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ABSTRACT
Defining differences is a necessary prerequisite for finding diversity
in solutions to a given problem. Diversity, in turn, is a property
that is difficult to quantify, but is expected to bring favourable
properties.

We introduce the signature transform as a general behaviour
descriptor to distinguish solutions to control problems specifically
in the context of Quality-Diversity and MAP-Elites. We define a
robustness score and profile, a structured analysis of the behaviour
of agents and populations of agents under a changing environment,
as an instance of a beneficial property of diversity.

The signature transform integrates well with the CVT-Elites
approach and offers a functional generalized diversity measure. The
robustness analysis substantiates the abstract diversity induced by
distance in signature space through tangible effects and enriches
the usual evaluation criteria of diverse populations.

The generalization of diversity from handcrafted behaviour de-
scriptors opens the possibility to utilise Quality-Diversity tech-
niques for problems where the alignment of the problem with
diversity measures is not obvious.

CCS CONCEPTS
• Computing methodologies→ Evolutionary robotics; Con-
tinuous space search; • Computer systems organization→ Re-
dundancy; • Mathematics of computing → Time series analysis.
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1 INTRODUCTION
Quality-Diversity (QD) concerns problems, where not one single
optimum, but rather a range of different options can legitimately
be called a solution. These solutions to the original problem differ
among each other along the lines of newly introduced dimensions
of diversity. In practice they are a choice of the user. The usefulness
of the results may be defined completely by the user. Otherwise,
the user should be attentive to align the dimensions of diversity
with the goal they try to achieve.

Cultivating diverse populations holds certain intrinsic advan-
tages: diversity breeds innovation. This innovation can be seen
and measured in complicated exploration scenarios as in mazes
[10], and through robustness scenarios, as when a robot has been
damaged and tries to find in its behaviour repertoire, created by a
QD algorithm, a way to move that still works with one less limb
[1].

While these ideas acknowledge the intrinsic value of diverse
populations, they still rely on the alignment of the diversity in
anticipation of the problem the population shall overcome. It could
be the implicit information given by the diversity measure that
improves exploration and robustness.

In contrast to a specific behaviour characteristic that aims at
alignment to a specific purpose, we pursue the idea of a generalized
diversity measure. A diversity measure can be called general if
it builds on a behaviour descriptor that indiscriminately uses the
available information and is neither limited to the environment nor
tied to the intended application of the population.

We suggest the signature transform on rollouts of a learned agent
as a general behaviour descriptor: it will harmonize the length of
episodes and is generally contained in [−1, 1], which facilitates
defining a QD-archive structure in which behaviour characteristics
are categorized. It is feasible to compare signatures with an 𝐿2-
norm and to aggregate signatures of multiple rollouts with a mean,
which we interpret as the numerical approximation of the expected
signature. This helps to comprehensively represent the behaviour
of the agent to avoid the phenomenon of (un)lucky individuals.
Also, save truncation, the results of the signature transform still
contain the complete information of the rollouts.

To substantiate this kind of general diversity has intrinsic value,
we turn to robustness: a diverse population should containmembers
that react differently to changes of the environment, some better
some worse. But from a global viewpoint, diversity should make a
population more robust. We formalize and generalize the way to
define a concrete measure of robustness of a population with
a robustness score and profile. To this end an agent is developed
with a standard environment. We then take variables that define
the behaviour of the environment and change them to values on a
grid, and roll the policy out against this changed environment.
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Parallel to a QD score [10], we define a robustness score of an
agent and a population. This problem setup itself may be inter-
esting to look at: how can we optimize the robustness score of a
single agent or multiple agents? What approaches are beneficial or
detrimental to robustness, specifically when allowing or denying
the possibility to align learning with the robustness challenge?

The generalized diversitymeasure introduced here boasts a tangi-
ble advantage in comparison to simple diversity measures required
by classical approaches, demonstrating two things. First, it is possi-
ble to fuel a QD algorithm with a general behaviour characteristic,
which is not just the trajectory, to define diversity. Second, the
resulting population has the type of useful properties typically ex-
pected. There is more to gain and to find within the idea of general
diversity.

2 DIVERSITY OF BEHAVIOUR
Quality-Diversity encompasses a set of evolutionary algorithms that
aim to output a population of high performing solutions against
a posed problem that are at the same time diverse in a predefined
measure of their behaviour. MAP-Elites [8] is a specifically preva-
lent subset of this paradigm that cultivates a population of solutions
in predefined niches. Competition between individuals happens
only in these niches.

