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Chapter 1
Introduction

This thesis concerns the algorithms and mathematics that underlie the computer-aided simulation of
complex processes in engineering and the sciences. Such processes are characterized by a large range
of non-separable scales and we will refer to them as multiscale problems. Among the target appli-
cations are the mechanical analysis of multiphase materials such as composite and multifunctional
materials, transport processes in porous media, high-frequency acoustic scattering as well as the sim-
ulation of Bose-Einstein condensates. Although mathematical physics provides sound models of par-
tial differential equations that implicitly describe these processes, the complex interplay of effects
between the scales is intractable for an analytical solution such that their understanding and control
relies on numerical simulation. In many interesting applications, computers are not able to resolve all
details on all relevant scales. The observation and prediction of physical phenomena from multiscale
models, hence, requires insightful numerical techniques that efficiently represent unresolved scales in
a numerical simulation, i.e., computational multiscale methods.

The design and analysis of these methods requires novel mathematical tools. In the past decades,
the numerical analysis of partial differential equations (PDEs) was merely focused on the numeri-
cal approximation of sufficiently smooth solutions in the asymptotic regime of convergence. In the
context of multiscale problems (and beyond), such results have only limited impact because the nu-
merical approximation will hardly ever reach the asymptotic idealized regime under realistic condi-
tions. Although a method performs well for sufficiently fine meshes it may fail completely on coarser
(and feasible) scales of discretization. This can be seen for instance in the numerical homogenization
of elliptic boundary value problems with highly varying non-smooth diffusion coefficient or high-
frequency time-harmonic acoustic wave propagation, where the corresponding PDEs exhibits rough
and highly oscillatory solutions.

The difficulties for the numerical approximation of such oscillatory problems by finite element
methods (FEMs) or related schemes are two-fold. The pure approximation (e.g. interpolation) of the
unknown solutions by finite elements already requires high spatial resolution to capture fast oscil-
lations and heterogeneities on microscopic scales. When the function is described only implicitly
as the solution of some partial differential equation, its approximation faces further scale-dependent
pre-asymptotic effects caused by the under-resolution of relevant microscopic data. Examples are the
poor L2 approximation in homogenization problems (see Fig. 1.1) and the pollution effect [10] for
Helmholtz problems with large wave numbers (see Fig. 1.2). We shall emphasize that, in the lat-
ter case, the existence and uniqueness of numerical approximations may not even be guaranteed in
pre-asymptotic regimes.

Such situations require the stabilization of standard methods so that eventually a meaningful ap-
proximation on reasonably coarse scales of discretization becomes feasible. This introductory part
of this thesis presents a general multiscale framework for the stabilization of FEMs for multiscale
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0 1

0
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Fig. 1.1 Failure of FEM in homogenization problems: Consider the periodic problem − d
dx Aε(x) d

dx uε(x) = 1 in
the unit interval with homogeneous Dirichlet boundary condition, where Aε(x) := (2+ cos(2πx/ε))−1 for some
small parameter ε > 0. The solution uε = 4(x− x2)− 4ε

(
1

4π
sin(2π

x
ε
)− 1

2π
xsin(2π

x
ε
)− ε

4π2 cos(2π
x
ε
)+ ε

4π2

)
is

depicted in blue for ε = 2−5. The P1-FE approximation (◦) on a uniform mesh of width h interpolates the curve
x 7→ 2

√
3(x− x2) whenever h is some multiple of the characteristic length scale ε and, hence, fails to approximate

uε in any reasonable norm in the regime h≥ ε .

problems with the aim to significantly reduce or even eliminate pre-asymptotic effects due to under-
resolution. Our starting point will be the Variational Multiscale Method (VMS) originally introduced
in [38, 39]. The method provides an abstract framework how to incorporate missing fine-scale ef-
fects into numerical problems governing coarse-scale behavior [40]. One may interpret the VMS as
a Petrov-Galerkin method using standard FE trial spaces and an operator-dependent test space that
needs to be precomputed in general.

The construction of this operator-dependent test space is based on some stable projection onto the
standard finite element (FE) trial space and a corresponding scale decomposition of a function into
its FE part given by the projection (the macroscopic/coarse-scale part) and a remainder that lies in the
kernel of the projection operator (the microscopic/fine-scale part). The test functions are computed via
a problem-dependent projection of the trial space into the space of fine-scale functions. This requires
the solution of variational problems in the kernel of the projection – the fine-scale corrector problems.
It has been observed empirically in certain applications that the Green’s function associated with these
fine-scale corrector problems – the so-called fine-scale Green’s function [39] – may exhibit favorable
exponential decay properties [44, 39] even though the decay of the classical full scale Green’s function
is only algebraic. It is this exponential decay property that allows one to turn the VMS into a feasible
numerical method [44, 42].

The exponential decay was rigorously proved for the first time in [A1] in the context of multi-
dimensional numerical homogenization. A key ingredient of the proof of [A1] is the use of a (local)
quasi-interpolation operator for the scale decomposition. Although the method of [A1] still fits into
the general framework of the VMS, it uses a different point of view on the method based on the or-
thogonalisation of coarse and fine scales with respect to the inner product associated with a symmet-
ric and coercive model problem. This is why the method of [A1] is now referred to as the Localized
Orthogonal Decomposition (LOD) method. Subsequent work showed that the ideas of [A1] can be
generalized to other discretization techniques such as discontinuous Galerkin [22, 23, 26], Petrov-
Galerkin formulations [21], mixed methods [34] and mesh-free methods [37]. Moreover, the method
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Fig. 1.2 Numerical dispersion in Helmholtz problems: Consider − d2

dx2 uε(x)−κ2u(x) = 0 in the unit interval with
u(0) = 1 and d

dx u(1) =−iκu(1) for some large parameter κ > 0. The solution uκ = exp(−iκx) is depicted in blue for
κ = 27. The P1-FE approximation (◦) on a uniform mesh of width h = 2−7 > 6 · (wave length) fails to approximate
uκ due to the accumulation of phase errors.

can also be reinterpreted in terms of the multiscale finite element method with special oversampling
[A2]. The class of problems that have been analyzed by now includes semi-linear problems [A3],
high-contrast problems [57, 9], rough boundary conditions [35], problems on complicated geome-
tries [27], linear and non-linear eigenvalue problems [C1, C2, 49], parabolic problems [48], wave
propagation [3, B1, B2] and parametric problems [4].

Chapter 2 of this thesis aims to reinterpret all those results, in particular [A1]–[B2], in the ab-
stract stabilization framework of the original VMS (see Section 2.1.1) and aims to illustrate how the
exponential decay of the fine-scale Green’s function can be quantified (see Section 2.2). Chapter 3
then shows how these abstract results lead to super-localized numerical homogenization [A1, A2]
(see Section 3.1) and pollution-free time-harmonic acoustic scattering (see Section 3.2) [B1, B2].
Chapter 4 closes the introductory part of this thesis with a brief description of further applications
including (non-linear) eigenvalue problems as they are treated in [C1, C2] as well as the challenge of
high contrast (e.g. in underlying material coefficients) which is the topic of [D1, D2, D3].





Chapter 2
An abstract multiscale method

This chapter is concerned with an abstract variational problem in a complex Hilbert space V as it
appears for the weak formulation of second order PDEs. In this context, V is typically some closed
subspace of the Sobolev space H1(Ω ;Cm) for some bounded Lipschitz domain Ω ⊂Rd . Let a denote
a bounded sesquilinear form on V ×V and let F ∈ V ′ denote a bounded linear functional on V . We
wish to find u ∈V satisfying the linear variational problem

∀v ∈V : a(u,v) = F(v). (2.1)

We assume that the sesquilinear form a satisfies the inf-sup condition

α := inf
06=v∈V

sup
0 6=w∈V

a(v,w)
‖v‖V‖w‖V

= inf
06=w∈V

sup
06=v∈V

a(v,w)
‖v‖V‖w‖V

> 0. (2.2)

Under this condition, the abstract problem (2.1) is well-posed, i.e., for all F ∈V ′ there exists a unique
solution u ∈V and the a priori bound

‖u‖V ≤ α
−1‖F‖V ′

holds true; see, e.g., [5].

2.1 Finite element projections

We wish to approximate the unknown solution u of (2.1) by some computable function. The stan-
dard procedure for approximation is the Galerkin method which simply chooses a finite-dimensional
subspace VH ⊂V (that contains simple functions such as piecewise polynomials) and restricts the vari-
ational problem (2.1) to this subspace. Usually, VH belongs to some family of spaces parametrized
by some abstract discretization parameter H, for instance the mesh size. This parameter (or set of
parameters) provides some control on the approximation properties of VH as H → 0 at the price of
an increasing computational cost in the sense of dimVH → ∞. The Galerkin method seeks a function
GHu ∈VH satisfying

∀vH ∈VH : a(GHu,vH) = F(vH)
(
= a(u,vH)

)
. (2.3)

Recall that the well-posedness of the original problem (2.1) does not imply the well-posedness of
the discrete variational problem (2.3) but needs to be checked for the particular application via dis-
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6 2 An abstract multiscale method

crete versions of the inf-sup condition (2.2). In many cases, such conditions are only satisfied for H
sufficiently small. This means that there is some threshold complexity for computing any Galerkin
approximation and this threshold can be out of reach. Even if a Galerkin solution GHu exists and is
computable, it might not provide the desired accuracy or does not reflect the relevant characteristic
features of the solution, as we have seen in the introduction.

Therefore, we are interested in computing projections onto the discrete space VH other than the
Galerkin projection. Let IH : V → VH denote such a linear surjective projection operator and let us
assume that it is bounded in the sense of the space L (V ) of linear operators from V to V with finite
operator norm

‖IH‖L (V ) := sup
06=v∈V

‖IHv‖V
‖v‖V

< ∞.

Implicitly, we also assume that this operator norm does not depend on the discretization parameter H
in a critical way. Possible choices of IH include the orthogonal projection onto VH with respect to the
inner product of V or any Hilbert spaces L ⊃ V containing V and mainly (local) quasi-interpolation
operators of Clément or Scott-Zhang type as they are well-established in the finite element community
in the context of a posteriori error estimation [15, 59, 11, 17].

2.1.1 Petrov-Galerkin characterization of finite element projections

The Galerkin projection GH is designed in such a way that its computation requires only the known
data F associated with the unknown solution u of the abstract variation problem (2.1). This section
mimics this property for a general projection IH ∈ L (V ) by characterizing it as a Petrov-Galerkin
discretization using VH as the trial space and a non-standard test space WH ⊂ V that depends on the
problem and the projection. The definition of WH rests on the trivial observation that, for any v ∈V ,

a(IHu,v) = F(v)−a(u− IHu,v). (2.4)

The choice of a test function v in the subspace

WH := {w ∈V | ∀z ∈ Ker IH : a(z,w) = 0} (2.5)

annihilates the second term on the right-hand side of (2.4) and, hence,

a(IHu,wH) = F(wH)

holds for all wH ∈WH . This shows that IHu is a solution of the Petrov-Galerkin method: Find uH ∈VH
such that

∀wH ∈WH : a(uH ,wH) = F(wH). (2.6)

This characterization of IH is known from the variational multiscale method as it is presented in [40]
and it is the basis of the results in Appendices A and B of this thesis, especially [A1].

The question whether or not (2.6) has a unique solution can not be answered under the general
assumptions made so far. We need to assume the missing uniqueness to be able to proceed and one
way of doing this is to assume that the dimensions of trial and test space are equal,

dimWH = dimVH . (2.7)
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In the present setting with a bounded operator IH , this condition is equivalent to the well-posedness
of the discrete variational problem (2.6), i.e., it admits a unique solution uH = IHu ∈VH and

‖uH‖V ≤ ‖IH‖L (V )‖u‖V ≤
‖IH‖L (V )

α
‖F‖V ′.

The a priori estimate in turn implies a lower bound of the discrete inf-sup constant of the Petrov-
Galerkin method by the quotient of the continuous inf-sup constant α and the continuity constant of
IH ,

inf
06=vH∈VH

sup
06=wH∈WH

a(vH ,wH)

‖vH‖V‖wH‖V
≥ α

‖IH‖L (V )
≤ inf

0 6=wH∈WH
sup

06=vH∈VH

a(vH ,wH)

‖vH‖V‖wH‖V
.

The test space WH is the ideal test space for our purposes in the following sense. Assuming that we
have access to it, the method (2.6) would enable us to compute IHu without the explicit knowledge of
u. Although this will rarely be the case, we will see later that WH can be approximated very efficiently
in relevant cases. The discrete inf-sup conditions then indicate that the sufficiently accurate approxi-
mation of WH will not harm the method, its stability properties or its subsequent error minimization
properties.

The continuity of the projection operator IH readily implies the quasi-optimality of the Petrov-
Galerkin method (2.6),

‖u−uH‖V = ‖(1− IH)u‖V ≤ ‖IH‖L (V ) min
vH∈VH

‖u− vH‖V . (2.8)

Here, we have used that ‖IH‖L (V ) = ‖1− IH‖L (V ); see e.g. [60]. More importantly, the same argu-
ments show that the Petrov-Galerkin method is quasi-optimal with respect to any other Hilbert space
L⊃V with norm ‖ · ‖L whenever IH ∈L (L),

‖u−uH‖L ≤ ‖IH‖L (L) min
vH∈VH

‖u− vH‖L.

This quasi-optimality makes the ansatz very appealing and justifies its further investigation. Hence,
in the remaining part of the chapter, it is our aim to turn the method into a feasible numerical scheme
while preserving these properties to a large extent. Although the discrete stability of the method
depends on the stability properties of the original problem and, hence, on parameters such as the
frequency in scattering problems, the quasi-optimality depends only on IH and not necessarily on the
problem.

2.1.2 Characterization of the ideal test space

A practical realization of the Petrov-Galerkin method (2.6) requires a choice of bases in the discrete
trial VH and test space WH . As usual, these choices have big impact on the computational complexity.
The underlying principle of finite elements is the locality of the bases which yields sparse linear
systems and offers the possibility of linear computational complexity with respect to the number of
degrees of freedom NH = dimVH . Let

{λ j | j = 1,2, . . . ,NH}



8 2 An abstract multiscale method

be such a local basis of VH .
We shall derive a basis of the test space WH defined in (2.5) by mapping the trial basis onto a test

basis via some bijective operator T , a so-called trial-to-test operator. Due to Assumption (2.7) such
an operator exists, but there are many choices and we have to make a design decision. Our choice is
that

IH ◦T = id (2.9)

which is consistent with almost all existing practical realizations of the method but one might as well
consider distance minimization

‖(1−T )vH‖V = min
wH∈WH

‖vH−wH‖V .

The condition (2.9) fixes the (macroscopic) finite element part IHT vH = vH of T vH while the
fine scale remainder (1− IH)T vH is determined by the variational condition in the definition of WH .
Given vH ∈VH , (1− IH)T vH ∈ Ker IH satisfies

∀z ∈ Ker IH : a(z,(1− IH)T vH) =−a(z,vH). (2.10)

This variational problem is referred to as the fine scale corrector problem for vH ∈VH . Note that vH can
be replaced with any v ∈ V so that (1− IH)T can be understood as an operator from V into Ker IH .
We usually denote this operator the fine scale correction operator and write C := (1− IH)T . This
operator is the Galerkin projection from VH (or V ) into Ker IH related to the adjoint of the sesquilinear
form a. It depends on the underlying variational problem and equips test functions with problem
related features that are not present in VH . In the context of elliptic PDEs, C is called the fine-scale
Green’s operator [38, 40].

For this construction to work we need to assume the well-posedness of the corrector problem (2.10),
i.e., there is some constant β > 0 such that

inf
06=v∈Ker IH

sup
06=w∈Ker IH

a(v,w)
‖v‖V‖w‖V

≥ β ≤ inf
06=w∈Ker IH

sup
06=v∈Ker IH

a(v,w)
‖v‖V‖w‖V

. (2.11)

As for the Galerkin projection GH onto VH , these inf-sup conditions do not follow from their con-
tinuous counterparts (2.2) (unless a is coercive) and they might hold for sufficiently small H only.
However, we were able to show in the context of the Helmholtz model problem of Section 3.2 that
(2.11) holds in a much larger regime of the discretization parameter H than the corresponding con-
ditions for the standard FEM do. In any case, condition (2.11) implies that the trial-to-test operator
T = 1+C is a bounded linear projection operator from V to WH with operator norm

‖T ‖L (V ) = ‖1−T ‖L (V ) = ‖C ‖L (V ) ≤
Ca

β
,

where Ca denotes the continuity constant of the sesquilinear form a. Moreover, T |VH : VH →WH is
invertible with (T |VH )

−1 = IH and

{T λ j | j = 1,2, . . . ,NH}

defines a basis of WH with
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1
‖IH‖L (V )

‖λ j‖V ≤ ‖T λ j‖V ≤ Ca
β
‖λ j‖V , 1≤ j ≤ NH .

In general, it cannot be expected (apart from one-dimensional exceptions where Ker IH is a broken
Sobolev space [40]) that the T λ j have local support. On the contrary, their support will usually be
global. However, we will show in the next chapter that they decay very fast in relevant applications;
for illustrations see Figures 3.1 and 3.6.

An important special case of the model problem (2.1) is the hermitian case. Note that hermiticity
is preserved by the Petrov-Galerkin method in the following sense. For any uH ,vH ∈VH , it holds that

a(uH ,T vH) = a(T uH ,T vH) = a(T vH ,T uH) = a(vH ,T uH).

However, this hermiticity is typically lost once T is replaced with some approximation T`. In order
to avoid a lack of hermiticity, the papers [A1]–[C2] use a variant of the method with WH as the test and
trial space. If hermiticity is important, one should follow this line. In this thesis, we trade hermiticity
for a cheaper method that avoids any costly communication between the fine-scale correctors that is
necessary in the hermitian version.

If the problem is non-hermitian, one might still consider a modified trial space based on the adjoint
of T to improve approximation properties; see [43, 45, B1] for details. In a setting with a modified
trial space, further generalizations are possible. Since VH does not appear any more in the method,
its conformity can be relaxed as it was recently proposed in [53] in the context of a multilevel solver
for Poisson-type problems with L∞ coefficients. This approach enables one to compute very general
quantities of the solution such as piecewise mean values or higher moments related to elements or
edges and can be linked to discontinuous Galerkin or Crouzeix-Raviart type approximations instead
of conforming finite elements.

2.2 Exponential decay of fine-scale correctors

In many cases, the fine-scale correctors (i.e. the solutions of the fine-scale corrector problems (2.10))
have decay properties better than those of the Green’s function associated with the underlying full-
scale partial differential operator. To elaborate on this, we shall now assume that the space V is a
closed subspace of H1(Ω) with a local norm (the notation ‖ ·‖V,ω means that the V -norm is restricted
to some subdomain ω ⊂ Ω ). Moreover, the sesquilinear form a is assumed to be local. This is the
natural setting for scalar second order PDEs. The subsequent arguments can be easily generalized to
vector-valued problems.

To be more precise regarding the locality of the basis mentioned above, we shall associate the
basis functions of VH with a set of geometric entities NH called nodes (e.g. the vertices of a tri-
angulation) and assume that these nodes are well distributed in the domain Ω in the sense of local
quasi-uniformity. In this context, H refers to the maximal distance between nearest neighbors (the
mesh size). Given some node z ∈NH and the corresponding basis function λz ∈VH , set the corrector
φz = C λz and recall from (2.10) that

a(w,φz) =−a(w,λz)

for all w ∈ Ker IH .
We aim to show that there are constants c> 0 and C > 0 independent of H and R such that
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‖C λz‖V,Ω\BR(z) = ‖φz‖V,Ω\BR(z) ≤C exp
(
−c

R
H

)
‖C λz‖V , (2.12)

where BR(z) denotes the ball of radius R > 0 centered at z. The proof of (2.12) is perhaps the most
important contribution of this thesis and was first given in [A1].

We shall demonstrate how this result can be established and what kind of assumptions have to be
made. Let R > 2H and r := R−H > H and let η ∈W 1,∞(Ω ; [0,1]) be some cut-off function with
η = 0 in Ω \BR(z), η = 1 in Br(z), and

‖∇η‖L∞(Ω) ≤CηH−1 (2.13)

for some generic constant Cη . In general, the fine-scale space Ker IH is not closed under multiplication
by a cut-off function and we will need to project the truncated function ηφz back into Ker IH by the
operator 1− IH . We assume that the concatenation of multiplication by η and (1− IH) is stable and
quasi-local in the sense that

∀w ∈ Ker IH : ‖(1− IH)(ηw)‖V,BR(z)\Br(z) ≤Cη ,IH‖w‖V,BR′(z)\Br′(z) (2.14)

holds with r′ := r−mH and R′ := R+mH and generic constants Cη ,IH > 0 and m ∈ N0 independent
of H and z. Although the multiplication by η is not a stable operation in the full space V (think of
a constant function), this result is possible in the space of fine scales for example if IH enjoys quasi-
local stability and approximation properties; see Section 3.1 below for an example. The quasi-locality
of IH is also used in the next argument.

Assuming that the inf-sup condition (2.11) holds, the corrector φz satisfies

‖φz‖V,Ω\BR(z) = ‖(1− IH)φz‖V,Ω\BR(z)

≤ ‖(1− IH)((1−η)φz)‖V
≤ β

−1a(w,(1− IH)((1−η)φz))

= β
−1 (a(w,φz)−a(w,(1− IH)(ηφz)))

for some w ∈ Ker IH with ‖w‖V = 1. Since supp((1− IH)((1−η)φz)) ⊂ Ω \Br(z) there is a good
chance to actually find a function w with

suppw⊂ supp((1− IH)((1−η)φz))⊂Ω \Br(z).

Of course, this is an assumption that needs to be verified in the particular application. Under this
condition, the term a(w,φz) = a(w,λz) vanishes because the supports of w and λz have no overlap.
This and (2.14) imply

‖φz‖V,Ω\BR(z) ≤ β
−1CaCη ,IH‖φz‖V,BR′(z)\Br′(z)

= β
−1CaCη ,IH

(
‖φz‖2

V,Ω\Br′(z)
−‖φz‖2

V,Ω\BR′(z)

)1/2
,

where Ca denotes the continuity constant of the sesquilinear form a. Hence, the contraction

‖φz‖2
V,Ω\BR′(z)

≤ C′

1+C′
‖φz‖2

V,Ω\BR′−(2m+1)H(z)
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holds with C′ := (β−1CaCη ,IH )
2. The iterative application of this estimate with R′ 7→ R′− (2m+1)H

plus relabeling R′ 7→ R leads to the conjectured decay result (2.12) with constants C := ( C′
1+C′ )

− 1
2(2m+1)

and c :=
∣∣∣log( C′

1+C′ )
∣∣∣ (1)

2(2m+1) > 0.

The exponential decay of the ideal correctors motivates and justifies the localization of the fine-
scale corrector problems to local subdomains of diameter `H where ` ∈ N is a new discretization
parameter, the so-called oversampling parameter. It controls the perturbation with respect to the ideal
global correctors. We will explain this localization procedure on the basis of an example in Section 3.1
below. As a rule of thumb, the localization to subdomains of diameter `H will introduce an error of
order O(exp(−`)). As long as this error is small when compared with the inf-sup constant α‖IH‖−1

L (V )

of the ideal method, the stability and approximation properties of the method will be largely preserved.





Chapter 3
Applications

This chapter illustrates how the abstract theory of Chapter 2 can be applied to interesting model prob-
lems such as diffusion in heterogeneous materials and time-harmonic high-frequency scattering where
standard methods suffer from severe scale-dependent pre-asymptotic effects illustrated in Chapter 1.

3.1 Numerical homogenization beyond scale separation

The first prototypical model problem concerns the diffusion problem

−divA∇u = f

in some bounded domain Ω ⊂ Rd with homogeneous Dirichlet boundary condition. The difficulty
is the strongly heterogeneous and highly varying (non-periodic) diffusion coefficient A. The hetero-
geneities and oscillations of the coefficient may appear on several non-separable scales. We assume
that the diffusion matrix A ∈ L∞

(
Ω ,Rd×d

sym
)

is symmetric and uniformly elliptic with

0< α = ess inf
x∈Ω

inf
v∈Rd\{0}

(A(x)v) · v
v · v .

Given f ∈V ′ := H−1(Ω), we wish to find the unique weak solution u ∈V := H1
0(Ω) such that

a(u,v) :=
∫

Ω

(A∇u) ·∇v =
∫

Ω

f v =: F(v) for all v ∈V. (3.1)

It is well known that classical polynomial based FEMs can perform arbitrarily badly for such prob-
lems, see e.g. [8]. This is due to the fact that finite elements tend to average unresolved scales of the
coefficient and the theory of homogenization shows that this way of averaging does not lead to mean-
ingful macroscopic approximations. This was illustrated in the introduction. In the simple periodic
example of Fig. 1.1, the averaging of the inverse of the diffusion coefficient A (harmonic averaging)
would have led to the correct macroscopic representation.

In computational homogenization, the impact of unresolved micro-structures encoded in the rough
coefficient A on the overall process is taken into account by the solution of local microscopic cell
problems. While many approaches are empirically successful and robust for certain multiscale prob-
lems [24, 2], the question whether there are stable and accurate methods beyond the strong strong
structural assumptions of analytical homogenization regarding scale separation or even periodicity

13
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remained open for a long time. Only recently, the existence of an optimal approximation of the low-
regularity solution space by some arbitrarily coarse generalized finite element space (that represents
the homogenized problem) was shown in [7] and [32]. However, the constructions therein include
prohibitively expensive global solutions of the full fine scale problem or the solution of more in-
volved eigenvalue problems. The first efficient and feasible construction, solely based on the solution
of localized microscopic cell problems, was given and rigorously justified in [A1] and later optimized
[A2] and generalized in [A3, 37]. Since then, several new approaches have been developed. One
approach with presumably similar properties was suggested in [54] along with the notion of sparse
super-localization that reflects the locality of the discrete homogenized operator (similar to the spar-
sity of standard finite element matrices). Another new approach is based on the theory of iterative
solvers is [41].

We shall now explain how the abstract theory of the previous sections is related to the method of
[A1] and its variants. Let GH denote some regular (in the sense of Ciarlet) finite element mesh into
closed simplices and let VH := P1(GH)∩V denote the space of continuous functions that are affine
when restricted to any element T ∈ GH . Let IH : V → VH be a quasi-interpolation operator that acts
as a stable quasi-local projection in the sense that IH ◦ IH = IH and that for any T ∈ GH and all v ∈V
there holds

H−1‖v− IHv‖L2(T )+‖IHv‖V,T ≤CIH‖∇v‖V,ΩT , (3.2)

where ΩT refers to some neighborhood of T (typically the union of T and the adjacent elements) and
‖ ·‖V := ‖∇ · ‖L2(Ω). One possible choice (among many others) is to define IH := EH ◦ΠH , where ΠH

is the piecewise L2 projection onto P1(GH) and EH is the averaging operator that maps P1(GH) to VH
by assigning to each interior vertex the arithmetic mean of the corresponding function values of the
adjacent elements, that is, for any v ∈ P1(GH) and any free vertex z ∈NH ,

(EH(v))(z) =
1

card{K ∈ GH : z ∈ K} ∑
T∈GH :z∈T

v|T (z).

For this choice, the proof of (3.2) follows from combining the well-established approximation and
stability properties of ΠH and EH , see for example [18]. The choice of IH in [A1, A2] was slightly
different. Therein, the L2(Ω)-orthogonal projection onto VH played the role of IH . Since this a non-
local operator, the analysis was based on the fact that the local quasi-interpolation operator of [17,
Section 6] has the same kernel and, hence, induces the same method.

Following the recipe of Section 2.1.1 and taking into account the present setting with an inner
product a, the ideal test space WH := (Ker IH)

⊥a is simply the orthogonal complement (w.r.t. a) of the
fine scale functions Ker IH .

Given the nodal basis of VH , a basis of WH is computed by means of the trial-to-test operator
T = 1+C , where

∀w ∈ Ker IH : a(C λz,w) =−a(λz,w). (3.3)

It is easily checked that the assumptions made in Section 2.2 are satisfied in the present setting.
In particular, formula (2.14) holds with Cη ,IH = CIH (CIHCη + 1) and m = 2. This follows from the
product rule, (2.13), and the local approximation and stability properties (3.2) of IH . This implies the
exponential decay as it is stated in (2.12) with constants C and c independent of variations of the
diffusion coefficient A. An example of a corrector and a test basis function are depicted in Fig. 3.1 to
demonstrate the exponential decay.
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Fig. 3.1 Standard nodal basis function λz with respect to the coarse mesh GH (top left), corresponding ideal corrector
φz = C λz (top right), and corresponding test basis function T λz = (1+C )λz (bottom left). The bottom right figure
shows a top view on the modulus of test basis function T λz = (1+C )λz with logarithmic color scale to illustrate
the exponential decay property. The underlying rough diffusion coefficient A is depicted in Fig. 3.4.

We truncate the computational domain of the corrector problems to local subdomains of diameter
`H roughly. We have not yet described how to do this in practice. The obvious way would be to
simply replace Ω in (3.3) with suitable neighborhoods of the nodes z. This procedure was used in
[A1]. However, it turned out that it is advantageous to consider the following slightly more involved
technique based on element correctors [A2, 37].
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Fig. 3.2 Element
patches ΩT,` for
` = 1,2,3 (from left
to right) as they are used
in the localized correc-
tor problem (3.4).

We assign to any T ∈ GH its `-th order element patch ΩT,` for a positive integer `; see Fig. 3.2 for
an illustration. Moreover, we define for all v,w ∈V and ω ⊂Ω the localized bilinear forms

aω(v,w) :=
∫

ω

(A∇v) ·∇w.

Given any nodal basis function λz ∈VH , let φz,`,T ∈ Ker IH ∩H1
0(ΩT,`) solve the subscale corrector

problem
aΩT,`(φz,`,T ,w) =−aT (λz,w) for all w ∈ Ker IH ∩H1

0(ΩT,`). (3.4)

Let φz,` := ∑T∈GH :z∈T φz,`,T and define the test function

Λz,` := λz +φz,`.

The localized test basis function Λz,` and the underlying correctors φz,`,T can be seen in Fig. 3.3.
Note that we impose homogeneous Dirichlet boundary condition on the artificial boundary of the
patch which is well justified by the fast decay.

More generally, we may define the localized correction operator C` by

C`vH := ∑
z∈NH

vH(z)φz,`

as well as the localized trial-to-test operator

T`vH := 1+C`vH = ∑
z∈NH

vH(z)Λz,`.

The space of test functions then reads

W `
H := T`VH = span{Λz,` : z ∈NH}

and the (localized) multiscale Petrov-Galerkin FEM seeks uH,` ∈VH such that

a(uH,`,wH,`) = ( f ,wH,`)L2(Ω) for all wH,` ∈WH,`. (3.5)

In previous papers [A1, A2, 37] we have considered the symmetric version with WH,` as trial and
test space and also the reverse version with WH,` as the trial space and VH as test space [21]. All
these methods are essentially equal in the ideal case and there are no major changes in the output
after localization (when only the VH part of the discrete solution is considered). When it comes to
implementation and computational complexity, the present Petrov-Galerkin version has the advantage
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Fig. 3.3 Localized element correctors φz,`,T for ` = 2 and all four elements T adjacent to the vertex z = [0.5,0.5]
(top), localized nodal corrector φz,` = C`λz = ∑T3z φz,`,T (bottom left) and corresponding test basis function
Λz,` = T`λz = (1+C`)λz (bottom right). The underlying rough diffusion coefficient is depicted in Fig. 3.4. The
computations have been performed by standard linear finite elements on local fine meshes of with h = 2−8. See
Fig. 3.1 for a comparison with the ideal global corrector and basis.

that there is no communication between the correctors. This means that the fine-scale solutions of the
corrector problems need not to be stored but only their interaction with the O(`d) standard nodal basis
functions in their patches; see also [21] for further discussions regarding those technical details.

The error analysis of the localized method follows similar arguments. Let uH ∈ VH be the ideal
Petrov-Galerkin approximation and let eH := uH−uH,` ∈VH denote the error with respect to the ideal
method. Then there exists some zH ∈WH with ‖zH‖V = 1 such that

α

‖IH‖L (V )
‖eH‖V ≤ a(eH ,zH) = a(uH,`−u,zH− zH,`),

where zH,` ∈WH,`. The exponential decay property allows one to choose zH,` in such a way that
‖zH− zH,`‖V ≤ C̃ exp(−c`); see for instance [A2, 37]. This shows that
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Fig. 3.4 Diffusion co-
efficient in the numeri-
cal experiment of Sec-
tion 3.1 and coarsest
mesh.
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‖u−uH,`‖V ≤ ‖u−uH‖V +‖uH−uH,`‖V

≤ ‖u−uH‖V +
‖IH‖L (V )Ca

α
C̃ exp(−c`)‖u−uH,`‖V .

We shall emphasize that, in the present context, the constants C̃ and c are independent of variations of
the rough diffusion tensor but they may depend on the contrast (the ratio between the global upper and
lower bound of A). Using (2.8), this shows that the moderate choice `≥ | log(α/(2‖IH‖L (V )CaC̃))|/c=
O(1) implies the quasi-optimality (and also the well-posedness) of the Petrov-Galerkin method with
respect to the V -norm

‖u−uH,`‖V ≤ 2‖IH‖L (V ) min
vH∈VH

‖u− vH‖V .

With regard to the fact that the V -best approximation may be poor and standard FE Galerkin would
have provided us with an even better estimate at lower cost, this result is maybe not very impressive.
Let us see if we can do something similar for the L2-norm which appears to be the relevant measure
in the context of homogenization problems. A standard duality argument shows that

‖eH‖2
L2(Ω) = a(eH ,zH) = a(uH,`−u,zH− zH,`)

for some zH ∈WH with ‖zH‖V ≤C3α−1‖IH‖L (V )‖eH‖L2(Ω) and zH,` := T`IHzH ∈WH,`. Similar ar-
guments as before yield

‖u−uH,`‖L2(Ω) ≤C1 min
vH∈VH

‖u− vH‖L2(Ω)+C2 exp(−c`) min
vH∈VH

‖u− vH‖V ,

where C1 := ‖IH‖L (L2(Ω)) and C2 := CaC̃C3α−1‖IH‖L (V ). This shows that the method is accurate
also in the L2-norm regardless of the regularity of u. If the oversampling parameter is chosen such
that `& logH, then the method is O(H) accurate in L2(Ω) with no pre-asymptotic phenomena. This
is the best worst-case rate one can expect for general f ∈V ′ and A ∈ L∞.

Note that the previous results hold true for general L∞-coefficients and all constants are indepen-
dent of the variations of the diffusion tensor as far as the contrast remains moderately bounded. In
particular, the approach is by no means restricted to periodic coefficients or scale separation. For a
more detailed discussion of high-contrast problems in this context we refer to [57].

The final step towards a fully practical method is the discretization of the fine-scale corrector prob-
lems. With regard to the possible low regularity of the solution, P1 finite elements on a refined mesh
Gh appears reasonable, but any other type of discretization is possible. Obviously, the fine-scale dis-
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Fig. 3.5 Numerical experiment of Section 3.1. Relative L2-errors of multiscale Petrov-Galerkin FEM (3.5) versus
the number of degrees of freedom NH ≈ H−2, where H = 2−1, . . . ,2−5 is the uniform coarse mesh size. The local-
ization parameter varies between `= 1, . . . ,3. The P1-FE solution and the best-approximation in the P1-FE space on
the same coarse meshes are depicted for comparison.

cretization parameter h has to be chosen fine enough to resolve all relevant features of the diffusion
coefficient. The previous theory can be transferred to this case in a straight-forward way and we refer
to [A1, A2, 35] for the technical details.

To illustrate the previous estimates, we close this section with a numerical experiment. Let Ω be the
unit square and the outer force f ≡ 1 in Ω . Consider the coefficient A that is piecewise constant with
respect to a uniform Cartesian grid of width 2−6. Its values are randomly chosen between 1 and 10;
see Fig. 3.4. Consider uniform coarse meshes GH of size H = 2−1,2−2, . . . ,2−5 of Ω that certainly do
not resolve the rough coefficient A appropriately. The reference mesh Gh has width h = 2−9. Since no
analytical solutions are available, the standard finite element approximation uh ∈Vh on the reference
mesh Gh serves as the reference solution. Doing this, we assume that uh is sufficiently accurate and,
necessarily, that Gh resolves the discontinuities of A. The corrector problems are also solved on this
scale of numerical resolution.

The numerical results, i.e. errors with respect to the reference solution uh are depicted in Fig. 3.5.
The results are in agreement with the theoretical results. They are even better in the sense that ` = 1
seems to be sufficient for quasi-optimality (with respect to uh) in the present setup and parameter
regime. We expect that the true errors with respect to u would behave similar in the beginning but level
off at some point when the reference error starts to dominate the upscaling error. Still, the experiment
clearly indicates that numerical homogenization is possible for very general L∞-coefficients.
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We refer to [A1, A2, 37, A3, 21, 3, 9, 23, 35, C1, C2, 49] for many more numerical experiments
for several model problems including nonlinear stationary and non-stationary problems as well as
eigenvalue problems.

3.2 Pollution-free high-frequency acoustic scattering

This section will show that the abstract framework of Chapter 2 is indeed applicable beyond the
coercive and symmetric model problem of the previous section. We consider the scattering of acoustic
waves at a sound-soft scatterer modeled by the Helmholtz equation over a bounded Lipschitz domain
Ω ⊂ Rd (d = 1,2,3),

−∆u−κ
2u = f in Ω , (3.6.a)

along with mixed boundary conditions of Dirichlet and Robin type

u = 0 on ΓD, (3.6.b)
∇u ·ν− iκu = 0 on ΓR. (3.6.c)

Here, the wave number κ� 1 is real and positive, i denotes the imaginary unit and f ∈ L2(Ω ,C). We
assume that the boundary Γ := ∂Ω consists of two components

∂Ω = ΓD∪ΓR, Γ D∩Γ R = /0

where ΓD encloses the scatterer and ΓR is an artificial truncation of the whole unbounded space. The
vector ν denotes the unit normal vector that is outgoing from Ω .

Given f ∈ L2(Ω ,C), we wish to find u∈V := {v∈H1(Ω ,C) | v = 0 on ΓD} such that, for all v∈V ,

a(u,v) :=
∫

Ω

∇u ·∇v̄−κ
2
∫

Ω

uv̄− iκ
∫

ΓR

uv̄ =
∫

Ω

f v̄ =: F(w). (3.7)

The space V is equipped with the usual κ-weighted norm

‖v‖2
V := κ

2‖v‖2
L2(Ω)+‖∇v‖2

L2(Ω).

The presence of the Robin boundary condition (3.6.c) ensures that this variational problem is well-
posed in the sense of (2.2) with α = 1/Cst(κ) for some κ-dependent stability constant Cst(κ); see e.g.
[28]. The dependence on the wave number κ is not known in general. An exponential growth with
respect to the wave number is possible [6] in non-generic domains. In most cases, the growth seems to
be only polynomially, although this is an empirical rather than a theoretical statement, and sufficient
geometric conditions for this to hold are rare [28, 46, 14, 47]. For the above scattering problem, we
know that Cst(κ)≤ O(κ) if Ω is convex and if the scatterer is star-shaped [33].

It is this κ-dependence in the stability of the problem that makes the numerical approximation by
FEM or related schemes extremely difficult in the regime of large wave numbers. Any perturbation of
the problem, e.g. by some discretization, can be amplified by Cst(κ). We have seen in the introduction
that this is indeed observed in practice and causes a pre-asymptotic effect known as the pollution effect
or numerical dispersion [10]. This effect puts very restrictive assumptions on the smallness of the
underlying mesh that is much stronger than the minimal requirement for a meaningful representation
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of highly oscillatory functions from approximation theory, that is, to have at least 5− 10 degrees of
freedom per wave length and coordinate direction.

It is the aim of many newly developed methods to overcome or at least to reduce the pollution effect;
see [61, 30, 31, 36, 63, 19] among many others. However, the only theoretical results regard high-
order FEMs with the polynomial degree p coupled to the wave number κ via the relation p ≈ logκ

[51, 52, 50, 28]. Under this moderate assumption, those methods are stable and quasi-optimal in the
regime Hκ/p . 1 for certain sufficiently regular model Helmholtz problems.

The multiscale method of [B1] then showed that pollution in the numerical approximation of the
Helmholtz problem can also be cured for a fairly large class of Helmholtz problems, including the
acoustic scattering from convex non-smooth objects, by stabilization in the present framework. If the
data of the problem (domain, boundary condition, force term) allows for polynomial-in-κ bounds
of Cst(κ) and if the resolution condition Hκ . 1 and the oversampling condition log(κ)/` . 1 are
satisfied, then the method is stable and quasi-optimal in the V -norm.

The recent paper [B2] interprets the method of [B1] in the present framework and we recall it
here very briefly. Given the same discrete setup as in the previous section with some simplicial mesh
GH , corresponding P1 FE space VH := P1(GH)∩V , and quasi-interpolation operator IH : V →VH , the
multiscale Petrov-Galerkin method is formally defined in the same way. We simply replace the inner
product of Section 3.1 with the sesquilinear form a of this section.

Given any nodal basis function λz ∈ VH , we construct a corresponding test basis function Λz,` by
the same procedure as in the previous section, Λz,` := λz +φz,`, where φz,` := ∑T∈GH :z∈T φz,T and φz,T
solves the cell problem

aΩT,`(w,φz,T ) =−aT (w,λz) for all w ∈ Ker IH with suppw⊂ Ω̄T .

Here,
aω(u,v) :=

∫

Ω∩ω

∇u ·∇v̄−κ
2
∫

Ω∩ω

uv̄− iκ
∫

ΓR∩∂ω

uv̄

for ω ∈ {ΩT,`,T}. Note that the corrector problem inherits the boundary condition from the origi-
nal problem when the patch boundary coincides with the boundary of Ω . On the part of the patch
boundary that falls in the interior of Ω , we simply put the homogeneous Dirichlet condition. A major
observation is that this corrector problem is well-posed and, in particular, coercive with β = 1/3 under
the condition Hκ ≤ cres for some given constant 0 < cres = O(1) that only depends on the constant
in (3.2) but not on H or κ . This is because a satisfies a Gårding inequality and fine-scale functions
satisfy

‖w‖L2(Ω) ≤CIH H‖∇w‖L2(Ω).

The coercivity of the sesquilinear form a on Ker IH also implies the desired exponential decay of the
ideal correctors so that the choice ΩT,` is well justified. This can also be observed in Fig. 3.6.

The space of localized test functions then reads WH,` := span{Λz,` : z ∈NH} and the multiscale
Petrov-Galerkin FEM seeks uH,` ∈VH such that

a(uH,`,wH,`) = F(wH,`) for all wH,` ∈WH,`. (3.8)

The quasi-optimality result of the previous section is easily transferred to the present setting. The
resolution condition Hκ ≤ cres and the oversampling condition

`≥ | log(α/(2‖IH‖L (V )CaC̃))|/c = O(logCst(κ))
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Fig. 3.6 Real and imaginary part of the ideal corrector C λz (top left and middle). The top right figure shows a top
view on the modulus of test basis function T λz = (1+C )λz with logarithmic color scale to illustrate the exponential
decay property. The underlying computational domain is the unit square with a Robin boundary condition every-
where. The wave number κ = 24 is chosen such that the resolution condition on the coarse mesh is just satisfied.
The localized nodal corrector φz,` = C`λz (bottom left) and corresponding test basis function Λz,` = T λz (bottom
right) are real-valued because the patch boundary doesn’t touch the domain boundary. The local fine meshes used in
the computation have width h = 2−8.

imply the quasi-optimality (and stability) of the multiscale Petrov-Galerkin method with respect to
the V -norm

‖u−uH,`‖V ≤ 2‖IH‖L (V ) min
vH∈VH

‖u− vH‖V .

Here, the constants c and C̃ are related to the exponential decay of the test basis (cf. (2.12)) and
they are independent of κ under the resolution condition. We shall emphasize that such a best-
approximation property does not hold for standard FEMs which require e.g. κ2H . 1 for quasi-
optimality [46] in the case of pure Robin boundary conditions on a convex planar domain. The FEM



3.2 Pollution-free high-frequency acoustic scattering 23

Fig. 3.7 Computational
domain of the model
problem of Section 3.2
and coarsest mesh.

Ω:=]0,1[
2
\Ω

D

Ω
D

approximation is not even known to exist unless κ3/2H . 1 in the simplest model problem without a
scatterer [62].

For the multiscale Petrov-Galerkin method, the result means that pollution effects do not occur.
Note that the resolution condition Hκ ≤ cres is somewhat minimal, because any meaningful approxi-
mation of the highly oscillatory solution of (3.6) requires at least 5−10 degrees of freedom per wave
length and coordinate direction. Saying this, we assume that the fine scale corrector problems are
solved sufficiently accurate; see [B2, B1] for details.

We shall present a numerical experiment taken from [B1] where this version of the method was
already considered experimentally. Consider the scattering from sound-soft scatterer occupying the
triangle ΩD. The Sommerfeld radiation condition of the scattered wave is approximated by the Robin
boundary condition on the boundary ΓR := ∂ΩR of the unit square so that Ω := (0,1)2 \ΩD is the
computational domain; see Fig. 3.7. Given the wave number κ = 27, the incident wave uinc(x) :=
exp(iκ x · [cos(0.5),sin(0.5)]T ) is prescribed via an inhomogeneous Dirichlet boundary condition on
ΓD := ∂ΩD and the scattered wave satisfies (3.6.a) with f ≡ 0 and the boundary conditions

u =−uinc on ΓD,

∇u ·ν− iκu = 0 on ΓR.

The error analysis extends to this setting in a straight-forward way.
We choose uniform coarse meshes of widths H = 2−3, . . . ,2−7 as depicted in Fig. 3.7. The reference

mesh Gh is derived by uniform mesh refinement of the coarse meshes and has mesh width h = 2−9.
The corresponding P1 conforming finite element approximation on the reference mesh Gh is denoted
by Vh. As in the previous section, we compare the coarse scale approximations uH,`,h ∈VH with some
reference solution uh ∈Vh.

Fig. 3.8 depicts the results for the multiscale Petrov-Galerkin method and shows that the pollution
effect that is present in the P1 FEM is eliminated when ` is moderately increased. For the present wave
number `= 2 is sufficient.

Further numerical experiments are reported in [B1] and [B2]. It is worth noting that the latter work
also exploits the homogeneous structure of the PDE coefficients in the sense that only very few of
the fine-scale corrector problems are actually solved due to translation invariance and symmetry. This
makes the approach competitive.

A very natural and straight forward generalization of the method would be the case of heteroge-
neous media. The previous section plus the analysis of this section strongly indicate the potential of
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Fig. 3.8 Numerical experiment of Section 3.2: Relative V -norm errors of multiscale Petrov-Galerkin method (3.8)
with wave number κ = 27 depending on the number of degrees of freedom NH ≈ H−2, where H = 2−5, . . . ,2−7 is
the uniform coarse mesh size. The reference mesh size h = 2−9 remains fixed. The oversampling parameter ` varies
between 1 and 3. The P1-FE solution and the best-approximation in the P1-FE space on the same coarse meshes are
depicted for comparison.

the method to treat high oscillations or jumps in the PDE coefficients and the pollution effect in one
stroke.

We may close this section with some rather philosophical remark regarding the stabilization of
FEMs and their inter-element continuity properties. Presently, it is believed, e.g. in the context of time-
harmonic wave propagation, that stability can be increased by relaxing inter-element continuity within
a discontinuous Galerkin (DG) framework. The large number of variants includes the ultra weak
variational formulation [12], Trefftz methods [36], DPG [63, 19], or the continuous interior penalty
method [62]. There may be some truth in this but the general impression that relaxing continuity is the
only way is certainly false as one can observe from the method presented in this thesis. The multiscale
Petrov-Galerkin does quite the opposite. The regularity of the test functions is increased compared to
standard continuous finite elements, because they are solutions of second-order elliptic problems (at
least in the ideal case). In general, test functions wH ∈WH have the property that

divA∇wH ∈ L2(Ω).

In the context of the Helmholtz model problem of this section where A = 1 this means that ∆WH ⊂
L2(Ω). If Ω is convex and boundary conditions are appropriate, then

WH ⊂ H2(Ω).
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This high regularity can be observed for one basis function in Fig. 3.6. In this respect, our method-
ology clearly indicates that increased differentiability might as well lead to increased stability and
accuracy. Similar effects have been observed for eigenvalue computations in IGA [16] and also LOD
[C1]. This shows that breaking the inter-element continuity is not at all necessary for stability.





Chapter 4
Summary and further results

In the preceding chapters, we have presented an abstract framework for the stabilization of numerical
methods for multiscale partial differential equations with some focus on highly oscillatory problems.
The methodology is based on the variational multiscale method and the more recent development of
localized orthogonal decompositions. We have provided an abstract numerical analysis of the method
which is applied to two representative model problems, a homogenization problem and a scattering
problem. We have shown that the methodology can indeed eliminate critical scale-dependent pre-
asymptotic effects in these cases. We expect that the framework will also be useful for convection-
dominated flow, the problem that the variational method was initially designed for.

The framework leads to multiscale methods that are provably stable and accurate under moderate
assumptions on the discretization parameters relative to characteristic parameters and length scales
of the problem. These valuable properties require the pre-computation of the test basis on sub-grids.
These pre-computations are both local and independent, but the worst-case (serial) complexity of the
method can exceed the cost of a direct numerical simulation on a global sufficiently fine mesh. If
the inherent parallelism of the local cell problems cannot be exploited during the computation, we
still expect a significant gain with respect to computational complexity if the pre-computation can be
reused several times in the context of time-dependent problems, parameter studies, coupled problems,
optimal control problems or inverse problems. In many cases, there is also a lot of redundancy in the
local problems which allows one to reduce the number of local problems drastically as it is shown
in [B2] in the context of acoustic scattering. We expect that this technique can be generalized to far
more general situations using modern techniques of model order reduction [58, 1].

In addition to the results of Appendices A–B, Appendix C shows that the multiscale framework
applies to another important class of problems, i.e., eigenvalue problems. The major achievement
of [C1] is that the variational multiscale method as it is interpreted in Appendix A preserves the
spectrum of the linear partial differential operator in a stable and super-convergent way even in the
case of rough coefficients. This observation has surprising applications, e.g., the efficient computation
of ground states of Bose-Einstein condensates in quantum chemistry [C2] and also for the efficient
solution of quadratic eigenvalue problems [49].

While the new multiscale methods can deal with arbitrarily fast and non-smooth oscillations in rep-
resentative linear and non-linear problems [A1]–[C2] without any pre-asymptotic effects, the theory
breaks down immediately for high-contrast coefficients (and also perforated domains) because the
exponential decay rate of certain correctors that justify the localization degenerates with increasing
contrast (cf. (2.12)). Numerical experiments in [A1, 23, 9] and also ongoing research in this direc-
tion [57] are less pessimistic but not sufficiently clear and systematic to draw any conjecture for very
general classes of coefficients in the regime of high contrast.

27
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The papers of Appendix D approach the high-contrast problem from a different direction and with
a different motivation. In the case of heterogeneous materials, propagating interface cracks are among
the predominant phenomena that cause degradation of the mechanical properties and – in combination
with other mechanisms – eventually lead to material failure. The modeling of such effects and further
interface phenomena require the resolution of the highly complex material interfaces by computa-
tional meshes aligned with interfaces. In this context, we are not heading for arbitrary coarse scales
of discretization but we want to keep the resolution minimal in terms of computational complexity
while still capturing the relevant properties. However, the computation of standard polygonal meshes
that fulfill such a conformity constraint (at least approximately) is a major difficulty (see e.g. [20,
Section 2] on constraint triangulations and references therein) that becomes even more pronounced
due to the high-quality demands from finite element design (e.g. local quasi-uniformity or other an-
gle conditions). Recent textbooks still constitute mesh generation as the bottleneck of computational
partial differential equations [29, 13]. The papers [D1, D2] of Appendix D and further work [25] are
devoted to this issue in the model situation of densely packed particle-reinforced composites. They
establish a new structural discretization approach to the PDE models of particle composites, i.e., a
new methodology which connects the finite element method with techniques from discrete network
analysis. This allows one to predict macroscopic material properties very efficiently and to trace its
dependence on the microscopic phase geometries, even in the regime of high contrast. Efficiency,
here, refers to the fact that the finite element network model of conductivity has only O(1) degrees
of freedom per particle independent of the actual phase geometries. This is quasi minimal. Still, the
new approach allows to reliably predict the characteristic percolation of thermal conductivity as the
volume fraction of particles approaches its maximum [D2, 25]. The numerical analysis of the new
approach requires very precise scale-dependent stability and regularity results that are explicit with
respect to the contrast and other geometric parameters such as inter-particle distances [D2]. Further
results in this direction for different classes of coefficients are provided in [56] and [D3]. The latter
paper also shows how to relax the requirement of exact geometric resolution of material interfaces
by shifting it to the ansatz functions in a controllable way using sub-grid techniques. The methods of
Appendix D are also relevant in the previous multiscale framework of Appendices A–C because, in
the end, its feasibility and efficiency rests on the ability to solve local problems on the microscopic
scale with minimal complexity.

Altogether, this thesis interprets computational multiscale methods as a systematic approach to the
modeling and simulation of multiscale problems which includes both the derivation of detailed mod-
els adapted to all relevant scales in an efficient way [D1]–[D3] as well as the significant reduction of
computational complexity by, e.g., the compression/filtering to a coarse scale of interest while still
maintaining its essential features (upscaling/homogenization) [A1]–[C1], the reconstruction of infor-
mation on fine scales from coarse scale computations (down-scaling) [C1], and the fast simulation
of the (non-linear) fine scale problem by iterative up- and down-scaling (two- or multi-level method)
[C2].
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27. D. Elfverson, M. G. Larson, and A. Målqvist. Multiscale methods for problems with complex geometry. ArXiv

e-prints, 2015.
28. S. Esterhazy and J. M. Melenk. On stability of discretizations of the Helmholtz equation. In Numerical analysis

of multiscale problems, volume 83 of Lect. Notes Comput. Sci. Eng., pages 285–324. Springer, Heidelberg,
2012.

29. P. J. Frey and P.-L. George. Mesh Generation: Application to Finite Elements. John Wiley and Sons, 2nd
edition, 2008.

30. X. Feng and H. Wu. Discontinuous Galerkin methods for the Helmholtz equation with large wave number.
SIAM J. Numer. Anal., 47(4):2872–2896, 2009.

31. X. Feng and H. Wu. hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number.
Math. Comp., 80(276):1997–2024, 2011.

32. L. Grasedyck, I. Greff, and S. Sauter. The AL basis for the solution of elliptic problems in heterogeneous media.
Multiscale Model. Simul., 10(1):245–258, 2012.

33. U. Hetmaniuk. Stability estimates for a class of Helmholtz problems. Commun. Math. Sci., 5(3):665–678, 2007.
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LOCALIZATION OF ELLIPTIC MULTISCALE PROBLEMS

AXEL MÅLQVIST AND DANIEL PETERSEIM

Abstract. This paper constructs a local generalized finite element basis for
elliptic problems with heterogeneous and highly varying coefficients. The basis

functions are solutions of local problems on vertex patches. The error of the
corresponding generalized finite element method decays exponentially with
respect to the number of layers of elements in the patches. Hence, on a uniform
mesh of size H, patches of diameter H log(1/H) are sufficient to preserve a
linear rate of convergence in H without pre-asymptotic or resonance effects.
The analysis does not rely on regularity of the solution or scale separation in
the coefficient. This result motivates new and justifies old classes of variational
multiscale methods.

1. Introduction

This paper considers the numerical solution of second order elliptic problems with
strongly heterogeneous and highly varying (non-periodic) coefficients. The hetero-
geneities and oscillations of the coefficient may appear on several non-separated
scales. It is well known that classical polynomial based finite element methods
perform arbitrarily badly for such problems; see e.g. [4]. To overcome this lack
of performance, many methods that are based on general (non-polynomial) ansatz
functions have been developed. Early works [1, 2], that essentially apply to one-
dimensional problems, have been generalized to the multi-dimensional case in sev-
eral ways during the last fifteen years; see e.g. [7, 13, 14]. In these methods the
problem is split into coarse and (possibly several) fine scales. The fine scale ef-
fect on the coarse scale is either computed numerically or modeled analytically.
The resulting modified coarse problem can then be solved numerically and its so-
lution contains crucial information from the fine scales. Although many of these
approaches show promising results in practice, their convergence analysis usually
assumes certain periodicity and scale separation.

For problems with general L∞ coefficient, the paper [3] gives error bounds for
a generalized finite element method that involves the solutions of local eigenvalue
problems. The construction in [6, 19] depends only on the solution of the original
problem on certain subdomains. However, the size of these subdomains strongly
depends on the mesh size. This dependence is suboptimal with respect to the
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theoretical statement given in [12], that is, for any shape regular mesh of size H

there exist O
(
(log(1/H))d+1

)
local (non-polynomial) basis functions per nodal

point such that the error of the corresponding Galerkin solution uH satisfies the
estimate ‖u − uH‖H1(Ω) ≤ CgH with a constant Cg that depends on the right-hand

side g and the global bounds of the diffusion coefficient but not on its variations.
The derivation in [12] is not constructive in the sense that it involves the solution
of the (global) original problem with specific right-hand sides.

In this paper, we show that such a (quasi-)optimal basis can indeed be con-
structed by solving only local problems on element patches. We use a modified
nodal basis similar to the one presented in [16] and prove that these basis functions
decay exponentially away from the node they are associated with. This exponential
decay justifies an approximation using localized patches.

The precise setting of the paper is as follows. Let Ω ⊂ Rd be a bounded Lipschitz
domain with polygonal boundary and let the diffusion matrix A ∈ L∞ (

Ω, Rd×d
sym

)

be uniformly elliptic:

(1.1)

0 < α(A, Ω) := ess inf
x∈Ω

inf
v∈Rd\{0}

(A(x)v) · v

v · v
,

∞ > β(A, Ω) := ess sup
x∈Ω

sup
v∈Rd\{0}

(A(x)v) · v

v · v
.

Given g ∈ L2(Ω), we seek u ∈ V := H1
0 (Ω) such that

(1.2) a (u, v) :=

∫

Ω

(A∇u) · ∇v =

∫

Ω

gv =: G(v) for all v ∈ V.

The bilinear form a is symmetric, coercive, bounded, and hence, (1.2) has a unique
solution.

The main result of this paper (cf. Theorem 3.6) shows that the error u − ums
H,k

of the generalized finite element method, which is based on our new (local) basis
functions mentioned above, is bounded as follows

‖A1/2∇(u − ums
H,k)‖L2(Ω) ≤ CgH;

H being the mesh size of the underlying coarse finite element mesh and k ≈
log(1/H) referring to the number of layers of coarse elements that form the support
of the localized basis functions. This estimate shows that our new numerical up-
scaling procedure is reliable beyond strong assumptions like periodicity and scale
separation. Moreover, the error bound is stable with respect to perturbations aris-
ing from the discretization of the local problems. These results give a theoretical
foundation for numerous previous experiments where exponential decay of a similar
modified basis have been noticed; see e.g. [18].

The outline of the paper is as follows. In Section 2, we derive a set of local basis
functions and define the corresponding multiscale finite element method. The error
analysis is done in Section 3. Section 4 is devoted to the discretization of the local
problems. Section 5 presents numerical experiments, and Section 6 discusses the
application of this theory to state-of-the-art multiscale methods.
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2. Local basis

In this section, we design a set of local basis functions for the multiscale problem
under consideration. The construction is based on a regular (in the sense of [10])
finite element mesh TH of Ω into closed triangles (d = 2) or tetrahedra (d = 3).
Subsection 2.1 recalls the classical nodal basis with respect to TH and demonstrates
its lack of approximation properties. Subsection 2.2 introduces a quasi-interpolation
operator used in the construction of the new basis. Subsection 2.3 defines a modified
(coefficient dependent) nodal basis and analyzes its approximation properties. This
basis is then localized in Subsection 2.4.

2.1. Classical nodal basis. Let H : Ω → R>0 denote the TH -piecewise constant
mesh size function with H|T = diam(T ) =: HT for all T ∈ TH . The mesh size may
vary in space. In practical applications, the mesh TH (resp., its size H) shall be
determined by the accuracy which is desired or the computational capacity that is
available but not by the scales of the coefficient.

The classical (conforming) P1 finite element space is given by

(2.1) SH := {v ∈ C0(Ω̄) | ∀T ∈ TH , v|T is a polynomial of total degree ≤ 1}.

Let VH := SH ∩ V denote the space of finite element functions that match the ho-
mogeneous Dirichlet boundary conditions. Let N denote the set of interior vertices
of TH . For every vertex x ∈ N , let λx ∈ SH denote the corresponding nodal basis
function (tent function), i.e.,

λx(x) = 1 and λx(y) = 0 for all y �= x ∈ N .

These nodal basis functions form a basis of VH . The availability of such a local
basis is a key property of any finite element method and ensures that the resulting
system of linear algebraic equations is sparse.

The (unique) Galerkin approximation uH ∈ VH satisfies

(2.2) a(uH , v) = G(v) for all v ∈ VH .

The above method (2.2) is optimal with respect to the energy norm |||·||| :=
|||·|||Ω := ‖A1/2∇ · ‖L2(Ω) on V which is induced by a,

(2.3) |||u − uH ||| = min
vH∈VH

|||u − vH ||| .

Assuming that the solution u is smooth, the combination of (2.3) and standard
interpolation error estimates yields the standard a priori error estimate

|||u − uH ||| ≤ C‖H‖L∞(Ω)‖∇2u‖L2(Ω).

This estimate states linear convergence of the classical finite element method (2.2)
as the maximal mesh width tends to zero. However, the regularity assumption is not
realistic for the problem class under consideration. Moreover, even if the coefficient
is smooth, it may oscillate rapidly, say at frequency ε−1 for some small parameter ε.
In this case, the asymptotic result is useless because ∇2u may oscillate at the same
scale, a fact that is hidden in the constant ‖∇2u‖L2(Ω) ≈ ε−1. Unless H � ε, the
above finite element space is unable to capture the behavior of the solution neither
on the microscopic nor on the macroscopic level. In what follows, we present a new
method that resolves this issue.
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2.2. Quasi-interpolation. The key tool in our construction will be some bounded
linear surjective (quasi-) interpolation operator IH : V → VH . The choice of this
operator is not unique and a different choice might lead to a different multiscale
method. We have in mind the following modification of Clément’s interpolation
[11] which is presented and analyzed in [9, Section 6]. Given v ∈ V , IHv :=∑

x∈N (IHv)(x)λx defines a (weighted) Clément interpolant with nodal values

(2.4) (IHv)(x) :=
(∫

Ω
vλx

) /(∫
Ω

λx

)

for x ∈ N . The nodal values are weighted averages of the function over nodal
patches ωx := supp λx. Since the summation is taken only with respect to interior
vertices N , this operator matches homogeneous Dirichlet boundary conditions.

Recall the (local) approximation and stability properties of the interpolation
operator IH [9, Section 6]: There exists a generic constant CIH

such that for all
v ∈ V and for all T ∈ TH it holds that

(2.5.a) H−1
T ‖v − IHv‖L2(T ) + ‖∇(v − IHv)‖L2(T ) ≤ CIH

‖∇v‖L2(ωT ),

where ωT :=
⋃{K ∈ TH | T ∩ K �= ∅}. The constant CIH

depends on the shape
regularity parameter ρ of the finite element mesh TH (see (3.1) below) but not on
HT .

Note that the above interpolation operator is not a projection, i.e., vH ∈ VH

does not equal its interpolation IHvH in general. However, the particular choice
gives rise to the following lemma.

Lemma 2.1. There exists a generic constant C ′
IH

which only depends on ρ but not
on the local mesh size H, such that for all vH ∈ VH there exists v ∈ V with the
properties

(2.5.b) IH(v) = vH , ‖∇v‖ ≤ C ′
IH

‖∇vH‖, and supp v ⊂ supp vH .

Proof. For every nodal basis function λx, x ∈ N , there is some bx ∈ H1
0 (ωx) such

that IH(bx) = λx and ‖∇bx‖ ≤ C ′′
IH

‖∇λx‖ with some constant C ′′
IH

that does not
depend on x and H. For example, bx may be chosen as a standard cubic element
bubble on an arbitrary element T ⊂ ωx or a quadratic edge/face bubble related
to an arbitrary edge/face of TH interior to ωx. One might as well choose bx to be
nodal interpolation of those bubbles in a finite element space that correponds to
some uniform refinement of TH .

Given vH =
∑

x∈N vH(x)λx ∈ VH , v := vH+
∑

x∈N (vH(x) − (IHvH)(x)) bx ∈ V
has the desired properties (for suitably chosen bx). The interpolation and support
properties are obvious. The stability follows from

‖∇v‖2 ≤ C

(
‖∇vH‖2 +

∑

x∈N
|vH(x) − (IHvH)(x)|2 ‖∇bx‖2

)

≤ C

(
‖∇vH‖2 + C ′′2

IH

∑

x∈N
|vH(x) − (IHvH)(x)|2 ‖∇λx‖2

)

≤ C

(
‖∇vH‖2 + C ′C ′′2

IH

∑

T∈TH

‖vH − IHvH‖2
L2(T )H

−2
T

)

≤ C

(
‖∇vH‖2 + C ′C2

IH
C ′′2

IH

∑

T∈TH

‖∇vH‖2
L2(ωT )

)

≤ C ′2
IH

‖∇vH‖2,
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where we use ‖∇λx‖2 ≈ | supp λx|(d−2), the inverse inequality ‖vH −IHvH‖2
L∞(T ) �

H−d
T ‖vH − IHvH‖2

L2(T ), and (2.5.a). �

In the forthcoming derivation of our method, the interpolation operator (2.4)
may be replaced by any linear bounded surjective operator that satisfies (2.5.a)–
(2.5.b). Hereby, (2.5.b) may be relaxed in the sense that supp v is not necessarily a
subset of supp vH but that supp v \ supp vH covers at most a fixed (small) number
of element layers about supp vH .

2.3. Multiscale splitting and modified nodal basis. Let IH : V → VH be a
quasi-interpolation operator according to the previous subsection. Then the kernel
of IH ,

V f := {v ∈ V | IHv = 0},

represents the microscopic features of V , i.e., all features that are not captured by
VH . Given v ∈ VH , define Fv ∈ V f by

a(Fv, w) = a(v, w) for all w ∈ V f .

The finescale projection operator F : VH → V f leads to an orthogonal splitting with
respect to the scalar product a:

V = V ms
H ⊕ V f where V ms

H := (VH − FVH).

Hence, any function u ∈ V can be decomposed into ums
H ∈ V ms

H and uf ∈ V f ,
u = ums

H + uf , with a(ums
H , uf) = 0. Since dim V ms

H = dim VH , the space V ms
H

can be regarded as a modified coarse space. The superscript “ms” abbreviates
“multiscale” and indicates that V ms

H , in addition, contains fine scale information.
The corresponding Galerkin approximation ums

H ∈ V ms
H satisfies

(2.6) a(ums
H , v) = G(v) for all v ∈ V ms

H .

The error (u − ums
H ) of the above method (2.6) is analyzed in Section 3.1.

Finally, we shall introduce a basis of V ms
H . The image of the nodal basis function

λx under the fine scale projection F is denoted by φx = Fλx ∈ V f , i.e., φx satisfies
the corrector problem

(2.7) a(φx, w) = a(λx, w) for all w ∈ V f .

We emphasize that the corrector problem is posed in the fine scale space V f , i.e.,
test and trial functions satisfy the constraint that their interpolation with respect
to the coarse mesh vanishes.

A basis of V ms
H is then given by the modified nodal basis

(2.8) {λx − φx | x ∈ N}.

In general, the corrections φx of nodal basis functions λx, x ∈ N , have global
support, a fact which limits the practical use of the modified basis (2.8) and the
corresponding method (2.6).
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2.4. Localization. In Section 3.2, we will show that the correction φx decays ex-
ponentially fast away from x. Hence, simple truncation of the corrector problems
to local patches of coarse elements yields localized basis functions with good ap-
proximation properties.

Let k ∈ N. Define nodal patches of k-th order ωx,k about x ∈ N by

(2.9)
ωx,1 := supp λx = int

(⋃
{T ∈ TH | x ∈ T}

)
,

ωx,k := int
(⋃

{T ∈ TH | T ∩ ωx,k−1 �= ∅}
)

, k = 2, 3, 4 . . . .

Define localized finescale spaces V f(ωx,k) := {v ∈ V f | v|Ω\ωx,k
= 0}, x ∈ N ,

by intersecting V f with those functions that vanish outside the patch ωx,k. The
solutions φx,k ∈ V f(ωx,k) of

(2.10) a(φx,k, w) = a(λx, w) for all w ∈ V f(ωx,k),

are approximations of φx from (2.7) with local support.
We define localized multiscale finite element spaces

(2.11.a) V ms
H,k = span{λx − φx,k | x ∈ N} ⊂ V.

The corresponding multiscale approximation of (1.2) reads: find ums
H,k ∈ V ms

H,k such
that

(2.11.b) a(ums
H,k, v) = G(v) for all v ∈ V ms

H,k.

Note that dim V ms
H,k = |N | = dim VH , i.e., the number of degrees of freedom of the

proposed method (2.11) is the same as for the classical method (2.2). The basis
functions of the multiscale method have local support. The overlap is proportional
to the parameter k. The error analysis of Section 3.2 suggests to choose k ≈ log 1

H .

Remark 2.2. The localized modified basis functions could be localized further to
vertex patches ωx, x ∈ N , by simply multiplying them with the classical nodal
basis functions; for any x ∈ N and any y ∈ N ∩ ωx,k, define φy

x := λyφx,k. The

generalized finite element space which is spanned by those O
(
(log(1/H))d

)
local

basis functions per vertex has similar approximation properties as V ms
H,k (see [5]).

3. Error analysis

This section analyzes the proposed multiscale method in two steps. First, Sub-
section 3.1 presents an error bound for the idealized method (2.6). Then, Subsection
3.2 bounds the error of truncation to local patches and proves the main result, that
is, an error bound for the multiscale method (2.11).

As usual, the error analysis depends on the constant ρ > 0 which represents
shape regularity of the finite element mesh TH ;

(3.1) ρ := max
T∈TH

ρT with ρT :=
diam BT

diam T
for T ∈ TH ,

where BT denotes the largest ball contained in T .
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3.1. Discretization error.

Lemma 3.1. Let u ∈ V solve (1.2) and ums
H ∈ V ms

H solve (2.6). Then it holds that

|||u − ums
H ||| ≤ C

1/2
ol CIH

α−1/2‖Hg‖L2(Ω)

with constants Col and CIH
that only depend on ρ.

Proof. Recall the (local) approximation and stability properties (2.5.a) of the in-
terpolation operator IH . Due to the splitting from Section 2.3, it holds that
u − ums

H = uf . Since IHuf = 0, the application of (2.5.a) and Young’s inequal-
ity yield

∣∣∣∣∣∣uf
∣∣∣∣∣∣2 = G(uf) ≤

∑

T∈TH

‖g‖L2(T )‖uf − IHuf‖L2(T )

≤ C2
IH

2εα
‖Hg‖2

L2(Ω) +
ε

2

∑

T∈TH

‖A1/2∇uf‖2
L2(ωT )

for any ε > 0. Note that there exists a constant Col > 0 that only depends on ρ
such that the number of elements covered by ωT is uniformly (w.r.t. T ) bounded
by Col. The choice ε = C−1

ol concludes the proof. �
Remark 3.2. Substituting IH by the modified Clément interpolation operator pre-
sented in [8] allows one to improve the error estimate in Lemma (3.1). The term
‖Hg‖L2(Ω) can be replaced by data oscillations (

∑
x∈N ‖H(g − gx)‖2

L2(ωx))
1/2 with

some weighted averages gx of g on ωx, x ∈ N ; we refer to [8, Section 2] for details.
Additional smoothness of the right-hand side g ∈ H1(Ω) then leads to quadratic
convergence of the idealized method without localization.

3.2. Error of localized multiscale FEM. First, we estimate the error due to
truncation to local patches. We will frequently make use of cut-off functions on
element patches.

Definition 3.3. For x ∈ N and m < M ∈ N, let ηm,M
x : Ω → [0, 1] be a continuous

and weakly differentiable function such that

(ηm,M
x )|ωx,m

= 0,(3.2.a)

(ηm,M
x )|Ω\ωx,M

= 1, and(3.2.b)

∀T ∈ TH , ‖∇ηm,M
x ‖L∞(T ) ≤ Cco(M − m)−1H−1

T(3.2.c)

with some constant Cco that only depends on ρ. For example, one may choose
ηm,M

x ∈ SH with nodal values

(3.3)

ηm,M
x (x) = 0 for all x ∈ N ∩ ωm,

ηm,M
x (x) = 1 for all x ∈ N ∩ (Ω \ ωx,M ) , and

ηm,M
x (x) = j(M − m)−1 for all x ∈ N ∩ ∂ωx,m+j , j = 0, 1, 2, . . . , M − m.

We prove the essential decay property of the corrector functions by some iterative
Caccioppoli-type argument. Recall the notation |||·|||ω := ‖A1/2∇ · ‖L2(ω).

Lemma 3.4. For all x ∈ N , k, � ≥ 2 ∈ N, the estimate

|||φx − φx,�k||| ≤ C2

(
C1

�

) k−2
2

|||φx|||ωx,�

holds with constants C1, C2 that only depend on ρ and β/α but not on x, k, �, or H.
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Proof. Let x ∈ N and �, k ≥ 2 ∈ N. Observe that

(3.4) |||φx − φx,�k|||2 ≤ |||φx − v|||2 = |||φx − v|||2ωx,�k
+ |||φx|||2Ω\ωx,�k

,

holds for all v ∈ V f(ωx,�k) using Galerkin orthogonality.

Let ζx := 1 − η
�(k−1)+1,�k−1
x with a cutoff function η

�(k−1)+1,�k−1
x as in Defini-

tion 3.3. According to (2.5.b), there exists bx ∈ V such that IH(bx) = IH(ζxφx),
|||bx||| ≤ C ′

IH
|||IH(ζxφx)|||, and supp(bx) ⊂ ωx,�k. Hence, v := ζxφx − bx ∈

V f(ωx,�k) and

|||φx − v|||ωx,�k
≤ |||φx − ζxφx|||ωx,�k\ωx,�(k−1)+1

+ |||bx|||ωx,�k\ωx,�(k−1)

≤ C ′
IH

CIH

(
|||φx|||ωx,�k\ωx,�(k−1)+1

+
√

β‖∇(ζxφx)‖L2(ωx,�k\ωx,�(k−1))

)
.

Since IHφx = 0, the upper bound of the interpolation error (2.5.a) and (3.2.c) yield

‖∇(ζxφx)‖2
L2(ωx,�k\ωx,�(k−1))

≤ C ′′′
2

∑

T∈TH : T⊂ωx,�k\ωx,�(k−1)+1

(
H2

T ‖∇ζk‖2
L∞(T ) + ‖ζk‖2

L∞(T )

)
‖∇φx‖2

L2(T )

≤ C ′′
2 α−1 |||φx|||2ωx,�k\ωx,�(k−1)+1

with C ′′
2 := 1 + ColC

2
coC

2
IH

. This leads to

(3.5) |||φx − v|||ωx,�k
≤ C ′

2 |||φx|||ωx,k�\ωx,(k−1)�
,

where C ′
2 depends only on ρ and

√
β/α. The combination of (3.4), with v =

ζxφx − bx, and (3.5) yields

(3.6) |||φx − φx,�k||| ≤ C2 |||φx|||Ω\ωx,�(k−1)
.

Further estimation of the right-hand side in (3.6) is possible using cut-off func-

tions ηj := η
�(j−1)+1,�j
x (cf. Definition 3.3), j = 2, 3, . . . , k − 1. Observe that

(3.7)

‖A1/2∇φx‖2
L2(Ω\ωx,�(k−1))

≤ ‖A1/2ηk−1∇φx‖2
L2(Ω)

=

∫

Ω

(A∇φx) · ∇(η2
k−1φx) − 2

∫

Ω

ηk−1φx(A∇φx) · ∇ηk−1.

