Parallel Adaptively Refined Sparse Grids

Gerhard Zumbusch?!

University Bonn, Dept. Applied Mathematics, Wegelerstr. 6, D-53115, Germany

Abstract. A parallel version of a finite difference discretization of PDEs on sparse
grids is proposed. Sparse grids or hyperbolic crosspoints can be used for the efficient
representation of solutions of a boundary value problem, especially in high dimen-
sions, because the number of grid points depends only weakly on the dimension.
So far only the ‘combination’ technique for regular sparse grids was available on
parallel computers. However, the new approach allows for arbitrary, adaptively re-
fined sparse grids. The efficient parallelisation is based on a dynamic load-balancing
approach with space-filling curves.

1 Introduction

Quite lot of phenomena in science and engineering can be modelled by bound-
ary value problems of partial differential equation type. Often this gives rise
to a PDE in one or two dimensions (d = 1,2), which can be treated nu-
merically more easily. However, the accurate solution of problems in three
and higher dimensions would be extremely expensive or simply impossible
to solve numerically, referred to as the ‘curse of dimension’. We mention
higher-dimensional problems in financial engineering, in quantum physics, in
statistical physics and even the four-dimensional problems in general relativ-
ity.

Sparse grids are a multi-dimensional approximation scheme, which is
known under several names such as ‘hyperbolic crosspoints’, ‘splitting ex-
trapolation’ or as a boolean sum of grids. Probably Smolyak [16] was the
historically first reference. Directly related to the boolean construction of the
grids was the construction of a multi-dimensional quadrature formula. Both
quadrature formulae and the approximation properties of such tensor prod-
uct spaces were subject to further research, see Temlyakov [17] and others.
The curse of dimension was also subject to general research on the theoreti-
cal complexity of higher-dimensional problems. For such theoretical reasons,
sparse grids play an important role for higher-dimensional problems. Besides
the application to quadrature problems, sparse grids are now also used for
the solution of PDEs. They were introduced for the solution of elliptic par-
tial differential equations by Zenger [18], where a Galerkin method, adaptive
sparse grids and tree data structures were discussed. At the same time a dif-
ferent discretization scheme based on the extrapolation of solutions on several
related, regular grids was proposed, the ‘combination’ technique see [6].

In this paper we consider a finite difference (FD) scheme [5,14]. Tt is
simpler to implement and to apply to different types of equations, but there

2 Gerhard Zumbusch

is not that much known analytically yet. We focus on the parallelisation of
such a FD scheme on sparse grids. So far only the ‘combination’ technique can
be run on a distributed-memory parallel computer, see [4], which is essential
for many large scale simulations. The advantage of the FD scheme is the
flexibility of the grid. The sparse grid may be refined adaptively, while the
‘combination’ is relies on regular sparse grids. However, the adaptive grid
refinement poses a severe load-balancing problem, which has to be resolved
during runtime of the simulation. Using a space-filling curve distribution of
the grid points similar to [11,12,8,13] for standard grids and some parallel
decompositions of the hierarchical sparse grid algorithms, we are now able to
run adaptive sparse grid computations on a parallel computer.

2 Sparse Grids

The multi-dimensional approximation scheme of sparse grids can be con-
structed as a subspace of the tensor-products of one-dimensional spaces rep-
resented by a hierarchical multi-resolution scheme, such as the hierarchical
basis see the historical reference [3], or generally any basis system of pre-
wavelets or wavelet [9]. Each one-dimensional basis function can be derived
from a model function ¢ by a scaling of 27! (also called level {) and a trans-
lation by a multiple of 27!, In the case of the hierarchical basis, the model
function ¢ is a hat function. We denote the one-dimensional space of func-
tions up to level [by T;. On level [, the standard grid space can be written
as

=TT . Dij. < (1)

In contrast to the regular grid, the corresponding sparse grid space consists
of fewer functions. On level [, it can be written as

T = (T ®... >i+j+...§l . (2)

This is a subset of the regular grid space. A regular grid has about 24! nodes,
which is substantially more than the 2! - [9=1 nodes of the sparse grid.

The major advantage of sparse grids compared to regular grids is their
smaller number of nodes (or grid points) for the same level [and resolution
2!, This is especially true in higher dimensions d >> 1.

Of course, the question whether sparse grids have an advantage compared
to regular grids does also depend on the discretization accuracy of a solution
obtained on a grid. Furthermore the number-of-operations complexity is of
interest, because it is an estimate for the computing time a specific algorithm
needs. For details see [5,14].

