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Abstract The numerical simulation of dynamic wetting processes is of interest for a
vast variety of industrial processes, where practical experiments are costly and time-
consuming. In these simulations, the dynamic contact angle is a key parameter, but
the modeling of its behavior is poorly understood so far. In this article, we simulate
droplet impact on a dry flat surface by using two different contact angle models.
Both models show good qualitative and quantitative agreement with experimental
results. For our numerical method, we solve the three-dimensional Navier-Stokes
equations with finite differences on a staggered grid. The free surface is captured
by a level-set method, and the contact angle determines the shape of the level-set
function at the boundary. Additionally, we investigate the mass-conservation prop-
erties of two volume-correction methods, which are invaluable for the analysis of
the droplet behavior.

1 Introduction

The numerical simulation of dynamic wetting processes is of critical importance
for a number of industrial applications such as coating, lamination, lubrication or
ink- and spray-painting. All these applications have in common that liquid comes
into contact with a solid surface and that the phase boundary is in motion. Thereby,
a moving contact-line is produced along the substrate, which is the line where the
air is replaced by the liquid. The quality of the wetting highly controls the qual-
ity of the industrial end products and, therefore, needs to be optimized to reduce
wetting defects and instabilities such as air entrainment or ribbing. Here, numeri-
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2 Droplet Impact with Dynamic Contact Angle Boundary Conditions

cal simulation and optimization is a reliable and cheap alternative to the traditional
time-consuming adjustment of machines and the expensive waste of raw materials.

Despite the industrial interest in the numerical simulation of dynamic wetting
processes, the existing theoretical and numerical approaches so far often fail to cor-
rectly predict the results of practical experiments. This is due to two fundamental
difficulties which constitute the so-called ‘moving-contact line problem’: First, the
classical theory of continuum fluid mechanics (i.e. the Navier-Stokes equations with
the no-slip condition for the velocity) predicts a shear stress singularity at the mov-
ing contact line. The second difficulty is the modeling of the contact angle which
is usually required as a boundary condition and determines the shape of the free
surface at the contact line.

Numerous mathematical models have been developed to remedy the moving
contact-line problem. Most of them remove the stress-singularity, but are unable to
describe the contact angle and flow behavior as observed in practical experiments;
see [15] and the references therein. One of the few models, which considers the
overall physical context of the moving contact line problem, is Shikhmurzaev’s in-
terface formation model [15]. This model not only removes the stress-singularity,
but is also able to describe a large variety of flows with singularities such as break-
up, coalescence or cusp formation.

In this article we couple a reduced version of Shikhmurzaev’s interface formation
model with our three-dimensional incompressible two-phase Navier-Stokes solver.
For this solver, we employ a standard discretization on uniform Cartesian staggered
grids and use Chorin’s projection approach. The free surface between the two fluid
phases is tracked with the level-set approach. Here, the interface conditions are im-
plicitly incorporated into the momentum equations by the continuum surface force
(CSF) [2] method. Surface tension is evaluated using a smoothed delta function and
third order interpolation. The parallelization of the code is based on conventional
domain decomposition techniques using MPI. This allows us to deal with reason-
ably fine mesh resolutions in three dimensions.

For the simulation of dynamic wetting problems, our numerical scheme has to
be mass conservative. Otherwise, the comparison of, e.g., numerically evaluated
droplet diameters with those from experiments is impossible. However, the con-
ventional level-set approach is rather renowned for its lack of mass conservation.
Therefore, we investigate two different techniques for a better conservation of mass
in this article [4, 20].

A further difficulty stems from the need for a correct implementation of the con-
tact angle, which is necessary as a boundary condition for the level-set function φ
for the computation of curvature, the level-set advection step and the reinitialization
equation. Here, we present a new Neumann boundary condition for the level-set
function, which is a refined version of the approach used in [9, 13].

The contribution of this article is as follows: We present a simple and effective
way to include dynamic contact angle models into three-dimensional flow solvers.
Furthermore, we extend the droplet impact study by Yokoi et al. [23] to three di-
mensions and compare their contact angle model to the reduced interface formation
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model by Shikhmurzaev [15]. Thereby, we obtain droplet shapes and diameters,
which compare well with those from practical experiments.

The remainder of this article is organized as follows: The first section is dedicated
to the details of the moving contact line problem, i.e. to the difficulties involved in
the modeling of the dynamic contact angle and to its numerical implementation. In
the second section, we discuss our Navier-Stokes solver and the implemented level-
set method. We then explain how the contact angle can be included as a boundary
condition for the level-set function. Additionally, the dynamic contact angle has to
be modeled: Here, we present the model by Yokoi et al. and the interface forma-
tion model by Shikhmurzaev. In the third section, we describe the discretization of
our two-phase Navier-Stokes solver. We discuss the discretization of the contact an-
gle boundary condition and the incorporation of the dynamic contact angle models
into our flow solver. Moreover, we present two different methods to improve on
the mass conservation properties of our approach. In the forth section, we simulate
droplet impact behavior on a dry surface and compare the evolving droplet shapes
and diameters to those obtained from practical experiments. Furthermore, we com-
pare our two improved mass conservation methods and discuss their convergence
behavior. Finally, we give some concluding remarks.

2 The Moving Contact Line Problem

In this section, we describe the moving contact line problem and some of the current
mathematical models for its solution. In this discussion, we include the two contact
angle models by Yokoi et al. [23] and Shikhmurzaev [15], which we use in this arti-
cle. Furthermore, tackling the problem from a numerical point of view, we address
the question how the dynamic contact angle can be incorporated into our two-phase
Navier-Stokes solver.

2.1 Modeling Issues

The key to the solution of the moving contact line problem is twofold: On the one
hand, the stress singularity has to be removed and, on the other hand, the contact-
angle behavior has to be modeled accurately.

In the framework of the so-called ‘slip models’ both problems are addressed
independently: First, the no-slip condition for the velocity is relaxed and the fluid is
allowed to slip at the contact line (see, e.g., [7, 8, 17]), which eliminates the stress
singularity. Then, the contact angle θd is often chosen as a function

θd = f (Ca,θs,k1,k2, ...). (1)
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of the contact line speed with the capillary number Ca, the static contact angle θs
and material-related parameters ki, which are used to fit the numerical results to the
experiments.

A fundamental difficulty with these models is, for example, that they fail to de-
scribe the dependency of the contact angle on the flow rate, which is however, ob-
served in experiments [15]. Thus, the dynamic contact angle is not simply a function
of the contact-line speed and the material properties of the contacting media as as-
sumed in equation (1). Instead, even for the same contact line speed, the dynamic
contact angle can be changed by e.g. changing the flow field or geometry near the
contact line. For example, in the curtain coating context, Blake et al. [1] have shown
that for a fixed substrate speed, the observed contact angle varies with the flow rate
and curtain height. This effect has been termed the ‘hydrodynamic assist of wet-
ting’ and it cannot be described by an equation such as (1) – where the contact angle
depends foremost on the speed of the contact line.