Let, according to Lemma 2.1, bx,(k−1) be chosen such that IHbx,(k−1) =IH(η2
k−1φx).

Then η2
k−1φx−bx,(k−1) ∈ V f . Since | supp(∇λx)∩supp(ηk−1)| = 0 and supp(∇ηk−1)

= ωx,(k−1)� \ ωx,(k−2)�+1, the first term on the right-hand side of (3.7) can be
rewritten as
(3.8)∫

Ω

(A∇φx) · ∇(η2
k−1φx)

=

∫

Ω

(A∇φx) · ∇(η2
k−1φx − bx,(k−1)) +

∫

Ω

(A∇φx) · ∇bx,(k−1)

=

∫

Ω

(A∇φx) · ∇bx,(k−1)

≤ C ′
IH

√
β |||φx|||ωx,(k−1)�\ωx,(k−2)�+1

‖∇IH(η2
k−1φx)‖L2(ωx,(k−1)�\ωx,(k−2)�+1).
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With η2
T := |T |−1

∫
T

η2
k−1 we have

‖∇IH(η2
k−1φx)‖L2(T ) = ‖∇IH((η2

k−1 − η2
T )φx)‖L2(T )

≤ CIH
‖∇((η2

k−1 − η2
T )φx)‖L2(T )

≤ CIH

(
‖η2

k−1 − η2
T ‖L∞(T )‖∇φx‖L2(T ) + ‖∇(η2

k−1)‖L∞(T )‖φx‖L2(T )

)

≤ 2CIH
‖∇(ηk−1)‖L∞(T )

(
α−1/2 diam(T ) |||φx|||T + ‖φx − IH(φx)‖L2(T )

)
.

Thus, the property (3.2.c) of the cutoff function and the upper bound of the inter-
polation error (2.5.a) yield

∣∣∣∣∣∣IH(η2
k−1φx)

∣∣∣∣∣∣
ωx,(k−1)�\ωx,(k−2)�+1

≤ C ′
1�

−1‖A1/2∇φx‖L2(Ω\ωx,(k−2)�),(3.9)

where C ′
1 only depends on CIH

, Cco, Col, and
√

β/α. The same arguments allow
one to bound the second term on the right-hand side in (3.7),
(3.10)

2

∫

Ω

ηk−1φx(A∇φx) · ∇ηk−1

≤ 2
∑

T∈TH : T⊂ωx,(k−1)�\ωx,(k−2)�+1

‖∇ηk−1‖L∞(T )‖A1/2∇φx‖L2(T )‖A1/2φx‖L2(T )

≤ C ′′
1 �−1‖A1/2∇φx‖2

L2(Ω\ωx,(k−2)�)
,

where C ′′
1 only depends on CIH

, Cco, and
√

β/α. The combination of (3.7)–(3.10)
yields

(3.11) |||φx|||2Ω\ωx,(k−1)�
≤ C1�

−1 |||φx|||2Ω\ωx,(k−2)�
,

where C1 := C ′
1 +C ′′

1 . For j = k − 2, . . . , 2, a similar argument (with ηk−1 replaced
by ηj) yields

|||φx|||2Ω\ωx,j�
≤ C1�

−1 |||φx|||2Ω\ωx,(j−1)�
.(3.12)

Starting from (3.11), the successive application of (3.12) for j = k − 2, k − 3, . . . , 2
proves

(3.13) |||φx|||2Ω\ωx,(k−1)�
≤ (C1�

−1)k−2 |||φx|||2ωx,�
.

Combining (3.6) and (3.13), we finally obtain the assertion. �

Lemma 3.5. There is a constant C3 that depends only on ρ and β/α, but not on
|N |, k, or � such that

∣∣∣∣
∣∣∣∣
∣∣∣∣
∑

x∈N
v(x)(φx − φx,�k)

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≤ C3(�k)d
∑

x∈N
v2(x) |||φx − φx,�k|||2 .

Proof. For x ∈ N , let ζx = 1 − η�k+1,�k+2
x (cf. Definition 3.3). By Lemma 2.1 there

exists a function bx ∈ V such that for any w ∈ V f it holds that

IHbx = IH((1 − ζx)w), supp(bx) ⊂ supp(IH((1 − ζx)w)) ⊂ ωx,�k+3 \ ωx,�k,

and

|||bx|||ωx,�k+3\ωx,�k
≤ C ′

IH
|||IH((1 − ζx)w)|||ωx,�k+3\ωx,�k

.
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We note that w − ζxw − bx ∈ V f with support outside ωx,�k , i.e., a(φx, w −
ζxw − bx) = a(λx, w − ζxw − bx) = 0 and a(φx,�k, w − ζxw − bx) = 0. With
w =

∑
x∈N v(x)(φx − φx,�k) ∈ V f we have

|||w|||2 =
∑

x∈N
v(x) a(φx − φx,�k, ζxw + bx)

≤
√

β
∑

x∈N
|v(x)| |||φx − φx,�k||| · ‖∇(ζxw)‖L2(Ω)

+
√

β
∑

x∈N
|v(x)| |||φx − φx,�k||| · C ′

IH
‖∇(IH((1 − ζx)w))‖L2(ωx,�k+3)

≤ 2
√

βC ′
IH

CIH

∑

x∈N
|v(x)| |||φx − φx,�k||| · ‖∇(ζxw)‖L2(Ω)

+ 2
√

βC ′
IH

CIH

∑

x∈N
|v(x)| |||φx − φx,�k||| · ‖∇w‖L2(ωx,�k+4)

≤ 2
√

βC ′
IH

CIH

∑

x∈N
|v(x)| |||φx − φx,�k||| · ‖(∇ζx)(1 − IH)w)‖L2(ωx,�k+2)

+ 2
√

β
αC ′

IH
CIH

∑

x∈N
|v(x)| |||φx − φx,�k||| · |||w|||ωx,�k+4

≤ 4
√

β
αC ′

IH
C2

IH
Cco

∑

x∈N
|v(x)| |||φx − φx,�k||| · |||w|||ωx,�k+4

≤ 4
√

β
αC ′

IH
C2

IH
CcoCov(�k)d/2

(∑

x∈N
v2(x) |||φx − φx,�k|||2

)1/2

|||w||| ,

where Cov(�k)d represents an upper bound on the number of patches ωx,�k that
overlap a single element in the mesh. The result follows by dividing by |||w||| on
both sides. �

Theorem 3.6. Let u ∈ V solve (1.2) and, given �, k ≥ 2 ∈ N, let ums
H,�k ∈ V ms

H,�k

solve (2.11). Then

∣∣∣∣∣∣u − ums
H,�k

∣∣∣∣∣∣ ≤C4‖H−1
T ‖L∞(Ω) (�k)

d/2
(C1/�)

k−2
2 ‖g‖H−1(Ω)

+ C
1/2
ol CIH

α−1/2‖Hg‖L2(Ω)

holds with C1 from Lemma 3.4 and a constant C4 that depends on α, β and ρ but
not on H, k, �, g, or u.

Proof. Let ũms
H,�k :=

∑
x∈N ums

H (x) (λx − φx,�k), where ums
H (x), x ∈ N , are the coef-

ficients in the basis representation of ums
H . Due to Galerkin orthogonality, Lemma

3.1, Lemma 3.5, and the triangle inequality,

(3.14)

∣∣∣∣∣∣u − ums
H,�k

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣u − ũms

H,�k

∣∣∣∣∣∣ =
∣∣∣∣∣∣u − ums

H + ums
H − ũms

H,�k

∣∣∣∣∣∣

≤ C
1/2
ol CIH

α−1/2‖Hg‖L2(Ω) +
∣∣∣∣∣∣ums

H − ũms
H,�k

∣∣∣∣∣∣ .
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The application of Lemma 3.4 yields
∣∣∣∣∣∣ums

H − ũms
H,�k

∣∣∣∣∣∣2 ≤ C3(�k)d
∑

x∈N
ums

H (x)2 |||φx − φx,�k|||2

≤ C3(�k)dC2
2 (C1/�)k−2

∑

x∈N
ums

H (x)2 |||φx|||2ωx,�
.

Furthermore, we have
∑

x∈N
ums

H (x)2 |||φx|||2ωx,l
≤ βCinv

∑

T∈T
H−2

T

∑

x∈T∩N
ums

H (x)2‖λx‖2
L2(T )

≤ βC ′
inv

∑

T∈T
H−2

T

∥∥∥∥
∑

x∈T∩N
ums

H (x)λx

∥∥∥∥
2

L2(T )

= βC ′
inv

∥∥∥∥H−2
∑

x∈N
ums

H (x)λx

∥∥∥∥
2

L2(Ω)

≤ βC ′
inv

(
‖H−2ums

H ‖2
L2(Ω) +

∥∥∥∥H−2
∑

x∈N
ums

H (x)(φx − IHφx)

∥∥∥∥
2

L2(Ω)

)

≤ β
αC ′

inv(CF‖H−2
T ‖L∞(Ω) + CIH

) |||ums
H |||2 ,

where Cinv and C ′
inv depend on ρ and CF = CF(Ω) is the constant from Friedrichs’

inequality. This yields

(3.15)

∣∣∣∣∣∣ums
H − ũms

H,�k

∣∣∣∣∣∣ ≤ C ′
4‖H−1

T ‖L∞(Ω)(�k)d/2(C1/�)(k−2)/2 |||ums
H |||

≤ C4‖H−1
T ‖L∞(Ω)(�k)d/2(C1/�)(k−2)/2‖g‖H−1(Ω),

where C4 only depends on C2, C3, C ′
inv, CF, CIH

, and
√

β/α. The assertion follows
readily by combining (3.14) and (3.15). �

Remark 3.7. The error estimate in Theorem 3.6 contains a factor ‖H−1‖L∞(Ω).
However, its influence on the total error can be controlled by choosing the localiza-
tion parameter k proportional to log(1/‖H−1‖L∞(Ω)). For non-uniform meshes, it
is recommended to vary the choice of the localization parameter in space according
to k ≈ log 1

H . We neglect this opportunity to avoid overloading the paper.

4. Discretization of the fine scale computations

In this section, we focus on how to compute numerical approximations to the
local basis functions λx − φx,�k and thereby to the multiscale solution ums

H,�k. In
order to do this, we need to extend the error analysis of Section 3 to a fully discrete
setting. There is a lot of freedom in choosing different finite elements and different
refinement strategies; see e.g. [16, 17]. We will focus on a very simple and natural
approach. We assume that the local basis functions are computed using subgrids of
a fine scale reference mesh, which is a (possibly space adaptive) refinement of the
coarse grid TH .

More precisely, let Th be the result of one uniform refinement and several con-
forming but possibly non-uniform refinements of the coarse mesh TH . We in-
troduce h : Ω → R>0 as the Th-piecewise constant mesh width function with
ht := h|t = diam(t) for all t ∈ Th. We construct the finite element space

Sh := {v ∈ C0(Ω) | ∀t ∈ Th(Ω), v|t is a polynomial of total degree ≤ 1}.
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We let uh ∈ Vh := Sh ∩ H1
0 (Ω) be the reference solution that satisfies

(4.1) a(uh, v) = G(v) for all v ∈ Vh.

Locally on each patch we let

(4.2) V f
h(ωx,k) := V f(ωx,k) ∩ Vh = {v ∈ Vh | IHv = 0 and v|Ω\ωx,k

= 0}.

The numerical approximation φh
x,k ∈ V f

h(ωx,k) of the corrector φh
x,k is determined

by

a(φh
x,k, w) = a(λx, w) for all w ∈ V f

h(ωx,k).

We denote the discrete multiscale finite element space

V ms,h
H,k = span{λx − φh

x,k | x ∈ N}.

The corresponding discrete multiscale approximation ums,h
H,k ∈ V ms,h

H,k fulfills

(4.3) a(ums,h
H,k , v) = G(v) for all v ∈ V ms,h

H,k .

Theorem 4.1. Let u ∈ V solve (1.2) and let ums,h
H,�k ∈ V ms,h

H,k solve (4.3). Then
∣∣∣
∣∣∣
∣∣∣u − ums,h

H,�k

∣∣∣
∣∣∣
∣∣∣ ≤ C̃4‖H−1

T ‖L∞(Ω) (�k)
d/2

(C̃1/�)
k−2
2 ‖g‖H−1(Ω)

+ C
1/2
ol CIH

α−1/2‖Hg‖L2(Ω) + |||u − uh||| ,

where C̃4 only depends on ρ, α and β.

Remark 4.2 (Multiscale splitting by nodal interpolation). Having discretized the
fine scale computation, i.e., having replaced the infinite dimensional space V by
some finite element space Vh ⊂ C0(Ω) we are allowed to replace the Clément-type
interpolation by classical nodal interpolation. This leads to the variational multi-
scale method in [18], which is a modification of the method first presented in [17].
Because nodal interpolation satisfies the conditions (2.5.a)–(2.5.b), Theorem 4.1
establishes an a priori error bound for the multiscale method [18]. However, the
constant CIH

in (2.5.a) depends on the ratio H/h of the discretization scales if
d > 1 (CIH

≈ log(H/h) in 2d and CIH
≈ (H/h)−1 in 3d, cf. [21]). Hence, for nodal

interpolation, the constants C̃1, C̃4 in Theorem 4.1 depend on H/h in a similar
fashion. In 2d this can still be acceptable because the dependence on H/h is only
logarithmic.

Remark 4.3 (Estimates for the fine scale error). The finite element space Vh may be
replaced by any finite element space that contains Vh, e.g., by piecewise polynomials
of higher order. The third part in the error bound in Theorem 4.1 can be bounded
in terms of data, mesh parameter h, and polynomial degree using standard a pri-
ori error estimates. For example, if A ∈ W 1,∞(Ω) (bounded with bounded weak
derivative) and ε is the smallest present scale, i.e., ‖∇A‖L∞(Ω) � ε−1, the third
term in the error bound in Theorem 4.1 may be replaced by the worst case bound
Chε−1 for a first-order ansatz space Vh (see [20]). It is shown in [20] that for highly
varying but smooth coefficient A, higher order ansatz spaces are superior.

Remark 4.4 (Periodic coefficient). Let Ω be some square or cube, g ∈ L2(Ω), let A
be smooth and periodic, A(x) = A(x/ε), with some small scale parameter ε > 0,
and let uε denote the corresponding solution of (1.2). Choose uniform meshes TH
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and Th with H > ε > h and k ≈ log(H−1). With regard to the previous comment,
Theorem 4.1 yields the error bound∣∣∣

∣∣∣
∣∣∣uε − ums,h

H,�k

∣∣∣
∣∣∣
∣∣∣ ≤ Cg(H + h

ε ).

With h ∼ εH the error in the approximation becomes independent of the fine
scale oscillations without any so-called resonance effects as they are observed, e.g.,
in [13]. We emphasize that periodicity can be exploited to reduce the number
corrector problems to be solved significantly.

Remark 4.5 (Solution of the local problems). The local problems need to be solved
in the spaces V f

h(ωx,k). This is a standard finite element space with the additional
constraint that the trial and test functions should have no component in VH . In
practice this constraint is realized using Lagrange multipliers.

The resulting coarse scale system of equations is of the same size as the original

problem, dim(V ms,h
H,k ) = dimVH and it is still sparse. The number of non-zero entries

will be larger and depend on k. Note, however, that the non-zero entries in the
stiffness matrix decay exponentially away from the diagonal.

Proof of Theorem 4.1. We use the triangle inequality∣∣∣
∣∣∣
∣∣∣u − ums,h

H,�k

∣∣∣
∣∣∣
∣∣∣ ≤ |||u − uh||| +

∣∣∣
∣∣∣
∣∣∣uh − ums,h

H

∣∣∣
∣∣∣
∣∣∣ +

∣∣∣
∣∣∣
∣∣∣ums,h

H − ums,h
H,�k

∣∣∣
∣∣∣
∣∣∣

and follow the arguments from the proof of Theorem 3.6 simply replacing V by Vh

and using Lemmas 4.6, 4.8, and 4.9 below (discrete versions of Lemmas 3.1, 3.4,
and 3.5) to bound the last two terms. �

Lemma 4.6 (Discrete version of Lemma 3.1). Let uh ∈ Vh solve (4.1) and ums,h
H ∈

V ms,h
H solve (4.3) with k large enough so that ωx,k = Ω for all x ∈ N . Then

∣∣∣
∣∣∣
∣∣∣uh − ums,h

H

∣∣∣
∣∣∣
∣∣∣ ≤ C

1/2
ol CIH

α−1/2‖Hg‖L2(Ω)

holds with constants Col and CIH
that only depend on ρ.

Proof. Note that uf
h := uh −ums,h

H is the unique element of V f
h := V f ∩Vh such that

a(uf
h, v) = G(v) for all v ∈ V f

h . The lemma follows from the same arguments in the
proof of Lemma 3.1. �

In the remaining part of this Section, A � B abbreviates an inequality A ≤ C B
with some generic constant 0 ≤ C < ∞ that does not depend on the mesh sizes H,
h and the localization parameters. The constant may depend on the contrast β/α
but not on the geometrical or topological structure of the coefficient A.

To establish discrete versions of Lemmas 3.4 and 3.5 we are facing the technical
difficulty that the product of v ∈ Vh and some cut-off function η from Definition 3.3
is not necessarily an element of Vh. However, the subsequent lemma shows that the
product ηv can be approximated sufficiently well by elements from Vh.

Lemma 4.7. For all x ∈ N , M > m ∈ N, and corresponding cut-off function
ηm,M

x defined in (3.3) there exists some v ∈ V f
h(ωx,M+1) such that

∣∣∣∣∣∣ηm,M
x φh

x − v
∣∣∣∣∣∣ � 1

M − m

∣∣∣∣∣∣φh
x

∣∣∣∣∣∣
ωx,M+1\ωx,m−1

.

Furthermore, the statement also holds if ηm,M
x is replaced by 1 − ηm,M

x and v ∈
V f

h(Ω \ ωx,m−1).
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Proof. Let x ∈ N , M > m ∈ N be fixed and define η := ηm,M
x . Let Ih : V ∩

C(Ω̄) → V h be the nodal interpolant with respect to the mesh Th. Recall its (local)
approximation and stability properties

‖∇(v − Ihv)‖L2(t) � ht‖∇2v‖L2(t) and ‖Ihv‖L2(t) � ‖v‖L2(t)

for all polynomials v. According to Lemma 2.1, there exists some bx ∈ V h such
that IH(bx) = IH(Ih(ηφh

x)), |||bx||| �
∣∣∣∣∣∣IH(Ih(ηφh

x))
∣∣∣∣∣∣, and supp(bx) ⊂ ωx,M+1 \

ωx,m−1. Hence, v := Ih(ηφh
x) − bx ∈ V f

h(ωx,M+1). Since IHIhη̄T φh
x = η̄T IHφh

x = 0
for η̄T = |T |−1

∫
T

η, we get

∣∣∣∣∣∣ηφh
x − v

∣∣∣∣∣∣2 =
∣∣∣∣∣∣ηφh

x − Ih(ηφh
x) + bx

∣∣∣∣∣∣2

�
∑

t∈Th:t⊂ω̄x,M\ωx,m

‖∇(ηφh
x − Ih(ηφh

x))‖2
L2(t) +

∣∣∣∣∣∣IH(Ih((η − η̄T )φh
x))

∣∣∣∣∣∣2

�
∑

t∈Th:t⊂ω̄x,M\ωx,m

h2
t ‖∇2(ηφh

x)‖2
L2(t) +

∑

T∈TH :T⊂ω̄x,M+1\ωx,m−1

H−2
T ‖Ih((η − η̄T )φh

x)‖2
L2(T )

�
∑

t∈Th:t⊂ω̄x,M\ωx,m

h2
t

(
‖∇2η‖2

L∞(t)‖φh
x‖2

L2(t) + ‖∇η‖2
L∞(t)‖∇φh

x‖2
L2(t)

)

+
∑

T∈TH :T⊂ω̄x,M+1\ωx,m−1

H−2
T ‖η − η̄T ‖2

L∞(T )‖φh
x‖2

L2(T )

� (M − m)−1
∣∣∣∣∣∣φh

x

∣∣∣∣∣∣2
ωx,M+1\ωx,m−1

using the property (3.2.c) of η and Poincaré’s inequality. This proves the first part
of the lemma.

The second part concerning 1 − η follows using the same argument but with
v ∈ V f

h(Ω \ ωx,m−1). �

Lemma 4.8 (Discrete version of Lemma 3.4). For all x ∈ N , k, � ≥ 2 ∈ N the
estimate

∣∣∣∣∣∣φh
x − φh

x,�k

∣∣∣∣∣∣ ≤ C̃2

(
C̃1

�

) k−2
2 ∣∣∣∣∣∣φh

x

∣∣∣∣∣∣
ωx,�

holds with constants C̃1, C̃2 that only depend on ρ and β/α but not on x, k, �, h,
or H.

Proof. Let ζx := 1 − η
�(k−1)+1,�k−1
x with η

�(k−1)+1,�k−1
x as in equation (3.3) in

Definition 3.3. Then there exists a v ∈ V f
h(ωx,�k) such that

∣∣∣∣∣∣φh
x − v

∣∣∣∣∣∣
ωx,�k

≤
∣∣∣∣∣∣φh

x − ζxφh
x

∣∣∣∣∣∣
ωx,�k

+
∣∣∣∣∣∣ζxφh

x − v
∣∣∣∣∣∣

ωx,�k

�
∣∣∣∣∣∣φh

x

∣∣∣∣∣∣
ωx,�k\ωx,�(k−1)+1

+
∣∣∣∣∣∣ζxφh

x

∣∣∣∣∣∣
ωx,�k−1\ωx,�(k−1)+1

.

Furthermore, using the same argument as in Lemma 3.4,
∣∣∣∣∣∣ζxφh

x

∣∣∣∣∣∣
ωx,�k−1\ωx,�(k−1)+1

�
∣∣∣∣∣∣φh

x

∣∣∣∣∣∣
ωx,�k\ωx,�(k−1)+1

which yields
∣∣∣∣∣∣φh

x − φh
x,�k

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣φh

x − v
∣∣∣∣∣∣2

ωx,�k
+

∣∣∣∣∣∣φh
x

∣∣∣∣∣∣
Ω\ωx,�k

�
∣∣∣∣∣∣φh

x

∣∣∣∣∣∣
Ω\ωx,�(k−1)+1

.
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Now let ηj := η
�(j−1)+1,�j
x (cf. Definition 3.3), j = 2, 3, . . . , k − 1 and note that

‖A1/2∇φh
x‖2

L2(Ω\ωx,�(k−1))
≤ a(φh

x, η2
k−1φ

h
x) − 2

∫

Ω

ηk−1φ
h
x(A∇φh

x) · ∇ηk−1.

The second term can be treated exactly as in Lemma 3.4 and, hence, bounded by

�−2
∣∣∣∣∣∣φh

x

∣∣∣∣∣∣2
Ω\ωx,�(k−2)

. We make use of Lemma 4.7 to bound the first term. There

exists v ∈ V f
h(Ω \ ωx,�(k−1)+1) such that

a(φh
x, η2

k−1φ
h
x) ≤

∣∣∣∣∣∣φh
x

∣∣∣∣∣∣
ω�(k−1)\ω�(k−2)+1

∣∣∣∣∣∣η2
k−1φ

h
x − v

∣∣∣∣∣∣ � �−2
∣∣∣∣∣∣φh

x

∣∣∣∣∣∣2
Ω\ωx,�(k−2)

.

The final assertion follows by similar arguments as in the proof of Lemma 3.4. �

Lemma 4.9 (Discrete version of Lemma 3.5). There is a constant C̃3 depending
only on ρ and β/α, but not on |N |, k, or � such that

∥∥∥∥
∣∣∣∣
∑

x∈N
v(x)(φh

x − φh
x,�k)

∣∣∣∣
∥∥∥∥

2

≤ C̃3(�k)d
∑

x∈N
v2(x)

∣∣∣∣∣∣φh
x − φh

x,�k

∣∣∣∣∣∣2 .

Proof. For x ∈ N , let ζx = 1 − η�k+1,�k+2
x (cf. Definition 3.3) and let z =∑

x∈N v(x) (φx − φx,�k). We have,

∥∥∥∥
∣∣∣∣
∑

x∈N
v(x) (φx − φx,�k)

∣∣∣∣
∥∥∥∥

2

=
∑

x∈N
v(x) a(φh

x − φh
x,�k, ζxz + (1 − ζx)z) = I + II.

The first term I :=
∑

x∈N v(x) a(φh
x −φh

x,�k, ζxz) can be treated in exactly the same
way as in the proof of Lemma 3.5. We focus on the second term. Due to Lemma 4.7
there exists a w ∈ V f

h(Ω \ ω�k) such that

II :=
∑

x∈N
v(x) a(φh

x − φh
x,�k, (1 − ζx)z − w)

�
(∑

x∈N
|v(x)|2

∣∣∣∣∣∣φh
x − φh

x,�k

∣∣∣∣∣∣2
)1/2 (∑

x∈N
|||(1 − ζx)z − w|||2

)1/2

�
(∑

x∈N
|v(x)|2

∣∣∣∣∣∣φh
x − φh

x,�k

∣∣∣∣∣∣2
)1/2 (∑

x∈N
|||z|||2ωx,�k+2\ω�k+1

)1/2

� (�k)d/2

(∑

x∈N
|v(x)|2

∣∣∣∣∣∣φh
x − φh

x,�k

∣∣∣∣∣∣2
)1/2

|||z||| .

The result follows immediately. �
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Figure 1. Scalar coefficient used in the numerical experiment: A1

(left), A2 (middle), A3 (right).

Figure 2. Uniform triangulations of the unit square.

5. Numerical experiments

Numerical experiments shall validate our theoretical results from the previous
sections.

5.1. Experimental setup. Let Ω be the unit square and the outer force g ≡ 1
in Ω. Consider three different choices for the scalar coefficient A1, A2, A3 with
increasing difficulty as depicted in Figure 1. The coefficient A1 = 1 is constant.
The coefficient A2 is piecewise constant with respect to a uniform Cartesian grid
of width 2−6. The values in each grid cell are chosen in the range [1/20, 2]; the
contrast β(A2)/α(A2) ≤ 40 is moderate. The coefficient A3 is piecewise constant
with respect to the same uniform Cartesian grid of width 2−6. Its values are taken
from the data of the SPE10 benchmark; see http://www.spe.org/web/csp/. The
contrast for A3 is large, β(A3)/α(A3) ≈ 4 · 106. Consider uniform coarse meshes of
size H = 2−1, 2−2, . . . , 2−6 of Ω as depicted in Figure 2. Note that none of these
meshes resolves the rough coefficients A2 and A3 appropriately.

The reference mesh Th has width h = 2−9. Since no analytical solutions are
available, the standard finite element approximation uh ∈ Vh on the reference mesh
Th serves as the reference solution. All fine scale computations are performed on
subsets of Th.

The approximations are compared with this reference solution only. Doing this,
we assume that uh is sufficiently accurate. True errors would behave similar in the
beginning but level off at some point when the reference error |||u − uh||| dominates
the upscaling error.

5.2. Results for the energy error. Figure 3 depicts the energy errors of the
new multiscale method and the classical P1FEM (see (2.2)) with respect to the
same coarse mesh. Depending on the coarse discretization scale H, the localization
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Figure 3. Relative energy errors |||uh−ums,h
H,k /|||uh||| (� solid) with

localization parameter k = �2 log(1/H)� and |||uh − uH ||| / |||uh|||
(♦ dotted) vs. number of degrees of freedom Ndof ≈ H−2 for
different coefficients: A1 (top left), A2 (top right), A3 (bottom).

The dashed black line is N
−1/2
dof .

parameter k is chosen to be �2 log(1/H)�. The logarithmic dependence on 1/H
is motivated by our a priori analysis. The choice of the constant 2 is based on
numerical tests. It turns out that, in all experiments, this choice leads to the
desired linear textbook convergence (rate −1/2) of the energy error (w.r.t. to the
number of degrees of freedom Ndof = |N | ≈ H−2) related to the sequence of
multiscale approximations. Pre-asymptotic effects are not observed. In particular,
the performance of our method does not seem to be affected by the high contrast
present in A3. Whether our estimates on the decay of the corrector functions are
sub-optimal or have worst-case character with respect to contrast is an issue of
present research.

Observe that the classical P1FEM suffers from the lacks of approximability and
regularity and converges only poorly for the rough coefficients A2 and A3.

5.3. Results for the L2 error. Figure 4 shows L2 errors of the new multiscale
method and the classical P1FEM. Again, the choice of the localization parameter
k = �2 log(1/H)� yields the optimal convergence rate −1 for our method in all
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Figure 4. Relative L2 errors ‖uh − ums,h
H,k ‖/‖uh‖ (� solid),

‖uh − IHums,h
H,k ‖/‖uh‖ (∗ solid) with localization parameter k =

�2 log(1/H)� and ‖uh − uH‖/‖uh‖ (♦ dotted) vs. number of de-
grees of freedom Ndof ≈ H−2 for different coefficients: A1 (top
left), A2 (top right), A3 (bottom). The dashed black line is N−1

dof .

experiments (w.r.t. to the number of degrees of freedom Ndof = |N | ≈ H−2)
without any pre-asymptotic behavior. This observation is justified by a standard

Aubin-Nitsche duality argument. Define e := uh − ums,h
H,k ∈ L2(Ω) and let zh ∈ Vh

solve

a(zh, vh) =

∫

Ω

evh for all vh ∈ Vh.

Galerkin orthogonality leads to

‖uh − ums,h
H,k ‖2

L2(Ω) = a(ze − zms,h
H,k , e) ≤

∣∣∣
∣∣∣
∣∣∣zh − zms,h

H,k

∣∣∣
∣∣∣
∣∣∣
∣∣∣
∣∣∣
∣∣∣uh − ums,h

H,k

∣∣∣
∣∣∣
∣∣∣ ,

where zms,h
H,k ∈ V ms,h

H,k is the Galerkin projection of zh onto the discrete multiscale

finite element space V ms,h
H,k . The estimates for the energy error (see Section 4) and

the present choice of k yield the L2 estimate

‖uh − ums,h
H,k ‖L2(Ω) � H2‖g‖L2(Ω).
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More importantly, we observe that the L2 error between uh and IHums,h
H,k con-

verges nicely at a rate close to −3/4 without pre-asymptotic effects. This is re-

markable because IHums,h
H,k is a truly coarse approximation. IHums,h

H,k is an element
of the coarse P1 finite element space. Hence, it cannot capture microscopic features
of the solution. The rate of convergence (with respect to the number of degrees
of freedom) is limited by 1+s

2 for some s ∈ [0, 1] which is related to the regularity

of the solution (u ∈ H1+s for some s ∈ [0, 1]). However, IHums,h
H,k approximates

the macroscopic behavior of the solution accurately with only very few degrees
of freedom. Note that the storage complexity of the modified basis is of order
O(h−2 log 1/H) whereas its interpolation can be stored in O(H−2 log 1/H). Once

the coarse system matrix of the multiscale method is assembled, IHums,h
H,k can be

computed without using any fine scale information from the modified basis whereas

this would be required to represent the full multiscale approximation ums,h
H,k .

6. Application to multiscale methods

In this section we discuss three multiscale methods and how the presented anal-
ysis relates to each of them.

6.1. The variational multiscale method. The variational multiscale method
was first introduced in [14]. The function space V is here split into a coarse part
(standard finite element space on a coarse mesh), in our case VH , and a fine part,
in our case V f . The weak form is also decoupled into a coarse and a fine part. The
method reads: find ū ∈ VH and u′ ∈ V f such that

a(ū, v̄) + a(u′, v̄) = G(v̄) for all v̄ ∈ VH ,

a(u′, v′) = G(v′) − a(ū, v′) for all v′ ∈ V f .

The fine scale solution is further decoupled over the coarse elements T ∈ TH and
approximated using analytical techniques. Note that the fine scale solution u′ is an
affine map of the coarse scale solution ū. If we let u′ ≈ Mū + m and plug this in
to the first equation we get a coarse stiffness matrix of the form a(v̄ + Mv̄, w̄), i.e.,
a non-symmetric bilinear form for a symmetric problem.

6.2. The multiscale finite element method. In [13] the multiscale finite ele-
ment method was first introduced. Here modified multiscale basis functions are
computed numerically on sub-grids on each coarse element individually. The cor-
rector functions fulfill: find φx,T ∈ H1

0 (T ),

a(λx − φx,T , v) = 0 for all v ∈ H1
0 (T ) and for all T ∈ TH .

Here homogeneous Dirichlet boundary conditions are used on the boundary of each
element T , i.e., the local problems are totally decoupled. To get a more accurate
method one can improve the boundary conditions using information from the data
A. A larger domain can also be considered (this procedure is referred to as over-
sampling); see [13]. Note that since the coarse scale basis functions are modified
(both trial and test space) the resulting method is symmetric.
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6.3. The adaptive variational multiscale method. The modified basis func-
tion construction given by equation (2.7) and (2.8) was first introduced in a vari-
ational multiscale framework in [15, 16]. In these papers the Scott-Zhang inter-
polation was used in the analysis and nodal interpolation in the discrete setting
for the numerical examples. The modified basis functions where only used for the
trial functions but not for the test functions. A fine scale correction based on the
right-hand side data was also included. In [18] the modified basis functions were
used for both trial and test functions. The exponential decay of the modified basis
functions, with respect to the number of coarse layers of elements in the vertex
patches, has been demonstrated numerically in all these works; see [17, 18].

The adaptive variational multiscale method has been extended to convection
dominated problems and problems in mixed form [18]. A posteriori error bounds
have been derived and adaptive algorithms designed where the local mesh and patch
size are chosen automatically in order to reduce the error.

6.4. Application of the presented analysis. The convergence proof in this pa-
per gives a valid bound also as h → 0 independent of the patch size and coarse
mesh size. The proof does not rely on regularity of the solution and gives a very
explicit expression for the rate of convergence. The present analysis confirms the
numerical results in [17, 18] and gives the symmetric version of the method, where
both trial and test space are modified, the solid theoretical foundation it has previ-
ously been missing. The analysis also justifies the use of a posteriori error bounds
for adaptivity [16, 18] because we can now prove that the quantities measured on
the patch boundary decays exponentially in the number of coarse layers.

For the variational multiscale method this result says that it is important to al-
low larger subgrid patches than just one coarse element. This will result in overlap
but the local problems are totally decoupled and we have in previous works demon-
strated how adaptivity can be used to only solve local problems where it is needed,
see for instance [16, 18]. For the multiscale finite element method the analysis is
not directly applicable since the fine scale space V f is not used. It is the decay
in this space which we have proven to be exponential (in number of coarse layers
of elements in the subgrid). If this decay is not present, inhomogeneous boundary
conditions are instead needed for the subgrid problems. To the best of our knowl-
edge, such constructions have only been proved to be accurate in special settings,
e.g., periodic coefficients.
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OVERSAMPLING FOR THE MULTISCALE FINITE ELEMENT
METHOD∗

PATRICK HENNING† AND DANIEL PETERSEIM‡

Abstract. This paper reviews standard oversampling strategies as performed in the multiscale
finite element method (MsFEM). Common to those approaches is that the oversampling is performed
in the full space restricted to a patch including coarse finite element functions. We suggest, by
contrast, performing local computations with the additional constraint that trial and test functions
be linear independent from coarse finite element functions. This approach reinterprets the variational
multiscale method in the context of computational homogenization. This connection gives rise to a
general fully discrete error analysis for the proposed multiscale method with constrained oversampling
without any resonance effects. In particular, we are able to give the first rigorous proof of convergence
for an MsFEM with oversampling.

Key words. a priori error estimate, finite element method, multiscale method, MsFEM, over-
sampling
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1. Introduction. The numerical treatment of partial differential equations with
rapidly varying and strongly heterogeneous coefficient functions is still a challenging
area of present research, especially with regard to applications such as porous media
flow or the transport of solutes in groundwater. In such problems, the occurring
permeabilities and hydraulic conductivities have rapidly changing features due to
different types of soil, microscopic inclusions in the bottom, or porous subsurface rock
formations. Any meaningful numerical simulation of relevant physical effects has to
account for these highly heterogeneous fine scale structures in the whole computational
domain. This means that the underlying computational mesh has to be sufficiently
fine to resolve microscopic details. If pore scale effects become relevant or if domains
spread over kilometers, then the computational load becomes extremely large and in
several applications even too large to treat the problem with standard finite element
or finite volume methods. This is just one instance of a so-called multiscale problem
as it arises in hydrology, physics, or industrial engineering.

In recent years, many numerical methods have been designed to deal with these
computational issues that come along with multiscale problems. Most of them aim
to decouple the global fine scale problem into localized subproblems which can be
treated independently from each other plus some global coarse problem. The list of
proposed multiscale methods, meanwhile, is long. Amongst the most popular methods
are the finite element heterogeneous multiscale method (HMM), initially introduced
by E and Engquist [9] (see also [10, 11, 1]), the variational multiscale method (VMM)
by Hughes [29] and Hughes et al. [30] (see also [32, 33, 34]), the approaches by Owhadi
and Zhang [35, 36], or that of Babuska and Lipton [2].
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In this paper, we deal with another popular method: the multiscale finite element
method (MsFEM) proposed by Hou and Wu [26] and further investigated in several
contributions [27, 16, 15, 28]. There is an ongoing development of the method to apply
it to various fields and equations. For instance, an MsFEM for nonlinear elliptic
problems is proposed in [13], a formulation for two phase flow problems in porous
media is presented in [12], advection diffusion problems are treated in [8], and an
application to elliptic interface problems with high contrast coefficients is presented
in [7]. A survey on the method is given in the book by Efendiev and Hou [14].
There is a vast literature devoted to the method, but there are still open questions of
strong interest. The most relevant issue is a rigorous error analysis of the method, in
particular in the case of nonperiodic microstructures.

The MsFEM is related to some common finite element space with an underlying
coarse grid. The essential idea is to modify the corresponding basis functions in
such a way that fine scale variations on finer scales are sufficiently well captured.
More specifically, local fine scale computations are performed to determine so-called
corrector functions. These corrector functions can be added as local perturbations to
the original set of basis functions of the coarse finite element space.

However, it is well known that the classical MsFEM suffers from so-called reso-
nance errors, which are typically of order O( ε

H ), where ε denotes a characteristic size
of the small scale and where H denotes the mesh size of the coarse grid (cf. [27, 28]).
This implies that the numerical error becomes large in regions where the coarse grid
size is close to the characteristic length scale of the microscopic oscillations. There
are two different explanations for this error. The first one is a mismatch between
the boundary conditions imposed for the local fine scale problems and global behav-
ior of the oscillatory exact solution (cf. [16]). The second explanation is due to the
size and geometry of the sampling patch (cf. [28]). The averaged behavior in such a
patch should be “representative” so that we can speak about a perfect sample size.
If this is not the case, the final approximation might be distorted. In the periodic
setting, for instance, the sampling domain should be some multiple of the periodic
cell. On triangular patches with cathetuses of the length of a period, this patch is
only half a periodic cell (i.e., the patch has bad size and geometry) and lacks essential
information. This yields a completely wrong approximation (cf. [21]). In the periodic
setting considerable improvements were obtained by Gloria [19, 20], who proposed a
regularization of the local (patch) problems by adding a zero-order term. With this
strategy, both sources of the oversampling error could be significantly reduced (cf.
[19, Theorem 3.1] and [20, sections 5.3 and 5.4]).

In a lot of applications, such as oil reservoir simulations or the transport of solutes
in groundwater, a characteristic microscopic length scale ε is unknown, cannot be
identified, or does not exist at all. In scenarios without a clear scale separation it is
often impossible to predict whether or not we are in the regime of resonance errors.
It is very likely to actually hit the problematic regime. Hence, the quality of the
final approximation cannot be determined unless resonance errors are eliminated. For
this purpose, different oversampling strategies have been proposed. The fundamental
idea of each of these techniques is to extend the local problems to larger patches
and perform the computation on these oversampling domains but feed the coarse
scale equation only with the information obtained within the original smaller patches.
This reduces the effect of wrong boundary conditions and bad sampling sizes. In
this paper, we present the two major strategies for oversampling and discuss their
advantages and disadvantages. On the basis of these considerations we propose a new
strategy that overcomes the issues of the existing strategies. The new approach is

60 A



OVERSAMPLING FOR THE MsFEM 1151

closely related to the VMM-type method presented in [34]. We prove quantitative
error estimates for the corresponding multiscale approximations under very general
assumptions on the diffusion coefficient.

This contribution is structured as follows: In section 2 we recall the classical
formulation of the MsFEM without oversampling. The most popular approaches for
oversampling are discussed in section 3. In section 4 we propose a new strategy for
which we present a quantitative error analysis. Numerical experiments are presented
in section 5. The paper closes with a short conclusion.

2. The multiscale finite element method. In this section, we state the set-
ting of this paper and we establish the required notation. We recall the classical
multiscale finite element method (MsFEM) as initially proposed by Hou and Wu [26].

2.1. Setting and notation. Consider a bounded Lipschitz domain Ω ⊂ Rd

with a piecewise flat boundary and some matrix-valued coefficient A ∈ L∞(Ω,Rd×d
sym)

with uniform spectral bounds γmin > 0 and γmax ≥ γmin,

(2.1) σ(A(x)) ⊂ [γmin, γmax] for almost all x ∈ Ω.

Given f ∈ L2(Ω), we seek the weak solution of

−∇ · A∇u = f in Ω,

u = 0 on ∂Ω;

i.e., we seek u ∈ H1
0 (Ω) := {v ∈ H1(Ω) | v|∂Ω = 0 in the sense of traces} that satisfies

(2.2) a (u, v) :=

∫

Ω

A∇u · ∇v =

∫

Ω

fv =: F (v) for all v ∈ H1
0 (Ω).

We consider two discretization scales H ≥ h > 0. The coarse scale H is arbitrary,
whereas the small scale parameter h may be constrained by the problem. Typically,
it is assumed to be smaller than the characteristic length scales of the variations of
the diffusion coefficient A.

Let TH , Th denote corresponding subdivisions of Ω into (closed) triangles (for
d = 2) and tetrahedra (for d = 3), i.e., Ω̄ =

⋃
t∈Th

t =
⋃

T∈TH
T . We assume that

TH , Th are regular in the sense that any two elements are either disjoint or share
exactly one face or share exactly one edge or share exactly one vertex. For simplicity
we assume that Th is derived from TH by some regular, possibly nonuniform, mesh
refinement.

For T = TH , Th, let

P1(T ) = {v ∈ C0(Ω) | ∀T ∈ T , v|T is a polynomial of total degree ≤ 1}

denote the set of continuous and piecewise affine functions.
Accordingly, Vh := P1(Th) ∩ H1

0 (Ω) denotes the “high resolution” finite element
space and the “coarse space” is given by VH := P1(TH) ∩H1

0 (Ω) ⊂ Vh. For any given
subset ω ⊂ Ω we define the restriction of Vh to ω with a zero boundary condition by
V̊h(ω) := Vh ∩H1

0 (ω). The nonconforming fine space Vh,TH is defined by

Vh,TH := {vh | ∀T ∈ TH , (vh)|T ∈ Vh ∩H1(T )}.

A general function in v ∈ Vh,TH may jump across edges of the coarse mesh TH and,
hence, does not belong to H1

0 (Ω). However, the TH -piecewise gradient ∇Hv, with
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(∇Hv)|T = ∇(v|T ) for all T ∈ TH , exists. Typically, MsFEM approximations obtained
with oversampling are nonconforming approximations of the exact solution in the
sense that they do not belong to H1

0 (Ω).
In the following xT ∈ T denotes an arbitrary point, for instance the barycenter

of T . For ΦH ∈ VH and T ∈ TH , the affine extension operator ET : VH → P1(Ω) is
given by

ET (ΦH)(x) := (x− xT ) · ∇ΦH(xT ) + ΦH(xT ).

Finally, by χT we denote the characteristic (or indicator) function with χT (x) = 1 for
x ∈ T and χT (x) = 0 elsewhere.

For the sake of simplicity, all fine scale computations are performed in subspaces
of the fine scale finite element space Vh. The Galerkin solution uh ∈ Vh which satisfies

(2.3) ah(uh, v) = F (v) for all v ∈ Vh

may, hence, be considered as a reference approximation. Note that we never solve
this large scale equation. The function uh serves as a reference solution to compare
our multiscale approximations with. The underlying assumption is that the mesh Th

is chosen sufficiently fine so that uh is sufficiently accurate.
Throughout this paper, standard notation on Lebesgue and Sobolev spaces is

employed and a � b abbreviates an inequality a ≤ C b with some generic constant
0 ≤ C < ∞ that may depend on the shape regularity of finite element meshes and the
contrast γmax/γmin but not on the mesh sizesH , h and the regularity or the variations
of the diffusion matrix A; a ≈ b abbreviates a � b � a.

2.2. The classical MsFEM and reformulation. We first present the classical
MsFEM without oversampling as originally stated by Hou and Wu [26], and similarly
by Brezzi et al. [3]. They proposed the strategy to enrich the set of standard finite
element basis functions by fine scale information. The information is determined by
solving local problems on the fine scale. We briefly recall the method and reformulate
it in terms of a correction operator Qh and a corresponding corrector basis.

Let N denote the dimension of the coarse space VH , and let {Φi | 1 ≤ i ≤ N}
denote the usual nodal basis of VH . Given some basis function Φi, the corresponding
MsFEM basis function ΦMsFEM

i ∈ Vh is uniquely determined by the condition that for

all T ∈ TH and for all φh ∈ V̊h(T ) it holds that

∫

T

A(x)∇ΦMsFEM

i (x) · ∇φh(x) dx = 0 and ΦMsFEM

i = Φi on ∂T.(2.4)

The span of these MsFEM functions is called the MsFEM solution space

V MsFEM

H := span{ΦMsFEM

i | 1 ≤ i ≤ N}.

This space is conforming in the sense of V MsFEM

H ⊂ Vh ⊂ H1
0 (Ω), because the set

{ΦMsFEM

i | 1 ≤ i ≤ N} defines a conforming set of basis functions. The classical
MsFEM in the Petrov–Galerkin (PG) formulation due to [28] reads as follows.

Definition 2.1 (MsFEM without oversampling). The MsFEM approximation
uMsFEM

H ∈ V MsFEM

H is defined as the solution of

∫

Ω

A(x)∇uMsFEM

H (x) · ∇ΦH(x) dx =

∫

Ω

f(x)ΦH(x) dx for all ΦH ∈ VH .(2.5)
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In [26], the MsFEM was originally proposed in the Galerkin formulation; i.e., the
test functions ΦH ∈ VH in (2.5) are replaced by test functions ΦMsFEM

H ∈ V MsFEM

H .
Observe that due to the orthogonality property (2.4) both formulations are almost
identical (in the absence of oversampling). For structural reasons we used the PG
version to introduce the MsFEM.

With regard to the general framework for oversampling that we present in the
subsequent sections, we note that the MsFEM can be rewritten in the following way.

Remark 2.2. If uMsFEM

H ∈ V MsFEM

H denotes the MsFEM approximation stated in
Definition 2.1, then we have uMsFEM

H = uH +Qh(uH), where uH ∈ VH solves
∫

Ω

A (∇uH + ∇Qh(uH)) · ∇ΦH =

∫

Ω

fΦH for all ΦH ∈ VH ,(2.6.a)

with

Qh(ΦH)(x) :=
∑

T∈TH

d∑

i=1

∂xiΦH(xT )wT,i(x),(2.6.b)

and wT,i ∈ V̊h(T ) is the unique solution of
∫

T

A∇wT,i · ∇φh = −
∫

T

Aei · ∇φh for all φh ∈ V̊h(T ).(2.6.c)

The set of all functions wT,i is what we are going to call a local corrector basis. From
the computational point of view, it seems at first glance to be cheaper to compute
the corrector basis given by (2.6.c) instead of directly computing the set of multiscale
basis functions given by (2.4). The latter formally involves more problems to solve.
For instance, if d = 2, the assembling of the corrector basis {wT,i | T ∈ TH , i = 1, 2}
requires the solution of 2 · |TH | local problems, whereas the solutions of 3 · |TH | local
problems are required to assemble {ΦMsFEM

i | 1 ≤ i ≤ N} by using the gradients of
coarse basis functions (for which we have 3 per coarse element). Still, it is possible to
use the partition of unity property of the basis functions to equally decrease the costs
of the original version of the MsFEM from d · |TH | to (d − 1) · |TH |. In particular,
restricted to T , the gradients of (d− 1) basis functions associated with (d− 1) corners
of the element T span the gradient of the missing dth basis function on T .

The equivalence between the formulations (2.5) and (2.6) can be easily verified
by the relation ΦMsFEM

i = Φi + Qh(Φi). Observe that for every i, for every T ∈ TH ,

and for every φh ∈ V̊h(T ),
∫

T

A(x) (∇Φi(x) + ∇Qh(Φi)(x)) · ∇φ(x) dx

=

d∑

i=1

∂xiΦH(xT )

∫

T

A(x)
(
ei + ∇wi

T (x)
)

· ∇φ(x) dx = 0

and Φi +Qh(Φi) = Φi on ∂T , which is the definition of ΦMsFEM

i .
A symmetric formulation of (2.6.a) is given by the following: find uH ∈ VH with
∫

Ω

A (∇uH + ∇Qh(uH)) · (∇ΦH + ∇Qh(ΦH)) =

∫

Ω

fΦH for all ΦH ∈ VH .(2.7)

Note that (2.6.a) and (2.7) are identical, because
∫

T

A (∇uH + ∇Qh(uH)) · ∇φh = 0 for all φh ∈ V̊h(T ).
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3. Oversampling strategies. As already discussed in the introduction, the
classical MsFEM in Definition 2.1 can be strongly affected or even dominated by
resonance errors (cf. [14]). In the absence of scale separation or any knowledge about a
suitable sample size for the local problems, the classical MsFEM needs a modification.
Oversampling is considered to be a remedy to this issue. Oversampling means that the
local problems (2.6.a) are solved on larger domains, but only the interior information
(i.e., we restrict the gained fine scale information to T ) is communicated to the coarse
scale equation (2.6.a).

There is no unique way of extending the local problems (2.6.a) to larger patches.
Different extensions lead to different oversampling strategies. In this section, we
present the two common approaches for oversampling. We rephrase both approaches
so that they fit into a common framework. We discuss the advantages and disadvan-
tages of the methods, and then we propose our new oversampling strategy. Note that
each of the subsequent strategies is a generalization of the case without oversampling.

We shall introduce some additional notation.
Definition 3.1 (admissible patch). For T ∈ TH , we call U(T ) an admissible

patch of T if it is nonempty, open, and connected, if T ⊂ U(T ) ⊂ Ω, and if it is the
union of elements of Th, i.e.,

U(T ) = int
⋃

τ∈T ∗
h

τ, where T ∗
h ⊂ Th.

A given set of admissible patches is given by U , i.e.,

U := {U(T ) | T ∈ TH and U(T ) is an admissible patch},
where U contains one and only one patch U(T ) for each T ∈ TH . The set U(T ) \ T is
called an oversampling layer. The thickness of the oversampling layer is denoted by
dU ,T := dist(T, ∂U(T )). Furthermore, we define

dmin

U := min
T∈TH

dU ,T and dmax

U := max
T∈TH

dU ,T

as the minimum and maximum thickness.
In the spirit of (2.6.a) and (2.7), we now define the coarse scale equation for an

arbitrary MsFEM with a chosen oversampling strategy. As we will see later on, all
MsFEM realizations differ only in the correction operator Qh that determines the
oversampling strategy.

Definition 3.2 (framework for oversampling strategies). Let α = 1, 2, 3 denote
the index of the oversampling strategy to be specified later on, and let

{wU ,α
h,T,i | 1 ≤ i ≤ d, T ∈ TH}

denote a given local corrector basis that depends on the chosen strategy α (see (2.6.a)–
(2.6.c) for the trivial case of such a basis). Then, a (not necessarily conforming)

correction operator QU ,α
h : VH → Vh,TH is defined by

QU ,α
h (ΦH)(x) :=

∑

T∈TH

χT (x)
d∑

i=1

∂xiΦH(xT )wU ,α
h,T,i(x) for ΦH ∈ VH .(3.1)

The MsFEM approximation uα
H +QU ,α

h (uα
H) obtained with strategy α in the PG for-

mulation reads as follows: find uα
H ∈ VH such that

∑

T∈TH

∫

T

A
(
∇uα

H + ∇QU ,α
h (uα

H)
)

· ∇ΦH =

∫

Ω

fΦH for all ΦH ∈ VH .(3.2)
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The MsFEM approximation uα,sym
H + QU ,α

h (uα,sym
H ) obtained with strategy α and a

(not necessarily equivalent) symmetric formulation is given by the following: find
uα,sym

H ∈ VH with

∑

T∈TH

∫

T

A
(
∇uα,sym

H + ∇QU ,α
h (uα,sym

H )
)

·
(
∇ΦH + ∇QU ,α

h (ΦH)
)

(3.3)

=

∫

Ω

f(ΦH +QU ,α
h (ΦH))

for all ΦH ∈ VH . Observe that strategies can differ only in the choice of the corrector
basis. The remaining structure of the methods is always the same.

In the subsequent sections, we demonstrate how existing oversampling strategies
fit into the framework presented in Definition 3.2.

3.1. Classical strategy initially introduced by Hou and Wu. The classi-
cal oversampling strategy was proposed by Hou and Wu [26] and further used and
investigated in several works (cf. [13, 6, 14]).

Let T ∈ TH be fixed, and let {ΦT
1 ,Φ

T
2 , . . . ,Φ

T
d+1} ⊂ VH denote the basis functions

that belong to the d+ 1 nodal points in T . Hou and Wu [26] proposed the following
oversampling strategy: solve for Φ̃T

j ∈ Vh(U(T )) with

∫

U(T )

A∇Φ̃T
j · ∇φh = 0 for all φh ∈ V̊h(U(T ))(3.4)

and the boundary condition Φ̃T
j = ET (ΦT

j ) on ∂U(T ), where ET (ΦT
j ) denotes the

affine extension of (ΦT
j )|T . Then, for a given coarse function ΦH ∈ VH , ΦMsFEM

H is
defined by

ΦMsFEM

H =

d+1∑

j=1

cjΦ̃
T
j ,

where the cj are such that ΦMsFEM

H (xj) = ΦH(xj) for all d + 1 coarse nodes xj of
T . The final coarse scale equation in the PG formulation reads as follows: find
u1,MsFEM

H ∈ Vh,TH with
∫

Ω

A∇Hu
1,MsFEM

H · ∇ΦH =

∫

Ω

fΦH(3.5)

for all ΦH ∈ VH . Observe that uMsFEM

H is a nonconforming approximation of u. In
[28, 16], a slightly different condition is used to define the coefficients ci. However, it
turns out that this modified condition leads to nothing but Oversampling Strategy 2
below.

We shall rephrase this multiscale method with oversampling strategy in the frame-
work of Definition 3.2. Let QT (ΦH) := ΦMsFEM

H − ET (ΦH) define the local corrector,
i.e., an operator that communicates fine scale information to the coarse scale equation.
The corresponding reduced fine scale space V̊ r

h (U(T )) is given by

V̊ r
h (U(T )) := V̊h(U(T )) \ span{ΦT

1 ,Φ
T
2 , . . . ,Φ

T
d+1}(3.6)

with nodal basis functions {ΦT
1 ,Φ

T
2 , . . . ,Φ

T
d+1} ⊂ VH . Since

QT (ΦH)(xi) = ΦMsFEM

H (xi) − ΦH(xi) = 0 for all nodes xi in T ,
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QT (ΦH) ∈ V̊ r
h (U(T )). Moreover, by the definition of ΦMsFEM

H , QT (ΦH) ∈ V̊ r
h (U(T ))

satisfies
∫

U(T )

A (∇ΦH(xT ) + ∇QT (ΦH)) · ∇φh

=

∫

U(T )

A (∇ET (ΦH) + ∇QT (ΦH)) · ∇φh

=
d∑

i=1

ci

∫

U(T )

A∇Φ̃T
i · ∇φh = 0

for all φh ∈ V̊ r
h (U(T )). Since ∇ΦH(xT ) is a constant in U(T ), we may rewriteQT (ΦH)

in terms of a corrector basis. This gives us the first definition of oversampling within
our framework.

Oversampling Strategy 1. Let V̊ r
h (U(T )) denote the reduced fine scale space

given by (3.6), and let wU ,1
h,T,i ∈ V̊ r

h (U(T )) (for i ∈ {1, 2, . . . , d}) denote the solution
of

∫

U(T )

A∇wU ,1
h,T,i · ∇φh = −

∫

U(T )

Aei · ∇φh for all φh ∈ V̊ r
h (U(T )).(3.7)

For ΦH ∈ VH we define the corrector QU ,1
h (ΦH) ∈ Vh,TH by

QU ,1
h (ΦH) :=

∑

T∈TH

χT (x)

d∑

i=1

∂xiΦH(xT )wU ,1
h,T,i(x).

Let u1H ∈ VH be the solution of (3.2), i.e.,

∑

T∈TH

∫

T

A
(
∇u1H + ∇QU ,α

h (u1H)
)

· ∇ΦH =

∫

Ω

fΦH for all ΦH ∈ VH .

Then, u1,MsFEM

H := u1H + QU ,1
h (u1H) defines the MsFEM approximation obtained with

Oversampling Strategy 1. Obviously, u1,MsFEM

H solves (3.5).
Remark 3.3. The explicit boundary condition for the local problems (3.4) is often

missing in the literature (cf. [26, 14]). However, it seems that these computations
were performed for the case described above; i.e., the solution Φ̃T

i of (3.4) takes the
values of an affine function on ∂U(T ) (cf. [16, 28], which also refer to the numerical
experiments in [26]). In some works (cf. [13]) the local problems (3.4) are formulated
with the boundary condition Φ̃T

i = ΦT
i on ∂U(T ). This seems to be a mistake, because

the new basis functions will be equal to zero whenever U(T ) is larger than the support
of the original basis functions.

3.2. Oversampling motivated from homogenization theory. The second
type of oversampling is motivated from numerical homogenization theory. Assume
that we regard

find uε ∈ H1
0 (Ω) with

∫

Ω

Aε∇uε · ∇Φ =

∫

Ω

fΦ for all Φ ∈ H1
0 (Ω),

and assume that Aε is uniformly bounded and coercive in ε, that Aε is H-convergent
to some matrix A0, and that uε ⇀ u0 in H1(Ω), where u0 ∈ H1

0 (Ω) is called the
homogenized solution.
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Then, a numerical approximation of the homogenized solution u0 can be obtained
by discretizing a more convenient equation (see (3.8) below). For this purpose, let
B(x, η) denote an open ball centered at x ∈ Ω with radius η > 0, and let N(x, η)
denote an open neighborhood of x ∈ Ω with a Lipschitz boundary. It is assumed that
there exist 0 < c ≤ C so that for all η > 0 and all x ∈ Ω there holds c|B(x, η)| ≤
|N(x, η)| ≤ C|B(x, η)|. We seek uε,η,ζ ∈ H1

0 (Ω) that solves

(3.8)

∫

Ω

|N(x, η)|−1

∫

N(x,η)

Aε(y)
(
∇uε,η,ζ(x) + ∇yQ(uε,η,ζ)(x, y)

)
· ∇Φ(x) dy dx

=

∫

Ω

f(x)Φ(x) dx

for Φ ∈ H1
0 (Ω), where for given Ψ ∈ H1

0 (Ω) the correctorQ(Ψ)(x, ·) ∈ H1
0 (N(x, η+ζ))

is determined by
∫

N(x,η+ζ)

Aε(y) (∇Ψ(x) + ∇yQ(Ψ)(x, y)) · ∇φ(y) dy = 0 for all ψ ∈ H1
0 (N(x, η + ζ)).

If ζ = ζ(η) and limη→0
ζ(η)

η = 0, then it holds that

lim
η,ζ→0

lim
ε→0

‖u0 − uε,η,ζ‖H1(Ω) = 0.

As a consequence thereof, we get that

lim
η,ζ→0

lim
ε→0

‖uε − uε,η,ζ‖L2(Ω) = 0.

This result was shown by Gloria [17, 18] in a general nonlinear setting. Since uε,η,ζ

yields a good approximation of uε, the result suggests looking at discretizations of
(3.8). This was exploited, for instance, in [23]. A general numerical framework that
can be seen as a discretization of (3.8) was proposed in [24]. Particularly, the HMM
and the MsFEM are recovered from the framework, which leads to a straightforward
oversampling strategy. This strategy can be formulated as follows (cf. [18, 24, 25]).

Oversampling Strategy 2. For i ∈ {1, 2, . . . , d}, let wU ,2
h,T,i ∈ V̊h(U(T )) solve

∫

U(T )

A∇wU ,2
h,T,i · ∇φh = −

∫

U(T )

Aei · ∇φh for all φh ∈ V̊h(U(T )),(3.9)

and for ΦH ∈ VH , let QU ,2
h (ΦH) ∈ Vh,TH denote the corrector given by (3.1). If u2H ∈

VH is the solution of (3.2), then u2H +QU ,2
h (u2H) defines the MsFEM approximation

obtained with Oversampling Strategy 2. We therefore denote

u2,MsFEM

H := u2H +QU ,2
h (u2H).

We immediately see that Oversampling Strategies 1 and 2 differ only in the fine
scale trial space for the local problems and that they are identical for U(T ) = T ,
even though Oversampling Strategy 2 was formulated independently of Oversampling
Strategy 1. In [28, 16], Oversampling Strategy 2 is written in terms of an asymp-
totic expansion in the periodic case. Also note that this second approach is closely
related to the finite element HMM, where the same type of oversampling is used (cf.
[9, 10, 11, 22]). Notably, the HMM and the MsFEM can be reinterpreted in a com-
mon homogenization framework (cf. [17, 18]) and in a common numerical framework
(cf. [24]).
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3.3. Discussion of the strategies. As we just discussed, there are two widely
used strategies for oversampling for the MsFEM. However, the difference between
both approaches is only minor and the behavior of the resulting approximations ap-
pears to be qualitatively the same. The small difference in the local trial spaces
does not seem to have a significant impact. At least, the error estimates available
for Oversampling Strategies 1 and 2 are very similar. The literature does not even
distinguish between these strategies. For instance, [6] (using Oversampling Strategy
1) claims to generalize the results of [16] (using Oversampling Strategy 2). Such a
mixture of strategies can be observed in several works on this topic. To the best of our
knowledge, even though both approaches seem to behave identically, a rigorous proof
of this conjecture is still missing. Oversampling Strategy 1 suggests fixing the correc-
tor Q1

T (Φ) in the corners of the coarse grid element T (forcing it to zero), whereas
the corrector proposed by Oversampling Strategy 2 does not have such a restriction
leaving it completely free in these corners.

Remark 3.4. As already mentioned, the MsFEM might also be considered in a
symmetric formulation (cf. [16]); i.e., the coarse scale equation reads as follows: find
uH ∈ VH with

∑

T∈TH

∫

T

A
(
∇uα

H + ∇QU ,α
h (uα

H)
)

·
(
∇ΦH + ∇QU ,α

h (ΦH)
)

=

∫

Ω

f(ΦH +QU ,α
h (ΦH))

for all ΦH ∈ VH and where QU ,α
h is defined either with Oversampling Strategy 1 or

2. However, the theoretical and numerical results in [28] show that this version of the
method still suffers from resonance errors. One explanation was suggested by Gloria
[18], who proposed a simple computation:

∫

T

A
(
∇uα

H + ∇QU ,α
h (uα

H)
)

·
(
∇ΦH + ∇QU ,α

h (ΦH)
)

=

∫

T

A
(
∇uα

H + ∇QU ,α
h (uα

H)
)

· ∇ΦH

+

∫

T

A
(
∇uα

H + ∇QU ,α
h (uα

H)
)

· ∇QU ,α
h (ΦH)

=

∫

T

A
(
∇uα

H + ∇QU ,α
h (uα

H)
)

· ∇ΦH

+

∫

U(T )\T

A
(
∇uα

H + ∇QU ,α
h (uα

H)
)

· ∇QU ,α
h (ΦH).

This means that the effective MsFEM bilinear forms in the PG and non-PG formu-
lations differ in the term

∑

T∈TH

∫

U(T )\T

A
(
∇uα

H + ∇QU ,α
h (uH)

)
· ∇QU ,α

h (ΦH),

which still seems to contain the problematic boundary layers that we tried to get rid
of. Observe that we integrate over the layer U(T )\T . This is exactly the region where

we encounter unpleasant boundary effects of the correctors QU ,α
h (uH) and QU ,α

h (ΦH).
This might imply that preference should be given to the PG formulation. Note,
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however, that uniqueness and existence of discrete solutions have not been proved for
general oversampling so far.

Let us review the two essential results concerning the convergence of MsFEM
approximations with oversampling. The first result is due to Gloria and is the most
general result currently available for Oversampling Strategy 2.

Theorem 3.5. Let f ∈ L2(Ω) and Aε ∈ L∞(Ω,Rd×d) be a sequence of (possibly
nonsymmetric) matrices with uniform spectral bounds γmin > 0 and γmax ≥ γmin,

(3.10) σ(Aε(x)) ⊂ [γmin, γmax] for almost all x ∈ Ω and for all ε > 0,

and assume that Aε is H-convergent. Furthermore, let uε
H ∈ VH denote the corre-

sponding MsFEM approximation obtained with Oversampling Strategy 2, and let

diam(U(T )) − diam(T )

diam(T )
→ 0 for H → 0.

Then we have

lim
H→0

lim
ε→0

‖uε − uε
H‖L2(Ω) = 0.

The proof for general nonsymmetric coefficients is given in [20, Theorem 5], and
the case of nonlinear problems is presented in [18, Theorem 6 and Remark 7]. At
first glance the result appears counterintuitive in the sense that it suggests letting
the oversampling converge to zero. However, the first limit is in ε, which makes the
relative thickness ε

dmin
U

of the oversampling layer grow to infinity. Hence, the correct

interpretation is that for fixed ε the computational domains should blow up to infinity.
In this case, the optimal corrector problem is an equation formulated on the whole
Rd. These corrector problems are exactly the cell problems known from periodic and
stochastic homogenization theory. In the periodic setting the classical cell problems
can be extended to the Rd by periodicity, and in the stochastic setting they are directly
formulated in Rd to obtain the correct stochastic average (cf. [31]).

Theorem 3.5 gives a clear message in the case of extremely small microscopic
variations. If ε (the characteristic length scale of the fine scale oscillations) is (glob-
ally) sufficiently small, then the resulting MsFEM approximation yields very good
approximations. This is a very important result, but it is purely qualitative. For
example, it does not answer the question of how (thick) to choose an oversampling
patch. We cannot predict how the method behaves if there is a large spectrum of
oscillations without a scale separation. For instance, we might encounter variations,
where it is hard to tell which of them are macroscopic and which are microscopic (i.e.,
“ε-dependent”). In practice, we do not construct an artificial sequence in ε; we have
only a given scenario and a given set of data.

The next theorem due to Hou, Wu, and Zhang is much more restrictive, but it
gives a more quantitative answer than Theorem 3.5.

Theorem 3.6. Assume that d = 2, f ∈ L2(Ω), and A is a bounded, elliptic,
symmetric, and ε-periodic C3-matrix, i.e., A(x) = Ap(

x
ε ), with Ap ∈ C3([0, 1]d,Rd×d

sym)
being periodic. Let uε

H ∈ Vh,TH denote the MsFEM approximation obtained with
Oversampling Strategy 2. Then

‖uε
H − uε‖L2(Ω) ≤ C

(
ε

dmin

U
+H + ε(logH)

1
2

)
,

( ∑

T∈TH

‖∇uε
H − ∇uε‖2

L2(Ω)

) 1
2

≤ C

(
ε

dmin

U
+H + ε

1
2

)
.
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A proof of this theorem is given in [28]. The assumption d = 2 seems to be
essential for their strategy. Note that in [28] the theorem is formulated without the

1
dmin

U
contribution. Instead, the authors make the assumption that the oversampling

layer is sufficiently large. Following their proofs one can easily see that the generalized
estimate reads as above (cf. [14] for the case dmin

U = CH). In particular, the ε
dmin

U
-term

describes the decay of the error between the exact corrector and the corrector with
wrong boundary conditions in a coarse element T . The decay turns out to be inversely
proportional to the thickness of the layer. Because of the ε scaling of the solution,
the effective term becomes ε

dmin
U

. This seems to be a sharp estimate for the decay due

to the findings in [16, 5]. A proof of Theorem 3.6 for Oversampling Strategy 1 can
be achieved in the same fashion as in [28]. Theorem 3.6 predicts the following: if
locally O(H)=O(ε), the patch size of the local problems must not be of order O(H)
to preserve convergence. Still, the theorem gives only an answer of how to choose the
oversampling patches U if ε is a known parameter.

If the thickness of the oversampling layer is of order O(h), both estimates in Theo-
rem 3.6 receive an order O( ε

h) term and the right-hand sides remain large. In general,
the thickness dmin

U must be large in comparison to ε. Analytically, this implies that
O(H)-oversampling might be not enough in regions where we deal with resonance
errors due to O(H)=O(ε). This seems to show up in the numerical experiments in
[28], where the authors observe a stagnation in the convergence of the H1-error for
H entering the region with O(H)=O(ε). The effect on the L2-error is less strong.
However, the value of dmin

U is missing in the experiments in [28], so we can assume
only that dmin

U is of order H . Otherwise the computation of the MsFEM basis func-
tions becomes quite expensive. However, we note that there also exists a modification
of Oversampling Strategy 2 proposed by Gloria (cf. [19, Theorem 3.1] and [20, para-
graphs 5.3 and 5.4]) where the local problems are regularized by adding the term

κ−1(wU ,2
h,T,i, φh)L2(U(T )) (for large κ > 0) to the left-hand side of problem (3.9). Using

this modified strategy, the Theorem 3.6–type estimates can be improved enormously,
even without restrictions on space dimensions and much weaker assumptions on the
regularity of Aε.

Remark 3.7. In [16], the symmetric version (3.3) of the MsFEM is considered.
Here, the derived L2-estimate reads as

‖uε
H − uε‖L2(Ω) ≤ C

(
ε+H2 + ε(logH) +

ε

dmin

U
+ Cr

( ε
H

)2
)
,

where uε
H denotes the MsFEM approximation of the symmetric problem (3.3) de-

termined with Oversampling Strategy 1. Due to the numerical experiments in [16],
Cr seems to have a considerable size so that this term is dominating the estimate
if locally O(ε)=O(H). We notice that the estimate is worse than the L2-estimate
for the PG version of the method, because the last term cannot be reduced even for
large dmin

U . These observations are consistent with Remark 3.4. However, this leads
to an additional problem of the MsFEM with Oversampling Strategy 1 or 2. On
the one hand, the PG version should be preferred over the symmetric version (see
the estimates). On the other hand, the existence and uniqueness of the corresponding
MsFEM approximations have not been established so far, not to mention the stability.
For the symmetric version, we can simply exploit the ellipticity of A to conclude that
the method is well posed and stable. For the PG version there is no such argument.
The only result is a perturbation result due to Gloria [18], saying that if the over-
sampling size is small enough (i.e., if the difference between the PG formulation and
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symmetric formulation is small enough), then we still have existence and uniqueness.
The lack of knowledge regarding the general well-posedness of the PG MsFEM with
Oversampling Strategies 1 and 2 is a big issue of these approaches.

The ε-terms in the estimates that cannot be reduced with H � ε should be
seen as fixed modeling errors. They describe the error between exact solution and
homogenized solution. In a general nonperiodic nonstochastic scenario they cannot
be quantified.

In conclusion we have two findings. First, in general, both approaches do not
show clear asymptotics for a convergence to the exact solution (for H � ε). There
is always a remainder of order ε, even if U(T ) = Ω. In particular, this is a problem
if ε is unknown or if the microstructure is heterogeneous. Second, if the modeling
error of order ε is negligible, Theorem 3.6 still suggests that linear convergence (with
respect to H) can be achieved only if the oversampling thickness scales with O(1),
which makes the local problems prohibitively expensive. Since the estimate for the
decay rate ε

dmin
U

of the corrector error is sharp (in the periodic setting), we cannot

hope for much improvement of the final error estimates stated in Theorem 3.6.
We may summarize the following issues, which we address to solve with our new

oversampling strategy to be proposed in the next section:
(a) elimination of resonance errors of any kind,
(b) clear prediction for the size of oversampling patches without explicit knowl-

edge about the microstructure or scale separation,
(c) construction of a conforming approximation in H1

0 (Ω),
(d) a quantitative error analysis in H without restrictive regularity assumptions

on the coefficients and for all space dimensions,
(e) a priori error estimation in the fully discrete setting (previous results were

obtained under the assumption that the local problems are solved exactly),
(f) formulation of a stable approach for which we can guarantee existence and

uniqueness of the resulting MsFEM approximation, and
(g) prevention of unstable splittings due to point evaluations as, e.g., required

to implement the constraint in Oversampling Strategy 1 (cf. the definition of
V̊ r

h (U(T )) in (3.6)).
Note that points (d) and (e) could be done in the periodic setting for Oversampling
Strategies 1 and 2 by using, e.g., the techniques presented in [19, 20].

4. Constrained oversampling. In this section we introduce a third oversam-
pling strategy for which we derive a quantitative a priori error estimate. The results
are presented in subsection 4.1, and a corresponding proof is given in subsection 4.2.
All the results require solely the assumptions stated in section 2.1 to be satisfied, i.e.,
A ∈ L∞(Rd×d

sym) uniformly positive definite and f ∈ L2(Ω).

4.1. New strategy and quantitative error estimates. In the following, let
NH denote the set of interior vertices of the coarse grid TH . For a given node z ∈ NH ,
Φz ∈ VH denotes the corresponding nodal basis function as before.

Our new approach is based on some multiscale decomposition of the space Vh,

(4.1) Vh = VH ⊕Wh,

where the space Wh contains the “fine scale” functions of Vh, i.e., functions that
are not captured by VH . More precisely, we choose Wh to be the kernel of some
Clément-type quasi-interpolation operator IH : H1

0 (Ω) → VH ,

Wh := {v ∈ Vh | IH(v) = 0}.(4.2)
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Several choices for IH are possible. We refer the reader to [34] for an axiomatic charac-
terization. In this paper, for the sake of simplicity, we choose the particular operator
introduced in [4]. Given v ∈ H1

0 (Ω), IHv :=
∑

z∈NH
(IHv)(z)Φz is determined by the

nodal values

(4.3) (IHv)(z) :=

∫
Ω vΦz∫
Ω

Φz
for z ∈ NH .

The nodal values are weighted averages of the function over nodal patches ωz :=
supp Φz. The operator is linear, surjective, bounded, and invertible on the finite
element space VH . Hence, the decomposition (4.1) exists and is stable; it is even
orthogonal in L2(Ω).

Recall the (local) approximation and stability properties of the interpolation op-
erators IH [4]: There exists a generic constant C such that for all v ∈ H1

0 (Ω) and for
all K ∈ TH it holds that

(4.4) H−1
T ‖v − IHv‖L2(K) + ‖∇(v − IHv)‖L2(K) ≤ C‖∇v‖L2(ωK),

where ωK := ∪{K ′ ∈ TH | K ′ ∩ K �= ∅}. The constant C depends on the shape
regularity of the finite element mesh TH but not on the local mesh sizeHT := diam(T ).

Remark 4.1 (nodal interpolation). Since we consider a fully discrete setting,
where corrector problems are solved in the fine scale finite element space Vh, we
could have chosen nodal interpolation instead of Clément-type interpolation. The
subsequent definitions and results will be almost verbatim the same. However, nodal
interpolation does not satisfy the estimate (4.4) with an h-independent constant if
d > 1. The best constantC = Cd(h) reads as C2(h) = log(H/h) and C3(h) = (H/h)−1

depending on the spatial dimension d (cf. [38]). Since this constant enters basically all
error estimates below, we would end up with an h-dependence of the multiplicative
constants in the final error estimates. In two dimensions this can still be acceptable,
because the dependence on h is only logarithmic.

