is replaced by the space V �

J � This is
due to the fact that we can apply norm equivalence 	��� instead of 	��� 	remember the di�erent
exponents of the forefactors in 	��� and 	����� We apply 	��� for functions from Hs and 	���
for u � Ht

mix and get

inf
v�V �

J

ku� vk�Hs 	 ku�
X

jjj��J	n��

wjk
�
Hs

����
�

X
jjj�	J	n��

��sjjj�kwjk
�
L�

��



�
X

jjj�	J	n��

��sjjj���tjjj���tjjj�kwjk
�
L�

	 max
jjj�	J	n��

��sjjj���tjjj�
X

jjj�	n	J��

��tjjj�kwjk
�
L�

����
	 C � max

jjj�	J	n��
��sjjj���tjjj�kuk�Ht

mix
	���

	 C � ���tn��s���s�t�Jkuk�Ht
mix

for u � Ht
mix� 	���

where we used in the last step that ��sjjj���tjjj� takes its maximum in 	J��� �� � � � � ��� Altogether
we have

inf
v�V �

J

ku� vk�Hs 	 C � ���tn��s���s�t�Jkuk�Ht
mix

for u � Ht
mix and �  r � s � t � r� t � ��

That is there appears no loss in the order of approximation compared to the result for the full
grid approximation space�
For operators of negative order� i�e� s � �� the situation is di�erent� Here� compared to the
estimate 	��� for u � Ht� the order of approximation improves when changing to the space
Ht

mix� but in contrast to the case s 
 �� the optimal order of convergence cannot be retained�
Applying 	��� for functions from Hs and 	��� we have for u � Ht

mix

inf
v�V �

J

ku� vk�Hs 	 ku�
X

jjj�	J	n��

wjk
�
Hs

����
�

X
jjj�	J	n��

��sjjj�kwjk
�
L�

�
X

jjj�	J	n��

��sjjj���tjjj���tjjj�kwjk
�
L� 	 max

jjj�	J	n��
��sjjj���tjjj�

X
jjj�	n	J��

��tjjj�kwjk
�
L�

����
	 C � max

jjj�	J	n��
��sjjj���tjjj�kuk�Ht

mix
	 C � ��s���

�
n
����tn���s�n�t�Jkuk�Ht

mix
� 	���

where we used in the last step that ��sjjj���tjjj� takes its maximum for jjj� � dJ	n��n e and
jjj� � J �n for s � �� That is� although the order of approximation is improved when changing
from Ht to Ht

mix there still appears a loss in the order of approximation of s	�� ��n� compared
to the full grid� This fact has been described already in GOS��� for the case �� 	 s � � and
prewavelets 	i�e�� wavelets that are L��orthogonal between di�erent subspaces Wj and build a
Riesz basis in the subspaces Wj�� where this behavior is explained in more detail� In summary
we have that for operators with s 
 � the order of approximation is kept for u � Ht

mix� s � t�
when changing from the approximation space V ��

J to the sparse grid space V �
J � For operators

of negative order a deterioration of the order of approximation appears�

����� De
nition and order of approximation of the approximation spaces V T
J

In the following we construct approximation spaces for functions from Ht�l
mix�� r � s � t � l �

r� t� l 
 �� and operators of positive or negative order by carefully selecting subspaces of the
full grid space� They are chosen in such a way that the order of approximation of the full grid
space is kept� The sparse grid space V �

J and the full grid space V ��
J are special cases� We start

with the space Ht
mix � Ht��

mix� Inequality

max
j	�I�J

��sjjj���tjjj�kuk�Ht
mix

	 C � ���s�t�Jkuk�Ht
mix

for u � Ht
mix� � 	 s � t�

��



from 	��� reveals that for s 
 � one could discard indices from the index set I�J without destroying
the optimal order of approximation� Consider an index set IJ � I�J such that

max
j	�IJ

��sjjj���tjjj� 	 C � ���s�t�J 	���

where C �� C	s� t� J�� Then the order of approximation is kept for the approximation space
de�ned from the index set IJ � Taking logarithms on both sides of 	��� and dividing by �t
	remember that we have t � �� shows that 	��� is equivalent to

j � IJ � �jjj� �
s

t
jjj� 
 �J �

s

t
J � c� 	���

where c �� c	j� J� is essentially the logarithm of the constant C on the right hand side of the
asymptotic estimate 	���� For operators of negative order we deduce from 	��� that we have to
add indices to the index set I�J to keep the optimal order of approximation� Again� the order is
kept if IJ is such that 	��� and hence 	��� holds�
Therefore we de�ne the optimized grid as the minimal index set for which 	��� holds� Fixing
	J� �� � � � � �� to be the index with maximal j�j��norm to be included into the index sets leads to
c � n� � and the index sets

I
s
t
J �� fj � �jjj� �

s

t
jjj� 
 �	n� J � �� �

s

t
Jg�

They are dependent on the parameter J and on the quotient s�t�
In order to give the results more �exibility we parametrize the index sets with a new parameter
T and get �nally

ITJ �� fj � �jjj� � T jjj� 
 �	n � J � �� � TJg 	���

with the related approximation spaces

V T
J ��

M
j�ITJ

Wj 	���

�
M

�jjj�	T jjj����n	J���	TJ

Wj�

The new parameter T allows us to decouple the de�nition of the index sets and the resulting grids
from the smoothness parameters s and t and to investigate more closely into the relation between
smoothness assumptions� the choice of approximation space and the order of approximation� In
the following we will consider terms like

inf
v�V T

J

ku� vk�Hs �

now for varying T � where we assume again that u � Ht or u � Ht
mix� De�nition 	��� ensures

that the optimal order of approximation is kept for T 	 s
t and functions from Ht

mix 	compare
	��� and 	����� For T � s

t the order of approximation deteriorates� We discuss this point in
more detail below�
Note that for T � � we have V T

J � V �
J and for T � �� we have V T

J � V ��
J � i�e� the full grid

space� Furthermore we have the natural restriction to T 	 �� Obviously the inclusions

V �
J � V T�

J � V T�
J � V �

J � V T�
J � V T�

J � V ��
J for T 	 T� 	 � 	 T� 	 T� 	 � 	���

hold� Schematically the behavior of the index sets ITJ is depicted in Figure � with varying T for
the two�dimensional case� Figures ��� show some examples for the two�dimensional case�

��
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Figure �� Index sets ITJ for T � �� T � � and T � �
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We now discuss the dependence of the order of approximation of the approximation space V T
J on

the parameter T in more detail� Let us �rst consider the case u � Ht� Remember that Ht � Hs�
Then we have 	similar to 	����

inf
v�V T

J

ku� vk�Hs 	 ku�
X
j�ITJ

wjk
�
Hs

����
	 C �max

j 	�IT
J

���s�t�jjj�kuk�Ht

����
� C � max

T jjj��jjj�
TJ��n	J���
���s�t�jjj�kuk�Ht

� C � ���s�t�
���T �J�n��

n�T kuk�Ht � C � �
��s�t�J

n
��T

��T�n kuk�Ht � 	���

In the last but one step we used that maxT jjj��jjj�
TJ��n	J��� �
��s�t�jjj� takes its maximum at

jjj� � d ���T �J�n	�n�T e� Compared to the result 	��� for the space V �
J � the order of approximation

deteriorates in case T � �� when changing from the space V �
J to the space V T

J � now by the factor
��T

��T�n � For T � � the order of approximation is improved by the factor ��T
��T�n � Compared to the

full grid V ��
J equation 	��� indicates a loss in the order of approximation by the factor ��T

n�T �
Note that for T � � we regain estimate 	����
For u � Ht

mix we have 	compare 	��� and remember that Ht
mix � Hs�

inf
v�V T

J

ku� vk�Hs 	 ku�
X
j�ITJ

wjk
�
Hs

���������
	 C �max

j	�ITJ

��sjjj���tjjj�kuk�Ht
mix

� C � max
T jjj��jjj�
TJ��n	J���

��sjjj���tjjj�kuk�Ht
mix

� 	���

It is straightforward to show that for T 
 s
t the maximum is obtained for jjj� � d ���T �J�n	�n�T e�

and for T 	 s
t the maximum is obtained in j � 	J � �� �� � � � � ��� We continue 	��� and have

inf
v�V T

J

ku� vk�Hs

	

	
� C � ���s�nt�
���T �J�n��

n�T kuk�Ht
mix

� C � ��	s�t	�Tt�s�
n��
n�T �Jkuk�Ht

mix
for T 
 s

t

C � ���t�n������s�t�Jkuk�
Ht
mix

� C � ���s�t�Jkuk�
Ht
mix

for T 	 s
t �

	���

Note that for T � s
t both estimates give the same result�

The estimates from 	��� show once more that for u � Ht
mix there appears no loss of asymptotic

approximation power if the full grid is replaced by an optimized grid induced by the index set
ITJ with T 	 s

t � Note that ITJ is of lower dimension than the index set I��J of the full grid�
However� a further reduction of the number of grid points by using an index set ITJ with T � s

t
results in a deterioration of the order of approximation� In this case the order of approximation
is reduced by 	Tt� s� n��n�T �

Note that smoothness assumptions on the right hand side f in the variational problem 	�� imply
smoothness properties of the solution� Consider for example the case of a di�erential operator�
Then for example f � Ht

mix implies u � Ht�s
mix� Therefore we now deal also with the more general

case u � Ht�l
mix� t� l 
 ��� r � s � t� l � r� More general choices of smoothness conditions can

be handled in the same spirit required that norm equivalences for these spaces and associated
bilinear forms are known� We summarize the discussion in a Theorem�

��



Theorem � Let � r � s � t � l � r� t� l 
 � and � 	 t � r� Then for u � Ht�l
mix it holds

inf
v�V T

J

ku� vk�Hs 	

	
� C � ��	s�l�t	�Tt�s	l�
n��
n�T �Jkuk�

Ht�l
mix

for T 
 s�l
t

C � ���s�l�t�Jkuk�
H
t�l
mix

for T 	 s�l
t �

	���

Speci
cally for u � Ht � H��t
mix it holds

inf
v�V T

J

ku� vk�Hs 	 C � ���s�t�
��T
n�T Jkuk�Ht 	���

and for u � Ht
mix � Ht��

mix it holds

inf
v�V T

J

ku� vk�Hs 	

	
� C � ��	s�t	�Tt�s�
n��
n�T �Jkuk�Ht

mix
for T 
 s

t

C � ���s�t�Jkuk�Ht
mix

for T 	 s
t �

	���

Proof� Let u � Ht�l
mix� To proof 	��� we use the upper estimate from the norm equivalence 	���

and the lower estimate from 	���� Then

inf
v�V T

J

ku� vk�Hs 	 ku�
X
j�ITJ

wjk
�
Hs

����
�

X
j	�ITJ

��sjjj�kwjk
�
L�

	 max
j 	�ITJ

���s�l�jjj���tjjj� �
X
j	�ITJ

��ljjj�	�tjjj�kwjk
�
L�

����
	 C �max

j	�ITJ

���s�l�jjj���tjjj�kuk�
Ht�l
mix

�

Evaluating the maximum with respect to ITJ shows 	���� The inequalities 	��� and 	��� are
special cases of the inequality 	���� with t � � and l � �� respectively� See also inequalities 	���
and 	��� together with the above discussion�
�

Theorem � shows that the optimal order of approximation of a function in Ht�l
mix is kept when

changing from the full grid approximation space V ��
J to an approximation space V T

J with
T 	 	s� l��t� The use of approximation spaces V T

J with T � 	s� l��t leads to a deterioration of
the optimal order of convergence� Hence� for purposes of discretization of large scale problems

with solution in the space Ht�l
mix� the spaces V

�s�l��t
J with T 	 	s � l��t are well suited� From

the nestedness of the spaces V T
J we conclude that the choice T � 	s � l��t will lead to most

economical algorithms� This holds true especially in higher dimensions where the bene�ts of the
spaces V T

J with T large become most obvious� as we will see in section ���� There we deal with
the dimension of the approximation spaces V T

J and compare it with the dimension of the full
grid space V ��

J �

��� Dimension of the approximation spaces V T
J

The following Lemma discusses the dimension of the spaces V T
J � We split the basis functions

into two sets� One with those functions that correspond to the interior of the unit cube and the
other with those functions that correspond to the boundary� For ease of exposition we restrict
ourselves to homogeneous Dirichlet boundary conditions in this section� that is� we count only

��



those basis functions#indices that correspond to the interior of the unit cube� Hence the index j
with minimal j�j� and j�j��norm in an index set ITJ is j � 	�� � � � � ��� Note that other boundary
conditions could be dealt with analogous reasoning� But we would have to count also indices j
with ji � � for some � 	 i 	 n�

Lemma � It holds

dim
�
V T
J


	

	��������
���������

n � �J for T � ��

n
�

�
�

���
� �
��T��

�n

� �J � �	�J� for � � T � ��

O	�
T��

T�n�� J � for T � ��

	���

The case T � � is covered by the estimate

dim
�
V T
J


	

