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Abstract

Sparse grids, combined with gradient penalties provide an attractive tool for regularised least squares
fitting. It has earlier been found that the combination technique, which builds a sparse grid function using
a linear combination of approximations on partial grids, is here not as effective as it is in the case of elliptic
partial differential equations. We argue that this is due to the irregular and random data distribution, as
well as the proportion of the number of data to the grid resolution. These effects are investigated both
in theory and experiments. As part of this investigation we also show how overfitting arises when the
mesh size goes to zero. We conclude with a study of modified “optimal” combination coefficients who
prevent the amplification of the sampling noise present while using the original combination coefficients.
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1 Introduction

In this paper we study the convergence behaviour of a grid based approach for the regression problem arising
in machine learning. A set of (noisy) data points xi in a d-dimensional feature space is given, together with
associated values yi. Often one assumes that a function f∗ describes the relation between the predictor
variables x and the response variable y. One now wants to (approximately) reconstruct the function f∗ from
the given data. This allows the prediction of the function value for any newly given data point for future
decision-making. The dimension d of the attribute domain can be high and m, the number of data points,
can be large, both pose a severe computational challenge.

We investigate a discretisation approach introduced by Garcke et.al. [9] for the regularised least squares
ansatz [18]. It uses a gradient based regularisation and discretises the minimisation problem with an inde-
pendent grid with associated local basis functions. The approach is similar to the numerical treatment of
partial differential equations by finite element methods. This way the data information is transferred into
the discrete function space defined by the grid and its corresponding basis functions.

To cope with the complexity of grid-based discretisation methods in higher dimensions the sparse grid
combination technique [11] is applied to the regression problem [9]. Here, the regularised least squares ansatz
is discretised and solved on a certain sequence of anisotropic grids, i.e., grids with different mesh sizes in
each coordinate direction. The sparse grid solution is then obtained from the (partial) solutions on these
different grids by their linear combination using combination coefficients which depend on the involved grids.
The approach was shown to successfully treat machine learning problems in an intermediate dimensional
regime, d . 20, with only a linear scaling in the number of data and therefore suitable for a large number of
data [8, 9].
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Following empirical results in [5], which show instabilities of the combination technique in certain situ-
ations, we investigate in this article the convergence behaviour of full and sparse grid discretisation of the
regularised regression problem. There are two approaches to analyse the convergence behaviour of the
combination technique. Originally, extrapolation arguments were used where a certain error expansion for
the partial solutions is assumed [4, 11]. Alternatively, one can view the combination technique as an approx-
imation of a projection into the underlying sparse grid space, which is exact only if the partial projections
commute [14]. Both these assumptions do not hold for the regularised regression problem; the combination
technique can actually diverge. While we investigated the projection view in detail in Hegland et. al. [14],
we consider here the extrapolation view.

Of particular interest is the effect of the gradient based regularisation in higher dimensions since it does
not enforce continuous functions as it only gives H1-functions. Its systematic theoretical investigation is the
main contribution of this paper.

Already in two dimensions empirical investigations show divergence of the combination technique depend-
ing on the number of data and the regularisation parameter. This is partly due to the the finiteness of the
random sample. This effect vanishes asymptotically as the number of data points goes to infinity. Therefore
the assumed error expansion needed for the extrapolation arguments for the convergence of the combination
technique does not hold for a fixed number of data. Furthermore, after deriving a discrete version of the
Sobolev inequality we formulate the overfitting effect in the data points of grid based approaches in higher
dimensions and finish our theoretical investigations by showing how the solution between the data points
converges to a constant.

It was seen that applying the optimised combination technique [13, 14] repairs the instabilities of the
combination technique to a large extent. The combination coefficients now not only depend on the grids
involved, but on the function to be reconstructed as well, resulting in a non-linear approximation approach.
We show in numerical experiments the stable behaviour of this numerical scheme. Note that recent empirical
studies show competetive results of this approach for a number of standard regression benchmarks in machine
learning [6].

2 Regularised sparse grid regression and the combination tech-
nique

In this section we introduce the regularised least squares problem in a finite dimensional space V , establish
the corresponding linear systems of equations and describe the sparse grid combination technique.

2.1 Regularised least squares regression

We consider the regression problem in a possibly high-dimensional space. Given is a data set

S = {(xi, yi)}mi=1 xi ∈ Rd, yi ∈ R,

where we denote by x a d-dimensional vector or index with entries x1, . . . , xd. We assume that the data has
been obtained by sampling an unknown function f∗ which belongs to some space V of functions defined over
Rd. The aim is to recover the function f∗ from the given data as well as possible. To achieve a well-posed
(and uniquely solvable) problem Tikhonov-regularisation theory [17, 18] imposes a smoothness constraint on
the solution. We employ the gradient as a regularisation operator which leads to the variational problem

fV = argmin
f∈V

R(f)

with

R(f) =
1
m

m∑
i=1

(f(xi)− yi)2 + λ||∇f ||2, (1)

where yi = f∗(xi). The first term in (1) measures the error and therefore enforces closeness of f to the
labelled data, the second term ||∇f ||2 enforces smoothness of f , and the regularisation parameter λ balances
these two terms.
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Let us define the following semi-definite bi-linear form

〈f, g〉rls =
1
m

m∑
i=1

f(xi)g(xi) + λ〈∇f,∇g〉 (2)

and choose V so that 〈·, ·〉rls is a scalar product on it. With respect to this scalar product the minimisation
(1) is an orthogonal projection of f∗ into V [13], i.e., if ‖f − f∗‖2rls ≤ ‖g − f∗‖2rls then R(f) ≤ R(g). As the
point evaluations f 7→ f(x) are not continuous in the Sobolev space H1 for d ≥ 2 we do not get a H1-elliptic
problem. For the space V we thus suggest to choose a finite dimensional subspace V ⊂ H1 of continuous
functions containing the constant function.