With the decomposition (4.1) we do not search the local correctors in the full fine
scale space Vh but only in the constrained space Wh. The advantage is the following:
as stated in the previous section for Oversampling Strategies 1 and 2, the standard
decay for the difference between the local correctors and the global “exact” corrector
is of order 1

dmin
U

(see Theorem 3.6), but in the constrained space Wh we can achieve

an exponential-type decay (cf. Lemma 4.9 below).
We now propose our new oversampling strategy.
Oversampling Strategy 3 (constrained oversampling). Let Wh denote the

space given by (4.2), and define

(4.5) W̊h(U(T )) := {vh ∈ Wh | vh|Ω\U(T ) = 0}.

The local correctors wU ,3
h,T,i ∈ W̊h(U(T )) (for i ∈ {1, 2, . . . , d}) are defined as the

(unique) solutions of
∫

U(T )

A∇wU ,3
h,T,i · ∇φh = −

∫

T

Aei · ∇φh for all φh ∈ W̊h(U(T )).(4.6)

For general ΦH ∈ VH we define the correction operator QU ,3
h : VH → Vh by

QU ,3
h (ΦH)(x) :=

∑

T∈TH

d∑

i=1

∂xiΦH(xT )wU ,3
h,T,i(x).
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The global coarse scale approximation u3H ∈ VH is the solution of (3.3); i.e., it solves

A3(u3H ,ΦH) :=

∫

Ω

A
(
∇u3H + ∇QU ,3

h (u3H)
)

·
(
∇ΦH + ∇QU ,3

h (ΦH)
)

=

∫

Ω

f(ΦH +QU ,3
h (ΦH)) for all ΦH ∈ VH .(4.7)

The corresponding MsFEM approximation is given by

u3,MsFEM

H := u3H +QU ,3
h (u3H).

Using the above definition of the localized space W̊h(U(T )) does not assure that
our new method boils down to the classical MsFEM in the case without oversampling.
Nevertheless, this can be achieved by introducing a localized interpolation operator.

Given some element T ∈ TH and an admissible patch U(T ), we can define I
U(T )
H to

be the Clément-type quasi-interpolation operator with respect to the domain U(T )
(with extension by zero in Ω \ U(T )). Then, the localized space W̊h(U(T )) can be

defined in analogy to Wh with I
U(T )
H replacing IH . With this modification we obtain

the classical MsFEM for U(T ) = T . This is only a subtle detail, and all results still
remain valid for these modified local spaces; however, this version would generate
some technicalities in the proofs later on, which is why we decided to work with the
definition (4.5).

Remark 4.2. The crucial differences between the classical Oversampling Strate-
gies 1 and 2 and Oversampling Strategy 3 are the following:

(a) The variational problem for the local corrector in Oversampling Strategy 3
is posed in the constrained space W̊h(U(T )), whereas the classical corrector
problem seeks the local corrector in the full space V̊h(U(T )) restricted to the
patch.

(b) The support of the integrals on the right-hand sides in (3.7) and (3.9) is U(T ).
In our new version we use only the element T . This allows us to exploit
nice summation properties of the local projectors, without using indicator
functions χT that lead to discontinuities.

(c) In the classical setting, the local correctors are restricted to the corresponding
elements to derive the global corrector. For Oversampling Strategy 3, we
simply sum up (weighted by the coefficients of the finite element function)
the local contributions to get the global corrector. Note that our global
corrector is conforming in the sense that its image is a subset of Vh ⊂ H1

0 (Ω),
whereas the classical setup leads to a nonconforming corrector.

(d) In Oversampling Strategy 3, we do not use a PG formulation for the global
problem (4.7). Since A is assumed symmetric, a symmetric discretization
appears more natural. Furthermore, we immediately inherit coercivity for the
global bilinear form A3. This gives us the existence and uniqueness of u3H ,
and the arising MsFEM approximation is well posed and the method stable.
The typical disadvantage of the symmetric version, which still suffers from
resonance errors (which is why the PG formulation is typically preferred),
does not remain for our strategy.

(e) In contrast to Oversampling Strategies 1 and 2, the corrector QU ,3
h (ΦH) does

not preserve the support of ΦH . In other words, the set of multiscale basis
functions Φz +QU ,3

h (Φz) with z ∈ NH has an extended support. This results
in a loss of sparsity in the stiffness matrix that corresponds with the global
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problem (4.7). In order to still assemble the stiffness matrix in an efficient
way, one might store the intersection domain for each two given oversampling
patches (in storage types with low memory requirements). This can be easily
done at the same time the grids for the local patches are being generated.
Once all intersection domains are available, the matrix can be assembled
efficiently. A quadrature rule that resolves the microstructure is needed for
each of the strategies.

Remark 4.3 (perturbation of the right-hand side). We might also replace the
right-hand side of (4.7) by the term

∫
Ω
fΦH . This introduces only a perturbation of

order ‖Hf‖L2(Ω) in the H1-error.
Remark 4.4 (nonsymmetric formulation). As for the classical strategies, one

might also consider the nonsymmetric PG formulations: find u3H ∈ VH such that
∫

Ω

A
(
∇(u3H +QU ,3

h (u3H))
)

· ∇ΦH =

∫

Ω

fΦH for all ΦH ∈ VH

or ∫

Ω

A
(
∇u3H

)
· ∇(ΦH +QU ,3

h (ΦH)) =

∫

Ω

fΦH for all ΦH ∈ VH .

In the spirit of homogenization theory, one might pose the question of whether
Theorem 3.5 still holds for MsFEM approximations obtained with Oversampling
Strategy 3. At least, this seems to be likely. The reason is that Theorem 3.5 in
particular covers the case without oversampling (see also [17]), and the proof given
in [18] goes back to the arguments used for the case without oversampling. But for
U = TH (no oversampling), Oversampling Strategies 1 and 2 are identical, and Over-
sampling Strategy 3 is at least close to the classical approach. Especially concerning
Oversampling Strategy 3, if the thickness of the oversampling layer decreases faster
than the coarse mesh size, we are almost in the case of Oversampling Strategy 1, up

to a small perturbation of the source term that is of order maxT∈TH

|U(T )\T |
|T | and that

converges to zero under the assumptions of Theorem 3.5. However, such arguments
still need a detailed investigation. In this sense, one might carefully study whether
Oversampling Strategy 3 also covers the homogenization setting established by Glo-
ria, with u3H converging to the homogenized solution as in Theorem 3.5. This might
be an interesting result to ensure that Oversampling Strategy 3 is not worse than the
classical strategies with respect to a homogenization setting.

Besides the advantages of our new strategy mentioned previously, e.g., its confor-
mity, stability, and unique solvability, we formulate the main error estimate, which is
proved in subsection 4.2.

Theorem 4.5 (quantitative a priori error estimates). Assume that we have
A ∈ L∞(Ω,Rd×d

sym) and f ∈ L2(Ω) as in the general assumptions in section 2.1. Let
TH be a given coarse triangulation, and let U denote a corresponding set of admissible
patches, with the property dmin

U � H log(H−1). By Th we denote a sufficiently accurate
fine triangulation of Ω and by uh the associated finite element solution of (2.3). If
u3,MsFEM

H is the MsFEM approximation determined with Oversampling Strategy 3 and
if u3H denotes the corresponding coarse part, then the following a priori error estimates
holds true for arbitrary mesh sizes H ≥ h:

‖∇uh − ∇u3,MsFEM

H ‖L2(Ω) ≤ CH,

‖uh − u3,MsFEM

H ‖L2(Ω) ≤ CH2,

‖uh − u3H‖L2(Ω) ≤ CH.
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Here, C denotes generic constants that depend on f , γmin, and γmax but not on H, h,
the regularity of the exact solution, or the variations of A. Details on the constants
are given in Theorems 4.13 and 4.15.

4.2. Proof of the main result. Before we prove the error estimates for the
MsFEM with the correctors presented in Oversampling Strategy 3, we introduce some
simplifying notation for this subsection.

Definition 4.6 (notation for Oversampling Strategy 3). Let wU ,3
h,T,i ∈ W̊h(U(T ))

denote the local corrector basis given by (4.6), let QU ,3
h denote the corresponding cor-

rector operator from Oversampling Strategy 3, and let u3H denote the arising (coarse)
MsFEM approximation. In the following, we skip the redundant indices and use the
following notation:

wi
T := wU ,3

h,T,i, Qh := QU ,3
h , uH := u3H , and uMsFEM := uH +Qh(uH).

The first lemma treats the (unpractical) case of maximal oversampling.
Lemma 4.7 (error estimate for maximal oversampling). Let U(T ) = Ω for all

T ∈ TH . Then the multiscale approximation uH that solves (4.7) satisfies the error
estimate

‖∇uh − ∇(uH +Qh(uH))‖L2(Ω) � γ−1
min‖Hf‖L2(Ω),

where uh solves the reference problem (2.3).
If, moreover, (f, wh)L2(Ω) = 0 for all fine scale functions wh ∈ Wh, then uH +

Qh(uH) = uh.
Proof. For U(T ) = Ω, Qh maps onto the fine scale space Wh. Given ΦH ∈ VH , it

is easily checked that Qh(ΦH) =
∑

T∈TH

∑d
i=1 ∂xiΦH(xT )wi

T satisfies

a(Qh(ΦH), φh) =

∫

Ω

A∇
( ∑

T∈TH

d∑

i=1

∂xiΦH(xT )wi
T (x)

)
· ∇φh

=

∫

Ω

A

( ∑

T∈TH

d∑

i=1

∂xiΦH(xT )∇wi
T (x)

)
· ∇φh

=
∑

T∈TH

d∑

i=1

∂xiΦH(xT )

∫

Ω

A∇wi
T (x) · ∇φh

= −
∑

T∈TH

d∑

i=1

∂xiΦH(xT )

∫

T

Aei · ∇φh

= −
∑

T∈TH

∫

T

A∇ΦH · ∇φh

= −a(ΦH , φh)

for all φh ∈ Wh. This means that Qh is the orthogonal projection of ΦH onto the fine
scale space Wh with respect to the scalar product a(·, ·). This yields the orthogonal
decomposition

Vh = ṼH ⊕⊥a Wh, where ṼH := {ΦH +Qh(ΦH) | ΦH ∈ VH}.(4.8)
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Moreover, Galerkin orthogonality holds; i.e., for eh := uh − (uH + Qh(uH)) and for
arbitrary ΦH +Qh(ΦH) ∈ ṼH ,

a(eh,ΦH +Qh(ΦH)) = a(uh,ΦH +Qh(ΦH)) − a(uH +Qh(uH),ΦH +Qh(ΦH))

(4.7)
= 0.(4.9)

The combination of (4.8) and (4.9) shows that eh ∈ Wh, and therefore IH(eh) = 0.
We obtain

γmin‖∇eh‖2
L2(Ω) ≤ a(eh, eh) = a(uh, eh) =

∫

Ω

feh =

∫

Ω

f(eh − IH(eh)).

The application of the Cauchy–Schwarz inequality on the element level and the esti-
mate (4.4) for the interpolation error yield the assertion.

Corollary 4.8. The new MsFEM is exact (up to the discretization error on the
fine scale and oscillations ‖Hf‖L2(Ω) of the right-hand side f) in the limit of maximal
oversampling. This results holds true independent of the upper spectral bound γmax

and the variations of A. This is the next difference from the previous Oversampling
Strategies 1 and 2.

Although the error estimate in Lemma 4.7 is encouraging, maximal oversampling
is not feasible. We shall study the decay of the correctors away from element they are
associated with. For all T ∈ TH , define element patches in the coarse mesh TH by

(4.10)
U0(T ) := T,

Uk(T ) := ∪{T ′ ∈ TH | T ′ ∩ Uk−1(T ) �= ∅} k = 1, 2, . . . .

Lemma 4.9 (decay of the ideal correctors). Let U(T ) = Ω for all T ∈ TH in
Oversampling Strategy 3, and let wi

T denote the corresponding local correctors defined
in Definition 4.6 (and (4.6)). Then, for all T ∈ TH and all k ∈ N,

‖A1/2∇wi
T ‖L2(Ω\Uk(T )) � e−rk‖A1/2∇wi

T ‖L2(Ω),

where r is a positive constant that depends on the square root of the contrast but not
on the mesh size or the variations of A.

The proof of Lemma 4.9 requires the definition of cutoff functions and an addi-
tional lemma. For T ∈ TH and �, k ∈ N with k > �, define ηT,k,	 ∈ P1(TH) with nodal
values

(4.11)

ηT,k,	(z) = 0 for all z ∈ NH ∩ Uk−	(T ),

ηT,k,	(z) = 1 for all z ∈ NH ∩ (Ω \ Uk(T )) , and

ηT,k,	(z) =
m

�
for all x ∈ NH ∩ ∂Uk−	+m(T ), m = 0, 1, 2, . . . , �.

For a sketch in one dimension, see Figure 4.1.
Given some w ∈ Wh, the product ηT,k,	w is not in Wh in general. However, the

distance of ηT,k,	w and Wh is small in the following sense.
Lemma 4.10. Given w ∈ Wh and some cutoff function ηT,k,	 ∈ P1(TH) as in

(4.11), there exists some w̃ ∈ W̊h(Ω \ Uk−	−1(T )) ⊂ Wh such that

‖∇(ηT,k,	w − w̃)‖L2(Ω) � �−1‖∇w‖L2(Uk+2(T )\Uk−�−2(T )).

Proof. Fix some T ∈ TH and k ∈ N, and let η	 := ηT,k,	. The operator Ih :
H1

0 (Ω) ∩ C(Ω̄) → V h denotes the nodal interpolant with respect to the mesh Th.
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Fig. 4.1. Sketch of ηT,k,� (red curve) in one dimension for k = 5 and � = 3. ηT,k,� is equal to
zero on T and also on the first 2 (= k − �) coarse grid layers around T . Then it grows linearly on
the layers � = 3 until k = 5. On the remaining layers ηT,k,� is constantly equal to 1.

Recall that for all quadratic polynomials p and all t ∈ Th, Ih fulfills the (local)
approximation and stability estimates

(4.12) ‖∇(p− Ihp)‖L2(t) � ht‖∇2p‖L2(t) and ‖∇(Ihp)‖L2(t) � ‖∇p‖L2(t).

We will use this estimate for the Th-piecewise quadratic function p = η	w. Since
∇2η	 = ∇2w = 0 in every t ∈ Th, we have that ∇2

hη	w = ∇η	 · ∇w in t.
According to [34, Lemma 1], there exists some v ∈ V h such that

(4.13)
IHv = IHIh(η	w), ‖∇v‖L2(Ω) � ‖∇IHIh(η	w)‖L2(Ω), and supp(v) ⊂ Ω \ Uk−	−1(T ).

Hence, w̃ := Ih(η	w) − v ∈ W̊h(Ω \ Uk−	−1(T )). Since IHIh(cw) = cIHw = 0 for any
c ∈ R, we set c	K := |ωK |−1

∫
ωK

η	 for K ∈ TH and get

(4.14)

‖∇IHIh(η	w)‖2
L2(Ω)

(4.11)
=

∑

K∈TH :

K⊂Uk+1(T )\Uk−�−1(T )

∥∥∇IHIh
((
η	 − c	K

)
w
)∥∥2

L2(K)

(4.12),(4.4)

�
∑

K∈TH :

K⊂Uk+1(T )\Uk−�−1(T )

∥∥∇
((
η	 − c	K

)
w
)∥∥2

L2(ωK)

(4.2)

�
∑

K∈TH :

K⊂Uk+1(T )\Uk−�−1(T )

‖(∇η	)(w − IHw)‖2
L2(ωK) +

∥∥(η	 − c	K
)
∇w
∥∥2

L2(ωK)

(4.11)

�
∑

K∈TH :

K⊂Uk(T )\Uk−�(T )

‖(∇η	)(w − IHw)‖2
L2(K) +

∑

K∈TH :

K⊂Uk+1(T )\Uk−�−1(T )

∥∥(η	 − c	K
)
∇w
∥∥2

L2(ωK)
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� ‖H∇η	‖2
L∞(Ω)‖∇w‖2

L2(Uk+1(T )\Uk−�−1(T )) +
∑

K∈TH :

K⊂Uk+1(T )\Uk−�−1(T )

∥∥(η	 − c	K
)
∇w
∥∥2

L2(ωK)

� ‖H∇η	‖2
L∞(Ω)‖∇w‖2

L2(Uk+2(T )\Uk−�−2(T )).

In the last step, we used the Lipschitz bound

‖η	 − c	K‖2
L∞(ωK) � H2‖∇η	‖2

L∞(ωK).

In summary we get with the previous computations

‖∇(η	w − w̃)‖2
L2(Ω)

(4.13)

� ‖∇(η	w − Ih(η	w))‖2
L2(Ω) + ‖∇IHIh(η	w)‖2

L2(Ω)

(4.12),(4.14)

� ‖h∇η	 · ∇w‖2
L2(Ω) + ‖H∇η	‖2

L∞(Ω)‖∇w‖2
L2(Uk+2(T )\Uk−�−2(T ))

(4.11)

�
(
‖h∇η	‖2

L∞(Ω) + ‖H∇η	‖2
L∞(Ω)

)
‖∇w‖2

L2(Uk+2(T )\Uk−�−2(T ))

(4.11)

� �−2‖∇w‖2
L2(Uk+2(T )\Uk−�−2(T )).

This proves the assertion.
Proof of Lemma 4.9. The proof exploits some recursive Caccioppoli argument as

in [34]. We fix some T ∈ TH and k ∈ N. Given � ∈ N with � < k − 1, let η	 :=
ηT,k−2,	−4 ∈ VH be some cutoff function as in (4.11). Lemma 4.10 shows that there
exists some w̃i

T ∈ Wh such that ‖∇(η	w
i
T − w̃i

T )‖L2(Ω) � �−1‖∇wi
T ‖L2(Uk(T )\Uk−�(T )).

Since w̃i
T ∈ W̊h(Ω \ Uk−	+1(T )) and, hence, w̃i

T |T = 0, it holds that
∫

Ω\Uk−�(T )

A∇wi
T · ∇w̃i

T =

∫

Ω

A∇wi
T · ∇w̃i

T = −
∫

T

Aei · ∇w̃i
T = 0.(4.15)

The definition of η	, the product rule, (4.6), and (4.2) yield
∫

Ω\Uk(T )

A∇wi
T · ∇wi

T ≤
∫

Ω\Uk−�(T )

η	A∇wi
T · ∇wi

T

=

∫

Ω\Uk−�(T )

A∇wi
T ·
(
∇(η	w

i
T ) − wi

T ∇η	

)

(4.15)
=

∫

Ω\Uk−�(T )

A∇wi
T ·

⎛
⎝∇(η	w

i
T − w̃i

T ) − (wi
T − IH(wi

T )︸ ︷︷ ︸
=0

)∇η	

⎞
⎠ .

Observe that, by (4.11), ‖∇η	‖L∞(K) = |∇η	(xK)| � �−1H−1
K for all K ∈ TH . This

and the estimate (4.4) for the interpolation error show that

‖(wi
T − IH(wi

T ))∇η	‖2
L2(K) � ‖∇η	‖2

L∞(K)‖wi
T − IH(wi

T )‖2
L2(K)

� H2
K‖∇η	‖2

L∞(K)‖∇wi
T ‖2

L2(ωK)

� �−2‖∇wi
T ‖2

L2(ωK)

for any K ∈ TH . The combination of the previous estimates and Cauchy–Schwarz
inequalities proves that there is some constant C1 > 0 independent of T , �, k, and the
oscillations of A such that

(4.16) ‖A1/2∇wi
T ‖L2(Ω\Uk(T )) ≤ C1�

−1/2‖A1/2∇wi
T ‖L2(Ω\Uk−�−1(T )).
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The choice � := �C1 e� and the recursive application of (4.16) readily yield the asser-
tion.

This exponential decay justifies the approximation of the correctors on local
patches Uk(T ) as proposed in (4.10). We denote by Qk

h the corrector that corre-
sponds to the choice U(T ) = Uk(T ) in Oversampling Strategy 3 and by QΩ

h the one
for U(T ) = Ω.

Corollary 4.11 (truncation/localization error). Let U(T ) = Ω for all T ∈ TH

in Oversampling Strategy 3. Then, for all T ∈ TH and all k ∈ N,

‖A1/2∇(wi
T − wi,k

T )‖L2(Ω\Uk(T )) � e−r·k‖A1/2ei‖L2(T ),

where r > 0 is as in Lemma 4.9 (independent of the variations of A or the mesh size).
Proof. Galerkin orthogonality yields

‖A1/2∇(wi
T −wi,k

T )‖2
L2(Ω) ≤ ‖A1/2∇(wi

T − w̃)‖2
L2(Uk−1(T )) + ‖A1/2∇wi

T ‖2
L2(Ω\Uk−1(T )),

where w̃ ∈ Wh is the fine scale function that corresponds to (1−ηT,k−1,1)w
i
T and which

is constructed in the same way as w̃ in the proof of Lemma 4.10. Here, ηT,k−1,1 is
some cutoff function as in (4.11). Since supp(w̃) ⊂ supp((1−ηT,k−1,1)w

i
T ) ⊂ Uk−1(T ),

we have that w̃ ∈ W̊h(Uk(T )) and the use of Galerkin orthogonality is justified.
Proceeding as in Lemma 4.10 shows that

‖A1/2∇(wi
T − wi,k

T )‖2
L2(Ω) � ‖A1/2∇wi

T ‖2
L2(Ω\Uk−2(T )),

and the application of Lemma 4.9 yields the assertion.
The proof of the main theorem requires one technical result.
Lemma 4.12. Let k ∈ N>0, and let ΦH ∈ VH ; then

(4.17)
∥∥∥A1/2∇(QΩ

h −Qk
h)ΦH

∥∥∥
2

L2(Ω)
� kd

∑

T∈TH

d∑

i=1

|∂xiΦH(xT )|2
∥∥∥A1/2∇(wi

T − wi,k
T )
∥∥∥

2

L2(Ω)
.

Proof. Let ηT,k,1 be as in (4.11), and define z := (QΩ
h − Qk

h)ΦH ∈ Wh. We
decompose the error as follows:

∥∥∥A1/2∇(QΩ
h −Qk

h)ΦH

∥∥∥
2

L2(Ω)
= a(z, z)

=
∑

T∈TH

d∑

i=1

∂xiΦH(xT )a(wi
T − wi,k

T , z(1 − ηT,k,1))

︸ ︷︷ ︸
=:I

+
∑

T∈TH

d∑

i=1

∂xiΦH(xT )a(wi
T − wi,k

T , zηT,k,1)

︸ ︷︷ ︸
=:II

.

For the first term we get

|I| �
∑

T∈TH

d∑

i=1

|∂xiΦH(xT )|‖A 1
2 ∇(wi

T − wi,k
T )‖L2(Ω)‖∇ (z(1 − ηT,k,1)) ‖L2(Uk+1(T )),
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where with IH(z) = 0

‖∇ (z(1 − ηT,k,1)) ‖L2(Uk+1(T )) ≤ ‖∇z‖L2(Uk+1(T )) + ‖z∇ (1 − ηT,k,1) ‖L2(Uk+1(T )\Uk(T ))

� ‖∇z‖L2(Uk+1(T )) +
1

H
‖z − IH(z)‖L2(Uk+1(T )\Uk(T ))

� ‖∇z‖L2(Uk+2(T )),

and therefore

|I| �
∑

T∈TH

d∑

i=1

|∂xiΦH(xT )|‖A 1
2 ∇(wi

T − wi,k
T )‖L2(Ω)‖∇z‖L2(Uk+2(T ))

� k
d
2

( ∑

T∈TH

d∑

i=1

|∂xiΦH(xT )|2‖A 1
2 ∇(wi

T − wi,k
T )‖2

L2(Ω)

) 1
2

‖∇z‖H1(Ω).

To estimate the second term, we use Lemma 4.10, which gives us the existence of
some z̃ ∈ W̊h(Ω \ Uk−2(T )) with a(wi

T − wi,k
T , z̃) = 0 (as in (4.15)) and the property

‖∇(zηT,k,1 − z̃)‖L2(Ω) � ‖∇z‖L2(Uk+2(T )). This yields

|II| =

∣∣∣∣∣
∑

T∈TH

d∑

i=1

∂xiΦH(xT )a(wi
T − wi,k

T , zηT,k,1 − z̃)

∣∣∣∣∣

≤
∑

T∈TH

d∑

i=1

|∂xiΦH(xT )|‖A 1
2 ∇(wi

T − wi,k
T )‖L2(Ω)‖∇z‖L2(Uk+2(T ))

� k
d
2

( ∑

T∈TH

d∑

i=1

|∂xiΦH(xT )|2‖A 1
2 ∇(wi

T − wi,k
T )‖2

L2(Ω)

) 1
2

‖∇z‖H1(Ω).

Combining the estimates for I and II and dividing by ‖∇z‖H1(Ω) � a(z, z)
1
2 yields the

assertion.
Theorem 4.13 (H1–error estimate). Given k ∈ N, let U(T ) = Uk(T ) for all

T ∈ TH in Oversampling Strategy 3. Then the multiscale approximation uk
H that

solves (4.7) satisfies the error estimate

‖∇uh − ∇(uk
H +Qk

h(uk
H))‖ � γ−1

min‖Hf‖L2(Ω) + k
d
2 e−rk‖f‖H−1(Ω),

where uh is the reference solution from (2.3) and r > 0 as in Lemma 4.9.
Remark 4.14 (relation to the results in [34]). In the case of maximal oversam-

pling, the new MsFEM with constrained oversampling coincides with the ideal version
(without localization) of the VMM presented in [34]. The localized versions are differ-
ent and allow similar, but not identical, error estimates. The upper bound obtained
in [34] reads (up to some multiplicative constant) as

‖Hf‖L2(Ω) +H−1e−rk‖f‖H−1(Ω).

Our new localization strategy allows for an improved estimate in the sense that the
unpleasant factor H−1 does not appear. Note that the proof of the error estimate in
Theorem 4.13 does not generalize to the localization strategy used in [34] and must
therefore be seen independently. The reason is that the structure of the local problems
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(4.6) gives us a nice summation property which we were able to exploit but which is
not available in [34]. This observation indicates that better numerical approximations
for equal sizes of oversampling patches are possible with our new approach. This will
be investigated in future works.

Proof of Theorem 4.13. Using the fact that Galerkin approximation minimizes
the error in the energy norm, we obtain with the definitions of uk

H and uh that for all
ΦH ∈ VH

(4.18)
‖A1/2(∇uh − ∇(uk

H +Qk
h(uk

H)))‖L2(Ω) ≤ ‖A1/2(∇uh − ∇(ΦH +Qk
h(ΦH)))‖L2(Ω).

Let uH be the solution of (4.7) with the ideal corrector Qh = QΩ
h . Then

‖A1/2(∇uh − ∇(uk
H +Qk

h(uk
H)))‖L2(Ω)

(4.18)

≤ ‖A1/2(∇uh − ∇(uH +Qk
h(uH)))‖L2(Ω)

≤ ‖A1/2(∇uh − ∇(uH +QΩ
h (uH)))‖L2(Ω)

+ ‖A1/2(∇(uH +QΩ
h (uH)) − ∇(uH +Qk

h(uH)))‖L2(Ω)

� γ
−1/2
min ‖Hf‖L2(Ω) + ‖A1/2∇((QΩ

h −Qk
h)(uH))‖L2(Ω).

By Corollary 4.11, we get

‖A1/2∇((QΩ
h −Qk

h)(uH))‖2
L2(Ω)

=

∥∥∥∥∥
∑

T∈TH

d∑

i=1

∂xiuH(xT )A
1
2 ∇(wi

T − wi,k
T )

∥∥∥∥∥

2

L2(Ω)

(4.17)

� kd
∑

T∈TH

d∑

i=1

|∂xiuH(xT )|2
∥∥∥A 1

2 ∇(wi
T − wi,k

T )
∥∥∥

2

L2(Ω)

� kde−2r·k ∑

T∈TH

d∑

i=1

|∂xiuH(xT )|2‖A1/2ei‖2
L2(T )

� kde−2r·k ∑

T∈TH

d∑

i=1

‖A1/2∇uH‖2
L2(T )

� kde−2rk‖f‖2
H−1(Ω).

In the last step we have used that uH = IH(uH +QΩ
h (uH)), the stability of IH , and

the energy estimate ‖A1/2∇(uH +QΩ
h (uH)‖L2(T ) � γ

−1/2
min ‖f‖H−1(Ω).

Theorem 4.15 (L2-estimates). Given k ∈ N, let U(T ) = Uk(T ) for all T ∈ TH

in Oversampling Strategy 3. Then the multiscale approximation uk
H that solves (4.7)

satisfies the error estimates

‖uh − (uk
H +Qk

h(uk
H))‖L2(Ω) � (γ−1

min‖H‖L∞(Ω) + kd/2e−rk)2‖f‖L2(Ω)

and

‖uh − uk
H‖L2(Ω) � min

vH∈VH

‖uh − vH‖L2(Ω) + (γ−1
min‖H‖L∞(Ω) + kd/2e−rk)2‖f‖L2(Ω),

where uh is the reference solution from (2.3) and r is a positive constant.
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Proof. A standard Aubin–Nitsche duality argument yields the first estimate. The
second estimate follows from the first one and the quasi optimality and stability of
the interpolation IH in L2(Ω).

Remark 4.16 (smooth coefficient with known smallest scale ε). Let Ω be convex,
and let f ∈ L2(Ω) with ‖f‖L2(Ω) � 1, A ∈ W 1,∞(Ω) with ‖∇A‖L∞(Ω) � ε−1 with
some small scale parameter ε > 0. Choose uniform meshes TH and Th withH � ε � h.
Under these assumptions, the error of the reference solution uh ∈ Vh is bounded as
follows:

‖∇(u− uh)‖ � hε−1.

We refer the reader to [37] for details. If k � log(H−1), Theorems 4.13 and 4.15 yield
the error bounds

‖∇(u− uk
H −Qk

h(uk
H))‖L2(Ω) � H + h

ε ,

‖u− uk
H −Qk

h(uk
H)‖L2(Ω) � H2 +

(
h
ε

)2
,

‖u− uk
H‖L2(Ω) � H +

(
h
ε

)2
.

5. Numerical experiments. In this section we present numerical experiments
to confirm the derived error estimates and to compare the numerical accuracies of
Oversampling Strategies 1, 2, and 3. Here we use Oversampling Strategies 1 and 2 in
the PG formulation (due to the findings in [28]) and Oversampling Strategy 3 in the
symmetric formulation. We consider the following model problem.

Model problem. Let Ω :=]0, 1[2 and ε = 5 · 10−2. We define

u(x1, x2) := sin(2πx1)sin(2πx2) +
ε

2
cos(2πx1)sin(2πx2)sin

(
2π
x1

ε

)
,

which is the exact solution of the problem

−∇ · (A∇u) = f in Ω,

u = 0 on ∂Ω,

where A is given by

A(x1, x2) :=
1

8π2

(
2(2 + cos(2π x1

ε ))−1 0
0 1 + 1

2cos(2π x1

ε )

)

and f by

f(x) := −∇ · (A(x)∇u(x)) ≈ sin(2πx1)sin(2πx2).

In Table 5.1 we depict the results for h = 2−6 and various combinations of H with
different numbers of oversampling layers. For a better illustration we state the number
of fine grid layers and the number of coarse grid layers (k) that corresponds with
that. The results in Table 5.1 match nicely with the analytically predicted behavior.
In Table 5.2 we state a comparison between the L2- and H1-errors for the three
oversampling strategies obtained for identical values of H , h, and U . We observe that
our oversampling strategy, in contrast to the classical ones, does not suffer from a loss
in accuracy when H is close to the microscopic parameter ε. Moreover, the accuracy
obtained for Oversampling Strategy 3 is very promising in general.
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Table 5.1
Computations made for h = 2−6. k denotes the number of coarse layers. uh denotes the

fine scale reference given by (2.3), and u3,MsFEM

H denotes the MsFEM approximation obtained with

Oversampling Strategy 3. The table depicts various errors between uh and u3,MsFEM

H .

H Fine layers k ‖uh − u3,MsFEM

H ‖L2(Ω) ‖uh − u3,MsFEM

H ‖H1(Ω)

2−1 16 0.5 0.490063 4.49575

2−2 8 0.5 0.09491 1.66315

2−2 24 1.5 0.06376 1.08960

2−3 4 0.5 0.033691 1.017150

2−3 8 1 0.007125 0.406317

2−3 12 1.5 0.007115 0.331458

2−3 16 2 0.003241 0.165703

2−4 2 0.5 0.012808 0.655269

2−4 4 1 0.004164 0.348814

2−4 6 1.5 0.004029 0.329306

2−4 8 2 0.001451 0.162747

2−4 12 2.5 0.000850 0.114040

2−4 16 3 0.000696 0.096378

Table 5.2
Computations made for h = 2−6. k denotes the number of coarse layers. uh denotes the

fine scale reference given by (2.3), and ui,MsFEM

H denotes the MsFEM approximation obtained with

Oversampling Strategy 1. The error is denoted by ei := uh − ui,MsFEM

H . The second column depicts
the number of fine grid layers.

Oversampling Strategy 1 Oversampling Strategy 2 Oversampling Strategy 3

H k ‖e1‖L2 ‖e1‖H1 ‖e2‖L2 ‖e2‖H1 ‖e3‖L2 ‖e3‖H1

2−2 1 0.1399 1.9812 0.1399 1.9812 0.0638 1.0896

2−3 1 0.0594 1.6250 0.0594 1.6250 0.0071 0.4063

2−3 2 0.0593 1.6250 0.0593 1.6250 0.0032 0.1657

2−4 1 0.0166 0.8067 0.0172 0.8048 0.0042 0.3488

2−4 2 0.0160 0.8057 0.0168 0.7955 0.0015 0.1628

2−4 3 0.0153 0.8016 0.0152 0.7937 0.0007 0.0964

6. Conclusion. In this work, we proposed a new oversampling strategy for the
MsFEM, which generalizes the original method without oversampling. The new strat-
egy is based on an additional constraint for the solution spaces of the local problems.
The error analysis shows that oversampling layers of thickness H log(H−1) suffice to
preserve the common convergence rates with respect to H without any preasymp-
totic effects. Moreover, this choice prevents resonance errors even for general L∞

coefficients without any assumptions on the geometry of the microstructure or the
regularity of A. In this respect, the method is reliable. The method is also efficient in
the sense that structural knowledge about the coefficient, e.g., (local) periodicity or
scale separation, may be exploited to reduce the number of corrector problems con-
siderably. Whether the oversampling can be reduced to very small layers in the case
of, e.g., periodicity should be investigated numerically and/or analytically in future
works.
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[30] T. J. R. Hughes, G. R. Feijóo, L. Mazzei, and J.-B. Quincy, The variational multiscale
method—a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg.,
166 (1998), pp. 3–24.
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A LOCALIZED ORTHOGONAL DECOMPOSITION METHOD

FOR SEMI-LINEAR ELLIPTIC PROBLEMS ∗, ∗∗
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Abstract. In this paper we propose and analyze a localized orthogonal decomposition (LOD) method
for solving semi-linear elliptic problems with heterogeneous and highly variable coefficient functions.
This Galerkin-type method is based on a generalized finite element basis that spans a low dimensional
multiscale space. The basis is assembled by performing localized linear fine-scale computations on
small patches that have a diameter of order H | log(H)| where H is the coarse mesh size. Without any
assumptions on the type of the oscillations in the coefficients, we give a rigorous proof for a linear
convergence of the H1-error with respect to the coarse mesh size even for rough coefficients. To solve
the corresponding system of algebraic equations, we propose an algorithm that is based on a damped
Newton scheme in the multiscale space.
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1. Introduction

This paper is devoted to the numerical approximation of solutions of semi-linear elliptic problems with rapidly
oscillating and highly varying coefficient functions. We are concerned with second-order partial differential
equations of the type

−∇ · (A∇u) + F (u,∇u) = g

with prescribed (zero-) Dirichlet boundary condition for the unknown function u. Here, g is a given source term,
A is a given highly variable diffusion matrix and F is a given highly variable nonlinear term that represents
advective and reactive processes. In particular, we have a linear term of second order and nonlinear terms of
order 1 and 0. A typical application is the stationary (Kirchhoff transformed) Richards equation that describes
the groundwater flow in unsaturated soils (cf. [1,4,5]). The corresponding equation for the unknown generalized
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pressure u reads

∇ · (K∇u) − ∇ · (K kr(M(u))�e) = g,

where K is the hydraulic conductivity in the soil, kr the relative permeability depending on the saturation, M
is some nonlinearity arising from the Kirchhoff transformation and �e denotes the gravity vector. If we add an
infiltration process, the equation receives an additional nonlinear reaction term.

The numerical treatment of such equations is often complicated and expensive. Due to the high variability
of the coefficient functions, one requires extremely fine computational grids that are able to capture all the fine
scale oscillations. Using standard methods such as Finite Element or Finite Volume schemes, this results in
systems of equations of enormous size and therefore in a tremendous computational demand that can not be
handled in a lot of scenarios.

Multiscale methods aim to overcome this difficulty by decoupling the fine scale computations into local
parts. Prominent examples of multiscale methods are the Heterogeneous Multiscale Method (HMM) by E and
Engquist [13] and the Multiscale Finite Element Method (MsFEM) proposed by Hou and Wu [20]. Both methods
fit into a common framework and are strongly related to numerical homogenization (cf. [14,15,18]). HMM and
MsFEM are typically not constructed for a direct approximation of exact solutions but for homogenized solutions
and corresponding correctors instead. This implies that they are only able to approximate the exact solution
up to a modeling error that depends crucially on the homogenization setting (cf. [14]). In the absence of strong
assumptions like periodicity and scale separation, accurate approximations are therefore hard to achieve.

We are concerned with a multiscale method that is based on the concept of the Variational Multiscale
Method (VMM) proposed by Hughes et al. [21]. In comparison to HMM and MsFEM, the VMM aims to a
direct approximation of the exact solution without suffering from a modeling error remainder arising from
homogenization theory. The key idea of the Variational Multiscale Method is to construct a splitting of the
original solution space V into the direct sum of a low dimensional space for coarse grid approximations and
high dimensional space for fine scale reconstructions. In this work, we consider a modification and extension of
this idea that was developed in [27,30] and that was explicitly proposed in [31]. Here, the splitting is such that
we obtain an accurate but low dimensional space V ms (where we are looking for our fine scale approximation
instead of an approximation of a coarse part) and a high dimensional residual space V f . The construction of
V ms involves the computation of one fine scale problem in a small patch per degree of freedom. Mesh-adaptive
versions of the VMM with patch size control are discussed in [27–29,33]. The first rigorous proof of convergence
was recently obtained in [31] for linear diffusion problems under minimal regularity assumptions.

In this contribution, we present an efficient way of handling semi-linear elliptic multiscale problems in the
modified VMM framework, including a proof of convergence based on the techniques established in [31]. Even
though the original problem is nonlinear, the local fine scale problems are purely linear that can be solved in
parallel. The main result of this article is the optimal convergence of the H1-error between exact solution u
and its multiscale approximation ums

H . We show that, if the patch size is of order H | log(H)|, the following error
bound

‖u− ums
H ‖H1(Ω) ≤ CH

holds with a generic constant C independent of the mesh size of the computational grid and the oscillations of
A and F .

The paper is structured as follows. In Section 2 we introduce the setting of this paper, including the as-
sumptions on the considered semi-linear problem. In Section 3 we present and motivate our method and we
state the corresponding optimal convergence result. This result is then proved in Section 4. In Section 5, we
propose an algorithm for the solution of the arising nonlinear algebraic equations. This algorithm is based
on a damped Newton scheme in the multiscale space. Finally, Section 6 supports the theoretical results by a
numerical experiment.
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2. Setting

Let Ω ⊂ Rd be a bounded Lipschitz domain with polyhedral boundary, let V := H1
0 (Ω) and let A ∈

L∞(Ω,Rd×d
sym ) denote a matrix valued function with uniformly strictly positive eigenvalues. We assume that the

space H1
0 (Ω) is endowed with the H1-semi norm given by |v|H1(Ω) := ‖∇v‖L2(Ω) (which is equivalent to the

commonH1-norm inH1
0 (Ω)). By 〈·, ·〉 := (·, ·)L2(Ω) we denote the inner product in L2(Ω) and F : Ω×R×Rd → R

is a nonlinear measurable function.
Given some source term g ∈ L2(Ω) ⊂ H−1(Ω) we are concerned to find u ∈ H1

0 (Ω) (i.e. with a homogeneous
Dirichlet boundary condition) with

〈A∇u,∇v〉 + 〈F (·, u,∇u), v〉 = 〈g, v〉 (2.1)

for all test functions v ∈ H1
0 (Ω). To simplify the notation, we define the operator B : H1

0 (Ω) → H−1(Ω) by

〈B(v), w〉H−1 ,H1
0

:= 〈A∇v,∇w〉 + 〈F (·, v,∇v), w〉 for v, w ∈ H1
0 (Ω),

where 〈·, ·〉H−1,H1
0

denote the dual pairing in H1
0 (Ω).

Here, the diffusion diffusion matrix A may be strongly heterogeneous and highly variable. The non-linearity
F (·, ξ, ζ) may as well oscillate rapidly without any assumptions on the type of the oscillations. One application
can be the Richards equation, which we will discuss more in Section 6.

However, we assume implicitly that the lower-order term F does not dominate the equation. In this regime,
it is sufficient to construct a multiscale space independent of the non-linearity by solving local linear problems
on the fine scale. If the lower-order term is dominant, some constants in our error analysis will be large and
the proposed method needs modifications with respect to the construction of the multiscale basis. A typical
example where the lower-order term is dominant is the modeling of transport of solutes in groundwater where
one has to deal with extremely large Péclet numbers and a corresponding scaling of the advective terms. In
this case, the resolution of oscillations of F is necessary for accurate upscaled and homogenized approximation
(cf. [16, 17]).

For the subsequent analytical considerations and in order to guarantee a unique solution of (2.1), we make
the following assumptions.

Assumption 1.

(A1) A ∈ L∞ (Ω,Rd×d
sym

)
with

∞ > β := ‖A‖L∞(Ω) = ess sup
x∈Ω

sup
ζ∈Rd\{0}

A(x)ζ · ζ
|ζ|2 ·

and there exists α such that

0 < α := ess inf
x∈Ω

inf
ζ∈Rd\{0}

A(x)ζ · ζ
|ζ|2 ,

(A2) There exist L1, L2 ∈ R>0 such that uniformly for almost every x in Ω:

|F (x, ξ1, ζ) − F (x, ξ2, ζ)| ≤ L1|ξ1 − ξ2|, for all ζ ∈ Rd, ξ1, ξ2 ∈ R,
|F (x, ξ, ζ1) − F (x, ξ, ζ2)| ≤ L2|ζ1 − ζ2|, for all ζ1, ζ2 ∈ Rd, ξ ∈ R,

F (x, 0, 0) = 0.

(A3) B is strongly monotone, i.e. there exist c0 > 0 so that for all u, v ∈ H1
0 (Ω):

〈B(u) −B(v), u− v〉H−1,H1
0

≥ c0|u− v|2H1(Ω). (2.2)
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Under assumptions (A1)−(A3), the Browder−Minty theorem (cf. [36], Sect. 3, Thm. 1.5 therewithin) yields a
unique solution of problem (2.1).

Typically, the validity of Assumption (A3) can be checked by looking at the properties of the nonlinear
function F . For instance, if there exists a constant α0 ≥ 0, such that ∂ξF (x, ξ, ζ) ≥ α0 for all ζ and almost
every x (i.e. F (x, ·, ζ) is monotonically increasing) and if α0 and L2 are such that L2 ≤ 2α0 and L2 < 2α then
(A3) is fulfilled. This can be checked by a simple calculation:

〈B(u) −B(v), u − v〉H−1,H1
0

≥ α||∇u− ∇v||2L2(Ω) + α0||u− v||2L2(Ω) − L2(|u − v|, |∇u− ∇v|)L2(Ω)

≥
(
α− L2

2

)
||∇u − ∇v||2L2(Ω) +

(
α0 − L2

2

)
||u− v||2L2(Ω).

Remark 2.1. Let CΩ < diamΩ denote the optimal constant in the Friedrichs inequality for H1
0 (Ω) functions.

Observe that (A1)−(A3) imply that the solution u ∈ H1
0 (Ω) of (2.1) fulfills

‖F (u,∇u)‖L2(Ω) ≤ ‖F (u,∇u) − F (0,∇u)‖L2(Ω) + ‖F (0,∇u) − F (0, 0)‖L2(Ω)

≤ (L1CΩ + L2)|u|H1(Ω) ≤ CΩ
L1CΩ + L2

c0
‖g‖L2(Ω). (2.3)

Note that problem (2.1) also covers equations such as

−∇ · (κ(u)A∇u) + F (u,∇u) = g,

for a strictly positive and sufficiently regular function κ (independent of x). In this case, the equation can be
rewritten as

−∇ ·A∇u + F̃ (u,∇u) = g̃.

In the remainder of this paper, we use the notation q1 � q2 if q1 ≤ Cq2 where C > 0 is a constant that only
depends on the shape regularity of the mesh, but not on the mesh size. Dependencies such as (L1 +L2)α

−1 are
always explicitly stated whereas dependencies on the contrast β

α are allowed to be contained in the notation
� for the sake of simplicity.

3. Multiscale method

In this section we propose a local orthogonal decomposition (LOD) method that is based on the concept
introduced by Hughes et al. [21, 22] and the specific constructions proposed in [27, 30] for linear problems. The
required multiscale (MS) basis functions are obtained with the strategy established in [31].

The main idea of the Variational Multiscale Method is to start from a finite element space Vh with a highly
resolved computational grid and to construct a splitting of this space into the direct sum Vh = V l ⊕ V f of
a low dimensional space V l and a “detail space” V f containing all the missing oscillations. Then, a basis of
V l is assembled and we can compute a Galerkin approximation ul of u in V l. However, the success of this
approach strongly depends on the choice of V l. On the one hand, the costs for assembling a basis of V l must
be kept low. On the other hand, the basis functions somehow need to contain information about fine scale
features. For instance, a standard coarse finite element space is cheap to assemble but will fail to yield reliable
approximations. On the contrary, the space spanned by high resolution finite element approximations yields
perfect approximations, but is as costly as the original problem that we tried to avoid. Therefore, the key is
to find an optimal balance between costs and accuracy. In previous works (cf. [21, 27, 28]) the multiscale basis
(MS-basis) of V l was constructed involving the full multiscale operator B that corresponds with the left hand
side of the original problem. In a fully linear setting, this can be a reasonable choice. However, it gets extremely
expensive if B is a nonlinear operator, since it leads to numerous nonlinear equations to solve. Furthermore it
is not clear if the constructed set of basis functions leads to good approximations. One novelty of this work is
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that we do not involve the full operator B in the construction of the MS-basis, but only the linear diffusive part
〈A∇·,∇·〉. Even though the oscillations of F are not captured by the MS-basis, we can show that we are still
able to obtain accurate approximations and to preserve the optimal convergence rates.

3.1. Notation and discretization

Let TH denote a regular triangulation of Ω and let H : Ω → R>0 denote the TH -piecewise constant mesh size
function with H |T = HT := diam(T ) for all T ∈ TH . Additionally, let Th be a regular triangulation of Ω that is
supposed to be a refinement of TH . We assume that Th is sufficiently small so that all fine scale features of B are
captured by the mesh. The mesh size h denotes the maximum diameter of an element of Th. The corresponding
classical (conforming) finite element spaces of continuous piecewise polynomials of degree 1 are given by

VH :=
{
vH ∈ H1

0 (Ω) | ∀T ∈ TH : (vH)|T is affine
}
,

Vh :=
{
vh ∈ H1

0 (Ω) | ∀K ∈ Th : (vh)|K is affine
}
.

By J , we denote the dimension of VH and by NH = {zj| 1 ≤ j ≤ J} the set of interior vertices of TH . For every
vertex zj ∈ NH , let λj ∈ VH denote the associated nodal basis function (tent function), i.e. λj ∈ VH with the
property λj(zi) = δij for all 1 ≤ i, j ≤ J .

From now on, we denote by uh ∈ Vh the classical finite element approximation of u in the discrete (highly
resolved) space Vh, i.e. uh ∈ Vh solves

∫

Ω

A∇uh · ∇vh + F (·, uh,∇uh)vh =

∫

Ω

gvh (3.1)

for all vh ∈ Vh. We assume that Vh resolves the micro structure such that the error ‖u− uh‖H1(Ω) falls below a
given tolerance. For standard finite element methods the error typically scales like C ·hs for some s ≥ 1

2 . However,
for regular coefficients, C depends on the derivative of A with respect to the spatial variable. If A oscillates
rapidly, the derivatives become very large and h must be very small to compensate the dominance of C. This
is only fulfilled, when h resolves the micro structure (we refer to [34, 35] for some quantitative characterization
of this so-called resolution condition). We are therefore dealing with pre-asymptotic effects for the standard
methods. The multiscale method that we propose in the subsequent sections is designed to approximate uh

with an error proportional to the coarse mesh size H independent of fine scale oscillations of the data or the
regularity of the solution, i.e., we do not have such pre-asymptotic effects.

3.2. Quasi interpolation

The key tool in our construction is a linear (quasi-)interpolation operator IH : Vh → VH that is continuous
and surjective. The kernel of this operator is going to be our fine space (or remainder space) V f

h . In [31] a
weighted Clément interpolation operator was used. In this work, we do not specify the choice. Instead, we state
a set of assumptions that must be fulfilled in order to derive an optimal approximation result for the constructed
multiscale method.

Assumption 2. (Assumptions on the quasi-interpolation operator).

(A4) IH ∈ L(Vh, VH), i.e. IH is linear,
(A5) the restriction of IH to VH is an isomorphism with L2-stable inverse (IH |VH )−1, i.e.

‖(IH |VH )−1(vH)‖L2(Ω) ≤ CI−1
H

‖vH‖L2(Ω) for all vH ∈ VH and with a generic constant CI−1
H

only de-

pending on the shape regularity of TH and Th.
(A6) there exists a generic constant CIH , only depending on the shape regularity of TH and Th, such that for

all vh ∈ Vh and for all T ∈ TH there holds

H−1
T ‖vh − IH(vh)‖L2(T ) + ‖∇(vh − IH(vh))‖L2(T ) ≤ CIH ‖∇vh‖L2(ωT )
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with

ωT :=
⋃

{K ∈ TH |K ∩ T �= ∅}.

(A7) there exists a generic constant C′
IH

, only depending on the shape regularity of TH and Th, such that for
all vH ∈ VH there exists vh ∈ Vh with

IH(vh) = vH , |vh|H1(Ω) ≤ C′
IH

|vH |H1(Ω) and supp vh ⊂ supp vH .

Observe that (A6) limits the growth of the support of an vH ∈ VH when IH is applied to it, i.e. supp(IH(vH)) =⋃{K ∈ TH |K ∩ supp(vH) �= ∅}. We also note that the classical nodal interpolation operator does not fulfill
assumption (A6) for d > 1 because the constant CIH blows up for h → 0. Numerical experiments confirm that
such a choice leads in fact to instabilities in the later method. One possibility is to choose IH as a weighted
Clément interpolation operator. This construction was proposed in [31]. Given v ∈ H1

0 (Ω), IHv :=
∑J

j=1 vjλj

defines a (weighted) Clément interpolant with nodal values

vj :=
(∫

Ω vλj dx
) /(∫

Ω λj dx
)

(3.2)

for 1 ≤ j ≤ J (cf. [11]) and zero in the boundary nodes. Furthermore, there exists the desired generic constant
CIH (only depending on the mesh regularity parameter and in particular independent of HT ) such that for all
v ∈ H1

0 (Ω) and for all T ∈ TH there holds

H−1
T ‖v − IHv‖L2(T ) + ‖∇(v − IHv)‖L2(T ) ≤ CIH ‖∇v‖L2(ωT ).

We refer to [11] for a proof of this estimate. This gives us (A6). Assumption (A4) is obvious. The validity of (A5)
and (A7) was proved in [31].

Note that in certain applications, additional features (e.g., orthogonality properties) of the chosen interpola-
tion operator may be exploited for improved error estimates (see, e.g., [31] Rem. 3.2 and [10]).

3.3. Multiscale splitting and modified nodal basis

In this section, we construct a splitting of the high resolution finite element space Vh into a low dimension
multiscale space V ms and some high dimensional remainder space V f

h . From now on, we let IH : Vh → VH denote
an interpolation operator fulfilling the properties (A4)−(A7). Recall that VH ⊂ Vh. We start with defining V f

h

as the kernel of IH in Vh:
V f

h := {vh ∈ Vh | IHvh = 0}.
V f

h represents the features in Vh not captured by VH . Using assumption (A5) we get

Vh = VH ⊕ V f
h , where vh︸︷︷︸

∈Vh

= (IH |VH )−1(IH(vh))︸ ︷︷ ︸
∈VH

+ vh − (IH |VH )−1(IH(vh))︸ ︷︷ ︸
∈V f

h

. (3.3)

Here, the property (IH ◦ (IH |VH )−1))(vH) = vH for all vH ∈ VH implies the equation IH(vh −
(IH |VH )−1(IH(vh))) = IH(vh) − (IH ◦ (IH |VH )−1)(IH(vh)) = 0. We still need to modify the splitting of Vh,
because VH is an inappropriate space for a multiscale approximation. We therefore look for the orthogonal
complement of V f

h in Vh with respect to the inner product 〈A∇·,∇·〉L2(Ω). For this purpose, we define the
orthogonal projection P f : Vh → V f

h as follows. For a given vh ∈ Vh, P f(vh) ∈ V f
h solves

〈
A∇P f(vh),∇wf 〉 = 〈A∇vh,∇wf

〉
for all wf ∈ V f

h .

Defining the multiscale space V ms
H,h by V ms

H,h := (1−P f)(VH), this directly leads to the orthogonal decomposition

Vh = V ms
H,h ⊕ V f

h , (3.4)
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because

Vh = kern(P f) ⊕ V f
h = (1−P f)(Vh) ⊕ V f

h

(3.3)
= (1−P f)(VH) ⊕ V f

h = V ms
H,h ⊕ V f

h .

Hence, any function vh ∈ Vh can be decomposed into vh = vms
H + vf with vms

H = (IH |VH )−1(IH(vh)) −
P f((IH |VH )−1(IH(vh))) and vf = vh − (IH |VH )−1(IH(vh)) + P f((IH |VH )−1(IH(vh))). Furthermore it holds
〈A∇vms

H ,∇wf 〉 = 0 for all wf ∈ V f
h . The space V ms

H,h is a multiscale space of the same dimension as the coarse
space VH . However, note that it is only constructed on the basis of the oscillations of A. The oscillations of F
are not taken into account. We will show that V ms

H,h still yields the desired approximation properties.
We now introduce a basis of V ms

H,h. The image of the nodal basis function λj ∈ VH under the fine scale

projection P f is denoted by φh
j = P f(λj) ∈ V f

h , i.e., φh
j satisfies the corrector problem

〈A∇φh
j ,∇w〉 = 〈A∇λj ,∇w〉 for all w ∈ V f

h . (3.5)

A basis of V ms
H,h is then given by the modified nodal basis

{
λms

j := λj − φh
j | 1 ≤ j ≤ J

}
. (3.6)

As we can see, solving (3.5) involves a fine scale computation on the whole domain Ω. However, since the right
hand side has small support, we are able to localize the computations. As we will see in the next section, the
correctors show an exponential decay outside of the support of the coarse shape function λj .

First, we define a multiscale approximation that is based on the above orthogonal decomposition of Vh, but
without localization.

Definition 3.1 (Multiscale approximation without localization). The Galerkin approximation ums
H,h ∈ V ms

H,h of
the exact solution u of problem (2.1) is defined as the solution of

〈A∇ums
H,h,∇v〉 + 〈F

(
ums

H,h,∇ums
H,h

)
, v〉 = 〈g, v〉 for all v ∈ V ms

H,h. (3.7)

3.4. Localization

So far, in order to construct a suitable multiscale space, we derived a set of linear fine scale problems (3.5)
that can be solved in parallel. Still, as already mentioned in the previous section, these corrector problems are
fine scale equations formulated on the whole domain Ω which makes them almost as expensive as the original
problem. However, in [31] it was shown that the correction φh

j decays exponentially outside of the support of
the coarse basis function λj . We specify this feature as follows. Let k ∈ N>0. We define nodal patches ωj,k of k
coarse grid layers centered around the node zj ∈ NH by

ωj,1 := suppλj = ∪
{
T ∈ TH | zj ∈ T

}
,

ωj,k := ∪
{
T ∈ TH | T ∩ ωj,k−1 �= ∅

}
for k ≥ 2.

(3.8)

These are the truncated computational domains for the corrector problems (3.5). The fast decay is summarized
by the following lemma.

Lemma 3.2 (Decay of the local correctors [31]). Let assumptions (A1) and (A4)−(A7) be fulfilled. Then, for
all nodes zj ∈ NH and for all k ∈ N>0, the correctors φh

j satisfy the estimates

‖A1/2∇φh
j ‖L2(Ω\ωj,k) � e−rk‖A1/2∇φh

j ‖L2(Ω)

with a generic rate r that is proportional to (α/β)1/2 but independent of variations of A. Recall the definition
of ’�’ at the end of Section 2.
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This fast decay motivates an approximation of φh
j on the truncated nodal patches ωj,k. We therefore define

localized fine scale spaces by intersecting V f
h with those functions that vanish outside the patch ωj,k, i.e.

V f
h(ωj,k) :=

{
v ∈ V f

h | v|Ω\ωj,k
= 0
}

for a given node zj ∈ NH . The solutions φh
j,k ∈ V f

h (ωj,k) of

〈A∇φh
j,k,∇w〉 = 〈A∇λj ,∇w〉 for all w ∈ V f

h (ωj,k), (3.9)

are approximations of φh
j from (3.5) with local support and therefore cheap to solve. We define localized multi-

scale finite element spaces by

V ms,k
H,h = span

{
λms

j,k := λj − φh
j,k | 1 ≤ j ≤ J

}
⊂ Vh. (3.10)

We can now define a LOD approximation by localizing the corrector problems for the basis functions.

Definition 3.3 (LOD approximation). The Galerkin approximation ums,k
H,h ∈ V ms,k

H,h of the exact solution u of
problem (2.1) is defined as the solution of

〈
A∇ums,k

H,h ,∇v
〉

+
〈
F
(
ums,k

H,h ,∇u
ms,k
H,h

)
, v
〉

= 〈g, v〉 for all v ∈ V ms,k
H,h . (3.11)

Note, that changing the data functions F and g does not change the multiscale basis {λms
j,k | 1 ≤ j ≤ J}. Once

V ms,k
H,h is computed, it can be reused for various combinations of F and g. This makes the new problems cheap

to solve.

Remark 3.4. Observe that we never need to solve a problem on the scale of the oscillations of F (·, ξ, ζ) in
the case that they are faster than the oscillations of A(·). However, we implicitly assume that the arising
integrals can be computed exactly (or with high accuracy). Practically this implies that a sufficiently high
quadrature rule must be used. So even if the fine grid is not fine enough to resolve the variations of F , at
least the quadrature rule must be fine enough to capture the correct averaged values. From Theorem 3.5 below
we deduce that the influence of the oscillations of F (·, ξ, ζ) remains small, as long as we have an accurate
approximation of the averages on each coarse grid element. A similar observation holds for standard finite
elements, where classical convergence rates can be expected as soon as the oscillations of A are resolved by the
fine grid (independent of the oscillations of F ).

3.5. A priori error estimate

We are now prepared to state the main result of this article, namely the optimal convergence of the method
for the case that the local patches ωj,k have a diameter of order H | log(H)|.

Theorem 3.5. Let u ∈ H1
0 (Ω) denote the exact solution given by problem (2.1), let uh ∈ Vh denote the

corresponding finite element approximation in the Lagrange space with a highly resolved computational grid (i.e.
the solution of (3.1)) and let ums,k

H,h ∈ V ms,k
H,h be the solution of our proposed multiscale method with localization

(i.e. the solution of (3.11)). If assumptions (A1)−(A7) are satisfied and if k � | log(‖H‖L∞(Ω))|, then the
a priori error estimate

∥∥∥u− ums,k
H,h

∥∥∥
H1(Ω)

≤ C (L1, L2, α, β, c0)
(
‖H‖L∞(Ω) + ‖u− uh‖H1(Ω)

)
.

holds with a generic constant C that does not depend on mesh sizes and oscillations of A and F . A suitable
choice of the localization parameter k depends on the square root of the contrast, i.e. the multiplicative constant

hidden in k ≈ | log(‖H‖L∞(Ω))| is proportional to
√

β
α .
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A proof of Theorem 3.5 is presented in the subsequent section. In particular, the result is a conclusion from
Theorem 4.3 which is stated in Section 4 below. In Theorem 4.3 we also give details on the generic constant C.
We will see that it essentially depends on (L1+L2)

α . Recall that L1 and L2 denote the Lipschitz constants of F
(cf. (A2)) and that α is the smallest eigenvalue of A. This shows the significance of assuming that the problem
is not dominated by the lower order term. For instance, consider the scenario of a pollutant being transported
by groundwater flow. In this case, A describes the hydraulic conductivity which changes its properties on a
scale of size ε. On the other hand, F describes the gravity driven flow that is scaled with the so called Péclet
number. However, in the described scenario the Péclet number is of order ε−1 (cf. Bourlioux and Majda [7])
implying that O(L1) = ε−1. So the generic constant C is of order ε−1. This means that we need H < ε, i.e.
we still need to resolve the micro structure with the coarse grid TH producing the same costs as the original
problem. If H � ε the estimate stated in Theorem 3.5 is of no value, because the right hand side remains large.

4. Error analysis

This section is devoted to the proof of Theorem 3.5. In particular, we state a detailed version of the result
(see Thm. 4.3 below), where we specify the occurring constants. The proof is splitted into several lemmata. We
start with an a priori error estimate for the multiscale approximation without localization.

Lemma 4.1. Let uh ∈ Vh denote the highly resolved finite element approximation defined via equation (3.1)
and let ums

H,h ∈ V ms
H,h denote the LOD approximation given by equation (3.7). Under assumptions (A1)−(A7),

the a priori error estimate

|uh − ums
H |H1(Ω) � C̃0

(
‖Hg‖L2(Ω) +‖H‖L∞(Ω)CΩ

L1CΩ + L2

c0
‖g‖L2(Ω)

)

holds with

C̃0 :=

(
β + ‖H‖L∞(Ω)(L1CΩ+L2)

c0 · α

)
·

Proof. Due to (3.4), we know that there exist ũms
H,h ∈ V ms

H,h and ũf
h ∈ V f

h , such that

uh = ũms
H,h + ũf

h.

We use the Galerkin orthogonality obtained from the equations (3.1) and (3.7) to conclude for all v ∈ V ms
H,h,

〈A∇(uh − ums
H,h),∇v〉 + 〈F (uh,∇uh), v〉 − 〈F

(
ums

H,h,∇ums
H,h

)
, v〉 = 0. (4.1)

In particular v = ums
H,h − ũms

H,h ∈ V ms
H,h is an admissible test function in (4.1). Together with IH(ũf

h) = 0, this
yields

c0|uh − ums
H,h|2H1(Ω)

(2.2)

≤ 〈A∇(uh − ums
H,h),∇(uh − ums

H,h)〉
+〈F (uh,∇uh) − F (ums

H,h,∇ums
H,h), uh − ums

H,h〉
(4.1)
= 〈A∇(uh − ums

H,h),∇(uh − ũms
H,h)〉

+〈F (uh,∇uh) − F (ums
H,h,∇ums

H,h), uh − ũms
H,h〉

= 〈A∇(uh − ums
H,h),∇ũf

h〉 +
〈
F (uh,∇uh) − F

(
ums

H,h,∇uh

)
, ũf

h − IH(ũf
h)
〉

+
〈
F
(
ums

H,h,∇uh

)
− F

(
ums

H,h,∇ums
H,h

)
, ũf

h − IH(ũf
h)
〉

� β|uh − ums
H,h|H1(Ω)|ũf

h|H1(Ω)

+‖H‖L∞(Ω)(L1‖uh − ums
H,h‖L2(Ω) + L2|uh − ums

H,h|H1(Ω))|ũf
h|H1(Ω)

� (β + ‖H‖L∞(Ω)(L1CΩ + L2)) · |uh − ums
H,h|H1(Ω) · |ũf

h|H1(Ω).
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With 〈A∇ũms
H,h,∇ũf

h〉 = 0 and with IH(vf) = 0 for all vf ∈ V f we get

α|ũf
h|2H1(Ω) ≤ 〈A∇ũf

h,∇ũf
h〉

=
〈
A∇uh,∇ũf

h

〉
=
〈
g, ũf

h

〉
−
〈
F (uh,∇uh), ũf

h

〉

=
〈
g, ũf

h − IH(ũf
h)
〉

−
〈
F (uh,∇uh), ũf

h − IH

(
ũf

h

)〉

(2.3)

�
(

‖Hg‖L2(Ω) + ‖H‖L∞(Ω)CΩ
L1CΩ + L2

c0
‖g‖L2(Ω)

)
· |ũf

h|H1(Ω).

The theorem follows by combing the results. �

The subsequent lemma is a consequence of the previous one.

Lemma 4.2. Let uh ∈ Vh denote the fine scale approximation obtained from equation (3.1) and let ums,k
H,h ∈

V ms,k
H,h denote the solution of problem (3.11) (fully discrete LOD approximation). If the assumptions (A1)−(A7)

hold true we obtain the estimate

|uh − ums,k
H,h |H1(Ω) � C̃2‖g‖L2(Ω)‖H‖L∞(Ω) + C̃3 min

vms,k
H,h ∈V ms,k

H,h

∥∥∥A 1
2 ∇
(
ums

H,h − vms,k
H,h

)∥∥∥
L2(Ω)

,

where

C̃1 := (β + (L1CΩ + L2)CΩ) ·
(
β + ‖H‖L∞(Ω)(L1CΩ+L2)

c20 · α

)
,

C̃2 := C̃1 + C̃1 · CΩ
L1CΩ + L2

c0
,

C̃3 :=
β

1
2 + α− 1

2 (L1CΩ + L2)CΩ

c0
·

Proof. Let vms,k
H,h ∈ V ms,k

H,h denote an arbitrary element. Using the Galerkin orthogonality obtained from (3.1)
and (3.11), we start in the same way as in the proof of Lemma 4.1 to get

c0|uh − ums,k
H,h |2H1(Ω)

(2.2)

≤ 〈A∇(uh − ums,k
H,h ),∇(uh − ums,k

H,h )〉
+〈F (uh,∇uh) − F (ums,k

H,h ,∇u
ms,k
H,h ), uh − ums,k

H,h 〉
(4.1)
= 〈A∇(uh − ums,k

H,h ),∇(uh − ums
H,h) + ∇(ums

H,h − vms,k
H,h )〉

+〈F (uh,∇uh) − F (ums,k
H,h ,∇u

ms,k
H,h ), (uh − ums

H,h) + (ums
H,h − vms,k

H,h )〉
≤ (β + (L1CΩ + L2)CΩ)|uh − ums,k

H,h |H1(Ω) |uh − ums
H,h|H1(Ω)

+(β
1
2 + α− 1

2 (L1CΩ + L2)CΩ)|uh − ums,k
H,h |H1(Ω) ‖A 1

2 ∇(ums
H,h − vms,k

H,h )‖L2(Ω).

Dividing by |uh − ums,k
H,h |H1(Ω) and estimating |uh − ums

H,h|H1(Ω) with Lemma 4.1 yields the result. �

The combination of Lemmas 3.2 and 4.2 yields the main result of this paper.

Theorem 4.3. Let uh ∈ Vh be solution of (3.1) and let ums,k
H,h ∈ V ms,k

H,h be the solution of (3.11). If the assump-
tions (A1)−(A7) hold true and if the number of layers k fulfills k � | log(‖H‖L∞(Ω))|, then it holds

∣∣∣uh − ums,k
H,h

∣∣∣
H1(Ω)

� C̃‖H‖L∞(Ω)‖g‖L2(Ω),
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where

C̃ := C̃2 + CΩ
β

c0
C̃3

and with C̃2 and C̃3 as in Lemma 4.2.

Proof. We define wms,k
H,h ∈ V ms

H,k by

wms,k
H,h :=

J∑

j=1

ums
H,h(zj)λ

ms
j,k =

J∑

j=1

ums
H,h(zj)

(
λj − φh

j,k

)

where ums
H,h(zj), j = 1, 2, . . . , J , are the coefficients in the basis representation of ums

H,h from Definition 3.1. Hence,

min
vms,k

H,h ∈V ms,k
H,h

∥∥∥A 1
2 ∇
(
ums

H,h − vms,k
H,h

)∥∥∥
2

L2(Ω)

≤
∥∥∥A 1

2 ∇
(
ums

H,h − wms,k
H,h

)∥∥∥
2

L2(Ω)

�
J∑

j=1

kdums
H,h(zj)

2‖A1/2∇
(
φh

j − φh
j,k

)
‖2

L2(Ω).

(4.2)

For details on the last step, we refer to Lemma 4.9 in [31]. Due to the Galerkin orthogonality for the corrector
problems it is possible to show

‖A1/2∇(φh
j − φh

j,k)‖2
L2(Ω) � ‖A1/2∇φh

j ‖2
L2(Ω\ωj,k−1)

, (4.3)

where the idea behind the proof of (4.3) is to use the best approximation property of φh
j,k in V f

h(ωj,k) to replace

it by an arbitrary other function from V f
h(ωj,k). The best choice would be �ωj,k

φh
j , where �ωj,k

is the indicator

function of ωj,k (this choice would directly give the result). However, �ωj,k
φh

j is not in V f
h (ωj,k), which is why

additional interpolation and projection operators are required. The rather technical details for the proof of (4.3)
are therefore given in the first part of the proof of Lemma 4.8 in [31].

The application of Lemma 3.2, (3.5), (4.3) and some inverse inequality yield

‖A1/2∇(φh
j − φh

j,k)‖2
L2(Ω) � e−2rk‖A1/2∇φh

j ‖2
L2(Ω)

≤ e−2rk‖A1/2∇λj‖2
L2(Ω)

≤ βe−2rk‖H‖−2
∞ ‖λj‖2

L2(Ω),

with a generic rate r that is proportional to (β/α)1/2. By choosing k = m · | log(‖H‖L∞(Ω))| with m ∈ N, we can
achieve an arbitrary fast polynomial convergence of this term in H (this will also cancel the kd term). However,
we bound this by a linear convergence since this is fastest rate that we can obtain for the whole error. Finally,
the combination of this estimate and (4.2) plus

J∑

j=1

ums
H,h(zj)

2‖λj‖2
L2(Ω)�

∥∥∥∥∥∥

J∑

j=1

ums
H,h(zj)λj

∥∥∥∥∥∥

2

L2(Ω)

=

∥∥∥∥∥∥

J∑

j=1

ums
H,h(zj)((IH |VH )−1 ◦ IH)(λj − φh

j )

∥∥∥∥∥∥

2

L2(Ω)

= ‖(IH |VH )−1 ◦ IH)ums
H,h‖2

L2(Ω)

(A5)+(A6)

� ‖∇ums
H,h‖2

L2(Ω) ≤ C2
Ωc

−2
0 ‖g‖2

L2(Ω)

yields the assertion. �
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5. The multiscale newton scheme

In this section we discuss a solution algorithm for handling the nonlinear multiscale problem (3.11). For this
purpose, we consider a damped Newton’s method in the multiscale space V ms,k

H,h . Recall that we are looking for

u ∈ H1
0 (Ω) with

〈B(u), v〉H−1,H1
0

= 〈g, v〉 for all v ∈ H1
0 (Ω),

where we introduced the notation

〈B(v), w〉H−1 ,H1
0

:= 〈A∇v,∇w〉 + 〈F (·, v,∇v), w〉.

Here, B : H1
0 (Ω) → H−1(Ω) is a hemicontinuous and strongly monotone operator due to assumption (A3).

As already mentioned, under these assumptions, the Browder−Minty theorem yields a unique solution of the
above problem. However, we will need an additional assumption on F to guarantee that the Newton scheme
converges.

Assumption 3. Let DF (x, ·, ·) denote the Jacobian matrix of F (x, ·, ·).
(A8) We assume that there exists some constant LD ≥ 0 so that for almost every x in Ω and for all (ξ1, ζ1) ∈

R × Rd and (ξ2, ζ2) ∈ R × Rd

|DF (x, ξ1, ζ1) −DF (x, ξ2, ζ2)| ≤ LD|(ξ1, ζ1) − (ξ2, ζ2)|,

i.e. F (x, ·, ·) ∈ W 2,∞(R × Rd).

For clarity of the presentation we will leave out several indices within this section. In particular, we make use
of the following notation.

Definition 5.1. For simplicity, we define

V ms := V ms,k
H,h with basis λms

j := λms
j,k = λj − φh

j,k for 1 ≤ j ≤ J.

Furthermore, we denote ums := ums,k
H,h . Additionally, let

∂1F (x, ξ, ζ) := ∂ξF (x, ξ, ζ) and ∂2F (x, ξ, ζ) := ∂ζF (x, ξ, ζ).

We now describe the Newton strategy in detail. The fully discrete multiscale problem is to

find ums ∈ V ms : 〈A∇ums,∇λms
j 〉 + 〈F (·, ums,∇ums), λms

j 〉 − 〈g, λms
j 〉 = 0

for all 1 ≤ j ≤ J . Again, using Browder−Minty, ums exists and is unique. Accordingly, we get the following well
posed algebraic version of the problem:

find ᾱ ∈ RJ : G(ᾱ) = 0

and where G : RJ → RJ is given by

(G(α))l :=
J∑

j=1

αj〈A∇λms
j ,∇λms

l 〉 + 〈F

⎛
⎝·,

J∑

j=1

αjλ
ms
j ,

J∑

j=1

αj∇λms
j

⎞
⎠ , λms

l 〉 − 〈g, λms
l 〉. (5.1)

We have the relation ums =
∑J

j=1 ᾱjλ
ms
j . Before we can apply the Newton method to (5.1), we need to ensure

that the iterations of the scheme are well defined.
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Lemma 5.2. Let (X, ‖ · ‖X) denote a Hilbert space with dual space X ′. Let furthermore B : X → X ′ be a
hemicontinuous, Fréchet differentiable and strongly monotone operator on X, i.e. there exists c0 > 0 so that

〈B(v) −B(w), v − w〉X ≥ c0‖v − w‖2
X for all v, w ∈ X and

s �→ 〈B(u+ sv), w〉X

is a continuous function on [0, 1] for all u, v, w ∈ X. Let XN denote a finite dimensional subspace with basis

{ψ1, . . . , ψN} and let b : RN → VN define the linear bijection with b(α) :=
∑N

i=1 αiψi. If G(α) := b−1(B(b(α))),
then the Jacobi matrix DG(α) ∈ Rn×n has only positive eigenvalues.

Proof. Let B′ denote the Fréchet derivative of B, given by

B′(u)(v) = lim
s→0

B(u+ sv) −B(u)

s
for u, v ∈ X.

This and the strong monotonicity yield

〈B′(u)(v), v〉H−1,H1
0

= lim
s→0

(B(u+ sv) −B(u))(v)

s

= lim
s→0

1

s2
(B(u+ sv) −B(u))(u + sv − u) (5.2)

≥ lim
s→0

1

s2
c0‖sv‖2 = c0‖v‖2.

Next, observe that b induces an inner product on RN by (α1, α2)b := 〈b(α1), b(α2)〉X . Let α := b−1(u) then we
get

B′(u)(ψi) = lim
s→0

B(u + sψi) −B(u)

s

= lim
s→0

(b ◦ b−1)
(
B
(∑N

j=1 (αj + sδij)ψj

)
− (b ◦ b−1

)(
B
(∑N

j=1 αjψj

))

s

= b

(
lim
s→0

G(α+ sei) −G(α)

s

)

= b(DαG(α)ei).

