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ELIMINATING THE POLLUTION EFFECT IN HELMHOLTZ

PROBLEMS BY LOCAL SUBSCALE CORRECTION

DANIEL PETERSEIM

Abstract. We introduce a new Petrov-Galerkin multiscale method for the numerical ap-
proximation of the Helmholtz equation with large wave number κ in bounded domains in Rd.
The discrete trial and test spaces are generated from standard mesh-based finite elements
by local subscale correction in the spirit of numerical homogenization. The precomputation
of the correction involves the solution of coercive cell problems on localized subdomains of
size `H; H being the mesh size and ` being the oversampling parameter. If the mesh size
and the oversampling parameter are such that Hκ and log(κ)/` fall below some generic
constants and if the cell problems are solved sufficiently accurate on some finer scale of
discretization, then the method is stable and its error is proportional to H; pollution effects
are eliminated in this regime.

1. Introduction

The numerical solution of the Helmholtz equation by the finite element method or re-
lated schemes in the regime of large wave numbers is still among the most challenging tasks
of computational partial differential equations. The highly oscillatory nature of the solu-
tion plus a wave number dependent pollution effect puts very restrictive assumptions on
the smallness of the underlying mesh. Typically, this condition is much stronger than the
minimal requirement for a meaningful representation of highly oscillatory functions from
approximation theory, that is, to have at least 5 − 10 degrees of freedom per wave length
and coordinate direction.

The wave number dependent preasymptotic effect denoted as pollution or numerical dis-
persion is well understood by now and many attempts have been made to overcome or at
least reduce it; see [TF06, FW09, FW11, HMP11, ZMD+11, DGMZ12] among many others.
However, for many standard methods, this is not possible in 2d or 3d [BS00]. A breakthrough
in this context is the work of Melenk and Sauter [MS10, MS11, MPS13]. It shows that for
certain model Helmholtz problems, the pollution effect can be suppressed in principle by
simply coupling the polynomial degree p of the Galerkin finite element space to the wave
number κ via the relation p ≈ log κ. Under this moderate assumption, the method is stable
and quasi-optimal if the mesh size H satisfies Hκ/p . 1 (plus certain adaptive refinement
towards non-smooth geometric features). It is worth noting that this result does not re-
quire the analyticity of the solution but only W 2,2-regularity and, thus, partially explains
the common sense that higher-order methods are less sensitive to pollution. However, for
less regular solutions as they appear for the scattering of waves from non-smooth objects or
inhomogeneities of the material, the result is not directly applicable and the existence of a
pollution-free discretization scheme remained open.

Scale-dependent preasymptotic effects are also observed in simpler diffusion problems with
highly oscillatory diffusion tensor and numerical homogenization provides techniques to avoid
those effects. Numerical homogenization (or upscaling) refers to a class of multiscale methods
for the efficient approximation on coarse meshes that do not resolve the coefficient oscilla-
tions. A novel method for this problem was recently introduced in [MP14b] and further
generalized in [EGMP13, HMP14b, HP13, HMP14a]. The method is based on localizable
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orthogonal decompositions (LOD) into a low-dimensional coarse space (where we are look-
ing for the approximation) and a high-dimensional remainder space. Some selectable quasi-
interpolation operator serves as the basis of the decompositions. The coarse space is spanned
by some precomputable basis functions with local support. The method provides text book
convergence independent of the variations of the coefficient and without any preasymptotic
effects under fairly general assumptions on the diffusion coefficient; periodicity or scale sep-
aration are not required.

This paper adapts the multiscale method of [MP14b] to cure pollution in the numerical
approximation of the Helmholtz problem. To deal with the lack of hermitivity we will propose
a Petrov-Galerkin version of the method (although this is not essential). We will construct
a finite-dimensional trial space and corresponding test space for the approximation of the
unknown solution u. The trial and test spaces are generated from standard mesh-based
finite elements by local subscale correction. The precomputation of the correction involves
the solution of O(H−d) coercive cell problems on localized subdomains of size `H; H being
the mesh size and ` being the adjustable oversampling parameter. If the data of the problem
(domain, boundary condition, force term) allows for polynomial-in-κ bounds of the solution
operator and if the mesh size and the oversampling parameter of the method are such that
the resolution condition Hκ . 1 and the oversampling condition ` & log(κ) are satisfied,
then the method is stable. If, moreover, ` & log(|H|) log(κ) then the method satisfies the
error estimate

κ‖u− uH,`‖L2(Ω) + ‖∇(u− uH,`)‖L2(Ω) . H‖f‖L2(Ω)

with some generic constant C > 0 of κ. For a fairly large class of Helmholtz problems,
including the acoustic scattering from convex non-smooth objects, this result shows that
pollution effects can be suppressed under the quasi-minimal resolution condition Hκ ≤ O(1)
at the price of a moderate increase of the inter-element communication, i.e., logarithmic-in-
κ oversampling. Using a terminology from finite difference methods, this means that the
stencil is moderately enlarged. The complexity overhead due to oversampling is comparable
with that of [MS10, MS11], where instead of increasing the inter-element communication,
the number of degrees of freedom per element is increased via the polynomial degree which
is coupled to log κ in a similar way.

While [BS00] shows that pollution cannot be avoided with a fixed stencil, the result shows
that already a logarithmic-in-κ growths of the stencil can suffice to eliminate pollution.
Although the result is constructive, its practical relevance for actual computations is not
immediately clear in any case. The multiscale method presented in this paper requires the
precomputation of local cell problems on a finer scale of numerical resolution. The suitable
choice of this fine scale depends on the stability properties of the problem in the same way as
standard finite element methods do. However, the local cell problems are independent and,
though being Helmholtz problems, they are somewhat simpler because they are essentially
low-frequency when compared to the characteristic length scale of the cell. Still, the worst-
case (serial) complexity of the method can exceed the cost of a direct numerical simulation on
the global fine scale. We expect a significant gain with respect to computational complexity
in the following cases:

• The precomputation can be reused several times, e.g., if the problem (with the same
geometric setting and wave number) has to be solved for a large number of force terms
or incident wave directions in the context of parameter studies, coupled problems or
inverse problems.

• The (local) periodicity of the computational mesh can be exploited so that the num-
ber of local problems can be reduced drastically.

We also expect that the redundancy of the local problems can be exploited in rather gen-
eral unstructured meshes by modern techniques of model order reduction [RHP08, AB14].
However, this possibility requires a careful algorithmic design and error analysis which are
beyond the scope of this paper and remain a future perspective of the method. A similar
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statement applies to the case of heterogeneous media. This application and the general-
ization of the method are very natural and straight forward. Though this case is not yet
covered, previous work [MP14b, EGMP13, HMP14b, HP13, HMP14a] plus the analysis of
this paper strongly indicate the potential of the method to treat high oscillations or jumps
in the PDE coefficients and the pollution effect in one stroke.

The remaining part of the paper is outlined as follows. Section 2 defines the model
Helmholtz problem and recalls some of its fundamental properties. Section 3 introduces
standard finite element spaces and corresponding quasi-interpolation operators that will be
the basis for the derivation of a prototypical multiscale method in Section 4. Sections 5 and
6 will then turn this ideal approach into a feasible method including a rigorous stability and
error analysis. Finally, Section 7 illustrate the performance of the method and one of its
variants in numerical experiments.

2. Model Helmholtz problem

We consider the Helmholtz equation over a bounded Lipschitz domain Ω ⊂ Rd (d = 1, 2, 3),

(2.1.a) −∆u− κ2u = f in Ω,

along with mixed boundary conditions of Dirichlet, Neumann and Robin type

u = 0 on ΓD,(2.1.b)

∇u · ν = 0 on ΓN ,(2.1.c)

∇u · ν − iκu = 0 on ΓR.(2.1.d)

Here, the wave number κ is real and positive, i denotes the imaginary unit and f ∈ L2(Ω)
(the space of complex-valued square-integrable functions over Ω). In this paper, we assume
that the boundary Γ := ∂Ω consists of three components

∂Ω = ΓD ∪ ΓN ∪ ΓR,

where ΓD, ΓN and ΓR are disjoint. We allow that ΓD or ΓN are empty but we assume that
ΓR has a positive surface measure,

(2.2) |ΓR| > 0.

