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Summary. Sparse grids, combined with gradient penalties provide an attractive
tool for regularised least squares fitting. It has earlier been found that the combina-
tion technique, which allows the approximation of the sparse grid fit with a linear
combination of fits on partial grids, is here not as effective as it is in the case of
elliptic partial differential equations. We argue that this is due to the irregular and
random data distribution, as well as the proportion of the number of data to the
grid resolution. These effects are investigated both in theory and experiments. The
application of modified “optimal” combination coefficients provides an advantage
over the ones used originally for the numerical solution of PDEs, who in this case
simply amplify the sampling noise. As part of this investigation we also show how
overfitting arises when the mesh size goes to zero.

1.1 Introduction

In this paper we consider the regression problem arising in machine learning.
A set of data points xi in a d-dimensional feature space is given, together with
an associated value yi. We assume that a function f∗ describes the relation
between the predictor variables x and the response variable y and want to
(approximately) reconstruct the function f∗ from the given data. This allows
us to predict the function value of any newly given data point for future
decision-making.

In [4] a discretisation approach to the regularised least squares ansatz [10]
was introduced. An independent grid with associated local basis functions is
used to discretise the minimisation problem. This way the data information
is transferred into the discrete function space defined by the grid and its
corresponding basis functions. Such a discretisation approach is similar to
the numerical treatment of partial differential equations by finite element
methods.

To cope with the complexity of grid-based discretisation methods in higher
dimensions Garcke et.al. [4] apply the sparse grid combination technique [5]
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to the regression problem. Here, the regularised least squares ansatz is dis-
cretised and solved on a certain sequence of anisotropic grids, i.e. grids with
different mesh sizes in each coordinate direction. The sparse grid solution is
then obtained from the (partial) solutions on these different grids by their lin-
ear combination using combination coefficients which depend on the employed
grids. The curse of dimensionality for conventional “full” grid methods affects
the sparse grid combination technique much less; currently up to around 20
dimensions can be handled.

Following empirical results in [3], which show instabilities of the combina-
tion technique in certain situations, we investigate in this article the conver-
gence behaviour of full and sparse grid discretisation of the regularised regres-
sion problem. The convergence behaviour of the combination technique can be
analysed using extrapolation arguments where a certain error expansion for
the partial solutions is assumed. Alternatively one can view the combination
technique as approximation of a projection into the underlying sparse grid
space, which is exact only if the partial projections commute.

We will study how both these assumptions do not hold for the regularised
regression problem and how the combination technique can actually diverge.
Applying the optimised combination technique, introduced in [7], repairs the
resulting instabilities of the combination technique to a large extent. The
combination coefficients now not only depend on the grids involved, but on the
function to be reconstructed as well, resulting in a non-linear approximation
approach.

1.2 Regularised least squares regression

We consider the regression problem in a possibly high-dimensional space.
Given is a data set

S = {(xi, yi)}m
i=1 xi ∈ Rd, yi ∈ R,

where we denote with x a d-dimensional vector or index with entries x1, . . . , xd.
We assume that the data has been obtained by sampling an unknown function
f∗ which belongs to some space V of functions defined over Rd. The aim is to
recover the function f∗ from the given data as well as possible. To achieve a
well-posed (and uniquely solvable) problem Tikhonov-regularisation theory [9,
10] imposes a smoothness constraint on the solution. We employ the gradient
as a regularisation operator which leads to the variational problem

fV = argminf∈V R(f)

with

R(f) =
1
m

m∑

i=1

(f(xi)− yi)2 + λ||∇f ||2, (1.1)
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where yi = f∗(xi). The first term in (1.1) measures the error and therefore
enforces closeness of f to the labelled data, the second term ||∇f ||2 enforces
smoothness of f , and the regularisation parameter λ balances these two terms.

