
Computing and Visualization in Science manuscript No.
(will be inserted by the editor)

Michael Griebel · Bram Metsch · Marc Alexander Schweitzer

Coarse grid classification–Part II: Automatic coarse grid
agglomeration for parallel AMG

the date of receipt and acceptance should be inserted later

Abstract Multigrid methods (MG) are known to be op-
timal solvers for large sparse linear systems arising from
the finite element, finite difference or finite volume dis-
cretization of a partial differential equation (PDE). Al-
gebraic multigrid methods (AMG) extend this approach
to wide a class of problems, e.g. anisotropic operators or
unstructured grids. However, the parallelization of AMG,
especially the construction of the coarse grids, is a chal-
lenging task. In this paper, we present an extension of
the coarse grid classification scheme (CGC) for parallel
AMG coarsening. Our new approach allows coarsening
rates that are (essentially) independent of the number of
processors. This consequently means that the presented
scheme can coarsen a grid down to a single point inde-
pendent of the number of processors, i.e. our scheme can
be interpreted as an automatic coarse grid agglomeration
scheme. The results of our numerical experiments in two
and three space dimensions indicate that the presented
scheme gives robust coarsening rates independent of the
number of processors and provides small operator and
grid complexities.

Supported by Sonderforschungsbereich 611, Singuläre
Phänomene und Skalierung in mathematischen Modellen,
supported by the Deutsche Forschungsgemeinschaft.

Michael Griebel
Institut für Numerische Simulation
Wegelerstraße 6
D-53115 Bonn
Germany
E-mail: griebel@ins.uni-bonn.de

Bram Metsch
Institut für Numerische Simulation
Wegelerstraße 6
D-53115 Bonn
Germany
E-mail: metsch@ins.uni-bonn.de

Marc Alexander Schweitzer
Institut für Numerische Simulation
Wegelerstraße 6
D-53115 Bonn
Germany
E-mail: schweitzer@ins.uni-bonn.de

Keywords algebraic multigrid · parallel computing
AMS Subject Classification 65N55; 65Y05; 65F10

1 Introduction

Multigrid methods (MG) are known to be optimal solvers
for large sparse linear systems arising from the finite ele-
ment, finite difference or finite volume discretization of a
partial differential equation (PDE). However, the conver-
gence behavior of a (geometric) multigrid method is (in
most cases) strongly dependent on the coefficient func-
tions of the differential operator; i.e., the solver is not
robust with respect to a deterioration of the coefficient
functions.

The development of so-called operator-dependent or
matrix-dependent prolongations [1,11] was a first step
toward robust (geometric) multigrid methods. However,
in these methods, coarsening was still done in the classi-
cal way, for example by doubling the mesh size h 7→ 2h.
Especially for anisotropically structured problems this
requires the usage of a complex smoother like alternating
line relaxation or incomplete LU-factorization. In three
spatial dimensions, these smoothers become rather com-
plicated or even may loose their smoothing property.

With the introduction of algebraic multigrid (AMG)
[2–4] in the 1980s many of these challenges could be
dealt with. But the parallelization of AMG proved to be
rather cumbersome. The direct parallelization of AMG
is not feasible since the original Ruge–Stüben coarsening
(RSC) algorithm [8] is inherently sequential.

More precisely, in most parallelization approaches a
static disjoint domain decomposition of the computa-
tional domain is assumed; i.e., each processor p is as-
signed to a certain part of the domain, see Figure 1).
Each processor then runs the AMG coarsening algorithm,
e.g. RSC, locally on its data. However, these indepen-
dently constructed local coarse grids may not align or
match at processor boundaries. Even worse, in the case
of anisotropies the resulting global coarse grids may not
represent the physics of the diffusion problem especially

2 Michael Griebel et al.

���
�
���
�
�������
�

���
�		

���
�
���
�

���
����

�
���
�
�������
�

���
����

�
���
�
�������
�

��

!!"
"
##$
$

%%&
&

''(
())*

*
++,
,

--.
.

//0
0112

2
334
4

556
6

778
899:

:
;;<
<

==>
>

??@
@ AAB

B
CCD
D
E�EE�EF
F

GGH
HIIJ

J
KKL
L
M�MM�MN
N

OOP
PQ

QRR S�SS�ST
TUUV

V
W�WW�WX
X

YYZ
Z

[[\
\

]]^
^

__`
`

Ω2

δΩ 2

δΩ 4

Ω4

Ω1

δΩ 1

δΩ 2

Ω2

Fig. 1 Disjoint partitioning of a discretized domain Ω. We
denote by Ωp the part of Ω that is being handled by processor
p ∈ {1, . . . , P}. The boundary ∂Ωp is defined as the points i ∈
Ωp which are coupled to points j 6∈ Ωp on other processors.

if the domain decomposition is not aligned with the iso-
lines of the coefficient functions. Meanwhile, many differ-
ent approaches to this matching problem have been pro-
posed, see [5–7,10]. But these algorithmic changes due
to the parallelization in some cases have an adverse ef-
fect on the convergence behavior or the robustness of the
overall solver.

The coarse grid classification (CGC) algorithm [5] is
an efficient technique for the coarse grid selection in par-
allel AMG for large grids when the number of grid points
N is much larger than the number of processors P . In
contrary, if the number of grid points is of the same or-
der as the number of processors, i.e. N = O(P), then
the CGC coarsening essentially stops. Hence, the size of
the coarsest grid in CGC is O(P) and the quality of the
coarse grid correction with only simple relaxation will
deteriorate. Also a direct solver is not practicable due to
the involved costs for large P .