The vector ν denotes the unit normal vector that is outgoing from Ω. To avoid overloading
of the paper, we restrict ourselves to the case of homogeneous boundary conditions. Since
inhomogeneous boundary data is very relevant for scattering problems, this case will be
treated in the context of a numerical experiment in Section 7.2.

Given the Sobolev space W 1,2(Ω) (the space of complex-valued square-integrable functions
over Ω with square integrable weak gradient), we introduce the subspace

V := {v ∈W 1,2(Ω) | v = 0 on ΓD}
along with the κ-weighted norm

‖v‖V :=
√
κ2‖v‖2Ω + ‖∇v‖2Ω,

where ‖ · ‖Ω denotes the L2-norm over Ω. The variational formulation of the boundary value
problem (2.1) seeks u ∈ V such that, for all v ∈ V ,

(2.3) a(u, v) = (f, v)Ω,

where the sesquilinear form a : V × V → C has the form

(2.4) a(u, v) := (∇u,∇v)Ω − κ2(u, v)Ω − iκ(u, v)ΓR
.

Here, (·, ·)Ω :=
∫

Ω u · v̄ dx abbreviates the canonical inner product of scalar or vector-valued

L2(Ω) functions and (·, ·)ΓR
:=
∫

ΓR
uv̄ ds abbreviates the canonical inner product of L2(ΓR)

(the space of complex-valued square-integrable functions over ΓR). The sesquilinear form a
is bounded, i.e., there is a constant Ca that depends only on Ω such that, for any u, v ∈ V ,

(2.5) |a(u, v)| ≤ Ca‖u‖V ‖v‖V .
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The presence of the impedance boundary condition (2.1.d) (cf. (2.2)) ensures the well-
posedness of problem (2.3), i.e., there exists some constant Cst(κ) that may depend on κ
and also on Ω and the partition of the boundary into ΓD, ΓN and ΓR such that, for any
f ∈ L2(Ω), the unique solution u ∈ V of (2.3) satisfies

(2.6) ‖u‖V ≤ Cst(κ)‖f‖Ω.
However, the stability constant Cst(κ) and its possible dependence on the wave number κ
are not known in general. Whenever we want to quantify its effect on some parts of the error
analysis, we will assume (cf. Assumption 5.3 below) that there are constants C ′st > 0 and
n ≥ 0 and κ0 > 0 that may depend on Ω and the partition of the boundary into ΓD, ΓN and
ΓR such that, for any κ ≥ κ0, the stability constant Cst(κ) of (2.6) satisfies

(2.7) Cst(κ) ≤ C ′stκn.
This polynomial growth condition on the stability constant is certainly not satisfied in gen-
eral; see [BCWG+11] for the example of a so-called trapping domain that exhibits at least
an exponential growth of the norm of the solution operator with respect to the wave number.
Hence, the assumption (2.7) puts implicit conditions on the domain Ω and the configuration
of the boundary components. Sufficient geometric conditions in two or three dimensions that
ensure (2.7) with n = 0 can be found in the original work of Melenk [Mel95] (which based on
the choice of a particular test function previously used in [MIB96]) and its generalizations
[Het02, CF06, Het07, EM12]. Among the known admissible setups are the case of a Robin
boundary condition (ΓR = ∂Ω) on a Lipschitz domain Ω [EM12]. Another example is the
scattering of acoustic waves at a sound-soft scatterer occupying the star-shaped polygonal
or polyhedral domain ΩD where the Sommerfeld radiation condition is approximated by the
Robin boundary condition on the boundary of some artificial convex polygonal or polyhedral
domain ΩR ⊃ Ω̄D; see [Het07].

Given some linear functional g on V , the adjoint problem of (2.3) seeks z ∈ V such that,
for any v ∈ V ,

(2.8) a(v, z) = (v, g)Ω.

Note that the adjoint problem is itself a Helmholtz problem in the sense that S∗(g) = S(f̄),
where S is the solution operator of (2.3) and S∗ is the solution operator of the adjoint
problem (2.8) [MS11, Lemma 3.1]. Hence, (2.8) enjoys the same stability properties as (2.3).

According to [EM12], the stability (2.6) for f ∈ L2(Ω) implies well-posedness for all
bounded linear functionals f on V .

Lemma 2.1 (well-posedness). The sesquilinear form a of (2.4) satisfies

inf
u∈V \{0}

sup
v∈V \{0}

<a(u, v)

‖u‖V ‖v‖V
≥ 1

2Cst(κ)κ
.(2.9)

Furthermore, for every f ∈ V ′ (the space of bounded antilinear functionals on V ) the problem
(2.1) is uniquely solvable, and its solution u ∈ V satisfies the a priori bound

(2.10) ‖u‖V ≤ Cst(κ)κ‖f‖V ′ .

Under the additional assumption (2.7) that the stability constant grows at most poly-
nomially in κ, Lemma 2.1 shows polynomial well-posedness in the sense of [EM12], i.e.,
polynomial-in-κ-bounds for the norm of the solution operator.

Proof of Lemma 2.1. The proof of (2.9) is almost verbatim the same as that of [EM12,
Theorem 2.5] which covers the particular case ΓR = ∂Ω and relies on a standard argument
for sesquilinear forms satisfying a G̊arding inequality. Given u ∈ V , define z ∈ V as the
solution of

2κ2(v, u)Ω = a(v, z), for all v ∈ V.
The stability (2.6) implies that

(2.11) ‖z‖V ≤ 2Cst(κ)κ2‖u‖Ω ≤ 2Cst(κ)κ‖u‖V .
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Set v = u+ z and observe that

(2.12) <a(u, v) = ‖u‖2V .

The combination of (2.11) and (2.12) yields (2.9). Note that an analogue inf-sup condition
can be proved for the adjoint of the bilinear form a so that the Banach-Nečas-Babuška
theorem yields the unique solvability of both the primal and the adjoint problem as well as
the a priori estimate (2.10). �

3. Standard finite elements and quasi-interpolation

This section recalls briefly the notions of simplicial finite element meshes and patches,
standard finite element spaces and corresponding quasi-interpolation operators. In this pa-
per, we will focus on linear finite elements based on triangles or tetrahedrons but higher order
elements based and other types of meshes or even mesh-free approaches would be possible as
well. The key property that we will exploit in the construction of the method is a partition
of unity property of the basis; see [HMP14a].

3.1. Meshes, patches and spaces. Let TH denote some regular (in the sense of [Cia78])
simplicial finite element mesh of Ω with mesh size H. The mesh size is denoted by H because,
later on, there will be a second smaller discretization scale h < H. The mesh size H may
vary in space. In this case H is function representing the local mesh width on the element
level in the usual way. If no confusion seems likely, we will use still use H to denote the
maximal mesh size. As usual, the error analysis depends on some constant γ > 0 that reflects
the shape regularity of the finite element mesh TH .

The first-order conforming finite element space with respect to the mesh TH is given by

(3.1) VH := {v ∈ V | ∀T ∈ TH , v|T is a polynomial of total degree ≤ 1}.

Let NH denote the set of all vertices of TH that are not elements of the Dirichlet boundary.
Every vertex z ∈ NH represents a degree of freedom via the corresponding real-valued nodal
basis function φz ∈ VH determined by nodal values

φz(z) = 1 and φz(y) = 0 for all y 6= z ∈ NH .

The φz form a basis of VH .
The construction of the method and its analysis frequently uses the concept of coarse

finite element patches. Such patches are agglomerations of elements of TH . More precisely,
we define patches ΩT,` of variable order ` ∈ N about an element T ∈ TH by

(3.2)

{
ΩT,1 := ∪{T ′ ∈ TH | T ′ ∩ T 6= ∅},
ΩT,` := ∪

{
T ′ ∈ TH | T ′ ∩ ΩT,`−1 6= ∅

}
, ` = 2, 3, 4 . . . .

In other words, ΩT,1 equals the union of T and its neighbors and Ωt,` is derived from ΩT,`−1

by adding one more layer of neighbors.
Note that, for a fixed ` ∈ N, the element patches have finite overlap in the following sense.

There exists a constant Col,` > 0 such that

(3.3) max
T∈TH

#{K ∈ TH | K ⊂ ΩT,`} ≤ Col,`.