3 Finite Differences Operators

We define the hierarchical transformation H as the hierarchical basis trans-
formation on the regular grid from nodal values to hierarchical values, which

Parallel Sparse Grids 3

are restricted to the sparse grid nodes. All wavelet-type of basis functions
provide such fast O(n) transformation to and from the nodal basis repre-
sentation. The transformation is especially simple for the one-dimensional
hierarchical basis: Given the nodal values u; with j = 0,1,...,2*1 the
hierarchical representation for interior points can be obtained by

1
u; = u; — 5 (uleft father + Uright father) (3)

and the boundary nodes ug and uqi+1 remain unchanged. The nodal values are
replace by their hierarchical excess or deterioration, compared to the value
obtained by interpolation between on the next coarser level grid. The inverse
transformation can be implemented similarly. However, the coarse nodes have
to be computed before the finer grid nodes. Furthermore, the transformation
can be implemented in place, without an auxiliary vector. The hierarchical
basis transformation H is also abbreviated by the stencil [1/2 1 1/2].

Based on the hierarchical basis transformation H, we define the action of
a one-dimensional finite difference operator for the discretization of a differ-
ential operator: We apply the associated standard difference stencil D; along
the z;-axis to values located on the sparse grid nodes in a specific basis repre-
sentation. To this end the values are given in nodal basis in direction ¢ and in
hierarchical basis representation in all other directions I'\ {i}. The associated
transformation is denoted by Hp\ ;1. The stencil D; for each node itself is
chosen as the narrowest finite difference stencil available on the sparse grid.
It is equivalent to the corresponding stencil on a regular, anisotropic refined
grid. The finite difference stencil can by a 3-point Laplacian h%[l —2 1], an
upwind-stabilised convection term 6%1’ some variable coefficient operators
and so on. In nodal values the finite difference operator reads

A general difference operator is then obtained by dimensional splitting.
A Poisson equation, as a simple example, can be discretized in nodal basis
representation as usual as a sum of operators 4. Here the one-dimensional
difference operators D; may be chosen as a three point centred Laplacian
. m[l — 2 1]. On adaptively refined grids, the nearest neighbour
nodes are chosen, which may lead to asymmetric stencils, i.e. non-uniform
one-dimensional stencils. Further higher order modifications of the stencils
have been tested, too. In the presence of a transport term in the equation,
the unsymmetry is believed to be no problem. There are many ways to create
discretizations of all kind of equations, e.g. for the Navier-Stokes equations
[14] or some hyperbolic conservation laws [7]. Known facts on consistency
and stability of this scheme are summarised in [14].

4 Gerhard Zumbusch
4 Parallelisation

The parallelisation of an adaptive code usually is non-trivial and requires a
substantial amount of code for the parallelisation only. In this respect the
‘combination’ technique based on regular grids is much easier. If we are in-
terested in a parallel version for adaptive sparse grids, however, we have to
consider a more complicated approach to be described now. Hierarchies of
refined grids, where neighbour nodes may reside on different processors, have
to be managed. That is, appropriate ghost nodes have to be created and
updated, when the parallel algorithm performs a communication operation.
This happens both in the numerical part, where an equation system is set
up and solved, and in the non-numerical part, where grids are refined and
partitioned, see for standard grids also [1,10,8].

The key point of any dynamic data partition method is efficiency. We look
for a cheap, linear time heuristic for the solution of the partition problem.
Furthermore the heuristic should parallelise well. Here, parallel graph coars-
ening is popular. It results in a coarser graph on which then a more expensive
heuristic on a single processor can be employed. However, graph coarsening
is at least a linear time algorithm itself and lowers the quality of the heuristic
further. This is why we look for even cheaper partition methods. They are
provided by the concept of space-filling curves, see Figure 1.

In addition, key-based addressing is used, which substitutes the memory
address stored in a pointer (see [18,2]) with an integer value uniquely describ-
ing the entity. In our case, each node can be characterised by its position in
space, that is the local coordinates. The advantage in the sequential version
is simplicity and little administration overhead. The parallel version is based
on the distribution of nodes to the processors. Each processor owns a subset
of the sparse grid. Each node is present on exactly one processor. Further-
more, the space-filling curve, which provides a unique mapping of nodes to
processors, immediately reveals, which processor to ask for a node. Other grid
partitioning heuristics in contrast would require a substantial bookkeeping
effort to decide where a node belongs to.

The FD operator 4 is composed of three basic operations, the transform
to hierarchical basis H;, the one-dimensional finite difference stencil D; and
the transform back to nodal basis Hj_l, which have to be implemented in
parallel versions separately.

— Transform to hierarchical basis H;: Each processor computes the values
related to its own nodes. Prior to the computation, in a communication
step the required ghost nodes are filled. The ghost nodes for this operation
are determined by the direct parent nodes of nodes on the processor.