In the following we restrict the problem explicitly to a finite dimensional subspace VN ⊂ V with an
appropriate basis {ϕj}Nj=1. A function f ∈ V is then approximated by

fN (x) =
N∑
j=1

αjϕj(x). (3)

We now plug this representation of a function f ∈ VN into (1) and obtain the linear system of equations

(B>B + λm · C)α = B>y (4)

and therefore are able to compute the unknown vector α for the solution fN of (1) in VN . C is a symmetric
N×N matrix with entries Cj,k = 〈∇ϕj ,∇ϕk〉, and corresponds to the smoothness penalty. B> is a rectangular
m ×N matrix with entries (B>)j,k = ϕj(xk) and transfers the information from the data into the discrete
space, B correspondingly works in the opposite direction. The vector y contains the data labels yi and has
length m.

In particular we now employ a finite element approach, using the general form of anisotropic mesh sizes
ht = 2−lt , t = 1, . . . , d and number the grid points using the multi-index j, jt = 0, . . . , 2lt . We use piecewise
d-linear functions

φl,j(x) :=
d∏
t=1

φlt,jt(xt), jt = 0, . . . , 2lt

where the one-dimensional basis functions φl,j(x) are the so-called hat functions. We denote with Vn the
finite element space which has the mesh size hn in each direction.

2.2 Combination technique

The sparse grid combination technique [11] is an approach to approximate functions defined over higher
dimensional spaces. Following this ansatz we discretise and solve the problem (1) on a sequence of small
anisotropic grids Ωl = Ωl1,...,ld . For the combination technique we now in particular consider all grids Ωl
with

|l|1 := l1 + ...+ ld = n− q, q = 0, .., d− 1, lt ≥ 0,

set up and solve the associated problems (4). The original combination technique [11] now linearly combines
the resulting discrete solutions fl(x) ∈ Vl from the partial grids Ωl according to the formula

f cn(x) :=
d−1∑
q=0

(−1)q
(
d− 1
q

) ∑
|l|1=n−q

fl(x).

The function f cn lives in the sparse grid space

V sn :=
⊕

|l|1 = n− q
q = 0, ..., d− 1 lt ≥ 0

Vl.

The space V sn has dimension of order O(h−1
n (log(h−1

n ))d−1) in contrast to O(h−dn ) for conventional grid based
approaches.
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Figure 1: Grids involved for the combination technique of level n = 4 in two dimensions.

For the two-dimensional case, we display the grids needed in the combination formula of level 4 in Figure
1 and give the resulting sparse grid.

The approximation properties of the combination technique are connected to sparse grids in two differ-
ent ways. First, using extrapolation arguments, it can be shown that the approximation property of the
combination technique is of the order O(h2

n · log(h−1
n )d−1) as long as error expansions of the form

f − fl =
d∑
i=1

∑
j1,...,jm⊂1,...,d

cj1,...,jm(hj1 , . . . , hjm) · h2
j1 · . . . · h

2
jm (5)

for the partial solutions hold [11].
Second, viewing the minimisation of (1) as a projection, one can show that the combination technique

is an exact projection into the underlying sparse grid space (and therefore of approximation order O(h2
n ·

log(h−1
n )d−1)) only if the partial projections commute, i.e., the commutator [PV1 , PV2 ] := PV1PV2 − PV2PV1

is zero for all pairs of involved grids [14].

3 Asymptotics for h→ 0

3.1 Empirical convergence behaviour

We first consider the convergence behaviour of full grid solutions for a simple regression problem, measured
against a highly refined grid (due to the lack of an exact solution). As in [5] we consider the function

f(x, y) = e−(x2+y2) + x · y.

in the domain [0, 1]2 where the data positions are chosen randomly. To study the behaviour with different
number of data we take hundred, thousand, ten-thousand, hundred-thousand and one million data points. In
Figure 2, left, we show the difference between a full grid solution of level l and one of level n = 12 using the
functional (1) as a norm, in this experiment we use λ = 0.01. We see that the difference shows two different
types of convergence behaviour, first it displays the usual h2 convergence, but this convergence deteriorates
when h gets smaller. Furthermore, the more data is used, the later this change in the reduction rate takes
place. Qualitatively these observations do not depend on the regularisation parameter λ, in Figure 3, left,
we provide results for a smaller regularisation parameter of λ = 0.0001.
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Figure 2: Convergence against highly refined solution measured using (1) for λ = 0.01. Left: full grid, Right:
sparse grid combination technique.

Figure 3: Convergence against highly refined solution measured using (1) for λ = 0.0001. Left: full grid,
Right: sparse grid combination technique.

A somewhat different picture arises if we employ the sparse grid combination technique. In Figure 2,
right, we show the behaviour of the difference of the solution with the combination technique and the full
grid solution of level n = 12, again using the functional (1) as a norm and λ = 0.01. We see a similar
type of behaviour, although the change in convergence is more clearly present. On the other hand, using
λ = 0.0001, shown in Figure 3, right, we observe for the sparse grid combination technique on smaller data
sets an intermediate rise of the difference to the highly refined full grid solution.

In a different experiment we consider the combination technique for the solution and record the following
values: the least squares error on the given data (xi, yi), i = 1, . . . ,m, the regularisation term, and the residual
(1) of the approximation usingm = 1000 data, λ = 10−2, λ = 10−3, λ = 10−4 and λ = 10−6. These values are
presented in Figure 4. We observe that for small regularisation parameters the errors increase, which cannot
happen with a true variational discretisation ansatz for the residual. With larger regularisation parameters
the now stronger influence of the smoothing term results in a (more) stable approximation method. Note
that this instability is more common and significant in higher dimensions.