The constant Col := Col,1 equals the maximal number of neighbors of an element plus itself
and there exists some generic constant C ′ol such that, for any ` > 1,

Col,` ≤ max
{

#TH , C ′ol`
d‖H‖L∞(ΩT,`)‖H

−1‖L∞(ΩT,`)

}
.
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3.2. Quasi-interpolation. A key tool in the design and the analysis of the method is some
bounded linear surjective Clément-type (quasi-)interpolation operator IH : V → VH as it
is used in the a posteriori error analysis of finite element methods [CV99]. Given v ∈ V ,
IHv :=

∑
z∈NH

αz(v)φz defines a (weighted) Clément interpolant with nodal functionals

(3.4) αz(v) :=
(v, φz)Ω

(1, φz)Ω

for z ∈ NH and the hat functions φz. Recall the (local) approximation and stability proper-
ties of the interpolation operator IH [CV99]. There exists a generic constant CIH such that,
for all v ∈ V and for all T ∈ TH ,

(3.5) H−1
T ‖v − IHv‖L2(T ) + ‖∇(v − IHv)‖L2(T ) ≤ CIH‖∇v‖L2(ΩT,1).

The constant CIH depends on the shape regularity parameter γ of the finite element mesh
TH but not on the local mesh size HT .

Note that the space VH is invariant under IH but IH is not a projection, i.e., IHvH 6= vH
for vH ∈ VH in general. However, since IH |VH

can be interpreted as a diagonally scaled mass
matrix, IH is invertible on the finite element space VH and the concatenation (IH |VH

)−1◦IH :
V → VH is a projection. For our particular choice of interpolation operator, one easily verifies
that (IH |VH

)−1◦IH equals the L2-orthogonal projection ΠH : V → VH onto the finite element
space; see also [MP14a, Remark 3.1]. Recall that ΠH is also stable in V ,

(3.6) ‖ΠHv‖V ≤ CΠH
‖v‖V for all v ∈ V,

where CΠH
depends only on the parameter γ if the grading of the mesh is not too strong

[BY14].
While IH |VH

is a local operator (a sparse matrix) its inverse (IH |VH
)−1 is not. However,

there exists some bounded right inverse I−1,loc
H : VH → V of IH that is local. More precisely,

there exists some generic constant C ′IH depending only on γ such that, for all vH ∈ VH ,
IH(I−1,loc

H vH) = vH ,

‖∇I−1,loc
H vH‖Ω ≤ C ′IH‖∇vH‖Ω,

supp(I−1,loc
H vH) ⊂

⋃
{T | T ∈ TH : T ∩ supp(vH) 6= ∅}.

(3.7)

The third condition simply means that the support of I−1,loc
H vH must not exceed the support

of vH plus one layer of coarse elements. Note that I−1,loc
H vH is not a finite element function

on TH in general. An explicit construction of I−1,loc
H and a proof of the properties (3.7) can

be found in [HMP14a, Lemma 1].

Remark 3.1 (Other quasi-interpolation operators). We shall emphasize that the choice of
a quasi-interpolation operator is by no means unique and a different choice might lead to
a different multiscale method. A choice that turned out to be useful in previous works
[BP14, PS14] is the following one. Given v ∈ V , QHv :=

∑
z∈NH

αz(v)φz defines a Clément-
type interpolant with nodal functionals

(3.8) αz(v) := (ΠH,Ωzv) (z)

for z ∈ NH . Here, ΠH,Ωzv denotes the L2-orthogonal projection of v onto standard P1 finite
elements on the nodal patch Ωz := suppφz and αz(v) is the evaluation of this projection at
the vertex z. We will show in the numerical experiment of Section 7 that the choice of the
interpolation can affect the practical performance of the method significantly.

4. Global wave number adapted approximation

This section introduces new (non-polynomial) approximation spaces for the model Helmholtz
problem under consideration. The spaces are mesh-based in the sense that degrees of freedom
(or basis functions) are associated with vertices. The support of the basis functions is not
local in general but quasi-local in the sense of some very fast decay of their moduli. Their
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replacement by localized computable basis functions in practical computations is possible;
see Sections 5 and 6.

The ideal method requires the following assumption on the numerical resolution.

Assumption 4.1 (resolution condition). Given the wave number κ and the constants CIH
from (3.5) and Col from (3.3), we assume that the mesh width H satisfies

(4.1) Hκ ≤ 1√
2ColCIH

.

Note that this assumption is quasi-minimal in the sense that a certain number of degrees
of freedom per wave length is a necessary condition for the meaningful approximation of
highly oscillatory waves.

4.1. An ideal method. The derivation of the method follows general principles of varia-
tional multiscale methods; cf. [Hug95, HFMQ98, HS07] and [Mål11]. Our construction of
the approximation space starts with the observation that the space V can be decomposed
into the finite element space VH and the remainder space

(4.2) W := kernel IH .

The particular choice of IH implies that the decomposition

(4.3) V = VH ⊕W

is orthogonal in L2(Ω) and, hence, stable. We shall say that this L2-orthogonality will not
be crucial in this paper and that any choice of IH that allows a stable splitting of V into its
image and its kernel is possible, for instance QH defined in (3.8).

The subscale corrector C∞ is a linear operator that maps V onto W . Given v ∈ V , define
the corrector C∞v ∈ W as the unique solution (cf. Lemma 4.2 below) of the variational
problem

(4.4) a(C∞v, w) = a(v, w), for all w ∈W.

The subscript notation ∞ is consistent with later modifications C` of the corrector, where
the computation is restricted to local subdomains of size `H. It also reflects the infeasibility
of the ideal method discussed in this section.

To deal with the lack of hermitivity, we will use the adjoint corrector C∗∞v ∈W that solves
the adjoint variational problem

(4.5) a(w, C∗∞v) = a(w, v), for all w ∈W.

It turns out that

(4.6) C∗∞v = C∞v̄

holds for the model problem under consideration. Under Assumption 4.1, the corrector
problems (4.4) and (4.5) are well-posed.

Lemma 4.2 (well-posedness of the correction operator). The resolution condition of As-
sumption 4.1 implies that ‖∇ · ‖Ω and ‖ · ‖V are equivalent norms on W ,

(4.7) ‖∇w‖Ω ≤ ‖w‖V ≤
√

3
2‖∇w‖Ω, for all w ∈W,

the sesquilinear form a is W -elliptic,

(4.8) <a(w,w) ≥ 1
3‖w‖

2
V , for all w ∈W,

and the correction operators C∞, C∗∞ are well-defined and stable,

(4.9) ‖C∞v‖V = ‖C∗∞v‖V ≤ CC‖v‖V , for all v ∈ V,

where CC := 3Ca with Ca from (2.5).
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Proof. For any w ∈ W , the property IHw = 0, the approximation property (3.5) of the
quasi-interpolation operator, the bounded overlap of element patches Col and (4.1) yield

κ2(w,w)Ω = κ2(w − IHw,w − IHw)Ω

≤ ColC
2
IHκ

2H2‖∇w‖2Ω
≤ 1

2‖∇w‖
2
Ω.

This implies (4.7) and (4.8). Since the sesquilinear form a is bounded (2.5), the well-
posedness of (4.4) and (4.5) and the stability estimate (4.9) follow from the Lax-Milgram
theorem. �

Since non-trivial projections on Hilbert spaces have the same operator norm as their com-
plementary projections (see [Szy06] for a proof), the continuity of the projection operators
C∞, C∗∞ implies the continuity of their complementary projections (1−C∞), (1−C∗∞) : V → V ,
that is,

(4.10) ‖(1− C∞)v‖V = ‖(1− C∗∞)v‖V ≤ CC‖v‖V , for all v ∈ V,
where CC = 3Ca is the constant from (4.9)

The image of the finite element space VH under (1− C∞),

(4.11) VH,∞ := (1− C∞)VH ,

defines a modified discrete approximation space. The space VH,∞ will be the prototypical
trial space in our method. The corresponding test space is

(4.12) V ∗H,∞ := (1− C∗∞)VH .

Note that W equals the kernel of both operators, (1− C∞) and (1− C∗∞). This implies that
VH,∞ is the image of (1−C∞) and V ∗H,∞ is the image of (1−C∗∞). The key properties of the
spaces VH,∞ and V ∗H,∞ are given in the subsequent lemma.