In the theory of thin films, the moving contact line problem is circumvented by
assuming that the surface is already covered by a thin film of fluid [22]. Then, with
a scaled lubrication approximation, one can derive Tanner’s law

U = Aθ 3, (2)

where θ is now an apparent contact angle, which can be defined anywhere on the
free surface. Here, U is a dimensionful velocity and A depends on the fluid prop-
erties. This law is often used for the modeling of the contact angle behavior in the
framework of slip models as a variant of equation (1) and becomes

Ca = k(θd−θs)
3. (3)

This use of Tanner’s law is conceptually questionable [15, p. 165], since there is
no actual contact angle involved in the derivation of Tanner’s law in the first place.
In this article, we use a related kind of slip model which has been improved and
extended by Yokoi et al. [23].

Instead of an ad-hoc and separable treatment of the moving contact-line prob-
lem, Shikhmurzaev [15] considers its overall physical context in the derivation of
his model for the formation and disappearance of interfaces. Let us shortly state
his idea: We know from experimental observation that the dynamic contact angle
differs from the static one and that the Young equation (Fig. 1) holds. Therefore,
we can conclude that the surface tensions in the Young equation become dynamic
as well, when the phase boundary is in motion. The fluid particles at the different
interfaces relax to their new equilibrium values. This process occurs in finite time
and is captured by Shikhmurzaev’s interface formation model.

In contrast to other approaches, the interface formation model not only removes
the singularity, but is able to predict the experimentally observed rolling motion
of the interface, as well as the dependence of the contact angle on the flow field.
Within the literature, Shikhmurzaev’s interface formation model has been consid-
ered scarcely so far, which is mostly due to its complexity (see [15] and the refer-
ences therein and [19]). Therefore, we consider a reduced version of the interface
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Fig. 1 Young’s force dia-
gram: σsg = σsl +σlg cosθ .
Here, σsg is the solid/gas, σsl
the solid/liquid and σlg the
liquid/gas interfacial tension.

formation model for small capillary numbers in this article. However, even this sim-
plified model has been scarcely used so far [5, 11, 16].

Obviously, there are fundamental differences between both contact angle models
considered in this article: The contact angle model by Yokoi et al. lacks a thor-
ough underlying mathematical theory. It is developed for and based on a single
droplet impact experiment only. A straightforward application of this model to the
numerical simulation of other wetting experiments is difficult. Rather, this model is
a prescription of contact angle values which fit well with a specific practical exper-
iment. Since the prescribed dynamic contact angle values are very close to the ones
observed in the experiment, the modeling error for the specific experiment is very
small. Therefore, it gives us the opportunity to test our contact angle implementation
as well as our methods for volume conservation and compare them to the results of
the experiments.

On the other hand, behind Shikhmurzaev’s model, there is a whole theoretical
framework to explain the formation and disappearance of interfaces. This model is
able to describe a vast variety of dynamic wetting phenomena. However, we use
the reduced interface formation model, which is derived for small capillary num-
bers only. Therefore, we expect to obtain an approximate and smoothed contact line
speed-contact angle relationship compared to the practical experiments and Yokoi’s
results in [23]. Still, the reduced model is an excellent trade-off between the complex
full interface formation model and an easily implementable and reasonably accurate
dynamic contact angle model. This will be seen in the remainder of this article.

2.2 Numerical Issues

Numerically, we have to address the difficulty of the correct implementation of the
contact angle, which is needed as a boundary condition for the level-set function φ .

In the literature, a number of different approaches for the contact angle boundary
condition of the level-set function can be found: Here, the simplest model is the zero
Neumann boundary condition, which effectively fixes the contact angle to be 90◦.
If θ is variable, the implementation is less clear. One of the main approaches [23,
24] was developed by Sussman [21]. Here, the contact angle is taken into account
by extrapolating the liquid interface, represented by the level-set function, into the
solid. This approach requires the construction of an appropriate extension velocity,
but the exact location of the position of the contact-line is not needed. Moreover,
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in a method by Spelt [18], contact-line position and contact angle or contact line
velocity are determined iteratively.

In [25] the movement of the contact line is induced by diffusion. Instead of using
a direct relation between the gradient of the level-set function and the normal of
the interface, a regularized normal vector field is constructed to avoid flux of ϕ
over the boundary. Thereby, two additional regularization parameters appear, which
influence the shape of the free surface at the contact line.

In [9, 13] a Neumann boundary condition for the level-set function is derived as
follows: Let our fluid flow domain Ω be a box and x = (x,y,z) ∈ Ω . Then, at e.g.
the wall y = 0, the geometric relation

nl ·nw = cosθ (4)

holds for the contact angle θ . Here, nl is the outward surface normal and nw =
(0,−1,0)t is the outward normal at y = 0. Now, a Neumann boundary condition for
the level-set function can be prescribed by rewriting relation (4) as

φy =−cosθ for ‖φ‖= 1. (5)

However, the condition ‖φ‖ = 1 is not always fulfilled. Thus, the recovery of this
property of the level-set function is achieved by some reinitialization equation in the
first place. In this article, we extend this approach and show that

φy =−cotθ
√

φ 2
x +φ 2

z for 0 < θ < π (6)

without further assumptions on φ . Similar techniques have already been used by
Fang et al. [6] and Mourik [12] within the volume-of-fluid approach. Note here, that
our approach is consistent with the extension technique by Sussman [21] for the
case that the geometry is a box. Like in his approach, we do not need to locate the
exact contact line position. Additionally, relation (6) allows us to set contact angle
boundary conditions for complex geometrical objects in our fluid flow domain1.

3 Mathematical Model

In this section, we discuss the mathematical model for the three-dimensional flow of
two immiscible incompressible fluids. We show how the contact angle can become
a boundary condition for the level-set function and present two different models for
the dynamic contact angle as given by Yokoi et al. [23] and Shikhmurzaev [15].

1 Then, contact angles at corner cells of the geometry have to fulfill further restrictions as described
in [6].
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3.1 The Navier-Stokes solver

The behavior of the fluids is governed by the incompressible Navier–Stokes equa-
tions defined on an open set Ω = Ω1 ∪Ω2 ∪Γf ⊂ R3 with Lipschitz boundary
Γ := ∂Ω . The two fluid domains Ω1 and Ω2 and the free interface Γf := ∂Ω1∩∂Ω2
depend on time. We capture the interface by a level-set formulation, and surface ten-
sion effects are included via the CSF method [2]. Thus,

ρ(φ)(∂tu+(u ·∇u))+∇p = ∇ · (µ(φ)S)−σκ(φ)δ (φ)∇φ +ρ(φ)g
∇ ·u = 0

(7)

with time t ∈ [0,T ], fluid velocity u, pressure p and volume forces g. Here, µ is the
viscosity and ρ the density. The fluid stress tensor is defined by S=∇u+(∇u)t . The
curvature of the free surface is given by κ , the surface tension is denoted by σ , and
δ is the one-dimensional Dirac-delta functional introduced in the CSF approach.