Let us define the following semi-definite bi-linear form

〈f, g〉RLS =
1
m

m∑

i=1

f(xi)g(xi) + λ〈∇f,∇g〉 (1.2)

and choose V so that 〈·, ·〉RLS is a scalar product on it. With respect to this
scalar product the minimisation (1.1) is an orthogonal projection of f∗ into
V [7], i.e. if ‖f − f∗‖2RLS ≤ ‖g − f∗‖2RLS than R(f) ≤ R(g). As the point
evaluations f → f(x) are not continuous in the Sobolev space H1 for d ≥ 2
we do not get a H1-elliptic problem. We suggest to choose a finite dimensional
subspace V ⊂ H1 of continuous functions containing the constant function.

In the following we restrict the problem explicitly to a finite dimensional
subspace VN ⊂ V with an appropriate basis {ϕj}N

j=1. A function f ∈ V is
then approximated by

fN (x) =
N∑

j=1

αjϕj(x).

We now plug the representation (1.2) of a function f ∈ VN into (1.1) and
obtain the linear equation system

(B>B + λm · C)α = B>y (1.3)

and therefore are able to compute the unknown vector α for the solution fN

of (1.1) in VN . C is a symmetric N×N matrix with entries Cj,k = 〈∇ϕj ,∇ϕk〉,
j, k = 1, . . . , N and corresponds to the smoothness operator. B> is a rectan-
gular m×N matrix with entries (B>)j,k = ϕj(xk), j = 1, . . . , N , k = 1, . . . , m
and transfers the information from the data into the discrete space, B corre-
spondingly works in the opposite direction. The vector y contains the data
labels yi and has length m.

In particular we now employ a finite element approach, using the general
form of anisotropic mesh sizes ht = 2−lt , t = 1, . . . , d the grid points are
numbered using the multi-index j, jt = 0, . . . , 2lt . We use piecewise d-linear
functions

φl,j(x) :=
d∏

t=1

φlt,jt(xt), jt = 0, . . . , 2lt

where the one-dimensional basis functions φl,j(x) are the so-called hat func-
tions. We denote with Vn the finite element space which has the mesh size hn

in each direction.

1.3 Combination technique

The sparse grid combination technique [5] is an approach to approximate
functions in higher dimensional spaces. Following this ansatz we discretise and
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solve the problem (1.1) on a sequence of small anisotropic grids Ωl = Ωl1,...,ld .
For the combination technique we now in particular consider all grids Ωl with

|l|1 := l1 + ... + ld = n− q, q = 0, .., d− 1, lt ≥ 0,

set up and solve the associated problems (1.3). The original combination tech-
nique [5] now linearly combines the resulting discrete solutions fl(x) ∈ Vl from
the partial grids Ωl according to the formula

f c
n(x) :=

d−1∑
q=0

(−1)q

(
d− 1

q

) ∑

|l|1=n−q

fl(x).

The function f c
n lives in the sparse grid space

V s
n :=

⊕

|l|1 = n− q
q = 0, ..., d− 1 lt ≥ 0

Vl.

The space V s
n has dimension of order O(h−1

n (log(h−1
n ))d−1) in contrast to

O(hd
n) for conventional grid based approaches.
Using extrapolation arguments it can be shown that the approximation

property of the combination technique is of the order O(h2
n · log(h−1

n )d−1) as
long as error expansions of the form

f − fl =
d∑

i=1

∑

j1,...,jm⊂1,...,d

cj1,...,jm(hj1 , . . . , hjm) · hp
j1
· . . . · hp

jm

for the partial solutions hold [5].
Viewing the minimisation of (1.1) as projection one can show that the com-

bination technique is an exact projection into the underlying sparse grid space
(and therefore of approximation order O(h2

n · log(h−1
n )d−1)) only if the partial

projections commute, i.e. the commutator [PV1 , PV2 ] := PV1PV2 − PV2PV1 is
zero for all pairs of involved grids [6].

In the following we will show that both these assumptions do not hold for
the regularised regression problem and that the combination technique can
actually diverge.