Lemma 4.3 (primal and dual decomposition). If the resolution condition of Assumption 4.1
is satisfied, then the decompositions

V = VH,∞ ⊕W = V ∗H,∞ ⊕W
are stable. More precisely, any function v ∈ V can be decomposed uniquely into

v = vH,∞ + w and v = zH,∞ + w

and
max{‖vH,∞‖V , ‖zH,∞‖V , ‖w‖V } ≤ CC‖v‖V ,

where vH,∞ := (1− C∞)v ∈ VH,∞, zH,∞ := (1− C∗∞)v ∈ V ∗H,∞ and w := C∞v ∈W .
The decompositions satisfy the following relations: For any vH,∞ ∈ VH,∞ and any w ∈W ,

it holds that

(4.13) a(vH,∞, w) = 0.

For any zH,∞ ∈ V ∗H,∞ and any w ∈W , it holds that

(4.14) a(w, zH,∞) = 0,

Proof. The results readily follow from the construction of C∞ and C∗∞. �

The Petrov-Galerkin method for the approximation of (2.3) based on the trial-test pairing
(VH,∞, V

∗
H,∞) seeks uH,∞ ∈ VH,∞ such that, for all vH,∞ ∈ V ∗H,∞,

(4.15) a(uH,∞, vH,∞) = (f, vH,∞)Ω.

We shall emphasize that we do not consider the method (4.15) for actual computations
because the natural bases of the trial (resp. test) space, i.e., the image of the standard nodal
basis of the finite element space under the operator 1 − C∞ (resp. 1 − C∗∞) is not sparse
(or local) in the sense that the basis function (1 − C∞)φz (resp. (1 − C∗∞)φz) have global
support in Ω in general. Moreover the corrector problems are infinite dimensional problems.
We will, hence, refer to the method (4.15) as the ideal or global method. Later on, we will
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show that there are feasible nearby spaces with a sparse basis based on localized corrector
problems (cf. Theorem 5.2 below). We will also discretize these localized corrector problems
and analyze this perturbation in Section 6.

4.2. Stability and accuracy of the ideal method. The ideal method admits a unique
solution and is stable and accurate independent of κ as long as the resolution condition
Hκ . 1 is satisfied. The “orthogonality” relation (4.13) induces stability.

Theorem 4.4 (stability). Let Assumption 4.1 be satisfied. Then the trial space VH,∞ and
test space V ∗H,∞ satisfy the discrete inf-sup condition

(4.16) inf
uH,∞∈VH,∞\{0}

sup
vH,∞∈V ∗H,∞\{0}

<a(uH,∞, vH,∞)

‖uH,∞‖V ‖vH,∞‖V
≥ 1

2CCCst(κ)κ
.

Proof. Observe that (1 − C∗∞) : V → V ∗H,∞ is a Fortin operator (as in the theory of mixed

methods [For77]), i.e., a bounded linear operator that satisfies

a(uH,∞, (1− C∗∞)v) = a(uH,∞, v)− a(uH,∞, C∗∞v)︸ ︷︷ ︸
=0;see (4.13)

= a(uH,∞, v),

for all uH,∞ ∈ VH,∞ and any v ∈ V . Hence, the assertion follows from the inf-sup condition
(2.9) on the continuous level and the continuity of 1− C∗∞ (4.9),

inf
uH,∞∈VH,∞\{0}

sup
vH,∞∈V ∗H,∞\{0}

<a(uH,∞, vH,∞)

‖uH,∞‖V ‖vH,∞‖V

= inf
uH,∞∈VH,∞\{0}

sup
v∈V \{0}

<a(uH,∞, (1− C∗)v)

‖uH,∞‖V ‖(1− C∗)v‖V

≥ 1

CC
inf

u∈V \{0}
sup

v∈V \{0}

<a(u, v)

‖u‖V ‖v‖V

≥ 1

2CCCst(κ)κ
.

�

The error estimate follows from the above discrete inf-sup condition, the “orthogonality”
relation (4.14), and the Lax-Milgram theorem.

Theorem 4.5 (error of the ideal method). Let u ∈ V solve (2.3). If the resolution condition
of Assumption 4.1 is satisfied, then uH,∞ = (1 − C∞)u ∈ VH,∞ is the unique solution of
(4.15), that is, the Petrov-Galerkin approximation of u in the subspace VH,∞ with respect to
the test space V ∗H,∞. Moreover, it holds that

(4.17) ‖u− uH,∞‖V ≤ 3
√
ColCIH‖Hf‖Ω.

Proof. The Galerkin property (4.15) of uH,∞ = (1 − C∞)u follows from (4.14). Hence, the
error u− uH,∞ = C∞u ∈W satisfies

a(C∞u, C∞u) = a(u, C∞u) = (f, C∞u)Ω.

Since the sesquilinear form a is W -elliptic (cf. (4.8)), this yields the error estimate

‖u− uH,∞‖2V ≤ 3 |(f, C∞u)Ω| .

Since IHC∞u = 0, Cauchy inequalities and the interpolation error estimate (3.5) readily
yield the assertion. �

Remark 4.1 (quasi-optimality). We shall say that the ideal method is also quasi-optimal in
the following sense

(4.18) ‖u− uH,∞‖V ≤ 3Ca inf
vH,∞∈VH,∞

‖u− vH,∞‖V .
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Moreover, since ΠHC∞u = 0, it holds that ΠHu = ΠHuH,∞. This means that the ideal
method provides the L2-best approximation in the standard finite element space VH ,

(4.19) ‖u−ΠHuH,∞‖Ω = min
vH∈VH

‖u− vH‖Ω.

Since IH(u− uH,∞) = 0, uH,∞ also satisfies the L2 bound

(4.20) ‖u− uH,∞‖Ω ≤
√
ColCIHH‖u− uH,∞‖V .

Remark 4.2 (further stable variants of the method). We shall also mention at this point that
the “orthogonality” relations (4.13) and (4.14) imply that, for any uH , vH ∈ VH ,

a((1− C∞)uH , vH) = a((1− C∞)uH , (1− C∞)vH)

= a((1− C∞)uH , (1− C∗∞)vH)

= a(uH , (1− C∗∞)vH) = a((1− C∗∞)uH , (1− C∗∞)vH).

This means that the Galerkin methods in VH,∞ or V ∗H,∞ as well as Petrov-Galerkin methods

based on the pairings (VH,∞, VH) or (VH , V
∗
H,∞) lead to stable and accurate discretizations.

The latter Petrov-Galerkin method based on (VH , V
∗
H,∞) is closely related to a variational

multiscale stabilization of the standard P1 finite element method and seeks uH ∈ VH such
that, for all vH ∈ VH ,

(4.21) a(uH , vH,∞)− a(uH , C∗∞vH) = (f, vH)Ω − (f, C∗∞vH)Ω.

This stabilized method will be studied experimentally in Section 7.

4.3. Exponential decay of element correctors. Given some finite element function v ∈
V , its correction C∞vH can be composed by element correctors CT,∞, T ∈ TH in the following
way:

(4.22) C∞v =
∑
T∈TH

CT,∞(v|T ),

where CT,∞(v|T ) ∈W solves

(4.23) a(CT,∞(v|T ), w) = aT (v, w) :=

∫
T
∇v · ∇w̄ dx− κ2

∫
T
vw̄ dx− iκ

∫
∂T∩ΓR

vw̄ ds,

for all w ∈W . Dual corrections can be split into element contributions in an analogue way,

(4.24) C∗v =
∑
T∈TH

C∗T (v|T ),

where C∗T,∞(v|T ) := CT,∞(v̄|T ) ∈W .
The well-posedness of the element correctors is a consequence of Lemma 4.2. Moreover,

it holds that

(4.25) ‖CT,∞v‖V = ‖C∗T,∞v‖V ≤ CC‖v‖V (T ), for all v ∈ V,

where V (T ) denotes the restriction of the space V to the element T , and ‖v‖2V (T ) :=

κ2‖v‖2L2(T ) + ‖∇v‖2L2(T ).

The major observation is that the moduli of the element correctors CT v and C∗T v decay
very fast outside T .

Theorem 4.6 (exponential decay of element correctors). If the resolution condition of As-
sumption 4.1 is satisfied, then there exist constants Cdec > 0 and β < 1 independent of H
and κ such that for all v ∈ V and all T ∈ TH and all ` ∈ N, the element correctors CT,∞v
satisfy

(4.26) ‖∇CT,∞v‖Ω\ΩT,`
≤ Cdecβ

`‖∇v‖T .