Using this, we get for arbitrary ξ ∈ RN and vξ := b(ξ),

(DαG(α)ξ, ξ)b =

N∑

i,j

ξiξj(DαG(α)ei, ej)b

=

N∑

i,j

ξiξj(b(DαG(α)ei), b(ej))X

=

N∑

i,j

ξiξj(B
′(u)(ψi), ψj)X

= (B′(u)(vξ), vξ)X

(5.2)

≥ c0‖vξ‖2
X = c0‖ξ‖2

b.

Since all norms in RN are equivalent we have the desired result. �

A.3 101



1344 P.K HENNING ET AL.

Now, we can apply the Newton method for solving the nonlinear algebraic equation G(ᾱ) = 0. If DαG denotes
the Jacobian matrix of G, we get the following iteration scheme:

α(n+1) := α(n) + �α(n),

where �α(n) solves

DαG
(
α(n)

)
�α(n) = −G

(
α(n)

)
. (5.3)

Here, DαG is given by

Dαi (G(α))l := 〈A∇λms
i ,∇λms

l 〉 +

〈
∂1F

⎛
⎝·,

J∑

j=1

αjλ
ms
j ,

J∑

j=1

αj∇λms
j

⎞
⎠λms

i , λms
l

〉

+

〈
∂2F

⎛
⎝·,

J∑

j=1

αjλ
ms
j ,

J∑

j=1

αj∇λms
j

⎞
⎠ · ∇λms

i , λms
l

〉
.

Lemma 5.2 ensures that equation (5.3) has a unique solution �α(n), i.e. that the Newton iteration is well posed.
Since G ∈ C1(RN ) has a nonsingular Jacobian matrix DαG (due to Lem. 5.2) and since we have Lipschitz-
continuity of DαG (due to Assumption 3), we have that the Newton scheme converges quadratically as long as
the starting value is close enough to the exact solution (cf. [12]). However, this means that we can only guarantee
local convergence of the method. In order to ensure global convergence, we can use a simple damping strategy
due to Armijo [2]. Here we are looking for a damping parameter ζ ∈ (0, 1] so that α(n+1) := α(n) + ζ�α(n) with
the property |G(α(n+1))| < (1 − ζ

2 )|G(α(n))|. In our case, the convergence of the damped Newton scheme can
be guaranteed by the following lemma which is based on the results by Kelley [26].

Lemma 5.3. Let assumptions (A1)−(A3) and (A8) be fulfilled, then the damped Newton scheme converges, i.e.
there exists a nonempty (damping) interval [ζ0, ζ1] ⊂ (0, 1), so that

∣∣∣G
(
α(n+1)

)∣∣∣ <
(

1 − ζ

2

) ∣∣∣G
(
α(n)

)∣∣∣ for all ζ ∈ [ζ0, ζ1].

Here, ζ0 > 0 is independent of α(n) and �α(n), which prevents ζ1 → 0.

Proof. The existence of a damping parameter so that |G(α(n+1))| < |G(α(n))| is an easy observation if we look
at the function h(ζ) := |G(α(n) + ζ�α(n))|2 which fulfills h(0) > 0 and h′(0) = −2G(α(n)) ·G(α(n)) < 0. The
existence of a uniform lower bound ζ0 > 0 was proved by Kelley ([26], Lem. 8.2.1 and Thm. 8.2.1 therewithin).
The results by Kelley require Lipschitz continuity of DαG (guaranteed by Assump. (A8)) and uniform bounded-
ness of |(DαG(α))−1|. The latter one is fulfilled since the proof of Lemma 5.2 shows that the smallest eigenvalue
of (DαG(α)) is equal or larger than c0. This implies that the largest eigenvalue of (DαG(α))−1 is bounded
by c−1

0 , hence |(DαG(α))−1| is uniformly bounded. �

In summary, Lemma 5.3 guarantees globally linear convergence of the method (using damping) and locally
(i.e. in an environment of the solution) even quadratic convergence using the classical Newton scheme without
damping. With these considerations, we can state the full algorithm below. Recall that NH denotes the set of
interior vertices of TH and for zj ∈ NH , λj ∈ VH denotes the corresponding nodal basis function.

Note that in the presented algorithm, each iteration starts with the damping parameter ζn = 1 and we do
not use damping parameters from previous iterations. The advantage is that we automatically get quadratic
convergence of the Newton scheme as soon as we leave the region where damping is required. Therefore, damping
is only used when really necessary.
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Algorithm: dampedNewtonLOD(abstol, reltol, α(0), k)

In parallel foreach zj ∈ NH do
compute φh

j,k ∈ V f
h(ωj,k) with

〈A∇φh
j,k,∇w〉 = 〈A∇λj ,∇w〉 for all w ∈ V f

h(ωj,k).

end

Set V ms,k
H,h := span{λj − φh

j,k | 1 ≤ j ≤ J}. Set λms
j,k = λj − φh

j,k.

Set α(n) := α(0). Set u
ms,k,(n)
H,h :=

∑J
j=1 α

(n)
j λms

j,k. Set

(G(α))i :=
J∑

j=1

αj〈A∇λms
j,k,∇λms

i,k〉+ 〈F (·,
J∑

j=1

αjλ
ms
j,k,

J∑

j=1

αj∇λms
j,k)− g, λms

i,k〉.

Set tol := |G(α(0))|2 · reltol+ abstol.

while |G(α(n))|2 > tol do

Set u
ms,k,(n)
H,h :=

∑J
j=1 α

(n)
j λms

j,k.

Define the entries of the stiffness matrix M (n) by

M
(n)
il := 〈A∇λms

l,k,∇λms
i,k〉+ 〈∂1F (·, ums,k,(n)

H,h ,∇u
ms,k,(n)
H,h )λms

l,k, λ
ms
i,k〉

+〈∂2F (·, ums,k,(n)
H,h ,∇u

ms,k,(n)
H,h ) · ∇λms

l,k, λ
ms
i,k〉.

Define the entries of the right hand side by

F
(n)
i := 〈g, λms

i,k〉 − 〈A∇u
ms,k,(n)
H,h ,∇λms

i,k〉 − 〈F (·, ums,k,(n)
H,h ,∇u

ms,k,(n)
H,h ), λms

i,k〉.

Find (�α)(n+1) ∈ RJ , with

M (n)(�α)(n+1) = F (n).

Set ζn := 1. Set α(n+1) := α(n) + ζn�α(n).
while |G(α(n+1))| ≥ (1− ζn

2
)|G(α(n))| do

Set ζn := 1
2
ζn. Set α

(n+1) := α(n) + ζn�α(n).
end

Set α(n) := α(n+1). Set tol := |G(α(n))|2 · reltol + abstol.
end

Set u
ms,k,(n)
H,h :=

∑J
j=1 α

(n)
j λms

j,k.

Proposition 5.4. We use the notation stated in Definition 5.1. Let u ∈ H1
0 (Ω) denote the solution of (2.1),

let uh ∈ Vh denote the solution of (3.1) and let ums ∈ V ms denote the solution of (3.11). Furthermore, we let

ums,(n) := u
ms,k,(n)
H,h define the n’th iterate from the damped Newton LOD Method stated in the algorithm. Under

assumptions (A1)−(A8), the Newton step (5.3) is well posed, yields an unique solution and ums,(n) converges at
least linearly to ums. If furthermore k � | log(‖H‖L∞(Ω))|, the a priori error estimate

‖u− ums‖H1(Ω) ≤ C
(
‖H‖L∞(Ω) + ‖u− uh‖H1(Ω)

)

holds with a generic constant C =O(1) (see Thms. 3.5 and 4.3 for details) and
∥∥∥ums − ums,(n)

∥∥∥
H1(Ω)

≤ Ln(H)
∥∥∥ums − ums,(n−1)

∥∥∥
H1(Ω)

.

Here, we have Ln(H) < 1.
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If ums,(n−1) is sufficiently close to ums, we even get quadratic convergence of the Newton scheme, i.e.,

∥∥∥ums − ums,(n)
∥∥∥

H1(Ω)
≤ Ln(H)

∥∥∥ums − ums,(n−1)
∥∥∥

2

H1(Ω)
.

with

Ln(H) ≤ ‖(DαG)−1‖L∞(RN )

L
,

where L denotes the Lipschitz-constant of DαG. As indicated, Ln(H) typically depends on the mesh size. How-
ever, in some cases of semi-linear problems, it is possible to bound Ln(H) independent of the triangulation
(cf. [25]). In particular, if F (x, u,∇u) = F (x, u) (i.e. no dependency on ∇u) we get that Ln(H) = Ln indepen-
dent of the underlying mesh. The proof can be obtained analogously to the proof of Proposition 4.1 in [25]. The
proof fails for general F (x, u,∇u).

Remark 5.5. Note that the proposed method only requires the computation of the multiscale basis {λms
j | 1 ≤

j ≤ J} once at the beginning. For each iteration step of the damped Newton scheme, (5.3) is a low dimensional
linear problem that can reuse the initially computed multiscale basis. If the multiscale basis was computed using
the nonlinear term F , local corrector problems would have to be solved for each Newton step newly, making
the whole procedure significantly more expensive. We also note that assemblation of the tangent matrix M (n)

and the residual F (n) still requires a quadrature rule that captures the fine scale features. Depending on the
type of the nonlinearity this might have to be done newly for each iteration step, making the quadrature rule
a significant part of each Newton step.

6. Numerical experiment

As mentioned in the introduction, Richards-type equations can be an application of our LOD-Newton frame-
work. In general, the stationary Richards equation cannot necessarily be described by a monotone operator,
however depending on the chosen model and the considered hydrological effects (including hysteresis, root up-
take, friction, reaction fronts, etc.) monotone operators can arise in certain applications. One explicit example
is the (regularized) time-discretized Kirchhoff transformed Richards equation regarded in [6]. For the case that
there is no Signorini boundary condition prescribed, the problem that has to be solved for each time step cor-
responds to a nonlinear elliptic monotone problem (on the full space) that also fulfills the required assumption
of Lipschitz-continuity.

Let us now consider the stationary Kirchhoff-transformed Richards equation

∇ · (K∇u) − ∇ · (K kr(M(u))�g) = f, (6.1)

where u denotes the generalized pressure, K the hydraulic conductivity and kr the relative permeability de-
pending on the saturation. kr is a monotone increasing function with values between 0 and 1 (typically bounded
away from 0 to avoid degeneracy). If we have already full saturation, water cannot be conducted anymore, if
the soil is completely dry (saturation is zero), water can be perfectly conducted. Formulas for kr were e.g.
provided by Burdine [9] and Mualem [32]. In applications the variations of the hydraulic conductivity K are
assumed to be constant (or at least slow) in gravity direction �g = (0, 0, �gz), where �gz denotes the gravity factor
of 9.81m/s2. Soil probes are often only taken once in vertical direction, but a lot of samples are required to de-
scribe the variations of conductivity in horizontal direction. As a reduction of complexity one can often assume
that ∇ · (K�g) = ∂z(Kzz�gz) = 0 to consider the reduced equation

∇ · (K∇u) − (kr ◦M)′(u) (K�g) · ∇u = f. (6.2)

Here we haveM(u) := θ◦κ−1, where θ denotes the saturation (depending on the pressure) and κ−1 the inverse of
the Kirchhoff transformation κ(p) :=

∫ p

0 kr(θ(q)) dq. The saturation θ can be obtained by the capillary pressure
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Table 1. Results for fine grid with ε > h = 2−6 ≈ 0.016 > ε
3
2 which resolves the oscillations

of the linear term, but not the oscillations of the nonlinear term. The truncation parameter k
determines the patch size by (3.8). We observe an average EOC of 2.37 for the L2-error and an
average EOC of 1.33 for the H1-error.

H k
∥∥∥ums,k

H,h − uh

∥∥∥
L2(Ω)

∥∥∥ums,k
H,h − uh

∥∥∥
H1(Ω)

2−2 1 0.1455 1.6985

2−3 2 0.0097 0.3737

2−4 3 0.0023 0.1772

2−5 3 0.0008 0.1067

relation (soil-water retention curves). Various explicit formulas for θ are available, see e.g. Van Genuchten [24],
Brooks-Corey [8] or the Gardner model [23]. Depending on the chosen model (kr ◦M)′ might not be a Lipschitz
continuous function, still regularization is possible. In the following numerical experiment, we consider a test
problem that has the structure derived from a regularized Burdine–Brooks–Corey model. The corresponding
explicit formulas for (kr ◦ M) are taken from [3]. Contrary to the model (6.2), we use a nonlinear advection
term that is faster oscillating than the diffusion term. The reason is that we want to emphasize our claim, that
the oscillations of the nonlinearity F do in fact not influence the convergence. Before stating the test problem
related to (6.2), let us note that the method and the analytical results of this paper directly transfer to equations
in divergence form like (6.1), i.e. the gradient in the weak formulation can be on the test function, as long as
F (x, u) does not dependent on the gradient ∇u.

We consider the following nonlinear advection-diffusion problem. Let Ω :=]0, 1[2 and ε := 0.05. Find uε with

−∇ · (Aε(x)∇uε(x)) +
1

2
F ε(x, uε)∂x2u

ε(x) = − 3

10
in Ω

uε(x) = 0 on ∂Ω,

where Aε is given by

Aε(x1, x2) :=
1

8π2

(
2
(
2 + cos

(
2π x1

ε

))−1
0

0 1 + 1
2cos

(
2π x1

ε

)
)

and

F ε(x, u) :=
1

8π2

(
2 + cos

(
2π
x1

ε
3
2

))
⎧
⎪⎨
⎪⎩

√
u
2 + 3

2 for − 3 ≤ u ≤ − 5
4

p(u) for − 5
4 ≤ u ≤ −1

0 for u ≥ −1

,

where p(u) = au3 + bu2 + cu+ d is such that F ε(x, ·) ∈ C1(−3,∞) for all x ∈ Ω. The (unknown) exact solution
of this problem takes values between 0 and −1.75.

The numerical experiments presented in this section were performed with a little different implementation of
the localization strategy than the one described in Section 3.4. We used the localized basis functions proposed
in [19], which have the completely same analytical properties than (3.9)−(3.10), with the only difference that
they are computed with respect to unit vectors instead of gradients of basis functions in order to slightly stabilize
the computations.

The tolerance tol in the Newton algorithm is set to 10−10. We keep the resolution of the (uniformly refined)
fine grid fixed with h = 2−6 < ε. The computations were made for four different coarse grid resolutions
H = 2−2, . . . , 2−5.
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For given H , we guess the truncation parameter k (according to (3.8)) by | log(H)|. By log we mean the
logarithm to the basis e. For H = 2−l, l = 2, . . . , 5 we obtain log(4) ≈ 1.386, log(8) ≈ 2.08, log(16) ≈ 2.77 and
log(32) ≈ 3.47. Optimistically rounding we set the truncation parameter k to 1 for H = 2−2, 2 for H = 2−3,
3 for H = 2−4 and 3 for H = 2−5. The corresponding results are depicted in Table 1. We observe that the
proportionality coefficient in the choice of the diameter of the patches O(diam(ωj,k)) ∼ H | log(‖H‖L∞(Ω))| can
chosen to be on 1 without suffering from pre-asymptotic effects. In fact, we obtain an experimental order of
convergence (EOC) of 2.37 for the L2-error and an EOC of 1.33 for the H1-error. The patches remain small
and computational demand for solving the local problems remains very small. For further numerical studies of
the method and the choice of patch sizes in the linear case, we refer to [31].

Acknowledgements. We would like to thank the anonymous reviewers for their valuable suggestions and their constructive
criticism that helped us to improve the paper.
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Appendix B
Pollution-free high-frequency acoustic scattering

B.1 Eliminating the pollution effect in Helmholtz problems by local subscale
correction

arXiv:1411.1944 [math.NA], 2014.
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ELIMINATING THE POLLUTION EFFECT IN HELMHOLTZ

PROBLEMS BY LOCAL SUBSCALE CORRECTION

DANIEL PETERSEIM

Abstract. We introduce a new Petrov-Galerkin multiscale method for the numerical ap-
proximation of the Helmholtz equation with large wave number κ in bounded domains
in Rd. The discrete trial and test spaces are generated from standard mesh-based finite
elements by local subscale corrections in the spirit of numerical homogenization. The pre-
computation of the corrections involves the solution of coercive cell problems on localized
subdomains of size `H; H being the mesh size and ` being the oversampling parameter. If
the mesh size and the oversampling parameter are such that Hκ and log(κ)/` fall below
some generic constants, the method is stable and its error is proportional to H; pollution
effects are eliminated in this regime.

1. Introduction

The numerical solution of the Helmholtz equation by the finite element method or re-
lated schemes in the regime of large wave numbers is still among the most challenging tasks
of computational partial differential equations. The highly oscillatory nature of the solu-
tion plus a wave number dependent pollution effect puts very restrictive assumptions on
the smallness of the underlying mesh. Typically, this condition is much stronger than the
minimal requirement for a meaningful representation of highly oscillatory functions from
approximation theory, that is, to have at least 5 − 10 degrees of freedom per wave length
and coordinate direction.

The wave number dependent preasymptotic effect denoted as pollution or numerical dis-
persion is well understood by now and many attempts have been made to overcome or at
least reduce it; see [TF06, FW09, FW11, HMP11, ZMD+11, DGMZ12] among many others.
However, for many standard methods, this is not possible in 2d or 3d [BS00]. A breakthrough
in this context is the work of Melenk and Sauter [MS10, MS11, MPS13]. It shows that for
certain model Helmholtz problems, the pollution effect can be suppressed by simply coupling
the polynomial degree p of the Galerkin finite element space to the wave number κ via the
relation p ≈ log κ. Under this moderate assumption, the method is stable and quasi-optimal
if the mesh size H satisfies Hκ . 1. It is worth noting that this result does not require the
analyticity of the solution but only W 2,2-regularity and, thus, partially explains the common
sense that higher-order methods are less sensitive to pollution. However, for less regular
solutions as they appear for the scattering of waves from non-smooth objects, the result is
not directly applicable and the existence of a pollution-free discretization scheme remained
open.

Scale-dependent preasymptotic effects are also observed in simpler diffusion problems with
highly oscillatory diffusion tensor and numerical homogenization provides techniques to avoid
those effects. Numerical homogenization (or upscaling) refers to a class of multiscale methods
for the efficient approximation on coarse meshes that do not resolve the coefficient oscilla-
tions. A novel method for this problem was recently introduced in [MP14b] and further
generalized in [EGMP13, HMP14b, HP13, HMP14a]. The method is based on localizable
orthogonal decompositions (LOD) into a low-dimensional coarse space (where we are look-
ing for the approximation) and a high-dimensional remainder space. Some selectable quasi-
interpolation operator serves as the basis of the decompositions. The coarse space is spanned
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2000 Mathematics Subject Classification. 65N12, 65N15,65N30.
Key words and phrases. pollution effect, finite element, multiscale method, numerical homogenization.
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2 DANIEL PETERSEIM

by some precomputable basis functions with local support. The method provides text book
convergence independent of the variations of the coefficient and without any preasymptotic
effects under fairly general assumptions on the diffusion coefficient; periodicity or scale sep-
aration are not required.

This paper adapts the multiscale method of [MP14b] to cure pollution in the numerical
approximation of the Helmholtz problem. To deal with the lack of hermitivity we will propose
a Petrov-Galerkin version of the method (although this is not essential). We will construct
a finite-dimensional trial space and corresponding test space for the approximation of the
unknown solution u. The trial and test spaces are generated from standard mesh-based finite
elements by local subscale corrections. The precomputation of the corrections involves the
solution of H−d elliptic (cell) problems on localized subdomains of size `H; H being the
mesh size and ` being the adjustable oversampling parameter. If the data of the problem
(domain, boundary condition, force term) allows for polynomial-in-κ bounds of the solution
operator and if the mesh size and the oversampling parameter of the method are such that
the resolution condition Hκ . 1 and the oversampling condition log(κ)/` . 1 are satisfied,
then the method is stable and satisfies the error estimate

κ‖u− umsPG‖L2(Ω) + ‖∇(u− umsPG)‖L2(Ω) ≤ C(H + β`)‖f‖L2(Ω)

with generic constants C > 0 and β < 1 independent of κ. For a fairly large class of
Helmholtz problems, including the acoustic scattering from convex non-smooth objects, this
result shows that pollution effects can be suppressed under the quasi-minimal resolution
condition Hκ ≤ O(1) at the price of a moderate increase of the inter-element communication,
i.e., logarithmic-in-κ oversampling. Using a terminology from finite difference methods, this
means that the stencil is moderately enlarged. The complexity overhead due to oversampling
is comparable with that of [MS10, MS11], where instead of increasing the inter-element
communication, the number of degrees of freedom per element is increased via the polynomial
degree which is coupled to log κ in a similar way.

While [BS00] shows that pollution cannot be avoided with a fixed stencil, the result shows
that already a logarithmic-in-κ growths of the stencil can suffice to eliminate pollution.
Although the result is constructive, its practical relevance for actual computations is not
immediately clear in any case. The multiscale method presented in this paper requires
precomputations on subgrids. These precomputations are both local and independent, but
the worst-case (serial) complexity of the method can exceed the cost of a direct numerical
simulation on a global sufficiently fine mesh. However, we expect a significant gain with
respect to computational complexity in the following cases:

• The precomputation can be reused several times, e.g., if the problem (with the same
geometric setting and wave number) has to be solved for a large number of force terms
or incident wave directions in the context of parameter studies, coupled problems or
optimal control problems.

• The (local) periodicity of the computational mesh can be exploited so that the num-
ber of local problems can be reduced drastically.

We also expect that the redundancy of the local problems can be exploited in rather gen-
eral unstructured meshes by modern techniques of model order reduction [RHP08, AB14].
However, this possibility requires a careful algorithmic design and error analysis which are
beyond the scope of this paper and remain a future perspective of the method. A similar
statement applies to the case of heterogeneous media. This application and the general-
ization of the method are very natural and straight forward. Though this case is not yet
covered, previous work [MP14b, EGMP13, HMP14b, HP13, HMP14a] plus the analysis of
this paper strongly indicate the potential of the method to treat high oscillations or jumps
in the PDE coefficients and the pollution effect in one stroke.

The remaining part of the paper is outlined as follows. Section 2 defines the model
Helmholtz problem and recalls some of its fundamental properties. Section 3 introduces
standard finite element spaces and corresponding quasi-interpolation operators that will be
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the basis for the derivation of a prototypical multiscale method in Section 4. Sections 5 and
6 will then turn this ideal approach into a feasible method including a rigorous stability and
error analysis. Finally, Section 7 demonstrates the performance of the method and one of
its variants in numerical experiments.

2. Model Helmholtz problem

We consider the Helmholtz equation over a bounded Lipschitz domain Ω ⊂ Rd (d = 1, 2, 3),

(2.1.a) −∆u− κ2u = f in Ω,

along with mixed boundary conditions of Dirichlet, Neumann and Robin type

u = 0 on ΓD,(2.1.b)

∇u · ν = 0 on ΓN ,(2.1.c)

∇u · ν − iκu = 0 on ΓR.(2.1.d)

Here, the wave number κ is real and positive, i denotes the imaginary unit and f ∈ L2(Ω)
(the space of complex-valued square-integrable functions over Ω). In this paper, we assume
that the boundary Γ := ∂Ω consists of three components

∂Ω = ΓD ∪ ΓN ∪ ΓR,

where ΓD, ΓN and ΓR are disjoint. We allow that ΓD or ΓN are empty but we assume that
ΓR has a positive surface measure,

(2.2) |ΓR| > 0.

The vector ν denotes the unit normal vector that is outgoing from Ω. To avoid overloading
of the paper, we restrict ourselves to the case of homogeneous boundary conditions. Since
inhomogeneous boundary data is very relevant for scattering problems, this case will be
treated in the context of a numerical experiment in Section 7.2.

Given the Sobolev space W 1,2(Ω) (the space of complex-valued square-integrable functions
over Ω with square integrable weak gradient), we introduce the subspace

V := {v ∈W 1,2(Ω) | v = 0 on ΓD}
along with the κ-weighted norm

‖v‖V :=
√
κ2‖v‖2Ω + ‖∇v‖2Ω,

where ‖ · ‖Ω denotes the L2-norm over Ω. The variational formulation of the boundary value
problem (2.1) seeks u ∈ V such that, for all v ∈ V ,

(2.3) a(u, v) = (f, v)Ω,

where the sesquilinear form a : V × V → C has the form

(2.4) a(u, v) := (∇u,∇v)Ω − κ2(u, v)Ω − iκ(u, v)ΓR
.

Here, (·, ·)Ω :=
∫

Ω u · v̄ dx abbreviates the canonical inner product of scalar or vector-valued

L2(Ω) functions and (·, ·)ΓR
:=
∫

ΓR
uv̄ ds abbreviates the canonical inner product of L2(ΓR)

(the space of complex-valued square-integrable functions over ΓR). The sesquilinear form a
is bounded, i.e., there is a constant Ca that depends only on Ω such that, for any u, v ∈ V ,

(2.5) |a(u, v)| ≤ Ca‖u‖V ‖v‖V .
The presence of the impedance boundary condition (2.1.d) (cf. (2.2)) ensures the well-

posedness of problem (2.3), i.e., there exists some constant Cst(κ) that may depend on κ
and also on Ω and the partition of the boundary into ΓD, ΓN and ΓR such that, for any
f ∈ L2(Ω), the unique solution u ∈ V of (2.3) satisfies

(2.6) ‖u‖V ≤ Cst(κ)‖f‖Ω.
However, the stability constant Cst(κ) and its possible dependence on the wave number κ
are not known in general. Whenever we want to quantify its effect on some parts of the error
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analysis, we will assume (cf. Assumption 5.3) that there are constants Cpst > 0 and qpst ≥ 0
and κ0 > 0 that may depend on Ω and the partition of the boundary into ΓD, ΓN and ΓR

such that, for any κ ≥ κ0, the stability constant Cst(κ) of (2.6) satisfies

(2.7) Cst(κ) ≤ Cpstκ
qpst .

This polynomial growth condition on the stability constant is certainly not satisfied in gen-
eral; see [BCWG+11] for the example of a so-called trapping domain that exhibits at least
an exponential growth of the norm of the solution operator with respect to the wave number.
Hence, the assumption (2.7) puts implicit conditions on the domain Ω and the configuration
of the boundary components. Sufficient geometric conditions that ensure (2.7) with qpst = 0
are provided in [Het07, EM12, HMP14c] (see also earlier work [Mel95, CF06] that is based
on the choice of a particular test function previously used in [MIB96]). Among the known
admissible setups are the case of a Robin boundary condition (ΓR = ∂Ω) on a Lipschitz
domain Ω [EM12]. Another example is the scattering of acoustic waves at a sound-soft scat-
terer occupying the star-shaped polygonal or polyhedral domain ΩD where the Sommerfeld
radiation condition is approximated by the Robin boundary condition on the boundary of
some artificial convex polygonal or polyhedral domain ΩR ⊃ Ω̄D; see [HMP14c].

Given some linear functional g on V , the adjoint problem of (2.3) seeks z ∈ V such that,
for any v ∈ V ,

(2.8) a(v, z) = (v, g)Ω.

Note that the adjoint problem is itself a Helmholtz problem in the sense that S∗(g) = S(f̄),
where S is the solution operator of (2.3) and S∗ is the solution operator of the adjoint
problem (2.8); see e.g. [MS11, Lemma 3.1]. Hence, (2.8) enjoys the same stability properties
as (2.3).

According to [EM12], the stability (2.6) for f ∈ L2(Ω) implies well-posedness for all
bounded linear functionals f on V .

Lemma 2.1 (well-posedness). The sesquilinear form a of (2.4) satisfies

inf
u∈V \{0}

sup
v∈V \{0}

<a(u, v)

‖u‖V ‖v‖V
≥ 1

2Cst(κ)κ
.(2.9)

Furthermore, for every f ∈ V ′ (the space of bounded antilinear functionals on V ) the problem
(2.1) is uniquely solvable, and its solution u ∈ V satisfies the a priori bound

(2.10) ‖u‖V ≤ Cst(κ)κ‖f‖V ′ .
Under the additional assumption 2.7 that the stability constant grows at most polynomi-

ally in κ, the lemma shows polynomial well-posedness in the sense of [EM12], i.e., polynomial-
in-κ-bounds for the norm of the solution operator.

Proof of Lemma 2.1. The proof of (2.9) is almost verbatim the same as that of [EM12,
Theorem 2.5] which covers the particular case ΓR = ∂Ω and relies on a standard argument
for sesquilinear forms satisfying a G̊arding inequality. Given u ∈ V , define z ∈ V as the
solution of

2κ2(v, u)Ω = a(v, z), for all v ∈ V.
The stability (2.6) implies that

(2.11) ‖z‖V ≤ 2Cst(κ)κ2‖u‖Ω ≤ 2Cst(κ)κ‖u‖V .
Set v = u+ z and observe that

(2.12) <a(u, v) = ‖u‖2V .
The combination of (2.11) and (2.12) yields (2.9). Note that an analogue inf-sup condition
can be proved for the adjoint of the bilinear form a so that the Banach-Nečas-Babuška
theorem yields the unique solvability of both the primal and the adjoint problem as well as
the a priori estimate (2.10). �
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3. Standard finite element spaces

This section recalls briefly the notions of simplicial finite element meshes and patches, stan-
dard finite element spaces and corresponding quasi-interpolation operators. In this paper,
we will focus on linear finite elements based on triangles or tetrahedrons but quadrilaterals or
even mesh-free approaches would be possible as well. The key property that we will exploit
in the later construction is the partition of unity property of the basis; see [HMP14a].

3.1. Finite element meshes. We consider two discretization scales H > h > 0. Let TH
(resp. Th) denote corresponding regular (in the sense of [Cia78]) finite element meshes of Ω
into closed simplices with mesh-size functions 0 < H ∈ L∞(Ω) defined by H|T = diamT =:
HT for all T ∈ TH (resp. 0 < h ∈ L∞(Ω) defined by h|t = diam t =: ht for all t ∈ Th). The
mesh sizes may vary in space.

Some of the error bounds will depend on the maximal mesh size ‖H‖L∞(Ω). If no confusion
seems likely, we will use H also to denote the maximal mesh size instead of writing ‖H‖L∞(Ω).
For the sake of simplicity we assume that Th is derived from TH by some regular, possibly
non-uniform, mesh refinement. However, this condition is not essential and we refer to
[HMP14a] where possible generalizations are discussed in the context of a diffusion problem.

As usual, the error analysis depends on some constant γ > 0 that represents the shape
regularity of the finite element mesh TH ;

(3.1) γ := max
T∈TH

γT with γT :=
diamT

diamBT
for T ∈ TH ,

where BT denotes the largest ball inscribed in T .

3.2. Nodal patches and element patches. Patches are agglomerations of elements of
TH . They will often be used in the construction of the method and its analysis. We define
patches ωT,` of variable order ` ∈ N about an element T ∈ TH by

(3.2)

{
ωT,1 := ∪{T ′ ∈ TH | T ′ ∩ T 6= ∅},
ωT,` := ∪{T ′ ∈ TH | T ′ ∩ ωT,`−1 6= ∅} , ` = 2, 3, 4 . . . .

In other words, ωT,1 equals the union of T and its neighbors and ωt,` is derived from ωT,`−1

by adding one more layer of neighbors.
Note that, for a fixed ` ∈ N, the element patches have finite overlap in the following sense.

There exists a constant Col,` > 0 such that

(3.3) max
T∈TH

#{K ∈ TH | K ⊂ ωT,`} ≤ Col,`.

The constant Col := Col,1 equals the maximal number of neighbors of an element plus itself
and there exists some generic constant C ′ol such that, for any ` > 1,

Col,` ≤ max
{

#TH , C ′ol`
d‖H‖L∞(ωT,`)‖H−1‖L∞(ωT,`)

}
.

3.3. Standard finite element spaces. The first-order conforming finite element space
with respect to the mesh TH is given by

(3.4) VH := {v ∈ V | ∀T ∈ TH , v|T is a polynomial of total degree ≤ 1}.
Let NH denote the set of all vertices of TH that are not elements of the Dirichlet boundary.
Every vertex z ∈ NH represents a degree of freedom via the corresponding real-valued nodal
basis function φz ∈ VH determined by nodal values

φz(z) = 1 and φz(y) = 0 for all y 6= z ∈ NH .

The φz form a basis of VH and the dimension of VH equals the number of vertices (excluding
the Dirichlet boundary ΓD),

NH := dimVH = |NH |.
Let V ⊃ Vh ⊃ VH denote some conforming finite element space that corresponds to the fine

mesh Th. It can be the space of continuous piecewise affine functions on the fine mesh or any
other (generalized) finite element space that contains VH , e.g., the space of continuous p-th
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order piecewise polynomials as in [MS10, MS11]. By Nh := dimVh we denote the dimension
of Vh. For standard choices of Vh, this dimension is proportional to the number of vertices
in the fine mesh Th (excluding vertices on the Dirichlet boundary ΓD).

3.4. Quasi-interpolation. A key tool in the design and the analysis of the method is some
bounded linear surjective Clément-type (quasi-)interpolation operator IH : V → VH as it
is used in the a posteriori error analysis of finite element methods [CV99]. Given v ∈ V ,
IHv :=

∑
z∈NH

αz(v)φz defines a (weighted) Clément interpolant with nodal functionals

(3.5) αz(v) :=
(v, φz)Ω

(1, φz)Ω

for z ∈ NH . Recall the (local) approximation and stability properties of the interpolation
operator IH . There exists a generic constant CIH such that, for all v ∈ V and for all T ∈ TH
and any face F of T ,

(3.6) H
−1/2
T ‖v − IHv‖L2F + H−1

T ‖v − IHv‖L2(T ) + ‖∇(v − IHv)‖L2(T ) ≤ CIH‖∇v‖L2(ωT ),

where ωT = ωT,1 from (3.2). The constant CIH depends on the shape regularity parameter
γ of the finite element mesh TH (see (3.1) above) but not on the local mesh size HT . The
proof for the volume errors is given in [CV99]. The bound on the face error follows from
those bounds and the trace inequality

(3.7) ‖v‖2F ≤ 2γT
(
2‖∇v‖T + dH−1

T ‖v‖T
)
‖v‖T .

The trace inequality is a consequence of the trace identity of [CF00] and the Young inequality;
see [DPE12, Lemma 1.49] for a detailed proof.

Note that the space VH is invariant under IH but IH is not a projection, i.e., IHvH 6= vH
for vH ∈ VH in general. However, since IH |VH

can be interpreted as a diagonally scaled mass
matrix, IH is invertible on the finite element space VH and the concatenation (IH |VH

)−1◦IH :
V → VH is a projection. For our particular choice of interpolation operator, one easily verifies
that (IH |VH

)−1◦IH equals the L2-orthogonal projection ΠH : V → VH onto the finite element
space; see also [MP14a, Remark 3.1]. Recall that ΠH is also stable in V ,

(3.8) ‖ΠHv‖V ≤ CΠH
‖v‖V for all v ∈ V,

where CΠH
depends only on the parameter γ if the grading of the mesh is not too strong

[BY14].
While IH |VH

is a local operator (a sparse matrix) its inverse (IH |VH
)−1 is not. However,

there exists some bounded right inverse I−1,loc
H : VH → V of IH that is local. More precisely,

there exists some generic constant C ′IH depending only on γ such that, for all vH ∈ VH ,




IH(I−1,loc
H vH) = vH ,

‖∇I−1,loc
H vH‖Ω ≤ C ′IH‖∇vH‖Ω,

supp(I−1,loc
H vH)

1⊂∼ supp(vH),

(3.9)

where the
1⊂∼ is a short-hand notation for supp(I−1,loc

H vH) ⊆ ⋃{ωT,1 | T ∈ TH : T ∩
supp(vH) 6= ∅}. Note that I−1,loc

H vH is not a finite element function on TH in general. An

explicit construction of I−1,loc
H and a proof of the properties (3.9) can be found in [HMP14a,

Lemma 1].
We shall emphasize that the choice of a quasi-interpolation operator is by no means

unique and a different choice might lead to a different multiscale method. A choice that
turned out to be useful in previous works [BP14, PS14] is the following one. Given v ∈ V ,
QHv :=

∑
z∈NH

αz(v)φz defines a Clément-type interpolant with nodal functionals

(3.10) αz(v) := (ΠH,ωzv) (z)

for z ∈ NH . Here, ΠH,ωzv denotes the L2-orthogonal projection of v onto standard P1 finite
elements on the patch ωz and αz(v) is the evaluation of this projection at the vertex z. We
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will show in the numerical experiment of Section 7 that the choice of the interpolation can
affect the practical performance of the method significantly.

4. Global wave number adapted approximation

This section introduces new (non-polynomial) approximation spaces for the model Helmholtz
problem under consideration. The spaces are mesh-based in the sense that degrees of freedom
(or basis functions) are associated with vertices. The support of the basis functions is not
local in general but quasi-local in the sense of some very fast decay of their moduli. Their
replacement by localized computable basis functions in practical computations is possible;
see Sections 5 and 6.

The ideal method requires the following assumption on the numerical resolution.

Assumption 4.1 (resolution condition). Given the wave number κ and the constants CIH
from (3.6) and Col from (3.3), we assume that the mesh width H satisfies

(4.1) Hκ ≤ 1√
2ColCIH

.

Note that this assumption is quasi-minimal in the sense that a certain number of degrees
of freedom per wave length is a necessary condition for the meaningful approximation of
highly oscillatory waves.

4.1. An ideal method. The derivation of the method follows general principles of varia-
tional multiscale methods; cf. [Hug95, HFMQ98, HS07] and [Mål11]. Our construction of
the approximation space starts with the observation that the space V can be decomposed
into the finite element space VH and the remainder space

(4.2) RH := kernel IH .
The particular choice of IH implies that the decomposition

(4.3) V = VH ⊕RH

is orthogonal in L2(Ω) and, hence, stable. We shall say that this L2-orthogonality will not
be crucial in this paper and that any choice of IH that allows a stable splitting of V into its
image and its kernel is possible, for instance QH defined in (3.10).

The subscale corrector C∞ is a linear operator that maps V onto RH . Given v ∈ V , define
the corrector C∞v ∈ RH as the unique solution (cf. Lemma 4.2 below) of the variational
problem

(4.4) a(C∞v, w) = a(v, w), for all w ∈ RH .

The subscript notation ∞ will be consistent with later modifications C` of the corrector,
where the computation is restricted to local subdomains of size `H.

To deal with the lack of hermitivity, we will use the adjoint corrector C∗∞v ∈ RH that
solves the adjoint variational problem

(4.5) a(w, C∗∞v) = a(w, v), for all w ∈ RH .

It turns out that

(4.6) C∗∞v = C∞v̄
holds for the model problem under consideration. Under Assumption 4.1, the corrector
problems (4.4) and (4.5) are well-posed.

Lemma 4.2 (well-posedness of the correction operator). The resolution condition of As-
sumption 4.1 implies that ‖∇ · ‖Ω and ‖ · ‖V are equivalent norms on RH ,

(4.7) ‖∇w‖Ω ≤ ‖w‖V ≤
√

3
2‖∇w‖Ω, for all w ∈ RH ,

the sesquilinear form a is RH-elliptic,

(4.8) <a(w,w) ≥ 1
3‖w‖2V , for all w ∈ RH ,
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and the correction operators C∞, C∗∞ are well-defined and stable,

(4.9) ‖C∞v‖V = ‖C∗∞v‖V ≤ CC‖v‖V , for all v ∈ V,
where CC := 3Ca with Ca from (2.5).

Proof. For any w ∈ RH , the property IHw = 0, the approximation property (3.6) of the
quasi-interpolation operator, the bounded overlap of element patches Col and (4.1) yield

κ2(w,w)Ω = κ2(w − IHw,w − IHw)Ω

≤ ColC
2
IHκ

2H2‖∇w‖2Ω
≤ 1

2‖∇w‖2Ω.
This implies (4.7) and (4.8). Since the sesquilinear form a is bounded (2.5), the well-
posedness of (4.4) and (4.5) and the stability estimate (4.9) follow from the Lax-Milgram
theorem. �

Since non-trivial projections on Hilbert spaces have the same operator norm as their com-
plementary projections (see [Szy06] for a proof), the continuity of the projection operators
C∞, C∗∞ implies the continuity of their complementary projections (1−C∞), (1−C∗∞) : V → V ,
that is,

(4.10) ‖(1− C∞)v‖V = ‖(1− C∗∞)v‖V ≤ CC‖v‖V , for all v ∈ V,
where CC = 3Ca is the constant from (4.9)

The image of the finite element space VH under (1− C∞),

(4.11) VH,∞ := (1− C∞)VH ,

defines a modified discrete approximation space. The space VH,∞ will be the prototypical
trial space in our method. The corresponding test space is

(4.12) V ∗H,∞ := (1− C∗∞)VH .

Note that RH equals the kernel of both operators, (1−C∞) and (1−C∗∞). This implies that
VH,∞ is the image of (1−C∞) and V ∗H,∞ is the image of (1−C∗∞). The key properties of the
spaces VH,∞ and V ∗H,∞ are given in the subsequent lemma.

Lemma 4.3 (primal and dual decomposition). If the resolution condition of Assumption 4.1
is satisfied, then the decompositions

V = VH,∞ ⊕RH = V ∗H,∞ ⊕RH

are stable. More precisely, any function v ∈ V can be decomposed uniquely into

v = vH,∞ + rH and v = wH,∞ + rH

and
max{‖vH,∞‖V , ‖wH,∞‖V , ‖rH‖V } ≤ CC‖v‖V ,

where vH,∞ := (1− C∞)v ∈ VH,∞, wH,∞ := (1− C∗∞)v ∈ V ∗H,∞ and rH := C∞v ∈ RH .
The decompositions satisfy the following relations: For any vH,∞ ∈ VH,∞ and any qH ∈

RH , it holds that

(4.13) a(vH,∞, qH) = 0.

For any wH,∞ ∈ V ∗H,∞ and any qH ∈ RH , it holds that

(4.14) a(qH , wH,∞) = 0,

Proof. The results readily follow from the construction of C∞ and C∗∞. �
The Petrov-Galerkin method for the approximation of (2.3) based on the trial-test pairing

(VH,∞, V ∗H,∞) seeks u ∈ VH,∞ such that, for all vH,∞ ∈ V ∗H,∞,

(4.15) a(uH,∞, vH,∞) = (f, vH,∞)Ω.

We shall emphasize that we do not consider the method (4.15) for actual computations
because the natural bases of the trial (resp. test) space, i.e. the image of the standard nodal
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basis of the finite element space under the operator 1 − C∞ (resp. 1 − C∗∞) is not sparse
(or local) in the sense that the basis function (1 − C∞)φz (resp. (1 − C∗∞)φz) have global
support in Ω in general. Moreover the corrector problems are infinite dimensional problems.
We will, hence, refer to the method (4.15) as the ideal or global method. Later on (cf.
Theorem 5.2), we will show that there are feasible nearby spaces with a sparse basis and we
will also discretize the (localized) corrector problems and analyze the error committed by
those crimes in Section 6.

4.2. Stability and accuracy of the ideal method. The ideal method admits a unique
solution and is stable and accurate independent of κ as long as the resolution condition
Hκ . 1 is satisfied. The “orthogonality” relation (4.13) induces stability.

Theorem 4.4 (stability). Let Assumption 4.1 be satisfied. Then the trial space VH,∞ and
test space V ∗H,∞ satisfy the discrete inf-sup condition

(4.16) inf
uH,∞∈VH,∞\{0}

sup
vH,∞∈V ∗H,∞\{0}

<a(uH,∞, vH,∞)

‖uH,∞‖V ‖vH,∞‖V
≥ 1

2CCCst(κ)κ
.

Proof. Observe that (1 − C∗∞) : V → V ∗H,∞ is a Fortin operator (as in the theory of mixed

methods [For77]), i.e., a bounded linear operator that satisfies

a(uH,∞, (1− C∗∞)v) = a(uH,∞, v)− a(uH,∞, C∗∞v)︸ ︷︷ ︸
=0;see (4.13)

= a(uH,∞, v),

for all uH,∞ ∈ VH,∞ and any v ∈ V . Hence, the assertion follows from the inf-sup condition
(2.9) on the continuous level and the continuity of 1− C∗∞ (4.9),

inf
uH,∞∈VH,∞\{0}

sup
vH,∞∈V ∗H,∞\{0}

<a(uH,∞, vH,∞)

‖uH,∞‖V ‖vH,∞‖V

= inf
uH,∞∈VH,∞\{0}

sup
v∈V \{0}

<a(uH,∞, (1− C∗)v)

‖uH,∞‖V ‖(1− C∗)v‖V

≥ 1

CC
inf

u∈V \{0}
sup

v∈V \{0}

<a(u, v)

‖u‖V ‖v‖V

≥ 1

2CCCst(κ)κ
.

�

The error estimate follows from the above discrete inf-sup condition, the “orthogonality”
relation (4.14), and the Lax-Milgram theorem.

Theorem 4.5 (error of the ideal method). Let u ∈ V solve (2.3). If the resolution condition
of Assumption 4.1 is satisfied, then uH,∞ = (1 − C∞)u ∈ VH,∞ is the unique solution of
(4.15), that is, the Petrov-Galerkin approximation of u in the subspace VH,∞ with respect to
the test space V ∗H,∞. Moreover, it holds that

(4.17) ‖u− uH,∞‖V ≤ 3
√
ColCIH‖Hf‖Ω.

Proof. The Galerkin property (4.15) of uH,∞ = (1 − C∞)u follows from (4.14). Hence, the
error u− uH,∞ = C∞u ∈ RH satisfies

a(C∞u, C∞u) = a(u, C∞u) = (f, C∞u)Ω.

Since the sesquilinear form a is RH -elliptic (cf. (4.8)), this yields the error estimate

‖u− uH,∞‖2V ≤ 3 |(f, C∞u)Ω| .
Since IHC∞u = 0, Cauchy inequalities and the interpolation error estimate (3.6) readily
yield the assertion. �
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Remark 4.1 (quasi-optimality). We shall say that the ideal method is also quasi-optimal in
the following sense

(4.18) ‖u− uH,∞‖V ≤ 3Ca inf
vH,∞∈VH,∞

‖u− vH,∞‖V .

Moreover, since ΠHC∞u = 0, it holds that ΠHu = ΠHuH,∞. This means that the ideal
method provides the L2-best approximation in the standard finite element space VH ,

(4.19) ‖u−ΠHuH,∞‖Ω = min
vH∈VH

‖u− vH‖Ω.

Since IH(u− uH,∞) = 0, uH,∞ also satisfies the L2 bound

(4.20) ‖u− uH,∞‖Ω ≤
√
ColCIHH‖u− uH,∞‖V .

Remark 4.2 (further stable variants of the method). We shall also mention at this point that
the “orthogonality” relations (4.13) and (4.14) imply that, for any uH , vH ∈ VH ,

a((1− C∞)uH , vH) = a((1− C∞)uH , (1− C∞)vH)

= a((1− C∞)uH , (1− C∗∞)vH)

= a(uH , (1− C∗∞)vH) = a((1− C∗∞)uH , (1− C∗∞)vH).

This means that the Galerkin methods in VH,∞ or V ∗H,∞ as well as Petrov-Galerkin methods

based on the pairings (VH,∞, VH) or (VH , V
∗
H,∞) lead to stable and accurate discretizations.

The latter Petrov-Galerkin method based on (VH , V
∗
H,∞) is closely related to a variational

multiscale stabilization of the standard P1 finite element method and seeks uH ∈ VH such
that, for all vH ∈ VH ,

(4.21) a(uH , vH,∞)− a(uH , C∗∞vH) = (f, vH)Ω − (f, C∗∞vH)Ω.

This stabilized method will be used in the numerical experiment of Section 7.

4.3. Exponential decay of element correctors. Given some finite element function v ∈
V , its correction C∞vH can be composed by element correctors CT,∞, T ∈ TH in the following
way:

(4.22) C∞v =
∑

T∈TH
CT,∞(v|T ),

where CT,∞(v|T ) ∈ RH solves

(4.23) a(CT,∞(v|T ), w) = aT (v, w) :=

∫

T
∇v · ∇w̄ dx− κ2

∫

T
vw̄ dx− iκ

∫

∂T∩ΓR

vw̄ ds,

for all w ∈ RH . Dual corrections can be split into element contributions in an analogue way,

(4.24) C∗v =
∑

T∈TH
C∗T (v|T ),

where C∗T,∞(v|T ) := CT,∞(v̄|T ) ∈ RH .
The well-posedness of the element correctors is a consequence of Lemma 4.2. Moreover,

it holds that

(4.25) ‖CT,∞v‖V = ‖C∗T,∞v‖V ≤ CC‖v‖V (T ), for all v ∈ V,
where V (T ) denotes the restriction of the space V to the element T , and ‖v‖2V (T ) :=

κ2‖v‖2L2(T ) + ‖∇v‖2L2(T ).

The major observation is that the moduli of the element correctors CT v and C∗T v decay
very fast outside T .

Theorem 4.6 (exponential decay of element correctors). If the resolution condition of As-
sumption 4.1 is satisfied, then there exist constants Cdec > 0 and β < 1 independent of H
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and κ such that for all v ∈ V and all T ∈ TH and all ` ∈ N, the element corrector CT,∞v
satisfies

(4.26) ‖∇CT,∞v‖Ω\ωT,`
≤ Cdecβ

`‖∇v‖T .

The constant β is bounded away from 1 by

(
C1

C1 + 1
2

)1/14

< 1 and Cdec ≤
√
CC

C1+
1
2

C1
, where

C1 := 1
2 + 3

2CIHC
′
IH + (C ′IHCIH + 1)CIH

√
Colγ

depends only on the shape regularity parameter γ of the mesh TH .

According to practical experience, the bound on the decay rate β seems to be rather
pessimistic. The rates observed in numerical experiments were between 1

3 and 2
3 .

Proof of Theorem 4.6. Let T ∈ TH be arbitrary but fixed and let ` ∈ N with ` ≥ 7 and let
the element patches ωT,`, ωT,`−1, . . . , ωT,`−7 be defined as in (3.2). Set ψ := CT,∞v.

We define the cut-off function η (depending on T and `) by

η(x) :=
dist(x, ωT,`−4)

dist(x, ωT,`−4) + dist(x,Ω \ ωT,`−3)

for x ∈ Ω. Note that η = 0 in the patch ωT,`−4 and η = 1 in Ω \ ωT,`−3. Moreover, η is
bounded between 0 and 1 and Lipschitz continuous with

(4.27) ‖H∇η‖L∞(Ω) ≤ γ.
The choice of η implies the estimates

‖∇ψ‖2Ω\ωT,`−3
= < (∇ψ,∇ψ)Ω\ωT,`−3

≤ < (∇ψ, η∇ψ)Ω

= < (∇ψ,∇ (ηψ))Ω −< (∇ψ,ψ∇η)Ω

≤ |< (∇ψ,∇
(
ηψ − I−1,loc

H (IH(ηψ))
)

)Ω|

+ |< (∇ψ,∇I−1,loc
H (IH(ηψ)))Ω|+ |< (∇ψ,ψ∇η)Ω|

=: M1 +M2 +M3.(4.28)

Note that the test function
(
ηψ − I−1,loc

H (IH(ηψ))
)
∈ RH with support in Ω \ ωT,`−6. If

` ≥ 6, then ηψ−I−1,loc
H (IH(ηψ)) vanishes on T and aT (v, ηψ−I−1,loc

H (IH(ηψ))) = 0. Hence,
the definition (4.5) of CT,∞, the Cauchy-Schwarz inequality, the properties (3.6) and (3.9) of
the interpolation operator IH and the resolution condition Assumption 4.1 imply

M1 := |< (∇ψ,∇(ηψ − I−1,loc
H (IH(ηψ))))Ω|

=
∣∣∣κ2(ψ, ηψ − I−1,loc

H (IH(ηψ)))Ω

∣∣∣
≤ C2

IHCol(Hκ)2‖∇ψ‖2Ω\ωT,`−6
+ C3

IHC
′
IHCol(Hκ)2‖∇ψ‖2ωT,`\ωT,`−7

≤ 1
2‖∇ψ‖2Ω\ωT,`

+ 1
2(1 + CIHC

′
IH )‖∇ψ‖2ωT,`\ωT,`−7

.(4.29)

Similar techniques and the Lipschitz bound (4.27) lead to upper bounds of the other terms
on the right-hand side of (4.28),

M2 ≤ C ′IHCIH‖∇(ηψ)‖ωT,`−1\ωT,`−6
‖∇ψ‖ωT,`−1\ωT,`−6

≤ C ′IHCIH
(
CIH

√
Col‖H∇η‖L∞(Ω) + 1

)
‖∇ψ‖2ωT,`\ωT,`−7

(4.30)

and

(4.31) M3 ≤ CIH
√
Col‖H∇η‖L∞(Ω)‖∇ψ‖2ωT,`−2\ωT,`−5

.

The combination of (4.28)–(4.31) readily yields the estimate
1
2‖∇ψ‖2Ω\ωT,`

≤ C1‖∇ψ‖2ωT,`\ωT,`−7
,
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where C1 := 1
2 + 3

2CIHC
′
IH + (C ′IHCIH + 1)CIH

√
Colγ depends only on the shape regularity

of the coarse mesh TH . Since

‖∇ψ‖2ωT,`\ωT,`−7
= ‖∇ψ‖2Ω\ωT,`−7

− ‖∇ψ‖2Ω\ωT,`
,

this implies the contraction

‖∇ψ‖2Ω\ωT,`
≤ C1

C1 + 1
2

‖∇ψ‖2Ω\ωT,`−7
.

Hence,

‖∇ψ‖2Ω\ωT,`
≤
(

C1

C1 + 1
2

)⌊
`
7

⌋

‖∇ψ‖2Ω ≤ CC
(

C1

C1 + 1
2

)⌊
`
7

⌋

‖∇v‖2T ,

and some algebraic manipulations yield the assertion. �

5. Localized approximation

This section localizes the corrector problems from Ω to subdomains of size `H; ` being a
novel discretization parameter - the oversampling parameter.

5.1. Localized correctors. The exponential decay of the element correctors (cf. Theo-
rem 4.6) motivates their localized approximation on element patches. Given such a patch
ωT,` for some T ∈ TH and ` ∈ N define the localized remainder space

(5.1) RH(ωT,`) := {w ∈ RH | w|Ω\ωT,`
= 0}

and the localized sesquilinear form

(5.2) aωT,`
(u, v) := (∇u,∇v)ωT,`

− κ2(u, v)ωT,`
− iκ(u, v)ΓR∩∂ωT,`

,

Then, given some finite element function vH ∈ VH , its localized primal correction C`vH is
defined via localized element correctors in the following way:

(5.3) C`vH :=
∑

T∈TH
CT,`(vH |T ),

where CT,`(vH |T ) ∈ RH(ωT,`) solves

(5.4) aωT,`
(CT (vH |T ), w) = aT (vH , w) := (∇vH ,∇w)T − κ2(vH , w)T − iκ(vH , w)ΓR∩∂T

for all w ∈ RH(ωT,`). The localized dual correction is C∗` vH := C`v̄H . Note that (5.4) is
truly localized insofar as the linear constraints (w, φz)Ω = 0 (z ∈ NH) that characterize an
element w ∈ RH need to be checked only for z ∈ NH ∩ ωT,` and are satisfied automatically
for all other nodes if w ∈ RH(ωT,`) is in the localized fine space.

Though being localized, the correctors CT,` and C∗T,` are still somewhat ideal because their
evaluation requires the solution of an infinite-dimensional variational problem in the space
RH(ωT,`). Moreover, C∗` = C` whenever ωT,` ∩ ΓR = ∅. If the mesh is (locally) structured so
that two patches and are equal up to translation or rotation with the same local triangulation,
then also the correctors will coincide up to shift and rotation. This means that on a uniform
mesh only a finite number of the interior cell problems need to be solved plus a number of
cell problems that capture all possible intersections of the patches and the boundary parts.
On polyhedral domains, this number will scale like the oversampling parameter ` times the
number of boundary faces of the domain. To be fully practical, we will also have to discretize
the local corrector problems (5.4). This step and the analysis of corresponding errors will be
discussed Section 6.

An error bound for the localized approximation of the corrector C and its adjoint C∗ is
easily derived from the exponential decay property of Theorem 4.6.
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Lemma 5.1 (local approximation of element correctors). If the resolution condition of As-
sumption 4.1 is satisfied, then, for any T ∈ TH and any ` ∈ N, it holds that

‖∇(CT,∞v − CT,`v)‖Ω ≤ C ′decβ
`‖∇v‖T ,

where β < 1 is the constant from Theorem 4.6 and

C ′dec :=
(

6C2
a(1 + C2

IHC
′2
IH )

(
3
2 + C2

IHColγ
2
))1/2

Cdecβ
−6.

Proof. Define the cut-off function η (depending on T and `)

(5.5) η(x) :=
dist(x,Ω \ ωT,`−2)

dist(x, ωT,`−3) + dist(x,Ω \ ωT,`−2)
.

Note that η = 1 in ωT,`−3 and η = 0 outside ωT,`−2. Moreover, η is bounded between 0
and 1 and satisfies the Lipschitz bound (4.27). Since CT,`v is the Galerkin approximation

of CT,∞v and ηCT,∞v − I−1,loc
H (IH(ηCT,∞v)) ∈ RH(ωT,`), Céa’s lemma plus Lemma 4.2, the

definition of CT,∞ (4.23), the Cauchy-Schwarz inequality, the approximation property (3.6)
of the interpolation operator IH , the shape regularity of the mesh (3.1) (cf. (4.27)) and the
resolution condition Assumption 4.1 imply

‖∇(CT,∞v − CT,`v)‖2Ω ≤ 3C2
a‖CT,∞v − (ηCT,∞v − I−1,loc

H (IH(ηCT,∞v))‖2V
≤ 6C2

a

(
‖∇((1− η)CT,∞v)‖2Ω + κ2‖(1− η)CT,∞v‖2Ω

)

+ 6C2
aC

2
IHC

′2
IH

(
‖∇(ηCT,∞v)‖2ωT,`\ωT,`−5

+ κ2‖ηCT,∞v‖2ωT,`\ωT,`−5

)

≤ 6C2
a(1 + C2

IHC
′2
IH )

(
‖∇CT,∞v‖2Ω\ω`−5

+C2
IHCol‖H∇η‖2L∞(Ω)‖∇CT,∞v‖2Ω\ω`−6

+ C2
IHCol(Hκ)2‖∇CT,∞v‖2Ω\ω`−6

)

≤ 6C2
a(1 + C2

IHC
′2
IH )

(
3
2 + C2

IHColγ
2
)
‖∇CT,∞v‖2Ω\ω`−6

.

This and Theorem 4.6 readily imply the assertion. �
Theorem 5.2 (error of the localized corrections). If the resolution condition of Assump-
tion 4.1 is satisfied, then, for any ` ∈ N, it holds that

‖∇(C∞v − C`v)‖Ω ≤ Cloc,`β
`‖∇v‖Ω,

where Cloc,` := 3
√

3Col,`+5C
2
a(1 + C ′IHCIH )(3

2 + C2
IHColγ

2)C ′dec.

Proof. Set z := C∞v − C`v and, for any T ∈ TH , set zT := CT,∞v − CT,`v. The RH -ellipticity
of the sesquilinear form (4.8) implies that

1
3‖∇z‖2Ω ≤

∑

T∈TH
a(zT , z).(5.6)

Given some T ∈ TH , let η be the cutoff function defined by

η(x) :=
dist(x, ωT,`+2)

dist(x, ωT,`+2) + dist(x,Ω \ ωT,`+3)
,

that is η = 0 in ωT,`+2 and η = 1 outside ωT,`+3. Moreover, η is bounded between 0

and 1 and satisfies the Lipschitz bound (4.27). Since supp I−1,loc
H (IH(ηz)) ⊂ Ω \ ωT,` and

ηz − I−1,loc
H (IH(ηz)) ∈ RH , we have that

a(zT , ηz − I−1,loc
H (IH(ηz))) = a(CT,∞v, ηz − I−1,loc

H (IH(ηz))) = 0.

Hence,

a(zT , z) = a(zT , I−1,loc
H (IH(ηz)) + a(zT , (1− η)z).

The properties (3.6) of the interpolation operator IH and the Lipschitz bound (4.27) lead to
upper bounds

(5.7) a(zT , z) ≤ Ca(1 + C ′IHCIH )
√

1 + C2
IHColγ2‖z‖V,ωT,`+5

‖zT ‖V .
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The combination of (5.6) and (5.7) plus a discrete Cauchy-Schwarz inequality and the
bounded overlap (3.3) of the element patches leads to

‖∇z‖Ω ≤ 2Col,`+3Ca(1 + C ′IHCIH )
√

1 + C2
IHColγ2


 ∑

T∈TH
‖zT ‖2V




1/2

.(5.8)

This and Lemma 5.1 readily yield the assertion. �

5.2. Localized trial and test spaces. The localized trial space VH,` ⊂ V is simply defined
as the image of the classical finite element space VH under the operator 1− C`,
(5.9) VH,` := (1− C`)VH
and the localized test space V ∗H,` ⊂ V reads

(5.10) V ∗H,` := (1− C∗` )VH

Note that both VH,` and V ∗H,` are finite-dimensional with a local basis,

VH,` = span{(1− C`)φz | z ∈ NH} and V ∗H,` = span{(1− C`)φz | z ∈ NH},
where φz is the (real-valued) nodal basis of VH (cf. Section 3.3).

The Petrov-Galerkin method with respect to the trial space VH,` and the test space V ∗H,`

seeks uH,` ∈ VH,` such that, for all vH,` ∈ V ∗H,`,

(5.11) a(uH,`, vH,`) = (f, vH,`)Ω.

5.3. Stability of the localized method. The stability of the localized methods requires
the coupling of the oversampling parameter to the stability constant which we will now
assume to be polynomial with respect to the wave number.

Assumption 5.3 (polynomial-in-κ-stability and logarithmic oversampling condition). there
are constants Cpst > 0 and qpst ≥ 0 and a κ0 > 0 that may depend on Ω and the partition of
the boundary into ΓD, ΓN and ΓR such that, for any κ ≥ κ0, the stability constant Cst(κ) of
(2.6) satisfies (2.7),

Cst(κ) ≤ Cpstκ
qpst .

Given the wave number κ and the constants CIH from (3.6) and Col from (3.3), we assume
that the oversampling parameter ` satisfies

(5.12) ` ≥
(qpst + 1) log κ+ log

(
4CCCpstCΠH

√
3
2Cloc,`Ca

)

| log β| .

Since the constant Cloc,` grows at most polynomially with ` (cf. (3.3)), condition (5.12)
is indeed satisfiable and the proper choice of ` will be dominated by the logarithm log κ of
the wave number.

The stability of the localized method follows from the fact that the ideal pairing (VH,∞, V ∗H,∞)

is stable and that (VH,`, V
∗
H,`) is exponentially close.

Theorem 5.4 (stability of the localized method). If the mesh width H is sufficiently small in
the sense of Assumption 4.1 (Hκ . 1) and if the oversampling parameter ` ∈ N is sufficiently
large in the sense of Assumption 5.3 (` & log κ), then the pairing of the localized spaces VH,`

and V ∗H,` satisfies the discrete inf-sup condition

(5.13) inf
uH,`∈VH,`\{0}

sup
vH,`∈V ∗H,`\{0}

<a(uH,`, vH,`)

‖uH,`‖V ‖vH,`‖V
≥ 1

4CCCpstκqpst+1
.

This ensures that, for any f ∈ V ′, there exists a unique solution of the discrete problem
(5.11).
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Proof. Let uH,` ∈ VH,` and set uH,∞ := (1− C)ΠHuH,`. Under the polynomial-in-κ stability
of Assumption 5.3, Theorem 4.4 guarantees the existence of some vH,∞ ∈ V ∗H,∞ with

(5.14) <a(uH,∞, vH,∞) ≥ 1

2CpstCCκqpst+1
‖uH,∞‖V ‖vH,∞‖V .

Set vH,` := (1− C∗` )ΠHvH,∞ ∈ V ∗H,` and observe that (4.14) yields

<a(uH,`, vH,`) = <a(uH,`, vH,` − vH,∞) + a(uH,`, vH,∞)

= <a(uH,`, (C∗ − C∗` )ΠHvH,`) + <a(uH,∞, vH,∞).

Hence,

(5.15)
<a(uH,`, vH,`) ≥ <a(uH,∞, vH,∞)− Ca‖uH,`‖V ‖(C∗ − C∗` )ΠHvH,`‖V

≥ <a(uH,∞, vH,∞)− CΠH

√
3
2Cloc,`Caβ

`‖uH,`‖V ‖vH,`‖V ,

where we have used (4.7), Theorem 5.2, and (3.8). This yields

(5.16)

<a(uH,`, vH,`) ≥
1

CCCstκqpst+1
‖uH,∞‖V ‖vH,∞‖V − C ′β`‖uH,`‖V ‖vH,`‖V

≥
(

1

2CCCpstκqpst+1
− CΠH

√
3
2Cloc,`Caβ

`

)
‖uH,`‖V ‖vH,`‖V ,

and Assumption 5.3 readily implies the assertion. �

Theorem 5.5 (error of the localized method). If the mesh width H is sufficiently small in
the sense of Assumption 4.1 (Hκ . 1) and if the oversampling parameter ` ∈ N is suffi-
ciently large in the sense of Assumption 5.3 (` & log κ), then the localized Petrov-Galerkin
approximation uH,` ∈ VH,` satisfies the error estimate

(5.17) ‖u− uH,`‖V ≤ 6
√
ColCIH‖Hf‖Ω + 6CaCloc,`β

`CΠH
Cpstκ

qpst‖f‖Ω.
Proof. The proof is inspired by standard techniques for Galerkin methods (see [Sch74], [BS08,
Thm. 5.7.6], [Sau06], [BS07]). Set e := u−uH,` and eH,` := (1−C`)ΠHe ∈ VH,`. The triangle
inequality yields

(5.18) ‖e‖V ≤ ‖e− eH,`‖V + ‖eH,`‖V .
An Aubin-Nitsche duality argument shows that ‖eH,`‖V is controlled by some multiple

of ‖e − eH,`‖V . Let zH,` ∈ V ∗H,` be the unique solution of the discrete adjoint variational
problem

(∇vH,`,∇eH,`) + κ2(vH,`, eH,`) = a(vH,`, zH,`),

for all vH,` ∈ VH,`. Set zH,∞ := (1− C∗)ΠHzH,` and observe that

‖eH,`‖2V = a(eH,`, zH,` − zH,∞) + a(eH,`, zH,∞)

= a(eH,`, zH,` − zH,∞) + a(e, zH,∞)

= a(eH,`, zH,` − zH,∞) + a(e, zH,∞ − zH,`)

= a(e− eH,`, (C∗ − C∗` )ΠHzH,`)

≤ Ca‖e− eH,`‖V ‖(C∗ − C∗` )ΠHzH,`‖V .
Under Assumption (2.7), Theorem 5.2, Theorem 5.4 and (3.8) readily yield

(5.19) ‖eH,`‖2V ≤ C2
aCloc,`β

`CΠH
Cpstκ

qpst+1‖e− eH,`‖2V .
This, (5.18) and Assumption 5.3 show that

(5.20) ‖e‖V ≤ 2‖e− eH,`‖V .
Since e− eH,` ∈ RH , the RH -ellipticity (4.8) yields

(5.21) ‖e− eH,`‖2V ≤ 3<a(e− eH,`, e− eH,`).
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The relation (4.13) then yields

(5.22) a(e− eH,`, e− eH,`) = a(u, e− eH,`) + a((C − C`)ΠHu, e− eH,`)

≤ |(f, e− eH,`)Ω|+ Ca‖(C − C`)ΠHu‖V ‖e− eH,`‖V .
This, Cauchy inequalities, interpolation error estimates (3.6), Theorem 5.2 and the stability
estimate (2.7) readily yield the bound

(5.23) ‖e− eH,`‖V ≤ 3
√
ColCIH‖Hf‖Ω + 3CaCloc,`β

`CΠH
Cstκ

qpst‖f‖Ω.
The combination of (5.20) and (5.23) is the assertion. �

6. Fully discrete localized approximation

As already mentioned before, the localized corrector problems (4.23) are variational prob-
lems in infinite-dimensional spaces RH(ωT,`) that require further discretization. For the ease
of presentation we restrict ourselves in this paper to the classical case of piecewise affine con-
forming elements on simplicial meshes but we emphasize that the technique easily transfers
to more general situations and can be applied to a large variety of discretization schemes.

So far, the presentation of the method was optimized with respect to theoretical aspects of
the stability and error analysis. Here, we will present the method in a slightly more practical
fashion.

6.1. The fully discrete method. For any T ∈ TH , choose an oversampling parameter `T
(sufficiently large so that there is a chance that Assumption 5.3 is satisfied). Let Th(ωT,`)
be a regular (and possibly adaptive) mesh of width h ≤ H and consider the standard finite
element space Vh(ωT,`) ⊂ H1

0(ωT,`) (cf. Section 3.3). For any vertex y of T , compute the
element correctors CT,`,hφz ∈ RH(ωT,`) ∩ Vh(ωT,`) as the unique solution of the discrete cell
problem

a(CT,`,hφy, w) = aT (φy, w), for all w ∈ RH(ωT,`) ∩ Vh(ωT,`).

Now for every global vertex z ∈ NH , compute the correctors C`,hφz by

C`,hφz =
∑

T∈TH :z vertex of T

CT,`,hφz.

This leads to modified basis functions φ̃z := φz − C`,hφz that span a discrete space

(6.1) VH,`,h := span{φ̃z | z ∈ NH}
of the same dimension NH as the classical finite element space VH .

In this most general setting, the discretization of the cell problems is completely indepen-
dent. In the error analysis below, however, we will restrict ourselves to the case where cell
problems are synchronized in the sense that we assume there is an underlying global fine
mesh Th that is a regular refinement of the coarse mesh TH and that local meshes Th(ωT,`)
coincide with Th on the patches.

The fully discrete localized Petrov-Galerkin method with respect to the trial space VH,`,h

and the test space V ∗H,`,h seeks uH,`,h ∈ VH,`,h such that, for all vH,`,h ∈ V ∗H,`,h,

(6.2) a(uH,`,h, vH,`,h) = (f, vH,`,h)Ω.

6.2. Error analysis of the fully discrete method. An abstract a priori error analysis of
the general method would follow the analysis of Section 5 and trace the error of the additional
perturbation depending on the local choice of the approximation space. However, this will
require the estimation of the error C − C`,h or C` − C`,h, which appears to be non-trivial and
requires, for instance, regularity results for the ideal correctors. This line will be followed in
future research along with an a posteriori analysis of the method.

For this paper, we will restrict ourselves to the case of synchronized cell problems in the
sense that there is an underlying global fine mesh Th that is a regular refinement of the
coarse mesh TH . This implies that the global fine space Vh contains standard finite element
functions (cf. Section 3.3) and the spaces for the local cell problems are derived by restriction
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of Vh to the patch. In this regime, the method in fact approximates uh, where uh ∈ Vh is
the Galerkin approximation in the global fine scale, that is,

(6.3) a(uh, vh) = (f, vh)Ω, for all vh ∈ Vh.
In the remaining part of this paper, we will refer to uh as the reference solution. It is clear
that if h is sufficiently small, then the problem (6.3) is well-posed and stable. However, h

underlies the typical resolution assumptions of finite element methods, for instance hκ3/2 . 1
for a pure Robin problem in a convex domain discretized by P1 finite elements [Wu14].

Assumption 6.1 (well-posedness of reference problem). Assume that Vh is chosen such
that, for any f ∈ V ′, the reference problem (6.3) admits a unique solution and there is a
constant Ch that may depend on the partition of the boundary into ΓD, ΓN and ΓR such that

‖uh‖V ≤ Ch‖u‖V ,
where u denotes the solution of (2.3).

Theorem 6.2 (stability and error of the fully discrete method). If the fine scale discretization
space Vh is sufficiently rich so that Assumption 6.1 holds and if the coarse mesh width H is
sufficiently small in the sense of Assumption 4.1 (Hκ . 1) and if the oversampling parameter
` ∈ N is sufficiently large in the sense of Assumption 5.3 (` & log κ), then the fully discrete
localized Petrov-Galerkin uH,`,h ∈ VH,`,h approximation satisfies the error estimate

(6.4) ‖uh − uH,`,h‖V ≤ C(H + Cloc,`β
`κqpst)‖f‖Ω,

where uh solves the reference problem (6.3) and C is some generic constant that does not
depend on H, ` and κ.

Proof. The proof follows closely the analysis of Section 5 and simply replaces the space
V by Vh in the construction of the method and its error analysis. Almost all arguments
remain valid. The only technical issue is that the space Vh is not closed under multiplication
by cut-off functions used in the proofs of Theorem 4.6, Lemma 5.1, and Theorem 5.2. This
requires minor modifications as they have already been applied successfully in previous papers
[MP14b, HP13, HMP14a]. To begin with, let all cut-off functions η be replaced by their nodal
interpolation Inodal

H η on the coarse mesh TH . This may affect the constant in (4.27) but not
the overall results. This choice shows that ηψ is piecewise polynomial with respect to the
fine mesh Th and can be approximated by nodal interpolation Inodal

h (ηψ) on the same mesh
in a stable way. One example where such a modification is required is (4.28) in the proof of
Theorem 4.6. This causes an additional term that measures the distance of ηψ to the finite
element space,

‖∇ψ‖2Ω\ωT,`−3
= < (∇ψ,∇ (ηψ))Ω −< (∇ψ,ψ∇η)Ω

≤ |< (∇ψ,∇
(
Inodal
h (ηψ)− I−1,loc

H (IH(Inodal
h (ηψ)))

)
)Ω|

+ |< (∇ψ,∇I−1,loc
H (IH(Inodal

h (ηψ))))Ω|+ |< (∇ψ,ψ∇η)Ω|

+ |< (∇ψ,∇
(
ηψ − Inodal

h (ηψ)
)

)Ω|

=: M̃1 + M̃2 + M̃3 + M̃4.(6.5)

The treatment of M̃1, M̃2, M̃3 is very similar to the treatment of M1,M2,M3 in the proof
of Theorem 4.6 and requires only the stability of Ih on the space of piecewise polynomials.
Since Ih(ηψ) = ψ outside the support of ∇η, M̃4 can easily be bounded by

M̃4 ≤ (1 + CIH
√
Col)‖H∇η‖L∞(Ω))‖∇φ‖2ωT,`−2\ωT,`−5

and further arguments remain valid (with a possible change of the constants involved). The
proofs of Lemma 5.1 and Theorem 5.2 can be modified in similar way. �
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7. Numerical Experiments

In this section we will present two numerical examples. We apply our method to model
Helmholtz problems in one and two dimensions and compare the results with standard
P1 finite elements. We will demonstrate the validity of our estimates based on varying
oversampling parameter `, coarse mesh size H and by varying the wave number κ. A
comprehensive numerical study of the algorithmic ideas proposed in this paper is topic of
current and future research.

7.1. Illustration of the theoretical results in 1d. Let Ω := (0, 1), ΓR = ∂Ω (solely
Robin boundary condition), and let the right-hand side f defined by

f(x) :=

{
2
√

2, x ∈ [ 3
16 ,

5
16 ] ∪ [11

16 ,
13
16 ],

0, elsewhere,
(7.1)

represent two radiating sources. The right-hand side was normalized so that ‖f‖L2(Ω) = 1.
Although this one-dimensional example does not serve as a proper benchmark for the

method, it nicely reflects our theoretical results for a wider range of wave numbers. Since
non of our arguments depends on the space dimension (though some constants do), the
1d performance truly illustrates the performance in higher dimensions. We consider the
following values for the wave number, κ = 23, 24, . . . , 27. The numerical experiment aims
to study the dependence between these wave numbers and the accuracy of the numerical
method.

