
Proceedings in Applied Mathematics and Mechanics, 22 November 2007

An Optimised Sparse Grid Combination Technique for Eigenproblems
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We introduce the optimised sparse grid combination technique for the numerical solution of d-dimensional eigenproblems on
sparse grids. We present numerical results for the stationary Schrödinger equation in the case of hydrogen.
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1 Introduction

In this paper we consider the eigenvalue problem resulting from the Born-Oppenheimer approximation of the stationary
Schrödinger equation for atoms. Following [1] we employ a finite element discretisation with piecewise d-linear test and trial
functions which leads to a discrete eigenvalue problem. To partially cope with the curse of dimensionality of finite element
discretisations the sparse grid combination technique is applied. For a d-dimensional problem, the sparse grid approach
employs only O(h−1

n (log h−1
n )d−1) grid points in the discretisation, where hn is the finest mesh size in one dimension.

The combination technique uses a certain sequence of anisotropic grids with a nodal discretisation. A linear combination
of the corresponding partial solutions on each grid then gives a sparse grid representation. In general this is not the solution
which one would achieve working directly in the sparse grid space using a hierarchical basis. But, under certain assumptions
on the error expansion on the partial grids, the same convergence behaviour can be shown for the combination technique and
the direct sparse grid approach [2]. On the other hand, empirical results in machine learning applications show divergence
of the combination technique in certain situations [3]; here these assumptions do not hold. In [3] the behaviour of the sparse
grid combination technique is investigated in more detail, in particular is the solution of the underlying problem viewed as a
projection. One can show that the difference between the combination of the partial projections and the projection into the
underlying sparse grid space can be large if the projections into the partial spaces do not commute.

Applying a so-called optimised combination technique, in short opticom, repairs the resulting instabilities of the combi-
nation technique [3]. The combination coefficients now not only depend on the grids involved, but on the function to be
represented as well, resulting in a non-linear approximation approach.

Due to the singularities present, the solutions of the Schrödinger equation will not have the necessary error expansion
from [2]. Since the opticom approach was introduced in a projection framework it cannot directly be applied to eigenvalue-
problems. In this paper we will show how one can reformulate the projection setting for the optimised combination technique
as a Galerkin-approach using the partial solutions as ansatz functions. This view is valid for eigenvalue problems as well.

2 Numerical Approach

We consider the stationary Schrödinger equation which gives the eigenvalue equation Hu = Eu, or in weak form a(u, ψ) :=
〈Hu,ψ〉 = E〈u, ψ〉 ∀ψ. We use the Born-Oppenheimer approximation, and get for hydrogen the electronic Hamilton
operator −∆u(x)− 2

|x|u(x) in atomic units. We restrict ourselves to a bounded domain Ω = [−a, a]d, which introduces some
error, using Dirichlet boundary conditions.

The combination technique [2] considers all grids Ωl = Ωl1,...,ld with indices |l|1 := l1 + ...+ ld = n+ (d− 1) − q, q =
0, .., d − 1, lt > 0 and a finite element discretisation using piecewise d-linear test and trial functions of uniform mesh size
ht = 2a · 2−lt in the t-th direction. The partial solutions fl from each grid are combined to get the solution fc

n on the
corresponding sparse grid using the formula

fc
n =

d−1∑
q=0

(−1)q

(
d− 1
l

) ∑
|l|1=n+(d−1)−q

fl. (1)

The resulting function fc
n lives in a so-called sparse grid space V s

n of dimension O(h−1
n (log h−1

n )d−1). For more details on
the combination technique for eigenvalue problems see [1].

In [3] the combination technique is studied as a projection with the scalar product 〈·, ·〉a defined by the bilinear operator
a(·, ·) in the Galerkin equations of the problem to be solved. That way the approximation of a sparse grid function by
the combination of partial functions can be viewed as the minimisation problem minJ(c1, . . . , ck) with J(c1, . . . , ck) =
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‖PV s
n
f̂ −

∑k
l=1 clPlf̂‖2

a, here PV s
n
f̂ denotes the projection of the continuous solution f̂ into the sparse grid space and Plf̂

is the projection into a partial space (we use here a suitable numbering scheme). The projection into a discrete space is the
solution of the discretised problem in the Galerkin formulation, i.e., a(Plf̂ , v) = R(v) ∀v ∈ Vl, where R(·) denotes the
functional on the right hand side. The goal is now to approximate the sparse grid solution (whose direct computation is
infeasible in some situations due to computational constraints) with a combination of partial solutions. It turns out that, using
(1), the combination solution is exact, and therefore J = 0, only if the projections onto the partial grids Ωl commute, which
is not the case for partial differential equations [3].

