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Summary. In this paper we are concerned with a weak coupling technique for
the concurrent simulation of multiscale phenomena. In particular we focus on the
construction of an initial embedding of discrete atomic data fields in an appropriate
subspace Hn (£2) C L?(£2) which provides the foundation for the proposed coupling
technique in a function space setting. Thus, we must consider the regularity of the
coupling information and the stability of the resulting basis.
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1 Introduction

In many physical phenomena, the macroscopic behavior of solids in structural
dynamics is governed by effects on a microscopic scale. As a consequence an
accurate representation of large scale behavior requires to capture the effects
of all scales from micro to macro. On the macroscopic level a description by
continuum mechanics can be used. Since those macroscopic models are usually
based on a partial differential equation (PDE), they are —at least formally—
incompatible with the discrete displacements on an atomistic level. On the
fine scale, models involving detailed information about crystalline and defect
structure, such as molecular dynamics yield satisfactory accuracy. Here the
interactions are defined by inter atomic potentials. These microscopic mechan-
ics are non-linear and strongly non-local. In contrast to continuum mechanics
the description is based on a system of ODEs associated with discrete points
in the Euclidean space. However, a complete fine scale description of the prob-
lem on the complete macroscopic domain is often computationally infeasible.
Thus multiscale models must be employed, where different models are used
simultaneously within a single simulation process. Due to the coupling of dif-
ferent effects on the different scales, the development of these methods is a
demanding task.
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The different multiscale methods vary not only in scope and the under-
lying assumptions, but also in their approach to broader questions such as
a hierarchically and concurrent multiscale approach. In the first class, the
computations are performed on each scale separately. Often, the scale cou-
pling is done by transferring problem parameters, i.e., the results obtained
on one scale determine the parameters for the computational model on an-
other scale [1,5]. Thus for instance a continuum model can be derived from
the atomic information [2]. Another approach is pursued in the concurrent
coupling techniques. Here, computations on different scales are carried out
simultaneously [4,16,17]. For a recent overview on multiscale techniques we
refer to [14].

As afore mentioned, depending on the scale of interest, the relevant dy-
namics may require the use of quite different models on the respective scales.

Let us consider a displacement field v € Hy(§2), where Hy(£2) is a lin-
ear subspace of L%(f2) and 2 € R? d = 1,2,3, is a domain. Here, the dis-
placement field v is determined by coarse as well as fine influences. In our
multiscale context, we now aim at a decomposition of v, which separates the
high frequency components v/ of the total solution v described by the atomic
interactions from the smooth part 7 of the displacements. We therefore follow
the approach of [9], where in the space L?(§2) the total displacement field
v € Hy(£2) is decomposed as

v=v+v. (1.1)

Here, v is the coarse part of the total displacement and v’ refers to the fine
scale displacements. Let us note that we have chosen a function space oriented
setting, since this allows for more flexible decomposition approaches.

As a matter of fact, in case of molecular dynamics, the material behavior on
the micro or fine scale is modeled by means of an system of isolated atoms or
molecules. More precisely, on the micro scale the atoms x,, and their “discrete
displacements” 7, form the scattered data set

XN (2) = {(za,7a)|a=1,..,N, 24 € 2,0, € R}. (1.2)

We note that since 7 € R the atomic displacements on the fine scale
cannot be interpreted as an element of Hy (£2). As a consequence, a direct sum
decomposition of the underlying function space as in [9] is not possible. This is
due to the fact, that the coarse scale values 7 are given as a displacement field
in L2(2), whereas the displacement field of the fine scale is given in terms of
(1.2).

In the Bridging Scale Method [16] the decomposition given by (1.1) is the
starting point for the multiscale simulation. Here, the decomposition is per-
formed in a completely discrete setting. To do so an interpolation operator
evaluating an interpolation function at the equilibrium position of the under-
lying atoms is used. The coarse scale is then the image of a projection from
the fine scale displacement onto a displacement field.
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In this paper, we pursue a different approach by performing the scale
decomposition of the total displacement also for the atomic displacements
in L2(§2). At a first glance this function space oriented decomposition seems
impossible, since the displacement on the fine scale 7 is given by (1.2). We
therefore interpret the discrete displacements 7 € R4V as elements of the
function space Hy (£2). This is done by means of the linear operator

v xn(2) = Hy(2) C LA(2), o) = (1.3)

This embedding can be chosen in a problem-dependent fashion and the prop-
erties of the resulting multiscale decomposition depend strongly on the choice
of a basis {¢,} for Hy ().