1.3.1 Empirical convergence behaviour

We now consider the convergence behaviour of full grid solutions for a simple
regression problem, measured against a highly refined grid (due to the lack of
an exact solution). As in [3] we consider the function

f(x, y) = e−(x2+y2) + x · y.
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Fig. 1.1. Left: Convergence of full grid solutions against highly refined solution
measured using (1.1). Right: Value of the residual (1.1) and the least squares error
for 5000 data using the combination technique with λ = 10−6.
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in the domain [0, 1]2 where the data positions are chosen randomly. To study
the behaviour with different number of data we take hundred, thousand, ten-
thousand, hundred-thousand and one million data points. In Figure 1.1, left
we show the error of a full grid solution of level l measured against the one of
level n = 12 using the functional (1.1) as a norm. We see that the error shows
two different types of convergence behaviour, after some discretisation level
the error decreases slower than with the usual h2. Furthermore, the more data
is used, the later this change in the error reduction rate takes place. These
observations do not depend on the regularisation parameter λ.

A different picture arises if we employ the sparse grid combination tech-
nique. We measure the residual and the least squares error of the approxima-
tion using m = 5000 data and λ = 10−6, the results are presented in Figure
1.1, right. One observes that after level n = 3 both error measurements in-
crease on the training data, which cannot happen with a true variational dis-
cretisation ansatz. This effect is especially observed for small λ, already with
λ = 10−4 the now stronger influence of the smoothing term results in a (more)
stable approximation method. Note that the instability is more common and
significant in higher dimensions.

1.3.2 Asymptotics and errors of the full grid solution

If the number m of data points is large, the data term in R(f) approximates an
integral. For simplicity, we discuss only the case of Ω = (0, 1)d and p(x) = 1,
however, most results hold for more general domains and probability distri-
butions. Then, if f∗(x) is a square integrable random field with f∗(xi) = yi

and
J(f) = λ

∫

Ω

|∇f(x)|2dx +
∫

Ω

(f(x)− f∗(x))2dx (1.4)

then J(f) ≈ R(f). Consider a finite element space VN ⊂ C(Ω) with rectan-
gular elements Q of side lengths h1, . . . , hd and multilinear element functions.

The number k of data points xi contained in any element Q is a binomially
distributed random variable with expectation m · h1 · · ·hd. When mapped
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onto a reference element I = (0, 1)d, the data points ξ1, . . . , ξk are uniformly
distributed within I. Let φ be a continuous function on Q with expectation
φ =

∫
I
φ(ξ)dξ and variance σ(φ)2 =

∫
I
(φ(ξ) − φ)2dξ. By the central limit

theorem, the probability that the inequality
∣∣∣∣∣
∫

I

φ(ξ)dξ − 1
k

k∑

i=1

φ(ξi)

∣∣∣∣∣ ≤
cσ(φ)√

k

holds for k →∞ is in the limit 1√
2π

∫ c

−c
e−t2/2dt.

As we will apply the first lemma of Strang [1] on the bilinear forms corre-
sponding to J(f) and R(f) we need this bound for the case of φ(ξ) = u(ξ)v(ξ).
Using a variant of the Poincaré-Friedrichs inequality [1] with the observation
that the average of w := φ − φ equals zero, the product rule, the triangular
inequality, and the Cauchy-Schwarz inequality we obtain

σ(φ) ≤ C

√∫

I

|∇φ(ξ)|2 dξ ≤ C (‖v‖‖∇u‖+ ‖u‖‖∇v‖) ≤ C‖u‖1‖v‖1.

Transforming this back onto the actual elements Q, summing up over all
the elements and applying the Cauchy-Schwarz inequality gives, with high
probability for large m, the bound:

∣∣∣∣∣
∫

Ω

u(x)v(x)dx− 1
m

m∑

i=1

u(xi)v(xi)

∣∣∣∣∣ ≤
c‖u‖1‖v‖1√

k
.

A similar bound can be obtained for the approximation of the right hand side
in the Galerkin equations. We now can apply the first lemma of Strang to get
the bound

‖f − fN‖1 ≤ C(‖f − fbest
N ‖1 +

‖f‖1√
k

),

where fbest
N is the best approximation of f in the ‖ · ‖1-norm.