We choose a level-set function φ as a signed-distance function such that

φ(x, t)

< 0 if x ∈Ω1
= 0 if x ∈ Γf
> 0 if x ∈Ω2

(8)

holds and the Eikonal equation ‖∇φ‖= 1 is fulfilled. The interface between the two
fluids is then given by the zero level-set of φ :

Γf (t) = {x : φ(x, t) = 0} (9)

for all times t ∈ [0,T ]. The level-set function is advected by the pure transport equa-
tion

φt +u ·∇φ = 0 (10)

with initial value φ0(x) = φ(x,0).
With the help of φ we define the density ρ and the viscosity µ on the whole

domain, i.e., on both fluid-phases. To this end, we set

ρ(φ) := ρ2 +(ρ1−ρ2)H(φ) and µ(φ) := µ2 +(µ1−µ2)H(φ), (11)

where H(φ) denotes the Heaviside function which is defined as

H(φ) :=


0 if φ < 0
1
2 if φ = 0
1 if φ > 0.

(12)

The Navier-Stokes equations (7) have to be complemented with boundary condi-
tions for the pressure, the velocity and the level-set function.

In the next subsection, we present a boundary condition for the level-set function,
which is required for the transport equation (10), the level-set reinitialization and
the computation of the curvature κ . This condition determines the shape of the free
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surface at the contact line and, therefore, depends on the dynamic contact angle θd
as soon as the contact line is moving.

Finally, in addition to the standard equations of fluid dynamics described above,
the dynamic contact angle has to be modeled properly, which will be presented in
Subsections 3.3 and 3.4.

3.2 The Contact Angle as a Boundary Condition

As already exemplified in Subsection 2.2, we now formulate a Neumann boundary
condition for the level-set function, which incorporates the dynamic contact angle.
Thus, at the boundary of Ω the contact angle is defined by the geometric relation

nl ·nw = cos(θ), (13)

where θ is the contact angle (static or dynamic), nw is the outward normal drawn
from the flow region into the boundary, and nl is normal to the level-set function
which points from the fluid phase with lower level-set values to the one with higher
values, i.e.

nl =
∇φ
‖∇φ‖

. (14)

Then, the boundary condition for the level-set function is given in the following
proposition.

Proposition 1. At any wall of Ω , whose outward normal is given by ni
w = ±ei for

some i ∈ {1,2,3}, the level-set’s i-th derivative φxi can be related to θ by

φxi =±cot(θ)

√√√√ 3

∑
j=1, j 6=i

φ 2
x j

(15)

for any angle 0 < θ < π .

Proof. We prove this proposition here for two walls with outward normals n2
w =−e2

and n2
w = e2, since the cases ni

w = ±ei for i = 1 or i = 3 can be treated in the very
same way. For both boundaries, we have to distinguish between the cases 0 < θ ≤ π

2
and π

2 < θ < π .
Let n2

w =−e2 = (0,−1,0)t . Then, from equation (13) and (14), we have

nl ·n2
w = cos(θ)⇔−φx2 = cos(θ)‖∇φ‖. (16)

First, let 0 < θ ≤ π
2 . Then, 0 ≤ cosθ < 1 and sin2(θ) = 1− cos2(θ) > 0. Since

cos(θ) ≥ 0, we conclude that −φx2 ≥ 0 as well, and define the positive function
φ̃ :=−φx2 with φ̃ 2 = φ 2

x2
. Inserting φ̃ into equation (16), we obtain

φ̃ = cos(θ)
√

φ 2
x1
+ φ̃ 2 +φ 2

x3
.
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Now, only positive variables constitute both sides of the equation. Thus, we are
allowed to take the square of both sides and still obtain the equivalent relation

φ̃ 2 = cos2(θ)(φ 2
x1
+ φ̃ 2 +φ 2

x3
)

⇔ φ̃ 2 (1− cos2(θ)
)

= cos2(θ)(φ 2
x1
+φ 2

x3
)

⇔ φ̃ 2 =
cos2(θ)
sin2(θ)

(φ 2
x1
+φ 2

x3
)

⇔ φ̃ =
cos(θ)
sin(θ)

√
φ 2

x1
+φ 2

x3
.

Again, taking the root to obtain the last equivalency relation is only allowed since
all parts of the equation (including sin2(θ)) are greater than or equal to zero. Then,
for 0 < θ ≤ π

2 , we have sin(θ) =
√

1− cos2 θ . Resubstituting φ̃ =−φx2 , we obtain
the desired result

φx2 =−cot(θ)
√

φ 2
x1
+φ 2

x3
.

Now, let π
2 < θ < π . Then,−1 < cosθ < 0 and sin2(θ) = 1−cos2(θ)> 0. From

equation (16), we know that φx2 > 0, since cosθ < 0. We define the positive function
c̃ :=−cos(θ) with c̃2 = cos2(θ) and obtain likewise

φx2 = c̃
√

φ 2
x1
+φ 2

x2
+φ 2

x3
⇔ φx2 =−cot(θ)

√
φ 2

x1
+φ 2

x3
.

In the second part of this proof, the outward normal of the boundary is given by
n2

w = e2. Then, from equation (13) and (14), we have

nl ·n2
w = cos(θ)⇔ φx2 = cos(θ)‖∇φ‖. (17)

Again, we consider the two cases 0 < θ ≤ π
2 and π

2 < θ < π . First, let 0 < θ ≤ π
2 .

Then, 0≤ cosθ < 1 and sin2(θ) = 1− cos2(θ)> 0. From equation (17), we know
that φx2 > 0, since cosθ > 0. Similar to the first case above, we can then show that

φx2 = cos(θ)
√

φ 2
x1
+φ 2

x2
+φ 2

x3
⇔ φx2 = cot(θ)

√
φ 2

x1
+φ 2

x3
.

Now, let π
2 < θ < π . Then, −1 < cosθ < 0 and sin2(θ) = 1− cos2(θ) > 0. From

equation (17), we know that −φx2 > 0, since cosθ < 0. We define the positive func-
tion c̃ := −cos(θ) with c̃2 = cos2(θ) and the positive function φ̃ := −φx2 with
φ̃ 2 = φ 2

x2
. With these definitions and similar equivalency relations as in all the other

cases, we obtain

φ̃ = c̃
√

φ 2
x1
+ φ̃ 2 +φ 2

x3
⇔ φx2 = cot(θ)

√
φ 2

x1
+φ 2

x3
.

ut
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The above proposition allows us to write the contact angle θ as a boundary condition
of the level-set function. Now, the hard part is a reliable model for the dynamic
contact angle θ = θd . In the next two subsections, we will describe two different
dynamic contact angle models, which we will later employ in our numerical method.