For the discretization of the coarse scale we choose linear finite elements.
Let 8" be a finite element space over (2 related to a mesh 7. In order
to identify the coarse scale displacement 7, we employ an L2-projection
7 : Hn(£2) — S". This projection is designed to extract from the total dis-
placement v the coarse part, which is assumed to be in the finite element space
S". More precisely, for any total displacement w € Hy (2), the corresponding
coarse scale displacement is given by 7(w) € S" which satisfies

(W(w),u)Lz(Q) = (w7/,L)L2(Q) Yu € Mh, (1.4)

where M" denotes a suitable multiplier space. In order to compute the al-
gebraic representation of 7 in (1.4), we need to assemble two (generalized)
mass matrices. For the first matrix, we need to evaluate integrals of the form
/, o MpAq dx, where 1, are the basis functions spanning the multiplier space
M", and Aq are the basis functions of S". Here, p,q are assumed to be in
some index set N with |[V;,| = dim(S"). The computation of the resulting
mass matrix can be done in a similar fashion as the assembly of the standard
mass matrix. For the second matrix, we need to evaluate integrals of the form

J (1.5)

2

where the ¢, are the basis functions for the space Hy(2), i.e. Hy(2) =
span{ds). In order to compute these integrals the intersection between the
support of ji,, and the support of ¢, has to be computed. For details concerning
an efficient way for computing these intersections, we refer to [7].

Summing up the weak coupling concept involves several steps: In the first
step, an approximation of the fine scale displacement embeds the discrete val-
ues into a function space. In the second step we perform an L2-like projection
separating the coarse from the fine scale. In case the molecular dynamic sim-
ulation is restricted to a subset of (2, in a third and final step, the resulting
low-frequency contributions have to be extended to the whole computational
domain 2. For further details we refer to [6].
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In the forthcoming we examine the first step of our transfer scheme, namely
the operator ¢. A possible choice for ¢ could be «(7) = > Ua¢q. For this
choice, we need to specify “suitable” basis functions ¢,. In the context of
multiscale methods the term suitable refers to the kind of information which
we are interested in. More precisely we can expect that for the transfer of
gradient based information from the fine to the coarse scale a basis which
can only reproduce constants exactly is insufficient. Thus, for the construc-
tion of these basis functions, we will employ techniques from scattered data
approximation which allow for a flexible choice of the basis functions ¢,.

One class of shape function used for scattered data interpolation are the
radial basis functions [10]. Another approach to construct shape functions ¢,
from the collection of particles xn({2) is based in the moving least squares
technique (MLS) that we shortly summarize in the next section, see e.g. [§]
for details.

2 Moving Least Squares Method

Here, we construct the operator ¢ from (1.3) on the basis of the moving least
squares approach which originated in scattered data approximation. We sup-
pose, that the scattered data set xn(§2) in (1.2) is given. Our aim is to find
a function u : 2 — R, such that

w(xq) A Uy foralla =1,...,N. (2.6)

In order to construct a moving least squares (MLS) fit, we consider the ap-
proximation space being the space P, of polynomials with the basis { P}V,
of degree m in d variables ! and a set of non-negative weight functions

Wy : R — Ry with supp(W,) =: wa,

and the dilatation parameter h, of Wy (z) = W (%) Now, we minimize

for each x the quadratic functional

N
J(7)(@) =Y Wal@)(va = 7(za))? (2.7)

over all 7 € P,,.
In order to minimize (2.7), we set the derivative of (2.7) equal to zero and
obtain the system of equations

N N n
> Wal@)iaPi(xa) = > Wal2) Y Pi(za)Pj(za)e(x)  j=1,..,n.
a=1 a=1 1=1
(2.8)

! The approximation space can be generalized to an abstract approximation space
V(£2). Note however, that we then obtain reproduction of V(£2) by ¢, of (2.11).
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With the definitions
P(z)
W(z)
B
f

= [Pi(z) Po(z) -+ Py (x)]"
= [Wi(z) Wa(@) -~ Wi (2)]"

= (Bij)ij=1,..,~n, Bij = Wi(z
[ I*

v
—
=

1o -+ UN

c(x) = [e1(x) calx) .. cn(2)]T,
equation (2.8) can be written as
A(z)e(x) = B(x) f. (2.9)

The above matrix A(x) is also known as Gram’s matrix. The minimizer u(x)
f (2.7) is given by the linear combination

N
u(@) = Pada(z) (2.10)
a=1

where the shape functions ¢, satisfy
$a(2) = PT(24)[A(2)] " Wa(2) P(za). (2.11)
Properties of the Gram-Matrix

Note that (2.11) involves the inverse of the Gram matrix A(z) for each point
of evaluation. Thus, we must be concerned with the regularity of A(z) for all
x € {2. Here, we attain the positive definiteness of A(x) for all z € 2 from
the P,,-unisolvence of the sets xn(£2) Nw, for all .