In the following we will present some theory which supports these observations.

3.2 Case where m = m(h) is large

If the number m of data points is large, the data term in R(f) approximates an integral. For simplicity, we
discuss only the case of Ω = (0, 1)d and a uniform distribution of the data positions, however, most results
hold for more general domains and probability distributions. Then, if f∗(x) is a square integrable random
field with f∗(xi) = yi and

J(f) = λ

∫
Ω

|∇f(x)|2dx+
∫

Ω

(f(x)− f∗(x))2dx (6)
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Figure 4: Value of the least squares error, the regularisation term and the residual (1) for 1000 data using the
combination technique. Top Left: with λ = 10−2, Top Right: with λ = 10−3. Bottom Left: with λ = 10−4,
Bottom Right: with λ = 10−6.

it follows that J(f) ≈ R(f) for large m.
Consider a finite element space VN ⊂ C(Ω) with rectangular elements Q of side lengths h1, . . . , hd and

multilinear element functions. The number k of data points xi contained in any element Q is a binomially
distributed random variable with expectation m·h1 · · ·hd. When mapped onto a reference element I = [0, 1]d,
the data points ξ1, . . . , ξk are uniformly distributed within I.

Let φ be a continuous function on Q with expectation φ =
∫
I
φ(ξ)dξ and variance σ(φ)2 =

∫
I
(φ(ξ)−φ)2dξ.

By the central limit theorem, the probability that the inequality∣∣∣∣∣
∫
I

φ(ξ)dξ − 1
k

m∑
i=1

φ(ξi)

∣∣∣∣∣ ≤ cσ(φ)√
m

holds for m→∞ is in the limit 1√
2π

∫ c
−c e

−t2/2dt.
As we will apply the first lemma of Strang [1] on the bilinear forms corresponding to J(f) and R(f) we

need this bound for the case of φ(ξ) = u(ξ)v(ξ). Using a variant of the Poincaré-Friedrichs inequality [1]
with the observation that the average of w := φ− φ equals zero, the product rule, the triangular inequality,
and the Cauchy-Schwarz inequality we obtain

σ(φ) ≤ C

√∫
I

|∇φ(ξ)|2 dξ ≤ C (‖v‖‖∇u‖+ ‖u‖‖∇v‖) ≤ C‖u‖1‖v‖1.

Transforming this back onto the actual elements Q, summing up over all the elements and applying the
Cauchy-Schwarz inequality gives, with high probability for large m, the bound:∣∣∣∣∣

∫
Ω

u(x)v(x)dx− 1
m

m∑
i=1

u(xi)v(xi)

∣∣∣∣∣ ≤ c‖u‖1‖v‖1√
m

.
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Figure 5: Left: H1-seminorm difference of the solutions of J(f) and R(f) plotted against the number k of
data points per cell. Right: Decrease of functional R.

A similar bound can be obtained for the approximation of the right hand side in the Galerkin equations.
We now can apply the first lemma of Strang to get the bound

‖f − fN‖1 ≤ C
(
‖f − fbest

N ‖1 +
‖f‖1√
k

)
,

where fbest
N is the best approximation of f in the ‖ · ‖1-norm.

This bound is very flexible and holds for any intervals I – it does not depend on the particular hi just on
the product. This is perfectly adapted to the situation of the sparse grid combination technique where one
has on average kl = 2−|l|m data points per element on level |l|. It is known that the combination technique
acts like an extrapolation method for the Poisson problem. This is not the case in the regression problem
as there is no cancellation of the random errors. Assuming that the errors el are i.i.d. we conjecture that
the error of an approximation using the sparse grid combination technique (for large enough k) satisfies a
bound of the form

‖f − fsg‖1 ≤ C

‖f − fbest
sg ‖1 +

‖f‖1
√∑

l c
2
l 2|l|

√
m

 (7)

where, as usual, cl are the combination coefficients and the summation is over all full subgrids of the sparse
grid indexed by the vector of levels l.

To study this effect experimentally let us consider (6) with

f∗(x, y) = −100λ ·
(

(2x− 1)
(

1
4
y4 − 1

3
y3

)
+
(

1
3
x3 − 1

2
x2

)(
3y2 − 2y

))
+100 ·

(
1
3
x3 − 1

2
x2

)(
1
4
y4 − 1

3
y3

)
.

The function f(x, y) = 100 ·
(

1
3x

3 − 1
2x

2
) (

1
4y

4 − 1
3y

3
)

is the solution of the resulting continuous problem.
As indicated, if we now assume that a Monte-Carlo approach is used to compute the integrals∫

Ω
f(x)g(x)dx and

∫
Ω
f(x)f∗(x)dx in the Galerkin equations we obtain the regularised least squares

formulation (1). For different data set sizes we measure the difference between the resulting discrete
solutions using the sparse grid combination technique for the now fixed number of data and the above
continuous solution. In Figure 5, left, we show the behaviour of the error for increasing discretisation levels
measured in the H1-seminorm. At first we have the “usual” decrease in the error, but after about one
sample point per element the error increases instead due to the second term in (7).