The classic approach divides a low-dimensional behaviour space
into a Cartesian grid. High-dimensional spaces can be tackled by
evenly dividing the space in a given number of cells using Cen-
troidal Voronoi Tessellations ("CVT Elites") [15]. The evolutionary
loop, given a random starting population, consists of sampling the
population, creating offspring based on that sample, observing the
behaviour of the offspring and putting them in niches depending on
their behaviour. If there is more than one member of the resulting
population in one niche, the population is reduced to at most one
member per niche by local competition.

Many applications of these strategies aim at solving optimal
control tasks that are also solved with reinforcement learning tech-
niques. Typically, optimization problems come with a measure of
quality through the optimization variable. A measure of diversity
is not necessarily obvious and is usually handcrafted based on the
intended application of the diverse subpopulation.

Whenever some type of more general diversity is considered,
applications are looked for and found in anticipated intrinsic val-
ues of diversity. Robustness against damage [15], exploration even
when considering seemingly unaligned measures of diversity [10],
or coverage of the analytically understood underlying behaviour
space of a problem [4].

The most significant aspect of behavioural diversity is the defini-
tion of the behaviour characteristic or behaviour descriptor, a
function operating on the space of rollouts of an agent. The whole
concept of behavioural diversity further requires a way to compare
two of these behaviour characteristics, mostly the Euclidean norm.

Often, behaviour characteristics are picked with a certain prob-
lem in mind, that may either directly or indirectly be solved by
this choice. The last position of a robot arm or of a maze walker is
a direct way to encode the actual objective of a problem into the
diversity of the population. When trying to find different gaits in
a locomotion task, the ratio of contact with the floor by different
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Figure 1: Signatures of depth 5 of the behaviour of an agent
before, during and after training of CartPole.

parts of the body turns out to be a nice behaviour descriptor. How-
ever, especially in that last case, a more abstract idea of different
gaits, is not necessarily fully covered by that descriptor, nor is it
guaranteed that such a computationally simple, low-dimensional
representation can be found for any abstract problem.

3 THE SIGNATURE TRANSFORM
We make use of the signature transform in order to compress the
statistical information contained in multiple time series into finite
collections of controllable coefficients to quickly quantify statistical
differences between random paths.

Given a one dimensional random variable, it is possible to com-
pute itsmoments by averaging its powers. Similarly, on a whole time
series, the time series statistical behaviour is compressed by taking
averages of appropriate "crossed-powers": the signature transform
[3]. It has seen successful application in time series classification
[7], especially in form of preprocessing steps, which is closely re-
lated to the question on how to distinguish policies according to
their behaviour.

Let 𝑓 : [0, 1] → R𝑑 be a piecewise linear function with 𝑓 (0) =
(0, ..., 0). For general functions, preprocess the data accordingly.
Here, we always consider its augmentation 𝑋 (𝑡) = (𝑡, 𝑓 (𝑡)) with a
time component 𝑡 .

A multi-index 𝐼𝑛 of depth 𝑛 ≥ 1 is a sequence of 𝑛 digits,
𝐼𝑛 = (𝑖1, . . . , 𝑖𝑛), each digit being an integer between 1 and 𝑑 + 1,
included. The 𝑘-dimensional canonical simplex is the set Δ𝑘 =

{(𝑢1, . . . , 𝑢𝑘 ), 𝑢𝑖 ∈ [0, 1] : 0 < 𝑢1 < · · · < 𝑢𝑘 < 1}.

Definition 3.1 (Signature coefficient). The signature coefficient
of 𝑋 corresponding to the multi-index 𝐼𝑛 = (𝑖1, . . . , 𝑖𝑛) is the real
number 𝑠𝐼𝑛 defined as:

𝑠𝐼𝑛 =

∫
Δ𝑛

¤𝑋 𝑖1 (𝑢1) · · · ¤𝑋 𝑖𝑛 (𝑢𝑛)𝑑𝑢1 · · ·𝑑𝑢𝑛, (1)

where ¤𝑋𝑘 is the derivative of the 𝑘-th component of the path 𝑋 .

For each depth 𝑛, we have (𝑑 + 1)𝑛 possible multi-indices. If we
consider all the indices until depth n, for a 𝑑 dimensional path, we
obtain a total of

∑𝑛
𝑖=1 (𝑑 + 1)𝑖 coefficients.
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The signature transform 𝑆 (𝑋 ) is the infinite sequence of all the
possible signature coefficients. The truncated signatures 𝑆𝑁 (𝑋 ) is
the finite sequence of the signature coefficients up to and including
depth 𝑁 .