Consider the equidistant coarse meshes with mesh widths H = 2−1, . . . , 2−10. The refer-
ence mesh Th is derived by uniform mesh refinement of the coarse meshes and has maximal
mesh width h = 2−14. The corresponding P1 conforming finite element approximation on
the reference mesh Th is denoted by Vh. We consider the reference solution uh ∈ Vh of (6.3)
with data given in (7.1) and compare it with coarse scale approximations uH,`,h ∈ VH,`,h (cf.
Definition 6.2) depending on the coarse mesh size H and the oversampling parameter `.

The results are visualized in Figures 1 and 2. Figure 1(a) shows the relative energy

errors
‖uh−uH,`,h‖V
‖uh‖V depending on the coarse mesh size H for several choices of the wave

number κ = 23, 24, . . . , 27. The oversampling parameter ` is tied to H via the relation
` = `(H) = | log2H|. This choice seems to be sufficient to preserve optimal convergence as

soon as Hκ . 1 holds. The experimental rate of convergence N
3
2d is better than predicted

by Theorem 6.2. This effect is due to some unexploited L2-orthogonality properties of the
quasi-interpolation operator IH ; see [Car99, Section 2] and [MP14b, Remark 3.2] for details.
In the regime Hκ . 1, the errors coincide to with those of the best approximation (with
respect to the V -norm) of uh in the space VH,`,h depicted in Figure 1(b).

We also show errors of the Petrov-Galerkin method based on the pairing (VH , V
∗
H,`,h)

(the localized and fully discretized version of (4.21)) in Figure 1(c). The stabilization via
the precomputed test functions cures pollution and the errors are comparable to those of
the best possible with standard finite element test functions, whereas the pollution effect is
clearly visible for the standard conforming P1-FEM on the coarse meshes; see Figure 1(d).

Figure 2 aims to illustrate the role of the oversampling parameter. It depicts the relative

energy errors
‖uh−uH,`,h‖V
‖uh‖V of the method (6.2) and the best-approximation in VH,`,h depend-

ing on the coarse mesh size H for fixed wave number κ = 27 and several choices of the
oversampling parameter ` = 1, 2, 3, . . . , 8. (We also show errors of the standard conforming
P1-FEM on the coarse meshes for comparison.) The exponential decay of the error with re-
spect to ` is observed once the mesh size reaches the regime of resolution Hκ . 1. Moreover,
Figure 2(b) shows that, for fixed `, the approximation property of VH,`,h does not improve
with decreasing H and the oversampling parameter needs to be increased with decreasing
H to get any rate. By contrast, the Petrov-Galerkin method based on the trial-test-pairing
(VH , VH,`,h) (which in fact computes ΠHu for ` → ∞) allows to reduce the oversampling
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(c) Results for multiscale Petrov-Galerkin method
with trial space VH and test space V ∗H,`,h.
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(d) Results for standard Galerkin in the space VH .

Figure 1. Numerical experiment of Section 7.1: Results for the multiscale
method (6.2), a modification based on the trial-test-pairing (VH , V

∗
H,`,h) and

standard P1-FEM with several choices of the wave number κ depending on
the uniform coarse mesh size H = N−1

dof . The reference mesh size h = 2−14

remains fixed. The oversampling parameter is tied to the coarse mesh size
via the relation ` = | log2H| in (a)-(c).

parameter with decreasing Hκ until, for Hκ2 ≈ 1, the correction can be removed because P1-
FEM becomes quasi-optimal; see Figure 2(c) which depicts relative L2-errors of the method.

Finally, we want to show that a different choice of interpolation operator in the definition
(4.2) of the remainder space can lead to very different practical performance (within the range
of the theoretical predictions though). Figure 3 shows the results for the above experiment
when the operator QH from (3.10) is used instead of IH . It turns out that, for this example,
the decay of the correctors is much faster so that the same accuracy is reached with more
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(c) Results for multiscale Petrov-Galerkin method
with trial space VH and test space VH,`,h.

Figure 2. Numerical experiment of Section 7.1: Results for multiscale
method (6.2) with wave number κ = 28 depending on the uniform coarse
mesh size H = N−1

dof . The reference mesh size h = 2−14 remains fixed. The
oversampling parameter ` varies between 1 and 8.

local basis functions. A similar observation has been made previously in the context of high-
contrast diffusion problems [BP14, PS14]. This promising performance might be explained
by the larger cost of the evaluation of QH that already involves local coarse solves on nodal
patches but is not yet well understood; it cannot be explained with the existing theory and
requires further investigation.

7.2. Scattering from a triangle. The second experiment considers the scattering from
sound-soft scatterer occupying the triangle ΩD. The Sommerfeld radiation condition of
the scattered wave is approximated by the Robin boundary condition on the boundary
ΓR := ∂ΩR of the artificial domain ΩR :=]0, 1[2 so that Ω := ΩR \ ΩD is the computational
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(a) Results for multiscale method (6.2) based on
quasi-interpolation QH .
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(b) Results for V -best-approximation in VH,`,h based
on quasi-interpolation QH .
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(c) Results for multiscale Petrov-Galerkin method
with trial space VH and test space VH,`,h based on
quasi-interpolation QH .

Figure 3. Numerical experiment of Section 7.1: Results for multiscale
method (6.2) with interpolation operator QH for wave number κ = 28 de-
pending on the uniform coarse mesh size H = N−1

dof . The reference mesh size
h = 2−14 remains fixed. The oversampling parameter ` varies between 1 and
8.

domain; see Figure 4(a). The incident wave uinc(x) := exp
(
iκ x ·

(
cos(1/2)
sin(1/2)

))
is prescribed

via an inhomogeneous Dirichlet boundary condition on ΓD := ∂ΩD and the scattered wave
satisfies the model problem (2.1.a) with the boundary conditions

u = −uinc on ΓD,

∇u · ν − iκu = 0 on ΓR.
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Ω:=]0,1[
2
\Ω

D

Ω
D

(a) Computational domain Ω with
scatterer ΩD.

(b) Initial coarse mesh. (c) Uniformly refined coarse mesh.

Figure 4. Computational domain of the model problem of Section 7.2 and
corresponding coarse meshes.

The error analysis of the previous sections extends to this setting in a straight-forward way.
By introducing some function u0 ∈ W 1,2(Ω) that satisfies the above boundary conditions,
the problem can be reformulated with homogenous boundary conditions and the additional
term −a(u0, v) on the right side of (2.3). This corresponds to having the modified right hand
side f + ∆u0 + κ2u0 in the strong form (2.1.a) of the problem. If u0 can be chosen such
that ∆u0 ∈ L2(Ω), then all error bounds of this paper remain valid. For weaker right hand
sides the rates with respect to H are reduced accordingly. Note, however, that the L2-norm
of the modified right-hand side may depend on κ as it is the case in the present experiment
where u0 is related to the incident wave. The best-approximation properties of the method
(cf. Remark 4.1) are not affected by this possible κ-dependence of the errors.

The numerical experiment considers the following values for the wave number, κ =
22, 23, 24, 25, and aims to study the dependence between the wave numbers and the ac-
curacy of the numerical method. We choose uniform coarse meshes with mesh widths
H = 2−2, . . . , 2−5 as depicted in Figures 4(b)–4(c). The reference mesh Th is derived by
uniform mesh refinement of the coarse meshes and has mesh width h = 2−9. The corre-
sponding P1 conforming finite element approximation on the reference mesh Th is denoted
by Vh. (We disregard the possibility of adaptivity on the fine scale.) As in the previous
experiment, we consider the reference solution uh ∈ Vh of (6.3) with the above data and
compare it with coarse scale approximations uH,`,h ∈ VH,`,h (cf. Definition 6.2) depending
on the coarse mesh size H and the oversampling parameter `. Here, we are using again the
canonical quasi-interpolation IH .

Figures 5 and 6 show the results which conform to the theoretical predictions. If the
oversampling parameter is chosen appropriately (` = | log2H|) then pollution effects are
eliminated for both the multiscale method (6.2) and for the Petrov-Galerkin method based on
the trial-test-pairing (VH , VH,`,h) – the localized and fully discretized version of the stabilized
method (4.21). Moreover, the low regularity of the solution does not affect the convergence
rates of the multiscale method (6.2) when compared with the reference solution uh, whereas
slightly reduced rates are observed for the Petrov-Galerkin method based on the trial-test-
pairing (VH , VH,`,h) (due to the limited approximation properties of P1 functions in the
Sobolev spaces W s,2(Ω) for s < 2). Reduced regularity does, however, affect the accuracy of
the reference solution uh and, hence, limits the overall accuracy of our approximation. The
possibility of automatic balancing the local fine scale errors of the corrector problems, the
localization error, the global coarse error, and further errors due to quadrature and inexact
algebraic solvers is a desirable feature of the method that needs to be addressed by future
research.
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(b) Results for V -best-approximation in VH,`,h.
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(c) Results for multiscale Petrov-Galerkin method
with trial space VH and test space V ∗H,`,h.
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(d) Results for standard Galerkin in the space VH .

Figure 5. Numerical experiment of Section 7.2: Results for the multiscale
method (6.2), a modification based on the trial-test-pairing (VH , V

∗
H,`,h) and

standard P1-FEM with several choices of the wave number κ depending on
the uniform coarse mesh size H = N−2

dof . The reference mesh size h = 2−9

remains fixed. The oversampling parameter is tied to the coarse mesh size
via the relation ` = | log2H| in (a)-(c).
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Abstract

We present and analyze a pollution-free Petrov–Galerkin multiscale finite element method for the Helmholtz problem with large
wave number κ as a variant of Peterseim (2014). We use standard continuous Q1 finite elements at a coarse discretization scale
H as trial functions, whereas the test functions are computed as the solutions of local problems at a finer scale h. The diameter
of the support of the test functions behaves like m H for some oversampling parameter m. Provided m is of the order of log(κ)

and h is sufficiently small, the resulting method is stable and quasi-optimal in the regime where H is proportional to κ−1. In
homogeneous (or more general periodic) media, the fine scale test functions depend only on local mesh-configurations. Therefore,
the seemingly high cost for the computation of the test functions can be drastically reduced on structured meshes. We present
numerical experiments in two and three space dimensions.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Standard finite element methods (FEMs) for acoustic wave propagation are well known to exhibit the so-called
pollution effect [1], which means that the stability and convergence of the scheme require a much smaller mesh-size
than needed for a meaningful approximation of the wave by finite element functions. For a highly oscillatory wave
at wave number κ , the typical requirement for a reasonable representation reads κ H . 1 for the mesh-size H , that
is some fixed number of elements per wave-length. The standard Galerkin FEM typically requires at least κα H . 1
where α > 1 depends on the method and the stability and regularity properties of the continuous problem. There have
been various attempts to reduce or avoid the pollution effect, e.g., discontinuous Galerkin methods [2–5], high-order
finite elements [6,7], discontinuous Petrov–Galerkin methods [8,9], or the continuous interior penalty method [10]
among many others. A good historical overview is provided in [8].
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The work [11] suggested a multiscale Petrov–Galerkin method for the Helmholtz equation where standard finite
element trial and test functions are modified by a local subscale correction in the spirit of numerical homogeniza-
tion [12]. In the numerical experiments of [11], a variant of that method appeared attractive where only the test
functions are modified while standard finite element functions are used as trial functions. In this paper, we analyze
that method and reformulate it as a stabilized Q1 method in the spirit of the variational multiscale method [13–17].
The method employs standard Q1 finite element trial functions on a grid GH with mesh-size H . The test functions are
the solutions of local problems with respect to a grid Gh at a finer scale h which is chosen fine enough to allow for
stability of the standard Galerkin FEM over Gh . The diameter of the support of the test functions is proportional to
m H for the oversampling parameter m. Under the condition that m is logarithmically coupled with the wave number
κ through m ≈ log(κ), we prove that the method is pollution-free, i.e., the resolution condition κ H . 1 is sufficient
for stability and quasi-optimality under fairly general assumptions on the stability of the continuous problem. The per-
formance of the method is illustrated in the convergence history of Fig. 1. More detailed descriptions on the numerical
experiments will be given in Section 5. As the test functions only depend on local mesh-configurations, on structured
meshes the number of test functions to be actually computed is much smaller than the overall number of trial and test
functions on the coarse scale. In many cases, the computational cost is then dominated by the coarse solve and the
overhead compared with a standard FEM on the same coarse mesh remains proportional to md

≈ log(κ)d . Even if no
structure of the mesh can be exploited to reduce the number of patch problems, the method may still be attractive if
the problem has to be solved many times with different data (same κ though) in the context of inverse problems or
parameter identification problems.

The paper is structured as follows. Section 2 states the Helmholtz problem and recalls some important results.
The definition of the new Petrov–Galerkin method follows in Section 3. Stability and error analysis are carried out in
Section 4. Section 5 is devoted to numerical experiments.

Standard notation on complex-valued Lebesgue and Sobolev spaces applies throughout this paper. The bar indicates
complex conjugation and i is the imaginary unit. The L2 inner product is denoted by (v, w)L2(Ω) :=


Ω vw̄ dx . The

Sobolev space of complex-valued L p functions over a domain ω whose generalized derivatives up to order k belong
to L p is denoted by W k,p(ω;C). The notation A . B abbreviates A ≤ C B for some constant C that is independent
of the mesh-size, the wave number κ , and all further parameters in the method like the oversampling parameter m or
the fine-scale mesh-size h; A ≈ B abbreviates A . B . A.

2. The Helmholtz problem

Let Ω ⊆ Rd , for d ∈ {1, 2, 3}, be an open bounded domain with polyhedral Lipschitz boundary which is
decomposed into disjoint parts ∂Ω = ΓD ∪ ΓR with ΓD closed. The classical Helmholtz equation then reads

−∆u − κ2u = f in Ω ,

u = u D on ΓD,

iκu − ∇u · ν = g on ΓR

(2.1)

for the outer unit normal ν of Ω and the real parameter κ > 0. For the sake of a simple exposition we assume
u D = 0. Either of the parts ΓD or ΓR is allowed to be the empty set. In scattering problems, the Dirichlet boundary
ΓD typically refers to the boundary of a bounded sound-soft object whereas the Robin boundary ΓR arises from
artificially truncating the full space Rd to the bounded domain Ω [18]. The variational formulation of (2.1) employs
the space

V := W 1,2
D (Ω;C) := {v ∈ W 1,2(Ω;C) : v|ΓD = 0}.

For any subset ω ⊆ Ω we define the norm

∥v∥V,ω :=


κ2∥v∥

2
L2(ω)

+ ∥∇v∥
2
L2(ω)

for any v ∈ V

and denote ∥v∥V := ∥v∥V,Ω . Define on V the following sesquilinear form

a(v, w) := (∇v, ∇w)L2(Ω) − κ2(v, w)L2(Ω) − iκ(v, w)L2(ΓR).

140 B



D. Gallistl, D. Peterseim / Comput. Methods Appl. Mech. Engrg. 295 (2015) 1–17 3

Fig. 1. Convergence history of the multiscale FEM (msPGFEM), the standard Q1 FEM (FEM) and the best-approximation (bestapprox) in the
finite element space for a two-dimensional plane wave with wave number κ = 27 (see also Section 5).

Although the results of this paper hold for a rather general right-hand side in the dual of V , we focus on data
f ∈ L2(Ω;C) and g ∈ L2(ΓR;C) for the ease of presentation. The weak form of the Helmholtz problem then
seeks u ∈ V such that

a(u, v) = ( f, v)L2(Ω) + (g, v)L2(ΓR) for all v ∈ V . (2.2)

We assume that the problem is polynomially well-posed [19] in the sense that there exists some constant γ (κ,Ω)

which depends polynomially on κ such that

γ (κ,Ω)−1
≤ inf

v∈V \{0}

sup
w∈V \{0}

ℜa(v, w)

∥v∥V ∥w∥V
. (2.3)

For instance, in the particular case of pure impedance boundary conditions ∂Ω = ΓR , it was proved in [20,21]
by employing a technique of [22] that γ (κ,Ω) . κ . Further setups allowing for polynomially well-posedness are
described in [23,19,24]. In particular, the case of a medium described by a convex domain (with Robin boundary
conditions on the outer part of the boundary) and a star-shaped scatterer (with Dirichlet boundary conditions) allows
for polynomial well-posedness [23]. Another admissible setting is described in [19] where Ω is a bounded Lipschitz
domain with pure Robin boundary. For general configurations, however, the dependence of the stability constant
γ (κ,Ω) from (2.3) is an open question. Throughout this paper we assume that (2.3) is satisfied. The case of a possible
exponential dependence [25] is excluded here.

3. The method

This section introduces the notation on finite element spaces and meshes and defines the multiscale Petrov–Galerkin
method (msPGFEM) for the Helmholtz problem.

3.1. Meshes and data structures

Let GH be a regular partition of Ω into intervals, parallelograms, parallelepipeds for d = 1, 2, 3, respectively, such
that ∪GH = Ω and any two distinct T, T ′

∈ GH are either disjoint or share exactly one lower-dimensional hyper-face
(that is a vertex or an edge for d ∈ {2, 3} or a face for d = 3). We impose shape-regularity in the sense that the
aspect ratio of the elements in GH is uniformly bounded. Since we are considering quadrilaterals (resp. hexahedra)
with parallel faces, this guarantees the non-degeneracy of the elements in GH . We consider this type of partitions for
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the sake of a simple presentation and to exploit the structure to increase the computational efficiency. The theory of
this paper carries over to simplicial triangulations or to more general quadrilateral or hexahedral partitions satisfying
suitable non-degeneracy conditions or even to meshless methods based on proper partitions of unity [26].

Given any subdomain S ⊆ Ω , define its neighborhood via

N(S) := int

∪{T ∈ GH : T ∩ S ≠ ∅}


.

Furthermore, we introduce for any m ≥ 2 the patches

N1(S) := N(S) and Nm(S) := N(Nm−1(S)).

The shape-regularity implies that there is a uniform bound Col,m = Col,m(d) on the number of elements in the mth-
order patch,

max
T ∈GH

card{K ∈ GH : K ⊆ Nm(T )} ≤ Col,m .

We abbreviate Col := Col,1. Throughout this paper, we assume that the coarse-scale mesh GH is quasi-uniform. This
implies that Col,m depends polynomially on m. The global mesh-size reads H := max{diam(T ) : T ∈ GH }. Let
Q p(GH ) denote the space of piecewise polynomials of partial degree ≤p. The space of globally continuous piecewise
first-order polynomials reads

S1(GH ) := C0(Ω) ∩ Q1(GH ).

The standard Q1 finite element space reads

VH := S1(GH ) ∩ V .

The set of free vertices (the degrees of freedom) is denoted by

NH := {z ∈ Ω : z is a vertex of GH and z ∉ ΓD}.

Let IH : V → VH be a surjective quasi-interpolation operator that acts as a stable quasi-local projection in the sense
that IH ◦ IH = IH and that for any T ∈ GH and all v ∈ V there holds

H−1
∥v − IH v∥L2(T ) + ∥∇ IH v∥L2(T ) ≤ C IH ∥∇v∥L2(N(T )). (3.1)

Under the mesh condition that κ H . 1 is bounded by a generic constant, this implies stability in the ∥ · ∥V norm

∥IH v∥V ≤ C IH ,V ∥v∥V for all v ∈ V, (3.2)

with a κ-independent constant C IH ,V . One possible choice (which we use in our implementation of the method) is to
define IH := EH ◦ΠH , where ΠH is the piecewise L2 projection onto Q1(GH ) and EH is the averaging operator that
maps Q1(GH ) to VH by assigning to each free vertex the arithmetic mean of the corresponding function values of the
neighboring cells, that is, for any v ∈ Q1(GH ) and any free vertex z ∈ NH ,

(EH (v))(z) =


T ∈GH

with z∈T

v|T (z)


card{K ∈ GH : z ∈ K }.

Note that EH (v)|ΓD = 0 by construction. For this choice, the proof of (3.1) follows from combining the well-
established approximation and stability properties of ΠH and EH , see, e.g., [27].

3.2. Definition of the method

The method is determined by three parameters, namely the coarse-scale mesh-size H , and the stabilization
parameters h (the fine-scale mesh-size) and m (the oversampling parameter) which are explained in the following.
We assign to any T ∈ GH its mth order patch ΩT := Nm(T ) (for a positive integer m) and define for any v, w ∈ V
the localized sesquilinear forms

aΩT (v, w) := (∇v, ∇w)L2(ΩT ) − (κ2v, w)L2(ΩT ) − i(κv, w)L2(ΓR∩∂ΩT )
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Fig. 2. Coarse-scale trial function Λz (left), corrector λz (middle), and modified test function Λz = Λz − λz (right) in 1D with κ = 25, H = 2−4,
h = 2−10, m = 2.

and

aT (v, w) := (∇v, ∇w)L2(T ) − (κ2v, w)L2(T ) − i(κv, w)L2(ΓR∩∂T ).

Let Gh be a global uniform refinement of the mesh GH over Ω and define

Vh(ΩT ) := {v ∈ Q1(Gh) ∩ V : v = 0 outside ΩT }.

Define the null space

Wh(ΩT ) := {vh ∈ Vh(ΩT ) : IH (vh) = 0}

of the quasi-interpolation operator IH defined in the previous section. Given any nodal basis function Λz ∈ VH , let
λz,T ∈ Wh(ΩT ) solve the subscale corrector problem

aΩT (w, λz,T ) = aT (w,Λz) for all w ∈ Wh(ΩT ). (3.3)

The well-posedness of (3.3) will be proved in Section 4. Let λz :=


T ∈GH
λz,T and define the test functionΛz := Λz − λz .

The space of test functions then readsVH := span{Λz : z ∈ NH }.

We emphasize that the dimension dim VH = dim VH is independent of the parameters m and h. Figs. 2–3 display
typical examples for the test functions Λz and correctors. The multiscale Petrov–Galerkin FEM seeks u H ∈ VH such
that

a(u H , ṽH ) = ( f, ṽH )L2(Ω) + (g, ṽH )L2(ΓR) for all ṽH ∈ VH . (3.4)

The error analysis and the numerical experiments will show that the choice H . κ−1, m ≈ log(κ) suffices to
guarantee stability and quasi-optimality properties, provided that καh . 1 where α depends on the stability and
regularity of the continuous problem. The conditions on h are the same as for the standard Q1 FEM on the global
fine scale (e.g. κ3/2h . 1 for stability [10] and κ2h . 1 for quasi-optimality [20] in the case of pure Robin boundary
conditions on a convex domain).

3.3. Remarks on generalizations of the method

The present approach exploits additional structure in the mesh and thereby drastically decreases the cost for the
computation of the test functions (Λz : z ∈ NH ). Indeed, (3.3) is translation-invariant and, thus, the number of
corrector problems to be solved is determined by the number of patch configurations. This number is typically much
smaller than the number of elements in GH , see Fig. 4 for an illustration.
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Fig. 3. Coarse-scale trial function Λz (left), and element corrector λz,T (right) in 2D with κ = 25, H = 2−4, h = 2−7, m = 2 for the patch
highlighted in Fig. 4.

Fig. 4. All possible patch configurations (up to rotations) on a structured mesh of the square domain with pure Robin boundary with m = 2. A trial
function and corresponding corrector for the highlighted patch are depicted in Fig. 3.

Some remarks on more general versions of the presented msPGFEM are in order.

Element shapes. As Fig. 4 illustrates, highly structured meshes are desirable as they lead to a moderate number
of patch problems. The method presented in Section 3.2 considers, for simplicity, a partition of the domain in
parallelepipeds. While in scattering problems the outer part of the boundary ΓR results from a truncation of the
full space and, hence, the choice of a simple geometry (e.g., a cube) is justified, it is extremely important to guarantee
an accurate representation of more general scattering objects. This requires more general element shapes such as
isoparametric elements or partitions in bricks and simplices with first-order ansatz functions on the reference cell
(see [11] for simplicial meshes). The msPGFEM and its error analysis are also applicable to this situation. The
configurations at the boundary will then determine the number of corrector problems.

Fine-scale grid. The present approach is based on a global fine-scale grid Gh and a particular choice of the domains
ΩT , which is convenient for the implementation of the method. It is, however, not necessary for the domains ΩT to be
aligned with the mesh GH . Also the spaces Wh(ΩT ) can be defined over independent fine-scale meshes over ΩT .

Adaptive methods. For certain configurations of the domains ΩT , for instance in the presence of re-entrant corners,
it may be desirable to utilize an adaptive fine-scale mesh over ΩT for the solution of the corrector problem (3.3). As
proven in Lemma 1, the corrector problems are coercive and mesh-adaptation may improve the efficiency of the fine-
scale corrector problem. As mentioned in the previous remark, it is indeed possible to employ independent fine-scale
meshes over different domains ΩT , ΩK . The stability and error analysis for the adaptive case, which are expected to
be more involved, are not discussed in this paper.
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4. Error analysis

We denote the global finite element space on the fine scale by Vh := Vh(Ω) = S1(Gh) ∩ V . We denote the
solution operator of the element corrector problem (3.3) by CT,m . Then any z ∈ NH and any T ∈ GH satisfy
λz,T = CT,m(Λz) and we refer to CT,m as element correction operator. The map Λz → λz described in Section 3.2
defines a linear operator Cm via Cm(Λz) = λz for any z ∈ NH , referred to as correction operator. For the analysis
we introduce idealized counterparts of these correction operators where the patch ΩT equals Ω . Define the null space
Wh := {v ∈ Vh : IH (v) = 0}. For any v ∈ V , the idealized element corrector problem seeks CT,∞v ∈ Wh such that

a(w,CT,∞v) = aT (w, v) for all w ∈ Wh . (4.1)

Furthermore, define

C∞v :=


T ∈GH

CT,∞v. (4.2)

It is proved in [6, Corollary 3.2] that the form a is continuous and there is a constant Ca such that

a(v, w) ≤ Ca∥v∥V ∥w∥V for all v, w ∈ V .

The following result implies the well-posedness of the idealized corrector problems.

Lemma 1 (Well-posedness of the Idealized Corrector Problems). Provided

C IH


Col Hκ ≤ 1/

√
2, (4.3)

we have for all w ∈ Wh equivalence of norms

∥∇w∥L2(Ω) ≤ ∥w∥V ≤


3/2 ∥∇w∥L2(Ω)

and ellipticity

1
2
∥∇w∥

2
L2(Ω)

≤ ℜa(w, w).

Proof. For any w ∈ Wh the property (3.1) implies

κ2
∥w∥

2
L2(Ω)

= κ2
∥(1 − IH )w∥

2
L2(Ω)

≤ C2
IH

Col H2κ2
∥∇w∥

2
L2(Ω)

. �

Lemma 1 implies that the idealized corrector problems (4.2) are well-posed and the correction operator C∞ is
continuous in the sense that

∥C∞vH ∥V ≤ CC∥vH ∥V for all vH ∈ VH

for some constant CC ≈ 1. Since the inclusion Wh(ΩT ) ⊆ Wh holds, the well-posedness result of Lemma 1 carries
over to the corrector problems (3.3) in the subspace Wh(ΩT ) with the sesquilinear form aΩT .

The proof of well-posedness of the Petrov–Galerkin method (3.4) will be based on the fact that the difference
(C∞ − Cm)(v) decays exponentially with the distance from supp(v). In the next theorem, we quantify the difference
between the idealized and discrete correctors. The proof will be given in Appendix A of this paper and is based on
the exponential decay of the corrector C∞Λz itself, see Fig. 5. That figure also illustrates that the decay requires the
resolution condition (4.3), namely κ H . 1.

Theorem 1. Under the resolution condition (4.3) there exist constants C1 ≈ 1 ≈ C2 and 0 < β < 1 such that any
v ∈ VH , any T ∈ GH and any m ∈ N satisfy

∥∇(CT,∞v − CT,mv)∥L2(Ω) ≤ C1β
m
∥∇v∥L2(T ), (4.4)

∥∇(C∞v − Cmv)∥L2(Ω) ≤ C2


Col,mβm
∥∇v∥L2(Ω). � (4.5)
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Fig. 5. Modulus of the idealized test function Λz for m = ∞, H = 2−4, h = 2−7 in 2D in a logarithmically scaled plot. The dots indicate the grid
points of the coarse mesh. Left: κ = 25; right: κ = 26.

Provided h is chosen fine enough, the standard FEM over Gh is stable in the sense that there exists a constant CFEM
such that with γ (κ,Ω) from (2.3) there holds

CFEMγ (κ,Ω)
−1

≤ inf
v∈Vh\{0}

sup
w∈Vh\{0}

ℜa(v, w)

∥v∥V ∥w∥V
. (4.6)

This is actually a condition on the fine-scale parameter h. In general, the requirements on h depend on the stability of
the continuous problem [20].

Theorem 2 (Well-posedness of the Discrete Problem). Under the resolution conditions (4.3) and (4.6) and the
following oversampling condition

m ≥ |log
√

6Ca


ColC IH C IH ,V C2


Col,mCFEMγ (κ,Ω)

|

|log(β)|, (4.7)

problem (3.4) is well-posed and the constant CPG := 2C IH ,V CCCFEM satisfies
CPGγ (κ,Ω)

−1
≤ inf

vH ∈VH \{0}

sup
ṽH ∈VH \{0}

ℜa(vH , ṽH )

∥vH ∥V ∥ṽH ∥V
.

Proof. Let u H ∈ VH with ∥u H ∥V = 1. From (4.6) we infer that there exists some v ∈ Vh with ∥v∥V = 1 such that

ℜa(u H − C∞(ū H ), v) ≥

CFEMγ (κ,Ω)

−1
∥u H − C∞(ū H )∥V .

It follows from the structure of the sesquilinear form a that C∞(ū H ) solves the following adjoint corrector problem

a(C∞(ū H ), w) = a(u H , w) for all w ∈ Wh, (4.8)

cf. [28, Lemma 3.1]. Let ṽH := (1 − Cm)IH v ∈ VH . We have

a(u H , ṽH ) = a(u H , (1 − C∞)IH v) + a(u H , (C∞ − Cm)IH v). (4.9)

Since C∞ is a projection onto Wh , we have (1 − C∞)(1 − IH )v = 0 and, thus, (1 − C∞)IH v = (1 − C∞)v. The
solution properties (4.8) of C∞(ū H ) and (4.1)–(4.2) of C∞v prove a(u H ,C∞v) = a(C∞(ū H ), v). Hence,

ℜa(u H , (1 − C∞)IH v) = ℜa(u H − C∞(ū H ), v)

≥

CFEMγ (κ,Ω)

−1
∥u H − C∞(ū H )∥V .

Furthermore, the estimate (3.2) implies

1 = ∥u H ∥V = ∥IH (u H − C∞(ū H ))∥V ≤ C IH ,V ∥u H − C∞(ū H )∥V .
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The second term on the right-hand side of (4.9) satisfies with ∥u H ∥V = 1 and Lemma 1 that

|a(u H , (C∞ − Cm)IH v)| ≤


3/2Ca∥∇(C∞ − Cm)IH v∥L2(Ω).

Altogether, it follows that

ℜa(u H , ṽH ) ≥


1

C IH ,V CFEMγ (κ,Ω)
−


3
2

Ca∥∇(C∞ − Cm)IH v∥L2(Ω)


.

Theorem 1 and (3.1) show that

∥∇(C∞ − Cm)IH v∥L2(Ω) ≤ C2


Col,mβm
∥∇ IH v∥ ≤ C2


Col,mC IH


Colβ

m .

Hence, the condition (4.7) and ∥ṽH ∥V = ∥(1 − C∞)v∥V ≤ CC imply the assertion. �

Remark 1 (Adjoint Problem). Under the assumptions of Theorem 2, problem (3.4) is well-posed and, thus, it follows
from a dimension argument that there is non-degeneracy of the sesquilinear form a over VH × VH . Thus, the adjoint
problem to (3.4) is well-posed with the same stability constant as in Theorem 2.

The quasi-optimality result requires the following additional condition on the oversampling parameter m,

m ≥ |log


2C2


Col,mC2
aCPGγ (κ,Ω)


3/2


|

|log(β)|. (4.10)

Theorem 3 (Quasi-optimality). The resolution conditions (4.3) and (4.6) and the oversampling conditions (4.7) and
(4.10) imply that the solution u H to (3.4) with parameters H, h, and m and the solution uh of the standard Galerkin
FEM on the mesh Gh satisfy

∥uh − u H ∥V . ∥(1 − IH )uh∥V ≈ min
vH ∈VH

∥uh − vH ∥V .

Proof. Let e := uh − u H . The triangle inequality and Lemma 1 yield

∥e∥V ≤ ∥(1 − IH )uh∥V + ∥IH e∥V .

It remains to bound the second term on the right-hand side. The proof employs a standard duality argument, the
stability of the idealized method and the fact that our practical method is a perturbation of that ideal method. Let
zH ∈ VH be the solution to the dual problem

(∇vH , ∇ IH e) + κ2(vH , IH e) = a(vH , (1 − C∞)zH )

for all vH ∈ VH (cf. Remark 1). The choice of the test function vH = IH e implies that

∥IH e∥2
V = a(IH e, (1 − C∞)zH ) = a(IH e, (Cm − C∞)zH ) + a(IH e, (1 − Cm)zH ).

The identity IH (Cm − C∞)zH = 0, the resolution condition (4.3), the estimate (4.5), and the stability of the adjoint
problem imply for the first term on the right-hand side that

a(IH e, (Cm − C∞)zH ) ≤ Ca


3/2∥IH e∥V ∥∇(Cm − C∞)zH ∥L2(Ω)

≤ C2


Col,mCa


3/2∥IH e∥V βm
∥∇zH ∥

≤ C2


Col,mC2
aCPGγ (κ,Ω)


3/2βm

∥IH e∥2
V .

The condition (4.10) implies that this is ≤
1
2∥IH e∥2

V . The Galerkin orthogonality a(uh − u H , (1 − Cm)zH ) = 0, the
solution property (4.2) of C∞zH , the resolution condition (4.3) and the exponential decay (4.5) imply for the second
term

a(IH e, (1 − Cm)zH ) = a(IH uh − uh, (1 − Cm)zH )

= a(IH uh − uh, (C∞ − Cm)zH )

≤


3/2CaC2


Col,mβm
∥IH uh − uh∥V ∥∇zH ∥L2(Ω).
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The stability of the adjoint problem implies

∥∇zH ∥L2(Ω) ≤ CPGγ (κ,Ω)Ca∥IH e∥V .

Thus,

a(IH e, (1 − Cm)zH ) ≤


3/2C2
aC2


Col,mCPGβmγ (κ,Ω)∥IH uh − uh∥V ∥IH e∥V .

The term ∥IH e∥V can be absorbed and the oversampling condition (4.7) implies that βmCol,mγ (κ,Ω) is controlled
by some κ-independent constant. The combination with the foregoing displayed formulae concludes the proof. �

The following consequence of Theorem 3 states an estimate for the error u − u H .

Corollary 1. Under the conditions of Theorem 3, the discrete solution u H to (3.4) satisfies with some constant C ≈ 1
that

∥u − u H ∥V ≤ ∥u − uh∥V + C min
vH ∈VH

∥uh − vH ∥V .

In particular, provided that the solution satisfies u ∈ W 1,s(Ω) for 0 < s ≤ 1, the error decays as ∥u − u H ∥V ≤

O(H s). �

Remark 2. In the idealized case that m = ∞, we have uh − IH uh ∈ Wh and, thus,

a(uh − IH uh, (1 − C∞)vH ) = 0 for all vH ∈ VH .

Therefore, problem (3.4) and the Galerkin property show that u H = IH uh .

5. Numerical experiments

We investigate the method in three numerical experiments. The convergence history plots display the absolute error
in the norm ∥ · ∥V versus the mesh size H .

5.1. Plane wave on the square domain

On the unit square Ω = (0, 1)2, we consider the pure Robin problem ΓR = ∂Ω with data given by the plane wave
u(x) = exp(−iκx ·


0.6
0.8


).

Fig. 6a–c displays the convergence history for κ = 26, 27, 28 and the fine-scale mesh parameter h = 2−11. The
best-approximation error of continuous Q1 functions in ∥ · ∥V and the error of the standard Galerkin FEM on the
same coarse mesh are plotted for comparison. As expected, the standard FEM clearly exhibits the pollution effect,
and larger values of κ increase the discrepancy between the approximation error of the FEM and the theoretical best-
approximation by Q1 functions in the regime under consideration. In contrast, the approximation by the msPGFEM
can compete with the best-approximation on meshes that allow a meaningful representation of the solution. We stress
the fact that the convergence history plots merely take into account the coarse mesh-size H , but the computational
cost in the multiscale method is moderately higher than in the standard FEM due to the increased communication
caused by the coupling m ≈ log(κ).

For the oversampling parameter m = 2, the number of corrector problems to be solved for the finest mesh GH is
49 out of 1 048 576 when no symmetry is exploited.

Fig. 6d displays the dependence on the fine mesh parameter h for κ = 28 and oversampling parameter m = 6.
Since the multiscale method based on the fine grid Gh computes approximations of the FEM solution on that fine grid,
e.g. u H = IH uh for m = ∞ as in Remark 2, it is clear that the accuracy of the msPGFEM is limited by the accuracy
of the standard FEM on the fine scale. This can be observed in Fig. 6d. It can be also seen that a finer fine-scale
mesh-size h improves the error of the msPGFEM towards the best-approximation. In this two-dimensional example,
the quasi-optimality constant appears to be close to 1.

Next, we study the dependence on the oversampling parameter m. Fig. 7 displays the convergence history for
κ = 27 and κ = 28. The fine mesh parameter is h = 2−11 and m varies from m = 1 to m = 6. It turns out that for the
present configuration, the value m = 2 is sufficient for quasi-optimality. In the range where H is significantly larger
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Fig. 6. (a)–(c) Comparison of the msPGFEM with the best approximation in ∥ · ∥V and the standard Galerkin FEM for the 2D plane wave example
for κ = 26, 27, 28. (d) Dependence on the fine mesh parameter h in the 2D plane wave example with κ = 28.

Fig. 7. Convergence history for the 2D plane wave example with κ = 27 (left) and κ = 28 (right), h = 2−11 and varying m.

than κ−1 and the resolution condition is violated, larger oversampling parameters may lead to larger errors, which is
not surprising in view of the lack of decay, see also Fig. 5. This, however, is no more the case as soon as H is small
enough to allow for a meaningful representation of the wave.
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Fig. 8. Coarse mesh for the square domain with three scatterers from Section 5.2.

5.2. Multiple sound-soft scatterers in 2D

We consider the domain

Ω := (0, 1)2
\


5
16

,
7

16


×


5
16

,
7

16


∪


10
16

,
12
16


×


8

16
,

10
16


∪


4

16
,

6
16


×


10
16

,
13
16


from Fig. 8. The incident wave uin(x) = exp(−iκx ·


0.6
0.8


) is incorporated through the Robin boundary condition with

g := iκuin + ∂νuin on the outer boundary ΓR := {x ∈ {0, 1} or y ∈ {0, 1}}. On the remaining part of the boundary
ΓD := ∂Ω \ΓR we impose homogeneous Dirichlet conditions. We choose the fine mesh parameter as h = 2−11. Since
the exact solution is unknown, we compute a reference solution with the standard Q1 FEM on the fine mesh Gh and
we compare the coarse approximation with this reference solution. Errors committed by the fine scale are not included
in the discussion. Fig. 9 displays the convergence history for κ = 25 and κ = 26. The oversampling parameter m
varies from m = 1 to m = 4. As in the foregoing example, the value m = 2 for the oversampling parameter seems
to be sufficient for the quasi-optimality and even a quasi-optimality constant close to 1 in the range of wave numbers
considered here. In particular, the pollution effect that is visible for the standard Galerkin FEM is not present for the
msPGFEM. Reduced convergences rates which are expected from the presence of re-entrant corners are not visible in
this computational range. For the oversampling parameter m = 2, the number of corrector problems to be solved for
the finest mesh GH is 210 out of 61 952 when no symmetry is exploited.

5.3. Plane wave on the cube domain

On the unit cube Ω = (0, 1)3, we consider the pure Robin problem with data given by the plane wave u(x) =

exp(−iκx ·
1

√
38


2
3
5


).

We choose κ = 25. Fig. 10 compares the error of the msPGGEM h = 2−4 and m ∈ {1, 2, 3, 4} with the best-
approximation in the ∥ · ∥V norm and the error of the standard Galerkin FEM. Also in this example, the msPGFEM
is pollution-free for the oversampling parameter m ≥ 2. The quasi-optimality constant appears slightly larger than in
2D. For the oversampling parameter m = 2, the number of corrector problems to be solved for the finest mesh GH is
343 out of 262 144 when no symmetry is exploited.

Appendix. Proof of Theorem 1

For the sake of completeness we also present a proof of the exponential decay result Theorem 4 which is central
for the method. The idea of the proof is the same as in the previous proofs of the exponential decay [12,29,30,26,31]
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Fig. 9. Convergence history for the multiple scattering example from Section 5.2 for κ = 25 (left) and κ = 26 (right) h = 2−11.

Fig. 10. Convergence history for the 3D plane wave example for κ = 25 and h = 2−7.

in the context of diffusion problems. The difference especially with respect to [11] is that here the quasi-interpolation
is a projection. This simplifies the proofs and leads to slightly better rates in the exponential decay that have been
experimentally observed in [11].

Let Ih : C0(Ω) → Vh denote the nodal Q1 interpolation operator. Standard interpolation estimates and the inverse
inequality prove for any T ∈ GH and all q ∈ Q2(T ) the stability estimate

∥∇ Ihq∥L2(T ) ≤ C Ih ∥∇q∥L2(T ). (A.1)

In the proofs we will frequently make use of cut-off functions. We collect some properties in the following lemma.

Lemma 2. Let η ∈ S1(GH ) be a function with values in the interval [0, 1] satisfying the bound

∥∇η∥L∞(Ω) ≤ Cη H−1 (A.2)
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and let R := supp(∇η). Given any subset K ⊆ GH , any φ ∈ Wh satisfies for S = ∪K ⊆ Ω that

∥φ∥L2(S) . H∥∇φ∥L2(N(S)) (A.3)

∥(1 − IH )Ih(ηφ)∥L2(S) . H∥∇(ηφ)∥L2(N(S)) (A.4)

∥∇(ηφ)∥L2(S) . ∥∇φ∥L2(S∩{supp(η)}) + ∥∇φ∥L2(N(S∩R)). (A.5)

Proof. The property (3.1) readily implies (A.3). Furthermore, (3.1) implies

∥(1 − IH )Ih(ηφ)∥L2(S) ≤ HC IH


Col∥∇ Ih(ηφ)∥L2(N(S)).

Estimate (A.1) leads to

∥∇ Ih(ηφ)∥L2(N(S)) ≤ C Ih ∥∇(ηφ)∥L2(N(S)).

This proves (A.4). For the proof of (A.5) the product rule and (A.2) imply

∥∇(ηφ)∥L2(S) ≤ ∥∇φ∥L2(S∩{supp(η)}) + Cη H−1
∥φ∥L2(S∩R).

The combination with (A.3) concludes the proof. �

Theorem 4 (Decay). Under the resolution condition (4.3), there exists 0 < β < 1 such that, for any vH ∈ VH and all
T ∈ GH and m ∈ N,

∥∇CT,∞vH ∥L2(Ω\Nm (T )) ≤ Cβm
∥∇vH ∥L2(T ).

Proof. We define the cut-off function η ∈ S1(GH ) via

η ≡ 0 in Nm−3(T ) and η ≡ 1 in Ω \ Nm−2(T ).

Note that η is thereby also uniquely defined on the set R := supp(∇η). The shape-regularity implies that η satisfies
(A.2). Let vH ∈ VH and denote φ := CT,∞vH ∈ Wh . Elementary estimates lead to

∥∇φ∥
2
Ω\Nm (T ) ≤ |(∇φ, η∇φ)L2(Ω)| ≤ |(∇φ, ∇(ηφ))L2(Ω)| + |(∇φ, φ∇η)L2(Ω)|

≤ M1 + M2 + M3 + M4

for

M1 := |(∇φ, ∇((1 − Ih)(ηφ)))L2(Ω)| M2 := |(∇φ, ∇((1 − IH )Ih(ηφ)))L2(Ω)|

M3 := |(∇φ, ∇(IH Ih(ηφ)))L2(Ω)| M4 := |(∇φ, φ∇η)L2(Ω)|.

The property (A.1) proves

M1 ≤ ∥∇φ∥L2(R) ∥∇(ηφ − Ih(ηφ))∥L2(R) . ∥∇φ∥L2(R)∥∇(ηφ)∥L2(R).

Hence, it follows with (A.5) that

M1 . ∥∇φ∥L2(R)∥∇φ∥L2(N(R)).

Since w := (1 − IH )Ih(ηφ) ∈ Wh , the identity (4.1) and the fact that the support of w lies outside T imply
a(w, φ) = aT (w, vH ) = 0 and therefore

M2 = a(w, φ) + κ2(w, φ) = κ2(w, φ) ≤ κ2
∥w∥L2(N(R))∥φ∥L2(N(R)).

The estimates (A.3) and (A.4) and the resolution condition κ H . 1 from (4.3) imply

M2 . ∥∇φ∥L2(N2(R))∥∇(ηφ)∥L2(N2(R)).

The application of (A.5) yields

M2 . ∥∇φ∥L2(N2(R))(∥∇φ∥L2(N2(R)) + ∥∇φ∥L2(N(R))) . ∥∇φ∥
2
L2(N2(R))

.
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The function IH Ih(ηφ) vanishes outside N(R). Hence, the stability and approximation properties (3.1) and (A.1) lead
to

M3 ≤ ∥∇φ∥L2(N(R))∥∇(IH Ih(ηφ))∥L2(N(R))

. ∥∇φ∥L2(N(R))∥∇(ηφ)∥L2(N2(R)).

With (A.5) we obtain

M3 . ∥∇φ∥L2(N(R))(∥∇φ∥L2(N2(R)) + ∥∇φ∥L2(N(R))) . ∥∇φ∥
2
L2(N2(R))

.

For the term M4, the Lipschitz bound (A.2) and (A.3) prove

M4 ≤ ∥∇φ∥L2(R) ∥φ∥L2(R)Cη H−1 . ∥∇φ∥
2
L2(N(R))

.

Altogether, it follows for some constant C that

∥∇φ∥
2
L2(Ω\Nm (T ))

≤ C∥∇φ∥
2
L2(N2(R))

.

Recall that N2(R) = Nm(T )\Nm−5(T ). Since

∥∇φ∥
2
L2(Ω\Nm (T ))

+ ∥∇φ∥
2
L2(Nm (T )\Nm−5(T ))

= ∥∇φ∥
2
L2(Ω\Nm−5(T ))

,

we obtain

(1 + C−1)∥∇φ∥
2
L2(Ω\Nm (T ))

≤ ∥∇φ∥
2
L2(Ω\Nm−5(T ))

.

The repeated application of this argument proves for β̃ := (1 + C−1)−1 < 1 that

∥∇φ∥
2
L2(Ω\Nm (T ))

≤ β̃⌊m/5⌋
∥∇φ∥

2
L2(Ω)

. β̃⌊m/5⌋
∥∇vH ∥

2
L2(T )

.

This is the assertion. �

We proceed with the proof of Theorem 1.

Proof of Theorem 1. We define the cut-off function η ∈ S1(GH ) via

η ≡ 0 in Ω\Nm−1(T ) and η ≡ 1 in Nm−2(T ).

This function is thereby uniquely defined and satisfies the bound (A.2). Since (1 − IH )Ih(ηCT,∞v) ∈ Wh(ΩT ), we
deduce with Céa’s Lemma, the identity IHCT,∞v = 0 and the approximation and stability properties (3.1) and (A.1)
and the resolution condition (4.3) that

∥∇(CT,∞v − CT,mv)∥2
L2(Ω)

. ∥CT,∞v − (1 − IH )Ih(ηCT,∞v)∥2
V

= ∥(1 − IH )Ih(CT,∞v − ηCT,∞v)∥2
V,Ω\{η=1}

. ∥∇(1 − η)CT,∞v∥
2
L2(N(Ω\{η=1}))

. ∥∇CT,∞v∥
2
L2(N(Ω\{η=1}))

.

Note that N(Ω\{η = 1}) = Ω\Nm−3(T ). This and Theorem 4 prove (4.4).
Define z := (C∞ − Cm)v and zT := (CT,∞ − CT,m)v. The ellipticity from Lemma 1 proves

1
2
∥∇z∥2

L2(Ω)
≤

 
T ∈GH

a(z, zT )

.
We define the cut-off function η ∈ S1(GH ) via

η ≡ 1 in Ω\Nm+2(T ) and η ≡ 0 in Nm+1(T ).

This function is thereby uniquely defined and satisfies the bound (A.2). For any T ∈ GH we have (1− IH )Ih(ηz) ∈ Wh
with support outside ΩT . Hence, we obtain with z = Ihz that

a(z, zT ) = a(Ih(z − ηz), zT ) + a(IH Ih(ηz), zT ).
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The function z − Ih(ηz) vanishes on S := {η = 1}. Hence, the first term on the right-hand side satisfies

|a(Ih(z − ηz), zT )| ≤ Ca∥Ih(z − ηz)∥V,Ω\S∥zT ∥V .

The Friedrichs inequality with constant CF proves together with the stability (A.1) and the estimate (A.5) applied to
the cut-off function (1 − η) that

∥Ih(z − ηz)∥V,Ω\S .


1 + (CFκ H)2∥∇z∥L2(Ω\S) . ∥∇z∥L2(Ω\S).

Furthermore, IH Ih(ηz) vanishes on Ω \N(supp(1−η)). Hence, we infer from Friedrichs’ inequality and the resolution
condition (4.3), the stability properties (3.1) and (A.1) and (A.5) that

|a(zT , IH Ih(ηz))| . ∥∇z∥L2(N2(supp(1−η)))∥zT ∥V .

The sum over all T ∈ GH and the Cauchy inequality yield with the finite overlap of patches

∥∇z∥2
L2(Ω)

.


T ∈GH

∥∇z∥L2(N2(supp(1−η)))∥zT ∥V

.


Col,m∥∇z∥L2(Ω)


T ∈GH

∥zT ∥
2
V .

The combination with (4.4) concludes the proof. �
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Abstract Wepresent numerical upscaling techniques for a class of linear second-order
self-adjoint elliptic partial differential operators (or their high-resolution finite element
discretization). As prototypes for the application of our theory we consider bench-
mark multi-scale eigenvalue problems in reservoir modeling and material science.
We compute a low-dimensional generalized (possibly mesh free) finite element space
that preserves the lowermost eigenvalues in a superconvergent way. The approximate
eigenpairs are then obtained by solving the corresponding low-dimensional algebraic
eigenvalue problem. The rigorous error bounds are based on two-scale decompositions
of H1

0(�) by means of a certain Clément-type quasi-interpolation operator.
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1 Introduction

This paper presents and analyzes a novel numerical upscaling technique for comput-
ing eigenpairs of self-adjoint linear elliptic second order differential operators with
arbitrary positive bounded coefficients. The precise setting of the paper is as follows.
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338 A. Målqvist, D. Peterseim

Let � ⊂ Rd be a bounded polyhedral Lipschitz domain and let A ∈ L∞(�, Rd×d
sym )

be a matrix-valued coefficient with uniform spectral bounds 0 < α ≤ β < ∞,

σ(A(x)) ⊂ [α, β] (1.1)

for almost all x ∈ �. Wewant to approximate the eigenvalues of the prototypical oper-
ator − div(A∇•). The corresponding eigenproblem in variational formulation reads:
find pairs consisting of an eigenvalue λ ∈ R and associated non-trivial eigenfunction
u ∈ V := H1

0 (�) such that

a(u, v) :=
∫

�

(A∇u) · ∇v dx = λ

∫

�

uv dx =: λ(u, v)L2(�) (1.2)

for all v ∈ V . We are mainly interested in the lowermost eigenvalues of (1.2) or, more
precisely, in the lowermost eigenvalues of the discretized problem: find λh ∈ R and
associated non-trivial eigenfunctions uh ∈ Vh ⊂ V such that

a(uh, v) = λh(uh, v)L2(�) for all v ∈ Vh . (1.2.h)

Here and throughout the paper, the discrete space Vh ⊂ V shall be a conforming finite
element space of dimension Nh based on some regular finite element mesh Th of width
h.

Popular approaches for the computation of these eigenvalues include Lanczos/
Arnoldi-type iterations (as implemented, e.g., in [23]) or the QR-algorithm applied
directly to the Nh-dimensional finite element matrices. If a certain structure of the
discretization can be exploited (e.g., a hierarchy of finite element meshes and/or
spaces) some preconditioned outer iteration for the eigenvalue approximation may
be performed and linear problems are solved (approximately) in every iteration step
[13,19,20]; see also [1] and [27] and references therein.

Our aim is to avoid the application of any eigenvalue solver to the fine scale dis-
cretization (1.2.h) directly. We introduce a second, coarser discretization scale H > h
instead. On the corresponding coarse mesh TH , we compute a generalized finite ele-
ment space Vc of dimension NH � Nh . The solutions (λH , uc) ∈ R × Vc of

a(uc, v) = λH (uc, v)L2(�) for all v ∈ Vc, (1.2.H)

then yield accurate approximations of the first NH eigenpairs of (1.2.h) and, hence,
of the first NH eigenpairs of (1.2) (provided that Vh is properly chosen).

The computation of the coarse space Vc involves the (approximate) solution of NH

linear equations on the fine scale (one per coarse node).We emphasize that these linear
problems are completely independent of each other. They can be computed in parallel
without any communication.

The error λH − λh between corresponding eigenvalues of (1.2.H) and (1.2.h),
i.e., the error committed by the upscaling from the fine discretization scale h to the
coarse discretization scale H , is expressed in terms of H . Without any assumptions
on the smoothness of the eigenfunctions of (1.2) or (1.2.h), we prove that these errors
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Computation of eigenvalues by numerical upscaling 339

are at least of order H4. Note that a standard first-order conforming finite element
computation on the coarse scale yields accuracy H2 under full H2(�) regularity, see
e.g. [22]. Since our estimates are both, of high order (at least H4) and independent
of the underlying regularity, the accuracy of our approximation may actually suffice
to fall below the error λh − λ of the fine scale discretization which is of order Ch2s

where both the constant C and the exponent s ∈ [0, 1] depend on the regularity of the
data (convexity of �, differentiability and variability of A) in a crucial way.

The idea of employing a two-level techniques for the acceleration of eigensolvers is
not new. The two-gridmethod of [37] allows certain post-processing (solution of linear
problems on the fine scale). For standard first-order conforming finite element coarse
spaces, this technique decreases the eigenvalue error from H2 to H4 (up to fine scale
errors as above) if the corresponding eigenfunctions are H2(�)-regular. The regularity
assumption is essential and not justified on non-convex domains or for heterogeneous
and highly variable coefficients. However, the post-processing technique applies as
well to the generalized finite element coarse space Vc and yields eigenvalue errors of
order H6 without any regularity assumptions.

In cases with singular eigenfunctions (due to re-entrant corners in the domain or
isolated jumps of the coefficient), one might as well use modern mesh-adaptive algo-
rithms driven by some a posteriori error estimator as proposed and analyzed, e.g.,
in [3,5,6,10–12,22,24,26]. We are not competing with these efficient algorithms.
However, adaptive mesh refinement has its limitations. For instance, if the diffu-
sion coefficient A is highly variable on microscopic scales, the mesh width has to
be sufficiently small to resolve these variations [31]. For problems in geophysics or
material sciences with characteristic geometric features on microscopic length scales,
this so-called resolution condition is often so restrictive that the initial mesh must be
chosen very fine and further refinement exceeds computer capacity. Our method is
especially designed for such situations which require coarsening rather than refine-
ment.

A particular application of our methodology is the computation of ground states of
Bose–Einstein condensates as solutions of theGross–Pitaevskii equation.Here, certain
resolution (small h) is required in order to ensure unique solvability of the discrete non-
linear eigenvalue problem. It is already exposed in [16] that our upscaling approach
leads to a significant speed-up in computational time because the expensive iterative
solver for the non-linear eigenproblem needs to be applied solely on a space of very
low dimension.

The main tools in this paper are localizable orthogonal decompositions of H1
0(�)

(or its subspace Vh) into coarse and fine parts. These decompositions are presented
in Sect. 3. The two-level method for the approximation of eigenvalues is presented in
Sect. 4. Section 5 contains its error analysis. The efficient local approximation of the
coarse space, the generalization to non-nested grids, a post-processing technique, and
further complexity issues are discussed in Sect. 6. Finally, Sect. 7 demonstrates the
performance of the method in numerical experiments.

In the remaining part of this paper, we will frequently make use of the notation
b1 � b2 which abbreviates b1 ≤ Cb2, with somemultiplicative constantC > 0 which
only depends on the domain � and the parameter γ (cf. (2.1) below) that measures
the quality of some underlying finite element mesh. We emphasize that the C does not
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340 A. Målqvist, D. Peterseim

depend on the mesh sizes H , h, the eigenvalues, or the coefficient A. Furthermore,
b1 ≈ b2 abbreviates b1 � b2 � b1.

2 Finite element spaces and quasi-interpolation

This section presents some preliminaries on finite element meshes, spaces, and inter-
polation.

2.1 Finite element meshes

We consider two discretization scales H > h > 0. Let TH (resp. Th) denote corre-
sponding regular (in the sense of [8]) finite element meshes of� into closed simplices
with mesh-size functions 0 < H ∈ L∞(�) defined by H |T = diam T =: HT for all
T ∈ TH (resp. 0 < h ∈ L∞(�) defined by h|t = diam t =: ht for all t ∈ Th). The
mesh sizes may vary in space but we will not exploit the possible mesh adaptivity in
this paper.

The error bounds, typically, depend on the maximal mesh sizes ‖H‖L∞(�). If no
confusion seems likely, we will use H also to denote the maximal mesh size instead
of writing ‖H‖L∞(�). For the sake of simplicity we assume that Th is derived from
TH by some regular, possibly non-uniform, mesh refinement. However, this condition
is not essential and Sect. 6.2 will discuss possible generalizations.

As usual, the error analysis depends on the constant γ > 0 which represents the
shape regularity of the finite element mesh TH ;

γ := max
T∈TH

γT with γT := diam T

diam BT
for T ∈ TH , (2.1)

where BT denotes the largest ball contained in T .

2.2 Finite element spaces

The first-order conforming finite element space corresponding to TH is given by

VH := {v ∈ V | ∀T ∈ TH , v|T is a polynomial of total degree ≤ 1}. (2.2)

LetNH denote the set of interior vertices of TH . For every vertex z ∈ NH , let φz ∈ VH

denote the corresponding nodal basis function (tent/hat function) determined by nodal
values

φz(z) = 1 and φz(y) = 0 for all y �= z ∈ NH .

These nodal basis functions form a basis of VH . The dimension of VH equals the
number of interior vertices,

NH := dim VH = |NH |.
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Computation of eigenvalues by numerical upscaling 341

Let Vh ⊃ VH denote some conforming finite element space corresponding to the
fine mesh Th . It can be the space of continuous piecewise affine functions on the fine
mesh or any other (generalized) finite element space that contains VH , e.g., the space of
continuous p-th order piecewise polynomials as in [33]. By Nh := dim Vh we denote
the dimension of Vh . For standard choices of Vh , this dimension is proportional to the
number of interior vertices in the fine mesh Th .

2.3 Quasi-interpolation

The key tool in our construction will be the bounded linear surjective Clément-type
(quasi-)interpolation operator IH : H1

0(�) → VH presented and analyzed in [9].
Given v ∈ H1

0(�), IHv := ∑
z∈NH

(IHv)(z)φz defines a (weighted) Clément inter-
polant with nodal values

(IHv)(z) := (v, φz)L2(�)

(1, φz)L2(�)

(2.3)

for z ∈ NH . The nodal values are weighted averages of the function over nodal
patches ωz := suppφz . Recall the (local) approximation and stability properties of
the interpolation operator IH [9]: There exists a generic constant CIH such that for
all v ∈ H1

0(�) and for all T ∈ TH it holds

H−1
T ‖v − IHv‖L2(T ) + ‖∇(v − IHv)‖L2(T ) ≤ CIH ‖∇v‖L2(ωT ), (2.4)

where ωT := ∪{K ∈ TH | T ∩ K �= ∅}. The constant CIH depends on the shape
regularity parameter γ of the finite element mesh TH (see (2.1) above) but not on HT .

Note that there exists a constant Col > 0 that only depends on γ such that the
number of elements covered by ωT is uniformly bounded (w.r.t. T ) by Col,

max
T∈TH

|{K ∈ TH | K ⊂ ωT }| ≤ Col. (2.5)

Both constant, CIH and Col, may be hidden in the notation “�” introduced at the end
of Sect. 1.

3 Two-scale decompositions

Two-scale decompositions of functions u ∈ Vh into some macroscopic/coarse part
uc plus some microscopic/fine part uf with a certain orthogonality relation are at the
very heart of this paper. The macroscopic or coarse part will be an element of a low-
dimensional (classical or generalized) finite element space based on some coarse finite
element mesh. The microscopic or fine part may oscillate on fine scales that cannot
be represented on the coarse mesh.

We stress that all subsequent results are valid even if h = 0, i.e., if Vh is replaced
withV = H1

0 (�). Actually, the structure ofVh being the space of continuous piecewise
polynomials is never exploited. As far as the theory is concerned, Vh could be any
space (finite or infinite dimensional) that satisfies VH � Vh ⊆ H1

0 (�).
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The initial coarse space VH may as well be generalized. This will be discussed in
Sect. 6.2.

3.1 L2-orthogonal two-scale decomposition

We define the fine scale space

Vf := kernel
(
IH |Vh

) ⊂ Vh,

which will take over the role of the microscopic/fine part in all subsequent decompo-
sitions.

Our particular choice of a quasi-interpolation operator gives rise to the follow-
ing orthogonal decomposition. Remember that (•, •)L2(�) := ∫

�
• • dx abbreviates

the canonical scalar product in L2(�) and let ‖ • ‖ := √
(•, •)L2(�) abbreviate the

corresponding norm of L2(�).

Lemma 3.1 (L2-orthogonal two-scale decomposition) Any function u ∈ Vh can be
decomposed uniquely into the sum of uH := IH |−1

VH
(IHu) ∈ VH and uf := u − uH ∈

Vf with
(uH , uf)L2(�) = 0. (3.1)

The orthogonality implies stability in the sense of

‖uH‖2 + ‖uf‖2 = ‖u‖2.

Proof of Lemma 3.1 It is easily verified that the restriction of IH on the finite element
space VH is invertible. This yields the decomposition.

For the proof of orthogonality, let vH = ∑
z∈NH

vH (z)φz ∈ VH and vf ∈ Vf be
arbitrary. Since IHvf = 0, we have that (φz, vf)L2(�) = (IHvf)(z)

∫
�

φz dx = 0 for
all z ∈ NH . This yields

(vH , vf)L2(�) =
∑

z∈NH

vH (z)(φz, vf)L2(�) = 0

and shows that VH and Vf are orthogonal subspaces of Vh . ��
We may rewrite Lemma 3.1 as

Vh = VH ⊕ Vf and (VH , Vf)L2(�) = 0. (3.2)

Remark 3.1 (L2-projection onto the finite element space) Note that the operator IH is
well-defined as a mapping from L2(�) onto VH . In particular, it is stable in the sense
that for any v ∈ L2(�), it holds that ‖IHv‖ � ‖v‖. From the arguments of Lemma 3.1
one easily verifies that the L2-orthogonal projection 
L2

VH
: L2(�) → VH onto the
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finite element space VH may be characterized via the modified Clément interpolation
(2.3),


L2

VH
= IH |−1

VH
IH .

Furthermore, it holds Vf = kernel(
L2

VH
|Vh ), i.e., Vf might as well be characterized via


L2

VH
. This does not change the method. For theoretical purposes, we prefer to work

with IH because it is a local operator.

3.2 a-Orthogonal two-scale decomposition

The orthogonalization of the decomposition (3.2) with respect to the scalar product
a(•, •) := ∫

�
(A∇•) · ∇ • dx yields the definition of a generalized finite element

space Vc, that is the a-orthogonal complement of Vf in Vh . Given v ∈ Vh , define the
a-orthogonal fine scale projection operator Pfv ∈ Vf by

a(Pfv,w) = a(v,w) for all w ∈ Vf .

Wedefine the energy norm |||•||| := √
a(•, •) (the norm induced by the scalar product

a).

Lemma 3.2 (a-orthogonal two-scale decomposition) Any function u ∈ Vh can be
decomposed uniquely into u = uc + uf , where

uc := (1 − Pf)u ∈ (1 − Pf)VH =: Vc
and

uf := Pfu ∈ Vf = kernel(IH |Vh ).

The decomposition is orthogonal

a(uc, uf) = 0, (3.3)

and, hence, stable in the sense of

|||uc|||2 + |||uf |||2 = |||u|||2. (3.4)

In other words,
Vh = Vc ⊕ Vf and a(Vc, Vf) = 0. (3.5)

We shall emphasize at this point that the decompositions in Lemma 3.1 and
Lemma 3.2 are different in general. In particular, the fine scale part vf may not be
the same.

The orthogonalization procedure (with respect to a(•, •)) does not preserve the
L2-orthogonality. However, the key observation of this section is that the resulting
decomposition (3.5) is almost orthogonal in L2(�).
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Theorem 3.3 (L2-quasi-orthogonality of the a-orthogonal decomposition) The
decomposition Vh = Vc ⊕ Vf from Lemma 3.2 is L2-quasi-orthogonal in the sense
that for all vc ∈ Vc and all vf ∈ Vf , it holds

(vc, vf)L2(�) � H2‖∇vc‖‖∇vf‖ ≤ α−1H2|||vc||||||vf |||. (3.6)

The decomposition is stable in the sense that

‖vc‖2 + ‖H−1vf‖2 � α−1|||vc + vf |||2. (3.7)

Proof Given any vc ∈ Vc and vf ∈ Vf , Lemma 3.1 implies that

(IHvc, vf)L2(�) = 0.

Since IHvf = 0, the Cauchy–Schwarz inequality, (2.4), and (2.5) yield

(vc, vf)L2(�) = (vc − IHvc, vf − IHvf)L2(�) � H2‖∇vc‖‖∇vf‖. (3.8)

This is the quasi-orthogonality. The same arguments show that

(H−1vf , H
−1vf)L2(�) =

(
H−1(vf − IHvf), H

−1(vf − IHvf)
)
L2(�)

�
∑

T∈TH

‖∇vf‖2L2(ωT )

� α−1|||vf |||2.

This, Friedrichs’ inequality

‖vc‖ ≤ π−1 diam�‖∇vc‖,

and (3.4) readily prove the stability estimate. ��

4 Upscaled approximation of eigenvalues and eigenfunctions

This section presents a new scheme for the approximation of eigenvalues and eigen-
functions of (1.2.h) or (1.2). Section 4.1 recalls the variational formulation and some
characteristic properties of the problem. The new upscaled approximation is then
introduced in Sect. 4.2.

4.1 Variational formulation and fine scale discretization

For problem (1.2), there exists a countable number of eigenvalues λ(�) (� ∈ N) and
corresponding eigenfunctions u(�) ∈ V . Recall their characterization as solutions of
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the variational problem

a(u(�), v) = λ(�)(u(�), v)L2(�) for all v ∈ V . (4.1)

Since A is symmetric, all eigenvalues are real and positive. They can be sorted ascend-
ing

0 < λ(1) ≤ λ(2) ≤ λ(3) ≤ · · · .

Depending on the actual domain� and the coefficient A, there may be multiple eigen-
values. A multiple eigenvalue is repeated several times according to its multiplicity
in the enumeration above. Let u(�) (� ∈ N) be normalized to one in L2(�), i.e.,
‖u(�)‖ = 1. It is well known that the eigenfunctions enjoy (or, in the case of multiple
eigenvalues, may be chosen such that they fulfill) the orthogonality constraints

a(u(�), u(m)) = (u(�), u(m))L2(�) = 0 if � �= m. (4.2)

TheRayleigh–Ritz discretization of (4.1)with respect to the fine scale finite element
space Vh reads: find λ

(�)
h ∈ R and non-trivial u(�)

h ∈ Vh such that

a(u(�)
h , v) = λ

(�)
h (u(�)

h , v)L2(�) for all v ∈ Vh . (4.3)

Since Vh is a finite-dimensional subspace of V , we can order the discrete eigenvalues
similar as the original ones

0 < λ
(1)
h ≤ λ

(2)
h ≤ λ

(3)
h ≤ · · · ≤ λ

(Nh)
h .

Again, multiple eigenvalues are repeated according to their multiplicity. Let u(�)
h

(� = 1, 2, . . . , Nh) be normalized to one in L2(�), i.e., ‖u(�)
h ‖ = 1. The discrete

eigenfunctions satisfy (or, in the case of multiple eigenvalues, can be chosen such that
they satisfy) the orthogonality constraints

a
(
u(�)
h , u(m)

h

)
=

(
u(�)
h , u(m)

h

)
L2(�)

= 0 if � �= m. (4.4)

We do not intend to solve the fine scale eigenproblem (4.3). We aim to approximate
its eigenpairs (λ

(�)
h , u(�)

h ) with the help of the coarse space Vc defined in Lemma 3.2.

4.2 Coarse scale discretization

Recall the definition of the coarse space

Vc := (1 − Pf)VH
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from Lemma 3.2. This means that Vc is the image of VH under the projection operator
1 − Pf , where Pf is the a-orthogonal projection onto the space

Vf := {v ∈ Vh | IHv = 0}.

Since the intersection of VH and Vf is the trivial subspace (cf. Lemma 3.1), it holds

dim Vc = dim VH = NH .

Moreover, the images of the nodal basis functions φz (z ∈ NH ) under (1 − Pf) yield
a basis of Vc,

Vc = span{(1 − Pf)φz | z ∈ NH }. (4.5)

In order to actually compute those basis functions, we need to approximate NH

solutions ψz = Pfφz ∈ Vf of

a(ψz, v) = a(φz, v) for all v ∈ Vf . (4.6)

These problems are linear. The only difference to a standard Poisson problem is that
there are some linear constraints hidden in the space Vf , that is, the quasi-interpolation
of trial and test functions vanishes. In practice, these constraints are realized using
Lagrange multipliers.

The linear problems (4.6) may be solved in parallel. Moreover, Sect. 6.1 below will
show that these linear problems may be restricted to local subdomains of diameter
≈ | log(H)|H centered around the coarse vertex z, so that the complexity of solving
all corrector problems exceeds the cost of solving one linear Poisson problem on the
fine mesh only by a factor that depends algebraically on | log(H)|.

The Rayleigh–Ritz discretization of (4.3) [and (4.1)] with respect to the generalized
finite element space Vc reads: find λ

(�)
H ∈ R and non-trivial u(�)

c ∈ Vc such that

a
(
u(�)
c , v

)
= λ

(�)
H

(
u(�)
c , v

)
L2(�)

for all v ∈ Vc. (4.7)

The assembly of the corresponding finite element stiffness and mass matrices requires
only the evaluation of the corrector functions ψz = Pfφz ∈ Vf computed previously.
In general, these matrices are not sparse. However, either the dimension of the coarse
problem NH � Nh is so small that the lack of sparsity is not an issue or the matrices
may be approximated by sparsematrices with negligible loss of accuracy (see Sect. 6.1
below).

The discrete eigenvalues are ordered (multiple eigenvalues are repeated according
to their multiplicity)

0 < λ
(1)
H ≤ λ

(2)
H ≤ λ

(3)
H ≤ · · · ≤ λ

(NH )
H .

Let also u(�)
c (� = 1, 2, . . . , NH ) be normalized to one in L2(�), i.e., (u(�)

c , u(�)
c )L2(�)

= 1. The discrete eigenfunctions satisfy (or, in the case of multiple eigenvalues, can
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be chosen such that they satisfy) the orthogonality constraints

a
(
u(�)
c , u(m)

c

)
=

(
u(�)
c , u(m)

c

)
L2(�)

= 0 if � �= m. (4.8)

5 Error analysis

In the subsequent paragraphs we will present error bounds for the approximate eigen-
values and eigenfunctions based on the variational techniques from [34] (which are
based on [2] on their part); see also [4].

5.1 Two-scale decomposition revisited

The eigenfunctions allow a different (with respect to Sect. 3) characterization of a
macroscopic function, that is, any function spanned by eigenfunctions related to the �

lowermost eigenvalues. Define

E� := span
{
u(1)
h , . . . , u(�)

h

}
. (5.1)

We will have a closer look at the quasi-orthogonality result of Lemma 3.2 given some
macroscopic function u ∈ E�.

Lemma 5.1 (L2-quasi-orthogonality of the a-orthogonal decomposition of macro-
scopic functions) Let � ∈ N and let u = uc + uf ∈ E� with ‖u‖ = 1, where uc ∈ Vc
(resp. uf ∈ Vf ) denotes the coarse scale part (resp. fine scale part) of u according to
the a-orthogonal decomposition in Lemma 3.2. Then it holds

|||uc||| ≤
√

λ
(�)
h , (5.2)

|||uf ||| � �

(
λ

(�)
h

)3/2

α
H2, and (5.3)

|(uc, uf)L2(�)| � �

(
λ

(�)
h

α

)2

H4. (5.4)

Proof Let δ j ≤ 1, j = 1, 2, . . . , �, be the coefficients in the representation of u

by eigenfunctions, that is, u = ∑�
j=1 δ j u

( j)
h . Then (5.2) follows from the fact that

(1 − Pf) is a projection and the obvious bound |||u|||2 ≤ λ
(�)
h .

For the proof of (5.3), we employ some algebraic manipulations and Eq. (4.3),

|||uf |||2 = a(u, uf) =
�∑

j=1

δ j a(u( j)
h , uf) =

�∑

j=1

δ jλ
( j)
h (u( j)

h , uf)L2(�). (5.5)
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Lemma 3.1, the Cauchy–Schwarz inequality, (2.4), and (2.5) yield

(
u( j)
h , uf

)
L2(�)

� α−1H2|||u( j)
h ||||||uf ||| (5.6)

(cf. (3.8)). The combination of (5.5)–(5.6), |||u( j)
h |||2 = λ

( j)
h ≤ λ

(�)
h and δ j ≤ 1 yields

the upper bound of |||uf |||.
The inequality (5.4) follows readily from Theorem 3.3 and the bounds (5.2)–(5.3).

��
Remark 5.1 (Improved L2-quasi-orthogonality under regularity) Consider the full
space Vh = V . Then, in certain cases, e.g., if � is convex and the coefficient
A is constant, we have that any macroscopic function u ∈ E� is in H2(�) and
‖∇2u‖ � λ(�)/α‖u‖. Such an instance of regularity gives rise to an additional power
of Hλ(�)/α in the estimates (5.3) and (5.4) in Lemma 5.1. This is due to the approxi-
mation property

‖v − IHv‖ � H2‖v‖H2(�) (5.7)

for v ∈ V ∩ H2(�), and the possible modification

(
u( j), uf

)
L2(�)

=
(
u( j) − IHu

( j), uf − IHuf
)
L2(�)

� H3λ( j)

α2 |||uf |||

of (5.6).

5.2 Estimates for approximate eigenvalues

We first introduce the Rayleigh quotient, which is defined for non-trivial v ∈ Vh by

R(v) := a(v, v)

(v, v)
.

Recall that the �th eigenvalue of (4.3) is characterized via theminmax-principle (which
goes back to Poincaré [30])

λ
(�)
h = min

S∈S�(Vh)
max

v∈S\{0} R(v), (5.8)

where S�(V ) denotes the set of �-dimensional subspaces of Vh . This principle applies
equally well to the coarse problem (4.7), i.e.,

λ
(�)
H = min

S∈S�(Vc)
max

v∈S\{0} R(v) (5.9)

characterizes the �th discrete eigenvalue (� ≤ NH ). The conformity Vc ⊂ Vh(⊆ V )

yields monotonicity

(λ(�) ≤ ) λ
(�)
h ≤ λ

(�)
H for all � = 1, 2, . . . , NH . (5.10)
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The following theorem gives an estimate in the opposite direction.