3.3 Behaviour as N →∞ – overfitting in data points

The bound (7) holds only asymptotically in k and thus for a fixed number of data and very small mesh size it
will break down. We give a bound for the residuals |yi − fN (xi)| first for general reproducing kernel Hilbert
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spaces and then for the special case of regular grids. For a discussion of the framework of reproducing kernel
Hilbert spaces, see [16, 18]. Let in the following V0 always be the space of constant functions and let the
L2-orthogonal decomposition

VN = V0 ⊕ VN ∩ V ⊥0
hold, where VN∩V ⊥0 is the space of functions with zero mean. The seminorm ‖∇f‖ defines a norm on VN∩V ⊥0 .
As every linear functional is continuous on a finite dimensional linear space there exists a reproducing kernel
kx ∈ VN ∩V ⊥0 such that f(x) = 〈∇kx,∇f〉 for f ∈ VN ∩V ⊥0 , and one easily verifies that for f ∈ VN one gets

f(x) = 〈1, f〉+ 〈∇kx,∇f〉, f ∈ VN .

Introducing this into the functional R gives

R(f) = λ〈∇f,∇f〉+
1
m

m∑
i=1

(
〈1, f〉+ 〈∇kxi

,∇f〉 − yi
)2
.

Due to the representer theorem [18] it follows that the minimiser of R is a linear combination of reproducing
kernels

fN (x) = c0 +
m∑
i=1

cikxi
(x). (8)

Inserting this in the formula for R gives

R(f) = λ cTKc+
1
m

(c01 +Kc− y)T (c01 +Kc− y), (9)

where the kernel matrix K has entries Kij = kxi
(xj) and 1 is the vector of ones.

The reproducing kernel depends on N and to make this clear we will denote k by kN and K by KN in
the following, but also use the notation kN (xi, xj) = kxi

(xj).

Proposition 1. Let V0 = {f = const.}, V1, V2, . . . be a sequence of linear function spaces and fN ∈ VN be
the minimiser of R(f) in VN . Furthermore assume that R(fN ) ≤ C for some C > 0 and all integers N .
Then

|yi − fN (xi)| ≤
2m
(
λ‖y‖∞ + κC1/2m1/2

)
kN (xi, xi)

,

where kN is the reproducing kernel of VN∩V ⊥0 with respect to the H1-seminorm and κ = supN maxi 6=j |kN (xi, xj)|.

Proof. As R(fN ) is bounded the sum of the squared residuals is bounded:

1
m

m∑
i=1

|yi − fN (xi)|2 ≤ C.

Taking the gradient of (9) with respect to c0 and multiplying with m gives for the minimum

mc0 + 1TKNc− 1T y = 0.

Taking the gradient of (9) with respect to c and multiplying the result with m times the inverse of KN gives

mλc+ (c01 +KNc− y) = 0. (10)

In block form this is [
m 1TKN
1 mλI +KN

] [
c0
c

]
=
[
1T y
y

]
.

An elimination step leads then to the saddle point system[
0 1T

1 mλI +KN

] [
c0
c

]
=
[

0
y

]
. (11)
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From equations (8) and (10) one gets yi − fN (xi) = mλci and thus

|ci| ≤

√√√√ m∑
i=1

c2i ≤
1

λm1/2
C1/2.

Now let KN = D+H where D contains the diagonal and H the offdiagonal components of the kernel matrix
KN , respectively, and set r = −Hc. One then has

‖r‖∞ ≤
κ

λ
C1/2m1/2.

Introducing r into equation (11) gives[
0 1T

1 D +mλI

] [
c0
c

]
=
[

0
y + r

]
.

Eliminating c gives

|c0| =

∣∣∣∣∣1T (D +mλI)−1(y + r)

1T (D +mλI)−11

∣∣∣∣∣ ≤ ‖y + r‖∞ ≤ ‖y‖∞ +
κ

λ
C1/2m1/2

as D+mλI has only positive elements and so c0 is uniformly bounded in N . Now (D+mλI)c = y+ r− c01
and one then gets

|ci| ≤ (kN (xi, xi) +mλ)−12‖y + r‖∞
≤ kN (xi, xi)

−12‖y + r‖∞

≤ 2kN (xi, xi)
−1
(
‖y‖∞ +

κ

λ
C1/2m1/2

)
.

With that one achieves the desired bound as

|yi − fN (xi)| = mλ|ci| ≤
2m
(
λ‖y‖∞ + κC1/2m1/2

)
kN (xi, xi)

.

In the following let VN be the space of piecewise multilinear functions of d variables using isotropic
rectangular grids with size h = 1/(N1/d − 1). We will now formulate discrete versions of some well known
analytical results. The foundation is the following lemma which could be called “discrete Sobolev inequality”,
it can be found in [2, 3] for the cases d = 1, 2, 3.

Lemma 1 (Discrete Sobolev inequality). There are constants Cd > 0 such that for all f ∈ VN

1. |f(x)| ≤ Cd‖f‖1 for d = 1

2. |f(x)| ≤ Cd(1 + | log h|)‖f‖1 for d = 2

3. |f(x)| ≤ Cdh1−d/2‖f‖1 for d > 2

where h is the grid size of VN . These bounds are tight, i.e., they are attained for some functions f ∈ VN ,
and, for d > 2 one has

Cd ≥
1√

3d+ 1

(
3
2

)d/2
.

Proof. For d = 1 the inequality is just the usual Sobolev inequality, and the inequality for d = 2 is known
as discrete Sobolev inequality. The case of d > 2 uses the Sobolev embedding H1(Ω) ↪→ L2d/(d−2)(Ω) from
which one gets

‖f‖L2d/(d−2)(Ω) ≤ Ad‖f‖1
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and the inverse inequality
‖f‖L∞(Ω) ≤ Bdh−d/p‖f‖Lp(Ω)

for some constants Ad, Bd and Cd = AdBd.
To show the tightness for d = 1 one chooses f = ky (the reproducing kernel). For d = 2 this can be found

in the literature. Here we show that this is also the case for d > 2. We consider for VN piecewise multilinear
functions with a regular isotropic grid with mesh size h. Choose as f a tent function which is one on an
interior grid point and zero on all other grid points. In one of the cells touching the point where f(x) = 1
one has, after translation,

f(x) =
x1 · · ·xd
hd

.