3.3 The Dynamic Contact Angle Model by Yokoi et al. (C1)

Yokoi et al. [23] propose a dynamic contact angle model, which combines Tanner’s
law (3) with a static advancing and receding contact angle, since Tanner’s law holds
for small capillary numbers only. In the combined model, similar to what is observed
in experiments, the contact angle tends to both the limit of a maximum advancing
angle θmda as the dimensionful contact line speed ucl increases and the limit of a
minimum dynamic receding angle θmdr as ucl decreases:

θd =

min{θs +
(

µucl
σka

) 1
3
,θmda} if ucl ≥ 0

max{θs +
(

µucl
σkr

) 1
3
,θmdr} if ucl < 0.

(C1)

Here, θs is the static contact angle, and the material-related parameters ka and kr
are adjusted to fit the numerical results to the results obtained measurements. Fur-
thermore, the stress singularity is circumvented by inducing numerical slip for the
velocity at the contact line.

3.4 The Dynamic Contact Angle Model by Shikhmurzaev (C2)

The second model for the dynamic contact angle at small capillary number is a re-
duced version of Shikhmurzaev’s interface formation model [15]. The full model
accounts for different classes of flows, where interfaces are formed or destroyed.
The equations, which capture the surface tension relaxation process and have to be
solved on the surface itself, are derived from mass, momentum and energy con-
versation. For the case of small capillary and Reynolds numbers, we can analyze
them as a local problem whose solution can be incorporated into various types of
global flow problems. Here, lots of experimental works simplify the verification of
numerical results.

We follow the description in [15]. There, the flow domain is split into two asymp-
totic regions, and in both the limit Ca→ 0 is studied analytically. In the inner asymp-
totic region to leading order in Ca the dynamic contact angle and the dimensionless
contact-line speed V are related by
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cos(θs)− cos(θd) =
2V

[
cos(θs)−σsg +(1−ρs

G)
−1(1+ρs

Gu(12)(θd ,kµ))
]

V +
[
V 2 +1+(cos(θs)−σsg)(1−ρs

G)
] 1

2
(C2)

with θs the static contact angle, kµ the gas-to-liquid viscosity ratio, and ρs
G ≡ 1−

σsg−σsl
λ cosθd

, where σsg and σsl denote the surface tension in the gas-solid and liquid-
solid interface, respectively, and λ is a material parameter. Here, the radial velocity
u(12)(θd ,kµ)) must be derived from the solution in the outer region.

In particular, in the outer region to leading order in Ca the free-surface curvature
becomes zero and one obtains a flow problem in a wedge [15]. The solution to this
problem was given by Moffatt in [10] as

u(12)(θd ,0) =
sinθd−θd cosθd

sinθd cosθd−θd
. (18)

If the viscosity of the gas phase is taken into account, Moffatt’s solution becomes

u(12)(θd ,kµ) =
(sinθd−θd cosθd)K(θ2)− kµ(sinθ2−θ2 cosθ2)K(θd)

(sinθd cosθd−θd)K(θ2)+ kµ(sinθ2 cosθ2−θ2)K(θd)
, (19)

with θ2 = π−θd and K(θ) = θ 2− sin2 θ [15].
Alternatively, u(12)(θd ,kµ) in (C2) can be replaced by the inner limit of the outer

solution, i.e. by a numerically computed far field velocity sufficiently close to the
contact line. This alters the dynamic contact angle for the same contact line speed
and is exactly what is observed in laboratory experiments as the nonlocal influence
of the flow field/geometry on the dynamic contact angle.

As described in [15], we introduce the reference velocity U and the scaling factor
Sc by

U =

√
γρs

0(1+4αβ )
τβ

and Sc =

√
σ2τβ

µ2γρs
0(1+4αβ )

. (20)

Here, σ is the equilibrium surface tension, α and β are phenomenological constants
depending on the ‘state of the interface’, γ is a phenomenological constant describ-
ing the compressibility of the fluid, τ is the surface tension relaxation time and ρs

0 is
the surface density for zero surface tension, both of which can be treated as material
constants. Thus, Sc depends on the material properties of the fluid and the interface.
Then, the dimensionless contact line velocity is given by

V =
ucl

U
=

uclµ
σ

Sc, (21)

and Sc can be chosen to fit the numerical results to the experimental data.
Let us demonstrate how the dimensionless parameter Sc influences the results of

equation (C2). As an example, we consider a droplet of distilled water which im-
pacts on a silicon wafer onto which hydrophobic silane has been grafted. The equi-
librium contact angle of the substrate with distilled water is 90◦, and the relevant
physical and numerical parameters of this experiment are listed in Table 1. Thus,
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Table 1 Parameters for distilled water impacting on a silicon wafer onto which hydrophobic silane
has been grafted.

distilled water: µl =1.0−3 kg/ms, ρl =13 kg/m3 surface tension: σ =7.2−2 N/m
air: µg =1.82−5 kg/ms, ρg =1.250 kg/m3 surface thickness: ε = 1.9h

forces: g =(0 ,−9.81, 0)m/s2 boundary conditions: no-slip
inital velocity: u =(0 ,−1.0,0)m/s droplet diameter 2.28−3 m

θmda: 114◦ ka: 9.0−9
θmdr: 52◦ kr: 9.0−8

Fig. 2 Dynamic contact angle vs. dimensionful contact-line speed for different values of Sc given
in [rad] and [m/s], respectively. From left to right: Sc = 0.1, 1.5, 5.5, 11.5, 18.5, 25.5. The straight
dashed line corresponds to the maximum of the dynamic advancing contact angle of 114◦observed
in the experiments.

equation (C2) can be resolved with respect to positive V as given in [15]. Since
we are interested in the relationship between the dynamic contact angle and the di-
mensionful contact line velocity, we also use equation (21) to plot the dimensionful
speed-angle relationship for different values of Sc. The remaining parameters are
chosen according to Table 1, ρs

G = 0.9, σsg = 0, and u(12)(θd ,0) is determined by
Moffatt’s solution (18). The effect of the variation of Sc is shown in Figure 2: We
see that the contact angle as a function of ucl increases from its static value θs and
tends the faster to 180◦ the more we increase Sc. The horizontal straight red line
indicates the maximum dynamic advancing contact angle of 114◦ determined from
the experiments. For Sc = 11.5 this value is reached at a maximum contact line
speed of about ucl = 0.4m/s.
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4 The Numerical Method

In this section, we describe the discretization of the Navier-Stokes equations (7)
in space and time with special emphasis on the level-set method. We discuss the
implementation of the contact angle boundary condition and of the two contact angle
models. Last, we present two methods for a better conservation of mass within the
level-set method.