In this paper, we present an extension of the CGC
which provides optimal coarsening rates even in the case
where N = O(P). The presented CGC-E scheme allows
for an automatic coarsening down to a single grid point
independent of the number of processors P . Hence, the
quality of the coarse grid correction with simple smooth-
ing is also robust with respect to P and we additionally
obtain small operator complexities and grid complexi-
ties.

The remainder of this paper is organized as follows:
In Section 2 we give a short summary of the sequen-
tial AMG algorithms and heuristics. Then, we review
the CGC algorithm in Section 3 and discuss its draw-
backs in the case when the number of nodes N is of the
same order as the number of processors P . In Section
4 we present the so-called CGC-E scheme, which allows
for fast coarsening even when N = O(P). The key idea
of the CGC-E scheme is that we allow a processor to
select an “empty coarse grid” when local coarsening be-
comes inefficient. Then a number of processors become
idle in CGC-E and we thus can interpret the method as
an automatic coarse grid agglomeration scheme. From
the numerical results in Section 5, we see that this new
approach allows both a fast parallel AMG setup and an

optimal multigrid convergence. Finally, we conclude with
some remarks in Section 6.

2 Algebraic multigrid

In this section we give a short review of the algebraic
multigrid (AMG) method. We consider a linear system
Au = f , which comes from a discretization of a PDE on a
grid Ω := {xi}i∈Ω with Ω := {1, . . . , N} being the index

set to enumerate the grid points, A = (aij)
N

i,j=1 being

a large sparse real matrix, u = (ui)
N

i=1 and f = (fi)
N

i=1
being vectors of length N . We assume that A is a sym-
metric, positive definite M -matrix or an essentially pos-
itive matrix. To be able to solve this equation using the

Program 1 Multigrid cycle MG(Al, f l, ul)

begin

for ν ← 1 to ν1 do ul ← Slul; od;
rl ← f l −Alul;
f l+1 ← Rlrl;
if l + 1 = L

then ul+1 ←
`

Al+1
´−1

f l+1;
else for µ← 1 to µ1 do

MG(Al+1, f l+1, ul+1));
od;

fi;
ul ← ul + P lul+1;
for ν ← 1 to ν2 do ul ← Slul; od

end

multigrid scheme1 (Program 1), we need to specify the
sequence of coarse grid operators Al, transfer operators
P l and Rl = (P l)T , the smoothing operators Sl and the
sequence of coarse grids Ωl.

In an algebraic multigrid method [2–4] we choose a
simple smoothing scheme Sl, e.g. Gauss–Seidel or Jacobi
relaxation. Then, we construct the grids {Ωl}L

l=1, the

transfer operators {P l}L−1
l=1 and the coarse grid operators

{Al}L
l=1 in a recursive fashion depending on the fine grid

operator A = A1 only. This construction is carried out in
the so-called setup phase which consists of three steps:
the selection of an appropriate coarse grid

Ωl+1 := Cl =: Ωl \ F l,

the construction of a stable prolongation operator P l,
and the computation of the Galerkin coarse grid operator
Al+1 := (P l)T AlP l, see Program 2. In the following,
we omit the level index l where possible to simplify the
notation.

1 In classical geometric MG, ΩL denotes the finest grid and
Ω1 the coarsest grid. Here, as usual in AMG, the levels are
numbered the opposite way, i.e. starting with Ω1 as the finest
grid.

Coarse grid classification–Part II: Automatic coarse grid agglomeration for parallel AMG 3

Program 2 Setup phase of AMG AmgSetup
(Ω, A, Nmin, Lmax, L, {Al}L

l=1, {P
l}L−1

l=1 {Rl}L−1
l=1)

begin

Ω1 ← Ω;
A1 ← A;
for l← 1 to Lmax − 1

do

partition Ωl into Cl and F l;
Ωl+1 ← Cl;
compute interpolation P l;

Rl ←
`

P l
´T

;
Al+1 ← RlAlP l;
if |Ωl+1| ≤ Nmin then break;
fi;

od;
L← l + 1;

end.

Essential to many AMG schemes is the notion of a
strong coupling between the grid point i and the grid
point j. A grid point i is called strongly coupled to a
grid point j if the corresponding matrix entry aij is rela-
tively large. In the RSC algorithm [8,9] for instance the
coarsening (see Program 3) is based on the sets

Si := {j 6= i : −aij ≥ α maxk 6=i |aik|},
ST

i := {j 6= i : i ∈ Sj},

(typically α = 0.25) which describe the strong connectiv-
ity graph of a matrix A. Along these strong couplings,
the smooth parts of the error vary slowly. For an effi-
cient coarse-grid correction of these parts, interpolation
must also follow these couplings; i.e., each fine grid point
i must be strongly coupled to at least one coarse grid
point j.2 Furthermore it is necessary to enforce

∑

k∈Si∩C −ajk

maxk |ajk|
> β ·

−aij

maxk |aik |
, (1)

with a typical value of β = 0.35, for all pairs of fine
grid points i, j to ensure that each fine grid point i is
sufficiently “surrounded” by coarse grid points.