— Transform to nodal basis Hj_l: This operation can be done in place and
requires more communication than the previous one. The sequential im-
plementation cycles through a tree top down, so that the parent nodes are
processed before their children. A straightforward parallelisation would

Parallel Sparse Grids 5

be to insert a communication step before each tree level is traversed.
However, this results in a number of communication steps (= communi-
cation latencies) proportional to the maximum number of levels, which
is unacceptable for large sparse grids.

We propose an alternative implementation here, which is based on a
single communication step before the computation: Along with with the
parents of a node, the whole tree of their grand-parents and so on are
required as ghost nodes on a processor. When the ghost nodes are filled,
the computation can be done top down, such that the values on all nodes
owned by the processor and additionally their parents, grand-parents
and so on are computed. Hence, this implementation requires a larger
amount of computation and a larger volume of communication than the
straightforward version. However, the overall execution time is smaller
because of the number of communication steps is reduced to one.

— Finite difference operator D;: First the appropriate ghost nodes for the
difference stencil is filled and afterwards the stencils are applied to all
nodes, which belong to the processor. The main point here is the searching
procedure for the neighbour nodes that are necessary for adaptive refined
sparse grids. We create the necessary ghost nodes, so that the sequential
search algorithm can be re-used in this situation.

Following the a posteriori error estimation together with some refinement
rules, new nodes are created. This can be done also in parallel. Afterwards,
a repartitioning has to takes place. The execution time of this repartitioning
step usually is so low that it is below .01 of the execution time spent in the
numerical algorithms, see also [19].

5 Numerical Experiments

All numbers reported are scaled CPU times measured on our parallel com-
puting cluster ‘Parnassy’. It consists of dual processors Pentium 1T 400MHz,
interconnected by a Myrinet network in a fat-tree configuration with a Lin-
pack performance of 29.7 GFlop/s. The MPI message passing protocol imple-
mentation Mpich-PM showed a bandwidth between each two boards of 850
Mbit/s, see also [15].

We consider adaptively refined sparse grids for a problem with singular-
ities, where the sparse grids are refined towards a singularity located in the
lower left corner. Table 1 depicts wall clock times in the adaptive case. Due
to the solution-dependent adaptive refinement criterion, the single processor
version contained slightly more nodes, indicated by *. For the same reason,
the equation systems have been solved up to rounding error instead of the
weaker discretization error condition in the uniform sparse grid experiment.

We obtain a good scaling, both in the number of unknowns and in the
number of processors, i.e. the times are proportional to the number of un-
knowns for a fixed number of processors and are indirect proportional to

6 Gerhard Zumbusch

Fig. 1. An example of a sparse grid partitioned and mapped to four processors. The
sparse grid (left) can be represented by its nodes in coordinate space. A Hilbert
type space-filling curve, which fills the domain, is laid over the grid (right). Each
node lies on the curve. Now we straighten the space-filling curve with the nodes
fixed to the curve (bottom). The interval is cut into four sub-intervals assigned to
one processor, each containing the same number of nodes.

the number of processors. Increasing the number of processors speeds up the
computation accordingly. The parallel efficiencies are somewhat smaller than
for the uniform refinement case, due to the imbalance in the tree of nodes.
This is also the case for other parallel adaptive methods. Hence this paralleli-
sation approach does perform very well, even in the range of higher number of
processors 16 and 32, where a number of other strategies are not competitive.

6 Conclusion

We have proposed a parallelisation scheme for adaptive sparse grids with
space-filling curves. Up to now, only standard sparse grids could be run on a
distributed-memory parallel computer, based on the ‘combination’ technique
for regular sparse grids. We have demonstrated the parallel efficiency of the
approach for finite difference type of discretizations, both for regular and for
adaptively refined sparse grids. This method can be applied to discretizations
of many different PDEs and to other wavelet systems than the hierarchical
basis.

References

1. P. Bastian. Load balancing for adaptive multigrid methods. STAM J. Sci.
Comput., 19(4):1303-1321, 1998.

2. H.-J. Bungartz. Dinne Gitter und deren Anwendung bei der adaptiven Lésung
der dreidimensionalen Poisson-Gleichung. PhD thesis, TU Minchen, Inst. fir
Informatik, 1992.