4.1 Discretization of the Navier-Stokes equations and the Level-Set
Method

We discretize the Navier-Stokes equations with finite differences on a staggered
uniform grid and use an explicit second-order Adams-Bashforth time integration
scheme. The solution process is based on the well-known projection method: First,
an intermediate velocity field u∗, which may not be divergence free, is advanced
by the Adams-Bashforth time scheme; second, we compute a correction ∇pn+1

of the intermediate velocity field by the pressure Poisson equation which leads to
a divergence free velocity field un+1. Thus, we treat the pressure implicitly and
solve the Poisson equation by a Jacobi-preconditioned conjugate gradient method.
A fifth-order weighted essentially non-oscillatory (WENO) scheme is used for the
discretization of the convective transport of the Navier-Stokes equations (7) as well
as for the level-set transport (10). The diffusion term is computed by using second-
order central differences.

For the treatment of the free surface between the two fluid phases we employ the
level-set approach [3, 4]. Here, the interface conditions are implicitly incorporated
into the momentum equations by the continuum surface force (CSF) [2] method.

Note, that we have to reinitialize the level-set function φ ∗ after each transport step
to recover its signed distance property |∇φ n+1|= 1 without disturbing the zero level-
set. To generate the appropriate signed-distance function φ n+1(x) with the same
zero level-set as φ ∗(x), we solve the following pseudo-transient Hamilton–Jacobi
problem to steady state

φ ∗τ = sign(φ0)(1−|∇φ ∗|) (22)

with initial value φ0 = φ ∗(x). Again, we discretize this equation by a fifth or-
der WENO scheme in space and employ a third-order Runge-Kutta for its time-
integration.

For reasons of numerical stability, we employ a regularized signum function

S(φ ∗) =
φ ∗√

(φ ∗)2 + |∇φ ∗|2(δx2)
. (23)

and a smoothed Heaviside and Dirac-delta functional in an ε-environment of the
free surface. Then the Hamilton–Jacobi problem reads
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φ ∗τ = S(φ ∗)(1−|∇φ ∗|). (24)

For further details on the implementation of our Navier-Stokes solver NaSt3DGPF
and of the level-set method see [3] and [4].

4.2 Discretization of the contact angle boundary condition

The discretization of the contact angle boundary condition (15) is very similar to the
discretization of the standard Neumann boundary condition for the level-set func-
tion. Again, we exemplify this at the wall y = 0, where equation (15) becomes

φy =−cot(θ)
√

φ 2
x +φ 2

z . (25)

On the staggered grid (Fig. 3), the level-set values are discretized in the cell
center. Then, with grid cells denoted by integers (i, j,k),

φi, j,k−φi, j−1,k

δy j
=−cot(θ)

√
φ 2

xi, j,k
+φ 2

zi, j,k
, (26)

where δy j is the mesh width. The derivatives φxi, j,k and φzi, j,k can be discretized by
central differences. This equation can be solved for the staggered grid’s ghost cell
value φi, j−1,k, which gives the required boundary condition for φ .

The values for the contact angle θ are computed by the discretized dynamic
contact angle models of Yokoi et al. (C1) or Shikhmurzaev (C2), which we will
discuss subsequently.

4.3 Implementation of the Contact Angle Models

In this subsection, we describe how the contact angle models are incorporated into
our two-phase Navier-Stokes solver. For this, both models require the computation

Fig. 3 On the staggered grid,
the level-set function φ is
discretized at the cell center
and the velocity is discretized
at the face centers of the grid.
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Fig. 4 The contact line velocity is evaluated at the contact point xp at the intersection with the line
z = zmax/2.

of the contact line velocity ucl. Additionally, for Shikhmurzaev’s model, we also
need the velocity u(12)(θd ,kµ).

In the following, we focus on the example of drop impact, and we assume that
the drop spreads symmetrically (cf. Fig. 4). Then, ucl is taken as the velocity value u
in x-direction which is closest to the contact point xp at the line zmax/2 and still lies
in the droplet’s fluid phase. This simplified computation of the contact line velocity
is also done by Yokoi et al. [23] and we stick to it for the sake of comparison.

Furthermore, we compute u(12) either by Moffatt’s solution (18) or we use a
velocity value of the far field. This far field velocity value is arbitrarily chosen to be
about two grid cells away from the contact line. Thus, if e.g. at y= 0, φi,1,k ·φi+1,1,k <
0 and φi,1,k in the liquid phase, u(12) = ui−1,2,k. In the following, we will refer to these
two options for u(12) as (M1) and (M2), respectively.

For (M1), the contact angle equation (C2) becomes nonlinear and we invoke
a Newton iteration method to solve for θd . For (M2), the equation can be solved
directly by evaluating the arccos-function. Here, if the argument of the arccos is not
in [−1,1], we use Moffatt’s solution (M1) instead.

All in all, the contact line models fit into our flow solver as follows:

1. Let θ n be given from the previous time-step.
2. Solve the level-set advection equation (10) with the boundary condition (15) and

θ = θ n.
3. C1: Use a velocity value near xn+1

p for un+1
cl and compute θ n+1 from equa-

tion (C1)
C2: Use a velocity value near xn+1

p for un+1
cl . Compute the radial velocity u(12)

by (M1) or (M2) and θ n+1 from equation (C2).
4. Solve the level-set reinitialization (24) with the boundary condition (15) and θ =

θ n+1.
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Finally, note that we use the no-slip condition for the velocity for both contact angle
models. On the staggered grid, as drawn in Figure 3, the no-slip condition is never
fulfilled exactly, which introduces enough numerical slip to eliminate the stress sin-
gularity at the contact line.

4.4 Methods for Mass Conservation

An important issue – especially for level-set methods – is mass conservation. In
the reinitialization step the current level-set function is replaced by a smoother, less
distorted function which has the same zero level-set. However, this also introduces
numerical diffusion to the solution which leads to difficulties with volume conserva-
tion. To this end, we used a global and a local volume correction method to remedy
this problem.

For the global volume correction, already described and investigated in [4], we
employ a Picard iteration after the reinitialization step:

φ n+1← φ n+1 +ω(V (φ 0)−V (φ n+1)). (27)

Here, Vi(φ 0) is the initial volume of Ω 0
2 and V (φ n+1) :=

∫
Ω H(φ n+1)dx denotes the

volume of Ω n+1
2 at time t = n+1 after the reinitialization procedure. The relaxation

parameter ω depends on the specific problem and is chosen to minimize the number
of iterations in the relaxation process.