It is possible to prove that the truncation error follows an asymp-
totic decay in the Euclidean norm [5], essentially depending on the
length of the curve 𝑋 (𝑡). Any agent in a given environment is a sto-
chastic process, its sampled paths are the rollouts. It can be shown
that two stochastic processes have the same probability distribution
if and only if the expected values of the corresponding signature
transforms are equal ([9], section 3.3). Consequently, the difference
of two agents is represented by the Euclidean norm between the
average values of the truncated signatures of their rollouts.

4 ROBUSTNESS
Robustness has been suggested as a use case for diverse popula-
tions. A repertoire of different behaviours can be cycled through or
selected from by a hierarchical system or intelligence to confront
the challenge of a change of the problem setup. This approach has
been successful where the behaviour characteristic and the change
in environment align: a repertoire of gaits that differ by how much
a certain leg touches the ground, turns out to be useful in a situation
when one of the legs fail [1].

Robustness in a single agent presented here can be seen as a
type of flexibility, of how well an agent is able to generalize to
adjacent out of distribution problems. This is a sought after property,
because it facilitates lifting a policy from incomplete training data
to applications where different data points may be encountered [6].

We introduce a method to evaluate the robustness of a trained
policy and the joint robustness of a population of trained policies.
Choose two parameters in a given environment, we used gravity 𝑔
and pole length 𝑙 of the CartPole environment C. CartPole has by
default 𝑔 = 9.81 and 𝑙 = 1. We vary them equidistant in a certain
range which results in a grid {(𝑔𝑖 , 𝑙 𝑗 )}𝑖=1,...,𝑁 ,𝑗=1,...,𝑀 .

This results in a two-dimensional array of modified environ-
ments. Now, the same agent is repeatedly rolled out on each envi-
ronment modified corresponding to the given values. We call the
mean value of the optimization variable, the accumulated reward
during an episode in the case of CartPole, the fitness.

A visualization of these results in a heat map, a two dimensional
matrix, where the hue at position (𝑖, 𝑗) represents the fitness of the
agent given 𝑔𝑖 and 𝑙 𝑗 , gives a visible profile of the robustness that
unveils hidden properties of the agent, see fig. 2. Also, a simple
quantifiable measure for robustness of an agent is given by adding
up the results to a robustness score or averaging the reward over
all cells. For a population of agents, for each cell we roll out every
agent and take for that cell the performance of the most successful
agents as the (joint) robustness of the population.

5 ROBUSTNESS THROUGH DIVERSITY
Elites algorithms allow the evolution of a population that is diverse
along certain predefined dimensions. They are defined through the
accompanying behaviour descriptor and archive. We claim that
specific behaviour descriptors create specific diversity, whereas the
intrinsic rewards of general diversity can only be unlocked with
general behaviour descriptors. We present an instance of this claim

Table 1: Comparison of the CVT-Sig andME-Last populations

Population ME-Last CVT-Sig RL-All

Number of Solutions 612 127 48
Contributing Solutions 34 20 16
QD Score 312486 122101 n/a
Robustness Score 58655 102199 101459
Average Reward 146.6 255.5 253.6

here, by comparing the robustness of a population created with
a simple low-dimensional behaviour descriptor and a population
created with diversity in signature space.

Robustness is tested against on values of gravity and pole length
from the centre points of a Cartesian grid of [0, 100] × [0, 10] with
20 × 20 = 400 cells and 10 rollouts per modified environment to
find the fitness. We use the gymnasium [14], pyribs [13], stable
baselines 3 [11], and iisignature [12] as reference implementations.

We trained two populations of solutions for the CartPole problem:
one, called ME-Last, with MAP-Elites [8] using a 25×25 grid archive
on the physical last position of the cart and the angle of its pole
in the space [−4.8, 4.8] × [−0.42, 0.42]. We choose the last position
of the cart as a behaviour descriptor here, as it is a simple and
often used characteristic [1, 4, 10]. All things considered the last
position of the trajectory is the result of all the previous states and
the decisions made.

The other population, called CVT-Sig, is trained with CVT-Elites
[15] using the signature transform of trajectories of states with
depth 3 as a behaviour descriptor. CartPole has a 4-dimensional
state space, so each signature has length 155, so we initialize the
CVT-archive in [−1, 1]155.