�
Jn��

	n� ��!
� O	Jn���

�
� �J � O	�JJn��� for � 	 T 	 ��J� 	���

Proof�

The case T 
 �
Let jjj� � n�J � �� i and � � T 	 �� Then Wj � V T

J � �jjj��T jjj� 
 �	n�J � ���TJ �

jjj� 
 J � �
T i� Since

P
jjj��n	J���i

� �
�jjj���
n��

�
and

X
jjj�	n�J���i�
jjj�	���J�i�T

� 	

�
djjj� � 	J � i�T �e

n� �

�
�

�
dn � � � 	��T � ��ie

n� �

�
	���

the number of subspacesWj with jjj� � n�J���i belonging to V T
J is bounded by n

�dn��	� �
T
���ie

n��

�
�

Hence� with the de�nition of V T
J �

jV T
J j �

J��X
i��

X
jjj�	n�J���i�
jjj�	���J�i�T

jWj j

	
J��X
i��

�J���in

�
dn � � � 	��T � ��ie

n � �

�

� �J��n
J��X
i��

��i
�
dn� � � 	��T � ��ie

n� �

�
� 	���

In the case T � � � � we get jV T
J j 	 �J��n

PJ��
i�� ��i 	 �Jn� hence 	���� For T � � the

substitution i� i
��T�� leads to

jV T
J j 	 �J��n

d���T����J���eX
i��

�
� i
��T��

�
n� � � i

i

�
�

Since 	xn��	i��n��� � �n��	i��
i� xi �x � IR� we get

jV T
J j 	 �J��n

�

	n� ��!

d���T����J���eX
i��

	xn��	i��n���
����
x��

� �
��T��

��



� �J��n
�

	n� ��!

��xn�� d���T����J���eX
i��

xi

�A�n��� ����
x��

� �
��T��

� �J��n
�

	n� ��!

�
xn��

�� xd���T����J���e	�

�� x

��n��� ����
x��

� �
��T��

� �J��n
�

	n� ��!

��� xn��

�� x

��n���

�

�
xd���T����J���e	n

�� x

��n���
�� ����

x��
� �
��T��

� 	���

Since

�

	n� ��!

�
xk

�

�� x

��n���
�

�

	n� ��!

n��X
i��

�
n� �

i

�
	xk��i�

�
�

�� x

��n�i���

�
�

	n� ��!

n��X
i��

�
n� �

i

�
k!

	k � i�!
xk�i	n� �� i�!

�
�

�� x

�n�i

� xk�n
n��X
i��

�
k

i

��
x

�� x

�n�i
	���

we get

jV T
J j 	 �J��n

��
�

�� x

�n
� xd���T����J���e	�

�
n��X
i��

�
d	��T � ��	J � ��e� n

i

��
x

�� x

�n�i� ����
x��

� �
��T��

	 �J��n

�
�

�� �
� �
��T��

�n
�

Hence we obtain 	����

To proof 	��� let again jjj� � n � J � � � i and T 	 ��J � Then Wj � V T
J � �jjj� � T jjj� 


�	n � J � �� � TJ � jjj� 
 �� I�e�� every Wj with jjj� 	 n� J � �� i� is in V T
J � Hence

jV T
J j �

X
jjj��n	J��

jWj j �
J��X
i��

�J���i
X

jjj��n	J���i

�

�
J��X
i��

�J���i
�
n� � � J � �� i

n� �

�
�

J��X
i��

�i
�
n � � � i

n� �

�
�

This results in 	see BG���� proof of Lemma � for details�

jV T
J j � 	���n � �J

n��X
i��

�
n � J � �

i

�
	���n���i

�

�
Jn��

	n� ��!
� O	Jn���

�
� �J �

This completes the proof for the case T 
 ��

��



The case T � �
Now we deal with the approximation spaces V T

J � T � �� We introduce an auxiliary index set ITbJ
with ITbJ � I�J given by

ITbJ � fj � �jjj� � T jjj� 
 �	n � J � �� � TJ�ng 	���

and the related approximation spaces

V TbJ ��
M
j�ITbJ

Wj� 	���

Note that ITbJ is just a shifted version of ITJ � See Figure � for a schematical comparison of the

index sets ITJ and ITbJ in the �D case�

Figure �� Schematical representation of ITJ 	left� and ITbJ 	right� for T � �� �D case

Obviously dim	ITbJ � � O	�J�� Equation 	��� shows that the order of approximation of the

approximation space V TbJ � T 	 s
t � for functions from Ht

mix is the same as for the space V �
J � i�e�

O	��s�n�t�J�� On the other hand we have from inequality 	��� that the order of approximation

of the space V
s�tbJ is O	��s�t�bJ�� This shows that O	��s�n�t�J� � O	��s�t�bJ� must hold� Hence we

have that J � s�t
s�n�t

bJ � C and therefore dim	V
s�tbJ � � O	�

s�t
s�n�t

bJ
� and dim	V

s�t
J � � O	�

s�t
s�n�tJ��

This completes the proof�
�

Note that the coe�cient in the asymptotic estimate of the �rst inequality in 	��� is unbounded
for T � � whereas the coe�cient in the estimate 	��� remains bounded� Asymptotically� for
T � �� the estimate 	��� is sharper than 	���� However� for computationally relevant sizes of
J � 	��� might be sharper than 	��� for T near �� Similar results have been obtained recently in
BG��� for s � �� t � � and approximation spaces spanned by piecewise linear functions�
The estimates 	����	��� should be compared to the results for the full grid spaces V ��

J with
dimension dim	V��

J � � 	�J � ��n� The �rst two estimates in 	��� show that for T � � the
dependence of the dimension of the approximation space on the dimensionality n of the problem
has been reduced from �nJ to nCn � �J � with some constant C independent of n and J � Note
that C is explicitly given by Lemma � for this case� For the case T � � we have again that using
the above spaces as �nite element spaces in the Galerkin method leads to a signi�cant reduction
of the numbers of unknowns� and hence the number of entries in the sti�ness matrices� Note
that dim	V T

J � �� dim	V ��
J � for large n or large T � Here we did not compute the forefactors

explicitly� as the asymptotic estimate depends itself on the dimension n�
Using the above spaces as �nite element spaces in the Galerkin method leads to a signi�cant
reduction of the numbers of unknowns and hence the number of entries in the sti�ness matrices�

��



Table �� Number of interior grid points for various approximation spaces V T
J in n � �� � and �

dimensions

n � � n � � n � �

J � �� J � �� J � �� J � �� J � �� J � ��

V ��
J ������ � ��� ������ � ���� ������ � ��� ������ � ���� ����� � ���� ������ � ���

V ��
J ������ � �� ������ � ��� ����� � ��� ������ � ���� ������ � ��� ������ � ����

V
����
J ������ � �� ������ � ��� ������ � ��� ������ � ��� ������� � ��� ������ � ����

V �
J ����� � ��� ������ � ��� ���� � �� ������ � ��� ������ � ��� ������ � ���

V
��
J ����� � ��� ������ � ��� ������ � �� ������ � ��� ������ � �� ������ � ���

V
���
J ����� � ��� ����� � ��� ����� � ��� ������ � ��� ������ � �� ������ � ���

Table � gives the dimension of the approximation spaces V T
J for various T � levels J and dimen�

sions n� Clearly� for higher values of n or J the full grid approximation space V ��
J becomes

impractical and the bene�t of approximation spaces V T
J with T around � can be seen� Figure �

shows a graph of dim	V T
J ��dim	V �

J � for T � f����������� �� ����g against the number of lev�
els J � Note that the dimension of V T

J is scaled with the dimension of the space V �
J � For higher

values of J the merits of using the approximation spaces V T
J with large T become obvious� Fig�

ure � shows a graph of the dimension of the approximation spaces V T
� � T � f�������� �� ����g

against the dimension n� Again� for higher values of n� the merits of the approximation spaces
V T
J with large T become obvious�

In summary� Theorem � and Lemma � show that for approximation problems with u � H
t�l
mix� t�

l 
 ��� r � s � t � l � r� the use of the approximation spaces V T
J with T 	 	s � l��t leads to

a signi�cant reduction of the number of degrees of freedom compared to the full grid� while the
order of approximation remains the same as for the full grid� This will become even more clear
in section � where we consider the overall complexity of solving the operator equations up to a
prescribed tolerance�

��� Optimization procedures and subspace selection

In this section we present another way of obtaining the approximation spaces V T
J � The idea is

to explicitly use an optimization procedure to select subspaces� We describe this brie�y in the
following� See BG��� for a longer discussion in the case of s � � and basis functions of piecewise
linear splines�
As we already noticed several times we have from the norm equivalence 	��� and the ellipticity
condition 	�� together with the local stability 	��� the two�sided estimates

a	u� u�
���
� kuk�Hs

����
�
X
j

��sjjj�kwjk
�
L�

����
�
X
j

��sjjj�

��X
m��j

hu�  �jmi
�

�A for s � 	� r� r�� 	���

Following 	���� the contribution of the subspace Wj to a	u� u� is bounded by Workj �C� where

Workj �� ��sjjj�kwjk
�
L� � ��sjjj�

X
m��j

hu�  �jmi
�� 	���

��
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Together with an upper estimate of kwjk
�
L� or of the coe�cients hu�  �jmi� the resulting upper

estimate of Workj can be considered a measure of the pro�t gained in approximation power
when Wj is included into the approximation space� Note that such an estimate of kwjk

�
L�

or

an upper estimate of hu�  �jmi by kuk
�
Ht�l
mix

can be obtained easily for elements of the considered

smoothness classes by exploiting the vanishing moment condition on the dual wavelets  �jm
	compare the Jackson inequality�� Implicitly we used this several times in the last sections�
On the other hand the inclusion of Wj into the approximation space causes some cost in the
discretization and hence in the solution procedure� The easiest measure for this cost is the
dimension of the subspace jWjj� The task is now to �nd a grid 	i�e� to select subspaces Wj�
such that a given error bound gets minimal for some �xed cost� that is� the dimension of
the approximation space is bounded by some given value b� This problem of deciding which
subspaces should be included into the approximation space� given some prescribed overall cost
can be reformulated as a classical binary knapsack problem� Restricting the range of possible
subspaces Wj to jjj� 	 J for some integer J � and arranging the possible indices j in some linear
order� the optimization problem reads as follows�

Find a binary vector y � f�� �gn
J such thatX
jjj��J

Workj � yj constrained to
X

jjj��J

jWjj � yj 	 b 	���

is maximal�

Here the binary array y indicates which subspaces are to be included into the approximation
space� See Figure �� for an example of the binary array y in the case J � � and two dimensions�
Unfortunately such a binary knapsack problem is NP�hard� However� the situation changes�
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Figure ��� Example for J � �� Depending on the
pro�t#cost quotients di�erent spaces Wj are selected
from the possible spaces allowed by the constraint
jjj� 	 �� On the left hand side the spaces with
index j � f	�� ��� 	�� ��� 	�� ��� 	�� ��� 	�� ��� 	�� ��g and
on the right hand side the spaces with index j �
f	�� ��� 	�� ��� 	�� ��� 	�� ��� 	�� ��g are selected�

when we allow the array y to be a rational array in 	�� ��  Q�n
J � Then we know that the
solution can be obtained by the following algorithm MT����

�� Arrange the possible indices in some linear order such that fWorkj�jWjjgj is decreasing
in size� that is

Worki�
jWi� j



Worki�
jWi� j


 � � � �

�� Let M �� maxfi �
Pi

k�� jWjk j 	 bg�

�� The solution of the rational knapsack problem is given by

y� � � � � � yM � �"

yM	� �
b�

PM
i�� jWji j

jWjM�� j
"

yM	� � yM	� � � � � � �"

Hence� yM	� may be rational in �� ��� Therefore the solution of the rational knapsack problem
is in general no solution of the binary knapsack problem� However� we still have the freedom
of slightly changing the size of the cost b� We can do this in such a way that yM	� is in
f�� �g� Then� y is also a solution of the corresponding binary knapsack problem� We refer
to BG��� Bu��� for more details and for a continuous analog of this discrete optimization
procedure� The optimization process can thus be reduced to the discussion of the pro�t#cost
quotients of the subspaces 	or upper bounds of these�


j ��
Workj
jWjj

� 	���

That is� for an optimal grid in this sense one has to include those Wj into the approximation
space that have 
j bigger than some threshold� See Figure �� for an example� Note that the
optimization has to be performed with the use of upper bounds for Workj and not with the
exact 	but unknown� values� Hence� the optimization procedure is optimal only in this sense�
Combining 	���� 	��� and using the moment condition on the dual wavelets together with the
smoothness assumptions on the solution� we end up with the same grids V T

J as in section ������

��



� Complexity estimates

In this section we deal with the complexity of solving the elliptic variational problem 	�� up
to some prescribed error when using the approximation spaces V T