Since to have an interior point one requires h ≤ 1/2, and f behaves accordingly in all 2d cells, one then has
for the L2 norm ∫

Ω

f(x)2 dx = 2d
(
h

3

)d
and for the L2 norm of a derivative ∂f/∂xi:∫

Ω

(
∂f(x)
∂xi

)2

dx = 2d
(
h

3

)d−1 1
h

and one gets

‖f‖21 =
(

2
3

)d
(hd + 3dhd−2).

Consequently, as ‖f‖∞ = 1 one has

‖f‖∞
‖f‖1

= h1−d/2
(

3
2

)d/2 1√
3d+ h2

from which the tightness of the bound and the lower bound for Cd follow.

A direct consequence of this lemma is a discrete Poincaré inequality which is a generalisation of the
inequality for two dimensions in [3].

Lemma 2 (Discrete Poincaré inequality). Let x0 ∈ Ω and f0 = f(x0) for f ∈ VN . Then there exist constants
Cd > 0 such that

1. ‖f − f0‖ ≤ Cd‖∇f‖ for d = 1

2. ‖f − f0‖ ≤ Cd(1 + | log h|)‖∇f‖ for d = 2

3. ‖f − f0‖ ≤ Cdh1−d/2‖∇f‖ for d > 2.

Proof. The proof follows the proof of the 2D version in [3]. First, by the triangle inequality one has

‖f − f0‖ ≤ ‖f − f‖+ |f − f0|

where f is the mean value of f . The (standard) Poincaré inequality gives ‖f −f‖ ≤ C‖∇f‖ for some C > 0.
For the second term in the sum one uses the discrete Sobolev inequality to get a bound for |f−f0| ≤ ‖f−f‖∞
in terms of the Sobolev norm ‖f − f‖1. One then inserts the (standard) Poincaré inequality to get a bound
for the component ‖f − f‖ of the Sobolev norm and so gets the claimed inequalities.

With these inequalities one can now derive bounds for the values of the energy norm and thus establish
a “discrete V-ellipticity”.

Proposition 2 (Discrete V-ellipticity). The energy norm for the penalised least squares problem on VN
satisfies the inequalities

αd,h‖f‖1 ≤ ‖f‖rls ≤ βd,h‖f‖1, f ∈ VN
where there exist cd and Cd such that for all N , m and λ one has:
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1. αd,h = (cdλ−1/2 + λ−1/2 + 1)−1 and βd,h = Cd +
√
λ for d = 1

2. αd,h = (cdλ−1/2(1 + | log h|) + λ−1/2 + 1)−1 and βd,h = Cd(1 + | log h|) +
√
λ for d = 2

3. αd,h = (cdλ−1/2h1−d/2 + λ−1/2 + 1)−1 and βd,h = Cdh
1−d/2 +

√
λ for d > 2.

Proof. Consider first the upper bounds. One has

‖f‖rls ≤ ‖f‖∞ +
√
λ‖f‖1.

The upper bounds follow then directly from the discrete Sobolev inequality.
For the lower bounds observe that as f ∈ VN is continuous there exists an x0 ∈ Ω such that for f0 = f(x0)

one has

f2
0 =

1
m

m∑
i=1

f(xi)
2.

We then have by the triangle inequality

‖f‖ ≤ ‖f − f0‖+ |f0|

and by the discrete Poincaré inequality

‖f‖ ≤ (cdλ−1/2h1−d/2 + 1)‖f‖rls.

From this one gets the bound

‖f‖1 ≤ (cdλ−1/2h1−d/2 + λ−1/2 + 1)‖f‖rls

for the case d > 2. The other two bounds follow by the same argument.

In the following we achieve specific bounds for kN (xi, xi) and get:

Proposition 3. Let VN be the spaces of piecewise multilinear functions of d variables and isotropic rectan-
gular grids with size h = 1/(N1/d − 1) ≤ h0 for some appropriately chosen h0 ≤ 1/2. Furthermore, let fN
be the minimiser of R(f) in VN and let R(fN ) ≤ C uniformly in N for some C > 0. Then

|yi − fN (xi)| ≤ Cdm(λ‖y‖∞ + κC1/2m1/2)hd−2

for some Cd ≥ 0 and d ≥ 3 and

|yi − fN (xi)| ≤ C2m(λ‖y‖∞ + κC1/2m1/2)(1 + | log h|)−2

for some C2 ≥ 0 and d = 2.

Proof. We use the discrete Sobolev inequality (Lemma 1) to get a lower bound for kN (xi, xi) = kxi
(xi) and

then apply Proposition 1. Here we explicitly show the case d ≥ 3, the case d = 2 is similar.
Now let k̃x be the reproducing kernel of VN (which exists as VN is finite dimensional) with respect to the

H1-norm ‖ · ‖1 such that
f(x) = (k̃x, f)1, f ∈ VN .

Using Cauchy-Schwarz it follows that

f(x)2

‖f‖21
≤ ‖k̃x‖21 = k̃x(x) = k̃(x, x), f ∈ VN .

By the discrete Sobolev inequality, and specifically its tightness, there exists an f ∈ VN such that

f(x)2

‖f‖21
≥ Cdh2−d

and consequently k̃(x, x) ≥ Cdh2−d.
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Since the reproducing kernel for the direct sum of two perpendicular subspaces is the sum of the repro-
ducing kernels [18] the previously introduced reproducing kernel kx of VN ∩ V ⊥0 with respect to the Sobolev
seminorm (∇·,∇·) satisfies

kx = k̃x − 1.