Theorem 5.2 (Bound for the eigenvalue error) Let H be sufficiently small so that
H � �−1/4

√
α

λ
(�)
h

. Then it holds that

λ
(�)
H − λ

(�)
h

λ
(�)
h

� �

(
λ

(�)
h

α

)2

H4 for all � = 1, 2, . . . , NH . (5.11)

Proof Recall the definition of E� in (5.1) and define

σ
(�)
H := max

u∈E�:(u,u)L2(�)
=1

|(uf , uf)L2(�) + 2(uc, uf)L2(�)|,

where uc ∈ Vc (resp. uf ∈ Vf ) denotes the coarse scale part (resp. fine scale part) of
u ∈ E� according to the a-orthogonal decomposition in Lemma 3.2. The L2-norm of
uf satisfies the estimate

‖uf‖2 = (u, uf)L2(�) − (uc, uf)L2(�)

= (u − IHu, uf − IHuf)L2(�) − (uc, uf)L2(�)

� �

(
λ

(�)
h

α

)2

H4 + |(uc, uf)L2(�)|,

which follows from Lemma 3.1, (2.4), and (2.5). Hence, Lemma 5.1 shows that

σ
(�)
H � �

(
λ

(�)
h

α

)2

H4.

If H is chosen small enough so that σ (�)
H ≤ 1

2 (i.e., H � �−1/4
√

α

λ(�) ), then Lemma 6.1

in [34] shows that

λ
(�)
H ≤

(
1 − σ

(�)
H

)−1
λ

(�)
h ≤

(
1 + 2σ (�)

H

)
λ

(�)
h .

Inserting our estimate for σ
(�)
H readily yields the assertion. ��

The triangle inequality allows to control the approximation error with respect to the
continuous eigenvalues (4.1) by

λ
(�)
H − λ(�) � λ

(�)
h − λ(�) + �

(
λ

(�)
h

)3

α2 H4.

The first term λ
(�)
h − λ(�) depends on the choice of the space Vh and the regularity of

corresponding eigenfunctions in the usual way.
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Remark 5.2 (Improved eigenvalue error bound for smooth eigenfunction)With regard
to Remark 5.1, the error bound in Theorem 5.2 may be improved in the ideal case
V = Vh provided that the first � eigenfunctions are regular in the sense of ‖∇2u( j)‖ �
λ( j)/α. The improved bound reads

λ
(�)
H − λ(�)

λ(�)
� �

(
λ(�)

α

)3

H5 for all � = 1, 2, . . . , NH . (5.12)

This improved bound applies also to the case where Vh is a finite element space if h
is sufficiently small.

The improved bound might still be pessimistic in the sense that the error in the
�th eigenvalue/vector depends on the regularity of all previous eigenfunctions. The
recent theory [21] shows that this is not necessarily true. Moreover, there might be
smoothness also in the single summands of the two-scale decomposition which is not
exploited.

5.3 Estimates for approximate eigenfunctions

We turn to the error in the approximate eigenfunctions. Again, we follow the receipt
provided in [34].

Theorem 5.3 (Bound for the eigenfunction error) Let λ
(�)
h be an eigenvalue of mul-

tiplicity r , i.e., λ
(�)
h = · · · = λ

(�+r−1)
h with corresponding eigenspace spanned by

the orthonormal basis {u(�+ j)
h }r−1

j=0. Let the pairs (λ
(�)
H , u(�)

c ), . . . , (λ
(�+r−1)
H , u(�+r−1)

c )

be the Rayleigh–Ritz approximations solving Eq. (4.7) with ‖u(�+ j)
c ‖ = 1 for

j = 0, 1, . . . , r − 1. If � + r − 1 ≤ NH and if H � �−1/3(1 + ρ)−1/3
√

α/λ
(�)
h

is sufficiently small, then there exist an orthonormal basis of span({u(�+ j)
h }r−1

j=0), let us

denote the basis functions ũ(�+ j)
h , such that for all j = 0, 1, . . . , r − 1,

|||ũ(�+ j)
h − u(�+ j)

c ||| �
√

�
(λ

(�)
h )3/2

α
H2 + �(1 + ρ)

(λ
(�)
h )2

α3/2 H3, (5.13)

‖ũ(�+ j)
h − u(�+ j)

c ‖ � �(1 + ρ)

(
λ

(�)
h

α

)3/2

H3, (5.14)

where ρ := max j �∈{�,�+1,...,�+r−1}
λ

(�)
h

|λ(�)
h −λ

( j)
H | .

Proof The analysis presented in [34, Lemma 6.4 and Theorem 6.2] shows that, for
any j = 0, 1, . . . , r − 1, there is a function ũ(�+ j)

c ∈ span({u(�+i)
c }r−1

i=0 ) such that

∥∥∥u(�+ j)
h − ũ(�+ j)

c

∥∥∥ ≤ (1 + ρ)‖Pfu
(�+ j)
h ‖.
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According to the a-orthogonal decomposition in Lemma 3.2,Pfu
(�+ j)
h is the fine scale

part of u(�+ j)
h . Hence, the interpolation error estimate (2.4) and Lemma 5.1 yield

r−1∑

j=1

∥∥∥u(�+ j)
h − ũ(�+ j)

c

∥∥∥
2

� (1 + ρ)2�2

(
λ

(�)
h

α

)3

H6.

If the right-hand side is small enough, i.e., if the multiplicative constant hidden in

H � �−1/3(1 + ρ)−1/3
√

α/λ
(�)
h is sufficiently small, the linear transformation of the

orthonormal basis {u(�+ j)
c }r−1

j=0 which defines the set of functions {ũ(�+ j)
c }r−1

j=0 may be
replaced with an orthogonal transformation, without any harm to the estimate. In this
regime, the application of the inverse orthogonal transformation to the errors proves
the L2 bound (5.14).

For the proof of (5.13), observe that for any v ∈ span({u(�+i)
h }r−1

i=0 ) with ‖v‖ = 1
it holds

|||v − u(�)
c |||2 = λ

(�)
h − 2λ(�)

h

(
v, u(�)

c

)
L2(�)

+ λ
(�)
H

= λ
(�)
h

(
2 − 2

(
v, u(�)

c

)
L2(�)

)
+ λ

(�)
H − λ

(�)
h

= λ
(�)
h

∥∥∥v − u(�)
c

∥∥∥
2 + λ

(�)
H − λ

(�)
h . (5.15)

The assertion then follows by combining Eq. (5.15) with v = ũ(�+ j)
h , (5.14), and

Theorem 5.2. ��

6 Practical aspects

This section discusses the efficient approximation of the corrector functionsPfφz from
(4.6) by localization, the generalization to non-nested meshes, some post-processing
technique, and the overall complexity of our method.

6.1 Localization of fine scale computations

The construction of the coarse space Vc is based on the fine scale equations (4.6) which
are formulated on the whole domain �. This makes them expensive to compute.
However, in [25] it was shown that Pfφz decays exponentially fast outside of the
support of the coarse basis function φz . We specify this feature as follows. Let k ∈ N.
We define nodal patches ωz,k of k coarse grid layers centered around the node z ∈ NH

by

ωz,1 := suppφz = ∪ {T ∈ TH | z ∈ T },
ωz,k := ∪ {

T ∈ TH | T ∩ ωz,k−1 �= ∅}
for k ≥ 2. (6.1)
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The result in the decay of Pfφz in [25] can be expressed as follows. For all vertices
z ∈ NH and for all k ∈ N, it holds

‖A1/2∇Pfφz‖L2(�\ωz,k )
� e−(α/β)1/2k |||Pfφz |||. (6.2)

For moderate contrast β/α, this motivates the truncation of the computations of the
basis functions to local patches ωz,k . We approximate ψz = Pfφz ∈ Vf from (4.6)
with ψz,k ∈ Vf(ωz,k) := {v ∈ Vf | v|�\ωx,k = 0} such that

a(ψz,k, v) = a(φz, v) for all v ∈ Vf(ωz,k). (6.3)

We emphasize that

Vf(ωz,k) = {v ∈ Vh | v|�\ωx,k = 0, ∀y ∈ NH ∩ ωz,k : (v, φy)L2(�) = 0},

i.e., in a practical computation with lagrangian multipliers only one linear constraint
per coarse vertex in the patch ωx,k needs to be considered.

The localized computations yield a modified coarse space V k
c with a local basis

V k
c = span{φz − ψz,k | z ∈ NH }. (6.4)

The number of non-zero entries of the corresponding finite element stiffness and mass
matrix is proportional to kd NH (note that we expect N 2

H non-zero entries without
the truncation). Due to the exponential decay, the very weak condition k ≈ | log H |
implies that the perturbation of the idealmethod due to this truncation is of higher order
and the estimates in Theorems 5.2 and 5.3 remain valid. We refer to [25] for details
and proofs. The modified localization procedures from [15] and [18] with improved
accuracy and stability properties might as well be applied.

6.2 Non-nested meshes and general coarsening

In Sect. 2.1, we have assumed that Th is derived from TH by some regular refinement,
i.e., that the finite element meshes Th and TH are nested. This condition may be
impracticable in relevant applications, e.g., in cases where the coefficient encodes
microscopic geometric features such as jumps that require accurate resolution and the
reasonable resolution can only be achieved by highly unstructured meshes (cf. Fig. 3
in Sect. 7.3 below).

A closer look to the previous error analysis shows that the nestedness of the under-
lying meshes is never used explicitly but enters only implicitly via the nestedness of
corresponding spaces VH ⊂ Vh . It turns out that all results generalize to the case where
the standard finite element space VH on the coarse level is replaced with some general
(possibly mesh free) coarse space ṼH ⊂ Vh with a local basis {φ̃ j } j∈J ; J being some
finite index set. Precise necessary conditions for the theory read:
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(a) Local support and finite overlap. For all j ∈ J , diam(supp φ̃ j ) � H and there
is a finite number Col independent of H such that no point x ∈ � belongs to the
support of more than Col basis functions.

(b) Non-negativity, continuity and boundedness. For all j ∈ J , φ̃ j : � → [0, 1] is
continuous and ‖∇φ̃ j‖L∞(�) � H−1.

(c) Partition of unity up to a boundary strip. For all x ∈ �, it holds that dist(x, ∂�) �
H or

∑
j∈J φ̃ j (x) = 1.

Under the conditions (a)–(c), the operator IH , defined by IHv := ∑
j∈J

(v,φ̃ j )L2(�)

(1,φ̃ j )L2(�)

φ̃ j

for v ∈ V , satisfies the required stability and approximation properties. Their proofs
may easily be extracted from [9], where a slightly modified operator is considered.
For details regarding the generalization of the decompositions and error bounds of this
paper to some general coarse space characterized by (a)–(c), we refer to [15], where
everything (including the exponential decay of the coarse basis and its localization)
has been worked out for a linear boundary value problem.

The conditions (a)–(c) are natural conditions for general coarse spaces used in
domain decomposition methods and algebraic multigrid methods; see [36, Ch. 3.10]
for an overview and [32] for a particular construction without any coarse mesh. A
very simple mesh-based construction which remains very close to the standard finite
element space VH can be found in [35, Section 2.2] and works as follows. Given some
regular finemesh Th , consider an arbitrary regular quasi-uniform coarse mesh TH with
H > h. Let Vh (resp. VH ) be the corresponding finite element space of continuous
Th-piecewise (resp. TH -piecewise) affine functions and let I nodalh : VH ⊂ C0(�) →
Vh denote the nodal interpolation operator with respect to the fine mesh. The nodal
interpolation of standard nodal basis functions of the coarse mesh defines a nested
initial coarse space

ṼH := span
{
I nodalh φz | z ∈ NH

}
⊂ Vh (6.5)

and Vc := (1 − Pf)ṼH is the corresponding coarse space of our method. The desired
properties (a)–(c) of ṼH are proven in [35, Lemma 2.1]. Section 7.3 shows numerical
results based on this construction.

6.3 Postprocessing

As already mentioned in the introduction, the two-grid method of [37] allows a certain
post-processing (solution of linear problems on the fine scale) of coarse eigenpairs. So
far, this method was mainly used to post-process approximate eigenpairs of standard
finite element approximations on a coarse mesh, i.e., approximations with respect
to the space VH . However, the framework presented in [37] is more general and
readily applies to the modified coarse space Vc. Given some approximate eigenpair
(λ

(�)
H , u(�)

c ) ∈ R×Vc with ‖u(�)
c ‖ = 1 that solves (4.7), the post-processed approximate

123

Author's personal copy
C.1 175



354 A. Målqvist, D. Peterseim

eigenfunction u(�)
c,post ∈ Vh is characterized uniquely by

a
(
u(�)
c,post, v

)
= λ

(�)
H (u(�)

c , v)L2(�) (6.6)

for all v ∈ Vh . The corresponding post-processed eigenvalue is

λ
(�)
H,post := a(u(�)

c,post, u
(�)
c,post)

(u(�)
c,post, u

(�)
c,post)L2(�)

. (6.7)

The error analysis of [37] relies solely on the nestedness Vc ⊂ Vh and, in essence,
yields the error estimates

∣∣∣λ(�)
H,post − λ

(�)
h

∣∣∣ ≤ |||u(�)
h − u(�)

c,post|||2

�
(
λ

(�)
H − λ

(�)
h

)2 +
(
λ

(�)
h

)2 ‖u(�)
h − u(�)

c ‖2.

The first estimate follows from (5.15) which remains valid for u(�)
c and λ

(�)
H replaced

with u(�)
c,post and λ

(�)
H,post. The second estimate follows from the construction and stan-

dard inequalities (cf. [37, Eq. (4.3)]). Hence, with u(�)
h suitably chosen, Theorems 5.2

and 5.3 imply that the error of the post-processed eigenvalues (resp. post-processed
eigenfunctions) is at least of order H6 (resp. H4). As for all our previous results, the
rates do not depend on any regularity of the eigenfunctions. In the third numerical
experiment of Sect. 7 we will also show results for this post-processing technique.

6.4 Complexity

Finally, we shall comment on the overall complexity of our approach. Consider quasi-
uniform meshes of size H and h and corresponding conforming first-order finite
element spaces VH and Vh . We want to approximate the eigenvalues related to Vh .

In order to set up the coarse space Vc, we need to solve NH linear problems with
approximately kd Nh/NH degrees of freedom each; the parameter k being the trun-
cation parameter as above. Since almost linear complexity is possible (using, e.g.,
multilevel preconditioning techniques), the cost for solving one of these problems up
to a given accuracy is proportional to the number of degrees of freedom Nh/NH up
to possible logarithmic factors. This yields an overall complexity of kd Nh log(Nh)

(resp. NH Nh log(Nh) if kd ≥ NH ) for setting up the coarse problem. Note that this
effort can be reduced drastically either by considering the independence of the linear
problems in terms of parallelism or by exploiting a possible periodicity in the problem
and the mesh. In the latter case, only very few of the problems have to be computed
because all the other ones are equivalent up to translation or rotation of coordinates.

On top of the assembling, an NH -dimensional eigenvalue problem is to be solved.
The complexity of this depends only on NH , the number of eigenvalues of interest,
and the truncation parameter k but not on the critically large parameter Nh .
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Fig. 1 Initial uniform
triangulation of the L-shape
domain (5 degrees of freedom)

The cost of the post-processing presented in Sect. 6.3 is proportional to one fine
solve for each eigenpair of interest, i.e., proportional to Nh up to some logarithmic
factor.

7 Numerical experiments

Three numerical experiments shall illustrate our theoretical results. While the first
two experiments consider nested coarse and fine meshes, the third experiments uses
the generalized coarsening strategy of Sect. 6.2. In all experiments, we focus on the
case without localization. The localization (as discussed in Sect. 6.1) has been studied
extensively for the linear problem in [14,15,25] and for semi-linear problems in [17].
In the present context of eigenvalue approximation, we are interested in observing
the enormous convergence rate which is 4 or higher for the eigenvalues. In order to
achieve this rate also with truncation, patches have to be large (at least 4 layers of
elements) which pays off only asymptotically when H is small enough.

7.1 Constant coefficient on L-shaped domain

Let� := (−1, 1)2\[0, 1]2 be the L-shaped domain. Consider the constant scalar coef-
ficient A1 = 1 and uniform coarse meshes with mesh widths

√
2H = 2−1, . . . , 2−4

of � as depicted in Fig. 1.
The reference mesh Th has maximal mesh width h = 2−7/

√
2. We consider some

P1 conforming finite element approximation of the eigenvalues on the reference mesh
Th and compare these discrete eigenvalues λ

(�)
h with coarse scale approximations

depending on the coarse mesh size H .
Table 1 shows results for the case without truncation, i.e., all linear problems have

been solved on the whole of �.
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Table 1 Errors e(�)(H) =: λ
(�)
H −λ

(�)
h

λ
(�)
h

for � = 1, . . . , 20, constant coefficient A1, and various choices of

the coarse mesh size H

� λ
(�)
h e(�)(1/2

√
2) e(�)(1/4

√
2) e(�)(1/8

√
2) e(�)(1/16

√
2)

1 9.6436568 0.004161918 0.000041786 0.000000696 0.000000014

2 15.1989733 0.009683715 0.000083718 0.000000888 0.000000011

3 19.7421815 0.024238729 0.000199984 0.000001930 0.000000022

4 29.5280022 0.084950011 0.000679046 0.000006309 0.000000074

5 31.9266947 0.120246865 0.001032557 0.000011298 0.000000169

6 41.4911125 – 0.002220585 0.000019622 0.000000264

7 44.9620831 – 0.002837949 0.000022540 0.000000257

8 49.3631818 – 0.003535358 0.000027368 0.000000295

9 49.3655616 – 0.004143842 0.000031434 0.000000343

10 56.7367306 – 0.006494922 0.000052862 0.000000606

11 65.4137240 – 0.013504833 0.000094150 0.000000995

12 71.0950435 – 0.013314963 0.000095197 0.000001077

13 71.6015951 – 0.011792861 0.000084001 0.000000851

14 79.0044010 – 0.021302527 0.000155038 0.000001526

15 89.3721008 – 0.038951872 0.000233603 0.000002613

16 92.3686575 – 0.042125029 0.000253278 0.000002442

17 97.4392146 – 0.033015921 0.000254700 0.000002435

18 98.7544790 – 0.039634464 0.000264156 0.000002482

19 98.7545515 – 0.046865242 0.000268012 0.000002500

20 101.6764284 – 0.045797998 0.000311683 0.000003071

0.01

1

100

10000

Fig. 2 Scalar coefficient A2 used in the second numerical experiment and initial uniform triangulation of
the unit square (1 degree of freedom)

For fixed �, the rate of convergence of the eigenvalue error λ
(�)
H − λ

(�)
h in terms

of H observed in Table 1 is between 6 and 7 which is even better than predicted in
Theorem 5.2 and in Remark 5.1.
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Table 2 Errors e(�)(H) =: λ
(�)
H −λ

(�)
h

λ
(�)
h

for � = 1, . . . , 20, rough coefficient A2, and various choices of the

coarse mesh size H

� λ
(�)
h e(�)(1/2

√
2) e(�)(1/4

√
2) e(�)(1/8

√
2) e(�)(1/16

√
2)

1 21.4144522 5.472755371 0.237181706 0.010328293 0.000781683

2 40.9134676 – 0.649080539 0.032761482 0.002447049

3 44.1561133 – 1.687388874 0.097540102 0.004131422

4 60.8278691 – 1.648439518 0.028076168 0.002079812

5 65.6962136 – 2.071005692 0.247424446 0.006569640

6 70.1273082 – 4.265936007 0.232458016 0.016551520

7 82.2960238 – 3.632888104 0.355050163 0.013987920

8 92.8677605 – 6.850048057 0.377881216 0.049841235

9 99.6061234 – 10.305084010 0.469770376 0.026027378

10 109.1543283 – – 0.476741452 0.005606426

11 129.3741945 – – 0.505888044 0.062382302

12 138.2164330 – – 0.554736550 0.039487317

13 141.5464639 – – 0.540480876 0.043935515

14 145.7469718 – – 0.765411709 0.034249528

15 152.6283573 – – 0.712383825 0.024716759

16 155.2965039 – – 0.761104705 0.026228034

17 158.2610708 – – 0.749058367 0.091826207

18 164.1452194 – – 0.840736127 0.118353184

19 171.1756923 – – 0.946719951 0.111314058

20 179.3917590 – – 0.928617606 0.119627862

7.2 Rough coefficient with multiscale features

Let � := (0, 1)2 be the unit square. The scalar coefficient A2 (see Fig. 2) is
piecewise constant with respect to the uniform Cartesian grid of width 2−6. Its
values are taken from the data of the SPE10 benchmark, see http://www.spe.org/
web/csp/. The coefficient is highly varying and strongly heterogeneous. The contrast
for A2 is large, β(A2)/α(A1) ≈ 4 · 106. Consider uniform coarse meshes of size√
2H = 2−1, 2−2, . . . , 2−4 of � (cf. Fig. 2). Note that none of these meshes resolves

the rough coefficient A2 appropriately. Hence, (local) regularity cannot be exploited
on coarse meshes.

Again, the reference mesh Th has width h = 2−7/
√
2 and we compare the discrete

eigenvalues λ
(�)
h (with respect to some P1 conforming finite element approximation of

the eigenvalues on the reference mesh Th) with coarse scale approximations depend-
ing on the coarse mesh size H . Table 2 shows the errors and allows us to estimate the
average rate around 4 which matches our expectation from the theory. We emphasize
that the large contrast does not seem to affect the accuracy of our method in approx-
imating the eigenvalues λ

(�)
h . However, the accuracy of λ

(�)
h may be affected by the

high contrast and the lack of regularity caused by the coefficient.
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Fig. 3 Left Scalar coefficient A3 used in the third numerical experiment. A3 takes the value 100 in the
gray shaded inclusions and the value 1 elsewhere. Right Un structured fine mesh Th aligned with jumps of
the coefficient A3

Table 3 Errors e(�)(H) =: λ
(�)
H −λ

(�)
h

λ
(�)
h

for � = 1, . . . , 20, coefficient A3, and various choices of the coarse

mesh size H

� λ
(�)
h e(�)(1/2

√
2) e(�)(1/4

√
2) e(�)(1/8

√
2) e(�)(1/16

√
2)

1 25.6109462 0.025518831 0.000572341 0.000017083 0.000000700

2 58.9623566 – 0.005235813 0.000090490 0.000002710

3 67.5344854 – 0.006997582 0.000154850 0.000006488

4 98.2808694 – 0.023497502 0.000358178 0.000011675

5 121.2290664 – 0.052366141 0.000563438 0.000016994

6 125.2014779 – 0.066627585 0.000747688 0.000019934

7 156.0597873 – 0.145676350 0.001579177 0.000034329

8 168.2376096 – 0.095360287 0.001320185 0.000043781

9 197.4467434 – 0.343991317 0.002888471 0.000049479

10 209.4657306 – – 0.003223901 0.000056318

11 222.4472476 – – 0.003431462 0.000080284

12 245.5656759 – – 0.005906282 0.000102243

13 253.7074603 – – 0.006215809 0.000121646

14 288.0756442 – – 0.013859535 0.000180899

15 298.8903269 – – 0.010587124 0.000138404

16 311.4410556 – – 0.012159268 0.000161510

17 324.6865434 – – 0.012143676 0.000176624

18 336.7931865 – – 0.016554437 0.000233067

19 379.5697606 – – 0.023254268 0.000325324

20 386.9938901 – – 0.028772395 0.000383532
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Table 4 Errors e(�)(H) =: λ
(�)
H,post−λ

(�)
h

λ
(�)
h

after post-processing for � = 1, . . . , 20, coefficient A3, and

various choices of the coarse mesh size H

� λ
(�)
h e(�)(1/2

√
2) e(�)(1/4

√
2) e(�)(1/8

√
2) e(�)(1/16

√
2)

1 25.6109462 0.001559704 0.000003765 0.000000008 3.5e−10

2 58.9623566 – 0.000191532 0.000000213 1.9e−08

3 67.5344854 – 0.000284980 0.000000474 0.000000001

4 98.2808694 – 0.002239689 0.000002253 0.000000004

5 121.2290664 – 0.007461217 0.000005065 0.000000008

6 125.2014779 – 0.011284614 0.000006826 0.000000008

7 156.0597873 – 0.042466017 0.000023867 0.000000024

8 168.2376096 – 0.025093182 0.000027547 0.000000042

9 197.4467434 – 0.186960343 0.000072471 0.000000051

10 209.4657306 – – 0.000105777 0.000000079

11 222.4472476 – – 0.000131569 0.000000129

12 245.5656759 – – 0.000286351 0.000000213

13 253.7074603 – – 0.000268463 0.000000255

14 288.0756442 – – 0.000915102 0.000000473

15 298.8903269 – – 0.000762135 0.000000403

16 311.4410556 – – 0.000873769 0.000000504

17 324.6865434 – – 0.000955392 0.000000642

18 336.7931865 – – 0.001335246 0.000000977

19 379.5697606 – – 0.002896202 0.000001886

20 386.9938901 – – 0.007202657 0.000001908

7.3 Particle composite modeled by an unstructured mesh

Let� := (0, 1)2 be the unit square. In this experiment, the scalar coefficient A3 models
heat conductivity in some model composite material with randomly dispersed circular
inclusions as depicted in Fig. 3. The coefficient A3 takes the value 100 in the gray
shaded inclusions and the value 1 elsewhere. In order to resolve the discontinuities, we
simply align the fine mesh Th with the boundaries of the inclusions (see Fig. 3). The
mesh size of Th satisfies 2−9 � h � 2−7. Note that this fine mesh Th is solely based on
geometric resolution and shape regularity. The grading towards the inclusions is not
adapted to the characteristic behavior of the eigenfunctions. However, this meshmight
be the actual output of some commercial mesh generator or modeling tool. Sufficient
resolution could be achieved with fewer degrees of freedom, however, this would
require more sophisticated discretization spaces; we refer to [7,28,29] for possible
choices and further references.

As in the previous experiment, we consider uniform coarse meshes of size
√
2H =

2−1, 2−2, . . . , 2−4 of � (cf. Fig. 2). Note that these meshes neither resolves the coef-
ficient A3 appropriately nor can be refined to Th in a nested way. For the construction
of the upscaling approximation we employ the generalized coarse space defined in
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(6.5) in Sect. 6.2. We compare the discrete eigenvalues λ
(�)
h (with respect to some P1

conforming finite element approximation of the eigenvalues on the reference mesh Th)
with coarse scale approximations depending on the coarse discretization parameter H .
Table 3 shows the results which clearly support our claim that the nestedness of coarse
and fine meshes is not essential and that upscaling far beyond the characteristic length
scales of the problem (i.e., the radii of the inclusions and their distances) is possible.

For this problem, we have also computed the post-processed approximations
according to Sect. 6.3. Table 4 shows the error for the eigenvalues which are more
accurate by several orders of magnitude. The experimental rates are roughly between
5 and 6 in Table 3 without post-processing and around 9 to 10 after post-processing
in Table 4.
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TWO-LEVEL DISCRETIZATION TECHNIQUES FOR GROUND
STATE COMPUTATIONS OF BOSE-EINSTEIN CONDENSATES∗

PATRICK HENNING† , AXEL MÅLQVIST‡ , AND DANIEL PETERSEIM§

Abstract. This work presents a new methodology for computing ground states of Bose–Einstein
condensates based on finite element discretizations on two different scales of numerical resolution. In
a preprocessing step, a low-dimensional (coarse) generalized finite element space is constructed. It
is based on a local orthogonal decomposition of the solution space and exhibits high approximation
properties. The nonlinear eigenvalue problem that characterizes the ground state is solved by some
suitable iterative solver exclusively in this low-dimensional space, without significant loss of accuracy
when compared with the solution of the full fine scale problem. The preprocessing step is independent
of the types and numbers of bosons. A postprocessing step further improves the accuracy of the
method. We present rigorous a priori error estimates that predict convergence rates H3 for the
ground state eigenfunction and H4 for the corresponding eigenvalue without pre-asymptotic effects;
H being the coarse scale discretization parameter. Numerical experiments indicate that these high
rates may still be pessimistic.

Key words. eigenvalue, finite element, Gross–Pitaevskii equation, numerical upscaling, two-grid
method, multiscale method
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1. Introduction. Bose–Einstein condensates (BEC) are formed when a dilute
gas of trapped bosons (of the same species) is cooled down to ultra-low temperatures
close to absolute zero [10, 19, 22, 38]. In this case, nearly all bosons are in the same
quantum mechanical state, which means that they loose their identity and become
indistinguishable from each other. The BEC therefore behaves like one “super par-
ticle” where the quantum state can be described by a single collective wave function
Ψ. The dynamics of a BEC can be modeled by the time-dependent Gross–Pitaevskii
equation (GPE) [26, 31, 37], which is a nonlinear Schrödinger equation given by

i� ∂tΨ = − �2

2m
�Ψ + VeΨ +

4π�2aN

m
|Ψ|2Ψ.(1.1)

Here, m denotes the atomic mass of a single boson, N is the number of bosons
(typically in the span between 103 and 107), � is the reduced Plank’s constant, and
Ve is an external trapping potential that confines the system. The nonlinear term
in the equation describes the effective two-body interaction between the particles. If
the scattering length a is positive, the interaction is repulsive; if it is negative the
interaction is attractive. For a = 0 there is no interaction and (1.1) becomes the
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Schrödinger equation. The parameter a changes according to the considered species
of bosons. We only consider the case a ≥ 0 in this paper. We are mainly interested
in the ground state solution of the problem. This stationary state of the BEC is of
practical relevance, e.g., in the context of atom lasers [35, 30, 41]. The ansatz Ψ(x, t) =

ĉe−iλt̂u(x̂), with the unknown chemical potential of the condensate λ and a proper
nondimensionalization (x, t) �→ (x̂, t̂), reduces (1.1) to the time-independent GPE

−1

2
�u+ V u+ β|u|2u = λu with β =

4πaN

xs
,

where xs denotes the dimensionless length unit and where V denotes the accordingly
rescaled potential. (See, e.g., [8] for a derivation of the time-independent GPE.) The
ground state of the BEC is the lowest energy state of the system and is therefore
stable. It minimizes the corresponding energy

E(v) =

∫

Rd

1

2
|∇v|2 + V |v|2 +

β

2
|v|4 dx

among all L2-normalized H1 functions. For any L2-normalized minimizer u, λ =
E(u)+ β

2 ‖u‖4
L4(Rd) is the smallest eigenvalue of the GPE. In this paper, we shall focus

on the computation of this ground state eigenvalue. Eigenfunctions whose energies are
larger than the minimum energy are called excited states of the BEC and are not sta-
ble in general but may satisfy relaxed concepts of stability such as metastability (see
[36]). Numerical approaches for the computation of ground states of a BEC typically
involve an iterative algorithm that starts with a given initial value and diminishes the
energy of the density functional E in each iteration step. Different methodologies are
possible: methods related to normalized gradient flows [5, 3, 1, 2, 5, 7, 24, 6, 9, 20],
methods based on a direct minimization of the energy functional [8, 11], explicit
imaginary-time marching [32], the DIIS method (direct inversion in the iterated sub-
space) [40, 16], or the optimal damping algorithm [14, 12]. We emphasize that, in any
case, the dimensionality of the underlying space discretization is the crucial factor for
computational complexity because it determines the cost per iteration step. The aim
of this paper is to present a low-dimensional space discretization that reduces the cost
per step and, hence, speeds up the iterative solution procedure considerably. In the
literature, there are only a few contributions on rigorous numerical analysis of space
discretizations of the GPE. In particular, explicit orders of convergence are widely
missing. In [44, 17], Zhou and coworkers proved the convergence of general finite
dimensional approximations that were obtained by minimizing the energy density E
in a finite dimensional subspace of H1

0 (Ω). This justifies, e.g., the direct minimization
approach proposed in [8]. The iteration scheme is not specified and not part of the
analysis. The results of Zhou were generalized by Cancès, Chakir, and Maday [13]
allowing explicit convergence rates for finite element approximations and Fourier ex-
pansions. A priori error estimates for a conservative Crank–Nicolson finite difference
method and a semi-implicit finite difference method were derived by Bao and Cai [4].

In this work, we propose a new space discretization strategy that involves a
pre-processing step and a postprocessing step in standard P1 finite element spaces.
The preprocessing step is based on the numerical upscaling procedure suggested by
Målqvist and Peterseim [33] for linear eigenvalue problems. In this step, a low-
dimensional approximation space is assembled. The assembling is based on some
local orthogonal decomposition that incorporates problem-specific information. The
constructed space exhibits high approximation properties. The nonlinear problem is
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then solved in this low-dimensional space by some standard iterative scheme (e.g., the
ODA [14]) with very low cost per iteration step. The postprocessing step is based
on the two-grid method suggest by Xu and Zhou [42]. We emphasize that both pre-
and postprocessing involve only the solution of linear elliptic Poisson-type problems
using standard finite elements. We give a rigorous error analysis for our strategy
to show that we can achieve convergence orders of H4 for the computed eigenvalue
approximations without any preasymptotic effects. We do not focus on the itera-
tive scheme that is used for solving the discrete minimization problem. The various
choices previously mentioned, e.g., the ODA [14], are possible. Our new strategy is
particularly beneficial in experimental setups with different types of bosons, because
the results of the preprocessing step can be reused over and over again independently
of β. Similarly, the data gained by preprocessing can be recycled for the computation
of excited states. Other applications include setups with potentials that oscillate at
a very high frequency (e.g., to investigate Josephson effects [41, 43]). Here, normally
very fine grids are required to resolve the oscillations, whereas our strategy still yields
good approximations in low-dimensional spaces and, hence, reduces the costs within
the iteration procedure tremendously.

2. Model problem. Consider the dimensionless GPE in some bounded Lip-
schitz domain Ω ⊂ Rd, where d = 1, 2, 3. Since ground state solutions show an
extremely fast decay (typically exponential), the restriction to bounded domains and
homogeneous Dirichlet condition are physically justified. We seek (in the sense of dis-
tributions) the minimal eigenvalue λ and corresponding L2-normalized eigenfunction
u ∈ H1

0 (Ω) with

−divA∇u + bu+ β|u|2u = λu in Ω,

u = 0 on ∂Ω.

The underlying data satisfies the following assumptions:
(a) If d = 1, the domain Ω is an interval. If d = 2 (resp., d = 3), Ω has a

polygonal (resp., polyhedral) boundary.
(b) The diffusion coefficient A ∈ L∞(Ω,Rd×dsym) is a symmetric matrix-valued func-

tion with uniform spectral bounds γmax ≥ γmin > 0,

(2.1) σ(A(x)) ⊂ [γmin, γmax] for almost all x ∈ Ω.

(c) b ∈ L2(Ω) is nonnegative (almost everywhere).
(d) β ∈ R is nonnegative.

The weak solution of the GPE minmizes the energy functional E :H1
0 (Ω)→R given by

E(φ) :=
1

2

∫

Ω

A∇φ · ∇φ dx+
1

2

∫

Ω

bφ2 dx+
1

4

∫

Ω

β|φ|4 dx for φ ∈ H1
0 (Ω).

Problem 2.1 (weak formulation of the GPE). Find u ∈ H1
0 (Ω) such that u ≥ 0

a.e. in Ω, ‖u‖L2(Ω) = 1, and

E(u) = inf
v∈H1

0 (Ω)

‖v‖L2(Ω)=1

E(v).

It is well known (see, e.g., [31] and [13]) that there exists a unique solution u ∈
H1

0 (Ω) of Problem 2.1. This solution u is continuous in Ω̄ and positive in Ω. The
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corresponding eigenvalue λ := 2E(u)+2−1β‖u‖4
L4(Ω) of the GPE is real, positive, and

simple. Observe that the eigenpair (u, λ) satisfies
∫

Ω

A∇u · ∇φ dx +

∫

Ω

buφ dx+

∫

Ω

β|u|2uφ dx = λ

∫

Ω

uφ dx

for all φ ∈ H1
0 (Ω). Moreover, λ is the smallest among all possible eigenvalues and

satisfies the a priori bound λ < 4E(u).

3. Discretization. This section recalls classical finite element discretizations
and presents novel two-grid approaches for the numerical solution of Problem 2.1.
The existence of a minimizer of the functional E in discrete spaces is easily seen.
However, uniqueness does not hold in general. We note that unlike as claimed in [44]
the uniqueness proof given in [31] does not generalize to arbitrary subspaces of the
original solution space.

Remark 3.1 (existence of discrete solutions [13]). Let W denote a finite dimen-
sional, nonempty subspace of H1

0 (Ω); then there exists a minimizer uW ∈ W with
‖uW ‖L2(Ω) = 1, (uW , 1)L2(Ω) ≥ 0, and

E(uW ) = inf
w∈W

‖w‖L2(Ω)=1

E(w).

If (Wi)i∈N represents a dense family of such subspaces, then any sequence of corre-
sponding minimizers (ui)i∈N with (ui, 1)L2(Ω) ≥ 0 converges to the unique solution u
of Problem 2.1.

3.1. Standard finite elements. We consider two regular simplicial meshes TH
and Th of Ω. The finer mesh Th is obtained from the coarse mesh TH by regular
mesh refinement. The discretization parameters h ≤ H represent the mesh size, i.e.,
hT := diam(T ) (resp., HT := diam(T )) for T ∈ Th (resp., TH) and h := maxT∈Th

{hT}
(resp., H := maxT∈TH {HT }). For T = TH , Th, let

P1(T ) = {v ∈ L2(Ω) | for all T ∈ T , v|T is a polynomial of total degree ≤ 1}

denote the set of T -piecewise affine functions. Classical H1
0 (Ω)-conforming finite

element spaces are then given by

Vh := P1(Th) ∩H1
0 (Ω) and VH := P1(TH) ∩H1

0 (Ω) ⊂ Vh.

Note that on the fine discretization scale, a different choice of polynomial degree, e.g.,
piecewise quadratic functions, is possible. This would be a better choice for smooth
data that allows for a regular ground state. Our method and its analysis essentially
require the inclusion H1

0 (Ω) ⊃ Vh ⊃ VH . The discrete problem on the fine grid Th
reads as follows.

Problem 3.2 (reference finite element discretization on the fine mesh). Find
uh ∈ Vh with (uh, 1)L2(Ω) ≥ 0, ‖uh‖L2(Ω) = 1 and

E(uh) = inf
vh∈Vh

‖vh‖L2(Ω)=1

E(vh).(3.1)

The corresponding eigenvalue is given by λh := 2E(uh) + 2−1β‖uh‖4
L4(Ω).

According to Remark 3.1, uh is not determined uniquely in general. Moreover,
λh is not necessarily the smallest eigenvalue of the corresponding discrete eigenvalue
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problem. In what follows, uh refers to an arbitrary solution of Problem 3.2. It will
serve as a reference to compare further (cheaper) numerical approximations with. The
accuracy of uh has been studied in [13]. Under the assumption of sufficient regularity,
optimal orders of convergence are obtained (cf. (4.5)).

3.2. Preprocessing motivated by numerical homogenization. The aim
of this paper is to accurately approximate the fine scale reference solution uh of
Problem 3.2 within some low-dimensional subspace of Vh. For this purpose, we in-
troduce a two-grid upscaling discretization that was initially proposed in [34] for
the treatment of multiscale problems. The framework has been applied to nonlinear
problems in [27], to linear eigenvalue problems in [33], and in the context of the dis-
continuous Galerkin [23] and partition of unity methods [28]. This contribution aims
to generalize and analyze the methodology to the case of an eigenvalue problem with
an additional nonlinearity in the eigenfunction. We emphasize that the coexistence of
two difficulties, the nonlinear nature of the eigenproblem itself and the additional non-
linearity in the eigenfunction, requires new essential ideas far beyond simply plugging
together existing theories for the isolated difficulties.

Let NH denote the set of interior vertices in TH . For z ∈ NH we let Φz ∈ VH
denote the corresponding nodal basis function with Φz(z) = 1 and Φz(y) = 0 for all
y ∈ NH\{z}. We define a weighted Clément-type interpolation operator (cf. [15])

IH : H1
0 (Ω) → VH , v �→ IH(v) :=

∑

z∈NH

vzΦz with vz :=
(v,Φz)L2(Ω)

(1,Φz)L2(Ω)
.(3.2)

It is easily shown by Friedrichs’ inequality and the Sobolev embedding H1
0 (Ω) ↪→

L6(Ω) (for d ≤ 3) that

a(v, φ) :=

∫

Ω

A∇v · ∇φ dx+

∫

Ω

bvφ dx for v, φ ∈ H1
0 (Ω)

defines a scalar product in H1
0 (Ω) and induces a norm ‖ · ‖H1(Ω) :=

√
a(·, ·) on H1

0 (Ω)
which is equivalent to the standard H1-norm. By means of the interpolation operator
IH defined in (3.2), we construct an a-orthogonal decomposition of the space Vh into
a low-dimensional coarse space V c

H,h (with favorable approximation properties) and

a high-dimensional residual space V f
H,h. The residual or “fine” space is the kernel of

the interpolation operator restricted to Vh,

V f
H,h := kernel(IH |Vh

).(3.3.a)

The coarse space is simply defined as the orthogonal complement of V f
H,h in Vh with

respect to a(·, ·). It is characterized via the a-orthogonal projection P f : H1
0 (Ω) →

V f
H,h onto the fine space given by

a(P fv, φ) = a(v, φ) for all φ ∈ V f
H,h.

By defining P c := 1 − P f , the coarse space is given by

V c
H,h := P cVH .(3.3.b)

A basis of V c
H,h is given by (P cΦz)z∈NH

with dimV c
H,h = dimVH . With this definition

we obtain the splitting

Vh = V c
H,h ⊕ V f

H,h.(3.3.c)
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Some favorable properties of the decomposition, in particular its L2-quasi-orthogonality,
are discussed in section 6.2. The minimization problem in the low-dimensional space
V c
H,h reads as follows.

Problem 3.3 (preprocessed approximation). Find uc
H ∈ V c

H,h with (uc
H , 1) ≥ 0,

‖uc
H‖L2(Ω) = 1, and

E(uc
H) = inf

vc∈V c
H,h

‖vc‖L2(Ω)=1

E(vc).

The corresponding eigenvalue in V c
H,h is given by λc

H := 2E(uc
H) + 2−1β‖uc

H‖4
L4(Ω).

Remark 3.4 (practical aspects of the decomposition).

(a) The assembly of the corresponding finite element matrices requires only the
evaluation of P fΦz, i.e., the solution to one linear Poisson-type problem per
coarse vertex. This can be done in parallel. Section 3.3 below will show that
these linear problems may be restricted to local subdomains centered around
the coarse vertices without loss of accuracy. Hence, even in a serial computing
setup, the complexity of solving all corrector problems is equivalent (up to
factor | log(H)|) to the cost of solving one linear Poisson problem on the
fine mesh.

(b) The preprocessing step is independent of the parameter β which characterizes
the species of the bosons. Hence, the method becomes considerably cheaper
when experiments need to be carried out for different types and numbers of
bosons. A similar argument applies to variations on the trapping potential
b. Provided that this trapping potential is an element of H1(Ω) (in practical
applications it is usually even harmonic and admits the desired regularity)
the bilinear form a(·, ·) (and the associated constructions of V f

H,h and V c
H,h)

can be restricted to the second order term
∫
Ω
A∇v · ∇φ without a loss in

the expected convergence rates stated in Theorems 4.1 and 4.2 below. The
trapping potential may then be varied without affecting the pre-processed
space V c

H,h.
(c) Once the coarse space has been assembled it can also be reused in computa-

tions of larger eigenvalues (i.e., not only in the ground state solution).

3.3. Sparse approximations of V c
H,h. The construction of the coarse space

V c
H,h is based on fine scale equations formulated on the whole domain Ω, which makes

them expensive to compute. However, [34] shows that P fΦz decays exponentially fast
away from z. We specify this feature as follows. Let k ∈ N denote the localization
parameter, i.e., a new discretization parameter. We define nodal patches ωz,k of k
coarse grid layers centered around the node z ∈ NH by

ωz,1 := supp Φz = ∪{T ∈ TH | z ∈ T } ,(3.4)

ωz,k := ∪{T ∈ TH | T ∩ ωz,k−1 �= ∅} for k ≥ 2.

There exists 0 < θ < 1 depending on the contrast γmin/γmax but not on mesh sizes
h,H and fast oscillations of A such that for all vertices z ∈ NH and for all k ∈ N, it
holds that

(3.5) ‖P fΦz‖H1(Ω\ωz,k) � θk‖P fΦz‖H1(Ω).
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This result motivates the truncation of the computations of the basis functions to
local patches ωz,k. We approximate Ψz = P fΦz ∈ V f

H,h from (3.3.a)–(3.3.c) with

Ψz,k ∈ V f
H,h(ωz,k) := {v ∈ V f

H,h | v|Ω\ωx,k
= 0} such that

(3.6) a(Ψz,k, v) = a(Φz , v) for all v ∈ V f
H,h(ωz,k).

This yields a modified coarse space V c
H,h,k with a local basis

(3.7) V c
H,h,k = span{Φz − Ψz,k | z ∈ NH}.

The number of nonzero entries of the corresponding finite element matrices is propor-
tional to kdNH . (Note that we expect N2

H nonzero entries without the truncation.)
Due to the exponential decay, the very weak condition k ≈ | logH | implies that
the perturbation of the ideal method due to this truncation is of higher order and
forthcoming error estimates in Theorems 4.1 and 4.2 remain valid. We refer to [34]
for details and proofs. The modified localization procedure from [29] with improved
accuracy and stability properties may also be applied.

3.4. Postprocessing. Although uc
H and λc

H will turn out to be highly accu-
rate approximations of the unknown solution (u, λ), the orders of convergence can be
improved even further by a simple postprocessing step on the fine grid. The post-
processing applies the two-grid method originally introduced by Xu and Zhou [42]
for linear elliptic eigenvalue problems to the present equation by using our upscaled
coarse space on the coarse level.

Problem 3.5 (postprocessed approximation). Find uc
h ∈ Vh with

∫

Ω

A∇uc
h · ∇φh dx+

∫

Ω

buc
hφh dx = λc

H

∫

Ω

uc
Hφh dx−

∫

Ω

β|uc
H |2uc

Hφh dx

for all φh ∈ Vh. Define λc
h := (2E(uc

h)+2−1β‖uc
h‖4
L4(Ω))‖uc

h‖−2
L2(Ω). Let us emphasize

that this approach is different from [18], where the postprecessing problem has a
different structure and where classical finite element spaces are used on both scales.

4. A-priori error estimates. This section presents the a priori error estimates
for the preprocessed/upscaled approximation with and without the postprocessing
step. Throughout this section, u ∈ H1

0 (Ω) denotes the solution of Problem 2.1,
uh ∈ Vh the solution of reference Problem 3.2, uc

H ∈ V c
H,h the solution of Problem 3.3,

and uc
h the postprocessed solution of Problem 3.5. The notation f � g abbreviates

f ≤ Cg with some constant C that may depend on the space dimension d, Ω, γmin,
γmax, ‖b‖L2(Ω), β, λ and interior angles of the triangulations, but not on the mesh
sizes H and h. In particular it is robust against fast oscillations of A and b.

Theorem 4.1 (error estimates for the preprocessed approximation). Assume
that ‖u− uh‖H1(Ω) � 1. For u and uc

H as above, it holds that

‖u− uc
H‖H1(Ω) � H2 + ‖u− uh‖H1(Ω).(4.1)

For sufficiently small h (in the sense of Cancès, Chakir, and Maday et al. [13]), we
also have

|λ− λc
H | + ‖u− uc

H‖L2(Ω) � H3 +H ‖u− uh‖H1(Ω).(4.2)

Proof. The proof is postponed to section 6.3.
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The additional postprocessing improves, roughly speaking, the order of accuracy
by one.

Theorem 4.2 (error estimates for the postprocessed approximation). Assume
that h is sufficiently small. The postprocessed approximation uc

h and the postprocessed
eigenvalue λc

h satisfy

‖u− uc
h‖H1(Ω) � H3 + ‖u− uh‖H1(Ω),(4.3)

|λ− λc
h| + ‖u− uc

h‖L2(Ω) � H4 + CL2(h,H).(4.4)

The constant CL2(h,H) behaves roughly like H2‖u − uh‖H1(Ω) and can be extracted
from the proofs in section 6.4.2.

Proof. The proof is postponed to section 6.4.
Let us emphasize that both theorems remain valid for V c

H,h replaced with its
sparse approximation V c

H,h,k (cf. section 3.3) for moderate localization parameter k �
| logH |.

We shall discuss the behavior of the fine scale errors u − uh and λ − λh. Recall
from [13] that for a bounded domain Ω with polygonal Lipschitz boundary, A ∈
[W 1,∞(Ω)]d×d, and sufficiently small h, the fine scale error ‖u−uh‖H1(Ω) satisfies the
optimal estimate

‖u− uh‖H1(Ω) + h−1‖u− uh‖L2(Ω) + h−1|λ− λh| � h.(4.5)

The proof in [13] is for constant A = 1 and hyperrectangle Ω but it is easily checked
that the estimates remain valid for any bounded domain Ω with polygonal Lips-
chitz boundary and A ∈ [W 1,∞(Ω)]d×d. Under these assumptions our a priori esti-
mates for the postprocessed approximation of the ground state eigenvalue summarize
as follows:

|λ− λc
h| � H4 +H2h.

Hence, in this regular setting, the choice H = h1/2 ensures that the loss of accuracy
is negligible when compared to the accuracy of the expensive full fine scale approxi-
mation λh. However, with regard to the numerical experiment in section 5.1 below,
this choice might be pessimistic.

Moreover, note that the fine scale error depends crucially on higher Sobolev reg-
ularity of the solution, whereas our estimates for the coarse scale error require only
minimal regularity that holds under assumptions (a)–(d) in section 2. Thus, we be-
lieve that in a less regular setting, even coarser choices of H relative to h will balance
the discretization errors on the coarse and the fine scale.

5. Numerical experiments. Any numerical approach for the computation of
ground states of a BEC involves an iterative algorithm that starts with a given initial
value and diminishes the energy of the density functional E in each iteration step. In
this contribution, we use the optimal damping algorithm (ODA) originally developed
by Cancès and Le Bris [14, 12] for the Hartree–Fock equations, since it suits our
preprocessing framework. The ODA involves solving a linear eigenvalue problem in
each iteration step. However, after preprocessing, these linear eigenvalue problems
are very low dimensional and the precomputed basis of V c

H,h can be reused for each of
these problems, making the iterations extremely cheap. The approximations produced
by the ODA are known to rapidly converge to a solution of the discrete minimization
problem. (See [21] and [12] for a proof in the setting of the Hartree–Fock equations.)
All subsequent numerical experiments have been performed using MATLAB.
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5.1. Numerical results for harmonic potential. In this section, we choose
the smooth experimental setup of [13, section 4, p. 109; Figure 2], i.e., Ω := (0, π)2,
b(x1, x2) := x2

1 + x2
2, A = 1, β = 1 and with homogeneous Dirichlet boundary con-

dition. Our method depends basically on three parameters: the coarse mesh size
H , the fine mesh size h, and the localization parameter k (cf. section 3.3 and [29]).
In all computations of this section we couple k to the coarse mesh size by choosing
k = 2 log2H . This choice is made such that the error of localization is negligible
when compared with the errors committed by the fine scale discretization and the
upscaling. All approximations are computed with the ODA method as presented in
[21, section 2] with accuracy parameter εODA = 10−14.

5.1.1. Comparison with full fine scale approximation. In the first exper-
iment, we consider uniform coarse meshes TH with mesh width parameters H =
2−1π, 2−2π, . . . , 2−4π of Ω. The fine mesh Th for the pre- and postprocessing has
width h = 2−7π and remains fixed. We study the error committed by coarsening
from a fine scale h to several coarse scales H , i.e., we study the distance between
the ground state (uh, λh) of Problem 3.2 and either the coarse scale approximation
(uc
H , λ

c
H) of Problem 3.3 (with underlying fine scale h) or its postprocessed version

(uc
h, λ

c
h) of Problem 3.5. Our theoretical results do not allow predictions about the

coarsening error. Most likely, this is an artifact of our theory and we conjecture that
(uh, λh) and its coarse approximations (uc

H , λ
c
H) and (uc

h, λ
c
h) are in fact super-close

in the sense of

H−1‖uh − uc
H‖H1(Ω) + ‖uh − uc

H‖L2(Ω) + |λh − λc
H | � H3,(5.1)

H−1‖uh − uc
h‖H1(Ω) + ‖uh − uc

h‖L2(Ω) + |λh − λc
h| � H4.

This assertion is true in the limit h → 0. Section 5.1.2 supports numerically the
assertion for positive h. Figure 1 reports the numerical results. Observe that the
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Fig. 1. Results for harmonic potential. Left: Errors of preprocessed approximation ‖uh −
uc
H‖H1(Ω) (+), ‖uh − uc

H‖L2(Ω) (×), and |λh − λc
H | (∗) versus coarse mesh size H. Right: Er-

rors of postprocessed approximation ‖uh − uc
h‖H1(Ω) (+), ‖uh − uc

h‖L2(Ω) (×), and |λh − λc
h| (∗)

versus coarse mesh size H.
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experimental rates with respect to H displayed in the figures are in fact better than
the rates indicated by Theorems 4.1–4.2 and conjectured in (5.1). The reason could
be the high regularity of the underlying (exact) solution u ∈ H3(Ω). We do not ex-
ploit additional regularity in our error analysis. Similar observations have been made
for the linear eigenvalue problem; see [33, Remark 3.3] for details and some justifi-
cation of higher rates under additional regularity assumptions. Our implementation
is not yet adequate for a fair comparison with regard to computational complexity
and computing times between standard fine scale finite elements and our two-level
techniques. However, to convince the reader of the potential savings in our new ap-
proach, let us mention that the number of iterations of the ODA was basically the
same for both approaches in all numerical experiments. This statement applies as
well to more challenging setups with larger values of β (see, e.g., section 5.2 be-
low), where ODA needs many iterations to fall below some prescribed tolerance.
We thus conclude that the actual speed-up of our approach is truly reflected by
the dimension reduction from h−d to H−d up to the overhead O(k) = O(log |H |)
induced by slightly denser (but still sparse) finite element matrices on the coarse
level.

5.1.2. Comparison with high-resolution numerical approximation. In
the second experiment we investigate the role of the fine scale parameter h. We con-
sider uniform coarse meshes TH with mesh width parameters H = 2−1π, . . . , 2−3π
and uniform fine meshes Th for h = H/4, . . . , 2−7π for pre- and postprocessing com-
putations. The error between the exact eigenvalue λ and coarse approximations λc

H

and λc
h is estimated via a high-resolution numerical solution on a mesh of width 2−9π.

The results are reported in Figure 2. For clarity, we show eigenvalue errors only. We
conclude that it would have been sufficient to chooseH ≈ h1/3 to achieve the accuracy
of λh by our coarse approximation scheme with postprocessing.
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Fig. 2. Results for harmonic potential. Left: (estimated) errors of preprocessed approximation
|λ−λc

H | for fixed values H = 2−1π (+), H = 2−2π (×), and H = 2−3π (◦) versus fine mesh size h.
Right: (estimated) errors of postprocessed approximation |λ − λc

h| for fixed values H = 2−1π (+),
H = 2−2π (×), and H = 2−3π (◦) versus fine mesh size h. In both plots, the (estimated) error of
the standard FEM on the fine mesh |λ − λh| (•) is depicted for reference.
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Fig. 3. Results for periodic potential. Left: Errors of preprocessed approximation ‖uh −
uc
H‖H1(Ω) (+), ‖uh − uc

H‖L2(Ω) (×), and |λh − λc
H | (∗) versus coarse mesh size H. Right: Errors

of postprocessed approximation ‖uh − uc
h‖H1(Ω) (+), ‖uh − uc

h‖L2(Ω) (×), and |λh − λc
h| (∗) versus

coarse mesh size H.

5.2. Numerical results for discontinuous periodic potential. This section
addresses the case of a BEC that is trapped in a periodic potential. Periodic potentials
are of special interest since they can be used to explore physical phenomena such as
Josephson oscillations and macroscopic quantum self-trapping of the condensate (cf.
[41, 43]). Here we use a potential b that describes a periodic array of quantum wells
that can be experimentally generated by the interference of overlapping laser beams
(cf. [39]).

Let Ω = (0, π)2, A = 1, and β = 4. Given bt = 100 and L = 4, define

b0(x1, x2) :=

⎧
⎨
⎩

0 for x ∈ ] 14 ,
3
4 [2,

bt else

and the potential b(x) = b0
(
L
(
x/π − �Lx/π�

L

))
.

Consider the same numerical setup as in section 5.1.1 (i.e., we draw our attention
again to the coarsening error uh−uc

H) with the exception that we were able to reduce
the localization parameter k = log2H without affecting the best convergence rates
possible. Figure 3 reports the errors between the fine scale reference discretization
and our coarse approximations. For the discontinuous potential, the experimental
rates (with respect to H) are slightly worse than those ones observed in section 5.1.1.
However, they are still better than the rates indicated by Theorems 4.1–4.2 and
conjectured in (5.1).

6. Proofs of the main results. In this section we are concerned with proving
the main theorems.

6.1. Auxiliary results. An application of [13, Theorem 1] shows that uh and
uc
H both converge to u in H1(Ω), which guarantees stability.
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Remark 6.1 (stability of discrete approximations). For sufficiently small h we
have

‖uh‖H1(Ω) ≤
√
λh �

√
λ and(6.1)

||uh||L4(Ω) ≤
(
λh
β

) 1
4

�
(
λ

β

) 1
4

.(6.2)

The same results hold for uh replaced by uc
H and λh replaced by λc

H for h and H
sufficiently small.

The bound (6.1) is obvious using ‖uh‖L2(Ω) = 1 and the H1-convergence uh → u
which guarantees λh → λ. Estimate (6.2) directly follows from the definitions of λh
and Eh which gives us λh ≥ 2E(uh) = a(uh, uh) + β

2 ‖uh‖4
L4(Ω) ≥ β

2 ‖uh‖4
L4(Ω).

Remark 6.2 (L∞-bound). The solution u of Problem 2.1 is in L∞(Ω). This
follows from the uniqueness of u ∈ H1

0 (Ω), which shows that it is also the unique
solution of the linear elliptic problem

∫

Ω

A∇u · ∇φ + buφ dx =

∫

Ω

f̃φ dx for all φ ∈ H1
0 (Ω),

where f̃ := (λu−β|u|3) ∈ L2(Ω). Standard theory for linear elliptic problems (cf. [25,
Theorem 8.15, pp. 189–193]) then yields the existence of a constant c only depending
on Ω, d and ‖γ−1

minb‖L2(Ω) such that

‖u‖L∞(Ω) ≤ c(‖u‖L2(Ω) + γ−1
min‖f̃‖L2(Ω)) � 1 + ‖u‖3

L6(Ω) � 1 + ‖u‖3
H1(Ω).(6.3)

6.2. Properties of the coarse space V c
H,h. Recall the local approximation

properties of the weighted Clément-type interpolation operator IH defined in (3.2),

H−1
T ‖v − IH(v)‖L2(T ) + ‖∇(v − IH(v))‖L2(T ) ≤ CIH ‖∇v‖L2(ωT )(6.4)

for all v ∈ H1
0 (Ω). Here, CIH is a generic constant that depends only on interior angles

of TH but not on the local mesh size and ωT :=
⋃{S ∈ TH | S ∩T �= ∅}. Furthermore,

for all v ∈ H1
0 (Ω) and for all z ∈ NH it holds that

∫

ωz

(v − vz)
2 dx ≤ CIHH

2‖∇v‖2
L2(ωz),(6.5)

where ωz := supp(Φz) and vz is given by (3.2).
Lemma 6.3 (properties of the decomposition). The decomposition of Vh into VH

and V f
H,h (stated in section 3.2) is L2-orthogonal, i.e.,

Vh = VH ⊕ V f
H,h and (vH , v

f)L2(Ω) = 0 for all vH ∈ VH , v
f ∈ V f

H,h.(6.6)

The decomposition of Vh in V c
H,h and V f

H,h is a-orthogonal

Vh = V c
H,h ⊕ V f

H,h and a(vc, vf) = 0 for all vc ∈ V c
H,h, v

f ∈ V f
H,h(6.7)

and L2-quasi-orthogonal in the sense that

(vc, vf)L2(Ω) � H2‖∇vc‖L2(Ω)‖∇vf‖L2(Ω).(6.8)

Proof. The proof is verbatim the same as in [33].
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The following lemma estimates the error of the best approximation in the modified
coarse space V c

H,h. The lemma is also implicitly required each time that we use the
abstract error estimates stated in [13, Theorem 1]. These estimates require a family
of finite dimensional spaces that is dense in H1

0 (Ω). This density property is implied
by the following lemma.

Lemma 6.4 (approximation property of V c
H,h). For any given v ∈ H1

0 (Ω) with

divA∇v ∈ L2(Ω) it holds that

inf
vcH∈V c

H,h

‖v − vc
H‖H1(Ω) � H‖ divA∇v + bv‖L2(Ω) + inf

vh∈Vh

‖v − vh‖H1(Ω).

Proof. Given v, define fv := divA∇v + bv ∈ L2(Ω) (since v ∈ L∞(Ω)) and let
vh ∈ Vh denote the corresponding finite element approximation, i.e.,

a(vh, φh) = (fv, φh)L2(Ω) for all φh ∈ Vh.

With vc
H := P cvh ∈ V c

H,h, Galerkin orthogonality leads to

‖A1/2∇(vh − vc
H)‖2

L2(Ω)

(6.7)

≤ a(vh, P
fvh) = (fv, P

fvh)L2(Ω)

(6.4)

� γ
−1/2
min ‖Hfv‖L2(Ω)‖A1/2∇(vh − vc

H)‖L2(Ω).

This, the triangle inequality, and norm equivalences readily yield the assertion.
Next, we show that there exists an element uc = P cuh in the space V c

H,h that

approximates uh in the energy norm with an accuracy of order O(H2).
Lemma 6.5 (stability and approximability of the reference solution). Let (uh, λh) ∈

Vh × R solve Problem 3.2. Then it holds that

‖P cuh‖H1(Ω) ≤
√
λh,

‖P cuh − uh‖H1(Ω) = ‖P fuh‖H1(Ω) � H2 +H‖u− uh‖H1(Ω),

(P cuh, P
fuh)L2(Ω) �

(
H2 +H‖u− uh‖H1(Ω)

)
H2.

Proof. Recall ‖ · ‖H1(Ω) :=
√
a(·, ·). Since P c is a projection, we have

‖P cuh‖2
H1(Ω) ≤ ‖uh‖2

H1(Ω) = λh‖uh‖2
L2(Ω) − β‖uh‖4

L4(Ω) ≤ λh.

The a-orthogonality of (3.3.c) further yields

‖P fuh‖2
H1(Ω) = a(P fuh, P

fuh) = a(uh, P
fuh)(6.9)

= λh(uh, (1 − IH)P fuh)L2(Ω) − β(u3, P fuh)L2(Ω)

− β(u3
h − u3, P fuh)L2(Ω).

The first term on the right-hand side of (6.9) can be bounded using IH(P fuh) = 0,
the L2-orthogonality (6.6), and the estimates for the weighted Clément interpolation
operator (6.4)

λh(uh, (1 − IH)P fuh)L2(Ω) = λh((1 − IH)uh, (1 − IH)P fuh)L2(Ω)(6.10)

� λhH
2‖uh‖H1(Ω)‖P fuh‖H1(Ω).
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Since u ∈ L∞(Ω) we have ∇(u3) = 3u2∇u ∈ L2(Ω) and, hence, the second term on
the right-hand side of (6.9) can be bounded as follows:

β(u3, P fuh) = β((1 − IH)u3, (1 − IH)P fuh)
(6.5)

� H2‖u‖2
L∞(Ω)‖u‖H1(Ω)‖P fu‖H1(Ω)

(6.11)

(6.3)

� H2‖u‖H1(Ω)‖P fu‖H1(Ω).

Since u3
h − u3 = (u2

h + uhu + u2)(uh − u), the third term on the right-hand side of
(6.9) can be estimated by

β(u3
h − u3, P fuh)L2(Ω) � ‖|u| + |uh|‖2

L6(Ω)‖uh − u‖L6(Ω)‖(1 − IH)P fuh‖L2(Ω)(6.12)

� H‖u− uh‖H1(Ω)‖P fuh‖H1(Ω),

where we used (6.1) and the embedding ‖|u| + |uh|‖L6(Ω) � ‖u‖H1(Ω) + ‖uh‖H1(Ω).

The combination of (6.9)–(6.12) readily yields

‖P fuh‖H1(Ω) � H2 + ‖u− uh‖2
H1(Ω).

The third assertion follows from the previous ones and

(P cuh, P
fuh)L2(Ω) = ((1 − IH)P cuh, (1 − IH)P fuh)L2(Ω)

� H2‖P cuh‖H1(Ω)‖P fuh‖H1(Ω).

6.3. Proof of Theorem 4.1. We split the proof into two parts: the estimate
for the H1-error and the estimate for the L2-error.

6.3.1. Proof of the H1-error estimate (4.1). We proceed similarly as in
[13]. The proof is divided into four steps. In the first step, we derive an identical
formulation of some energy difference. The identity is used in Step 2 to establish
the inequality ‖uc

h − u‖2
H1(Ω) � E(uc

h) − E(u). Since uc
h is a minimizer, we can

replace E(uc
h) by E(wc

h) in the estimate for an arbitrary L2-normalized wc
h ∈ V c

H,h.

In Step 3, we choose wc
h := P cuh

‖P cuh‖L2(Ω)
and show that the perturbation introduced

via normalization is of high order (≈ H3). In Step 4, we use Step 3 to estimate
E(wc

h) − E(u).

Step 1. Given some arbitrary w ∈ H1
0 (Ω) with ‖w‖L2(Ω) = 1, we show that

E(w) − E(u) =
1

2
a(w − u,w − u) +

β

2
(|u|2(w − u), w − u)L2(Ω)(6.13)

+
β

4
((|u|4 − 2|u|2|w|2 + |w|4, 1)L2(Ω) − 1

2
λ‖w − u‖2

L2(Ω).

First, using ‖u‖L2(Ω) = ‖w‖L2(Ω) = 1 we get

λ(u − w, u− w)L2(Ω) = λ‖u‖2
L2(Ω) − 2λ(u,w)L2(Ω) + λ‖u‖2

L2(Ω)(6.14)

= −2λ(u,w − u)L2(Ω)

= −2a(u,w − u) − 2β(|u|2u,w − u)L2(Ω).
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This yields

a(w,w) + β(|u|2w,w)L2(Ω) − a(u, u) − β(|u|2u, u)L2(Ω)

(6.14)
= a(w,w) − 2a(u,w) + a(u, u)

+ β(|u|2w,w)L2(Ω) − 2β(|u|2u,w)L2(Ω) + β(|u|2u, u)L2(Ω)

− λ(w − u,w − u)L2(Ω)

= a(w − u,w − u) + β(|u|2(w − u), w − u)L2(Ω) − λ‖w − u‖2
L2(Ω).

Plugging this last equality into the equation

2E(w) − 2E(u) = a(w,w) +
β

2
(|w|2w,w)L2(Ω) − a(u, u) − β

2
(|u|2u, u)L2(Ω)

leads to (6.13).
Step 2. Using (6.13) with w = uc

h and the fact that there exists some c0 (inde-
pendent of H and h) such that a(u−uc

h, u−uc
h)+((β|u|2 −λ)(u−uc

h), u−uc
h)L2(Ω) ≥

c0‖u− uc
h‖2
H1(Ω) (cf. [13, Lemma 1]), we get

E(uc
h) − E(u) =

1

2
a(uc

h − u, uc
h − u) +

β

2
(|u|2(uc

h − u), uc
h − u)L2(Ω)

+
β

4
(|u|4 − 2|u|2|uc

h|2 + |uc
h|4, 1)L2(Ω) − 1

2
λ‖uc

h − u‖2
L2(Ω)

≥ c0
2

‖uc
h − u‖2

H1(Ω) +
β

4
‖|u|2 − |uc

h|2‖2
L2(Ω).

Step 3. Using the result of step two yields

‖uc
h − u‖2

H1(Ω) � E(uc
h) − E(u) ≤ E(wc

h) − E(u)

for any L2-normalized wc
h ∈ V c

H,h. We choose wc
h := P cuh

‖P cuh‖L2(Ω)
and observe that we

get, with Lemma 6.5, that

(6.15)

‖P cuh − wc
h‖L2(Ω) =

∣∣1 − ‖P cuh‖L2(Ω)

∣∣ ≤ ‖P fuh‖L2(Ω) = ‖P fuh − IH(P fuh)‖L2(Ω)

� H‖P fuh‖H1(Ω) � H‖u− uh‖2
H1(Ω) +H3

and consequently

(6.16)

‖P cuh − wc
h‖H1(Ω) =

∣∣1 − ‖P cuh‖L2(Ω)

∣∣
‖P cuh‖L2(Ω)

‖P cuh‖H1(Ω) � H‖u− uh‖2
H1(Ω) +H3,

where we used ‖u− uh‖H1(Ω) � 1 (implying ‖P cuh‖H1(Ω) � 1 and ‖P cuh‖L2(Ω) � 1).
Step 4. Using again (6.13) leads to

2E(wc
h) − 2E(u) = ‖wc

h − u‖2
H1(Ω) + β(|u|2(wc

h − u), wc
h − u)L2(Ω)

+
β

2
(|u|4 − 2|u|2|wc

h|2 + |wc
h|4, 1)L2(Ω) − λ‖wc

h − u‖2
L2(Ω).
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The Hölder inequality

(|u|2, |u− wc
h|2)L2(Ω) ≤ ‖u‖2

L6(Ω)‖u− wc
h‖L2(Ω)‖u− wc

h‖L6(Ω)(6.17)

yields the estimate

β(|u|2(wc
h − u), wc

h − u)L2(Ω) +
β

2

∫

Ω

(
|u|2 − |wc

h|2
)2
dx

(6.17)

≤ β‖u‖2
L6(Ω)‖u− wc

h‖L2(Ω)‖u− wc
h‖L6(Ω) +

β

2
((|u| + |wc

h|)2, |u− wc
h|2)L2(Ω)

(6.17)

≤ β(2‖u‖2
L6(Ω) + ‖wc

h‖2
L6(Ω))‖u− wc

h‖L2(Ω)‖u− wc
h‖L6(Ω)

� ‖u− wc
h‖2
L2(Ω) + ‖u− wc

h‖2
H1(Ω)

for the terms involving β. The combination of the previous results with Lemma 6.5
and estimates (6.15) and (6.16) gives us

‖uc
h − u‖2

H1(Ω) � E(uc
h) − E(u) ≤ E(wc

h) − E(u) � ‖wc
h − u‖2

H1(Ω)

� ‖u− P cuh‖2
H1(Ω) + ‖P cuh − wc

h‖2
H1(Ω)

�
(
‖u− uh‖H1(Ω) +H2

)2
.

6.3.2. Proof of the L2-error estimate (4.2). In the following, we let the
bilinear form cλ,u : H1

0 (Ω) ×H1
0 (Ω) → R be given by

cλ,u(v, w) :=

∫

Ω

A∇v · ∇w + bvw + 3β|u|2vw dx− λ

∫

Ω

vw dx

and we define the space

V ⊥
u := {v ∈ H1

0 (Ω)| (v, u)L2(Ω) = 0}.

For w ∈ H1
0 (Ω) we let ψw ∈ V ⊥

u denote the unique solution (see Lemma 6.6 below) of

cλ,u(ψw, v⊥) = (w, v⊥)L2(Ω) for all v⊥ ∈ V ⊥
u .(6.18)

The subsequent lemma applies the abstract L2-error estimate, obtained by Cancès,
Chakir, and Maday [13, Lemma 1, Theorem 1, and Remark 2], to our setting. Observe
that Lemma 6.4 (i.e., V c

H,h represents a dense family of finite dimensional subspaces

of H1) is required to apply these results.
Lemma 6.6 (abstract approximation [13]). Let h be sufficiently small; then

|λ− λc
H | � ‖u− uc

H‖2
H1(Ω) + ‖u− uc

H‖L2(Ω)(6.19)

and

‖u− uc
H‖2

L2(Ω) � ‖u− uc
H‖H1(Ω) inf

ψ∈V c
H,h

‖ψuc
H−u − ψ‖H1(Ω).(6.20)

Furthermore, the bilinear form cλ,u(·, ·) is a scalar product in H1
0 (Ω) and induces a

norm that is equivalent to the standard H1-norm.
Observe the following equivalence. If ψw ∈ V ⊥

u solves
∫

Ω

A∇ψw · ∇v⊥ + bψwv⊥ + β3|u|2ψwv⊥ dx− λ

∫

Ω

ψwv⊥ dx =

∫

Ω

wv⊥ dx
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for all v⊥ ∈ V ⊥
u , then it also solves

∫

Ω

A∇ψw · ∇v + bψwv + β3|u|2ψwv dx− λ

∫

Ω

ψwv dx

= 2β(u3, ψw)L2(Ω)

∫

Ω

uv dx+

∫

Ω

(w − (w, u)L2(Ω))v dx

for all v ∈ H1
0 (Ω). This can be easily seen as follows: assume divA∇ψw ∈ L2(Ω) (the

general result follows by density arguments) and let P⊥ : L2(Ω) → V ⊥
u denote the

L2-orthogonal projection given by P⊥(v) := v − (v, u)L2(Ω). Since

∫

Ω

(
− divA∇ψw + bψw + 3β|u|2ψw − λψw

)
v⊥ dx =

∫

Ω

wv⊥ dx,

we get

∫

Ω

P⊥ (− divA∇ψw + bψw + 3β|u|2ψw − λψw
)
v dx =

∫

Ω

P⊥(w)v dx

for all v ∈ H1
0 (Ω). By using the explicit formula for P⊥ and the definition of u the

reformulated equation follows. Furthermore, since ψw ∈ H1
0 (Ω) solves a standard

elliptic problem, classical theory (cf. [25]) applies and we get the L∞-estimate

‖ψw‖L∞(Ω) � (1 + λ)‖ψw‖L2(Ω) + |(|u|3, ψw)| + ‖w‖L2(Ω) � (1 + λ)‖w‖L2(Ω).(6.21)

Lemma 6.7 (L2-error estimate). Let h be sufficiently small and let u denote the
solution of Problem 2.1, uc

H the solution of Problem 3.3, and ψu−uc
H

∈ V ⊥
u the solution

of (6.18) for w = u− uc
H . Then

‖u− uc
H‖L2(Ω) �

(
min
ψh∈Vh

‖ψu−uc
H

− ψh‖H1(Ω)

‖u− uc
H‖L2(Ω)

+H

)
‖u− uc

H‖H1(Ω).

In Lemma 6.7, the assumption that h should be sufficiently small enters by using
the L2-estimate (6.20). Note that the coarse mesh size H remains unconstrained.

Proof. We define ecH := u − uc
H . Using Lemma 6.6 (and therefore implicitly

Lemma 6.4) we get

‖ecH‖2
L2(Ω)

‖ecH‖H1(Ω)
� ‖ψu−uc

H
− ψc

H‖H1(Ω) ≤ ‖ψu−uc
H

− ψh‖H1(Ω) + ‖ψc
H − ψh‖H1(Ω)(6.22)

for all ψc
H ∈ V c

H,h and all ψh ∈ Vh. It remains to properly choose ψh and ψc
H . The

proof is structured as follows. We choose φh ∈ Vh to be the fine space approximation of
the solution of the adjoint problem (6.18) and ψc

H is chosen to be the a(·, ·)-orthogonal
approximation of ψh. This guarantees that ψc

H−ψh is in the kernel of our interpolation
operator (i.e., IH(ψc

H−ψh) = 0) and we can estimate the occurring terms while gaining
an additional error order of H . The proof is detailed in the following.
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Let us choose ψh := ψhecH , where ψhecH ∈ Vh solves

cλ,u(ψ
h
ecH
, vh) = 2β(|u|3, ψhecH )L2(Ω)

∫

Ω

uvh dx+

∫

Ω

(ecH − (ecH , u)L2(Ω))vh dx

for all vh ∈ Vh. The coercivity of cλ,u and reinterpretation of the equation in the
sense of problem (6.18) yields that ψhecH is well defined. Next, we define

g(v, w, u) := −β3|u|2v + λv + 2β(|u|3, v)L2(Ω)u+ (w − (w, u)L2(Ω))

and solve for ψH,cecH
∈ V c

H,h with

∫

Ω

A∇ψH,cecH
· ∇vc

H + bψH,cecH
vc
H dx =

∫

Ω

g(ψhecH , e
c
H , u)v

c
H dx

for all vc
H ∈ V c

H,h. Since equally ψhecH ∈ Vh fulfills

∫

Ω

A∇ψhecH · ∇vh + bψhecHvh dx =

∫

Ω

g(ψhecH , e
c
H , u)vh dx

for all vh ∈ Vh, we obtain by using the a(·, ·)-orthogonality of ψhecH and ψH,cecH

a(ψhecH − ψH,cecH
, ψhecH − ψH,cecH

) =

∫

Ω

g(ψhecH , e
c
H , u)(ψ

h
ecH

− ψH,cecH
) dx

≤
∫

Ω

g(ψhecH , e
c
H , u)(Id − IH)(ψhecH − ψH,cecH

) dx

� (λ‖ψhecH ‖H1(Ω) + ‖ecH‖L2(Ω))H‖∇(ψhecH − ψH,cecH
)‖L2(Ω).