For the local volume correction, we follow [20] in improving the re-distancing
algorithm of the level-set function by formulating a constraint which conserves the
volume of the domain and prevents the straying of the level-set function from its
initial position. We require that

∂t

∫
Ω

H(φ ∗) = 0 (28)

and modify the Hamilton-Jacobi problem by

φ ∗τ = sign(φ0)(1−|∇φ ∗|)+λ f (φ ∗). (29)

Then we determine the time-dependent function λ by

∂τ

∫
Ω

H(φ ∗) =
∫

Ω
H ′(φ ∗)φ ∗τ =

∫
Ω

H ′(φ ∗)(sign(φ0)(1−|∇φ ∗|)+λ f (φ ∗)) , (30)

i.e.

λ =
−
∫

Ω H ′(φ ∗)sign(φ0)(1−|∇φ ∗|)∫
Ω H ′(φ ∗) f (φ ∗)

. (31)

The choice of
f (φ ∗) = H ′(φ ∗) |∇φ ∗| (32)
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ensures that the correction takes place at the interface only.
The discretization of the local mass correction in two-dimensions is described

in [20]. In three dimensions, the numerical integration of some function g over the
domain

Ωi jk = {(x,y,z) ∈Ω : xi− 1
2
< x < xi+ 1

2
, y j− 1

2
< y < j j+ 1

2
, zk− 1

2
< z < zk+ 1

2
},

changes to

∫
Ωi jk

gi jk dx≈ 1
78

[
52gi jk(δxiδy jδ zk)+

1

∑
p,q,r=−1

(p,q,r)6=(0,0,0)

(
gi+p; j+q;k+r(δxiδy jδ zk)

)]
.

Furthermore, in the original article [20], a non-smooth signum-function is em-
ployed. For better conservation properties and numerical stability, we again choose
a smooth variant and replace sign(φ0) by S(φ ∗) as given in equation (24).

This volume correction is ‘local’ since the mass should remain unchanged in any
sub-domain of Ω , so that

∫
H(φ ∗) is preserved in every grid cell. It is also ‘local’

in a negative sense, since it only prevents the straying of the level-set function, but
does not correct mass errors which occur due to the numerical diffusion introduced
when solving the transport equation (10).

5 Numerical Results

In this section we evaluate the mathematical and numerical models for the example
of a droplet impact simulation. Specifically, we consider a droplet of distilled water
which impacts on a silicon wafer onto which hydrophobic silane has been grafted.
The equilibrium contact angle of the substrate with distilled water is 90◦, and the
relevant physical and numerical parameters of this experiment have already been
listed in Table 1.

The numerical simulation of this specific droplet impact scenario is valuable
due to various reasons: First, Yokoi et al. [23] provide experimental results for the
droplet behavior. Thus, we can compare the droplet shape, droplet diameter and
dynamic contact angle from the physical experiments with the numerical results
of our dynamic contact angle models (C1) and (C2). Additionally, we do not have
to re-adapt the parameters ka and kr in (C1), since the contact angle model has
been designed for this specific experiment. Second, Yokoi et al. [23] present two-
dimensional numeric results in their work, which we can use for comparison with
our three-dimensional results as well. Last, in this specific droplet impact experi-
ment, the numerically computed droplet behavior is very sensitive to the applied
contact angles: For example, using the static contact angle instead of a dynamic
contact angle model causes the drop to rebound; the same happens if only static ad-
vancing and receding contact angles are applied; see [23] for further details. There-
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fore, this specific kind of droplet impact simulation is a very sensitive test case for
our Navier-Stokes solver, the implemented contact angle boundary condition and
the two contact angle models.

However in the work of Yokoi et al., we also see the difficulty in obtaining ac-
curate experimental results. There, the presented droplet shapes are obtained from
a different experiment (E1) than the measured contact angle and diameter (E2). For
the latter, only the right hand side of the droplet has been observed to increase the
resolution around the contact line. If we compare the experimental droplet shapes
in Figure 5 and 6 with the experimentally measured droplet diameter in Figure 7,
we see that at times t = 10 and 15 ms the diameter of the droplet shapes (obtained
from E1) is visibly smaller than the one given in Figure 7 (obtained from E2), which
gives us an indication of the involved measuring error.

Let us give an example for the discrepancy between experiments (E1) and (E2).
In Figures 5, 6 and 8 at t = 4 ms all numerical methods predict a horizontally
wider droplet than the laboratory experiment (E1), which is depicted in the first row
of the respective figures. However, if you compare this result with the diameter–
time curve in Figures 7 and 9, the numerically computed droplet diameter at t =
4 ms reproduces the droplet diameter from the laboratory experiment (E2) nearly
perfectly – at least for the highest numerical resolution, which is also used in the
pictures for the droplet shapes.

In the following, we present our results in three steps: First, we take Yokoi’s
model (C1) and compare the experimentally evaluated droplet shapes and diameters
with our three-dimensional simulation computed by the pure level-set method and
the two volume correction methods. Second, we use two variants of the reduced
interface formation model (C2) to simulate the same droplet with global volume
correction only. In a last step, we discuss the mass conservation behavior of our
numerical methods.

5.1 The Contact Angle Model by Yokoi

In this subsection we present the results of the droplet impact simulation with the
Navier-Stokes equations (7) and (C1). The numerically obtained droplet shapes
(white) during the impact are shown in Figures 5 and 6 compared with experiments
by [23] (black).

The results of the laboratory experiments (E1) are always shown in the first row
of the respective figures. The second row corresponds to the computed numerical
solution with the pure level-set method, i.e. without any volume-correction methods:
We see that during the first three points in time (Fig. 5), when inertia is dominant,
these droplet shapes compare very well with the experimental snapshots from (E1).
At t = 10 ms the simulated droplet shape is still remarkably close to the experiment,
while at the next time steps, the numerical droplet fails to reproduce the correct
droplet height and width of the experiment (Fig. 6). This is partly due to its obvious
loss in mass: Despite the very high resolution, the droplet still looses about 20% of
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Exp.

Pure

Glob.

Loc.

Fig. 5 Droplet impact t = 0 to 4 ms. In descending order: experimental results, pure level-set
method, level-set with global volume-correction, level-set with local volume-correction.

its volume during the simulation. Thus, the comparison with the droplet diameter
measured in the laboratory experiment (E2) becomes difficult as well. In Figure 7,
we see that the pure level set method is unable to produce the final droplet diameter
for all applied resolutions. Nevertheless, at about t = 4 ms the maximum diameter
is well recovered and the overall behavior of the diameter-time curve is close to the
experiment. We see here that the simulated droplet diameter at times t = 10 and 15
ms is closer to the experiment (E2) than to (E1). All in all, despite its obvious loss
in volume and within the experimental measuring error, the pure level set method is
able to produce simulation results, which correspond well with the experimentally
observed droplet behavior.

At this point, we nevertheless see the need for volume-conserving simulation
methods. Therefore, we simulate the droplet impact with the global volume correc-
tion and the local volume correction. The resulting droplet shapes are presented in
the third and forth row of Figures 5 and 6.
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Exp.

Pure

Glob.

Loc.