Parallel Sparse Grids 7

time processors

nodes| 1/h 1 2 4 8 16 32

81 4| 0.03 0.04 0.05 0.07 0.11
201 8| 0.07 0.05 0.05 0.07 0.08 0.09
411} 16{ 0.21 0.13 0.12 0.13 0.17 0.20
711 32| 0.78 0.48 0.38 0.36 0.41 0.51
1143| 64| 2.60 1.49 1.06 0.93 0.92 1.14
1921| 128| 8.69 5.99 3.70 2.88 2.70 2.83
3299| 256|39.3* 20.7 13.8 9.62 7.79 7.32
6041| 512| 177" 91.0 56.8 39.5 28.6 22.0
11787(1024| 949* 525 271 177 138 88.2

22911|2048 1280 761 660

Table 1. Parallel execution times for adaptive sparse grids. A 3D convection-
diffusion problem is solved and the solution times in seconds on Parnass2 are given.

w

10.

11.

12.

13.

G. Faber. Uber stetige Funktionen. Mathematische Annalen, 66:81-94, 1909.
M. Griebel. The combination technique for the sparse grid solution of PDEs
on multiprocessor machines. Parallel Processing Letters, 2:61-70, 1992.

M. Griebel. Adaptive sparse grid multilevel methods for elliptic PDEs based
on finite differences. In Proc. Large Scale Scientific Computations, Varna,
Bulgaria. Vieweg, 1998.

M. Griebel, M. Schneider, and C. Zenger. A combination technique for the
solution of sparse grid problems. In P. de Groen and R. Beauwens, editors,
Tterative Methods in Linear Algebra, pages 263-281. IMACS, Elsevier, 1992.
M. Griebel and G. Zumbusch. Adaptive sparse grids for hyperbolic conserva-
tion laws. In Proceedings of Seventh International Conference on Hyperbolic
Problems, Zurich. Birkhauser, 1998.

M. Griebel and G. Zumbusch. Hash-storage techniques for adaptive multi-
level solvers and their domain decomposition parallelization. In J. Mandel,
C. Farhat, and X.-C. Cai, editors, Proc. Domain Decomposition Methods 10,
volume 218 of Contemporary Mathematics, pages 279-286, Providence, Rhode
Island, 1998. AMS.

A. Harten. Multi-resolution representation of data: A general framework. STAM
J. Numer. Anal., 33:1205-1256, 1995.

M. T. Jones and P. E. Plassmann. Parallel algorithms for adaptive mesh re-
finement. STAM J. Sientific Computing, 18(3):686-708, 1997.

J. T. Oden, A. Patra, and Y. Feng. Domain decomposition for adaptive hp
finite element methods. In Proc. Domain Decomposition 7, volume 180 of
Contemporary Mathematics, pages 295-301. AMS, 1994.

M. Parashar and J. C. Browne. On partitioning dynamic adaptive grid hier-
archies. In Proceedings of the 29th Annual Hawai International Conference on
System Sciences, 1996.

S. Roberts, S. Kalyanasundaram, M. Cardew-Hall, and W. Clarke. A key
based parallel adaptive refinement technique for finite element methods. In
Proc. Computational Techniques and Applications: CTAC ’97. World Scientific,
1998. to appear.

8

14

15.

16.

17.

18.

19.

Gerhard Zumbusch

T. Schiekofer. Die Methode der Finiten Differenzen auf dinnen Gittern zur
Losung elliptischer und parabolischer partieller Differentialgleichungen. PhD
thesis, Universitat Bonn, Inst. fir Angew. Math., 1998. to appear.

M. A. Schweitzer, G. Zumbusch, and M. Griebel. Parnass2: A cluster of dual-
processor PCs. In W. Rehm and T. Ungerer, editors, Proceedings of the 2nd
Workshop Cluster-Computing, number CSR-99-02 in Informatik Berichte. Uni-
versity Karlsruhe, TU Chemnitz, 1999.

S. A. Smolyak. Quadrature and interpolation formulas for tensor products of
certain classes of functions. Dokl. Akad. Nauk SSSR, 4:240-243, 1963.

V. N. Temlyakov. Approximation of functions with bounded mixed derivative.
Proc. of the Steklov Institute of Mathematics, 1, 1989.

C. Zenger. Sparse grids. In W. Hackbusch, editor, Proc. 6th GAMM Seminar,
Kiel, 1991. Vieweg.

G. Zumbusch. Dynamic loadbalancing in a lightweight adaptive parallel multi-
grid PDE solver. In B. Hendrickson, K. Yelick, C. Bischof, 1. Duff, A. Edel-
man, G. Geist, M. Heath, M. Heroux, C. Koelbel, R. Schrieber, R. Sinovec, and
M. Wheeler, editors, Proceedings of 9th SIAM Conference on Parallel Process-
ing for Scientific Computing (PP 99), San Antonio, Tx., 1999. STAM.