Since

‖ψhecH ‖2
H1(Ω) � cλ,u(ψ

h
ecH
, ψhecH ) = (ecH , ψ

h
ecH

)L2(Ω),

we get

‖ψhecH − ψH,cecH
‖H1(Ω) � H(‖ecH‖L2(Ω) + λ‖ψhecH ‖H1(Ω)) � (1 + λ)H‖ecH‖L2(Ω).

Combining this estimate with (6.22) yields

‖u− uc
H‖L2(Ω) �

(
‖ψu−uc

H
− ψhecH ‖H1(Ω)

‖u− uc
H‖L2(Ω)

+
‖ψhecH − ψH,cecH

‖H1(Ω)

‖u− uc
H‖L2(Ω)

)
‖u− uc

H‖H1(Ω)

�
(

‖ψu−uc
H

− ψhecH ‖H1(Ω)

‖u− uc
H‖L2(Ω)

+ (1 + λ)H

)
‖u− uc

H‖H1(Ω)

�
(

min
ψh∈Vh

‖ψu−uc
H

− ψh‖H1(Ω)

‖u− uc
H‖L2(Ω)

+H

)
‖u− uc

H‖H1(Ω).

In the last step we used Céa’s lemma for linear elliptic problems and the fact that
the H1-best-approximation in the orthogonal space V ⊥

u ∩ Vh can be bounded by the
H1-best-approximation in the full space Vh (cf. [13] and equation (40) therein).
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Using (4.1) and Lemma 6.7 we obtain for ecH := u− uc
H

‖ecH‖L2(Ω) �
(

min
ψh∈Vh

‖ψu−uc
H

− ψh‖H1(Ω)

‖ecH‖L2(Ω)
+H

)
‖ecH‖H1(Ω) � (|e0h| +H) (|e1h| +H2),

where |e1h| := minvh∈Vh
‖u − vh‖H1(Ω) and |e0h| := minψh∈Vh

‖ψu−uc
H

−ψh‖H1(Ω)

‖u−uc
H‖L2(Ω)

. To-

gether with (6.19) this yields

|λ− λc
H | � ‖ecH‖2

H1(Ω) + ‖ecH‖L2(Ω)

� (|e1h| +H2)2 + (|e0h| +H) (|e1h| +H2) � H |e1h| +H3.

6.4. Proof of Theorem 4.2. Again, we split the proof into two subsections,
one concerning the H1-error estimate and the other the L2-error estimate.

6.4.1. Proof of the H1-error estimate (4.3). Due to the definitions of uh
and uc

h we get for vh ∈ Vh

a(uh − uc
h, vh) = λh(uh, vh) −λc

H(uc
H , vh) − β(|uh|2uh, vh)L2(Ω) + β(|uc

H |2uc
H , vh)L2(Ω)

= λh(uh − uc
H , vh) + (λh − λc

H)(uc
H , vh)

−β

2∑

i=0

((uh)
2−i(uc

H)i(uh − uc
H), vh)L2(Ω).

The treatment of the first and the second term in this error identity is obvious. The
last term is treated with the Hölder inequality and the embedding H1

0 (Ω) ↪→ L6(Ω)
(for d ≤ 3):

2∑

i=0

((uh)
2−i(uc

H)i(uh − uc
H), vh)L2(Ω)

≤ ‖uh‖2
L6(Ω)‖uh − uc

H‖L2(Ω)‖vh‖L6(Ω)

+ ‖uh‖L6(Ω)‖uc
H‖L6(Ω)‖uh − uc

H‖L2(Ω)‖vh‖L6(Ω)

+ ‖uc
H‖2

L6(Ω)‖uh − uc
H‖L2(Ω)‖vh‖L6(Ω)

� ‖uh‖2
H1(Ω)‖uh − uc

H‖L2(Ω)‖vh‖H1(Ω)

+ ‖uh‖H1(Ω)‖uc
H‖H1(Ω) ‖uh − uc

H‖L2(Ω)‖vh‖H1(Ω)

+ ‖uc
H‖2

H1(Ω)‖uh − uc
H‖L2(Ω)‖vh‖H1(Ω).

We therefore get with vh = uh − uc
h and the Poincaré–Friedrichs inequality

‖uh − uc
h‖H1(Ω) � (λh + λc

H)‖uh − uc
H‖L2(Ω) + |λh − λc

H |.

This implies (4.3).

6.4.2. Proof of the L2-error estimate in (4.4). We start with a lemma that
allows us to formulate an error identity.

Lemma 6.8. Let v ∈ H1
0 (Ω) be an arbitrary function with ‖v‖L2(Ω) = 1 and let

ψu−v ∈ V ⊥
u denote the corresponding solution of the adjoint problem with

cλ,u(ψu−v, w⊥) = (u− v, w⊥)L2(Ω)
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for all w⊥ ∈ V ⊥
u (cf. (6.18)). Then it holds that

‖u− v‖2
L2(Ω) = cλ,u(v − u, ψu−v) + ‖u− v‖2

L2(Ω)

∫

Ω

|u|2uψu−v dx +
1

4
‖u− v‖4

L2(Ω).

The lemma can be extracted from the proofs given in [13, pp. 99–100].
The following lemma treats the semidiscrete case, i.e., we assume Vh = H1

0 (Ω).
The reason is that the proof of the fully discrete case becomes very technical and
hard to read. We note that the proof of the semidiscrete case analogously transfers
to the fully discrete case with sufficiently small h by inserting additional continuous
approximations to overcome the problems produced by the missing uniform bounds
for ‖uh‖L∞(Ω) and ‖uc

h‖L∞(Ω). For the reader’s convenience we therefore only prove
the case h = 0.

Lemma 6.9 (estimate (4.4) for h = 0). Assume h = 0, i.e., Vh = H1
0 (Ω).

Accordingly we let uc
0 ∈ H1

0 (Ω) denote the semidiscrete postprocessed approximation,
i.e., the solution to the problem

∫

Ω

A∇uc
0 · ∇φ dx+

∫

Ω

buc
0φ dx = λc

H

∫

Ω

uc
Hφ dx−

∫

Ω

β|uc
H |2uc

Hφ dx

for all φ ∈ H1
0 (Ω) (cf. Problem 3.5). Then it holds that

‖u− uc
0‖L2(Ω) � H4.

Proof. We divide the proof into two steps. We want to make use of the error
identity in Lemma 6.8 with v = uc

0. However, uc
0 is not L2-normalized and therefore

no admissible test function in the error identity. In the first step, we therefore show
that the normalization only produces an error of order H4. In the second step it
remains to show that the L2-error between u and the L2-normalized uc

0 is also of
order H4.

Step 1. We show that
∣∣||uc

H ||L2(Ω) − ||uc
0||L2(Ω)

∣∣ � H4, which implies 1 − H4 �
‖uc

0‖L2(Ω) � 1 +H4 (because of ||uc
H ||L2(Ω) = 1).

First observe that uc
0 ∈ H1

0 (Ω) is the solution to a classical elliptic problem, which
is why we obtain

‖uc
0‖L∞ � λc

H � λ.(6.23)

Since a(uc
0 − uc

H , v
c
H) = 0 for all vc

H ∈ V c
H,0 we get uc

0 − uc
H ∈ V f

H,0. Hence

a(uc
0 − uc

H , u
c
0 − uc

H) = a(uc
0, u

c
0 − uc

H)

= λc
H(uc

H , u
c
0 − uc

H) − β(|uc
H |2uc

H , u
c
0 − uc

H)

= λc
H(uc

H , u
c
0 − uc

H) − β(|uc
H |2uc

H − |u|2u, uc
0 − uc

H)

−β(|u|2u, uc
0 − uc

H).

Using uc
0 − uc

H ∈ V f
H,0 and inserting IH(uc

H) and IH(u) several times, we get with
similar arguments as above and with the previous estimate for uc

H − u

‖uc
0 − uc

H‖H1(Ω) � H2

and

(6.24)

‖uc
0 − uc

H‖L2(Ω) = ‖(uc
0 − uc

H) − IH(uc
0 − uc

H)‖L2(Ω) � H‖uc
0 − uc

H‖H1(Ω) � H3.
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Next, we show that
∣∣‖uc

0‖L2(Ω) − 1
∣∣ is of higher order. We start with

‖uc
0‖2
H1(Ω) − ‖uc

H‖2
H1(Ω) = a(uc

0, u
c
0) − a(uc

H , u
c
H)

= λc
H(uc

H , u
c
0 − uc

H)L2(Ω) − β(|uc
H |2uc

H , (u
c
0 − uc

H))L2(Ω)

= λc
H(uc

H − IH(uc
H), uc

0 − uc
H)L2(Ω)

− β(|uc
H |2uc

H − |uc
0|2uc

0, (u
c
0 − uc

H))L2(Ω) − β(|uc
0|2uc

0, (u
c
0 − uc

H))L2(Ω)

(6.24)

� (H4 +H6 − β(|uc
0|2uc

0, u
c
0 − uc

H)L2(Ω).

Using that uc
0 is bounded uniformly in L∞(Ω) we can proceed as in the proof of

Lemma 6.5 to show

β(|uc
0|2uc

0, u
c
0 − uc

H)L2(Ω) � H‖uc
0‖H1(Ω)‖uc

0 − uc
H‖L2(Ω) � H4.

So in summary,

∣∣‖uc
0‖2
H1(Ω) − ‖uc

H‖2
H1(Ω)

∣∣ � H4.

However, on the other hand,

λc
H

(
‖uc

H‖2
L2(Ω) − ‖uc

0‖2
L2(Ω)

)
= λc

H(uc
H − uc

0, u
c
0 − IH(uc

0))L2(Ω)

− β(|uc
H |2uc

H , (u
c
0 − uc

H))L2(Ω)

− ‖uc
0‖2
H1(Ω) + ‖uc

H‖2
H1(Ω).

This we can treat with the previous results to get

∣∣||uc
H ||2L2(Ω) − ||uc

0||2L2(Ω)

∣∣ � H4.

With ||uc
H ||L2(Ω) = 1 we get

∣∣||uc
H ||L2(Ω) − ||uc

0||L2(Ω)

∣∣ ≤
∣∣||uc

H ||2L2(Ω) − ‖uc
0‖2
L2(Ω)

∣∣ � H4.(6.25)

Note that in the last step we used that for any a ≥ 0 it holds that |1 − a| ≤ |1 − a2|.
Step 2. Step 1 justifies the definition of ũc

0 := ‖uc
0‖−1
L2(Ω)u

c
0 which fulfills

‖ũc
0 − uc

0‖L2(Ω) =
∣∣‖uc

0‖L2(Ω) − 1
∣∣ ‖uc

0‖L2(Ω) � H4.(6.26)

Next, we show ‖u − ũc
0‖L2(Ω) � H4. For this purpose define λ̃c

H := ‖uc
0‖−1
L2(Ω)λ

c
H .

Then ũc
0 ∈ H1

0 (Ω) solves

∫

Ω

A∇ũc
0 · ∇φ dx+

∫

Ω

bũc
0φ dx = λ̃c

H

∫

Ω

uc
Hφ dx−

∫

Ω

β

‖uc
0‖L2(Ω)

|uc
H |2uc

Hφ dx.
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1546 P. HENNING, A. MÅLQVIST, AND D. PETERSEIM

We want to use Lemma 6.8 and denote ψ := ψu−ũc
0

with ψu−ũc
0

∈ V ⊥
u being the

solution of (6.18) for w = u− ũc
0. Before we start to estimate cλ,u(ũ

c
0 − u, ψ) observe

that (u, ψ)L2(Ω) = 0 (by definition), which yields

λc
H(uc

H , ψ)L2(Ω) − λ(ũc
0, ψ)L2(Ω) = (λc

H − λ)(uc
H − u, ψ)L2(Ω)

(6.27)

+λ(uc
H − uc

0, ψ)L2(Ω) + λ(uc
0 − ũc

0, ψ)L2(Ω).

We get

cλ,u(ũ
c
0 − u, ψ)

= a(ũc
0 − u, ψ) + 3β

∫

Ω

|u|2ũc
0ψ dx− 3β

∫

Ω

|u|2uψ dx− λ(ũc
0, ψ)L2(Ω) + λ(u, ψ)L2(Ω)

= a(ũc
0, ψ) + 3β

∫

Ω

|u|2ũc
0ψ dx− 2β

∫

Ω

|u|2uψ dx− λ(ũc
0, ψ)L2(Ω)

=

(
1 − ‖uc

0‖L2(Ω)

‖uc
0‖L2(Ω)

+ 1

)(
λc
H

∫

Ω

uc
Hψ dx− β

∫

Ω

|uc
H |2uc

Hψ dx

)

+ 3β

∫

Ω

|u|2ũc
0ψ dx− 2β

∫

Ω

|u|2uψ dx − λ(ũc
0, ψ)L2(Ω)

(6.27)
=

(
1 − ‖uc

0‖L2(Ω)

‖uc
0‖L2(Ω)

)
(λc
Hu

c
H − β|uc

H |2uc
H , ψ)L2(Ω)

︸ ︷︷ ︸
=:I

+ (λc
H − λ)(uc

H − u, ψ)L2(Ω)︸ ︷︷ ︸
=:II

+ λ(uc
H − uc

0, ψ − IH(ψ))L2(Ω)︸ ︷︷ ︸
=:III

+ λ(uc
0 − ũc

0, ψ)L2(Ω)︸ ︷︷ ︸
=:IV

+ 3β(|u|2(ũc
0 − uc

0), ψ)L2(Ω)︸ ︷︷ ︸
=:V

+ 3β(|u|2(uc
0 − uc

H), ψ)L2(Ω)︸ ︷︷ ︸
=:VI

− β

∫

Ω

(u − uc
H)2(uc

H + 2u)ψ dx

︸ ︷︷ ︸
=:VII

.

In the last step we used (u, ψ)L2(Ω) = 0 and

a3 − 3ab2 + 2b3 = (a− b)2(a+ 2b) for a, b ∈ R.

With (6.25) we have

|I| �
∣∣∣∣
1 − ‖uc

0‖L2(Ω)

‖uc
0‖L2(Ω)

∣∣∣∣ (λc
H + ‖uc

H‖3
H1(Ω))‖ψ‖L2(Ω) � H4λc

H(1 + (λc
H)2)‖ψ‖H1(Ω).

For II we use Theorem 4.1 to obtain

|II| ≤ |λc
H − λ|‖uc

H − u‖L2(Ω)‖ψ‖L2(Ω) � H3H3‖ψ‖L2(Ω) ≤ H6‖ψ‖H1(Ω).

For term III we can use (6.24), which gives us

|III| ≤ λ|(uc
H − uc

0, ψ − IH(ψ))L2(Ω)| � λH3‖ψ − IH(ψ)‖L2(Ω) � H4‖ψ‖H1(Ω).
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Using (6.26) we get

|IV| ≤ λ‖uc
0 − ũc

0‖L2(Ω)‖ψ‖L2(Ω) � H4‖ψ‖H1(Ω).

Equally we get

|V| � |(|u|2(ũc
0 − uc

0), ψ)L2(Ω)| � ‖u‖2
L6(Ω)‖ũc

0 − uc
0‖L2(Ω)‖ψ‖L6(Ω) � λH4‖ψ‖H1(Ω).

To estimate VI we need the L∞-estimate given by (6.21), which reads

‖ψu−ũc
0
‖L∞(Ω) � ‖ũc

0 − u‖L2(Ω).(6.28)

For z ∈ NH , let the values uz and ψz denote the coefficients appearing in the weighted
Clément interpolation of u and ψ (cf. (3.2)). Recall that Φz denote the nodal basis
functions of VH . Using again (6.24), (Φz, u

f)L2(Ω) = 0 for all z ∈ NH , and the fact

that uc
0 − uc

H ∈ V f
H,0, we obtain

|VI| � |(|u|2(uc
0 − uc

H), ψ)L2(Ω)|

=

∣∣∣∣((u− IH(u))uψ, uc
0 − uc

H)L2(Ω) +
∑

z∈NH

(uz(u − uz)ψΦz , u
c
0 − uc

H)L2(Ω)

+
∑

z∈NH

(|uz|2(ψ − ψz)Φz, u
c
0 − uc

H)L2(Ω)

∣∣∣∣

� ‖u‖L∞(Ω)

(
2‖ψ‖L∞(Ω)‖u‖H1(Ω) + ‖u‖L∞(Ω)‖ψ‖H1(Ω)

)
H‖uc

0 − uc
H‖L2(Ω)

(6.28)

� H4‖ũc
0 − u‖L2(Ω).

For the last term Theorem 4.1 leads to

|VII| � ‖u− uc
H‖2

H1(Ω)

(
‖uc

H‖L2(Ω) + 2‖u‖L2(Ω)

)
‖ψ‖H1(Ω) � H4‖ψ‖H1(Ω).

Combining the results for terms I–VII and using ‖ψ‖H1(Ω) � ‖ũc
0 − u‖L2(Ω) we get

|cλ,u(ũc
0 − u, ψ)| � H4‖ũc

0 − u‖L2(Ω).

Since (by using the previous estimate for ‖u− ũc
0‖H1(Ω))

1

4
‖u− ũc

0‖4
L2(Ω) + ‖u− ũc

0‖2
L2(Ω)

∫

Ω

|u|2uψu−ũc
0
dx ≤ CH3‖u− ũc

0‖2
L2(Ω)

we finally obtain with Lemma 6.8

‖u− ũc
0‖2
L2(Ω) � |cλ,u(ũc

0 − u, ψ)| � H4‖ũc
0 − u‖L2(Ω).

With (6.24) we therefore proved

‖u− uc
0‖L2(Ω) � H4.

Proposition 6.10. The L2-error estimate in the fully discrete case can be proved
analogously to the semidiscrete case above. We therefore get for sufficiently small h
that

‖u− uc
h‖L2(Ω) � H4 + CL2(h,H)

with CL2(h,H) behaving like the term H2‖u− uh‖H1(Ω).
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6.4.3. Proof of the eigenvalue error estimate in (4.4). From the following
corollary we can conclude estimate (4.4).

Corollary 6.11. Let uc
h ∈ Vh denote the solution of the postprocessing step

defined via Problem 3.5 and let λc
h := (2E(uc

h) + 2−1β‖uc
h‖4
L4(Ω))‖uc

h‖−2
L2(Ω). Then

there holds

|λh − λc
h| � ‖uh − uc

h‖2
H1(Ω) + ‖uh − uc

h‖L2(Ω).

Proof. We have for arbitrary vh ∈ Vh

a(uh − vh, uh − vh) + β(|uh|2(uh − vh), uh − vh)L2(Ω) − λh(uh − vh, uh − vh)L2(Ω)

= a(vh, vh) − λh(vh, vh) + β(|uh|2vh, vh)L2(Ω).

This implies with vh = uc
h

|λc
h − λh| =

∣∣∣∣∣
a(uc

h, u
c
h) + β(|uc

h|2uc
h, u

c
h)L2(Ω) − λh‖uc

h‖2
L2(Ω)

‖uc
h‖2
L2(Ω)

∣∣∣∣∣

=

∣∣∣∣∣
‖uh − uc

h‖2
H1(Ω) + β(|uh|2, (uh − uc

h)
2)L2(Ω) − λh‖uh − uc

h‖2
L2(Ω)

‖uc
h‖2
L2(Ω)

+
β((|uh|2 − |uc

h|2), |uc
h|2)L2(Ω)

‖uc
h‖2
L2(Ω)

∣∣∣∣∣.

The remaining estimate is straightforward using (a2 − b2) = (a− b)(a+ b). Note that
the last term is the dominating term.

We obtain (4.4) from Corollary 6.11 and our previous estimates for ‖u−uc
h‖H1(Ω)

and ‖u− uc
h‖L2(Ω).
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Scale-explicit regularity results and fine-scale discretization

D.1 Finite element network approximation of conductivity in particle
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Abstract A new finite element method computes conductivity in some unstructured
particle-reinforced composite material. The 2-phase material under consideration is
composed of a poorly conducting matrix material filled by highly conducting circular
inclusions which are randomly dispersed. The mathematical model is a Poisson-type
problem with discontinuous coefficients. The discontinuities are huge in contrast and
quantity. The proposed method generalizes classical continuous piecewise affine finite
elements to special computational meshes which encode the particles in a network
structure. Important geometric parameters such as the volume fraction are preserved
exactly. The computational complexity of the method is (almost) proportional to the
number of inclusions. This is minimal in the sense that the representation of the under-
lying geometry via the positions and radii of the inclusions is of the same complexity.
The discretization error is proportional to the distance of neighboring inclusions and
independent of the conductivity contrast in the medium.
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1 Introduction

Composite materials (or composites for short) are engineered materials made from
two or more constituents with significantly different physical properties. In a typical
configuration, randomly distributed filler particles (inclusions) are surrounded by a
second material (matrix) which binds the filler particles together.

The numerical simulation of material properties aims at a better understanding
how conductivity depends on controllable variables (e.g., thermal conductivities of
the material components, relative volumes, and particles shapes) and hence provides
the opportunity to develop materials with enhanced performance for the particular
application.

The design of efficient and reliable numerical methods for such problems is chal-
lenging. The complexity of the underlying geometry makes classical approaches hardly
feasible (cf. Sect. 1.2); in the typical geometric setting, the inclusions are too big for
any perturbation analysis or homogenization method, and they are too many or they
are packed too densely to resolve them easily with standard finite element meshes.
We face this difficulty even for simple continuum models of some material property
of interest, e.g. the linear elliptic model problem of heat conduction considered in this
paper (see Sect. 1.1).

Based on an efficient treatment of the microscopic geometry, the new method
described in this paper (cf. Sect. 1.3) allows reliable numerical simulation of the
model problem with many inclusions independent of the degree of disorder in the
geometry.

1.1 Model problem

This paper considers a representative 2-dimensional model of a particle-reinforced
composite occupying the nonempty open bounded convex polyhedral domain Ω ⊂
R2. Let Binc be a set of closed, pairwise disjoint disks of positive radii (inclusions)
contained in a domain Ω ⊂ R2, i.e.,

B ⊂ Ω and dist
(

B, B̃
)

> 0 for all B, B̃ ∈ Binc with B �= B̃. (1.1)

In the present context, the number N := #Binc of inclusions is a very large parameter.
The two material phases are represented by the union of the inclusions Ωinc, and by
the so called matrix (the perforated domain) Ωmat,

Ωinc :=
⋃

B∈Binc

int(B) and Ωmat := Ω\Ω inc.

The outer boundary Γ := ∂Ω is partitioned into two parts ΓD and ΓN , where ΓD is
closed and has a positive surface measure while its relative complement ΓN := Γ \ΓD

is relatively open, and the number of contact points ΓD ∩ Γ N is finite.
The material geometry enters the problem through a coefficient function c ∈

L∞(Ω) which jumps between the material components. For simplicity c is chosen to
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be constant with respect to each of the two phases and normalized with respect to the
matrix material, i.e.,

c(x) =
{

1 if x ∈ Ωmat,

ccont if x ∈ Ωinc.
(1.2a)

The constant ccont ≥ 1 represents the conductivity contrast in the medium.
Consider the set of admissible temperature distributions

A := u D + V with V := {u ∈ H1(Ω) | u = 0 on ΓD} (1.2b)

for u D ∈ H1(Ω) ∩ C0(Ω). Given some force density f ∈ V ∗, the effective conduc-
tivity of the composite

ceff := min
u∈A

E(u) (1.2c)

minimizes the energy functional E,

E(v) := 1

2

∫

Ω

c(x)|∇v(x)|2 dx −
∫

Ω

f (x)v(x) dx for all v ∈ H1(Ω). (1.2d)

1.2 Challenges to numerical simulations

In practical applications, the parameter ccont 
 1 is very large. In addition, the coef-
ficient function, which is the output of certain (random) production processes (e.g.
mixing of the particles within a liquid matrix material followed by hardening), has to
be regarded as a statistical parameter. Corresponding to Berlyand [3], the latter two
issues, random micro-structures on multiple scales and high contrast in physical prop-
erties, are the two characteristic features of general composites. They lead to major
difficulties for a numerical approximation of problem (1.2).

Classical FEM A classical method for the approximate solution of (1.2) is the finite
element method. However, in the present context, standard finite element approaches
suffer from the fact that the material interface ∂Ωinc needs to be resolved by the
underlying mesh in order to get satisfactory results. The required resolution of the
coefficient geometry forces even the coarsest available meshes to be very fine, i.e.,
the minimal mesh size has to be at most of order of the inclusion radii. Additionally,
finite element methods often require high quality meshes (shape regularity) which puts
even more constraints on mesh generation. Thus, the minimal number of nodes in a
reasonable mesh depends critically on the distribution of the holes and their distances;
Fig. 1 illustrates the problem in a model situation, which is eased for visualization
purposes.

Minimal complexity Since the underlying geometry is of stochastic nature problem
(1.2), typically, needs to be solved many times for different coefficient configurations
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Fig. 1 Model domain (unit square) containing 133 circular inclusions with radius r = 0.02 (left) and
“coarse” shape regular triangulation with 33903 elements (right)

within a statistical investigation of material properties (by a Monte Carlo method). For
example, the accuracy of the approximation of the expected temperature distribution
subject to a to random distribution of particles in the material, is of order M−1/2, where
M denotes the number of samples. Since the coefficient is different for different sam-
ples, meshes cannot be re-used but need to be re-computed for every single sample of
the particle distribution. Hence, the computation of the finite element mesh is crucial
in all complexity discussions and cannot be neglected as a precomputation (cf. Fig. 1).
With regard to the possibly huge number of instances of problem (1.2) that need to
be considered, this paper aims at a reasonable discrete model of minimal complexity.
Minimality is determined by the data of the problem and therefore mainly by its geom-
etry. The geometry representation requires storing the pairs of centers and radii of the
N inclusions (the complexity of the representation of the outer boundary is supposed
to be small compared to N ). A model is considered to have minimal complexity if
it provides an approximate solution in time and space complexity O(N ). The finite
element method to be presented in this paper satisfies the complexity requirement up
to logarithmic factors (cf. Section below).

1.3 The new structural finite element approach

In this paper ideas from network approximations [3–5,19] are combined with non-
standard finite element methods to derive a new structural finite element method of
almost minimal complexity. In particular, a special geometry treatment inspired by
networks is combined with the flexibility of finite element methods. As in discrete
network methods, the inclusions are modeled in a network structure. They appear
as elements of the computational mesh, supplemented by channel-like objects that
connect neighboring inclusions and, finally, triangles. The mesh generalizes stan-
dard Delaunay triangulations of points in the plane to sets of disks. It can be com-
puted and represented efficiently. A generalization of continuous first-order finite ele-
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ments based on the new, problem-adapted subdivisions is introduced. Its realization is
conceivably simple and it provides accurate numerical approximations at almost mini-
mal complexity. More precisely, for the solution u ∈ A∩ H2(Ωmat ∪Ωinc) of (1.2) and
its structural finite element approximation uS it holds (see Theorem 3.1, Corollaries
3.1 and 3.2).

‖√c∇(u − uS)‖L2(Ω) ≤ C f,u D,Binc‖h‖L∞(Ω),

where h is a local mesh size parameter. The constant does not depend on contrast. Its
dependencies on the geometry of the material (e.g., touching inclusions) are discussed
in detail.

The overall motivation for the novel network approximation is its optimal com-
plexity in the sense that the cost for a meaningful approximation remains proportional
to the number of inclusions.

1.4 Numerical upscaling

The number of degrees of freedom might be reduced further by using multiscale
methods, e.g., [7,11,16,17,20,21]. These methods are based on arbitrary coarse
meshes that, more or less, ignore the geometric scales of the coefficient. The influ-
ence of the coefficient is instead coded in the finite element basis functions or some
modified discrete operator. For this, multiscale methods require some preprocessing
that involves the solution of the original problem on subdomains. The solution of
these local problems, however, faces the same difficulties as the original problem,
i.e., it requires submeshes fine enough to capture the heterogeneities (the influence of
the microscopic geometry on macroscopic material properties can only be studied if
the microscopic geometry enters the discretization). In this regard, the method pre-
sented here might be employed as an efficient fine scale solver within some multiscale
numerical framework.

1.5 Outline

Section 2 defines a problem adapted generalization of triangular meshes modeling the
inclusions as (vertex-like) elements of a subdivision. Based on this new type of meshes
a generalized nodal basis defining a generalized conforming first-order approximation
space is introduced. Contrast-independent a priori error estimates for the proposed
new finite element method are given in Sect. 3. Section 4 discusses open problems
and future generalizations of the method.

1.6 Notation

In this paper, capital letters A, B, C, . . . indicate sets. Calligraphic capital letters
B,P, . . . denote sets of sets. For a given set of sets B the union of its elements is
denoted by ∪B := ⋃

B∈B B. Basic topological notations are used: For any subset X
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of a metric space its closure is denoted by X , its interior by int(X), and its boundary by
bnd(X). In what follows, dist(·, ·) denotes the Euclidean distance in R2. The measure
| · | is context-sensitive and refers to the volume of a set relative to its dimension,
i.e., | · | denotes the length of a curve, or the area of a domain. The distance between
nonempty subsets A, B ⊂ R2 reads

dist(A, B) := inf
x∈A,y∈B

dist(x, y) . (1.3)

Given some bounded domain Ω , standard notation for (fractional) Sobolev spaces
W m

p (Ω), m ≥ 0, p ∈ N ∪ {0}, and their corresponding norms ‖ · ‖W m
p (Ω) and

seminorms | · |W m
p (Ω) is used; Hm(Ω) abbreviates W m

2 (Ω) (m ∈ N) and L p(Ω)

abbreviates W 0
p(Ω). Given two disjoint bounded Lipschitz domains Ω1 and Ω2, the

space Hm(Ω1 ∪ Ω2) denotes the space of all functions u ∈ L2(Ω1 ∪ Ω2) with
u|Ω1 ∈ Hm(Ω1) and u|Ω2 ∈ Hm(Ω2). The dual space of a Hilbert space V is indi-
cated by V ∗. The space of R-valued continuous functions on a set Ω is denoted by
C0(Ω).

2 A minimal conforming finite element space

This section introduces a conforming finite element space which can be regarded as
a generalization of the classical continuous piecewise affine finite element space on a
special mesh.

2.1 Geometric preliminaries

Cyclic polygons A convex polygon T is the closed convex hull of 2 or more distinct
points. The set of vertices (corners) V(T ) is the minimal set of points x1, x2, . . . , xk ∈
R2, such that T = conv({x1, x2, . . . , xk}). According to the number of its vertices, a
convex polygon is denoted as a convex k-gon. The boundary of a convex k-gon can
be described by the union of at most k line segments called edges. The set of edges
of a convex polygon T is denoted by E(T ). A convex polygon T is called cyclic if its
vertices (corners) V (T ) are located on the boundary of a (closed) disk CD = CD(T )

which is denoted as the circumdisk of T . Examples of cyclic polygons are line segment,
triangles, or rectangles.

Infinite Delaunay Triangulations A regular (possibly infinite) triangulation of a domain
Ω ⊂ R2 into cyclic polygons is a set of cyclic polygons T such that

∪T = Ω

and any two distinct cyclic polygons are either

a) disjoint, T1 ∩ T2 = ∅, or
b) share exactly one vertex z, T1 ∩ T2 = V (T1) ∩ V (T2) = {z}, or
c) have one edge E = bnd(T1) ∩ bnd(T2) = E(T1) ∩ E(T2) in common.
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The set of all edges resp. vertices of a triangulation T is written as

E(T ) :=
⋃

T ∈T
E(T ) resp. V(T ) :=

⋃

T ∈T
V(T ).

A regular triangulation T is called Delaunay [10] if every element T ∈ T satisfies the
Delaunay criterion

CD(T ) ∩ V(T ) = V(T ), (2.1)

that is, the circumdisc of T does not contain any vertices of T except those of T . Given
a set of vertices V , the Delaunay triangulation of conv(V) is uniquely determined (if
cyclic polygons are considered). It can be constructed, e.g., by exploiting duality with
respect to the Voronoi diagram [27] of V . The uniqueness is due to the consideration
of cyclic polygons instead of just triangles. In the subsequent paragraph, cyclic k-gons
with k > 3 will further be decomposed into triangles.

2.2 Geometric modeling of particle composites

The geometry of model problem (1.2) is represented by a finite set B of closed disks.
Every B ∈ B is described by its center cB = mid(B) and its radius rB = diam

(
B

)
/2 ≥

0. The elements of B are denoted as generalized vertices and partitioned into the two
subsets Binc and Bmat, i.e.,

B = Binc ∪ Bmat and Binc ∩ Bmat = ∅.

The set Binc contains the inclusions of model problem (1.2), i.e., closed disks of positive
radius. The set Bmat contains closed disks of radius zero with

conv(∪Bmat) = Ω and ΓD ∩ Γ N ⊂ ∪Bmat.

Thus Bmat contains the corners of ∂Ω and all points where the type of boundary
condition switches between Dirichlet and Neumann; but Bmat might contain additional
points (disks with vanishing radii) in the interior of the matrix Ωinc, which offers
the possibility of refinement and increased local resolution within the finite element
framework.

By Tmat we denote the Delaunay triangulation of Ωmat such that

V(Tmat) = Bmat ∪
⋃

B∈Binc

∂ B.

Figure 2 displays a detail of Tmat for some set of disks B. Obviously, Tmat consists of
two classes of cyclic polygons (see [24]), namely,

a) (possibly infinitely many) cyclic 2-gons T |
mat, i.e., line segments whose vertices

are located on the circumference of exactly two distinct disks, and
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(a) Generalized Delaunay triangulation (b) Genrealized Delaunay triangulation and 
dual Voronoi tessellation

Fig. 2 Generalized Delaunay triangulation with respect to disks in the plane

b) (finitely many) cyclic k-gons T �
mat for k ≥ 3.

For simplicity we assume that T �
mat contains exclusively triangles. This assumption

can always be fulfilled if we consider a triangulation T̃mat in which the 4, 5, . . . -gons
of Tmat are further decomposed into triangles; T̃mat is not Delaunay in the sense of
(2.1) but fulfills the weaker Delaunay criterion

int(CD(T )) ∩ V(T̃mat) = ∅ for all T ∈ T̃mat, (2.2)

that is, there are no vertices of T̃mat in the interior of the circumdisk of T ∈ T̃mat. The
subset T �

mat of triangles of Tmat provides structural (combinatorial) information about
the set of inclusions Binc. It induces a neighborhood relation N ⊂ Binc ×Binc defined
by the rule: (B1, B2) ∈ N if there exists a T ∈ T �

mat such that V (T ) ⊂ B1 ∪ B2 and
V (T ) ∩ B1 �= ∅ and V (T ) ∩ B2 �= ∅. For every pair (B1, B2) ∈ N of neighboring
disks we define the channel-like object (a bundle of line segments)

E(B1, B2) := ∪{T ∈ Tmat : V (T ) ⊂ B1 ∪ B2}.

Since E(B1, B2) is an object that connects exactly two generalized vertices (disks) we
denote E(B1, B2) a generalized edge.

A finite subdivision G of Ω , which will serve as the finite element mesh later, is
given by

G = Binc ∪ E ∪ T ,

where Binc is the given set of disks, E := {E(B1, B2) : (B1, B2) ∈ N } is the set of
generalized edges and T := T �

mat is the set of triangles.

Remark 1 a) The subdivision G can be regarded as a generalization of classical
Delaunay triangulations in the sense that disks might assume the classical role
of vertices while edges (i.e., objects that connect two neighboring vertices) might
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generalize to channels. In the special case of equally sized inclusions such subdi-
visions have been used in discrete network approximations [3]. Apart from minor
technical details regarding the treatment of element boundaries, the subdivision G
fits into the framework of generalized Delaunay partitions for multidimensional
sets of convex inclusions introduced in [23].

b) The subdivision G covers Ω while the intersection of any two of its elements is of
measure zero.

c) The number of elements in G is proportional to the cardinality of B and thus is
quasi minimal.

d) There is a duality concept which links generalized Delaunay triangulations to
Voronoi tessellations with respect to the set of disks (see Fig. 2(b) and the next
subsection). It generalizes straight-line duality between classical Voronoi tessel-
lation and Delaunay triangulation of point sets. We refer to [23] for more insights
about geometric duality and further references.

e) The generalized Delaunay triangulation D can be computed fast as explained
subsequently. There exist algorithms of orderO(#B×log(#B)) for the computation
of Voronoi diagrams with respect to a set of disks B; see, e.g., [13,14,18]. These
algorithms, by duality, can also be employed for the computation of the generalized
Delaunay subdivision.

We refer to the recent preprint [12] for an algorithmic presentation of this construc-
tion.

2.3 Element parametrization and local mesh size

The generalized vertices Binc and the triangles T form affine families and can easily
be represented by reference elements and affine mappings.

A parametrization of a generalized edge can be given as follows. Let E = E(B1, B2)

in E be a generalized edge that connects two generalized vertices B1, B2 ∈ B and let

ΣE :=
{

y ∈ R2 : dist(y, B1)=dist(y, B2) and dist(y, B1) ≤ dist(y,B\{B1, B2})
}

denote the corresponding dual Voronoi edge, the set of points with equal distance to
both B1 and B2. Without loss of generality we assume rB1 ≥ rB2 , cB1 = (0, 0), cB2 =
(0, δ), δ > 0. Note that the Voronoi dual edge might not be connected (see Fig. 4a). The
same applies to the generalized edge as it can be seen in Fig. 4b. We denote the number
of connected components of E by K (E). The projection πB1 := argminy∈B1

dist(·, y)

defines angles

−π
2 ≤ α1

E ≤ β1
E < α2

E ≤ β2
E < · · · < α

K (E)
E ≤ β

K (E)
i j ≤ π

2

such that

πB1(ΣE ) =
K (E)⋃

k=1

rB1

[
sin([αk

E , βk
E ]), cos([αk

E , βk
E ])

]T
.
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In other words, the parameters α1
E , . . . , α

K (E)
E , β1

E , . . . , β
K (E)
E are the angular values

of the projections of the Voronoi vertices which are connected by ΣE , onto B1. Those
Voronoi vertices are simply the circumcenters of triangles adjacent to E . With the
reference element

E ref = E ref(B1, B2) :=
(
]α1

E , β1
E [ ∪ · · · ∪ ]αK (E)

E , β
K (E)
E [

)
×]0, 1[, (2.3)

the mapping JE : E ref → intE , given by

JE (s, λ) = (1 − λ)rB1

(
sin(s)
cos(s)

)
+ λπB2

(
(πB1 |ΣE )−1

(
rB1

(
sin(s)
cos(s)

)))

=
(

((1 − λ)rB1 + λrB2) sin(s)
((1 − λ)rB1 − λrB2) cos(s) + δλ

)
,

parametrizes E . Figure 3a visualizes the mapping JE . Note that a generalized edge
E(B1, B2) is uniquely determined by the inclusion centers and radii, and the values
of αE , βE , and δ.

The projection πB1,B2(·) := πB2(π
−1
B1

(·)) may be rewritten as

πB1,B2(x) := argmin
y∈∂ B2

dist(x, y)

max{〈(y − x)/‖y − x‖, νB1(y)〉, 0} , (2.4)

where νB1 denotes the outer normal of B1.
With

H(s) :=
(
δ2 − 2 cos(s) δ rB1

) + r2
B1

− r2
B2(

2 rB2 − 2 rB1

) + 2 δ cos(s)
.

the parametrization JE assumes the form

JE (s, λ) =
(

(1 − λ)r1 + λr2
rB1 + H(s)

rB2 + H(s)

) [
sin(s)
cos(s)

]

+δλ

(
1 − rB2

rB2 + H(s)

) (
0
δ

)
. (2.5)

We finally introduce some (Tmat ∪ B)-piecewise constant meshsize function h :
Ω →]0,∞[ by

h|K = hK := diam
(
K

)
for K ∈ Tmat ∪ B

to be used in the forthcoming finite element analysis. Note that h is not constant with
respect to a generalized edge (of positive measure) but captures the distance between
neighboring inclusions (see (2.4)).

123

224 D



FE network approximation in particle composites 83

(a)

(b) (c)

B
1

(0,0)

B
2

(0,δ)

J
E

E

Eref=[α,β]×[0,1]

Σ
E

α β

Fig. 3 Edge parametrization and nodal basis function

2.4 Finite element spaces

The degrees of freedom of the finite element spaces are assigned to the entries of B.
Every B ∈ B defines a (local) Tmat-affine basis function λB : R2 → [0, 1] with

λB ≡ 1 in B while λB ≡ 0 in Ωinc\B.

More precisely,λB is unique continuous function with constant values on the inclusions
as above and whose restriction to each element T ∈ Tmat is affine. This means that λB

is affine on all triangles T ∈ T . However, λB is not affine on generalized edges. Recall
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(a) Part of a Voronoi tessellation with a multiply
connected Voronoi edge (black)

(b) Part of the generalized Delaunay triangula-
tion with a multiply connected generalized edge
(black shaded)

Fig. 4 Voronoi tessellation and Generalized Delaunay triangulation of a set of disks in the plane
emphasizing possible non-connectivity of its elements

that a generalized edge E ∈ E is the agglomeration of line segments. The restriction
of λB to all those line segments is supposed to be affine. On the global level of the
generalized edge E , this implies that λB |E is the image of an affine function on the
rectangular reference element E ref (cf. (2.3)) under the coordinate transformation JE

(cf. (2.5)). After suitable rotation of the edge as in Sect. 2.3 (with B1 = B), λB |E may
be written as

λB(x) = (1 − (J−1
E (x))2) for all x ∈ E,

where (J−1
E (x))2 refers to the second component of the vector J−1

E (x).
Those basis functions generalize nodal basis functions on classical triangular

meshes. In the special case of equally sized inclusions, those basis function have
been used in the analysis of a network method [4]. The support of λB , denoted by ωB ,
is given by

ωB := B ∪ (∪{E ∈ E : E ∩ B �= ∅}) ∪ (∪{T ∈ T : T ∩ B �= ∅}) .

Figure 3b depicts a nodal basis function. Note that the set of nodal basis functions
Λ := {λB : B ∈ B} forms a partition of unity in Ω . The generalized nodal basis
functions which are not related to vertices on the Dirichlet boundary ΓD span the finite
element space

S∞ := span(Λ) ∩ V . (2.6)

Obviously S∞ has dimension #B which is minimal in comparison to data complexity
and will be the space of choice for very large contrast and the special case of perfectly
conducting inclusions ccont = ∞. In the latter case the solution is necessarily constant
with respect to every single inclusion (see Sect. 3.1), which is captured by S∞.

If ccont < ∞ then the solution is not constant on the inclusions. Further basis
functions (defined below) shall preserve sufficiently high accuracy in this setting, too.
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Fig. 5 Basis function λ1
B

Every B ∈ Binc defines (local) Tmat-affine basis functions λ1
B, λ2

B : R2 → [0, 1] with

λk
B(x) = xk − (cB)k

rB
if x ∈ B while λk

B ≡ 0 inΩinc\B.

The subscript k refers to the kth component of a 2-dimensional vector.
This means that λk

B is affine on all inclusions B ∈ Binc and all triangles T ∈ T .
After suitable rotation of the edge as in Sect. 2.3 (with B1 = B), λB |E may be written
as

λk
B(x) = (1 − (J−1

E (x))2)λ
k
B(JE ((J−1

E (x))1, 0)) for all x ∈ E,

where the coordinate transformation JE is given in (2.5). Note that JE ((J−1
E (·))1, 0)) ∈

∂ B and, hence, the values λk
B(JE ((J−1

E (·))1, 0)) are given by (2.4). It holds
supp

(
λk

B

) = ωB . Figure 5 illustrates λ1
B .

The enlarged finite element space is then given by

S := span
(
Λ ∪ {λ1

B : B ∈ B} ∪ {λ2
B : B ∈ Binc}

)
∩ V . (2.7)

Remark 2 a) If the radii of all inclusions are zero, the spaces S resp. S∞ reduce
to the classical conforming P1 finite element space with respect to the Delaunay
triangulation.

b) The number of degrees of freedom in S is 3 per inclusion B ∈ Binc, and 1 per any
other vertex B ∈ Bmat away from ΓD . The overall number of degrees of freedom
is bounded by 3#Binc + #Bmat and, hence, proportional to data complexity.

c) Further basis functions could easily be designed by considering any continuous
function on B and its Tmat-affine or a more general Tmat-polynomial extension
to ωB .

3 Galerkin approximation and a priori error analysis

This section considers the variational formulation of (1.2) and its Galerkin approxi-
mation and presents error estimates which are independent of the contrast parameter
ccont.
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3.1 Variational formulation and solvability

Any minimizer u∗ ∈ A of (1.2) solves the variational problem

∫

Ω

c〈∇u∗,∇v〉dx =
∫

Ω

f vdx for all v ∈ V . (3.1)

The left-hand side of (3.1) defines a symmetric bilinear form a,

a(u, v) :=
∫

Ω

c〈∇u,∇v〉dx .

The sum u∗ := u + u D is the solution of problem (3.1); u D denotes some extension
(with finite energy) of the given inhomogeneous Dirichlet boundary data to Ω . After
shifting the inhomogeneous boundary data to the right-hand side, the problem reduces
to find u ∈ V such that

a(u, v) =
∫

Ω

f vdx − a(u D, v) =: F(v) for all v ∈ V . (3.2)

It is obvious that

1

1 + CF
‖v‖2

H1(Ω)
≤ a(v, v) and a(u, v) ≤ ccont‖u‖H1(Ω)‖v‖H1(Ω) (3.3)

for all u, v ∈ V with the constant from Friedrichs’ inequality CF. Inequality (3.3)
ensures the unique solvability of the variational problem (3.2) for finite contrast
ccont < ∞.

The Galerkin approximation of the solution of (3.2) with respect to the finite element
space S, denoted by uS ∈ S, is defined as the solution to the discrete variational system

a(uS, v) = F(v) for all v ∈ S. (3.4)

Remark 3 a) The assembling of the corresponding linear system is fairly standard.
It might be performed in a loop over all elements of the generalized finite element
mesh (including triangles, disks, and edges), the computation of the local stiffness
matrices and load vectors, and the sum of the local contributions to the global
matrices. The computation of the entries of the local stiffness matrices might be
done by transformation to the corresponding reference element. The only diffi-
culty is that the transformation on the generalized edges is not affine. Still the
entries of the local stiffness matrices might be precomputed as functions of the
angle parameters and δ. Alternatively, numerical quadrature can be used. If two
inclusions are close to each other, the basis functions are close to be singular and
the quadrature rule should take the singular behavior into account.
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b) The resulting stiffness matrix has a similar sparsity pattern as the stiffness matrix of
the classical P1 finite element method for the Poisson problem with respect to some
regular triangulation. Hence, in the present 2-dimensional setting, sparse direct
solvers offer robust, fast, and parallel solution of the linear system, even though
the asymptotic complexity is not optimal (e.g. O(N 3/2) for nested dissection [15]).
We refer to the textbook [9] for an overview on fast direct solvers for sparse linear
systems. For moderate contrast, [1] and [2] show that an iterative solver based
on hierarchical factorization performs almost optimal (i.e. O(N (log N )k)). In the
numerical examples in [1,2], theses methods give promising results also in the
high contrast regime.

This paper aims at a priori estimates of the error u − uS in energy norm
‖ · ‖a := √

a(·, ·) and therefore estimates of the error in the effective conductivity.
Since uS is the best approximation of u in energy norm we have

2(E(uS + u D) − E(u + u D)) = ‖(u + u D) − (uS + u D)‖2
a

= ‖u − uS‖2
a = inf

v∈S
‖u − v‖2

a. (3.5)

Sections 3.3 and 3.4 will present bounds of the right hand side in (3.5). A posteriori
bounds are presented in [12].

3.2 Perfectly conducting inclusions

Our analysis shall cover the case of perfectly conducting inclusions as well. The related
model is a variational problem with respect to the reduced space

V ∞ := {v ∈ V : v|B = const for all B ∈ Binc} ⊂ V .

We seek u∞ ∈ V ∞ such that

a∞(u∞, v) =
∫

Ω

f vdx − a∞(u∞
D , v) =: F(v) for all v ∈ V ∞, (3.6)

where a∞(u, v) := ∫
Ωmat

〈∇u,∇v〉dx for u, v ∈ H1(Ω) and u∞
D ∈ H1(Ω) with

u∞
D |ΓD = u D|ΓD and ∇u∞

D |B = 0 for all B ∈ Binc.
Since a∞(u, v) ≤ ‖u‖H1(Ω)‖v‖H1(Ω) and a∞(v, v) = ‖∇v‖2

L2(Ω)
for all u, v ∈

V ∞, the variational problem (3.6) has a unique solution.
The Galerkin approximation uS∞ ∈ S∞ of the solution of (3.6), with respect to the

finite element space S∞ defined in (2.6), satisfies

a∞(uS∞ , v) = F(v) for all v ∈ S∞. (3.7)

The error estimate (3.5) remains valid with u replaced by u∞ and uS replaced by uS∞ .
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Mathematical justification of the limiting problem We shall justify the model problem
(3.6). For fixed geometry Ωmat, Dirichlet data u D = 0, and force term f , let uccont

denote the solution of (3.2) associated with the contrast parameter ccont ≥ 1.
Define some function ũccont ∈ V as follows. On every B ∈ Binc, (ũccont )|B

equals uccont |B minus its mean value |B|−1
∫

B uccont dx . This defines (ũccont )|Ωinc .
Observe that Poicareé’s inequality yields ‖ũccont‖L2(Ωinc)

≤ C1‖∇ũccont‖L2(Ωinc)
=

C1‖∇uccont‖L2(Ωinc)
with some constant C1 independent of contrast and the positions

of the inclusions. In Ωmat, ũccont is chosen as some bounded extension of (ũccont )|Ωinc

in the sense of [26], i.e., there is some constant C2 that may depend on the geometry
but not on ccont such that ‖ũccont‖H1(Ω) ≤ C2‖uccont‖H1(Ωinc)

.
This construction and the classical jump relation at the interface ∂Ωinc,

ccont
∂

(
(uccont )|Ωinc

)

∂νΩinc

= −∂
(
(uccont )|Ωmat

)

∂νΩmat

in H−1/2(∂Ωinc), (3.8)

yield

‖∇uccont‖L2(Ωinc)

=
∫

Ωinc

〈∇uccont ,∇ũccont 〉dx =
∫

∂Ωinc

∂uccont

∂νΩinc

ũccont dx + c−1
cont

∫

Ωinc

f ũccont dx

≤ c−1
cont

⎛
⎜⎝

∣∣∣∣∣∣∣

∫

∂Ωmat

∂uccont

∂νΩmat

ũccont dx

∣∣∣∣∣∣∣
+ ‖ f ‖L2(Ωinc)

‖ũccont‖L2(Ωinc)

⎞
⎟⎠

≤ c−1
cont

(‖∇uccont‖L2(Ωmat)
‖∇ũccont‖L2(Ωmat)

+ ‖ f ‖L2(Ωmat)
‖ũccont‖L2(Ωmat)

+‖ f ‖L2(Ωinc)
‖ũccont‖L2(Ωinc)

)

≤ Cc−1
cont‖ f ‖L2(Ω)‖∇uccont‖L2(Ωinc)

,

where C depends only on C1 and C2 but not on ccont. This implies

‖c1/2∇uccont‖L2(Ωinc)
≤ Cc−1/2

cont ‖ f ‖L2(Ω).

Hence, the solution uccont of (3.2) converges (with respect to the energy norm) to the
solution u∞ of (3.6) as ccont → ∞.

3.3 Nodal interpolation and approximability

An upper bound for the right-hand side in (3.5) is derived through the design of
some finite element function based on a suitable interpolation of the solution u. The
conditions
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∫

B

(u − I u)vdx = 0 for all v ∈ P1(R2) and for allB ∈ Binc, (3.9a)

u(b) − I u(b) = 0 for all B = {b} ∈ Bmat, (3.9b)

define a generalized nodal interpolation operator I : H2(Ωmat ∪ Ωinc) → S0. Since,
on any inclusion B ∈ Binc, I u is the L2(B) projection of u onto the space of affine
functions, we have that

‖∇m(u − I u)‖L2(B) ≤ CI diam
(
B

)2−m |u|H2(B) for m = 0, 1 (3.10)

with some universal constant CI independent of the diameter of the disk B and u ∈
H2(Ωmat ∪ Ωinc). The estimate (3.10) already provides approximation properties of
the finite element space on the inclusions. It remains to give local estimates for the
interpolation error on the triangles (see Lemma 3.1) and the generalized edges (see
Lemma 3.3).

As usual, the error on a triangle T depends on the aspect ratio ρT , i.e., the ratio
between the diameters of the largest circle that can be inscribed in T and the circum-
circle of T .

Lemma 3.1 Let u ∈ V ∩H2(Ωmat∪Ωinc) and let T ∈ T with vertices on B1, B2, B3 ∈
B. Then it holds

‖∇(u − I u)‖2
L2(T )

≤ C2
T ρ−2

T ‖h∇2u‖2
L2(T ∪B1∪B2∪B3)

(3.11)

with some universal constant CT which depends only on CI from (3.9).

Proof A key ingredient of the proof are standard estimates for the interpolation error
with respect to a triangle T . It is well known (see [8, Theorem 16.1]) that the nodal
(affine) interpolant IT u of u at the vertices of T satisfies

|u − IT u|Hm (T ) ≤ Cipρ
−1
T diam

(
T

)2−m |u|H2(T ) for all u ∈ H2(T ), m = 0, 1.

(3.12)

The difficulty is that I u defined by (3.9) does not interpolate u at the vertices of T
in general. Thus, the error is split into two components,

‖∇(u − I u)‖2
L2(T )

≤ ‖∇(u − IT u)‖2
L2(T )

+ ‖∇(IT u − I u)‖2
L2(T )

. (3.13)

The first term on the right-hand side of (3.13) can be estimated directly with (3.12)
while the second one requires further considerations.

Notice that ∇(IT u − I u)|T is constant on T and the inverse estimate

‖∇q‖L∞(T ) ≤ 2ρ−1
T diam

(
T

)−1‖q‖L∞(T ) (3.14)
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holds for all q ∈ P1(T ) on any triangle T . Thus

‖∇(IT u − I u)‖2
L2(T )

≤ |T ||∇(IT u − I u)|2L∞(T )

(3.14)≤ 4ρ−2
T ‖IT u − I u‖2

L∞(T ).

(3.15)

The maximal absolute value of the affine function q := (IT u − I u)|T on T is attained
in some vertex x0 = V (T ) ∩ BT for some BT ∈ {B1, B2, B3}. If BT ∈ Bmat, i.e.,
BT = x0, then (IT u − I u)|T = 0. Otherwise, let T̃ ⊂ BT be the equilateral triangle
with vertices on ∂ BT and one vertex at x0. For q ∈ P1(T ) and p ∈ P1(T̃ ) with
|p(x0)| ≥ |q(x0)| it holds

‖q‖2
L∞(T ) = |q(x0)|2 ≤ |p(x0)|2 ≤ 2

(
|T̃ |−1‖p‖2

L2(T̃ )
+ ‖∇ p‖2

L2(T̃ )

)
. (3.16)

With the special choices p = (IT u − I u)|T and q = (IT̃ u − I u)|T̃ this leads to

‖∇(IT u− I u)‖2
L2(T )

(3.15),(3.16)≤ 8ρ−2
T

(
|T̃ |−1‖IT̃ u− I u‖2

L2(T̃ )
+‖∇(IT̃ u− I u)‖2

L2(T̃ )

)

(3.12),(3.10)≤ 16ρ−2
T (C2

I + C2
ip)h

2
BT

‖∇2u‖2
L2(BT )

. (3.17)

Together with (3.13) and (3.12) this implies (3.11) with C2
T ≤ 5(CI + Cip). ��

The second step of the error analysis considers the a priori estimate of the inter-
polation error on the generalized edges. Every connectivity component Ek, k =
1, 2, . . . , K (E) of an edge E ∈ E is a curvilinear polygon, i.e., Ek is a simply-
connected, bounded domain with the boundary ∂ Ek = ⋃4

j=1 τ j , where τ j are circular
arcs. Note that all internal angles γ1(Ek), γ2(Ek), . . . , γ4(Ek) of Ek are bounded from
above by π/2. The subsequent error analysis depends on the smallest angle which is
denoted γEk . Correspondingly, γE := mink=1,2,...,K (E) γEk . The following lemma
shows that all these angles are bounded from below by a positive constant.

Lemma 3.2 There exist γE > 0 such that 0 < γE ≤ γE for all E ∈ E .

Proof Let E ∈ E be some generalized edge connected to the inclusion B ∈ Binc. Let
τ be one of the straight arcs that define the edge. By design, τ is an element of the
infinite Delaunay triangulation Tmat (see Sect. 2.1). Since its circumdisk C D(τ ) is
tangential to B (due to the Delaunay criterion (2.1)), τ by itself cannot be tangential to
B and the angle between τ and the circular arc E ∩ B is necessarily larger than zero.

Lemma 3.3 Let u ∈ V ∩ H2(Ωmat ∪ Ωinc) and let E = E(B1, B2) ∈ E be a gener-
alized edge that connects two generalized vertices (inclusions) B1, B2 ∈ Binc. Then

‖∇(u − I u)‖2
L2(E)

≤ CE
(
‖h∇2u‖2

L2(E)
+ CE‖h∇2u‖2

L2(B1∪B2)

)

holds with CE := maxk=1,2
∥∥hBk /h + h/hBk

∥∥
L∞(E)

and some universal constant CE
which depends only on γE .
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Fig. 6 Subdivisions Q5(E) and Q10(E) of some generalized edge E = E(B1, B2) ∈ E into quadrilaterals
in the proof of Lemma 3.3

Proof The proof consists of two parts. Part I proves the assertion for ccont = ∞ and
prepares the proof in the case ccont < ∞ which is complemented in part II.

Part I. Without loss of generality, let E be connected, rB1 ≥ rB2 , and cB1 = 0,

cB2 = (0, δ) for some δ > rB1 + rB2 . The restriction E ∩ ∂ B1 = φ([α, β]) of E
to B1 shall be parametrized by some angle s ∈ [α, β] ⊂ [−π/2, π/2] with φ(s) :=
rB1(sin(s), cos(s)). The parameter interval [α, β] is subdivided by equidistributed
points

α = s1 < s2 < s3 < · · · < sL = β.

These points are mapped by φ onto B1 and by φ ◦ πB1 onto B2 (recall (2.4) for the
definition of πB1 ). Let

QL(E) := {Q� : � = 1, . . . , L − 1} with

Q� := conv
(
φ(s�), φ(s�+1), πB1(φ(s�+1)), πB1(φ(s�))

)

be a subdivision of E into quadrilaterals (see Fig. 6).
The union of quadrilaterals on level L provides a polygonal approximation E L :=⋃
Q∈QL (E) Q of E ⊂ E L ⊂ conv(E) for all L with |E L\E | → 0 as L → ∞.

A (bounded) extension operator (·)E : H2(E) → H2(Rd) (see, e.g., [26]) extends
u|E to conv(E). The extended function is denoted by uE .

The nodal (bilinear) interpolation operator with respect to Q ∈ QL is denoted by
JQ and its QL -piecewise version by JQL . Theorem 3.8 from [22] implies

‖∇(uE − JQuE )‖L2(Q) ≤ CQdiam
(
Q

)‖∇2uE‖L2(Q) (3.18)

123

D.1 233



92 D. Peterseim, C. Carstensen

for all Q ∈ QL , L ∈ N. The constant CQ depends only on the interior angles of Q,
i.e., CQ can be bounded uniformly for all Q ∈ QL and all L ∈ N in terms of γE . Thus

‖∇(uE − JQL uE )‖2
L2(E L )

=
∑

Q∈QL

‖∇(uE − JQuE )‖2
L2(Q)

(3.18)≤
∑

Q∈QL

C1‖diam
(
Q

)∇2uE‖2
L2(Q)

(3.19)

with some constant C1 which depends only on γE . Let L tend to infinity in (3.19) to
verify

‖∇(u − ũ)‖2
L2(E)

≤ C1‖h∇2u‖2
L2(E)

(3.20)

for ũ := limL→∞ JQL uE . If ccont = ∞ then ũ = I u and the proof is finished.
Part II. If otherwise ccont < ∞ then, in general, ũ /∈ S and ‖∇(I u − ũ)‖L2(E)

needs to be estimated further. The sequence eL := JQL (I u)E − JQL uE converges (in
H1) to e := I u − ũ as L → ∞. Thus, bounds on ‖∇eL‖L2(EL ) will lead to a bound
on ‖∇(I u − ũ)‖L2(E). Let Q ∈ QL with

∂ Q = [x1, x2] ∪ [x2, x3] ∪ [x3, x4] ∪ [x4, x1]

and x1, x2 ∈ B1 and x3, x4 ∈ B2 and x5 = x1 as in Fig. 6 (left). The vector ∇eL |Q is
written as some linear combination of the vectors (xk+1 − xk)/|xk+1 − xk | such that

‖∇eL‖2
L2(Q)

≤ |Q|‖∇eL‖2
L∞(Q) ≤ C2|Q|

4∑

k=1

∣∣〈(∇eL)|[xk ,xk+1], xk+1 − xk〉∣∣2

|xk+1 − xk |2

with a constant C2 which depends only on the maximal angle in Q and can be bounded
uniformly in terms of γ −1

E . Using 〈(∇eL)|[xk ,xk+1], xk+1 − xk〉 = eL(xk+1) − eL(xk)

for k = 2 and k = 4, this yields

‖∇eL‖2
L2(Q)

≤ C2

(
‖h‖L∞(Q)‖∇eL‖2

L2([x1,x2]∪[x3,x4])

+‖h−1‖L∞(Q)‖e‖2
L2([x2,x3]∪[x4,x1])

)
. (3.21)

The summation of (3.21) over Q ∈ QL leads to

‖∇eL‖2
L2(EL )

≤ C2

(
‖h‖L∞(E)‖∇eL‖2

L2(∂ EL∩(B1∪B2))

+‖h−1‖L∞(E)‖eL‖2
L2(∂ EL∩(B1∪B2))

)
.
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In the limit L → ∞ it follows

‖∇e‖2
L2(E)

≤ C2

(
‖h‖L∞(Q)‖∇e‖2

L2(∂ E∩(B1∪B2))
+‖h−1‖L∞(Q)‖e‖2

L2(∂ E∩(B1∪B2))

)
.

(3.22)

Estimate (3.10) and the trace inequality

‖ f ‖L2(∂ B) ≤ 4
√

8
(
‖ f ‖L2(B) + ‖ f ‖1/2

L2(B)
‖∇ f ‖1/2

L2(B)

)
, (3.23)

valid for any disk B and f ∈ H1(B) (see [6, Proposition 1.6.3]), imply

|e|Hm (∂ B) = |ũ − I u|Hm (∂ B) = |u − I u|Hm (∂ B)

(3.23),(3.10)≤ 4
√

8CI r
2−m− 1

2
B |u|H2(B) for m = 0, 1. (3.24)

With a universal constant C3 which depends only on CI and γE (through C1 and C2),
this leads to

‖∇(I u − ũ)‖2
L2(E)

(3.21),(3.24)≤ C3‖h−1(h|Bk ) + h(h|Bk )
−1‖L∞(E)‖h∇2u‖2

H2(B1∪B2)
.

This concludes the proof of the lemma. ��

The constant CE reflects the fact that two inclusions might touch but the corre-
sponding affine approximations of the solution on the disks might not match at the
touching point. Thus, in rare cases for ccont < ∞, the discrete system might have
infinite energy whereas the continuous solution has not. Choosing sufficiently many
degrees of freedom (number of degrees of freedom per inclusion larger than or equal
to the number of neighbors per inclusion) this problem disappears.

3.4 A priori error estimates

The approximation property of the finite element space S reads as follows.

Theorem 3.1 Let u ∈ V ∩ H2(Ωmat ∪ Ωinc) be the solution of (3.2) and let uS ∈ S
be its Galerkin approximation that solves (3.4). Then it holds

‖u − uS‖2
a ≤ C2

S

⎛
⎝‖h∇2u‖2

L2(Ωmat)
+ ccont

∑

B∈Binc

CB‖h∇2u‖2
L2(B)

⎞
⎠

with CB := ‖hB/h + h/hB‖L∞(ωB ) and some universal constant CS which depends
only on CI , CT , and CE .
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Proof The proof is a straight forward consequence of (3.10), Lemma 3.1, Lemma 3.3,
and the equality

‖v‖2
a = ‖∇v‖2

L2(Ωmat)
+ ccont‖∇v‖2

L2(Ωinc)
for all v ∈ H1(Ω).

��
By (3.3) the estimate of Theorem 3.1 is also valid for the error measured in the

H1(Ω)-norm. The regularity results from [7, Appendix B] read

‖∇2u‖L2(Ωmat)
≤ Creg‖ f ‖L2(Ω), ‖∇2u‖L2(Ωinc)

≤ Creg

ccont
‖ f ‖L2(Ω). (3.25)

The constant Creg depends solely on the geometry of the set inclusions and Ω but not
on ccont. This implies that the contrast is not a critical parameter.

Corollary 3.1 Let u ∈ V ∩ H2(Ωmat ∪ Ωinc) be the solution of (3.2) and uS ∈ S its
Galerkin approximation that solves (3.4). Then it holds

‖u − uS‖a ≤ C̃S‖h‖L∞(Ω)(‖ f ‖L2(Ω) + ‖∇u D‖L2(Ω)) (3.26)

with some universal constant C̃S which depends only on Creg and the constants CS, CB

from Theorem 3.1.

The constant C̃S in (3.26) does not depend on the contrast parameter ccont > 1.
However, through the constants CB , it might depend on the term (cf. the Definition of
CB in Theorem 3.1)

max
E(B1,B2)∈E

max{rB1, rB2}
dist(B1, B2) ccont

. (3.27)

The latter constant is critical with regard to the geometry of the coefficient function.
The term may blow up, whenever the distance of two inclusions relative to their size
becomes very small. However, high contrast reduces this effect. In the case of perfectly
conducting inclusions (ccont = ∞) it even disappears. The generalized interpolation
operator from (3.9) fulfills (u − I u)|B = 0 for all B ∈ B and the proof of Lemma 3.3
consists only of part I. Lemma 3.1 can be simplified in a similar way which leads to
the following corollary.

Corollary 3.2 Let ccont = ∞ and let u∞ ∈ V ∞ ∩ H2(Ωmat ∪ Ωinc) be the solution
of (3.6) and uS∞ ∈ S∞ its Galerkin approximation that solves (3.7). Then it holds

‖∇(u∞ − uS∞)‖L2(Ω) = ‖u∞ − uS∞‖a ≤ CS∞‖h∇2u∞‖L2(Ωmat)

with a constant CS∞ independent of u∞, ccont, and the location of the inclusions.
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In the general case ccont < ∞ the critical constant shown in (3.27) can easily be
reduced with higher-order ansatz functions on the inclusions. We can therefore derive
error estimates whose constants are explicit in the underlying geometry. However, in
all cases the dependence on the H2-norm of the solution remains. This issue is briefly
discussed in the Sect. 4.3.

4 Concluding remarks

The main result of this paper is a numerical scheme to compute temperature distribu-
tions in composite materials with a large number of particles and high contrast. In the
model situation under consideration, the method is robust and does not depend on the
contrast ccont → ∞. Some of the results extend to a more general geometric setting
in a straight-forward way. However, some difficulties remain open.

4.1 General inclusion geometry

For the use in practical applications it is desirable to incorporate more general inclu-
sion shapes and 3-dimensional geometries. It is shown in [23] that the generalized
partitions of Sect. 2 nicely generalize to sets of convex inclusions, e.g., ellipsoids,
convex polyhedra, and line segments. Even more, the design allows inclusions to
intersect. Thus, generalized Delaunay triangulations are also available for non-convex
inclusions which can be represented by finite unions of convex ones. The design of
according finite element methods can be done similarly as presented here. However,
the complexity of the mesh and the corresponding finite element method will grow as
the number of shape parameters that define a single inclusion grows. For smooth inclu-
sions the corresponding analysis is straight-forward; non-smooth inclusions, however,
require new arguments which are able to cope with lack of regularity.

4.2 Convergence

By straight forward arguments it is easy to show that the finite element solutions (the
solutions of (3.2) and (3.6)) converge in H1 to the solution of (1.2) if the meshwidth
function h tends to 0.

In the matrix, the meshwidth function h can be decreased in the matrix Ωmat by
simply putting additional artificial inclusions (points) in the set Bmat. If ccont = ∞, this
suffices to be able to construct a convergent sequence of approximation because the
(energy-)error in the inclusions is always zero. The case, in which additional vertices
of radius zero are added to improve the approximability properties of the finite element
space, is already treated by the theory presented in this article. A different possibility
is to leave the initial partition as it is and increase the polynomial degree of the shape
functions. This strategy, the so-called p-refinement, is recommended for problems
where geometry and data are smooth. The definition of higher-order finite element
spaces is to some extent straight-forward, the corresponding analysis, however, appears
more involved.

If ccont < ∞, in addition, the error on the inclusions has to be decreased, e.g., by
increasing the polynomial degree.
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4.3 Geometry-explicit estimates

The method presented is stable with respect to contrast in the medium. However, the
error bounds might depend on geometric parameters of the material, e.g., the distance
between neighboring particles. Whether or not the dependence on the local distance
is critical depends on the global distribution of particles. This can be seen already in
the simplified situation of perfectly conducting (ccont = ∞) inclusions.

Consider first two inclusions that touch but are isolated from further inclusions.
Since the solution is found in H1 the (constant) values of the solution on the two
inclusions have to be equal. Provided the force term is sufficiently smooth (L2),
classical regularity theory ensures smoothness of the solution in some neighborhood
of the two inclusions and the constant in the regularity estimate depends only on the
distance to further inclusions or the boundary of the domain.

The critical scenario is the appearance of an almost conducting path of inclusions
which connects two parts of the outer boundary with different, prescribed temperature.
The temperature gap needs to be compensated in the small regions between the inclu-
sions of the path which might cause steep gradients in the solution. If the inclusions
of the path touch pairwise, the path is perfectly conducting and hence, the energy is
infinite. Depending on the volume fraction of particles, the material shows a phase
transition from moderate to high conductivity. Mathematically speaking, the solution
operator, which maps a pair the date u D and f to the solution of (1.2), is not uniformly
bounded with respect to the geometry of the set of inclusions I [25, Theorem 3.5]
shows that, though the energy of the solution might blow up, the error estimate in
Corollary 3.2 is bounded by some generic constant independent of the distance of
the particles. Thus, our method is robust with respect the such critical scenarios and
allows meaningful material simulation even in densely packed composites. We refer
to [12] for numerical experiments.

In the general case of high but finite contrast the situation appears more involved
and a corresponding regularity theory that is explicit (and sharp) with respect to both,
contrast and geometric parameters, is not yet available and has to be addressed in
future research.
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Abstract. This paper presents some weighted H2-regularity estimates for a
model Poisson problem with discontinuous coefficient at high contrast. The
coefficient represents a random particle reinforced composite material, i.e.,

perfectly conducting circular particles are randomly distributed in some back-
ground material with low conductivity. Based on these regularity results we
study the percolation of thermal conductivity of the material as the volume
fraction of the particles is close to the jammed state. We prove that the char-
acteristic percolation behavior of the material is well captured by standard
conforming finite element models.

1. Introduction. This note studies the numerical approximability of thermal dif-
fusion in a representative class of particle composite materials (or composites). The
particles (or inclusions) are pairwise disjoint closed disks I = {I1, I2, . . . , IN} with
positive radii. They are randomly distributed in a background material (or matrix)
that occupies some open, bounded, convex, polygonal domain Ω ⊂ R2. The inclu-
sions are highly conducting compared to the matrix Ωmat := Ω \ ∪I, a fact which
is reflected in the diffusion coefficient

c(x) =

{
1 if x ∈ Ωmat,
ccont if x ∈ ∪I (1)

with some contrast parameter ccont � 1.
The thermal diffusion in the composite is modeled by the stationary heat equa-

tion,

− div c∇u = f in Ω, u = uD on ∂Ω, (2)

with a prescribed temperature uD at the boundary of Ω and a heat source f . If the
source term f is supported in the matrix and if the inclusions are assumed to be
perfectly conducting (ccont = ∞), then problem (2) reduces to an equation in the
perforated domain Ωmat. Consider the function spaces

V := {v ∈ H1(Ωmat) : v|∂I = const. for all I ∈ I} and

V0 := {v ∈ V : v|∂Ω = 0 in the sense of traces}.

2000 Mathematics Subject Classification. Primary: 35B65, 65N15; Secondary: 65N30, 74Q20.
Key words and phrases. Perforated domain, thickness of a domain, finite element method, high

contrast, percolation, phase transition.
The author is supported by the DFG Research Center Matheon Berlin through project C33.
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Then the corresponding variational problem reads: Given f ∈ L2(Ωmat) and uD ∈
C2(∂Ω), find u ∈ V such that

∫

Ωmat

∇u(x)∇v(x) dx =

∫

Ωmat

f(x)v(x) dx for all v ∈ V0 (3.a)

and
u(x) = uD(x) for almost all x ∈ ∂Ω. (3.b)

Since the elements of V have a constant trace on the boundary of a single inclu-
sion, they can trivially be extended to Ω in a way that the extension v ∈ H1(Ω)
satisfies ∇v|(∪I) = 0. Hence, the inequalities of Friedrichs and Schwarz yield

‖v‖2
H1(Ωmat) ≤ (1 + diam

(
Ω
)2

)‖∇v‖2
L2(Ωmat) and (4.a)

∫

Ωmat

∇u(x)∇v(x) dx ≤ ‖u‖H1(Ωmat)‖v‖H1(Ωmat) (4.b)

for all u, v ∈ V0. The inequalities (4) ensure the unique solvability of the variational
problem (3).

The major difficulty in discretizing (3) arises from the fact that the energy of
the solution u, given by ‖∇u‖2

L2(Ωmat), might depend crucially on the geometric

properties of the filler. Consider the appearance of an almost conducting path
of inclusions, which connects two parts of the outer boundary ∂Ω where different
temperatures are prescribed (as in Figure 1.a). The gap in the temperature needs
to be compensated on the path, i.e., in the small regions (characterized by a small
parameter δcond in Figure 1.a) between the inclusions of the path. Hence, the
solution shows steep gradients there. If the inclusions of the path touch pairwise,
the path is perfectly conducting and hence, the energy is infinite. Depending on the
volume fraction of particles, the material shows a phase transition from moderate
to high conductivity. Mathematically speaking, the solution operator, which maps
a pair (uD, f) ∈ C2(∂Ω)×L2(Ωmat) to the solution of (3), is not uniformly bounded
with respect to the geometry of the set of inclusions I.