For small enough h one thus has
k(x, x) ≥ Cdh2−d

for some Cd > 0. The desired bound on the residual is then obtained by an application of Proposition 1.

Note that for the minimal distance of any two points of the given data it holds |xi−xj | ≥ ε > 0, therefore
κ, the supremum over kN (xi, xj), i 6= j is bounded in this proposition. A proof for d = 2 can be found in a
similar situation in Section 4.7 in [12], where |kN (xi, xj)| ≤ C(1 + | log(|xi − xj |+ h)|) is shown.

The case d = 2 is illustrated in Figure 5, right. While we have proved this result for a special VN one
can easily extend it to other spaces VN .

3.4 Asymptotics between the data points

While the approximations fN do converge on the data points they do so very locally. In an area outside a
neighbourhood of the data points the fN tend to converge to a constant function so that fN may recover
fast oscillations only if sufficient data is available and only close to the data points.

We have seen that the residuals fN (xi) − yi go to zero with increasing N , now we will show that even
the whole penalised squared residual goes to zero for dimensions larger than 2.

Proposition 4. The value of functional R converges to zero on the estimator fN and

R(fN ) ≤ Cmλhd−2

for some C > 0. As ‖∇fN‖ ≤
√
R(fN ) it follows that ‖∇fN‖ ≤ C

√
mλh(d−2).

Proof. While we only consider regular partitioning with hyper-cubical elements Q, the proof can be gener-
alised to other elements. First, let bQ be a member of the finite element function space such that bQ(x) = 1
for x ∈ Q and bQ(x) = 0 for x in any element which is not a neighbour of Q. One can easily see that∫

Q

|∇bQ|2dx ≤ Chd−2. (12)

Choose h such that for the k-th component of xi one has

|xi,k − xj,k| > 3h, for i 6= j. (13)

In particular, any element contains at most one data point. Let furthermore Qi be the element containing
xi, i.e., xi ∈ Qi. Then one sees that g defined by

g(x) =
m∑
i=1

yibQi(x)

interpolates the data, i.e., g(xi) = yi. Consequently,

R(g) = λ

∫
Ω

|∇g|2dx.

Because of the condition on h one has for the supports supp bQi
∩ supp bQj

= ∅ for i 6= j and so

R(g) = λ

m∑
i=1

y2
i

∫
Ω

|∇bQi
|2dx

and, thus,
R(g) ≤ Cmλhd−2.

It follows that inf R(f) ≤ R(g) ≤ Cmλhd−2.
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We conjecture that in the case of d = 2 one has R(fN ) ≤ Cmλ/| log h|.

Proposition 5. For d ≥ 3 the solution fN of (1) converges towards a constant function almost everywhere.

Proof. Let uN := fN −
∫
fNdx. Obviously

∫
uNdx = 0 and with Proposition 4 it holds

∫
|∇uN |2dx ≤

Cmh(d−2). Using a suitable form of the Poincaré inequality, e.g., (7.45) from [10], one has the existence of a
constant ω such that

‖uN‖21 ≤ ω‖∇uN‖2 ≤ ωCmh(d−2),

It follows uN → 0 in H1 for h→ 0 and therefore fN =
∫
fNdx almost everywhere.

In experiments for large N one sees that fN varies only very close to the data points and is otherwise
almost exactly constant. This suggests the following decomposition:

fN = f +
m∑
k=1

ckgk

where the values gk(x) are very small except in a neighbourhood of xk respectively.
Let us assume the normalisation

gk(xk) = 1

and that the bounds
2λ|〈∇gi,∇gj〉| ≤ εh (14)

and
|gi(xj)|2 ≤ εh (15)

hold for some εh = O(h2(d−2)). The existence of such gi will be shown shortly and follows from the localisation
of the variations of fN close to the data points. The exact size of εh is of less importance as long as it is
o(R(fN )). Under this assumption one then gets for the penalised squared residual

R(fN ) =
1
m

m∑
i=1

(f + ci − yi)2 + λ

m∑
i=1

c2i ‖∇gi‖2 +O(εh).

An approximation to fN can then be obtained by minimising the approximate penalised squared residual to
find functions gi and coefficients ci. Through the approximation the functions gi are “decoupled” in R.

Working in the weak formulation one observes that the reproducing kernels kxi
minimise the functional

φ(u) =
1
2
‖∇u‖2 − u(xi)

and that

gi =
kxi

‖∇kxi
‖2

minimises 1
2‖∇u‖

2 under the constraint u(xi) = 1. Using results from the previous section one can show
that furthermore the values

gi(xj) = 〈∇gi,∇kxj
〉 = ‖∇kxj

‖2〈∇gi,∇gj〉 = 〈∇kxi
,∇kxj

〉/‖∇kxi
‖2

are very small and fulfil conditions (14) and (15). It follows thus that this choice of gi leads to good candidates
for fN and it remains to determine the coefficients ci and f . Inserting these particular gi one then gets for
the approximate penalised squared residuals

R(fN ) =
1
m

m∑
i=1

(
f + ci − yi

)2
+ λ

m∑
i=1

c2i
‖∇kxi

‖2
+O(εh).

Setting the gradient with respect to ci to zero gives the formula

ci =
yi − f

1 +mλ/‖∇kxi
‖2
,
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while setting the gradient with respect to f to zero gives

f =
1
m

m∑
i=1

(yi − ci).

One now substitutes ci using the formula given above and solves for f to get (after some algebraic manipu-
lations):

f =
∑m
i=1 yi/(‖∇kxi

‖2 +mλ)∑m
i=1 1/(‖∇kxi

‖2 +mλ)
.

When N →∞ then all the ‖∇kxi
‖2 go to the same constant K which goes to infinity and it follows that

f → y =
1
m

m∑
i=1

yi.