The constants satisfy β ≤ 14

√
C1/(C1 + 1

2) < 1 and Cdec ≤
√
CC(C1 + 1

2)/C1 for some C1 > 0

(defined in the proof below) that depends only on the shape regularity parameter γ of the mesh
TH .
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Remark 4.3 (Rate of decay). According to practical experience, the bound on the decay rate
β seems to be rather pessimistic. The rates observed in numerical experiments were between
1/3 and 2/3.

Proof of Theorem 4.6. Let T ∈ TH be arbitrary but fixed and let ` ∈ N with ` ≥ 7 and let
the element patches ΩT,`,ΩT,`−1, . . . ,ΩT,`−7 be defined as in (3.2). Set ψ := CT,∞v.

We define the cut-off function η (depending on T and `) by

η(x) :=
dist(x,ΩT,`−4)

dist(x,ΩT,`−4) + dist(x,Ω \ ΩT,`−3)

for x ∈ Ω. Note that η = 0 in the patch ΩT,`−4 and η = 1 in Ω \ ΩT,`−3. Moreover, η is
bounded between 0 and 1 and Lipschitz continuous with

(4.27) ‖H∇η‖L∞(Ω) ≤ γ.
The choice of η implies the estimates

‖∇ψ‖2Ω\ΩT,`−3
= < (∇ψ,∇ψ)Ω\ΩT,`−3

≤ < (∇ψ, η∇ψ)Ω

= < (∇ψ,∇ (ηψ))Ω −< (∇ψ,ψ∇η)Ω

≤ |< (∇ψ,∇
(
ηψ − I−1,loc

H (IH(ηψ))
)

)Ω|

+ |< (∇ψ,∇I−1,loc
H (IH(ηψ)))Ω|+ |< (∇ψ,ψ∇η)Ω|

=: M1 +M2 +M3.(4.28)

Note that the test function
(
ηψ − I−1,loc

H (IH(ηψ))
)
∈ W with support in Ω \ ΩT,`−6. If

` ≥ 6, then ηψ−I−1,loc
H (IH(ηψ)) vanishes on T and aT (v, ηψ−I−1,loc

H (IH(ηψ))) = 0. Hence,
the definition (4.5) of CT,∞, the Cauchy-Schwarz inequality, the properties (3.5) and (3.7) of
the interpolation operator IH and the resolution condition Assumption 4.1 imply

M1 := |< (∇ψ,∇(ηψ − I−1,loc
H (IH(ηψ))))Ω|

=
∣∣∣κ2(ψ, ηψ − I−1,loc

H (IH(ηψ)))Ω

∣∣∣
≤ C2

IHCol(Hκ)2‖∇ψ‖2Ω\ΩT,`−6
+ C3

IHC
′
IHCol(Hκ)2‖∇ψ‖2ΩT,`\ΩT,`−7

≤ 1
2‖∇ψ‖

2
Ω\ΩT,`

+ 1
2(1 + CIHC

′
IH )‖∇ψ‖2ΩT,`\ΩT,`−7

.(4.29)

Similar techniques and the Lipschitz bound (4.27) lead to upper bounds of the other terms
on the right-hand side of (4.28),

M2 ≤ C ′IHCIH‖∇(ηψ)‖ΩT,`−1\ΩT,`−6
‖∇ψ‖ΩT,`−1\ΩT,`−6

≤ C ′IHCIH
(
CIH

√
Col‖H∇η‖L∞(Ω) + 1

)
‖∇ψ‖2ΩT,`\ΩT,`−7

(4.30)

and

(4.31) M3 ≤ CIH
√
Col‖H∇η‖L∞(Ω)‖∇ψ‖2ΩT,`−2\ΩT,`−5

.

The combination of (4.28)–(4.31) readily yields the estimate

1
2‖∇ψ‖

2
Ω\ΩT,`

≤ C1‖∇ψ‖2ΩT,`\ΩT,`−7
,

where C1 := 1
2 + 3

2CIHC
′
IH + (C ′IHCIH + 1)CIH

√
Colγ depends only on the shape regularity

of the coarse mesh TH . Since

‖∇ψ‖2ΩT,`\ΩT,`−7
= ‖∇ψ‖2Ω\ΩT,`−7

− ‖∇ψ‖2Ω\ΩT,`
,

this implies the contraction

‖∇ψ‖2Ω\ΩT,`
≤ C1

C1 + 1
2

‖∇ψ‖2Ω\ΩT,`−7
.
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Hence,

‖∇ψ‖2Ω\ΩT,`
≤

(
C1

C1 + 1
2

)⌊
`
7

⌋
‖∇ψ‖2Ω ≤ CC

(
C1

C1 + 1
2

)⌊
`
7

⌋
‖∇v‖2T ,

and some algebraic manipulations yield the assertion. �

5. Localized approximation

This section localizes the corrector problems from Ω to patches ΩT,`; ` being a novel
discretization parameter - the oversampling parameter.

5.1. Localized correctors. The exponential decay of the element correctors (cf. Theo-
rem 4.6) motivates their localized approximation on element patches. Given such a patch
ΩT,` for some T ∈ TH and ` ∈ N define the localized remainder space

(5.1) W (ΩT,`) := {w ∈W | w|Ω\ΩT,`
= 0}

and the localized sesquilinear form

(5.2) aD(u, v) := (∇u,∇v)D − κ2(u, v)D − iκ(u, v)ΓR∩∂D,

where D is any subdomain of Ω, e.g., D = ΩT,` or D = T . Then, given some finite element
function vH ∈ VH , its localized primal correction C`vH is defined via localized element
correctors in the following way:

(5.3) C`vH :=
∑
T∈TH

CT,`(vH |T ),

where CT,`(vH |T ) ∈W (ΩT,`) satisfies

(5.4) aΩT,`
(CT (vH |T ), w) = aT (vH , w)

for all w ∈ W (ΩT,`). The localized dual correction is C∗` vH := C`v̄H . It holds that C∗` = C`
whenever ΩT,` ∩ ΓR = ∅.

Note that (5.4) is truly localized insofar as the linear constraints (w, φz)Ω = 0 (z ∈ NH)
that characterize an element w ∈ W need to be checked only for z ∈ NH ∩ ΩT,` and are
satisfied automatically for all other nodes if w ∈ W (ΩT,`). We shall also stress that if the
mesh is (locally) structured so that some patches are equal up to translation or rotation
with the same local triangulation, then also the corresponding correctors will coincide up
to shift and rotation. This means that on a uniform mesh only O(1) interior cell problems
need to be solved plus a number of cell problems that capture all possible intersections of
the patches and the boundary parts. On polyhedral domains, this number depends only on
the oversampling parameter ` and the number of boundary faces of the domain.

Though being localized, the correctors CT,` and C∗T,` are still somewhat ideal because their
evaluation requires the solution of an infinite-dimensional variational problem in the space
W (ΩT,`). To be fully practical, we will also have to discretize the local corrector problems
(5.4). This step and the analysis of corresponding errors will be discussed Section 6 below.
The remaining part of the section is devoted to the analysis of the perturbation introduced
by the localization of the correctors.

An error bound for the localized approximation of the corrector C and its adjoint C∗ is
easily derived from the exponential decay property of Theorem 4.6.

Lemma 5.1 (local approximation of element correctors). If the resolution condition of As-
sumption 4.1 is satisfied, then, for any T ∈ TH and any ` ∈ N, it holds that

‖∇(CT,∞v − CT,`v)‖Ω ≤ C ′decβ
`‖∇v‖T ,

where β < 1 is the constant from Theorem 4.6 and

C ′dec :=
(

6C2
a(1 + C2

IHC
′2
IH )

(
3
2 + C2

IHColγ
2
))1/2

Cdecβ
−6.
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Proof. Define the cut-off function η (depending on T and `)

(5.5) η(x) :=
dist(x,Ω \ ΩT,`−2)

dist(x,ΩT,`−3) + dist(x,Ω \ ΩT,`−2)
.