Fig. 6 Droplet impact t = 10 to 30 ms. In descending order: experimental results, pure level-set
method, level-set with global volume-correction, level-set with local volume-correction.

We expect that the results from the global volume correction are very close to
those by the pure level-set method, since the fix-point iteration tends to simply in-
flate the droplet. This is exactly what we observe in Figure 5 and 6: The droplet
shapes recovered by the global correction method are similar to those by the pure
level set method, but the volume of the drop is now preserved up to 100%. Again
at the last three time steps, the droplet diameter produced by the global volume cor-
rection method is closer to experiment (E2) than to (E1). If we compare the droplet
diameter with (E2), we see that its evolution over time is also very similar to the
pure level-set method’s results (Fig. 7). Due to the improved volume conservation,
the maximum droplet diameter at t = 4 ms and the final droplet diameter are cap-
tured excellently by the global volume correction method.

Again, if we apply the local volume correction, we get results which compare
better with (E2) than with (E1): The droplet diameter results agree well with the
experimental ones, as we can see from Figure 7. For the first three points in time,
the droplet shapes with the local volume correction method are in good agreement
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with the other simulation results and the experiments (Fig. 5). However, we then get
a slightly larger deviation from (E1) at times t = 10 and 15 ms (Fig. 6), where the
droplet width is more overshot than with the other two methods.

If we compare our two volume correction methods, we first note that both are
able to conserve the volume of the droplet up to nearly 100% for the highest grid
resolution. Second, we observe that the global volume correction simply inflates the
droplet everywhere, while the local volume correction tends to widen the droplet
horizontally. All in all, we conclude that both correction methods are in good agree-
ment with the experimental results and lie well within the scope of the experimental
error.

In a next step, we compare our three-dimensional results to the two-dimensional
ones by Yokoi et al. obtained by a coupled level-set and volume-of-fluid method.
The 2D droplet diameter is given in Figure 7 and is nearly indistinguishable from ex-
periment (E2). Therefore, we must expect the computed 2D droplet shapes to deviate
from (E1). These 2D droplet shapes can be found in Figure 8 of [23], where they
are visualized as three-dimensional results. Contrary to our simulation, the droplet
shape at t = 2 ms tends more to a pyramid shape and does not convincingly show the
three layers obtained in the experiment. This might well be due to the lacking third
dimension. Later, the two-dimensional results are comparable with our 3D results,
but the width of the droplet at t = 10 ms is even larger than in our case. Here, we
have to remember that the two parameters ka and kr in (C1) were used to fit Yokoi’s
2D numerical results to the experiment (E2), and we did not adapt these parameters
for our 3D simulation. Even so, the 2D and 3D simulations show remarkably good
agreement with each other.

5.2 The Contact Angle Model by Shikhmurzaev

In this subsection, we present results for the droplet impact simulation with the re-
duced interface formation model (C2) combined with the global volume correction
for the level-set method. We present two different variants of the model: On the one
hand we take Moffatt’s solution for the radial velocity (M1) and on the other hand
we choose a far field velocity value to incorporate the influence of the flow field on
the dynamic contact angle (M2). The parameter Sc is chosen to be 11.5 for (M1)
and 5.5 for (M2). We set the values ρs

G = 0.9 and σsg = 0 according to [15].
The results of the laboratory experiments (E1) are always shown in the first row

of Figure 8. The droplet shapes computed by (M1) are given in the second row. As
with (C1), the first three results are very close to the experimental snapshots, which
is to be expected, since inertia dominates capillary effects. In addition, also at the
later time steps, the computed droplet shapes agree very well with (E1). At t = 10 ms
the height and width of the droplet is reproduced very accurately. Further, at t = 15
ms, the droplet even forms a little dent before it meets the substrate and compares
best with the experiment of all simulation results. A look at the droplet diameter
evolution (Fig. 9) confirms that the interface formation model, although it is not
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Fig. 7 Comparison of droplet diameter over time with experimental results. Our 3D simulations
with the pure level set method (black), global (blue) and local (red) volume correction compared to
2D numerical and experimental results by Yokoi et al. [23]. The theoretical final droplet diameter
is given by the straight dashed line. The thin black line corresponds to the 2D numerical results and
is very close to that of the experiments given by the thin dashed line. Above, the grid resolution is
121×61×121 and below it is 241×121×241.

specifically based on this experiment, produces nearly as good results as Yokoi’s
model: The maximum and final droplet diameter are captured, and the computed
curve is very close to that of the experimental results.

In a next step, we compare the angle-speed curve of the interface formation
model (M1) with Yokoi’s 2D numerical results and the experiments. We expect that
Yokoi’s model, since it is fit to this experiment, produces dynamic contact angles
which are very close to the ones measured in the experiment. From Shikhmurzaev’s
model we expect a smooth angle-speed relationship equal to our preliminary com-
putation in Figure 2. This is exactly what we see in Figure 10: The contact angles
computed by (C1) are nearly identical to the experimental values, while the ones
computed by (C2) develop in a smoother and nearly linear fashion but show a larger
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Exp.

M1

M2

Exp.

M1

M2

Fig. 8 Droplet impact t = 0 to 30 ms. In descending order: experimental results, reduced interface
formation model with Moffatt’s solution (M1) and Sc = 11.5, reduced interface formation model
with far field velocity (M2) and Sc = 5.5
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Fig. 9 Comparison of droplet diameter over time with experimental results. Our 3D simulations
with M1 (black) and M2 (red) compared to 2D numerical and experimental results by Yokoi et
al. [23]. The theoretical final droplet diameter is given by the straight dashed line. The thin black
line corresponds to the 2D numerical results and is very close to that of the experiments given by
the thin dashed line. Above, the grid resolution is 241×121×241.

deviation from the experiment. For zero contact line velocity, the model predicts the
equilibrium contact angle of 90◦. Here, the values measured in the experiment are
between 52◦and 110 ◦. This is due to the space-time resolution of the experiment,
where the contact line velocity is considered to be zero, if the liquid interface does
not cross any pixel. Interestingly, however, the smooth speed-angle curve predicted
by the interface formation model, lies quite well in between the maximum advanc-
ing and minimum receding contact angle of the experiment.

The droplet shapes computed by (M2) are close to the results by by (M1) (Fig. 8).
Additionally, the droplet diameter varies only little between both models (Fig. 9).
Furthermore, in Figure 10, the angle-speed curve shows that both models compute
very similar dynamic contact angles in specific regimes of the contact line velocity.
For large contact line velocities, (M2) overshoots the maximum dynamic advancing
angle determined from the laboratory experiment even more than (M1). However,
for small contact line velocities, (M2) tends to be closer to the minimum dynamic
receding angle than (M1). The curve for (M2) is scattered, since we use Moffatt’s
solution, if the contact angle cannot be evaluated directly from the arccos of equa-
tion (C2). Here, we observe that for similar contact line velocities both Moffatt’s
solution and an inserted far field velocity value give similar results with a difference
of only a few degrees for the computed contact angle.