J and preconditioners arising
from the norm equivalences from section �� compare Remark �� We consider the worst case
setting� that is the error of an approximation uFE from a �nite element approximation space
VFE compared to the exact solution u is measured in the Hs�norm� The cost of computing
an approximation to the solution of the variational problem 	�� can be divided into two parts�
namely the cost to obtain the discrete system 	�� and the cost to compute an approximate
solution to this discrete system� The price for these two parts is often called informational and
combinatory cost� respectively�
Note that due to the larger supports of the wavelets from coarser scales� the resulting sti�ness
matrices AJ are rather densely populated� Here we have to distinguish two cases� namely
integral and di�erential operators� In the case of integral operators AJ is dense and thus has
O	dim	VFE�

�� entries� In the case of di�erential operatorsAJ has O 	dim	VFE� ln 	dim	VFE��
n�

entries and is therefore much sparser than in the case of integral operators�
Lets take a closer look at the case of integral operators �rst� There are techniques to estimate the
size of the entries in the sti�ness matrix a�priori and to avoid the computation of entries below a
prescribed threshold DPS��� Sc��� GKS���� Speci�cally� the authors showed in GKS��� that it
is worth�wile to use compression also for optimized spaces� that is on top of dimension reduction�
See GOS��� for �rst numerical experiments regarding compression with respect to the single
layer potential equation and approximation spaces built with the index sets I�J � Here we refrain
from incorporating the e�ect of additional compression on the overall complexity as not to
mix the e�ects of the use of the approximation spaces V T

J and of compression� Note moreover
that additional compression provides us with purely asymptotic estimates only� whereas the
choice of optimized approximation spaces pays already for computationally relevant problem
sizes especially in higher dimensions�
For di�erential operators it is important to note that one need not assemble the sti�ness matrix�
because all that is required in an iterative scheme is the application of the preconditioned sti�ness
matrix to a vector� Exploiting the pyramid structure of the multiscale transformations and the
tensor�product structure of our wavelet basis functions the matrix�vector product can then be
performed with O	dim	VFE�� operations for example for di�erential operators with constant
or separable coe�cients� especially for the Laplace operator� The same holds true in the case
of general coe�cient functions on uniform grids� i�e� for the approximation space V ��

J � Note
however that the implementation of the matrix�vector product with linear complexity is a very
involved and delicate task� In the case of adaptively re�ned grids or di�erential equations with
more general coe�cient functions and approximation spaces V T

J �� V ��
J it is unclear whether

the matrix�vector product can be carried out with a number of operations that scales linearly
with the number of unknowns� In the following we assume that the matrix�vector product can
be performed with O	dim	VFE�� operations� For all other cases we get additional logarithmic
terms in the overall complexity�
In order to be able to make precise statements about the complexity of the algorithms we
propose� we have to describe our framework more carefully� We have to specify

� the information on the right hand side f and the bilinear form a	�� �� that is allowed� and

� the model of computation�

Concerning the model of computation we assume for simplicity that comparison of real numbers
as well as standard arithmetic operations� such as addition and scalar multiplication and division�

��



are performed with unit cost�
Concerning the permissible information there are two approaches used in the theory of infor�
mation based complexity� namely linear and standard information TWW��� We���� Assuming
continuous linear information means that any continuous linear functional is permissible infor�
mation� In contrast� standard information of cardinality R means that the only information
available consists of the result of R distinct samples� As an example the information about f
would be f	x��� f	x��� � � � � f	xR� at R di�erent points xi � �� ��n� Clearly standard information
makes sense only for 	at least� continuous functions f �
In the following we assume that arbitrary continuous linear information is permissible� i�e� we
assume that the sti�ness matrix as well as the load vector have been computed exactly 	or at
least with su�cient accuracy��
Once the sti�ness matrix and the load vector have been computed� we are left with the issue
of proposing an algorithm for the approximate solution of the discrete problem� We discuss
an algorithm whose complexity is O	dim	VFE�� for di�erential and O	dim	VFE�

�� for integral
operators�
Concerning the computational cost we mentioned already in Remark � that a simple diagonal
scaling of the sti�ness matrix is enough to obtain optimal preconditioning� if the related norm
equivalences hold� This allows to construct solvers with a complexity of the number of entries
in the sti�ness matrix� To be a bit more precise� let us estimate the cost to solve 	��� up to
discretization error �� which is of order O	��cJ �� with some c � � depending on the order of
approximation of the wavelet basis� From 	��� in section � we have that the preconditioned 	di�
agonally scaled� Galerkin sti�ness matrix f��sjl	l

�j�a	�lk� �l�k��gl�l��k�k� has a condition number
which is bounded independent of the number of levels involved� Hence� the convergence rate �
of gradient methods is independent of the dimension of the �nite element approximation space
VFE if the sti�ness matrix is symmetric� Applied to the preconditioned system� the initial error
is reduced at least by the factor � in every iteration step and the number of iterations necessary
to obtain an approximation within the prescribed accuracy is then j log�	��j � cJ � Hence� the
overall ��complexity of computing a solution of the variational problem 	�� within discretiza�
tion accuracy � is O	J � dim	VFE�

�� if the sti�ness matrix is dense and O	J � dim	VFE�� if the
matrix�vector product can be performed with O	dim	VFE�� operations� Note that it is possible
to get rid of the J�term in the complexity estimate by embedding the solver in a nested iteration
scheme KD���� The idea is to compute a suitable start value by �rst applying some iteration
steps to the problem on a coarser level and to apply this procedure recursively starting from
the coarsest level� This makes the optimized spaces de�ned in section � good candidates for the
approximation space VFE provided that the required regularity assumptions on the solution of
the variational problem hold�
To obtain an approximation of the exact solution that has an error of O	�� in the energy�norm
the number of levels J has to be chosen such that the approximation error is smaller than O	���
Combining the results about the approximation error from Theorem � with the estimate of

the dimension of the space V
�s�l��t
J in section ��� gives us the ��complexities� Tables � and �

summarize the above discussion� There the complexity of solving the problem 	�� in the space

Ht�l
mix up to an error of the order of � is given for positive and for negative smoothness parameters

s� Tables � and � show that for problems with solution u � Ht�l
mix and optimized approximation

spaces� the asymptotic complexity is independent of the dimension n if s � l � �� For �xed

dimension n and �� 	s� l��t � n� the complexity is in favor of the approximation space V
�s�l��t
J

also for the case s � l � ��
Note that the complexities for integral operators in Table � are not yet optimal� as we made no
use of the potential of further compression of the sti�ness matrix GKS����
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Table �� Complexity of solving an Hs�elliptic variational problem with a di�erential operator up
to an error of O	�� under the constraint that the solution is in Ht�l

mix for the approximation spaces

V
�s�l��t
J and V ��

J " we assume that the matrix�vector product can always be carried out with

O	dim	V
s�l
t

J �� or O	dim	V��
J �� operations� respectively" the error is measured in the Hs�norm"