The coarsening process is carried out in two phases.
In the first phase, see Program 3, an independent set C
of coarse grid points is determined. A second phase then
checks condition (1) for all pairs i, j ∈ F of fine grid
points. If this equation is not fulfilled for a certain pair,
then one of these points is added to the set of coarse grid
points C.

Note that in AmgPhaseI each point i chosen for the
coarse grid C results in a change of the weights λj of
all points j within two layers around the grid point i.
This shows the sequential character of this coarsening
algorithm, as the weight updates propagate throughout
the whole domain during the coarsening loop. Hence,

2 If a point i has no strong couplings at all, the error at this
points can be reduced efficiently by smoothing only. Hence,
we can add i to the set of fine grid points F .

Program 3 AmgPhaseI(Ω, S, ST , C, F)

begin U ← Ω;
C ← ∅;
F ← ∅;
for i ∈ Ω do λi ← |S

T
i |; od;

while maxi∈U λi 6= 0 do
i← arg maxj∈U λj ;
C ← C ∪ {i};
for j ∈ ST

i ∩ U do F ← F ∪ {j};
for k ∈ Sj ∩ U do λk ← λk + 1; od;

od;
for j ∈ Si ∩ U do λj ← λj − 1; od;

od;
F ← F ∪ U ;

end

the parallelization of RSC-based AMG schemes is not
straightforward. To this end, many different paralleliza-
tion techniques have been suggested over the years [6,7,
10]. Most of them first employ the Ruge-Stüben coarsen-
ing scheme on each processor subdomain locally and then
employ a special treatment of the processor subdomain
boundaries to fix inconsistencies in the composed global
grid. However, these boundary treatment algorithms of-
ten do not respect the structure of the underlying oper-
ator and produce unphysical coarse grids. Recently, we
proposed a new approach to the the parallel coarse grid
selection, the so-called coarse grid classification (CGC)
scheme [5], which overcomes this problem to some ex-
tent.

3 Coarse Grid Classification

The key observation which led to the development of the
CGC scheme is that the sequential character of RSC can
be used to introduce an additional degree of freedom in
the coarse grid selection, namely, the initial choice of the
first coarse grid point. Since the coarse grid points in
RSC are chosen sequentially, it is clear that we obtain
a different coarse grid by altering the initial choice for
the first coarse grid point, see Figure 2. Note that the
quality of the resulting coarse grids with respect to multi-
grid convergence and memory requirements is neverthe-
less very similar. Hence, there is no special advantage of
using one of these coarse grids over another in a sequen-
tial computation. In parallel computations, however, this
gives us a degree of freedom to consistently match the
coarse grids obtained on each processor individually by
RSC at processor subdomain boundaries.

In summary, the CGC approach is as follows (see
[5] for details). First, we construct multiple (disjoint)
coarse grids on each processor p independently by run-
ning the RSC algorithm multiple times with different
initial coarse grid points on its subdomain Ωp, compare
Figure 1. Then, we need to select exactly one grid for
each processor subdomain such that the union of these
local coarse grids forms a suitable global coarse grid for

4 Michael Griebel et al.

Fig. 2 Resulting coarse grids for a 9-point discretization
of the Laplace operator constructed by five different initial
choices. The gray points indicate the respective coarse grid
points, the black point indicates the first coarse grid point
chosen.

the whole domain. We achieve this by defining a weighted
graph whose vertices represent the grids constructed by
the multiple coarsening runs. The edges of this weighted
graph are defined between vertices which represent grids
on neighboring processor subdomains. Each edge weight
measures the quality of the boundary constellation if
these two grids would be chosen to be part of the com-
posed global grid. Finally, we use a graph clustering
technique on the resulting weighted graph to choose one
coarse grid for each processor subdomain which auto-
matically matches with most of its neighbors.

Note that this procedure is computationally efficient
since one iteration of the RSC requires only a very small
amount of computational time compared to the construc-
tion of the prolongation and coarse grid operators, while
a well-constructed grid can save a large amount of time
during the operator construction and in the multigrid
cycle. To control the computational complexity of the
CGC algorithm, we limit ourselves to the construction
of disjoint coarse grids only, see Program 4.

In detail, in our CGC we proceed as follows: Each
processor p first determines the maximal weight λmax of
all points i ∈ Ωp. Any point with this weight can be
chosen as an initial point for the RSC algorithm, com-
pare Program 3. We choose one particular point ĩ and
construct a coarse grid C(p),1. We now re-initialize the

weights λi := |ST
i | of all remaining points i ∈ Ω \ C(p),1

Program 4 CGC(S, ST , ng, {Ci}
ng
i=1, {Fi}

ng
i=1)

for j ← 1 to |Ω| do λj ← |S
T
j |; od;

C0 ← ∅;
λmax ← maxk∈Ω λk;
do

U ← Ω \
S

i≤it Ci;

for j ∈ U do λj ← |S
T
j |; od;

if maxk∈U λk < λmax then break; fi;
it← it + 1;
Fit ← ∅;
Cit ← ∅;
do

j ← arg maxk∈U λk;
if λj = 0 then break; fi;
Cit ← Cit ∪ {j};
for k ∈ ST

j ∩ U do
Fit ← Fit ∪ {k};
for l ∈ Sk ∩ U do λl ← λl + 1; od;

od;
for k ∈ Sj ∩ U do λk ← λk − 1; od;

od;
Fit ← Fit ∪ U ;

od;
ng ← it;

to their original values. From these points, we select an-
other point j̃ with weight λmax and construct a second
coarse grid C(p),2 starting with this point. However, only
points not contained in C(p),1 may be inserted into C(p),2,
i.e. we construct disjoint coarse grids. We repeat these
steps as long as there is a point with weight λmax that is
not already a member of a coarse grid C(p),it.