This bound is very flexible and holds for any intervals I – it does not
depend on the particular hi just on the product. This is perfectly adapted
to a sparse grid situation where one has on average kl = 2−|l|m data points
per element on level |l|. It is known that the combination technique acts like
an extrapolation method for the Poisson problem. This is not the case in the
regression problem as there is no cancellation of the random errors. Assuming
that the errors el are i.i.d. we conjecture that the error of an approximation
using the sparse grid combination technique (for large enough k) satisfies a
bound of the form

‖f − fsg‖1 ≤ C


‖f − fbest

sg ‖1 +
‖f‖1

√∑
l c

2
l 2|l|√

m


 (1.5)
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where, as usual, cl are the combination coefficients.
To study this effect experimentally let us consider (1.4) with

f∗(x, y) = −100λ ·
(

(2x− 1)
(

1
4
y4 − 1

3
y3

)
+

(
1
3
x3 − 1

2
x2

) (
3y2 − 2y

))

+100 ·
(

1
3
x3 − 1

2
x2

)(
1
4
y4 − 1

3
y3

)
.

The function f(x, y) = 100 · (
1
3x3 − 1

2x2
) (

1
4y4 − 1

3y3
)

is the solution of
the resulting continuous problem. As indicated, if we now assume that a
Monte-Carlo approach is used to compute the integrals

∫
Ω

f(x)g(x)dx and∫
Ω

f(x)f∗(x)dx in the Galerkin equations we obtain the regularised least
squares formulation (1.1). We measure the difference between the resulting
discrete solutions for fixed number of data and the above continuous solution.
In Figure 1.2, left, we show how this error, measured in the H1-seminorm,
behaves. At first we have the “usual” decrease in the error, but after about 1
sample point per element the error increases instead.

The bound (1.5) holds only asymptotically in k and thus for fixed k and
very small mesh size it will break down. In the following we consider what
happens asymptotically in this case for a regular grid (hi = h). Recall that
the full grid solution fN satisfies the Galerkin equations

λ

∫

Ω

∇fT
N∇gdx +

1
m

m∑

i−1

(fN (xi)− yi)g(xi) = 0, for all g ∈ VN . (1.6)

Using an approximate Green’s kernel GN (x, xi) for the Laplacian one can
write the solution as

fN (x) =
1

mλ

m∑

i=1

(yi − fN (xi))GN (x, xi).

One can show that for i 6= j the values GN (xi, xj) are bounded as h → 0 and
that GN (xi, xi) = O(| log(h)|) for d = 2 and GN (xi, xi) = O(h2−d) for d 6= 2.
One then gets:

Fig. 1.2. Left: H1-seminorm difference of the solutions of J(f) and R(f) plotted
against the number k of data points per cell. Right: Decrease of functional R.
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Proposition 1. Let fN be the solution of equation 1.6. Then fN (xi) → yi for
h → 0 and there exists a C > 0 such that

|yi − fN (xi)| ≤ C
mλ

| log h| , if d = 2

and
|yi − fN (xi)| ≤ Cmλhd−2, if d > 2.

Proof. Using the Green’s kernel matrix GN with components GN (xi, xj) one
has for the vector fN of function values fN (xi) the system

(GN + mλI)fN = GNy

where y is the data vector with components yi.
It follows that fN−y = (GN +mλI)−1GNy−(GN +mλI)−1(GN +mλI) =

−mλ(GN +mλI)−1y. The bounds for the distance between the function values
and the data then follow when the asymptotic behaviour of GN mentioned
above is taken into account. ut
It follows that one gets an asymptotic overfitting in the data points and the
data term in R(f) satisfies the same bound

m∑

i=1

(fN (xi)− yi)
2 ≤ C

mλ

| log h| , if d = 2

and
m∑

i=1

(fN (xi)− yi)
2 ≤ Cmλhd−2, if d ≥ 3

and h → 0. The case d = 2 is illustrated in Figure 1.2, right.
While the approximations fN do converge on the data points they do so

very locally. In an area outside a neighbourhood of the data points the fN

tend to converge to a constant function so that the fit picks up fast oscillations
near the data points but only slow variations further away.