All in all, the results by Shikhmurzaev’s reduced interface formation model are
most promising. Although it is not based on this specific droplet experiment, the
computed droplet shapes are very close to those observed in the experiment. Also,
the evolving droplet diameter and speed-angle relationship support these very good
results.
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Fig. 10 Angle-speed relationship of a 3D simulation with the reduced interface formation model
M1 (black) M2 (red) compared to experiments (+) and 2D simulation with Yokoi’s model (dashed),
both taken from [23].

Table 2 Details of the mesh used for the mass convergence study (left) and grid convergence of
initial mass towards the analytical solution.

Level l ∆xl ∆yl ∆zl dofl m0
l ρl

1 2.206−4 2.280−4 2.206−4 31×15×31 6.511−9 –
2 1.121−4 1.103−4 1.121−4 61×31×61 6.281−9 2.020
3 0.565−4 0.561−4 0.565−4 121×61×121 6.225−9 1.965
4 0.284−4 0.283−4 0.284−4 241×121×241 6.211−9 1.985

Table 3 Volume conservation in % at t = 30 ms.

Level l Pure Local Global

1 0 64.4 100.0
2 39.5 91.5 100.0
3 62.8 96.4 100.0
4 78.9 99.3 100.0

5.3 Mass Conservation

In this subsection, we investigate the mass convergence behavior of our numerical
schemes for the impact of water on hydrophobic siliane. First, we measure how
well the analytical sphere volume can be initially approximated on our computa-



26 Droplet Impact with Dynamic Contact Angle Boundary Conditions

tional grids. Then, we investigate how much volume can be conserved with the pure
level-set method and the two volume correction methods at time t = 30 ms, which
corresponds to the last time-step in Figure 6. Last, we study the convergence of
the mass error. The details of the grids used for our convergence study are given in
Table 2.

The analytical volume of the sphere, computed from the parameters in Table 1 is
V = 4

3 πr3 = 6.2059−9. We evaluate the initial mass of the droplet as

m0
l = ∑

xi

H(φ 0
l (xi))∆xl∆yl∆zl (33)

on grid levels l = 1...4 as given in Table 2. Then, at time t = 0, the discrete error
norm and convergence rate are evaluated as

el =
∣∣∣ml−V

∣∣∣ and ρ l+1 =
log el

el+1

log2
, (34)

since there holds 2hl ≈ hl+1 for the discrete mesh width. The convergence results
are given in Table 2. We clearly see that initial sphere volume shows second-order
convergence towards the analytical value.

In a next step, we quantify the volume loss of our numerical schemes after 30 ms,
which corresponds to the last droplet shapes displayed in Figure 6. We expect that
the local volume-correction will perform worse than the global volume correction
at least on the coarser grids, since the local volume correction only prevents the
straying of the level-set function, but does not correct mass errors which occur due
to the numerical diffusion introduced when solving the transport equation (10). The
global volume correction, on the other hand, employs an absolute stopping criterion
of ε = 10−7 in the fixed point iteration and we anticipate to find a very small error
in volume for all mesh sizes.

Thus, we measure the volume

mt
l = ∑

xi

H(φ t
l (xi))∆xl∆yl∆zl (35)

at t = 30 ms and compare it to the initial sphere volume at t = 0. In Table 3 the
percentage of the still remaining volume is given. Mass conservation with the pure
level-set method is difficult for this particular case: On the coarsest grid, no mass is
left after t =30 ms and on the finest grid, we still loose about 20% of mass. However,
both the local and the global volume correction method tend to near 100% mass
conservation on the finest grid. As we expected, the global volume correction is
able to conserve 100% of mass on all meshes, while the local volume correction
performs worse on coarser grids.

Last, we distinguish the effects of the pure level-set method and the local and
global volume correction on the overall convergence behavior in space and time at
t = 2 ms. We compute the discrete error norm and convergence rate by
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Table 4 Table of mass convergence for the three level-set methods.

Pure Level-Set Local Correction Global Correction

Level el
pure ρ l

pure el
local ρ l

local el
global ρ l

global

1 1.587−1 – 9.572−2 – 3.453−8 –
2 7.152−2 1.150 2.954−2 1.696 2.769−8 0.318
3 2.633−2 1.442 1.114−2 1.408 4.342−8 −0.649
4 8.971−3 1.553 3.897−3 1.515 6.412−8 −0.562

el =

∣∣mt
l−m0

l

∣∣∣∣m0
l

∣∣ and ρ l+1 =
log el

el+1

log2
, (36)

since there holds 2hl ≈ hl+1 for the discrete mesh width. Our results are summarized
in Table 4, where we see at least first order convergence for the pure level-set method
and the local volume correction in space and time. As expected, the discrete error
for the global volume correction is constant < 10−7 due to the absolute stopping
criterion. Therefore, we obtain a convergence rate ρ l

global ≈ 0.

6 Conclusion

In this paper we presented the numerical simulation of droplet impact with two dif-
ferent models for the dynamic contact angle in three space dimensions. First, we
used Yokoi’s model. The resulting droplet shapes were very close to those of the ex-
periments and the previous two-dimensional results. Furthermore, we measured the
droplet diameter over time, which confirmed the validity of the model and our nu-
merical method. Here, we saw that both, the global and the local volume correction,
are able to conserve the mass of the droplet, while still giving accurate results.

In a next step, we employed the reduced interface formation model by Shikhmur-
zaev for the droplet impact simulation, combined with the local volume correction.
Here, we used Moffatt’s solution for the radial velocity on the one hand, and a far
field velocity value near the contact line but within the bulk flow on the other hand.
The droplet shapes computed with this model were very close to each other and in
excellent agreement with the experiment, as also confirmed by the computation of
the droplet diameter over time.

Additionally, we compared the contact line speed–contact angle curve of Shikh-
murzaev’s model with the angle–speed curves of the experiments and Yokoi’s
model. As was to be expected, Shikhmurzaev’s reduced model gives an approxi-
mate smoothed angle–speed relationship compared to the practical experiments and
Yokoi’s results. Thus, a future challenge might be to implement the full interface for-
mation model without any restrictions for the capillary number in three dimensions.
But still, the reduced model offers an excellent trade-off between the complex and
costly full model and an easily implementable and accurate dynamic contact angle
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model, which is not restricted to a specific wetting experiment like Yokoi’s model
is.

In a last step, we compared the pure level-set method with the two volume cor-
rection methods concerning their ability to conserve mass. On the finest grid, both
the local and the global volume-correction were able to conserve about 100% of
the droplet’s mass, while the pure level-set method only retained about 80%. We
are currently implementing a coupled level-set and volume-of-fluid method, which
should further improve the mass conservation behavior of our flow solver.
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