We now have obtained ngp valid coarse grids {C(p),i}
ngp

i=1
on each processor p. To determine which grid to choose
on each processor, we construct a directed, weighted graph
G = (V, E) whose vertices represent the created coarse
grids, i.e.

Vp := {C(p),i}i=1,...,ngp
, V := ∪P

p=1Vp.

The set of edges E consists of all pairs (v, u), v ∈ Vp,
u ∈ Vq such that q ∈ Sp is a neighboring processor of p,

Ep := {∪q∈Sp
∪v∈Vp, u∈Vq

(v, u)}, E := ∪P
p=1Ep,

where Sp is defined as the set of processors q with points
j which strongly influence points i on processor p, i.e.

Sp := {q 6= p : ∃i ∈ Ωp, j ∈ Ωq : j ∈ Si}.

We determine the weight γ(e) of an edge e = (v, u) with
v ∈ Vp, u ∈ Vq by assessing the quality of the resulting
joint coarse grid u ∪ v for the subdomain Ωp ∪ Ωq ⊂ Ω
at their common interface. To this end, we identify three
classes of grid configurations across the interface, namely
C−C, C−F or F−C, and F−F . Let us further denote by
cC,C the number of strong C −C-couplings, by cC,F the
number of strong C − F -couplings, by cF,C the number
of strong F − C-couplings and by cF,F the number of

Coarse grid classification–Part II: Automatic coarse grid agglomeration for parallel AMG 5

strong F − F -couplings. With their help we can define
the edge weight

γ(e) := cC,CγC,C + (cC,F + cF,C)γC,F + cF,F γF,F

with γC,C = −1, γC,F = 0, and γF,F = −8, see [5] for
details.

Now that we have constructed the graph G of ad-
missible local grids, we can use it to choose a particular
coarse grid for each processor such that the union of these
local grids automatically matches at subdomain bound-
aries. Note here that the number of vertices is related to
the number of processors P only, i.e., it is much smaller
than the number of unknowns N . Furthermore, the car-
dinality of E is small compared to N since edges are
only constructed between neighboring processors. Thus,
we can transfer the whole graph onto a single processor
without large communication costs.3 On this processor
we use a heavy edge matching approach to select exactly
one coarse grid per processor, see [5] for details. This al-
gorithm preforms efficiently for N � P , as can be seen
from the numerical results in [5].

We now point out a drawback of this CGC algorithm.
As long as at least one coarse grid is constructed on a
particular subdomain, exactly one coarse grid is chosen
by the CGC selection mechanism. Therefore, CGC will
in many cases not be able to coarsen down to a single
grid point, and, consequently, the coarsest grid in CGC
will often be of substantial size, i.e. at least O(P). How-
ever, in most cases strong couplings are still present on
this level, which means that a simple relaxation scheme
will not be able to reduce the associated error efficiently.
Thus, the quality of the resulting coarse grid correction
will be poor and the convergence rate will deteriorate
with increasing number of processors P . With a (redun-
dant) direct solver this can be cured, but only at the
prize of substantially increased computational and mem-
ory costs.

In the following section, we present an extension of
the CGC scheme which will resolve this problem.

4 Coarse Grid Classification with empty

candidate coarse grids

The original CGC algorithm, like the classical RSC al-
gorithm, is not able to coarsen the whole grid down to a
single point in most cases. While all strong couplings in-
side a processor subdomain can be eliminated during the
construction of the grid hierarchy, this is not true for the
couplings across subdomain boundaries. An example is
depicted in Figure 3. On each processor subdomain, the
RSC algorithm coarsened each vertical grid line down to

3 For very large numbers of processors P , one can extend
this algorithm by splitting the graph among a subset of the
processors instead of transferring it onto a single processor. A
local matching and a recursive application of our classification
then gives the globally consistent coarse grid.

Fig. 3 Coarsening of an anisotropic operator with strong
couplings in vertical direction only. Depicted is the coarse grid
structure near the processor subdomain boundary (shown as
bold horizontal line) , where each processor has coarsened
each vertical grid line down to a single point.

a single point, but the classical RSC algorithm is not able
to coarsen this grid any further. We see that each point i
has a strong coupling, hence its weight λi (see Program
3) is different from zero.4 In consequence, the RSC algo-
rithm picks such a point and adds it to the set of coarse
grid points C. However, the strongly coupled neighbors
are not assigned to the set of fine grid points as they
reside on another processor subdomain. On the neigh-
bor processor subdomain, the same happens. All points
are thus assigned to the set of coarse grid points C. In
consequence, the setup phase stops at this point even if
the vertical grid lines could be coarsened further. The
coarsest grid which we then obtain is of the same size
as the subdomain boundary. However, such a coarsest
grid is not desirable for an efficient algebraic multigrid
solver. As long as points are coupled, the error at such
points cannot be reduced efficiently by smoothing only.
Hence, a multigrid cycle that employs smoothing on the
coarsest level only will not allow a convergence behavior
independent on the number of unknowns. On the other
hand, a direct coarse grid correction, e.g. simple Gaus-
sian elimination, not only requires O(n3) time, but also
O(n2) storage to solve the coarse grid system, where n
is the number of unknowns on the coarsest grid. Due to
memory limitations, it may even be impossible to carry
out a direct solver at all.