It is seen that the value of R(fN ) → 0 for h → 0. In the following we can
give a bound for this for d ≥ 3.

Proposition 2. The value of functional J converges to zero on the estimator
fN and

J(fN ) ≤ Cmλhd−2

for some C > 0. In particular, one has ‖∇fN‖ ≤ C
√

mλh(d−2).

Proof. While we only consider regular partitioning with hyper-cubical ele-
ments Q, the proof can be generalised for other elements. First, let bQ be a
member of the finite element function space such that bQ(x) = 1 for x ∈ Q
and bQ(x) = 0 for x in any element which is not a neighbour of Q. One can
see that
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∫

Q

|∇bQ|2dx ≤ Chd−2.

Choose h such that for the k-th component of xi one has

|xi,k − xj,k| > 3h, for i 6= j.

In particular, any element contains at most one data point. Let furthermore
Qi be the element containing xi, i.e., xi ∈ Qi. Then one sees that g defined
by

g(x) =
m∑

i=1

yibQi
(x)

interpolates the data, i.e., g(xi) = yi. Consequently,

R(g) = λ

∫

Ω

|∇g|2dx.

Because of the condition on h one has for the supports supp bQi
∩

supp bQj = ∅ for i 6= j and so

R(g) = λ

m∑

i=1

y2
i

∫

Ω

|∇bQi |2dx

and, thus,
R(g) ≤ Cmλhd−2.

It follows that inf R(f) ≤ R(g) ≤ Cmλhd−2. ut
We conjecture that in the case of d = 2 one has J(fN ) ≤ Cmλ/| log h|.
We would also conjecture, based on the observations, that fN converges very
slowly towards a constant function.

1.4 Projections and the combination technique

It is well known that finite element solutions of V-elliptic problems can be
viewed as Ritz projections of the exact solution into the finite element space
satisfying the following Galerkin equations:

〈fN , g〉RLS = 〈f∗, g〉RLS , g ∈ VN .

The projections are orthogonal with respect to the energy norm ‖ · ‖RLS .
Let Pl : V → Vl denote the orthogonal projection with respect to the norm
‖ · ‖RLS and let PS

n be the orthogonal projection into the sparse grid space
V S

n =
∑
|l|≤n Vl. If the projections Pl form a commutative semigroup, i.e., if

for all l, l′ there exists a l′′ such that PlPl′ = Pl′′ then there exist cl such that
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PS
n =

∑

|l|≤n

clPl.

We have seen in the previous section why the combination technique may not
provide good approximations as the quadrature errors do not cancel in the
same way as the approximation errors. The aspect considered here is that the
combination technique may break down if there are angles between spaces
which are sufficiently smaller than π/2 and for which the commutator may
not be small.

For illustration, consider the case of three spaces V1, V2 and V3 = V1 ∩ V2.
The cosine of the angle α(V1, V2) ∈ [0, π/2] between the two spaces V1 and V2

is defined as

c(V1, V2) := sup
{
(f1, f2) | fi ∈ Vi ∩ (V1 ∩ V2)⊥, ‖fi‖ ≤ 1, i = 1, 2

}
.

The angle can be characterised in terms of the orthogonal projections PVi into
the closed subspaces Vi and the corresponding operator norm, it holds [2]

c(V1, V2) = ‖P1P2PV ⊥3
‖. (1.7)

If the projections commute then one has c(V1, V2) = 0 and α(V1, V2) = π/2
which in particular is the case for orthogonal Vi. However, one also gets
α(V1, V2) = π/2 for the case where V2 ⊂ V1 (which might contrary to the
notion of an “angle”).