V
�s�l��t
J V ��

J

s � l O	�
�

s�l�t � O	�
n

s�l�t �

s � l O

�
��

�
t

�
ln	��

�
t �
n���

O	��
n
t �

s � l O	�
�

�s�l��n�t � O	�
n

s�l�t �

Table �� Complexity of solving an Hs�elliptic variational problem with an integral operator up
to an error of O	�� under the constraint that the solution is in Ht�l

mix for the approximation

spaces V
�s�l��t
J and V ��

J " the error is measured in the Hs�norm"

V
�s�l��t
J V ��

J

s � l O	�
�

s�l�t � O	�
�n

s�l�t �

s � l O

�
��

�
t

�
ln	��

�
t �
��n����

O	��
�n
t �

s � l O	�
� �
�s�l��n�t � O	�

�n
s�l�t �

Concerning the case of standard information� note that standard information is a proper subset
of continuous linear information We���� Hence the problem complexity will be larger when
standard information is permissible�

� Applications

In this section we give examples for applications of the above ideas� We deal with the Laplace
problem with homogeneous Dirichlet boundary conditions and with the screen problem� These
are two prominent examples of the class of elliptic problems that show the conceptual ideas and
may therefore serve as a guideline for dealing with other elliptic variational problems� First of
all� we are looking for candidates of univariate wavelet bases that ful�ll our requirements� Note
that because of our tensor�product ansatz we can reduce the questions to the one�dimensional
case� Speci�cally� those basis functions whose support intersects with the boundary have to
ful�ll special boundary conditions� We do not aim at a general framework for this matter�
Therefore we do not take up this issue here� but refer the interested reader to the literature and
state that these problems can be settled� See AHJP��� DKU��� CDV��� CW��� for appropriate
constructions of localized functions and their boundary adaptation�
Sobolev spaces of interest for the study of integral and di�erential equations on the n�dimensional
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unit square In � �� ��n are de�ned by

Hs	In� � ff � D�	In� � �g � Hs	IRn� � gjIn � f and kfkHs�In� � inf
f�gjIn

kgkHs�IRn�g 	���

and
 Hs	In� � ff � gjIn � g � Hs	IRn� and supp g � Ing 	���

equipped with the norm
kfk �Hs�In� � kgkHs�IRn��

see Tr��� LM���� e�g� The interpolation spaces Hs	In� and  Hs	In� are dual to each other� i�e�

	Hs	In��� �  H�s	In�� 	  Hs	In��� � H�s	In�� �� � s ��� 	���

Furthermore

 Hs	In� � Hs
�	I

n� � closHs�In�C
�
� 	In� for s �

�

�
� s �� k �

�

�
� k � IN�

i�e�  Hs	In� is the appropriate space for problems with homogeneous essential boundary condi�
tions and  Hs	In� � Hs for ���� � s � ���� Which of these spaces is appropriate depends on
the application� For example  H�	In� � H�

�	I
n� is the appropriate space for the Laplace problem

with homogeneous essential boundary conditions� For the screen problem the space  H��� is
appropriate�
Sobolev spaces of functions in other spaces of interest� like those with dominating mixed deriva�
tive on In are analogously de�ned� For example we have

Hs
mix	I

n� �� Hs	I�� � � �� Hs	I�

and
 Hs
mix	I

n� ��  Hs	I�� � � ��  Hs	I��

To be able to repeat the above reasoning function spaces ful�lling the required boundary condi�
tions and a Jackson and a Bernstein inequality have to be constructed� Then the argumentation
of section � can be repeated with obvious modi�cations�
Here� we concentrate on semi�orthogonal linear spline wavelets 	prewavelets� on uniform dyadic
grids as introduced in CW���� Figure �� shows a prewavelet in the interior of the domain�
Concerning our cases of interest� suitable boundary constructions have been given for example
in Au��� CDJV��� GO��� and GOS���� respectively�

Example �� The Poisson equation
We consider the Poisson problem

�u � f 	���

with Dirichlet boundary conditions in its variational form on H�
�	I

n�� In this case we have s � ��
Estimates of the ��complexities of solving 	��� for u � H�

mix and continuous linear information
have been given in BG���� The authors constructed a �nite element method using tensor�

products of piecewise linear splines and index sets that are asymptotically equal to I
���
J � They

proposed the use of a multilevel method to solve the resulting discrete problems� The resulting
overall complexity is then

O	���� 	���

because of the optimality of the proposed multilevel method and dim	I
���
J � � O	�J�� Estimates

of the ��complexities of solving 	��� f � Ht
mix and standard information can be found in We����
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Figure ��� Semi�orthogonal
linear spline prewavelet

1
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-3

Figure ��� Nodal basis function ���� corresponding to the
coarsest level W� 	left� and boundary wavelet for the left
boundary for homogeneous Dirichlet boundary conditions
	right�

The author proposed a �nite element method on the index set I�J and showed that the solution
can be obtained with a complexity of

O

�
��

�
t

�
ln	����

��	��t��n	���
� 	���

Note that f � Ht
mix is a stronger assumption than u � Ht

mix� Therefore the complexity 	���
for the case u � H�

mix and continuous linear information and the complexity 	��� cannot be
compared directly�
Let us discuss our method� A suitable choice for the boundary prewavelets is shown in Figure ���
The basis function assigned to the coarsest level is the usual nodal basis function� see Figure ���
The orthogonal complement spaces Wj � j 
 �� are spanned by scaled and delated versions
of the functions shown in Figure �� for the interior grid points and Figure �� for the left
boundary and an analogous construction for the right boundary� The resulting multilevel system
incorporating homogeneous Dirichlet boundary conditions is a semi�orthogonal Riesz basis in
Hs

�	I� for � 	 s � ����
The resulting approximation spaces can be visualized by associating a grid�point with the mid�
point of the support of every basis function� See Figure �� for a visualization of di�erent basis
functions and Figure �� for the representation of the full grid corresponding to the index set
I��� and the grid corresponding to the index set I�� �

We assume that the solution of the variational problem is in the space Ht�l
mix for some parameters

t� l with t � l 
 �� From Table � we take the following ��complexities�

comp	�� 	

	���
����
O	�

�
��l�t � for l � ��

O

�
��

�
t

�
ln	��

�
t �
n���

for l � ��

O	�
�

���l��n�t � for l � ��

Speci�cally for the cases u � H� � H���
mix�H

�
mix � H���

mix and H���
mix we obtain the complexities

comp	�� 	

	�
��
O	���� for u � H�

mix�

O
�
���

�
ln	����

�n��
for u � H���

mix�

O	��n� for u � H��
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Figure ��� Grid point sets with corresponding in�
dices j � 	j�� j�� from the index set I�J

Figure ��� Grid point sets of grid I���

	left� and I�� 	right�

Hence we regain the result 	��� of BG��� as a special case� It is interesting to note that for
u � Ht��

mix the resulting optimized approximation space is V �
J � Hence the complexity is

O
�
��

�
t 	ln	��

�
t ��n��


� 	���

This result should be compared to the result 	��� from We��� for the case of standard infor�
mation� A short computation shows that for t 
 � the asymptotic complexity of the case with
standard information 	��� is larger than in the case of continuous linear information 	����

Example �� Single layer potential equation
The second example we consider is the single layer potential equation

�

c

Z
In

g	y�

jx� yj
dy � f	x�

in its variational form on  H����	In�� Here we have s � ��
� � The corresponding bilinear form

a	u� v� � 	
�

c

Z
In

g	y�

jx� yj
dy� v�H���
 �H���� � u� v �  H����	In��

is symmetric and  H�����elliptic�
For problems in  H� �

� the basis does not have to ful�ll special boundary conditions� The bases
for W� and W� are shown in Figure ��� The orthogonal complement spaces Wj � j 
 � are
spanned by scaled and delated versions of the functions shown in Figure �� for the interior grid
points and Figure �� for the left boundary and an analogous construction for the right boundary�
The resulting multilevel system is a semi�orthogonal Riesz basis in Hs	I� for � 	 s � ���� and
for  Hs	I� for ���� � s � �� Hence this example is fully covered by the theory of sections �
and �� Especially the preconditioning and approximation results and the complexity estimates
of section � can be applied� Regularity theory for the screen problem shows that if the right
hand side vector f is smooth enough� then the solution u can be decomposed into a regular
part ureg and a singular part due to corner and edge singularities� see HMS���� compare also
GOS���� Here we restict ourselves to an approximation of the regular part of the solution� For
a treatment of the singular parts see GOS��� O����
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to the spaces W� and W�
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Figure ��� Boundary wavelet
for the left boundary

Hence we assume that the solution of the variational problem is in the space  Ht�l
mix for some

parameters t� l with t � l 
 �� From Table � we take the following ��complexities�

comp	�� 	

	���
����
O	�

� �
����l�t � for l � �����

O

�
��

�
t

�
ln	��

�
t �
��n����

for l � �����

O	�
� �
�����l��n�t � for l � �����

Note that a further reduction of the complexity can be achieved by compression strategies as
described in GKS����

� Concluding remarks

In this paper we constructed Finite Element approximation spaces for elliptic variational prob�
lems with solution in Ht�l

mix� r � t�l � s � � r� t�l 
 �� � 	 t � r� We gave complexity estimates
for the case of continuous linear information� We showed these results in a constructive manner
by proposing a �nite element method together with optimal preconditioning� Speci�cally� we
identi�ed smoothness assumptions that make it possible to choose the Finite Element approxi�
mation space in such a way that the number of grid points is O	�J� compared to O	�nJ� for the
full grid space� while keeping the optimal order of approximation�
We like to give some hints on extensions to problems with large ellipticity constants and non�
stable splittings�

� For problems with large ellipticity constants� the constants in the estimates of the approxi�
mation error do become large and poison the behavior of the approximation in actual imple�
mentations as the constants may dominate the error approximation for practical problem sizes�
In these cases� the asymptotic estimates do not provide full insight into the behavior of the
approximants� It is advisable to spare the detour via the Hs�norm and to make use of norm
estimates applied directly to a	�� ��� Then a further adaptation of the approximation space to
the operator at hand can be obtained� This is of importance for preconditioning purposes also�
As a simple example consider the anisotropic elliptic problem

�
nX
i��

di
	�

	�xi
u � f� di � �� 	���

in its variational form on H�	Tn�� Tensor�product approximation spaces are well suited for such
problems as they allow easily for anisotropic re�nement� Let a	�� �� denote the corresponding
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H��elliptic variational form� The problem with the numerical solution of 	��� is that the con�
dition number of the Galerkin sti�ness matrix on a isotropic full grid is linearly dependent on
max��i�n	d��min��i�n	d�� The same is true for the coe�cient in the asymptotic estimate of
the approximation error� Hence� for �xed re�nement level J and varying coe�cients d� the
convergence rate of iterative methods as well as the error of approximation depend on d� For
problems with large anisotropies this leads to a slow down of convergence and a deterioration
of approximation� It is well known that some kind of semi�coarsening in the subspace splittings
or in the construction of the approximation spaces can remedy these problems� These ideas
can also be used for the approximation spaces de�ned here� It amounts to the use of a norm
estimate on a	�� ��

�
� instead of k�kH� �

A consideration analogously to that in the Proof of Theorem � shows 	use again Propositions �
and ��

a	u� u� �
X
j

�
nX
i��

di �
�ji

�
kwjk

�
L� �

X
j

max
��i�n

	di�
�ji�kwjk

�
L� 	���

for u � H�� u �
P

j wj� 	See GO��� for a proof in the case of prewavelets� There this norm
estimate was used to obtain robust preconditioners for anisotropic problems�� Compared to the
norm equivalence 	��� 	set s � �� the weight ��jjj� is substituted by the weight max��i�n	di�

�ji�

including information from the anisotropy� Let u � Ht�l
mix� r � t � l 
 �� � 	 t � r� IJ a subset

of I��J and VFE the corresponding approximation space� Then 	��� together with 	��� shows

inf
v�VFE

a	u� v� u� v� 	 C �max
j	�IJ

�
max
��i�n

	di�
�ji� � ���ljjj���tjjj�

�
kuk�

Ht�l
mix

� 	���

Without loss of generality we may assume that

d� � argmax��i�nfdig and dn � argmin��i�nfdig�

Fixing 	J� �� � � � � �� to be the index with maximal j�j��norm to be included into the index sets
leads to c � �

�t ln�	d��
�J�� n� �� �

tJ and the index sets

I l�t�dJ �� fj � �jjj� �
l

t
jjj� �

�

�t
ln�	 max

��i�n
	
di
d�

���ji��J��� 
 �	n� J � ���
l

t
Jg

where the index d indicates the dependence on the parameters di� � 	 i 	 n� Fixing 	�� � � � � �� J�
to be the index with maximal n�th component to be included into the index sets leads to
c � �

�t ln�	dn�
�J�� n� �� �

t J and the index sets

bI l�t�dJ �� fj � �jjj� �
l

t
jjj� �

�

�t
ln�	 max

��i�n
	
di
dn

���ji��J��� 
 �	n � J � ���
l

t
J�

Then the corresponding approximation spaces keep the order of approximation of the full grid
approximation space� Estimates on the dimension and the order of approximation can be derived
in the spirit of the preceding sections� We obtain the same orders of approximation as for the

approximation spaces V
���l��t
J from the preceding section but with di�erent coe�cients� Note

that in the case of the index set I l�t�dJ the coe�cient is dependent on d� � argmax��i�nfdig

and the number of unknowns is reduced further� as I l�t�dJ � I
���l��t
J � For the case bI l�t�dJ the

number of unknowns is increased compared to I
���l��t
J � but the coe�cient is only depending

on dn � argmin��i�nfdig� The norm equivalence 	��� leads also to robust preconditioners�
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Figure ��� Index sets I����d�� for d��d� � �� d��d� � �� and d��d� � ���� from left to right� two
dimensional case
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Figure ��� Index sets bI����d�� for d��d� � �� d��d� � �� and d��d� � ���� from left to right� two
dimensional case

compare GO���� In the case of extreme anisotropy� the resulting grid consists of extremely
stretched grids in the direction of the anisotropy� corresponding to semicoarsening� Figures ��
and �� show some examples in two dimensions�

� To be able to apply the theory presented here� the resulting algorithms need to be comple�
mented with some special treatment of singular parts of the solution of the variational problem�
The idea is that a few wavelets of high level clustered around the singularity will su�ce� while
the optimized grids of the above sections are enough to treat the smooth parts of the solution�
Solutions of elliptic boundary value problems in non�smooth domains mostly exhibit a singular
behavior at the boundary� This also holds in the case of integral equations� Moreover� singular
right hand sides or singularly perturbed operators may also be a source of singularities in the
solution� It is well known that the rate of convergence of the Galerkin method is governed by
the regularity of the solution� Singularities reduce the regularity and hence impair convergence�
This holds particularly true for the discretizations constructed here� where additional regularity
is required� First experiments in GOS��� indicate that these tensor�product constructions are
well suited for the approximation of edge singularities� when re�nement towards the edges is
used�
Here� it is helpful to re�ne the selection criteria to the atomic level� i�e�� to allow for single basis
functions#grid points to be selected� From 	��� together with 	��� we obtain the pro�t#cost
quotient of a single basis function


jl �� ��sjjj�hu�  �jli
�� 	���

Suppose for example the leading singularity component � of the solution u is known� Decom�
posing � with respect to the given basis� we can use the weights jh��  �jlij in 	��� instead of the
weights jhu�  �jlij� This leads to the de�nition of grids adapted to � by choosing those indices
that have


jl �� ��sjjj�h��  �jli
� 	���

��



bigger than some threshold� This a�priori adaptivity should lead to a relatively high degree
of adaptivity without complicated mesh re�nement strategies especially for problems in higher
dimensions� Nevertheless� for singularly perturbed problems with large ellipticity constants and
problems that exhibit boundary singularities� a�posteriori adaptivity is still necessary� We refer
to Dahm��� DDD��� and DeV��� for very promising results on nonlinear approximation and
adaptivity�

� The constructions of the approximation spaces presented in this paper are not restricted
to biorthogonal wavelets as basis functions� but can be carried over to other multiscale basis
functions as well� Speci�cally� the above construction of optimized grids is not limited to stable
multilevel splittings� that is to multilevel �nite element spaces that possess norm equivalences
like those described in section ��
For the construction of optimized grids the validity of norm equivalences like 	��� and 	��� is
therefore not really essential� Keeping this in mind� it is possible� to obtain optimized grids also
for non stable splittings� Consider for example the important case of an H��elliptic operator
and multiscale basis functions of tensor�products of piecewise linear splines �jk� Let Wj �
spanf�jk �k � �jg denote the hierarchical di�erence space between two successive spaces spanned
by piecewise n�linear functions� It is easy to see that in this case there holds a Bernstein
inequality

kwjkH� 	 C�jjj�kwjkL� �wj � Wj� j � ZZn� 	���

and there holds an estimate

kwjkL� 	 C���jjj� jujH�
mix

�u �
X
j

wj � H
�
mix� 	���

see BG���� Inequality 	��� can again be infered from decay properties of the coe�cients in the
representation of u in the bases of piecewise linear splines� Then� applying the triangle inequality
together with 	��� and 	��� yields for example for u � H�

mix

inf
v�V T

J

ku� vkH� 	 k
X
j 	�ITJ

wjkH� 	
X
j 	�ITJ

kwjkH�

��������
	 C

X
j 	�ITJ

�jjj���jjj�kukH�
mix

�

Summing up gives after a longer calculation for T � ��� a generalized Jackson inequality

inf
v�V T

J

ku� vkH� 	 C��JkukH�
mix

� 	���

where C � C	T �� Hence the optimal order of approximation is kept as long as T � ���� That
is� we obtain a similar result for a multilevel approximation space without the direct use of norm
equivalences� This can also be used as the starting point for enlarging the range of the validity
of the estimates presented in this paper� Especially the upper range of the parameters t and l
which were restricted from above by t � l � r and t � r could be enlarged to the whole range
t � l 	 m and t 	 m� see 	���� Apart from eventual logarithmic terms in the extremal cases�
the results remain the same�

A disadvantage of the approaches described in this paper is that generalizations to more general
geometries are not easy to handle� Research in this direction is mainly based either on domain
transformation techniques BD��� or on some kind of domain decomposition approach DS���
where the computational domain is decomposed locally and transformed to unit cubes� On
these local domains the wavelet techniques can be applied� We refer the reader to these papers�
Note however� that �� ��n is the natural computational domain for many higher�dimensional

��



physical applications� Consider for example the Schr$odinger equation with p � � particles and
consequently n � �p dimensions� We see the advantages of our method especially for the range
n � �� �� � � � � ���
Numerical examples on the theory presented here and on theoretical results about compression
of tensor�product discretizations on full and optimized grids can be found in a companion paper
GKS����
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