Note that the classical CGC algorithm is also not
able to overcome this problem. In the example described
above, all points are already included in the first can-
didate coarse grid. There is just no degree of freedom
to construct a different grid. Hence, the CGC algorithm
constructs the same coarse grid as the classical RSC al-
gorithm.

In the example described above, the coarsening pro-
cess terminates too soon. In addition, the coarsening ra-
tios often decrease during the setup phase. An example is
given in Figure 4, where we see the number of unknowns
on each level for a three-dimensional anisotropic prob-
lem. While a nearly perfect coarsening ratio is achieved
on the first levels, on coarser levels nearly all points are

4 We assume that the weights are updated before the coars-
ening process starts on each subdomain.

6 Michael Griebel et al.

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30

Un
kn

ow
ns

Level
Fig. 4 Coarsening history for a three-dimensional
anisotropic problem (cp. Example 4). Depicted is the
number of unknowns on each level as produced by the CGC
algorithm.

carried over in the next coarser grid. The reason for this
lies in the fact that, as the number of unknowns de-
creases, a larger part of the points has strong connections
across a subdomain boundary.

One solution to this problem is to employ a fully par-
allel coarsening algorithm. Such a method is given by the
CLJP method [6]. This algorithm iteratively constructs
multiple independent sets in the strength connectivity
graph S and then takes the union of these sets as the
coarse grid. However, a communication step is required
after each independent set is determined and the result-
ing coarse grid contains more points than the classical
Ruge-Stüben algorithm. A hybrid RSC/CLJP coarsen-
ing scheme, like the Falgout algorithm [6], reduces the
number of CLJP iterations, but still creates too many
coarse grid points especially at the subdomain bound-
aries.

Let us return to the example depicted in Figure 3. It
becomes clear that in this case it is sufficient for stable
interpolation if a single coarse grid is selected on one of
the processor subdomains while all points on the other
subdomain are designated as fine grid points.

This motivates us to add the empty grid (i.e. no
coarse grid points on this processor subdomain) to the
set of candidate coarse grid points. As in the classical
CGC algorithm, see Section 3, a vertex represents this
“coarse grid” and we construct weighted edges from this
vertex to vertices corresponding to candidate coarse grids
on adjacent processors. Recall that every strong F − F
coupling across the boundary is heavily penalized, so the
selection algorithm will not choose the empty grid un-
less (almost) all points on the respective processor have
a strong coupling to coarse grid points on another pro-
cessor.

An additional issue still needs to be addressed: The
CGC selection mechanism does not check if interpolation
is possible for the inner points. Hence, we only allow the

empty grid to the set of empty coarse grids if one of
the two following criteria is fulfilled for all points on the
processors subdomain:

– The point has at least one strong connection to a
point on another processor, i.e. the CGC selection
mechanism can determine whether the value at this
point can be interpolated from the value at a coarse
grid point.

– The point has no strong couplings at all, i.e. the error
at this point can be reduced efficiently by smoothing
only.

In consequence, the resulting graph of admissible coarse
grids is slightly larger in the resulting so-called CGC-E
scheme than in the original CGC algorithm. The fur-
ther selection mechanism then takes place as described
in the previous section. But in CGC-E the empty grid
can additionally be selected as “coarse grid” for a certain
processor subdomain, i.e., all points on that subdomain
remain fine grid points.

5 Numerical experiments

We now compare this new approach, which we denote
by CGC-E, with the original CGC scheme [5] and the
parallel Falgout coarsening algorithm [6]. To this end,
we introduce two measures for the quality of the con-
structed hierarchy, the operator complexity cA and the
grid complexity cG. They are defined as follows,

cA :=

∑Lmax

l=1 nonzeros(Al)

nonzeros(A1)
, cG :=

∑Lmax

l=1 |Ωl|

|Ω1|
. (2)

These numbers give an indication of the memory over-
head required by the AMG algorithm.

In all our experiments, we set α = 0.25 for the first
phase and β = 0.35 for the second phase of the RSC
algorithm, see Section 2. For the setup of the transfer
operators, we use the truncated standard interpolation
[9] scheme with a truncation parameter εtr = 0.2. The
setup phase is stopped if either no strong couplings are
present or the coarsening algorithm inserts all fine grid
points into the coarse grid.

As an initial guess for the solution phase we use a
random-valued vector u0 with ‖u0‖l2 = 1. We perform
the V (1, 1)-cycle, i.e. one pre- and one post-smoothing
step per level. The iteration is stopped after it steps if
the l2-norm of the residual rit = f − Auit drops below
10−10. On each level, we employ a (subdomain) block-
Jacobi smoother with one inner Gauss–Seidel relaxation
step. Note that we do not employ a direct solver on the
coarsest level. The convergence factor is determined as

ρ =

(

‖rit‖l2

‖r1‖l2

)
1

it−1

. (3)

Coarse grid classification–Part II: Automatic coarse grid agglomeration for parallel AMG 7

Table 1 Setup time in seconds for Example 1.