Numerically, we estimate the angle of two spaces using a Monte Carlo
approach and the definition of the matrix norm as one has

c(V1, V2) = ‖PV1PV2 − PV1∩V2‖ = sup
g

‖PV1PV2g − PV1∩V2g‖
‖PV2g‖

(1.8)

For the energy norm the angle between the spaces substantially depends on the
positions of the data points xi. We consider in the following several different
layouts of points and choose the function values yi randomly. Then the ratio
‖PV1PV2g−PV1∩V2g‖

‖PV2g‖ is determined for these function values and data points
and the experiment is repeated many times. The estimate chosen is then the
maximal quotient.

In the experiments we choose Ω = (0, 1)2 and the subspaces V1 and V2 were
chosen such that the functions were linear with respect to one variable while
the h for the grid in the other variables was varied. In a first example, the data
points are chosen to be the four corners of the square Ω. In this case, the angle
turns out to be between 89.6 and 90 degrees. Lower angles corresponded here
to higher values of λ. In the case of λ = 0 one has the interpolation problem
at the corners. These interpolation operators, however, do commute. In this
case the penalty term is actually the only source of non-orthogonality. A very
similar picture evolves if one chooses the four data points from {0.25, 0.75}2.
The angle is now between 89 and 90 degrees where the higher angles are now
obtained for larger λ and so the regulariser improves the orthogonality.
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A very different picture emerges for the case of four randomly chosen
points. In our experiments we now observe angles between 45 degrees and
90 degrees and the larger angles are obtained for the case of large λ. Thus
the regularise again does make the problem more orthogonal. We would thus
expect that for a general fitting problem a choice of larger α would lead to
higher accuracy (in regard to the sparse grid solution) of the combination
technique. A very similar picture was seen if the points were chosen as the
elements of the set 0.2i(1, 1) for i = 1, . . . , 4. In all cases mentioned above the
angles decrease when smaller mesh sizes h are considered.

1.4.1 Optimised combination technique

In [7] a modification of the combination technique is introduced where the
combination coefficients not only depend on the spaces as before, which gives
a linear approximation method, but instead depend on the function to be
reconstructed as well, resulting in a non-linear approximation approach. In
[6] this ansatz is presented in more detail and the name “opticom” for this
optimised combination technique is suggested.

Assume in the following, that the generating subspaces of the sparse grid
are suitably numbered from 1 to s. To compute the optimal combination
coefficients ci one minimises the functional

θ(c1, . . . , cs) = |Pf −
s∑

i=1

ciPif |2RLS ,

where one uses the scalar product corresponding to the variational problem
〈·, ·〉RLS , defined on V to generate a norm. By simple expansion one gets

θ(c1, . . . , cs) =
s∑

i,j=1

cicj〈Pif, Pjf〉RLS

−2
s∑

i=1

ci‖Pif‖2RLS + ‖Pf‖2RLS .

While this functional depends on the unknown quantity Pf , the location of
the minimum of J does not. By differentiating with respect to the combina-
tion coefficients ci and setting each of these derivatives to zero we see that
minimising this norm corresponds to finding ci which have to satisfy




‖P1f‖2RLS · · · 〈P1f, Psf〉RLS

〈P2f, P1f〉RLS · · · 〈P2f, Psf〉RLS

...
. . .

...
〈Psf, P1f〉RLS · · · ‖Psf‖2RLS







c1

c2

...
cm


=




‖P1f‖2RLS

‖P2f‖2RLS
...

‖Pmf‖2RLS


 (1.9)

The solution of this small system creates little overhead. However, in general
an increase in computational complexity is due to the need for the determina-
tion of the scalar products 〈Pif, Pjf〉RLS . Their computation is often difficult
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Fig. 1.3. Value of the functional (1.1) and the least squares error on the data,

i.e. 1
M

PM
i=1(f(xi)− yi)

2, for the reconstruction of e−x2
+ e−y2

for the combination
technique and the optimised combination technique for the grids Ωi,0, Ω0,i, Ω0,0 and
the optimised combination technique for the grids Ωj,0, Ω0,j , 0 ≤ j ≤ i with λ = 10−4

(left) and 10−6 (right).
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as it requires an embedding into a bigger discrete space which contains both
Vi and Vj .