Weight Functions and Scaling

The size of the support of the weight functions W, i.e. of the shape functions
¢« can be determined by

wo ={y €ER?| ||lza — yl| < ha}

where the dilatation parameter h, can in principle be chosen individually
for each data site x,. However, this choice is closely related to the accuracy
and stability of the approximation and thus crucial for the stability of the
projection operator 7. Recall that the P,,-unisolvence of xn(§2) Nw, for all
must be ensured. Note also that the smoothness of the approximation depends
on the smoothness of the weight function, i.e. if W, € C"(2) then ¢, €
Cr(92).
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Reproduction Properties

JFrom (2.10) with v, = u(x,) for u € Py, and (2.11) it is clear that P, C
span{¢, ), thus reproduction of polynomials of order m in MLS is guaranteed.

Partition of Unity and Shepard’s Approach

We denote {¢,} as a partition of unity of order ¢ if the reproducing property

N
3 da(@)b(xa) = bla)

and the derivative reproducing conditions

N
> D*¢u(w)b(xa) = Db(z), |s|<q

hold for all b € P,,. In the case of m = 0, the approximation space is given
by P, = {1} and the Gram matrix reduces to

N
Az) = Z W (z).

Thus the shape functions are given by

o= Ws@)
) = SN W)

which is also known as Shepard’s method. One can thus easily verify, that

— W(2)- (A(x) ™"

N
0<¢p(r) <1 and Z(ﬁg(m) =1Vz e 2
B=1

The Shepard partition of unity is an efficient method for the approximation
of scattered data, since the Gram matrix reduces to a scalar, and thus an
explicit form of ¢, is given. As a drawback, the type of information which
we can transfer from a coarse to a fine scale is confined to displacements. For
gradient based information a higher order MLS method has to be applied,
which requires the implicit representation (2.11).

In general the MLS approximant is non interpolating, i.e. they do not
satisfy the Kronecker delta property. However an interpolating approximant
can be constructed by using singular weighting functions at all nodes [11].

For the deduction of the MLS shape function we can use different starting
points like the minimization of a weighted least-squares functional, or a Taylor-
Series expansion, or the direct imposition of the reproducing conditions. There
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are also other techniques, which produce a partition of unity like e.g. the
Reproducing Kernel Particle Methods (RKPM) [3,12,13]. Even though that
the RKPM and the MLS have different origins their equivalence can be shown.
We want to employ the MLS functions as the basis for our space Hy (£2), i.e.
for the range of the embedding. Our construction is essentially L? based and
so Shepard’s method should be sufficient to obtain at least first order in L2.
If we also need to bound the error in H' then MLS of first order should be
employed.

3 Numerical Experiment

To confirm this assertion, we consider the idealized but representative ref-
erence scattered data approximation problem (2.6) via the minimization of
(2.7) for the data f, = u(z,) where u(z) = z2. We compare the results ob-
tained via the MLS approach for the point set [—3,3] with h = 1 using the
approximation spaces P,,, with m = 0, 1. Here, we anticipate to find an asymp-
totic convergence behavior of O(h) in the L?-norm for m = 0 and O(h?) for
m = 1. Furthermore, the approximation error will stagnate with respect to
the H'-norm for the Shepard functions with m = 0 whereas the MLS shape
functions with m = 1 will provide an O(h) convergence also in H'. This
expected convergence behavior can be clearly observed from Figure 3.2.
Thus, the construction of a weak coupling operator aimed at transferring
function values may be based on the Shepard functions (if the error bound
of O(h) where h is related to the maximal atomic distance is acceptable),
compare Figure 3.1. However, if the transfer of gradient information is required
(or the jump in the resolution between coarse function space Sy, and Hy (2) is
too small) the use of higher order moving least squares functions is necessary.
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Figure 3.1. Approximation (top row) by Shepard’s Method (left) and MLS (right)
and the respective derivatives (bottom row).
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Figure 3.2. Error in the L®-norm (left) and H'-norm (right) of Shepard’s method
(solid) and the MLS (dashed).
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Figure 3.3. Weak scale transfer (2d) based on (1.4) using Shepard’s approach
(m=0.
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