P Falgout CGC CGC-E
1 13.1 13.1 13.1
4 17.5 15.0 15.6

16 18.4 15.7 16.5
64 20.4 18.5 18.6

256 28.5 26.2 25.9

For the first three experiments, we tested the various
coarsening schemes on the Himalaya cluster at the de-
partment for Scientific Computing at the University of
Bonn. This cluster consists of 256 Xeon 3.2 GHz CPUs,
connected by Myrinet. The last experiment was carried
out on the JUMP supercomputer at the Forschungszen-
trum Juelich, which consists of 41 IBM p690 with 32
CPUs and 128GB each. There, the interconnect is pro-
vided through an HPS network.

Example 1 Laplace operator in two dimensions. In our
first experiment we consider the Poisson problem

−∆u = 0 in Ω = (0, 1)2 (4)

with zero Dirichlet boundary conditions on the unit square,
discretized with a 5-point finite difference stencil on 512×
512 points per processor. In this standard test case, we
expect that the convergence rate of the original CGC
will deteriorate with increasing number of processors P ,
since the coarsest level of CGC will be too large, i.e.
O(P), to obtain a high quality coarse grid correction by
smoothing only. On the other hand, we anticipate that
the CGC-E scheme will converge with a rate that is inde-
pendent of the number of processors P , as the coarsest
grid obtained by CGC-E is of size O(1). Furthermore,
we expect that the setup times for the CGC and CGC-E
schemes are very similar.

In Table 1 we give the setup times for this prob-
lem. We see that both CGC variants are faster than
the Falgout algorithm. On P = 4, 16 and 64 processors,
the CGC-E algorithm needs slightly more time than the
CGC algorithm due to a somewhat larger coarse grid
graph V . On the other hand, the CGC-E algorithm al-
lows an automatic agglomeration and thus a faster setup
on coarse levels. On 256 processors this compensates for
the slower selection mechanism. This effect can also be

Table 2 Operator complexity (2) for Example 1.

P Falgout CGC CGC-E
1 2.60 2.60 2.60
4 2.63 2.60 2.60

16 2.64 2.61 2.61
64 2.65 2.63 2.62

256 2.65 2.65 2.62

seen from the operator complexities given in Table 2.

As the grids produced on the coarsest level are smaller,
the operator complexities produced by the CGC-E algo-
rithm are smaller than those obtained by the CGC algo-
rithm. Note that the Falgout algorithm cannot achieve
the complexities of the CGC-E scheme even though it
also allows an automatic agglomeration. This is due to
the employed CLJP algorithm which produces many (un-
necessary) points near the processor boundaries.

Table 3 Solution time in seconds for Example 1.

P Falgout CGC CGC-E
1 8.53 8.53 8.53
4 10.8 19.6 9.06

16 11.0 19.5 11.1
64 11.3 24.5 11.5

256 16.8 104 17.2

Table 3 shows the solution times, i.e., the time re-
quired by the V (1, 1)-iteration to reduce the residual to
10−10, for this example. While the Falgout and the CGC-
E scheme allow a nearly scalable solution up to 64 pro-
cessors, this is not true for the CGC algorithm. The ex-
planation can be seen from Table 4: The CGC algorithm
cannot coarsen down to a single point, hence a simple
relaxation scheme on the coarsest level does not provide
a high quality coarse grid correction. In this example the
coarsest grid produced by the CGC algorithm still con-
tains 593 unknowns for 64 processors and 1795 points for
256 processors, while the other schemes coarsen down to
a single point. In turn, this leads to a deterioration of

Table 4 Convergence factors (3) for Example 1.

P Falgout CGC CGC-E
1 0.13 0.13 0.13
4 0.13 0.38 0.13

16 0.14 0.35 0.13
64 0.14 0.41 0.14

256 0.14 0.73 0.17

the overall convergence behavior of the multigrid cycle
for the CGC.

Example 2 Grid-aligned anisotropy in two spatial dimen-

sions. We now investigate the parallel coarsening schemes
for an example with grid-aligned anisotropy. We consider
the equation

−εuxx − uyy = 0

with ε = 0.001 and zero boundary conditions on the unit
square (0, 1)2, discretized using a finite difference stencil
on 512× 512 points per processor.

Again, we expect that the CGC-E scheme will pro-
vide small complexities and a converge rate which is in-
dependent of the number of processors P .

8 Michael Griebel et al.

Table 5 Setup time in seconds for Example 2.

P Falgout CGC CGC-E
1 5.63 5.63 5.63
4 9.41 8.25 8.23

16 10.5 9.07 9.09
64 14.2 12.8 12.3

256 21.9 19.9 19.9

From the setup times displayed in Table 5, we see
that the CGC-E algorithm does not need additional time
in comparison to the CGC scheme. However, the qual-

Table 6 Operator complexity (2) for Example 2.

P Falgout CGC CGC-E
1 2.01 2.01 2.01
4 2.14 2.16 2.14

16 2.12 2.11 2.09
64 2.10 2.11 2.08

256 2.09 2.09 2.07

ity of the grid and operator hierarchy constructed by
the CGC-E scheme is better, as can be seen from the
operator complexities displayed in Table 6. Out of the
three schemes considered, the CGC-E method gives the
smallest complexities. The measured solution times and

Table 7 Solution time in seconds for Example 2.

P Falgout CGC CGC-E
1 4.28 4.28 4.28
4 8.59 49.2 8.62

16 10.6 23.5 10.7
64 13.5 25.8 13.6

256 13.7 42.1 14.0

Table 8 Convergence factors (3) for Example 2.