Note that η = 1 in ΩT,`−3 and η = 0 outside ΩT,`−2. Moreover, η is bounded between 0
and 1 and satisfies the Lipschitz bound (4.27). Since CT,`v is the Galerkin approximation

of CT,∞v and ηCT,∞v − I−1,loc
H (IH(ηCT,∞v)) ∈ W (ΩT,`), Céa’s lemma plus Lemma 4.2, the

definition of CT,∞ (4.23), the Cauchy-Schwarz inequality, the approximation property (3.5)
of the interpolation operator IH , the shape regularity of the mesh (cf. (4.27)) and the
resolution condition Assumption 4.1 imply

‖∇(CT,∞v − CT,`v)‖2Ω ≤ 3C2
a‖CT,∞v − (ηCT,∞v − I−1,loc

H (IH(ηCT,∞v))‖2V
≤ 6C2

a

(
‖∇((1− η)CT,∞v)‖2Ω + κ2‖(1− η)CT,∞v‖2Ω

)
+ 6C2

aC
2
IHC

′2
IH

(
‖∇(ηCT,∞v)‖2ΩT,`\ΩT,`−5

+ κ2‖ηCT,∞v‖2ΩT,`\ΩT,`−5

)
≤ 6C2

a(1 + C2
IHC

′2
IH )

(
‖∇CT,∞v‖2Ω\ΩT,`−5

+C2
IHCol‖H∇η‖2L∞(Ω)‖∇CT,∞v‖

2
Ω\ΩT,`−6

+ C2
IHCol(Hκ)2‖∇CT,∞v‖2Ω\ΩT,`−6

)
≤ 6C2

a(1 + C2
IHC

′2
IH )

(
3
2 + C2

IHColγ
2
)
‖∇CT,∞v‖2Ω\ΩT,`−6

.

This and Theorem 4.6 readily imply the assertion. �

Theorem 5.2 (error of the localized corrections). If the resolution condition of Assump-
tion 4.1 is satisfied, then, for any ` ∈ N, it holds that

‖∇(C∞v − C`v)‖Ω ≤ Cloc,`β
`‖∇v‖Ω,

where Cloc,` := 3
√

3Col,`+5C
2
a(1 + C ′IHCIH )(3

2 + C2
IHColγ

2)C ′dec.

Proof. Set z := C∞v − C`v and, for any T ∈ TH , set zT := CT,∞v − CT,`v. The W -ellipticity
of the sesquilinear form (4.8) implies that

1
3‖∇z‖

2
Ω ≤

∑
T∈TH

a(zT , z).(5.6)

Given some T ∈ TH , let η be the cutoff function defined by

η(x) :=
dist(x,ΩT,`+2)

dist(x,ΩT,`+2) + dist(x,Ω \ ΩT,`+3)
,

that is η = 0 in ΩT,`+2 and η = 1 outside ΩT,`+3. Moreover, η is bounded between 0

and 1 and satisfies the Lipschitz bound (4.27). Since supp I−1,loc
H (IH(ηz)) ⊂ Ω \ ΩT,` and

ηz − I−1,loc
H (IH(ηz)) ∈W , we have that

a(zT , ηz − I−1,loc
H (IH(ηz))) = a(CT,∞v, ηz − I−1,loc

H (IH(ηz))) = 0.

Hence,

a(zT , z) = a(zT , I−1,loc
H (IH(ηz)) + a(zT , (1− η)z).

The properties (3.5) of the interpolation operator IH and the Lipschitz bound (4.27) lead to
upper bounds

(5.7) a(zT , z) ≤ Ca(1 + C ′IHCIH )
√

1 + C2
IHColγ2‖z‖V,ΩT,`+5

‖zT ‖V .

The combination of (5.6) and (5.7) plus a discrete Cauchy-Schwarz inequality and the
bounded overlap (3.3) of the element patches leads to

‖∇z‖Ω ≤ 2Col,`+3Ca(1 + C ′IHCIH )
√

1 + C2
IHColγ2

 ∑
T∈TH

‖zT ‖2V

1/2

.(5.8)

This and Lemma 5.1 readily yield the assertion. �
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5.2. Localized trial and test spaces. The localized trial space VH,` ⊂ V is simply defined
as the image of the classical finite element space VH under the operator 1− C`,

(5.9) VH,` := (1− C`)VH
and the localized test space V ∗H,` ⊂ V reads

(5.10) V ∗H,` := (1− C∗` )VH

Note that both VH,` and V ∗H,` are finite-dimensional with a local basis,

VH,` = span{(1− C`)φz | z ∈ NH} and V ∗H,` = span{(1− C`)φz | z ∈ NH},

where φz is the (real-valued) nodal basis of VH (cf. Section 3.1).
The Petrov-Galerkin method with respect to the trial space VH,` and the test space V ∗H,`

seeks uH,` ∈ VH,` such that, for all vH,` ∈ V ∗H,`,

(5.11) a(uH,`, vH,`) = (f, vH,`)Ω.

5.3. Stability of the localized method. The stability of the localized methods requires
the coupling of the oversampling parameter to the stability constant which we will now
assume to be polynomial with respect to the wave number.

Assumption 5.3 (polynomial-in-κ-stability and logarithmic oversampling condition). There
are constants C ′st > 0 and n ≥ 0 and a κ0 > 0 that may depend on Ω and the partition of
the boundary into ΓD, ΓN and ΓR such that, for any κ ≥ κ0, the stability constant Cst(κ) of
(2.6) satisfies (2.7),

Cst(κ) ≤ C ′stκn.
Given the wave number κ and the constants CIH from (3.5) and Col from (3.3), we assume
that the oversampling parameter ` satisfies

(5.12) ` ≥
(n+ 1) log κ+ log

(
4CCC

′
stCΠH

√
3
2Cloc,`Ca

)
| log β|

.

Since the constant Cloc,` grows at most polynomially with ` (cf. (3.3)), condition (5.12)
is indeed satisfiable and the proper choice of ` will be dominated by the logarithm log κ of
the wave number.

The stability of the localized method follows from the fact that the ideal pairing (VH,∞, V
∗
H,∞)

is stable and that (VH,`, V
∗
H,`) is exponentially close.

Theorem 5.4 (stability of the localized method). If the mesh width H is sufficiently small in
the sense of Assumption 4.1 (Hκ . 1) and if the oversampling parameter ` ∈ N is sufficiently
large in the sense of Assumption 5.3 (` & log κ), then the pairing of the localized spaces VH,`

and V ∗H,` satisfies the discrete inf-sup condition

(5.13) inf
uH,`∈VH,`\{0}

sup
vH,`∈V ∗H,`\{0}

<a(uH,`, vH,`)

‖uH,`‖V ‖vH,`‖V
≥ 1

4CCC ′stκ
n+1

.

This ensures that, for any f ∈ V ′, there exists a unique solution of the discrete problem
(5.11).

Proof. Let uH,` ∈ VH,` and set uH,∞ := (1− C)ΠHuH,`. Under the polynomial-in-κ stability
of Assumption 5.3, Theorem 4.4 guarantees the existence of some vH,∞ ∈ V ∗H,∞ with

(5.14) <a(uH,∞, vH,∞) ≥ 1

2C ′stCCκ
n+1
‖uH,∞‖V ‖vH,∞‖V .

Set vH,` := (1− C∗` )ΠHvH,∞ ∈ V ∗H,` and observe that (4.14) yields

<a(uH,`, vH,`) = <a(uH,`, vH,` − vH,∞) + a(uH,`, vH,∞)

= <a(uH,`, (C∗ − C∗` )ΠHvH,`) + <a(uH,∞, vH,∞).
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Hence,

(5.15)
<a(uH,`, vH,`) ≥ <a(uH,∞, vH,∞)− Ca‖uH,`‖V ‖(C∗ − C∗` )ΠHvH,`‖V

≥ <a(uH,∞, vH,∞)− CΠH

√
3
2Cloc,`Caβ

`‖uH,`‖V ‖vH,`‖V ,

where we have used (4.7), Theorem 5.2, and (3.6). This yields

(5.16)

<a(uH,`, vH,`) ≥
1

CCCstκn+1
‖uH,∞‖V ‖vH,∞‖V − C ′β`‖uH,`‖V ‖vH,`‖V

≥
(

1

2CCC ′stκ
n+1
− CΠH

√
3
2Cloc,`Caβ

`

)
‖uH,`‖V ‖vH,`‖V ,

and Assumption 5.3 readily implies the assertion. �

Theorem 5.5 (error of the localized method). If the mesh width H is sufficiently small in
the sense of Assumption 4.1 (Hκ . 1) and if the oversampling parameter ` ∈ N is suffi-
ciently large in the sense of Assumption 5.3 (` & log κ), then the localized Petrov-Galerkin
approximation uH,` ∈ VH,` satisfies the error estimate

(5.17) ‖u− uH,`‖V ≤ 6
√
ColCIH‖Hf‖Ω + 6CaCloc,`CΠH

C ′stκ
nβ`‖f‖Ω.