Both archives are equipped with 625 cells, the number of cells in
the CVT archive set to match those of the grid archive. The CVT
archive divides the space in the given number of cells by sampling
from it and using 𝑘-means clustering to find the same number of
centroids. An individual falls into the cell associated with the closest
centroid. Both methods use fully connected feed forward neural
networks with two hidden layers of size 16 and bias as agents,
which are initialized with 0 and mutated by Gaussian noise with
𝜎0 = 0.1 for 3000 generations of new 30 offspring, where every new
individual is evaluated 3 times. To avoid premature convergence,
as CartPole is quickly solved with the maximum reward of 500, we
use for both setups annealing [2] with initial value 0 and learning
rate 0.5.

Additionally, we trained agents with different single-objective
methods to solve the CartPole problem. PPO (Proximal Policy Opti-
mization), A2C (Advantage Actor Critic), and TRPO (Trust Region
Policy Optimization) are classic reinforcement learning algorithms
that rely on gradient steps, while ARS (Augmented Random Search)
is a high performing instance of random search, the same mech-
anism that ultimately develops the solutions in MAP-Elites. We
trained 12 agents per method, each of them with the default hy-
perparameters of stable baselines 3, except that the networks have
layers with reduced size to 16 nodes each, until they always solve
the problem setup with the full 500 points in the original environ-
ment.
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Figure 2: Heat maps showing the joint robustness of the
populations ME-Last (a) and CVT-Sig (b) against changing
gravity and pole length in the CartPole problem.

We find in table 1 that while the CVT-Sig has a much smaller
QD-Score as only about a fifth of the cells are occupied by solutions
to the problem, while almost all members of the ME-Last population
solve it. However, the joint robustness of these 127 members of the
CVT-Sig population is almost double that of the 612 solutions com-
ing from the ME-Last population. Just a small amount of solutions
contribute to this maximum. All other solutions of the population
are dominated by 34 or 20 agents of the populations ME-Last and
CVT-Sig respectively.

This constitutes a clear example of an advantage having a gen-
eralized diversity in a population. The abstract diversity implied
by the signature transform outperforms the tangible diversity of
a last position characterization of behaviour, see also fig. 2. The
robustness challenge presents a task that is both concrete and not
directly related to the diversity imposed by the learning algorithm.
The comparison against the population RL-All of 48 reinforcement
learning agents from the four different reinforcement learning algo-
rithms shows the robustness score and average reward of CVT-Sig
is on-par to that obtained with sophisticated RL-algorithms.

6 DISCUSSION
It is sensible and potentially advantageous to consider generalized
behaviour descriptors of reinforcement learning agents. While the
examples delivered here only offer anecdotal evidence, it is still clear,
that it is possible to formulate generalized diversity and benefit
from it. They constitute a proof of concept for the generalization of
behaviour descriptors. Signature transform turns out to be a great fit
for the Elites setup, as it normalizes episode length, clearly defines
a space for the archive, allows aggregation of multiple rollouts, and
is computationally viable with one signature transform per rollout.

By further formalizing the robustness challenge we validated
this idea. The associated robustness challenge opens an enormous
wealth of benchmark problems, for example to find very robust
agents, or to identify algorithms that output robust agents, or to
find the conceptual building blocks of robustness both for single
agents and for populations.

A robustness profile opens a way to differentiate between mul-
tiple solutions to the same problem that seem otherwise indis-
tinguishable. It allowed an extensive review of populations to a
problem as simple as the CartPole problem. This may open a path
to better understand how solutions of problems develop and evolve,
even after apparent convergence to a solution. The examined pa-
rameters of robustness of the robustness challenge will still vary

from environment to environment, but they are somewhat natu-
rally induced by the problem, which discourages cherry picking
and makes it harder to align learning dimensions of diversity with
the dimensions of robustness.

Canonically there have been some specific robustness challenges
posed, such as the adaption to damage to a robot [15], which require
a review using signature transform. Next to robustness, potential
challenges to test the ideas of generalized diversity are exploration
[10] and coverage of behaviour [4], problems that have been shown
to benefit from selecting for diversity.

Similarly, representatives of diverse populations can be selected
as stepping stones for further evolution, even with gradient-based
methods. This may consolidate robustness in even smaller popula-
tions and improve overall robustness, as gradient-based methods
like PPO are apparently superior in developing robust agents than
the random search represented by ARS.

Generalized diversity is a lot harder to pin down than diversity
specified to concrete characteristics. Following ideas from evolu-
tionary computing seems to the correct path to find a better grasp
on generalized diversity, which conceptually and evidently can
unlock new favourable results that are hard or even impossible to
engineer with specified, guided diversity.
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