P Falgout CGC CGC-E
1 0.14 0.14 0.14
4 0.14 0.75 0.14

16 0.14 0.45 0.14
64 0.14 0.38 0.14

256 0.14 0.56 0.14

convergence factors are given in Table 7 and Table 8,
respectively. We see that the Falgout algorithm and the
CGC-E algorithm obtain comparable solution times and
scalable convergence factors. As in the isotropic case,
the coarsest grid provided by the CGC method is still
too large to provide an efficient reduction of the error by
smoothing only.

Example 3 Non-grid aligned anisotropic problem.

Table 9 Setup time in seconds for Example 3.

P Falgout CGC CGC-E
1 7.02 7.02 7.02
4 10.9 9.99 10.0

16 12.0 11.2 11.1
64 14.5 14.5 13.5

256 23.8 24.7 22.8

Let us now consider the two-dimensional anisotropic
problem

−(cos2 γ + ε sin2 γ)uxx + 2(1 − ε) sin γ cos γuxy

−(sin2 γ + ε cos2 γ)uyy = 0

on the unit square (0, 1)2 with ε = 0.001. In this case, the
anisotropy is not grid aligned and depends on the angle
γ. Geometric multigrid with standard h 7→ 2h coarsening
fails for every value of γ other than 0◦ or 90◦. Sequential
AMG can cure this problem, compare [7]. In the follow-
ing, we concentrate on the case of γ = 45◦.

The problem is discretized using the stencil

1

h2

0 −0.001 −0.4995
−0.001 1.003 −0.001
−0.4995 −0.001 0

h

on 512× 512 points per processor.
From the stencil we already see that the strong cou-

plings are diagonally aligned. This means that each pro-
cessor subdomain has not only strong couplings to the
adjacent subdomains in y-direction (as in the previous
example), but also to the adjacent subdomains in x-
direction and to two subdomains across the corners. Hence,
we expect to see larger setup and solution times for this
example than in the grid-aligned case.

Table 9 shows that all parallel coarsening techniques
require nearly the same setup times. Generally, the times
are larger than in the grid-aligned case as there about
twice as much strong couplings across the processor sub-
domains. For the CGC and CGC-E algorithm, this means
that more edges are constructed in the coarse grid selec-
tion graph, while the Falgout algorithm needs to employ
the boundary treatment on twice as many points.

Table 10 Operator complexity (2) for Example 3.

P Falgout CGC CGC-E
1 2.63 2.63 2.63
4 2.70 2.72 2.70

16 2.73 2.79 2.74
64 2.74 2.87 2.76

256 2.75 2.97 2.79

For the operator complexities, c.f. Table 10, we see
an almost equal increase for the Falgout and CGC-E
algorithm. In contrast, the CGC algorithm shows a larger

Coarse grid classification–Part II: Automatic coarse grid agglomeration for parallel AMG 9

deterioration than in the grid-aligned case, which can
be explained from the large amount of strongly coupled
coarse grid points on different processor subdomains.

Table 11 Solution time in seconds for Example 3.

P Falgout CGC CGC-E
1 4.63 4.63 4.63
4 13.4 34.8 14.2

16 14.8 100 15.0
64 15.1 65.4 14.9

256 24.6 107 24.4

Table 12 Convergence factors (3) for Example 3.

P Falgout CGC CGC-E
1 0.14 0.14 0.14
4 0.27 0.63 0.29

16 0.29 0.85 0.29
64 0.30 0.76 0.28

256 0.30 0.75 0.27

From the solution times given in Table 11 and the
convergence factors given in Table 12 we see that the
classical CGC algorithm again does not provide an effi-
cient multigrid cycle without agglomeration. The other
algorithms only exhibit some deterioration as we go from
the sequential to the parallel setting, but the parallel con-
vergence factors are independent of the number of pro-
cessors. Here, we see the impact of an inferior relaxation
scheme at the subdomain boundaries.

Example 4 Three-dimensional anisotropic problem.

In the last example we consider the three-dimensional
anisotropic problem

−εuxx − uyy − uzz = 0

with ε = 0.001 and zero boundary conditions on the unit
cube (0, 1)3. This equation is discretized using a 7-point
finite difference stencil on 40 × 40 × 40 grid points per
processor.

Compared to the previous examples, we have a larger
surface-to-volume ratio for each processor subdomain.
Hence, we expect to see a larger deterioration of the
scale-up behavior especially for the solution phase, where
smoothing requires a large amount of communication.

In Table 13 we show the setup times for this example.
We see that while both CGC variants exhibit compara-
ble times up to 64 processors, this is no longer true for
512 processors any more. In this case, due to the absence
of an agglomeration strategy the original CGC coarsen-
ing process slows down and the construction of transfer
and coarse grid operators takes a significant amount of
time. The Falgout algorithm employs the CLJP method
to coarsen the boundary planes. This scheme clusters
coarse grid points near the subdomain boundary planes,

Table 13 Setup time in seconds for Example 4.

P Falgout CGC CGC-E
1 7.77 7.77 7.77
8 12.5 10.6 11.0

64 19.6 16.7 16.4
512 35.0 38.0 30.8

which even further increases the surface-to-volume ra-
tio on the next level. In contrast, the CGC-E algorithm,
which combines an efficient coarse grid matching and fast
coarsening, achieves the fastest setup.

Table 14 Operator complexity (2) for Example 4.