Proof. The proof is inspired by standard techniques for Galerkin methods (see [Sch74], [BS08,
Thm. 5.7.6], [Sau06], [BS07]). Set e := u−uH,` and eH,` := (1−C`)ΠHe ∈ VH,`. The triangle
inequality yields

(5.18) ‖e‖V ≤ ‖e− eH,`‖V + ‖eH,`‖V .

An Aubin-Nitsche duality argument shows that ‖eH,`‖V is controlled by some multiple
of ‖e − eH,`‖V . Let zH,` ∈ V ∗H,` be the unique solution of the discrete adjoint variational
problem

(∇vH,`,∇eH,`) + κ2(vH,`, eH,`) = a(vH,`, zH,`),

for all vH,` ∈ VH,`. Set zH,∞ := (1− C∗)ΠHzH,` and observe that

‖eH,`‖2V = a(eH,`, zH,` − zH,∞) + a(eH,`, zH,∞)

= a(eH,`, zH,` − zH,∞) + a(e, zH,∞)

= a(eH,`, zH,` − zH,∞) + a(e, zH,∞ − zH,`)

= a(e− eH,`, (C∗ − C∗` )ΠHzH,`)

≤ Ca‖e− eH,`‖V ‖(C∗ − C∗` )ΠHzH,`‖V .

Under Assumption (2.7), Theorem 5.2, Theorem 5.4 and (3.6) readily yield

(5.19) ‖eH,`‖2V ≤ C2
aCloc,`β

`CΠH
C ′stκ

n+1‖e− eH,`‖2V .

This, (5.18) and Assumption 5.3 show that

(5.20) ‖e‖V ≤ 2‖e− eH,`‖V .

Since e− eH,` ∈W , the W -ellipticity (4.8) yields

(5.21) ‖e− eH,`‖2V ≤ 3<a(e− eH,`, e− eH,`).

The relation (4.13) then yields

(5.22) a(e− eH,`, e− eH,`) = a(u, e− eH,`) + a((C − C`)ΠHu, e− eH,`)

≤ |(f, e− eH,`)Ω|+ Ca‖(C − C`)ΠHu‖V ‖e− eH,`‖V .

This, Cauchy inequalities, interpolation error estimates (3.5), Theorem 5.2 and the stability
estimate (2.7) readily yield the bound

(5.23) ‖e− eH,`‖V ≤ 3
√
ColCIH‖Hf‖Ω + 3CaCloc,`β

`CΠH
Cstκ

n‖f‖Ω.

The combination of (5.20) and (5.23) is the assertion. �
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6. Fully discrete localized approximation

As already mentioned before, the localized corrector problems (4.23) are variational prob-
lems in infinite-dimensional spaces W (ΩT,`) that require further discretization. For the ease
of presentation we restrict ourselves in this paper to the classical case of piecewise affine con-
forming elements on simplicial meshes but we emphasize that the technique easily transfers
to more general situations and can be applied to a large variety of discretization schemes
and, in particular, to hp adaptive methods.

So far, the presentation of the method was optimized with respect to theoretical aspects of
the stability and error analysis. Here, we will present the method in a slightly more practical
fashion.

6.1. The fully discrete method. For any T ∈ TH , choose an oversampling parameter
` = `T (sufficiently large so that there is a chance that Assumption 5.3 is satisfied). Let
Th(ΩT,`) be a regular (and possibly adaptive) mesh of width h < H and consider the standard
finite element space Vh(ΩT,`) of continuous piecewise polynomials of order 1 (or any higher
order) with respect to Th(ΩT,`). Then the discretized local remainder space is defined by

Wh((ΩT,`) := W (ΩT,`) ∩ Vh(ΩT,`).

For any vertex y of T , compute the element corrector CT,`,hφy ∈ Wh((ΩT,`) as the unique
solution of the discrete cell problem

a(CT,`,hφy, w) = aT (φy, w), for all w ∈Wh((ΩT,`).

In practice, the linear constraints in the definition of Wh((ΩT,`) related to the nodal func-
tionals αz from (3.4) (for coarse nodes z in the patch ΩT,`) are realized using Lagrangian
multipliers so that the computation can be performed in the standard finite element space
Vh(ΩT,`) (up to essential boundary conditions) and no explicit knowledge about a basis of
Wh((ΩT,`) is required.

For every global vertex z ∈ NH , the corrector C`,hφz is then given by

C`,hφz :=
∑

T∈TH :z vertex of T

CT,`,hφz.

This leads to modified basis functions φ̃z := φz − C`,hφz that span a discrete space

(6.1) VH,`,h := span{φ̃z | z ∈ NH}

of the same dimension as the classical finite element space VH . In this most general set-
ting, the discretizations of the cell problems are completely independent and could be very
different (e.g. high order polynomials on a coarse mesh for interior patches, or an adaptive
discretization when corners of the physical domain are present in the patch).

The fully discrete localized Petrov-Galerkin method with respect to the trial space VH,`,h

and the test space V ∗H,`,h seeks uH,`,h ∈ VH,`,h such that, for all vH,`,h ∈ V ∗H,`,h,

(6.2) a(uH,`,h, vH,`,h) = (f, vH,`,h)Ω.

6.2. Error analysis of the fully discrete method. An a priori error analysis of the
general approach would follow the analysis of Section 5 and trace the error of the additional
perturbation depending on the local choice of the approximation space. However, this will
require the estimation of the error C − C`,h or C` − C`,h, which appears to be non-trivial and
requires, for instance, regularity results for the ideal correctors. This line will be followed
in future research along with an a posteriori analysis of the method whereas we focus on a
special case with a very simple argument in this paper.

We restrict ourselves to the case of synchronized cell problems in the sense that there is
an underlying global fine mesh Th that is a regular refinement of the coarse mesh TH . In this
case, the global fine space Vh contains standard finite element functions and the spaces for
the local cell problems are derived by restriction of Vh to the patch. Then, the method in
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fact approximates uh, where uh ∈ Vh is the Galerkin approximation in the global fine scale,
that is,

(6.3) a(uh, vh) = (f, vh)Ω, for all vh ∈ Vh.

In the remaining part of this paper, we will refer to uh as the reference solution that we will
compare our approximations with. It is clear that if h is sufficiently small, then the problem
(6.3) is well-posed. Since it is unknown in general how to quantify what “sufficiently small”
means in this context, we have to make an assumption.

Assumption 6.1 (well-posedness of reference problem). Given κ, we assume that Vh is
chosen such that, for any f ∈ V ′, the reference problem (6.3) admits a unique solution
uh ∈ Vh that satisfies the polynomial-in-κ stability bound

(6.4) ‖uh‖V ≤ C ′stκn‖f‖Ω,

where the constant C ′st is independent of κ but may be different from the one in (2.7) (which
is related to the stability of the full problem (2.3)).

One example, where the range of feasible fine scale parameter h can be quantified is the
case of a pure Robin problem in a convex domain discretized by P1 finite elements. In
this case, the resolution condition hκ3/2 . 1 implies Assumption 6.1 [Wu14]. A very limited
number of further settings and methods is discussed in the literature (e.g. [EM12, HMP14c])
but in the majority of scenarios, such a quantification is completely open. Still, assuming
that h is sufficiently fine, we are able to show the stability of the practical method.

Theorem 6.2 (stability and error of the fully discrete method). If the fine scale discretization
space Vh is sufficiently rich so that Assumption 6.1 holds and if the coarse mesh width H is
sufficiently small in the sense of Assumption 4.1 (Hκ . 1) and if the oversampling parameter
` & log κ is sufficiently large in the sense of (5.12) (with constant C ′st from (6.4)), then
the fully discrete localized Petrov-Galerkin approximation uH,`,h ∈ VH,`,h satisfies the error
estimate

(6.5) ‖uh − uH,`,h‖V ≤ C(H + Cloc,`β
`κn)‖f‖Ω,

where uh solves the reference problem (6.3) and C is some generic constant that does not
depend on H, ` and κ.