But optimal combination coefficients can be computed if one minimises the equation with regard to the cl. Simple expan-
sion gives J(c1, . . . , ck) =

∑k
l,j=1 clcj〈Plf̂ , Pj f̂〉a − 2

∑k
l=1 cl‖Plf̂‖2

a + ‖PV s
n
f̂‖2

a, and since the location of the minimum
of J does not depend on PV s

n
f , the best combination coefficients satisfy (after derivation with regard to cl)

〈P1f̂ , P1f̂〉a · · · 〈P1f̂ , Pkf̂〉a
〈P2f̂ , P1f̂〉a · · · 〈P2f̂ , Pkf̂〉a

...
. . .

...
〈Pkf̂ , P1f̂〉a · · · 〈Pkf̂ , Pkf̂〉a



c1
c2
...
ck

 =


‖P1f̂‖2

a

‖P2f̂‖2
a

...
‖Pkf̂‖2

a

 =


R(P1f̂)
R(P2f̂)

...
R(Pkf̂)


We here observe that ‖P f̂‖2

a = R(P f̂) holds for the solution P f̂ of the Galerkin formulation. We therefore can interpret
the optimised combination technique, i.e., the sum of projections into the partial spaces with the opticom coefficients, as a
Galerkin formulation which uses the partial solution Plf̂ as ansatz functions. While the projection arguments do not hold for
the eigenvalue problem, the Galerkin view does hold in this case as well.

3 Numerical Results

We now use the eigensolutions from the sequence of grids in (1) as basis functions for a new eigenvalue problem, which is
a full but small matrix of size #grids × #grids. It consists of the mixed terms a(Plf̂ , Pkf̂) and 〈Plf̂ , Pkf̂〉. Note that in [1]
the eigenvalues were computed using the formula

∑k
l=1 clRQ(Plf̂), where cl is the combination coefficient from equation

(1) and RQ denotes the Rayleigh quotient RQ(f) = a(f,f)
〈f,f〉 . This is only an approximation to the Rayleigh quotient of the

combination technique RQ(fc
n) which includes the above mixed terms in its expansion over the partial solutions. Therefore

there is little overhead for the opticom approach with regard to the correct form of the combination technique since only a
small additional eigenvalue problem needs to be solved.

In Table 1 we present numerical results for the case of hydrogen, this problem is a three-dimensional one. We give the
results from [1], use the correct Rayleigh quotient for the combination technique, and use the optimised combination technique.
We observe significant gains with the opticom approach, the error is reduced by a factor of 14 compared with the published
results from [1] and a factor of 5 against the combination technique with the correct Rayleigh quotient including the mixed
terms a(Plf̂ , Pkf̂) and 〈Plf̂ , Pkf̂〉.

Table 1 Results for ground state of hydrogen from [1] (left) compared with the combination technique with the correct Rayleigh quotient
(middle) and the optimised combination technique (right). Note that the exact value is -1.0.

[1] RQ(fc
n) = a(fc

n,fc
n)

(fc
n,fc

n) opticom
n λn en

en−1
en

λn en
en−1
en

λn en
en−1
en

4 -0.75376 2.462·10−1 - -0.75376 2.462·10−1 -0.75376 2.462·10−1

5 -0.77119 2.288·10−1 1.08 -0.77151 2.285·10−1 1.07 -0.77151 2.285·10−1 1.07
6 -0.88938 1.110·10−1 2.07 -0.90223 9.777·10−2 2.33 -0.90387 9.612·10−2 2.37
7 -0.92932 7.067·10−2 1.57 -0.95163 4.484·10−2 2.02 -0.95507 4.492·10−2 2.13
8 -0.96595 3.404·10−2 2.08 -0.97848 2.151·10−2 2.24 -0.98022 1.977·10−2 2.27
9 -0.98378 1.621·10−2 2.10 -0.99259 7.405·10−3 2.90 -0.99364 6.350·10−3 3.11

10 -0.99321 6.787·10−3 2.39 -0.99729 2.709·10−3 2.73 -0.99812 1.875·10−3 3.38
11 -0.99741 2.585·10−3 2.63 -0.99919 8.032·10−4 3.37 -0.99954 4.583·10−4 4.09
12 -0.99879 1.204·10−3 2.15 -0.99953 4.630·10−4 1.73 -0.999914 8.586·10−5 5.34
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