Using these optimal coefficients ci the combination formula is now

f c
n(x) :=

d−1∑
q=0

∑

|l|1=n−q

clfl(x). (1.10)

Now let us consider one particular additive function u = e−x2
+ e−y2

,
which we want to reconstruct based on 5000 random data samples in the
domain [0, 1]2. We use the combination technique and optimised combination
technique for the grids Ωi,0, Ω0,i, Ω0,0. For λ = 10−4 and λ = 10−6 we show
in Figure 1.3 the value of the functional (1.1), in Table 1.1 the corresponding
numbers for the residuals and the cosine of γ = ∠(PU1u, PU2u) are given.
We see that both methods diverge for higher levels of the employed grids,
nevertheless as expected the optimised combination technique is always better
than the normal one.

We also show in Figure 1.3 the results for an optimised combination tech-
nique which involves all intermediate grids, i.e. Ωj,0, Ω0,j for 1 ≤ j < i, as
well. Here we do not observe rising values of the functional for higher levels
but a saturation, i.e. higher refinement levels do not substantially change the
value of the functional.

1.5 Conclusions

Here we consider a generalisation of the usual kernel methods used in machine
learning as the “kernels” of the technique considered here have singularities on
the diagonal. However, only finite dimensional approximations are considered.



1 Fitting multidimensional data using combination techniques 13

level cos(γ) e2
c e2

o

1 -0.012924 3.353704 · 10−4 3.351200 · 10−4

2 -0.025850 2.124744 · 10−5 2.003528 · 10−5

3 -0.021397 8.209228 · 10−6 7.372946 · 10−6

4 -0.012931 1.451818 · 10−5 1.421387 · 10−5

5 0.003840 2.873697 · 10−5 2.871036 · 10−5

6 0.032299 5.479755 · 10−5 5.293952 · 10−5

7 0.086570 1.058926 · 10−4 9.284347 · 10−5

8 0.168148 1.882191 · 10−4 1.403320 · 10−4

9 0.237710 2.646455 · 10−4 1.706549 · 10−4

10 0.285065 3.209026 · 10−4 1.870678 · 10−4

Table 1.1. Residual for the normal combination technique e2
c and the optimised

combination technique, as well as cosine of the angle γ = ∠(PU1u, PU2u).

The overfitting effect which occurs for fine grid sizes is investigated. We found
that the method (using the norm of the gradient as a penalty) did asymptot-
ically (in grid size) overfit the data but did this very locally only close to the
data points. It appeared that the information in the data was concentrated
on the data point and only the null space of the penalty operator (in this
case constants) was fitted for fine grids. Except for the overfitting in the data
points one thus has the same effect as when choosing very large regularisation
parameters so that the overfitting in the data points does arise together with
an “underfitting” in other points away from the data. Alternatively, one could
say that the regularisation technique acts like a parametric fit away from the
data points for small grid sizes and overall for large regularisation parameters.

The effect of the data samples is akin to a quadrature method if there are
enough data points per element. In practise, it was seen that one required at
least one data point per element to get reasonable performance. In order to
understand the fitting behaviour we analysed the performance both on the
data points and in terms of the Sobolev norm. The results do not directly
carry over to results about errors in the sup norm which is often of interest
for applications. However, the advice to have at least one data point per
element is equally good advice for practical computations. In addition, the
insight that the classical combination technique amplifies the sampling errors
and thus needs to be replaced by an optimal procedure is also relevant to the
case of the sup norm.

The method considered here is in principle a “kernel method” [8] when
combined with a finite dimensional space. However, the arising kernel matrix
does have diagonal elements which are very large for small grids and, in the
limit is a Green’s function with a singularity along the diagonal. It is well
known in the machine learning literature that kernels with large diagonal
elements lead to overfitting, however, the case of families of kernels which
approximate a singular kernel is new.
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