Furthermore ci → yi − y and one gets the approximation

fN ≈ y +
m∑
i=1

(yi − y)
kxi

‖kxi
‖2

and consequently one gets the asymptotic behaviour “between the points” as

fN → y.

We are now going to show that the estimator fN is bounded everywhere. First we give the following
lemma, which is a variant of the Aubin-Nitsche-Lemma.

Lemma 3. For fN as above it holds for d ≥ 4∥∥∥∥fN − ∫ fN

∥∥∥∥ ≤ Ch‖∇fN‖,
where C only depends on Ω, i.e., the dimension.

Proof. Let uN := fN −
∫
fN . We define the function space

Ĥ1 :=
{
f ∈ H1 |

∫
Ω

f(x) = 0
}
.

For g ∈ Ĥ1 let ϕg ∈ Ĥ1 be
〈∇ϕg,∇v〉 = 〈g, v〉, v ∈ Ĥ1.

It holds uN ∈ Ĥ1, therefore 〈∇ϕg,∇uN 〉 = 〈g, uN 〉.
Since fN fulfills the Galerkin equations and by definition of uN

〈∇uN ,∇v〉 = 〈∇fN ,∇v〉 =
1
λm

m∑
i=1

(
yi −

(
uN (xi) +

∫
fN

))
v(xi), ∀v ∈ VN ,

and so

〈uN , g〉 = 〈∇uN ,∇(ϕh − v)〉+
1
λm

m∑
i=1

(
yi − uN (xi)−

∫
fN

)
v(xi), ∀v ∈ VN ∩ Ĥ1.

It follows that

‖uN‖ = sup
g∈cH1

〈uN , g〉
‖g‖

≤ ‖∇uN‖ sup
g∈cH1

 infv
{
‖∇(ϕg − v)‖ | v ∈ VN ∩ Ĥ1, v(xi) = 0

}
‖g‖

 .
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Now let v0 ∈ VN ∩ Ĥ1 be the best approximant of ϕg. We now define v1 (for fine enough meshes) such
that

v1(x) = 0, x in cells outside the neighbourhood of all xi
v1(x) = −v0(x), x in cells containing an xi

and set v := v0 + v1, it follows directly that v(xi) = 0∀i. In this case

‖∇(ϕg − v)‖ ≤ ‖∇(ϕg − v0)‖+ ‖∇v1‖.

Note that ϕg ∈ H2 due to the regularity of the Neuman boundary value problem on the cube [3, 10].
Standard approximation theory (e.g., section 4.4. in [3]) now gives

‖∇(ϕg − v0)‖ ≤ Ch|ϕg|H2 ≤ Ch‖g‖.

For the second expression it follows after (12) in the proof of Proposition 4 that

‖∇v1‖ ≤ Chd/2−1‖g‖.

Putting these together gives for d ≥ 4
‖∇(ϕg − v)‖ ≤ Ch‖g‖

and therefore
‖uN‖ ≤ Ch‖∇uN‖

which is the desired result.

Lemma 4. For fN as above it holds for d ≥ 4 that ‖fN‖∞ is uniformly bounded in h.

Proof. ∥∥∥∥fN − ∫ fN

∥∥∥∥
∞
≤ Ch−d/2

∥∥∥∥fN − ∫ fN

∥∥∥∥ inverse inequality, e.g Chapter 4 in [3]

≤ Ch−d/2+1‖∇fN‖ Lemma 3

≤ Ch−d/2+1hd/2−1 ≤ C Proposition 4

The bound follows since

|fN (x)| ≤ |fN (xi)|+
∣∣∣∣fN (xi)−

∫
fN (x)

∣∣∣∣+
∣∣∣∣fN (x)−

∫
fN (x)

∣∣∣∣
≤ Cmλhd/2−1 + 2C
≤ Cmλ+ 2C ≤ C ′

4 Projections and the combination technique

In the previous section we have seen that due to the discrete data term the usual convergence behaviour
for the numerical solution of partial differential equations does not exist in the case of regression. Therefore
the assumed error expansion (5) for the approximation property of the combination technique [11] does not
hold.

The combination technique was studied as a sum of projections into partial spaces [14]. We reproduce
in the following some of the work presented there.

It is well known that finite element solutions of V-elliptic problems can be viewed as Ritz projections of
the exact solution into the finite element space satisfying the following Galerkin equations:

〈fN , g〉rls = 〈f∗, g〉rls, g ∈ VN .
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The projections are orthogonal with respect to the energy norm ‖ · ‖rls. Let Pl : V → Vl denote the
orthogonal projection with respect to the norm ‖ · ‖rls and let PSn be the orthogonal projection into the
sparse grid space V Sn =

∑
|l|≤n Vl. If the projections Pl form a commutative semigroup, i.e., if for all l, l′

there exists a l′′ such that PlPl′ = Pl′′ then there exist cl such that

PSn =
∑
|l|≤n

clPl.

We have seen in the previous section why the combination technique may not provide good approximations as
the quadrature errors do not cancel in the same way as the approximation errors. The aspect considered here
is that the combination technique may break down if there are angles between spaces which are sufficiently
smaller than π/2 and for which the commutator may not be small.

In numerical experiments we estimated the angle of two spaces under the scalar product 〈·, ·〉rls from
the regularised regression setting [14]. In a first example, the data points are chosen to be the four corners
of the square Ω = [0, 1]2. In this case, the angle turns out to be between 89.6 and 90 degrees. Lower
angles corresponded to higher values of λ. In the case of λ = 0 one has the interpolation problem at the
corners. These interpolation operators, however, do commute. In this case the penalty term is actually the
only source of non-orthogonality. A very similar picture evolves if one chooses the four data points from
{0.25, 0.75}2. The angle is now between 89 and 90 degrees where the higher angles are now obtained for
larger λ and so the regulariser improves the orthogonality.