In this study, we will show that standard conforming1 finite element approxima-
tions of (3) (denoted by ufem) capture such a percolation phenomenon effectively.
More precisely,

‖∇(u− ufem)‖L2(Ωmat) ≤ C (5)

holds with some generic constant C independent of the distance of the particles
(see Theorem 4.1). This estimate is true although ‖∇u‖ might blow up as described
before. Thus, conforming finite element methods are robust with respect to δcond →
0 and allow meaningful material simulation even in densely packed composites.

The issue of percolation and its numerical traceability in transport problems
related to high (infinite) contrast particle composites was previously addressed by
discrete network models [4, 2, 3]. A pioneering result [3, Theorem 3.3] is that
discrete network models, for equally sized inclusions in the absence of outer forces
(f = 0), mimic the blow-up of the energy as the volume fraction of the particles is
close to the jammed state.

Compared to the analysis in [2, 3], which rests mainly on duality arguments, our
analysis is built upon regularity estimates for the solution of (3) in certain weighted

1A finite element method is called conforming if the corresponding finite element space is
contained in V . In the present context, conformity shall primarily ensure that the complicated
geometry of the composite is resolved exactly – or at least sufficiently accurate compared to the
geometric scales in the problem – by the underlying finite element mesh.
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norms. In this context, the weight (denoted by δ) reflects the local thickness of
the perforated domain Ωmat (see Section 2.1). By choosing this specific weight, the
constant in the regularity estimates (cf. Theorems 3.3 and 3.5) turns out to be
independent of δ, i.e., they do not depend on the distances between the inclusions.
The combination of the quasi-optimality of conforming finite elements, standard
interpolation error estimates, and the new regularity estimates yield the general
statement on robustness (5) without even specifying a discrete space precisely. Our
technique generalizes in a straight forward way to problem classes beyond the model
problem under consideration, e.g., to more general inclusion geometries, to the 3-
dimensional case, and to general second order elliptic operators.

2. Geometric preliminaries. This section manifests the notion of thickness of
a perforated domain and a finite, problem-adapted subdivision of the perforated
domain under consideration.

2.1. The thickness of a domain. Our definition of thickness relies on a certain
(infinite) triangulation of Ωmat, which is first introduced.

A convex polygon T is the convex hull of 2 or more distinct points. The set of
its vertices (corners) V(T ) is the minimal set of points x1, x2, . . . , xk ∈ R2, so that
T = conv({x1, x2, . . . , xk}). According to the above definition, convex polygons are
closed. A convex polygon T is called cyclic if its vertices (corners) V(T ) are located
on the boundary of its (closed) circumdisk CD(T ). Examples of cyclic polygons are
line segments, triangles and rectangles.

Following [9], Ωmat can be represented by a regular, infinite subdivision Tmat into
cyclic polygons (or triangulation for short). More precisely, Tmat is a set of cyclic
polygons such that its set of vertices V(Tmat) equals ∂Ωmat,

V(Tmat) :=
⋃

T∈Tmat

V(T ) = ∂Ωmat,

and any two distinct cyclic polygons in Tmat are either disjoint, or share exactly one
vertex, or have exactly one edge in common. Moreover, the triangulation Tmat can
be chosen in a way that all of its elements T ∈ Tmat satisfy the so-called Delaunay
criterion

CD(T ) ∩ V(Tmat) = V(T ). (6)

Figure 1.b depicts Tmat for some set of inclusions (the thick edges between neigh-
boring inclusions are unions of line segments to be explained in Section 2.2; see
Figure 2 for a zoom).

Remark 1. The elements of the Delaunay triangulation Tmat can be characterized
locally: Let x ∈ ∂Ωmat be any point on the boundary of Ωmat and νx be the
corresponding outer normal vector, let A be some closed subset of ∂Ωmat, and let

Π(x,A) := argmin
y∈A

dist (x, y)

max{〈(y − x)/dist (x, y) , νx〉, 0} 6= ∅ (7)

be the set of points in A which are closest to x in normal direction. Then the cyclic
polygon Tx := conv(x ∪ Π(x, ∂Ωmat)) ∈ Tmat. Moreover, for all T ∈ Tmat there is
some x ∈ ∂Ωmat such that T = Tx.

Since the Delaunay criterion (6) ensures that int (CD(T )) ⊂ Ωmat for all T ∈ Tmat,
the diameter of T may serve as a local measure of the thickness of the perforated
domain Ωmat.
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high temperature

δcond

low temperature

(a) Conducting path of
inclusions.

(b) Infinite/Generalized Delaunay trian-
gulation of a set of inclusions contained
in the unit square.

Figure 1. Geometric aspects of problem (3).

Definition 2.1 (Thickness of a domain). The Tmat-piecewise constant function
δ : Ωmat → R>0, given by

δ|T := δT := diam
(
CD(T )

)
for T ∈ Tmat,

is denoted as the thickness of Ωmat.

2.2. A finite subdivision of perforated domains. Inspired by [2], a finite sub-
division of the perforated Ωmat is extracted from the infinite triangulation Tmat

which was introduced in the previous subsection. Without loss of generality let us
make the following technical assumption.

Assumption 2.2. An element of Tmat shall either be a line segment or a triangle.
In addition, every pair of triangles shall be separated by at least one line segment.

Remark 2. Assumption 2.2 is not fulfilled in general. The triangulation Tmat might
contain cyclic polygons with more than three vertices. Their appearance is related
to the lack of uniqueness of the Delaunay triangulation (into triangles) if the given
points are not in general position2. However, this degeneracy can be circumvented
by subdividing every cyclic polygon with more than three vertices into triangles.
The resulting new triangles are not separated by a line segment but share a common
edge. This edge can simply be added as an element to the triangulation Tmat.

Let H := {H1, H2 . . . , HM} be a minimal set of shifted halfspaces that form the
outer boundary of Ω, i.e.,

Ωc := R2 \ Ω =

M⋃

k=1

Hk.

2A set of points in the plane is in general position if no four points lie on a common circle.
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Since the halfspaces in the set H can be regarded as disks with infinite radius we
define an extended set of inclusions Ĩ := I ∪ H.

A cyclic polygon T ∈ Tmat with vertices x1, . . . , xk ∈ ∂Ωmat (k = 2 or 3) connects

a subset of inclusions {I1, . . . , Ik} ⊂ Ĩ if it satisfies xj ∈ Ij for all j = 1, . . . , k. For

any T ∈ Tmat let Ĩ(T ) denote the maximal set of inclusions that is connected by T .

In this respect, Ĩ(·) can be interpreted as a mapping from Tmat into the power set

of Ĩ. The desired finite partition of Ωmat is given by the quotient modulo of this
mapping Ĩ(·). It is denoted as the generalized Delaunay partition D (see [8, 9]) and
consists of curvilinear polygons, more precisely

1. (generalized) edges, i.e., channel-like objects (unions of line segments) that
connect two neighboring inclusions, and

2. triangles.

According to the classification above, we distinguish between the set of edges E ⊂ D
and the set of triangles T = D \ E .

We emphasize that the generalized Delaunay triangulation serves as a tool in
the subsequent regularity analysis. It is a natural way to represent the geometry of
particle reinforced composite materials, but it is not based on physical grounds.

3. Thickness-weighted regularity.

3.1. Preliminary remarks. Recall the classical H2-regularity result on a smooth
(C2) domain K ⊂ R2 as it is stated in every textbook on partial differential equa-
tions (e.g., [6, Theorem 6.4]): Any u ∈ H1

0 (K) with ∆u ∈ L2(K) is in H2(K) and
there is a constant C that does not depend on u such that

‖∇2u‖L2(K) ≤ C‖∆u‖L2(K). (8)

This result extends to certain domains with piecewise analytic boundary, especially
to the elements of the subdivision D from Section 2.2. In [1], K is considered to
be a curvilinear polygon, i.e., K is a simply-connected, bounded domain with the
boundary ∂K =

⋃m
k=1 Γk, where Γk are analytic simple arcs,

Γ̄k = {φk(ξ) : ξ ∈ [−1, 1]}.
The functions φk are analytic on [−1, 1] with |∇φk| being bounded away from zero.
Under the assumption that all internal angles γ1, γ2, . . . , γm of K satisfy 0 < γk ≤ π,
there is a constant Creg such that

‖∇2u‖L2(K) ≤ Creg‖∆u‖L2(K) (9)

holds for all u ∈ H1
0 (K) with ∆u ∈ L2(K). Let us stress that the constant Creg

does not depend on the scaling of K (see, e.g., [7, Remark 5.5.6]).

3.2. Local regularity.

3.2.1. Regularity on generalized edges. Let E ∈ E , |E| > 0, be some generalized
edge which connects two inclusions I1, I2 ∈ I. Without loss of generality, let I1 =
Br1([0, 0]T ) and I2 = Br2([0, d]

T ), where Br(y) denotes the closed disk of radius
r around y. Let r1 ≥ r2 and d > r1 + r2. For simplicity, E is supposed to be
connected (cf. Remark 3(d) in [8]); otherwise every connected component might be
considered on its own.

The subsequent results require a parameterization of the edge E. The restriction
of E to I1, E ∩∂I1, shall be parameterized by some angle s ∈ [α, β] ⊂ ]−π/2, π/2[,
i.e., E ∩ ∂I1 = φ([α, β]) with φ(s) := r1(sin(s), cos(s)). The mapping Π(·, ∂I2)
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(a) Image section of Figure 1.b . (b) A generalized edge E (gray
shaded) and its neighborhood Eη

(area framed by the dashed line).

Figure 2. Detailed views of the subdivision defined in Section 2.2.

introduced in (7) maps E ∩ ∂I1 onto E ∩ ∂I2. Based on φ and Π(·, ∂I2), the
generalized edge E is parameterized by the diffeomorphism

J : ]α, β[×]0, d[→ int (E) , J (s, λ) = (1 − λ)φ(s) + λΠ(φ(s), ∂I2). (10)

For any parameter η, 0 < η < ηmax
E := min{|α+π/2|, |β−π/2|}, a neighborhood of

E is defined by Eη := J (]α− η, β + η[×]0, d[) (see Figure 2.b for an illustration).

Lemma 3.1. There exists a constant C′
E > 0 which only depends on the ratios

r2/r1, d/η, and (ηmax
E − η)−1 such that for all u ∈ H1(Eη) with ∆u ∈ L2(Eη) and

u|∂(I1∪I2) = 0 it holds u ∈ H2(E) and

‖∇2u‖L2(E) ≤ C′
E

(
‖∆u‖L2(Eη) + η−1‖∇u‖L2(Eη\E)

)
.

Proof. We introduce a smooth cut-off function ψE,η : Eη → [0, 1] with the following
properties (see also Remark 3 below):

(ψE,η)|E = 1,

(ψE,η)|(∂Eη\∂(I1∪I2)) = 0, and

‖∇k(ψE,η)‖L∞(Eη) ≤ Ccoη
k for k ∈ N ∪ {0}.

(11)

By construction, the product u · ψE,η vanishes on the boundary of Eη. Hence, the
application of (9) and (11) yields

‖∇2u‖L2(E) = ‖∇2(uψE,η)‖L2(E) ≤ ‖∇2(uψE,η)‖L2(Eη)

(9)

≤ Creg‖∆(uψE,η)‖L2(Eη)

(11)

≤ CcoCreg

(
‖∆u‖L2(Eη) + 2η−1‖∇u‖L2(Eη\E) + η−2‖u‖L2(Eη\E)

)
. (12)

Since u vanishes on ∂Eη ∩∂(I1 ∪I2), Friedrichs’ inequality allows one to control the
L2 part of the right hand side of (12),

‖u‖L2(Eη\E) ≤ d‖∇u‖L2(Eη\E),

where d = dist (I1, I2) + r1 + r2 refers to the distance between the centers of I1 and

I2 as above. Thus the assertion is proved with C′
E = 2CcoCreg

(
1 + d

η

)
.
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Remark 3. The constant Cco in (11) reflects the size of the inclusions I1 and I2 as
well as their ratio and, hence, the local uniformity of the distribution of inclusions.
It depends on the ratio r1/r2 and on (ηmax

E −η)−1, where the latter constant becomes
large either if the radius r1 tends to zero or if the ratio δT /‖δ‖L∞(E) becomes large
for some adjacent triangle T ∈ T . However, the dependence on δT /‖δ‖L∞(E) is only
an artifact of the way we are cutting Ωmat into pieces and could by avoided (e.g.,

replace E with some suitable sub edge Ẽ ⊂ E and agglomerate the remaining part
Ẽ \ E and the adjacent triangles).

Lemma 3.1 will be applied to certain subdomains of the edge E (subedges) in
order to derive estimates in a thickness weighted norm.

Lemma 3.2. If u ∈ H1(Eη) with ∆u ∈ L2(Eη) and u|∂(I1∪I2) = 0, then it holds

(a) ‖δ∇2u‖L2(E) ≤ 4C′
E(‖δ‖L∞(Eη)‖∆u‖L2(Eη) + η−1‖δ∇u‖L2(Eη)) and

(b) ‖δ∇2u‖L2(E) ≤ C′′
E(‖δ∆u‖L2(Eη) + ‖∇u‖L2(Eη)),

where C′′
E depends only on the constant C′

E from Lemma 3.1.

Proof. We assume α < β = −α for simplicity. Let 0 = s0 < s1 < s2 < . . . <
sJ = β induce a subdivision of [0, β]. According to {sj}J

j=1 we define subsets
E1, E2, . . . , EJ+1 of E by

E1 := J (] − s1, s1[×]0, d[)),

Ej := J ((] − sj , sj [×]0, d[) \ Ej−1 for j = 2, 3, . . . , J, and

EJ+1 := Eη \ E.
(13)

To prove part (a), the {sj}J
j=1 shall be chosen in such a way that

δ0 := min
E

δ and

δj := ‖δ‖L∞(Ej) = min{‖δ‖L∞(E), 2δj−1} for j = 1, 2, . . . , J.
(14)

The application of Lemma 3.1 with E replaced by Ẽj :=
⋃j

k=1 Ek, j = 1, 2, . . . , J ,
yields

‖∇2u‖L2(Ej) ≤ ‖∇2u‖L2(Ẽj)
≤ C′

E

(
‖∆u‖L2(Eη) + η−1‖∇u‖L2(Eη\Ẽj)

)
. (15.j)

The summation of (15.j) multiplied by δj over j = 1 to J leads to

‖δ∇2u‖L2(E) ≤
J∑

j=1

‖δ∇2u‖L2(Ej) ≤
J∑

j=1

δj‖∇2u‖L2(Ej)

(15.j)

≤ C′
E

J∑

j=1

δj

(
‖∆u‖L2(Eη) + η−1‖∇u‖L2(Eη\Ẽj)

)

≤C′
E

(
2δJ‖∆u‖L2(Eη) + η−1

J∑

j=1

‖∇u‖L2(Ej)

j−1∑

k=1

δk

)

(14)

≤ 4C′
E

(
‖δ‖L∞(Eη)‖∆u‖L2(Eη) + η−1‖δ∇u‖L2(Eη)

)
.

To prove the estimate (b) we choose {sj}J
j=1 in a different way (yielding a different

partition of Eη), i.e.,

s0 := min
E

δ and

sj := min{β, 2sj−1} for j = 1, 2, . . . , J.
(16)
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The actual choice, with regard to the inclusion geometry (convexity of the particles),
implies that

sj ≥ 1
Cs
δj := ‖δ‖L∞(Ej) for all j = 1, 2, . . . , J − 1. (17)

The application of Lemma 3.1 with E replaced by E1, and Eη replaced by E1 ∪E2

yields

‖∇2u‖L2(E1) ≤ C′
E

(
‖∆u‖L2(E1∪E2) + s−1

1 ‖∇u‖L2(E2)

)
. (18.1)

The above estimate easily adapts to the case where E1 and E2 are replaced by some
Ej and Ej+1, j = 2, 3, . . . , J ,

‖∇2u‖L2(Ej) ≤ C′
E

(
‖∆u‖L2(Ej−1∪Ej∪Ej+1) + s−1

j−1‖∇u‖L2(Ej−1∪Ej+1)

)
. (18.j)

The summation of (18.j) multiplied by δj over j = 1, . . . , J yields

‖δ∇2u‖L2(E) ≤
J∑

j=1

‖δ∇2u‖L2(Ej) ≤
J∑

j=1

δj‖∇2u‖L2(Ej)

(18.j)

≤ C′
E

J∑

j=1

δj
(
‖∆u‖L2(Ej−1∪Ej∪Ej+1) + s−1

j−1‖∇u‖L2(Ej−1∪Ej+1)

)

(16),(17)

≤ (16 + Cs/2)C′
E

(
‖δ∆u‖L2(Eη) + ‖∇u‖L2(Eη)

)
.

Remark 4. So far, the analysis in this subsection has not considered edges that are
related to parts of the outer boundary ∂Ω. However, by slightly modified arguments,
such cases can be treated as well. We have to distinguish two cases.

1. E ∈ E is some generalized edge that connects an inclusion I ∈ I and an
artificial inclusion H ∈ H representing a part of the outer boundary ∂Ω (see
Section 2.2): The previous results apply almost equally, because the boundary
part can be regarded as disk with infinite radius.

2. E ∈ E connects two parts of the outer boundary H1, H2 ∈ H: It might
happen that the environment Eη is not contained in Ωmat (see for instance
the generalized edges in the corners in Figure 1.b). However, this issue can
be cured by simply replacing Eη with Eη ∩ Ω in the upper bounds. Since the
solution is given explicitly on ∂Eη ∩ ∂Ω, Lemma 3.2 can be generalized in a
straight forward way.

In general, the solution of (2) does not vanish on the boundary of the inclusions
I. We, therefore, need to face inhomogeneous boundary data in the regularity
estimate. To this end, consider the affine function q(s, λ) = (1 − λ)u1 + λu2 on
the reference edge Eref := [α, β] × [0, d] with uk being the value of u ∈ V at the
inclusion Ik, k = 1, 2. The transformation to E defines a function

U := q ◦ J −1, (19)

which is not affine but has a small Hessian ∇2U in the following sense:

‖δ∇2U‖L2(E) ≤ CJ η−1
E ‖δ∇U‖L2(E). (20)

The constant CJ η−1
E in (20) is related to ‖J −1‖C2(Eref ). Hence, CJ depends on the

ratio ηE/(η
max
E − ηE), but not on the local thickness δ.
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3.2.2. Interior regularity on triangles. For some T ∈ T and θ ≥ 0 we denote a
scaled version of T by

Tθ := {x ∈ T : dist (x, ∂T ) ≥ θ}. (21)

We employ a cutoff function ψT,θ with

(ψT,θ)|Tθ
= 1,

(ψT,θ)|∂T = 0, and

‖∇kψT,θ‖L∞(T ) ≤ C∆
coθ

k for k ∈ N ∪ {0},
(22)

to conclude that for all u ∈ H1(T ) with ∆u ∈ L2(T ), it holds that u ∈ H2(Tθ), and

‖∇2u‖L2(Tθ) ≤ ‖∇2(uψ)‖L2(T )

(9),(22)

≤ C′
T

(
‖∆2u‖L2(T ) + θ−1‖∇u‖L2(T\Tθ) + θ−2‖u‖L2(T\Tθ)

)
, (23.a)

where C′
T = 2C∆

coCreg. Note that in fact

‖∇2u‖L2(Tθ) ≤ CT

(
‖∆u‖L2(T ) + θ−1‖∇(u−W )‖L2(T\Tθ) + θ−2‖u−W‖L2(T\Tθ)

)

holds with any affine function W : T → R, because ∇2W ≡ 0. Hence, the choice
W = |T |−1

∫
T
u dx together with the Poincaré inequality yields

‖∇2u‖L2(Tθ) ≤ CT

(
‖∆u‖L2(T ) + θ−1‖∇(u)‖L2(T )

)
(23.b)

with a constant CT that depends only on C′
T and the ratio δT

θ .

3.3. Global regularity. We simply sum up the local estimates for the elements of
D = E ∪T to derive the global bound. For every edge E ∈ E we choose a parameter
η = ηE so that

0 < ηE < ηmax
E and Eη ∩ Ω ⊂ cl

(
Ωmat

)
. (24)

Accordingly, we choose parameters θ = θT > 0 for every triangle T ∈ T so that the
union of the extended edges and the scaled triangles covers Ωmat,

Ωmat ⊂
⋃

E∈E
Eη/2 ∪

⋃

T∈T
Tθ. (25)

Some D-piecewise constant function σ : Ωmat → R>0 is given by

σ|E = ηE for E ∈ E and

σ|T = θT for T ∈ T . (26)

Remark 5. The results of the present section and beyond will depend locally on
some negative powers of the parameter function σ defined in (26). Obviously, there
exists a constant cI such that for allK ∈ D, σK ≥ cI‖δ‖L∞(K). Since, in this paper,
we focus on the dependence of regularity on the thickness function δ we do not put
any effort in the optimization of our subdivision with regard to the constants σ.

For u ∈ V we denote its Tmat-piecewise affine interpolation by IDu. More pre-
cisely, IDu is defined by (19) on every edge, and IDu is the unique affine interpolant
of u at the vertices of T on every triangle T ∈ T .

Theorem 3.3. Let u ∈ V be the solution of (3) and UD := IDu its Tmat-piecewise
affine interpolation. Then there exists CD > 0, which only depends on the constants
of Lemma 3.2 and (23.b), such that

‖δ∇2u‖L2(Ωmat) ≤ CD
(
‖δf‖L2(Ωmat) + ‖σ−1δ∇UD‖L2(Ωmat)

)
.
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Proof. We decompose u = (u − uhar) + (uhar − Uhar) + (Uhar − UD) + UD, where
uhar ∈ H1(Ωmat) denotes the unique harmonic function with trace u|∂Ωmat , and
Uhar the D-piecewise harmonic function which equals UD on the boundary of every
element K ∈ D. The application of the triangle inequality yields

‖δ∇2u‖L2(Ωmat) ≤ ‖δ∇2(u − uhar)‖L2(Ωmat) + ‖δ∇2(uhar − Uhar)‖L2(Ωmat)

+ ‖δ∇2(Uhar − UD)‖L2(Ωmat) + ‖δ∇2UD‖L2(Ωmat)

=: M1 +M2 +M3 + ‖δ∇2UD‖L2(Ωmat).

(27)

The estimate

M2
1

(25)

≤
∑

T∈T
‖δ∇2(u− uhar)‖2

L2(Tθ) +
∑

E∈E
‖δ∇2(u − uhar)‖2

L2(Eη/2)

(23.b),Lemma 3.2.b

≤
∑

T∈T
C2

T

(
‖δf‖L2(T ) + ‖∇(u− uhar)‖L2(T )

)2

+
∑

E∈E
C′′2

E

(
‖δf‖L2(Eη) + ‖∇(u− uhar)‖L2(Eη)

)2

≤ C2
1

(
‖δf‖L2(Ωmat) + ‖∇(u− uhar)‖L2(Ωmat)

)2

(28)

holds with a constant C1 which depends only on the constants of Lemma 3.2.b and
(23). Since (u − uhar) ∈ H1

0 (Ωmat), we have from (3.a) and a localized version of
the Friedrichs’ inequality (see Lemma A.1),

‖∇(u− uhar)‖L2(Ωmat) ≤ CF‖δf‖L2(Ωmat).

Since uhar − Uhar is locally harmonic, the application of Lemma 3.2.a locally on
Eη/2, E ∈ E and (23) on Tθ, T ∈ T , yields

M2 ≤ C′
2‖σ−1δ∇(uhar − Uhar)‖L2(Ωmat),

where the constant C2 depends only on C′
E and CT . From Lemma A.2, we also get

M2 ≤ C2‖σ−1δ∇UD‖L2(Ωmat). (29)

Finally, the application of Lemma 3.2.b on every E ∈ E , yields

M2
3 ≤ C′2

3

(
‖δ∆UD‖2

L2(Ωmat) +
∑

E∈E
‖Uhar − UD‖2

L2(E)

)

where the constant C′
3 depends only on C′′

E . The definition of Uhar, (20), and
Lemma A.1 yield

M3 ≤ C3‖σ−1δ∇UD‖L2(Ωmat). (30)

The assertion follows readily by combining (27), (28), (29), and (30).

Lemma 3.4. Let u ∈ V be the solution of (3) and UD := IDu its Tmat-piecewise
affine interpolation. Then it holds

‖δ∇UD‖L2(Ωmat) ≤ CI

(
‖f‖L2(Ωmat) + ‖uD‖L∞(∂Ωmat)

)

with some constant CI that does not depend on δ.

Proof. By an inverse inequality we get

‖δ∇UD‖L2(Ωmat) ≤ ‖UD‖L2(Ωmat).
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Moreover,

‖UD‖L2(Ωmat) ≤ C′
I‖u‖L2(Ωmat) ≤ C′

I

(
‖u− uhar‖L2(Ωmat) + ‖uhar‖L2(Ωmat)

)

≤ CI

(
‖f‖L2(Ωmat) + ‖uhar‖L∞(∂Ωmat)

)
,

where we have used the boundedness of the interpolation operator ID, the maximum
principle for second order elliptic operators (see [6, Theorem 6.4.1]) and a classical
L2 a priori estimate (see [6, Theorem 6.2.6]).

Theorem 3.5. Let u ∈ V be the solution for (3). Then there exists CuD ,f,σ > 0,
which depends only on the data f and uD, on σ defined in (26), and the constants
of Theorem 3.3 and Lemma 3.4, such that

‖δ∇2u‖L2(Ωmat) ≤ CuD ,f,σ.

Proof. The proof follows readily by combining Theorem 3.3 and Lemma 3.4.

4. Stable approximation close to percolation. We now consider any appro-
priate conforming finite element approximation of (3). Let Vh ⊂ V be some finite
dimensional subspace of V . The corresponding discrete variational problem reads:
Find uh ∈ Vh such that∫

Ωmat

∇uh(x)∇vh(x) dx =

∫

Ωmat

f(x)vh(x) dx for all vh ∈ Vh ∩H1
0 (Ωmat), (31.a)

uh = uD on ∂Ω. (31.b)

It is assumed for simplicity that the Dirichlet data uD is resolved by Vh, i.e., there is
some vh ∈ Vh such that vh|∂Ω = uD. The discrete space Vh shall consist of functions
that are piecewise smooth with respect to some mesh G of Ωmat. The mesh G, which
consist of possibly curved elements, is supposed be conforming in the sense that
∪G = Ω̄. Its mesh width is denoted by h : Ωmat → R>0, h|K := hK := diam

(
K
)

for all K ∈ G. Clearly, there holds h ≤ CGδ with some constant CG which is
related to shape regularity of the elements, i.e., the ratio between the radius of the
largest ball that can be inscribed in an element and the radius of the smallest ball
that contains the element. We assume that the space Vh satisfies approximation
properties locally, i.e., there exists some constant Cappr so that for all K ∈ G and
all u ∈ H2(K),

inf
vh∈Vh

(
h−1

K ‖u− vh‖L2(K) + ‖∇(u− vh)‖L2(K)

)
≤ CapprhK‖∇2u‖L2(K). (32)

Theorem 4.1. If u ∈ V is the solution for (3), and uh ∈ Vh its Galerkin approxi-
mation that solves (31), then

‖∇(u− uh)‖L2(Ωmat) ≤ Cf,uD ,Vh
‖h/δ‖L∞(Ωmat)

holds with Cf,uD ,Vh
= CapprCuD ,f,σ where Cappr is the constant from (32) and

CuD ,f,σ the one from Theorem 3.5.

Proof. The optimality of the Galerkin method in energy norm together with the
approximation properties of the space Vh (cf. (32)) imply that

‖∇(u− uh)‖L2(Ωmat) ≤ Cappr‖h∇2u‖L2(Ωmat). (33)

Using the assumption that the ratio h/δ is bounded and applying Theorem 3.5 we
further estimate

‖h∇2u‖L2(Ωmat) ≤ ‖h/δ‖L∞(Ωmat)‖δ∇2u‖L2(Ωmat) ≤ CuD ,f,σ‖h/δ‖L∞(Ωmat). (34)

The combination of (33) and (34) yields the assertion.
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In practical computations, the assumption of conformity ∪G = Ω̄ might be re-
laxed. E.g., the inclusions might by approximated by linear, quadratic, or cubic
splines. The resulting geometries are supported by many state-of-the-art mesh gen-
erators. However, such a perturbation of the original geometry can only lead to a
meaningful approximation if it preserves the distance between neighboring inclu-
sions very precisely.

A special choice of the mesh G and the corresponding space Vh which preserves
conformity is discussed in [10] where

G = D and Vh = VD := {v ∈ C0(Ωmat) : v is Tmat-piecewise affine}.

Corollary 4.2. If u ∈ V is the solution for (3) and uh ∈ VD its Galerkin approxi-
mation that solves (31), then

‖∇(u− uh)‖L2(Ωmat) ≤ Cip,DCuD ,f,σ,

where the constant Cip,D is related to the approximation property of VD (see [10,
Theorem 3.1, Corollary 3.3]).

Proof. The proof follows readily by combining Theorem 4.1 and the approximation
property of the space VD provided by [10, Theorem 3.1, Corollary 3.3].

5. Conclusion. In this paper, we have proved that conforming finite element meth-
ods yield approximations of the temperature distribution in particle reinforced com-
posite materials that are robust with respect to critical geometric parameters of the
packing of particles. More precisely, the absolute error of such an approximation
can be bounded by some universal constant that does not depend on the geometry
of the particle distribution. The relative error scales inversely proportional to the
energy of the material. Conforming finite element methods allow one to trace a
possible blow-up of the energy as the thickness tends to zero on a path of inclusions
that separates the domain. Hence, material simulations based on those methods
are able to capture the phase transition from low conductivity to high conductivity
(percolation) as the volume fraction of particles is increased.

Moreover, given a fixed sample of the geometry of the material, the regularity
theory presented here shows that the use of a conforming finite element mesh with
local width proportional to the local thickness of the matrix material guarantees
accurate results. Therefore, finite element methods might be used to compute
effective properties of a specific sample of the material. These effective properties
can then be used as the basis of an numerical upscaling procedure which simulates
global material behavior.

The theory presented in this paper can be extended to the case of general smooth
inclusions. The same holds true for 3-dimensional setting and for the consideration
of general second order elliptic differential operators.

Appendix A. Inequalities. We now prove a version of Friedrichs’ inequality that
is local with respect to the thickness of the domain.

Lemma A.1. There is some constant CF which does not depend on δ such that for
all v ∈ H1

0 (Ωmat), it holds that

‖v‖L2(Ωmat) ≤ CF‖δ∇v‖L2(Ωmat).
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Proof. LetE ∈ E be some generalized edge and consider subedgesEj , j = 1, 2, . . . , JE

as in (13) and (14). The classical Friedrichs’ inequality is applicable (cf. Remark
(A.1)) on all subedges Ej . More precisely, there holds

‖v‖L2(Ej) ≤ ‖δ‖L∞(Ej)‖∇v‖L2(Ej).

Hence, by (14) we get
‖v‖L2(E) ≤ 2‖δ∇v‖L2(E). (35)

On the triangles T ∈ T such a result is not directly applicable, because ∂Ωmat ∩∂T
is of measure zero. However, the L2-norm of v on T can be estimated together with
the generalized edges E1, E2, E3 ∈ E adjacent to T . Let T̃ := T ∪ E1 ∪ E2 ∪ E3 be
chosen in a way that

min
x∈T̃∩Ek

δ(x) ≥ 1
2δT for all k = 1, 2, 3.

Then

‖v‖L2(T̃ ) ≤CF
|∂T̃ ∩ ∂Ωmat|

|∂T | ‖δ∇v‖L2(T̃ ). (36)

The constant CF does not depend on δ, the ratio |∂T̃∩∂Ωmat|
|∂T | , or on v (see [5]). The

assertion follows by simply summing up the local estimates (35) and (36) over all
edges E ∈ E and all triangles T ∈ T .

We now present some thickness-weighted energy estimate.

Lemma A.2. Let u ∈ V be the solution of (3) and v ∈ V be any function with
trace v|∂Ωmat = u|∂Ωmat . Then there holds

‖δ∇(u− v)‖L2(Ωmat) ≤ Ccwe

(
‖δ2f‖L2(Ωmat) + ‖δ∇v‖L2(Ωmat)

)

with some constant Ccwe that does not depend on u, σ, or δ.

Proof. Let D̃ denote the subdivision of Ωmat which consists of the triangles T ∈ T
and the subedges E1, . . . , EJE of E ∈ E as in (13) and (17). Let {φK}K∈D̃ be the

partition of unity related to D̃ such that for all K ∈ D̃, supp(φK) is contained in

the union of K and its neighboring elements in D̃, and

‖∇φK‖L∞(Ωmat) ≤ CD̃‖δ‖−1
L∞(K) =: δ−1

K , (37)

where CD̃ is some universal constant that does not depend on δ. Then there holds

‖δ∇(u− v)‖2
L2(Ωmat) =

∫

Ωmat

δ2∇(u − v)∇


∑

K∈D̃
φK(u − v)


 dx

(3)

≤
K∑

k=1

δ2K

(∫

supp(φK)

|f(u− v)| dx+ δ2K

∫

supp(φK)

|∇v∇ (φK(u− v)) | dx
)

Lemma A.1,(17),(37)

≤ C
∑

K∈D̃

(
‖δ2f‖L2(supp(φK))‖δ∇(u− v)‖L2(supp(φK))

+‖δ∇v‖L2(supp(φK))‖δ∇(u− v)‖L2(supp(φK))

)
.

For any ε > 0, Young’s inequality yields

‖δ∇(u− v)‖2
L2(Ωmat) ≤ C2ε−1

(
‖δ2f‖L2(Ωmat) + ‖δ∇v‖L2(Ωmat)

)

+ 2C2ε‖δ∇(u− v)‖L2(Ωmat).
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Choosing ε = (2C)−2 proves the assertion.
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COMPOSITE FINITE ELEMENTS FOR

ELLIPTIC INTERFACE PROBLEMS

DANIEL PETERSEIM

Abstract. A Composite Finite Element method approximates linear elliptic
boundary value problems with discontinuous diffusion coefficient at possibly
high contrast. The discontinuity appears at some interface that is not nec-
essarily resolved by the underlying finite element mesh. The method is non-
conforming in the sense that shape functions preserve continuity across the
interface in only an approximate way. However, the method allows balancing
this non-conformity error and the error of the best approximation in such a
way that the total discretization error (in energy norm) decreases linear with
regard to the mesh size and independent of contrast.

1. Introduction

This research article considers the design of a Composite Finite Element (CFE)
method for Dirichlet problems with discontinuous coefficients across an interface.
The CFE method is a classical two-scale approach: The degrees of freedom are
related to a possibly coarse mesh, whereas the shape of the ansatz functions is
defined on a finer subgrid. In other words, finite element shape functions on a
coarse scale are composite by shape functions from some finer scale.

In previous CFEs [18,19,22], for the treatment of essential boundary conditions
on unfitted meshes (with respect to the boundary of the domain), the adaptation of
shape was done in such a way that the prescribed boundary condition was fulfilled
in an approximate way. Now, in the context of interface problems, finite element
shape functions are adapted on a submesh such that the continuity across the
interface is preserved in an approximate way. The new CFE approach has three
main advantages:

(1) The definition of basis functions is explicit, i.e., no local problems have to
be solved.

(2) The coarse mesh does not need to be aligned with the interface, whereas
this is necessary for classical finite element methods (see [14]) to converge
at an optimal rate. Moreover, the definition of the CFE method does not
put any condition on the intersection of mesh cells and the interface.

(3) If the given data (domain, interface, right-hand side, etc.) allow for a
(piecewise) smooth solution, the asymptotic order of convergence of the
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underlying discretization is preserved on coarse meshes which do not resolve
the interface.

Alternative approaches in the literature can be found, for instance, in [24], where
another CFE method is introduced, in [1, 9], where the interface condition is im-
posed weakly via penalization, or in [4], where special basis functions are computed
by solving local problems on submeshes.

The present CFE method may be useful for problems with evolving interfaces.
Because of evolution, the interface cannot be well represented by edges or faces of
a stationary mesh. In classical finite element methods, an adaptation of the mesh
to the interface at every time step is required. This adaptation of the mesh in time
is considered to be too costly, especially in three space dimensions. The new CFE
approach allows the computing of the evolution in time on a fixed (possibly coarse)
mesh. It is sufficient to adapt the shape of the ansatz functions (slightly, close to
the interface) in time. As we will see later, the cost for this shape adaptation is
small when compared with the overall cost of updating the solution on the fixed
coarse mesh.

Note finally that our method is designed to efficiently treat the singularity caused
by the jump of the diffusion coefficient at the interface. Since the method does
not add any degrees of freedom to the coarse finite element space to resolve the
interface, it cannot be expected to resolve any singular behavior caused, e.g., by a
kink in the interface. The treatment of such singularities has to be organized on top
by classical techniques, e.g., by enrichment of the finite element space by certain
singular functions or by mesh adaptivity. In the context of adaptivity, CFEs offer
a coarse grid approximation that may serve as the initial guess for an a–posteriori–
driven adaptive refinement process. They allow the adaptivity toward singularities
to start long before the interface is resolved by the underlying finite element mesh.

Notation. In what follows, dist(·, ·) denotes the Euclidean distance in R2. We
use the same notation for the distance between non-empty subsets A, B ⊂ R2,
dist(A, B) := infx∈A,y∈B dist(x, y).

The measure | · | is also context-sensitive and refers to the volume of a set relative
to its dimension, i.e., |·| denotes the length of a curve, or the area of a domain.

Given some bounded domain Ω, standard notation for (fractional) Sobolev spaces
Wm

p (Ω), m ≥ 0, p ∈ N ∪ {∞}, and their corresponding norms ‖·‖W m
p (Ω) and semi-

norms |·|W m
p (Ω) is used; Hm(Ω) abbreviates Wm

2 (Ω) (m ∈ N) and Lp(Ω) abbrevi-

ates W 0
p (Ω). Given two disjoint bounded Lipschitz domains Ω1 and Ω2, the space

Hm(Ω1∪Ω2) denotes the space of all functions u ∈ L2(Ω1∪Ω2) with u|Ω1
∈ Hm(Ω1)

and u|Ω2
∈ Hm(Ω2). The dual space of a Hilbert space V is indicated by V ∗. The

space of R-valued continuous functions on a set Ω is denoted by C0(Ω).

2. Composite finite element discretization of a
model Poisson problem

2.1. Model problem. Consider Poisson’s equation − div(a∇u) = f in an open,
bounded, polyhedral domain Ω ⊂ Rd, d ∈ {2, 3}, with homogeneous Dirichlet
boundary conditions on ∂Ω. The scalar coefficient a (permeability or conductivity)
jumps across an interface Γ := Ω̄1 ∩ Ω̄2 that separates two disjoint, open Lipschitz
subdomains Ω1, Ω2 ⊂ Ω, Ω̄ = Ω̄1 ∪ Ω̄2. The corresponding variational problem
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reads: Find u� ∈ H1
0 (Ω) such that

(2.1)

∫

Ω

a∇u� · ∇v dx =

∫

Ω

fv dx for all v ∈ H1
0 (Ω).

For simplicity, the coefficient a : Ω → R>0 is chosen piecewise constant,

a(x) =

{
1 if x ∈ Ω1,
acont > 1 if x ∈ Ω2.

The parameter acont represents the contrast which is supposed to be large in prac-
tical applications, e.g., in the modeling of heat transfer in composite materials.

The bounded bilinear form a : H1
0 (Ω) × H1

0 (Ω) → R given by

a(u, v) :=

∫

Ω

a∇u · ∇v dx =

∫

Ω1

∇u · ∇v dx + acont

∫

Ω2

∇u · ∇v dx

for u, v ∈ H1
0 (Ω) induces the norm ||| · ||| := ‖√

a∇ · ‖L2(Ω) in H1
0 (Ω), the so-called

energy norm. Hence, problem (2.1) has a unique solution for all f ∈ H−1(Ω) :=
(H1

0 (Ω))∗.
Usually, some finite-dimensional subspace Vh ⊂ H1

0 (Ω) based on piecewise poly-
nomials replaces H1

0 (Ω) in a finite element discretization of (2.1). However, if the
underlying finite element mesh is not aligned with the interface, this ansatz suffers
from the lack of regularity of the solution at the interface; the solution is continuous
across, but its gradient may jump.

In this paper, this issue shall be fixed by considering a discrete space Vh that
violates conformity, Vh �⊂ H1

0 (Ω). We consider shape functions that are conform-
ing with respect to each of the subdomains but possibly discontinuous across the
interface, i.e.,

Vh ⊂ H1
0 (Ω1 ∪ Ω2) := {u ∈ H1(Ω1 ∪ Ω2) : u|∂Ω = 0}.

Because of the lack of Galerkin orthogonality, the discretization error of a corre-
sponding method is not necessarily proportional to the error of the best approxi-
mation of the solution. The discretization error is bounded by the sum of the best
approximation error and the error related to the violation of conformity as in (3.1).
The aim of this paper is to construct a non-conforming discrete space Vh (based
on piecewise affine ansatz functions) such that a balance is achieved between the
errors due to non-conformity and errors due to best approximation. This balance
yields linear convergence of the corresponding method with respect to the mesh
size parameter h without resolving the interface by degrees of freedom.

2.2. Construction of the finite element space. The construction in Subsec-
tions 2.2.1–2.2.3 below follows the methodology of CFEs [8].

2.2.1. Triangulations. Let T be some regular subdivision of Ω̄ into closed non-
empty simplices (or triangulation for short) according to Ciarlet [3, 5]. Two non-
disjoint distinct simplices in T share either a common face (d = 3), a common
edge, or a common vertex. By V (T ) we denote the set of vertices (corners) of a
simplex T ∈ T . The union of vertices in a (sub)triangulation T is denoted by
V (T ) :=

⋃
T∈T V (T ). The T -piecewise mesh width function h : Ω̄ → R>0 is given

by

h(x) := max
T∈T :x∈T

diam(T ).
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Note that the coarse triangulation T does not necessarily match the interface
Γ, i.e., Γ is not the union of element edges or faces. Later on, the degrees of
freedom of the CFE space will be exclusively assigned to the vertices of the (coarse)
triangulation T .

We consider the two triangulations T1, T2 ⊂ T ,

Tk := {T ∈ T : T ⊂ Ω̄k}, k = 1, 2,

related to the subdomains. The union of these triangulations does not cover Ω, in
general. Some neighborhood of the interface, the interface zone

ΩΓ := Ω \ ((
⋃T1) ∪ (

⋃T2)),

is not covered by elements of T1 or T2 unless the interface is resolved by T . We
introduce two triangulations of the interface zone, one associated with each subdo-
main. The elements T ∈ T that are contained in none of the two triangulations are
collected in the set

T Γ
2 := T \ (T1 ∪ T2).

A further fine triangulation T Γ
1 of ΩΓ will be employed to adapt the shape of the

ansatz functions in Ω1. This fine triangulation T Γ
1 is derived by regular refinement

of T Γ
2 (e.g., by red-green-refinement or newest vertex bisection) locally near the

interface. The corresponding T Γ
1 -piecewise mesh width function hΓ

1 :
⋃ T Γ

1 → R>0

is given by

hΓ
1 (x) := max

t∈T Γ
1 :x∈t

diam(t).

The refinement shall be done such that

(2.2) hΓ
1 |t = diam(t) ≥ C−1

1 dist(t, Γ) for all t ∈ T Γ
1

holds with a universal constant C1 independent of the hΓ
1 . This condition prevents

over-refinement in the interface zone and enforces a certain grading of T Γ
1 toward

the interface. This grading is essential for the stability, complexity, and accuracy
of our method. The condition enters our error analysis via the external result
[18, Theorem 4.4] which plays an essential role in the proof of Lemma 3.1 and,
hence, in the proof of our main result Theorem 2.3.

Note that condition (2.2) is satisfied with a constant C1 ≈ 2 if the fine triangula-
tion T Γ

1 is computed by successive refinement of those simplices that are intersected
by Γ (cf. [22, Section 2]). This shows that arbitrary small elements in a vicinity
of the interface are possible in T Γ

1 . Still, T Γ
1 is not aligned with Γ in general. The

analysis of Section 3 will show that the mesh size hΓ|Γ at the interface suffices to
be of size h3/2. This implies that the complexity of T Γ

1 depends only on the mesh
size of the coarse mesh T and not on the location of the interface relative to the
coarse mesh.

2.2.2. Additional structure. The meshes defined in the previous section cannot see
the interface. However, precise information about the location of the interface is
crucial for any reasonable approximation scheme. The exchange of information
between the interface and the meshes shall be introduced via two mappings.

Closest inner simplex. The mapping T 1
(·) : V (T Γ

1 ) → T1 is chosen such that

T 1
x ∈ argminT∈T1

dist(x, T ), i.e., T 1
(·) assigns a closest inner simplex (fully contained

in Ω1) to every vertex x ∈ V (T Γ
1 ). IT 1

x
u ∈ P1(R2) denotes the globally affine
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(a) The coarse triangulation T .

(b) The triangulation T Γ
2 of ΩΓ. (c) The triangulation T2 related to Ω2.

(d) The triangulation T1 related to Ω1. (e) The refined triangulation T Γ
1 of the in-

terface zone ΩΓ.

Figure 1. The triangulations introduced in Section 2.2.1. The
interface is not well represented in T shown in (a). It is better
represented by T Γ

1 in (e) but still not resolved.
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function which interpolates u in the vertices of T 1
x . Accordingly, T 2

(·) : V (T Γ
2 ) → T2

and IT 2
x
u are defined.

Interface projection. The projection operator (·)Γ : Rd → Γ is chosen such that
xΓ ∈ argminy∈Γ dist(x, y). This projection encodes the geometrical information
about the interface that is required by our method.

2.2.3. The CFE space. By Sk, k = 1, 2, we denote the finite element space of
continuous Tk-piecewise affine functions

(2.3) Sk := {u : C0(
⋃Tk) : u|T ∈ P1 for all T ∈ Tk, u|∂Ω∩∂(

⋃ Tk)}
with the homogeneous Dirichlet boundary condition on ∂Ω built in. These spaces
represent the degrees of freedom of the method, in that CFE shape functions are
derived by extending elements from S1 resp. S2 to the interface zone.

In other words, CFE shape functions are certain elements of the target space

(2.4) SΓ := {u ∈ H1
0 (Ω1 ∩ Ω2) : u|T∩Ω1

∈ P1 for all T ∈ T1 ∪ T Γ
1 ,

u|T∩Ω2
∈ P1 for all T ∈ T2 ∪ T Γ

2 }.

Definition of shape functions via extensions. The CFE space Scfe is given as
the image of S1×S2 under the bounded linear injective operator Pcfe : S1×S2 → SΓ,
i.e., Scfe := Pcfe(S). The definition of Pcfe is based on two mappings that relate
the different meshes and the interface. The projection operator Pcfe is defined in
the two subdomains as follows:

Pcfe(u1, u2)(x) :=

{
Pcfe

1 (u1, u2)(x) if x ∈ Ω1,
Pcfe

2 u2(x) if x ∈ Ω2
(2.5)

with Pcfe
1 and Pcfe

2 given subsequently.

Definition of Pcfe2 . The operator Pcfe
2 extends functions defined in

⋃ T2 to the
interface zone ΩΓ. Given u2 ∈ S2, the continuous (T2∪T Γ

2 )-piecewise affine function
Pcfe

2 u2 is uniquely defined by nodal values

(2.6) (Pcfe
2 u2)(x) :=

⎧
⎨
⎩

u2(x) if x ∈ V (T2),
IT 2

x
u(x) if x ∈ V (T Γ

2 ) \ V (T2) and x /∈ ∂ΩΓ ∩ ∂Ω,
0 x ∈ ∂ΩΓ ∩ ∂Ω,

with IT 2
x
u defined in Section 2.2.2 above.

Definition of Pcfe
1. The operator Pcfe

1 extends functions defined in
⋃ T1 to the

interface zone ΩΓ in such a way that its trace on Γ approximately coincides with
(Pcfe

2 u2)|Γ. Given u1 ∈ S1, u2 ∈ S2, Pcfe
1 (u1, u2) is the unique continuous (T1∪T Γ

1 )-
piecewise affine function which takes the following values at vertices x ∈ V (T1∪T Γ

1 ):

(2.7) Pcfe
1 (u1, u2)(x)

:=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1(x) if x ∈ V (T1)
or x ∈ V (T Γ

1 ) ∩ (
⋃ T1),

Pcfe
2 u2)(x

Γ) +
〈
∇IT 1

x
u1, x − xΓ

〉
if x ∈ V (T Γ

1 ) \ (
⋃T1)

and x /∈ ∂ΩΓ ∩ ∂Ω,
0 if x ∈ ∂ΩΓ ∩ ∂Ω,
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with IT 1
x
u defined in Section 2.2.2 above. Note that the definition of Pcfe

1 ensures

continuity of its images although T1 ∩ T Γ
1 is not necessarily a regular triangulation

in the sense that hanging nodes may appear (as in Figure 1(d)–(e)).
Although the one-dimensional case (Ω is an interval and Γ is some point in Ω)

does not share the numerical difficulties of the multi-dimensional setting (because
the interface can easily be resolved by adding the vertex Γ to any mesh), it clearly
illustrates the definition of Pcfe and the derivation of our shape functions (see
Figures 2–3). Note that, in one dimension, our construction ensures continuity
across the interface and the method is conforming. In general, conformity is only
achieved in the limit hΓ

1 |Γ → 0. However, the discontinuity of shape functions across
the interface (see Figure 4) is sufficiently small to preserve stability and accuracy
of our method.

Remark 2.1. There is some algorithmic freedom in the above construction:

(1) It is not essential that the subtriangulations T1, T2, T Γ
2 form a partition of

some regular triangulation T . They could have been chosen to be non-
matching overlapping triangulations representing Ω1, Ω2, and some neigh-
borhood ΩΓ of the interface Γ.

(2) It is not essential that the definitions of the mappings T 1
(·) and (·)Γ in the

above construction are based on the minimality of certain distances; any
point or simplex sufficiently close (distance proportional to local mesh size)
would do the job as well.

2.2.4. A local basis of the CFE space. The degrees of freedom of the method are
function values at vertices

Vdof(T ) := V (T1) ∪ V (T2) ⊂ V (T ).

Hence, degrees of freedom are solely assigned to vertices in the coarse (interface
independent) mesh T and every vertex in T represents at most one basis function
of Scfe.

The images of the nodal basis functions λz ∈ S1 ∪ S2 for z ∈ Vdof(T ) yield a
basis of Scfe, i.e.,

Scfe = span
(
{Pcfe(λz, 0) | z ∈ V (T1)} ∪ {Pcfe(0, λz) | z ∈ V (T2)}

)
,

where Pcfeλz and Pcfeλy are linearly independent if z �= y.
Most of the basis functions are standard nodal basis functions. More precisely,

Pcfe has no effect on functions that vanish in ΩΓ plus one layer of coarse elements
T ∈ T . Only a few basis functions are manipulated via the explicit linear operator
Pcfe. Those basis functions have slightly enlarged supports when compared with
standard nodal basis functions on T . However, the supports remain local in the
sense that their diameters remain proportional to the local coarse mesh size h.
Thus, the supports have finite overlap independent of the mesh size h.

2.3. Discrete problem. The discrete variational formulation of (2.1) reads: Find
ucfe ∈ Scfe such that

(2.8)

∫

Ω

a∇ucfe · ∇v dx =

∫

Ω

fv dx for all v ∈ Scfe.

Note that the basis given in the previous section turns this variational problem
into a system of linear algebraic equations. Since those basis functions have local
support, sparsity of the corresponding stiffness matrix is ensured.
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(a) Some functions u1 ∈S1 (left) and u2 ∈S2 (right) representing the degrees of freedom.

(b) Extension Pcfe
2 u2 of u2 to the interface zone ΩΓ.

Figure 2. Illustration of the definition of the CFE space in Sec-
tion 2.2.3.
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(a) Extension Pcfe
1 u1 of u1 to the interface zone ΩΓ.

(b) The corresponding CFE function Pcfe(u1, u2) ∈ Scfe with degrees of freedom (◦).

Figure 3. Illustration (continued from Figure 2) of the definition
of the CFE space in Section 2.2.3.
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1

0

(a) Some function u1 ∈ S1 defined on
⋃ T1.

1

0

(b) Extension Pcfe
1 (u1, 0) of u1.

Figure 4. Illustration of the approximate trace matching across
the interface: Γ is the unit circle and Ω1 its interior, u2 and, hence,
Pcfe

2 u2|Γ are chosen zero.

Remark 2.2. The implementation of the method is similar to previous CFE methods
and we refer to [7, 16, 21, 22] for computational insights.

One issue is that the solution of (2.8) requires the evaluation of integrals over
intersections T ∩ Ωk which is beyond the scope of this note. The forthcoming
theoretical results assume that all integrals are evaluated exactly. We refer to
[7, 15, 22] for a practical resolution of this issue.

2.4. Error estimates. The following theorem addresses the solvability of (2.8).
Moreover, assuming H2(Ω1 ∪ Ω2)-regularity, an optimal a priori error bound in
energy norm is given. Besides parameters already mentioned in the construction,
the constant in the error estimate depends on ρT , which is the ratio between the
diameter of the largest ball that can be inscribed in T ∈ T and diam(T ). The trian-
gulations T and T Γ

1 are assumed to be non-degenerate, i.e., ρT := minT∈T ρT > 0
(resp. ρT Γ

1
:= minT∈T Γ

1
ρT > 0).

Theorem 2.3 (Linear convergence with respect to mesh size). The discrete problem
(2.8) always has a unique solution ucfe ∈ Scfe.

If, in addition, the solution of (2.1), u� ∈ H1
0 (Ω), is piecewise smooth, u� ∈

H2(Ω1 ∪ Ω2), and if

(2.9) ‖hΓ
1/h3/2‖L∞(

⋃{t∈T Γ
1 :t∩Γ�=∅}) ≤ C2

for some generic constant C2, then the following a priori error estimate holds:

(2.10) |||u� − ucfe||| ≤ C‖h‖L∞(Ω)

∥∥√
a∇2u

∥∥
L2(Ω1∪Ω2)

.

The constant C = C(ρT , ρT Γ
1

, C1, C2) does not depend on the mesh width functions

h, hΓ and the contrast parameter acont.
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Proof. The unique solvability of (2.8) follows from the fact that ||| · ||| is a norm in
Scfe. Since, in the limit hΓ

1 |Γ → 0, Scfe is conforming, the latter is quite obvious
if hΓ

1 |(⋃{t∈T Γ
1 :t∩Γ�=∅}) is sufficiently small. Otherwise, this property can be proven

along the lines of [18, Lemma 4.10].
The proof of the error estimate will be given in Section 3. �

The error estimate in the above theorem rests on the regularity of the solution
u� ∈ H2(Ω1 ∪Ω2). In general, this regularity does not hold for solutions of problem
(2.1). Moreover, even though the constant in the error estimate does not depend
on the contrast acont, the H2(Ω1 ∪ Ω2) seminorm of the solution on the right-hand
side of estimate (2.10) may do. In Section 4 we will prove that f ∈ L2(Ω), the
Lipschitz properties of the subdomains Ωk, and, in addition, convexity of Ω ⊂ R2

and the assumption Γ ∈ C1,1 imply u� ∈ H2(Ω1 ∪ Ω2) and

(2.11)
∥∥∇2u�

∥∥
L2(Ω1)

≤ Creg ‖f‖L2(Ω) ,
∥∥∇2u�

∥∥
L2(Ω2)

≤ Creg

acont
‖f‖L2(Ω)

with some universal constant Creg that depends only on the geometry of the sub-
domains Ωk and the interface Γ but not on f and acont. Hence, under those as-
sumptions on the geometry, the error of the CFE method does not depend on the
contrast parameter acont.

Theorem 2.4 (Contrast independence). If Ω ⊂ R2 is convex, Γ ∈ C1,1, and if
(2.9) is satisfied, then the following a priori error estimate holds:

|||u� − ucfe||| ≤ C‖h‖L∞(Ω) ‖f‖L2(Ω) .

The constant C = C(ρT , ρT Γ
1

, C1, C2, Creg) does not depend on f , the mesh width

functions h, hΓ
1 , and the contrast acont.

Remark 2.5. As already mentioned in the introduction, our method is designed to
capture the kink of the solution across the interface. Further lack of regularity,
caused, e.g., by singularities at kinks of the interface, is not addressed by the
proposed method and leads to reduced convergence rates. The actual rate depends
on the strength of the singularities as usual, i.e., if u� ∈ H1+s(Ω1∪Ω2) for some s ∈
[0, 1[, then standard interpolation theory of Sobolev spaces allows one to estimate

|||u� − ucfe||| ≤ C‖h‖s
L∞(Ω).

Standard techniques may be applied to improve the convergence rate of the method
for singular solutions, e.g., adding certain singular functions to the approximation
space, or adaptive refinement of the coarse mesh T toward the singularity.

2.5. Complexity. Let us briefly discuss the complexity of our method. Consid-
ering a uniform coarse-scale grid of width h, the number of degrees of freedom in
our method is proportional to h−d, where d ∈ {2, 3} denotes the dimension of the
physical space as before. The cost of setting up and storing the basis functions can
be estimated as follows. Because of Theorems 2.3 and 2.4, it is sufficient to adapt
the shape functions on a submesh with minimal mesh size hΓ

1 |Γ ≈ h3/2 close to the
interface. Since the dimension of the interface Γ is d − 1 and owing to (2.2), the
number of elements in the submesh is proportional to h−3/2(d−1), i.e., h−3/2 for
d = 2 and h−3 for d = 3. Hence, the cost caused by the adaptation of the shape
functions is at most proportional to the number of degrees of freedom h−d.
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3. Detailed error analysis

This section proves the error estimate in Theorem 2.3. The error of the CFE
approximation can be estimated as in [3, Lemma 10.1.7] by

(3.1) |||u� − ucfe||| ≤ inf
v∈Scfe

|||u� − v||| + sup
0�=v∈Scfe

∣∣a(u� − ucfe, v)
∣∣

|||v||| .

The first term in the above estimate reflects the best approximation error which
is further addressed in Section 3.1. The additional second term is due to non-
conformity (see Section 3.2).

3.1. Approximation property. For G ∈ {T , T1, T2, T Γ
1 , T2}, let IGu denote the

unique G-piecewise affine function that interpolates a sufficiently smooth function
u at the vertices of G. The solution u� ∈ H2(Ω1 ∪Ω2) of (2.1) is well approximated
by the discontinuous function uh with uh|Ωk

= (ITk
u)|Ωk

, k = 1, 2. The error in
the energy norm is proportional to h. This approximation property is preserved if
uh is suitably mapped onto the finite element space Scfe as the following lemma
states.

For the ease of notation, observe that Pcfeu := Pcfe(IT1
u, IT2

u) defines Pcfe

for arguments u ∈ H1
0 (Ω) ∩ H2(Ω1 ∪ Ω2). Accordingly, Pcfe

2 u := Pcfe
2 IT2

u (resp.
Pcfe

1 u := Pcfe
1 (IT1

u, IT2
u)) extends Pcfe

2 (resp. Pcfe
1 ) to H1

0 (Ω) ∩ H2(Ω1 ∪ Ω2).

Lemma 3.1 (Approximation property of Scfe). There is a constant C > 0 which
may depend on ρT , ρT Γ

1
, C1, C2 but not on h and hΓ

1 such that for all u ∈ H1
0 (Ω) ∩

H2(Ω1 ∪ Ω2) it holds that

|||u − Pcfeu||| ≤ C
∥∥√

ah∇2u
∥∥

L2(Ω1∪Ω2)
.

Proof. The proof picks up some standard techniques for CFEs as they are used,
e.g., in the proof of Theorem 4.4 in [18]. In addition, we will frequently make use of
classical error estimates of nodal interpolation with respect to simplices. Following
[5, Theorem 16.1], there exists a universal constant Cip such that

(3.2) |u − Itu|W m
p (t) ≤ Cip

ρt
diam(t)2− d

2 − d
p −m |u|H2(t)

for all u ∈ H2(t), m ∈ {0, 1}, provided Wm
p (t) ⊂ H2(t); Itu denotes the affine

interpolant of u at the vertices of a triangle t.
The main tool for exploiting the piecewise regularity is a suitable extension

operator. It is known that, since Ωk is assumed bounded and Lipschitz, there exists
a continuous, linear extension operator Ek : H2(Ωk) ∩ H1

0 (Ω) → H2(Ω) ∩ H1
0 (Ω),

k ∈ {1, 2}, such that for all u ∈ H2(Ωk) ∩ H1
0 (Ω) there holds

(3.3) Eku|Ωk
= u and

∥∥∇2Eu
∥∥

L2(Ω)
≤ Cext

∥∥∇2u
∥∥

L2(Ωk)

with a constant Cext that depends only on Ωk and Ω [25]. Moreover, Cext is
moderately small under mild assumptions on the geometry [23]. Throughout the
rest of the paper, uk abbreviates Eku, k = 1, 2.

Our proof rests upon the splitting

u = u2 + (u − u2)
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and the observation that (u − u2)|Ω1
∈ H1

0 (Ω1) ∩ H2(Ω1) and (u − u2)|Ω2
= 0. The

splitting and the linearity of Pcfe lead to the upper bound

(3.4) |||u − Pcfeu|||2 ≤ |||u2 − Pcfeu2|||2 +
∥∥∇

(
u − u2 − Pcfe(u − u2)

)∥∥2

L2(Ω1)
.

The second term on the right–hand side of (3.4) can be bounded by classical tech-
niques for the analysis of CFEs. In particular, [18, Theorem 4.4] and (3.3) show
that

(3.5)
∥∥∇

(
(u − u2) − Pcfe(u − u2)

)∥∥2

L2(Ω1)
≤ C

∥∥h∇2u
∥∥

H2(Ω1)

with some constant C that depends only on ρT , ρT Γ
1

, C1, C2, and Cext.

Thus, we are left to bound the first term on the right–hand side of (3.4). The
advantage of the splitting is that, compared to the initial assertion, we can now
make use of the fact that u2 ∈ H2(Ω) regardless of the interface.

Throughout the rest of the proof, a � b abbreviates a ≤ Cb with some constant
C that depends only on the constants C1, C2, Cip, Cext, ρT , and ρT Γ

1
.

By repeated use of the triangle inequality we separate the elements where stan-
dard estimates apply from those where more involved techniques are required:

|||u2 − Pcfeu2|||2 =
∥∥∇(u2 − Pcfeu2)

∥∥2

L2(Ω1)
+ acont

∥∥∇(u2 − Pcfeu2)
∥∥2

L2(Ω2)

(2.6),(2.7)

≤ ‖∇(u2 − IT u2)‖2
L2(Ω1)

+ acont ‖∇(u2 − IT u2)‖2
L2(Ω2)

+
∥∥∇(IT u2 − Pcfe

1 u2)
∥∥2

L2(ΩΓ)
+ acont

∥∥∇(IT u2 − Pcfe
2 u2)

∥∥2

L2(ΩΓ)

(3.2),(3.3)

�
∥∥h∇2u2

∥∥2

L2(Ω1)
+ acont

∥∥h∇2u2

∥∥2

L2(Ω2)

+
∥∥∇(IT u2 − Pcfe

1 u2)
∥∥2

L2(ΩΓ)
+ acont

∥∥∇(IT u2 − Pcfe
2 u2)

∥∥2

L2(ΩΓ)
.(3.6)

Let t ∈ T Γ
1 and T ∈ T Γ

2 such that t ⊂ T (recall that T Γ
1 was derived from

T Γ
2 ⊂ T by refinement). Then, by an inverse estimate,

(3.7)
∥∥∇(IT u2 − Pcfe

1 u2)
∥∥

L2(t)
≤ 2 diam(t)d/2 diam(T )−1

∥∥IT u2 − Pcfe
1 u2

∥∥
L∞(t)

.

We fix x ∈ V (t) with
∥∥IT u2 − Pcfe

1 u2

∥∥
L∞(t)

=
∣∣IT u2(x) − Pcfe

1 u2(x)
∣∣ and define

T 1
t := T 1

x , T 2
t := T 2

x . In addition we introduce neighborhoods

ωT :=
⋃

{K ∈ T : T ∩ K �= ∅}
containing both coarse elements T 1

t and T 2
t . The definition of Pcfe

1 in (2.7) and the
application of Lemma 4.1 from [18] lead to
(3.8)

∥∥IT u2 − Pcfe
1 u2

∥∥
L∞(t)

(2.7)
=

∣∣∣IT u2(x) − IT 2
t
u2(x

Γ) − 〈∇IT 1
t
u2, x − xΓ〉

∣∣∣

�
∣∣∣IT u2(x) − IT 2

t
u2(x)

∣∣∣ +
∣∣∣〈∇(IT 2

t
u2 − IT 1

t
u2), x − xΓ〉)

∣∣∣

� diam(T )−d/2

(∥∥∥IT u2 − IT 2
t
u2

∥∥∥
L2(T )

+ diam(t)
∥∥∥∇

(
IT u2 − IT 2

t
u2

)∥∥∥
L2(T )

+ diam(t)
∥∥∥∇

(
IT 2

t
u2 − IT 1

t
u2

)∥∥∥
L2(T )

)

diam(t)≤diam(T )

� diam(T )2−d/2
∥∥∇2u2

∥∥
L2(ωT )

.
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The summation over all t ∈ T Γ
1 yields

(3.9)

∥∥∇(IT u2 − Pcfe
1 u2)

∥∥2

L2(ΩΓ)
≤

∑

t∈T Γ
1

∥∥∇(Itu2 − Pcfe
1 u2)

∥∥2

L2(t)

≤
∑

T∈T

∑

t∈T Γ
1 :t⊂T

∥∥∇(IT u2 − Pcfe
1 u2)

∥∥2

L2(t)

(3.7),(3.8)

�
∑

T∈T

( ∑

t∈T Γ
1 :t⊂T

|t|
)

diam(T )2−d
∥∥∇2u2

∥∥2

L2(ωT )

(3.3)

�
∥∥h∇2u

∥∥2

L2(Ω2)
.

Similar arguments as in (3.7), (3.8), and (3.9) lead to an estimate of the last term
on the right-hand side of (3.6),

(3.10)
∥∥∇(IT2

u2 − Pcfe
2 u2)

∥∥2

L2(∪T Γ
2 )

�
∥∥h∇2u

∥∥2

L2(Ω2)
.

The combination of (3.4), (3.5), (3.6), (3.9), and (3.10) proves the assertion. �

3.2. Non-conformity. If the solution is sufficiently smooth, i.e., u� ∈ H3/2(Ω1 ∪
Ω2), the second term in (3.1) can be estimated using Greens’s identity, (2.1), (2.8),
the classical jump relation, and the Cauchy-Schwarz inequality as follows:

(3.11) sup
0�=v∈Scfe

∣∣a(u� − ucfe, v)
∣∣

|||v||| ≤ C

∥∥∥∥
∂u�

∂νΩ1

∥∥∥∥
L2(Γ)

sup
0�=v∈Scfe

‖[[v]]Γ‖L2(Γ)

|||v||| .

Here, νΩ1
denotes the outer normal of Ω1 and [[v]]Γ denotes the jump of v across Γ.

By picking up ideas from [18, Lemma 4.9], one checks that the discontinuity [[v]]Γ
is in fact small.

Lemma 3.2 (Non-conformity). There is a constant C = C(C1, C3) > 0 with C3 :=
maxT∈T Γ

1 :T∩Γ�=∅ |Γ ∩ T |/ diam(T )(d−1), such that

‖[[v]]Γ‖L2(Γ) ≤ C‖h‖L∞(Ω) ‖hΓ
1/h3/2‖L∞(

⋃{T∈T Γ
1 :T∩Γ�=∅})|||v|||

for all v ∈ Scfe.

Proof. Let v = Pcfe(IT1
v, IT2

v) ∈ Scfe. Let t ∈ T Γ
1 with t ∩ Γ �= ∅. We start with

some pointwise estimate of the jump of v on t:

‖[[v]]‖L∞(Γ∩t) = ‖v|Ω2
− v|Ω1

‖L∞(Γ∩t) ≤ ‖v|Ω2
− v|Ω1

‖L∞(t) ,

where v|Ω1
(resp. u|Ω2

) is identified with its unique affine extension onto t. The
definitions (2.6) and (2.7) yield

(3.12) ‖[[v]]‖L∞(Γ∩t) = max
y∈V (t)

∣∣∣v|Ω2
(y) − v|Ω2

(yΓ) −
〈
∇IT 1

y
v, y − yΓ

〉∣∣∣

� diam(t)
∥∥∥h−d/2∇v

∥∥∥
L2(T 1

y ∪T 2
y )

.
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Hence, the L2-norm of v on ∂Ω is estimated as follows:

‖v‖2
L2(Γ) ≤

∑

T1∈T1,T2∈T2

∑

t∈T Γ
1 :t∩Γ�=∅,T k

t =Tk

|Γ ∩ t| ‖[[v]]‖2
L∞(t)

(3.12)

�
∑

T1∈T1,T2∈T2

∑

t∈T Γ
1 :t∩Γ�=∅,T k

t =Tk

|Γ ∩ t| diam(t)2

diam(T )d
‖∇v‖2

L2(T1∪T2)

� ‖hΓ
1/

√
h‖2

L∞(∪{t∈T Γ
1 : t∩Γ�=∅}) ‖∇v‖2

L2(Ω) .

�

If hΓ
1 |Γ is chosen proportional to h(3/2), as it is assumed in (2.9), Theorem 2.3

follows from (3.1), Lemma 3.1, and Lemma 3.2.

Remark 3.3. The constant C3 introduced in Lemma 3.2 reflects the smoothness of
the interface Γ. Note that C3 may be large if Γ is highly oscillating. However, the
proof of Lemma 3.2 shows that a possibly large constant can be controlled by simply
choosing hΓ|Γ appropriately small. This modification concerns only the submesh
T Γ

1 and does not affect the overall number of degrees of freedom.

4. Regularity

This section proves the regularity result (2.11) under the following assumptions
on the geometrical setting:

(R1) Ω ⊂ R2 is a convex polygon,
(R2) Ω1, Ω2 ⊂ Ω are disjoint open Lipschitz domains with Ω = Ω1 ∪ Ω2, and
(R3) Γ := Ω1 ∩ Ω2 is a C1,1 curve that separates Ω1 and Ω2.

The conditions (R1)–(R3) guarantee that both subdomains Ωk have a piecewise
smooth boundary with interior angles less than π. In particular, the interface is
not tangential to ∂Ω in intersection points Γ ∩ ∂Ω. Two relevant cases covered by
these conditions are depicted in Figure 5.

Figure 5. Two geometric situations in which conditions (R1)–
(R3) are satisfied: (left) interface cuts through the boundary of
Ω at some positive angle, (right) smooth separated inclusions dis-
persed in some matrix.

Under the conditions (R1)–(R3) [13] shows piecewise H2 regularity in the sense
that f ∈ L2(Ω) implies u� ∈ H2(Ω1 ∪ Ω2) and

‖∇2u�‖L2(Ω1) + ‖∇2u�‖L2(Ω2) ≤ C‖f‖L2(Ω).
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The subsequent theorem clarifies the dependence of the constant in the estimate
above on the contrast parameter acont. In this respect, the theorem generalizes the
previous result [4, Theorem B.1], which assumes a smoother interface and, more
importantly, the inclusion Ω̄1 ⊂ Ω with some positive distance between Ω1 and ∂Ω.

Theorem 4.1. Under the assumptions (R1)–(R3) the unique solution u� of (2.1)
is piecewise smooth, u� ∈ H2(Ω1 ∪ Ω2). Moreover, the estimates (2.11) hold with a
generic constant Creg that does not depend on f and acont.

Proof. Let u�
k := u�|Ωk

for k = 1, 2. As discussed earlier, the assumptions (R1)–
(R3) yield u�

k ∈ H2(Ωk) for k = 1, 2. Since Ωk, k = 1, 2, is piecewise smooth with
interior angles less than π, classical a priori bounds yield

∥∥∇2u�
1

∥∥
L2(Ω1)

≤ C ′
reg

(
‖f‖L2(Ω1) + ‖u�

1‖H3/2(Γ)

)
,

∥∥∇2u�
2

∥∥
L2(Ω2)

≤ C ′′
reg

(
a−1
cont‖f‖L2(Ω2) +

∥∥∥∥
∂u�

2

∂νΩ2

∥∥∥∥
H1/2(Γ)

)
.

Since the above estimates are solely performed in the subdomains, the constants
C ′

reg and C ′′
reg do not depend on acont. The classical jump relations at the interface

imply ‖u�
1‖H3/2(Γ) = ‖u�

2‖H3/2(Γ) and
∥∥∥ ∂u�

1

∂νΩ1

∥∥∥
H1/2(Γ)

= acont

∥∥∥ ∂u�
2

∂νΩ2

∥∥∥
H1/2(Γ)

. Hence,

∥∥∇2u�
1

∥∥
L2(Ω1)

≤ C ′
reg

(
‖f‖L2(Ω1) + ‖u�

2‖H3/2(Γ)

)
,(4.1)

∥∥∇2u�
2

∥∥
L2(Ω2)

≤ C ′′
rega

−1
cont

(
‖f‖L2(Ω2) +

∥∥∥∥
∂u�

1

∂νΩ1

∥∥∥∥
H1/2(Γ)

)
.(4.2)

The combination of (4.2), the trace theorem
∥∥∥ ∂u�

1

∂νΩ1

∥∥∥
H1/2(Γ)

≤ C ‖u�
1‖H2(Ω1)

, (4.1),

and the trace theorem ‖u�
2‖H3/2(Γ) ≤ C ‖u�

2‖H2(Ω2)
leads to

∥∥∇2u�
2

∥∥
L2(Ω2)

≤ C ′′′
rega

−1
cont

(
‖f‖L2(Ω) + ‖u�‖H1(Ω) + ‖∇2u�

2‖L2(Ω2)

)
.

Since C ′′′
reg does not depend on acont, coercivity of the bilinear form a and the energy

estimate ‖|u�|‖ ≤ ‖f‖L2(Ω) prove the estimate
∥∥∇2u�

2

∥∥
L2(Ω2)

≤ Crega
−1
cont‖f‖L2(Ω),

provided acont ≥ C ′′′
reg/2. Since for small contrast acont < C ′′′

reg/2 nothing is to

show, one assertion is proved. The estimate for
∥∥∇2u�

2

∥∥
L2(Ω2)

is analogous by

interchanging the application of (4.2) and (4.1) as well as the corresponding trace
inequalities. �

For a characterization of the singularities that may appear if the conditions (R1)–
(R3) are not satisfied, we refer the reader to [2, 6, 10, 11] among many others. A
comprehensive regularity analysis for the three-dimensional case is more technical
and beyond the scope of this paper; we refer to [12] for necessary conditions under
which H2(Ω1 ∪ Ω2)-regularity is achieved. If the geometric setting allows H2(Ω1 ∪
Ω2)-regularity, then the proof of (2.11) could be treated in a similar way as in
Theorem 4.1.

We shall emphasize that the above result is not explicit with respect to the
geometric setting, e.g., the constants C ′

reg and C ′′
reg may depend on oscillations of

the interface, minimal distances between inclusions, the distance between inclusions
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and the boundary, etc. The dependence on the geometry is involved and has been
studied only for special cases, e.g., the case of densely packed, perfectly conducting,
circular inclusions in 2d [17]. We further mention that reularity estimates for the
case of diffusive interfaces may be found in [20].

5. Conclusion

We have described a finite element method for the Poisson equation with discon-
tinuous diffusion coefficient across some interface. The method does not require the
underlying finite element mesh to resolve the interface exactly. Overlapping, and
possibly structured, simplicial meshes can be used instead. Moreover, the definition
of the basis functions is explicit, and no local problems have to be solved. On a
quasi-uniform coarse grid of width h, the complexity of our method is proportional
to h−d, whereas the error is proportional to h. This is optimal in comparison with
the approximation of a Poisson problem with overall constant coefficient on the
same mesh.

This paper focuses on the difficulty of treating discontinuous coefficients. To
keep notation and technicalities at a minimum, the simplest possible setting has
been chosen. Generalizations, not only to general linear elliptic problems but also
saddle point problems such as Stokes’ problem, are straightforward with regard to
the previous work [18, 19].
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