P Falgout CGC CGC-E
1 2.40 2.40 2.40
8 2.76 2.54 2.51

64 2.94 2.95 2.66
512 3.02 4.14 2.79

From Table 14 we see that the operator complexity
increases for all coarsening methods as the number of
processors grows. Hence, we cannot expect solution-time
scalability. As pointed out before, the Falgout algorithm
constructs larger coarse grids than necessary, while the
CGC method does not provide an efficient coarsening as
the number of processors grows.

Table 15 Solution time in seconds for Example 4.

P Falgout CGC CGC-E
1 0.84 0.84 0.84
8 3.08 2.90 2.77

64 8.19 9.42 8.65
512 33.6 24.1 15.4

In contrast to the two-dimensional examples, all coars-
ening schemes achieve similar convergence rates: from
0.13 for one processor up to 0.15 for 512 processors.
Hence, the solution time mainly depends on the com-
putational work done per multigrid cycle which in turn
is related to the operator complexity. This can be seen
from the solution times given in Table 15. As we increase
the number of processors from 64 to 512, we see a large
jump in the solution times due to hardware and inter-
connect bandwidth limitations.

In summary, we conclude that the CGC-E algorithm
provides setup times compared to that of the original
CGC algorithm, while the convergence factors and so-
lution times resemble those of the Falgout algorithm.
Hence, this scheme provides both automatic subdomain
agglomeration and efficient Ruge-Stüben-like coarse grid
construction for parallel algebraic multigrid.

10 Michael Griebel et al.

6 Concluding remarks

In this paper we presented an extension to the parallel
CGC coarsening algorithm. Our aim was to provide an
efficient parallel algebraic multigrid scheme that does not
require the use of a parallel or redundant direct (expen-
sive) solver on the coarsest level, which in turn requires
that the coarsening process does not stop until there are
no strong couplings left regardless of the domain decom-
position. In the CGC-E scheme, we first decide whether
the value at all points on a certain processor subdomain
can be interpolated from the values at points on other
processor subdomains (or do not require interpolation at
all). If this is the case, we add the empty grid to the set of
candidate coarse grids and allow the respective processor
to become idle.

The results of our numerical experiments showed that
this enhancement reduces both the setup time and op-
erator complexity for problems with anisotropies. In ad-
dition, our new CGC-E scheme allows for coarsening up
to a single point (globally) which is important for an
efficient multigrid cycle.

Overall, the CGC-E algorithm provides a scalable
parallel AMG solver which only employs a simple smooth-
ing scheme on all levels. Thus, the use of an expensive
(parallel or redundant) direct solver is avoided while we
still obtain good convergence rates even in the case of
N ≈ P .

References

1. Alcouffe, R.E., Brandt, A., Dendy, J.E., Painter, J.W.:
The multi-grid method for the diffusion equation with
strongly discontinuous coefficients. SIAM J. Sci. Stat.
Comput. 2, 430–454

2. Brandt, A.: Algebraic multigrid theory: The symmetric
case. Appl. Math. Comput. 19(1-4), 23–56 (1986)

3. Brandt, A., McCormick, S.F., Ruge, J.: Algebraic multi-
grid (AMG) for automatic multigrid solution with appli-
cation to geodetic computations (1982)

4. Brandt, A., McCormick, S.F., Ruge, J.: Algebraic multi-
grid (AMG) for sparse matrix equations. In: D. Evans
(ed.) Sparsity and its Applications, pp. 257–284. Cam-
bridge University Press, Cambridge (1984)

5. Griebel, M., Metsch, B., Oeltz, D., Schweitzer, M.A.:
Coarse grid classification: a parallel coarsening scheme
for algebraic multigrid methods. Numerical Linear Al-
gebra with Applications 13(2–3), 193–214 (2006). Also
available as SFB 611 preprint No. 225, Universität Bonn,
2005

6. Henson, V.E., Yang, U.M.: BoomerAMG: a parallel al-
gebraic multigrid solver and preconditioner. Tech. Rep.
UCRL-JC-141495, Lawrence Livermore National Labo-
ratory (2001)

7. Krechel, A., Stüben, K.: Parallel algebraic multigrid
based on subdomain blocking. Tech. Rep. REP-SCAI-
1999-71, GMD (1999)

8. Ruge, J.W., Stüben, K.: Algebraic multigid (AMG). In:
S.F. McCormick (ed.) Multigrid Methods, Frontiers in
Applied Mathematics, vol. 5. SIAM (1986)

9. Stüben, K.: Algebraic multigrid (AMG): An introduc-
tion with applications. In: U. Trottenberg, C.W. Ooster-
lee, A. Schüller (eds.) Multigrid, pp. 413–532. Academic

Press (2001). Also available as GMD Report 53, GMD
- Forschungszentrum Informationstechnik GmbH, March
1999

10. Yang, U.M.: Parallel algebraic multigrid methods - high
performance preconditioners. In: A. Bruaset, A. Tveito
(eds.) Numerical Solution of Partial Differential Equa-
tions on Parallel Computers, Lecture Notes in Com-
putational Science and Engineering, vol. 51, pp. 209–
236. Springer-Verlag (2006). Also available as technical
report UCRL-BOOK-208032, Lawrence Livermore Na-
tional Laboratory, November 2004

11. Zeeuw, P.d.: Matrix-dependent prolongations and restric-
tions in a black-box multigrid solver. J. Comp. and Appl.
Math. 33, 1–27 (1990)