A very different picture emerges for the case of four randomly chosen points. In our experiments we now
observe angles between 45 degrees and 90 degrees and the larger angles are obtained for the case of large
λ. Again, the regulariser makes the problem more orthogonal. We would thus expect that for a general
fitting problem a choice of larger α would lead to higher accuracy (in regard to the sparse grid solution)
of the combination technique. In all cases mentioned above the angles decrease when smaller mesh sizes h
are considered. This gives another explanation for the divergence behaviour of the combination technique
observed in Figure 4.

4.1 Optimised combination technique

In [13] a modification of the combination technique is introduced where the combination coefficients not
only depend on the spaces as before, which gives a linear approximation method, but instead depend on the
function to be reconstructed as well, resulting in a non-linear approximation approach. In [14] this ansatz is
presented in more detail and the name “opticom” for this optimised combination technique was suggested
there.

Assume in the following that the generating subspaces of the sparse grid are suitably numbered from 1
to s. To compute the optimal combination coefficients ci one minimises the functional

θ(c1, . . . , cs) = |Pf −
s∑
i=1

ciPif |2rls,

where one uses the scalar product corresponding to the variational problem 〈·, ·〉rls, defined on V to generate
a norm. By simple expansion and by differentiating with respect to the combination coefficients ci and
setting each of these derivatives to zero we see that minimising this norm corresponds to finding ci which
have to satisfy 

‖P1f‖2rls · · · 〈P1f, Psf〉rls

〈P2f, P1f〉rls · · · 〈P2f, Psf〉rls

...
. . .

...
〈Psf, P1f〉rls · · · ‖Psf‖2rls



c1
c2
...
cm

=


‖P1f‖2rls

‖P2f‖2rls
...

‖Pmf‖2rls

 . (16)

The solution of this small system creates little overhead. However, in general an increase in computational
complexity is due to the need for the determination of the scalar products 〈Pif, Pjf〉rls. Their computation
is often difficult as it requires an embedding into a bigger discrete space which contains both Vi and Vj . Note
that in the case of regularised regression the computation of the scalar product can be achieved efficiently [6].
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Figure 6: Value of the least squares error, the regularisation term and the residual (1) for 1000 data using
the optimised combination technique. Top Left: with λ = 10−2, Top Right: with λ = 10−3. Bottom Left:
with λ = 10−4, Bottom Right: with λ = 10−6.

Since Plf is a Galerkin-solution in Vl it follows that

‖Plf‖2rls =
1
m

m∑
i=1

(Plf(xi), Plf(xi)) + λ〈∇fl,∇Plf〉2 =
1
m

m∑
i=1

Plf(xi)yi.

We therefore can interpret the optimised combination technique (i.e., the sum of projections into the partial
spaces with the opticom coefficients) as a Galerkin formulation which uses the partial solution Plf̂ as ansatz
functions. This way one can formulate an optimised combination technique for problems where the projection
arguments do not hold and are replaced by Galerkin conditions. This happens for example for eigenvalue
problems [7].

Using these optimal coefficients ci the combination formula is now

f cn(x) :=
d−1∑
q=0

∑
|l|1=n−q

clfl(x). (17)

In Figure 6 we give results for the optimised combination technique on the data used in Figure 4 for
the standard combination technique. The rise of the residual observed before is not present anymore since
the optimised combination technique repairs the instabilities. The graph for the smallest regularisation
parameter suggests potential overfitting, the error in regard to the given data always gets smaller with finer
discretiations. Using larger regularisation parameters the influence of the smoothing term prevents results
too close to the training data.

An empirical comparison of the optimised combination technique with several regression methods on
typical benchmark data shows an excellent performance of the procedure [6].
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5 Conclusions

Here we consider a generalisation of the usual kernel methods used in machine learning as the “kernels” of
the technique considered here have singularities on the diagonal. However, only finite dimensional approx-
imations are considered. The overfitting effect which occurs for fine grid sizes is investigated. We found
that the method (using the norm of the gradient as a penalty) did asymptotically (in grid size) overfit the
data but did this very locally only close to the data points. It appeared that the information in the data
was concentrated on the data points and only the null space of the penalty operator (in this case constants)
was fitted for fine grids. Except for the overfitting in the data points one thus has the same effect as when
choosing very large regularisation parameters so that the overfitting in the data points does arise together
with an “underfitting” in other points away from the data. Alternatively, one could say that the regular-
isation technique acts like a parametric fit away from the data points for small grid sizes and overall for
large regularisation parameters. A different view is regarding the discretisation as a regularisation [15], so
to avoid over-fitting the grid size needs to be limited.

The effect of the data samples is akin to a quadrature method if there are enough data points per element.
In practise, it was seen that one required at least one data point per element to get reasonable performance.
In order to understand the fitting behaviour we analysed the performance both on the data points and in
terms of the Sobolev norm. The results do not directly carry over to results about errors in the sup norm
which is often of interest for applications. However, the advice to have at least one data point per element
is equally good advice for practical computations. In addition, the insight that the classical combination
technique amplifies the sampling errors and thus needs to be replaced by an optimal procedure is also relevant
to the case of the sup norm.

The method considered here is in principle a “kernel method” [16] when combined with a finite dimen-
sional space. However, the arising kernel matrix does have diagonal elements which are very large for small
grids and, in the limit is a Green’s function with a singularity along the diagonal. It is well known in the
machine learning literature that kernels with large diagonal elements lead to overfitting, however, the case
of families of kernels which approximate a singular kernel is new.
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