Proof. The proof follows closely the analysis of Section 5 and simply replaces the space
V by Vh in the construction of the method and its error analysis. Almost all arguments
remain valid. The only technical issue is that the space Vh is not closed under multiplication
by cut-off functions used in the proofs of Theorem 4.6, Lemma 5.1, and Theorem 5.2. This
requires minor modifications as they have already been applied successfully in previous papers
[MP14b, HP13, HMP14a]. To begin with, let all cut-off functions η be replaced by their nodal
interpolation Inodal

H η on the coarse mesh TH . This may affect the constant in (4.27) but not
the overall results. This choice shows that ηψ is piecewise polynomial with respect to the
fine mesh Th and can be approximated by nodal interpolation Inodal

h (ηψ) on the same mesh
in a stable way. One example where such a modification is required is (4.28) in the proof of
Theorem 4.6. The modification causes an additional term that measures the distance of ηψ
to the finite element space Vh,

‖∇ψ‖2Ω\ΩT,`−3
= < (∇ψ,∇ (ηψ))Ω −< (∇ψ,ψ∇η)Ω

≤ |< (∇ψ,∇
(
Inodal
h (ηψ)− I−1,loc

H (IH(Inodal
h (ηψ)))

)
)Ω|

+ |< (∇ψ,∇I−1,loc
H (IH(Inodal

h (ηψ))))Ω|+ |< (∇ψ,ψ∇η)Ω|

+ |< (∇ψ,∇
(
ηψ − Inodal

h (ηψ)
)

)Ω|

=: M̃1 + M̃2 + M̃3 + M̃4.(6.6)
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The treatment of M̃1, M̃2, M̃3 is very similar to the treatment of M1,M2,M3 in the proof
of Theorem 4.6 and requires only the stability of Ih on the space of piecewise polynomials.
Since Ih(ηψ) = ψ outside the support of ∇η, M̃4 can easily be bounded by

M̃4 ≤ (1 + CIH
√
Col)‖H∇η‖L∞(Ω))‖∇φ‖2ΩT,`−2\ΩT,`−5

and further arguments remain valid (with a possible change of the constants involved). The
proofs of Lemma 5.1 and Theorem 5.2 can be modified in a similar way. �

Remark 6.1 (true errors). Note that Theorem 6.5 compares the discrete localized Petrov-
Galerkin approximation with the reference solution uh (6.3) only. An estimate of the full
error reads

‖u− uH,`,h‖V ≤ C(H + Cloc,`β
`κn)‖f‖Ω + ‖u− uh‖V .

Further estimation of the reference error ‖u − uh‖V relies on additional regularity of the
solution u in the usual way. As with stability, quantitative results are rare [Mel95, EM12,
HMP14c] In the simplest case of a pure Robin problem in a convex domain, an estimate of
the form

‖u− uH,`,h‖V . (H + β`κ+ hκ)‖f‖Ω
holds true in the regime where h ≈ κ−2 (cf. [Mel95]). In this regime, the choices H ≈ κ−1

and ` ≈ 2 log(κ) would balance the three term in the error bound and the overall error of
the method would be proportional to κ−1.

Using the properties of the very particular example of the previous remark, the complexity
of our approach may be estimated as follows. The number of degrees of freedom in a single
cell problem scales like (`H/h)d. Although the cell problems are non-hermitian, they are
coercive and linear complexity with respect to the number of degrees of freedom (independent
of κ) can be expected for a suitably chosen multilevel preconditioned iterative solver. Let us
assume that m local problems need to be solved where m depends on the geometric setting
of the problem and the structuredness of the meshes. E.g., m ≈ ` ≈ log(κ) for a uniform
mesh on the unit square. Then the cost of pre-computing the bases up to a given accuracy
and assembling the coarse problem is roughly O(log(κ)d+1(κ)d). This cost does not exceed
the cost for solving the resulting O(κd)-dimensional coarse Helmholtz problem because this
system faces the indefiniteness of the Helmholtz problem in the usual [EG12, GGS15] which
makes it difficult to design algebraic solvers of optimal complexity and, in particular, solvers
that are robust with respect to large wave numbers. In general, the complexity of the
method may as well be dominated by the fine scale computation (depending on the stability
problems of the original problem). In this case, the inherent independence of the corrections
and their independence of the right-hand side and boundary data are interesting features of
the method that can increase the efficiency of computations in the context of large-scale and
inverse problems.

7. Numerical Experiments

In this section we will present two numerical examples. We apply our method to model
Helmholtz problems in one and two dimensions and compare the results with standard
P1 finite elements. We will demonstrate the validity of our estimates based on varying
oversampling parameter `, coarse mesh size H and by varying the wave number κ. A
comprehensive numerical study of the algorithmic ideas proposed in this paper is topic of
current and future research.

7.1. Illustration of the theoretical results in 1d. Let Ω := (0, 1), ΓR = ∂Ω (solely
Robin boundary condition), and let the right-hand side f defined by

f(x) :=

{
2
√

2, x ∈ [ 3
16 ,

5
16 ] ∪ [11

16 ,
13
16 ],

0, elsewhere,
(7.1)

represent two radiating sources. The right-hand side was normalized so that ‖f‖L2(Ω) = 1.
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Note that this one-dimensional example does not serve as a proper benchmark for the
method because there even exist local pollution-free generalized finite element methods.
Actually, in 1d (and only in 1d) the choice of the nodal interpolation for IH would have
lead to such a method. Still, this model problem nicely reflects our theoretical results for a
wide range of wave numbers. Since non of our arguments depends on the space dimension
(though some constants do), the 1d performance truly illustrates the performance that can
be observed also in higher dimensions.

We consider the following values for the wave number, κ = 23, 24, . . . , 27. The numeri-
cal experiment aims to study the dependence between these wave numbers and the accu-
racy of the numerical method. Consider the equidistant coarse meshes with mesh widths
H = 2−1, . . . , 2−10. The reference mesh Th is derived by uniform mesh refinement of the
coarse meshes and has maximal mesh width h = 2−14. The corresponding P1 conforming
finite element approximation on the reference mesh Th is denoted by Vh. We consider the
reference solution uh ∈ Vh of (6.3) with data given in (7.1) and compare it with coarse scale
approximations uH,`,h ∈ VH,`,h (cf. Definition 6.2) depending on the coarse mesh size H and
the oversampling parameter `.

The results are visualized in Figures 1 and 2. Figure 1(a) shows the relative energy

errors
‖uh−uH,`,h‖V
‖uh‖V depending on the coarse mesh size H for several choices of the wave

number κ = 23, 24, . . . , 27. The oversampling parameter ` is tied to H via the relation
` = `(H) = | log2H|. This choice seems to be sufficient to preserve optimal convergence as

soon as Hκ . 1 holds. The experimental rate of convergence N
3/(2d)
dof is better than predicted

by Theorem 6.2. This effect is due to some unexploited L2-orthogonality properties of the
quasi-interpolation operator IH ; see [Car99, Section 2] and [MP14b, Remark 3.2] for details.
In the regime Hκ . 1, the errors coincide to with those of the best approximation (with
respect to the V -norm) of uh in the space VH,`,h depicted in Figure 1(b).

We also show errors of the Petrov-Galerkin method based on the pairing (VH , V
∗
H,`,h) (the

localized and fully discretized version of (4.21)) in Figure 1(c). The stabilization via the
precomputed test functions cures pollution and the errors are comparable to those of the
best-approximation among the P1-finite element functions1, whereas the pollution effect is
clearly visible for the standard conforming P1-FEM (Galerkin) on the coarse meshes; see
Figure 1(d).

Figure 2 aims to illustrate the role of the oversampling parameter. It depicts the relative

energy errors
‖uh−uH,`,h‖V
‖uh‖V of the method (6.2) and the best-approximation in VH,`,h depend-

ing on the coarse mesh size H for fixed wave number κ = 27 and several choices of the
oversampling parameter ` = 1, 2, 3, . . . , 8. (We also show errors of the standard conforming
P1-FEM on the coarse meshes for comparison.) The exponential decay of the error with re-
spect to ` is observed once the mesh size reaches the regime of resolution Hκ . 1. Moreover,
Figure 2(b) shows that, for fixed `, the approximation property of VH,`,h does not improve
with decreasing H and the oversampling parameter needs to be increased with decreasing
H to get any rate. By contrast, the Petrov-Galerkin method based on the trial-test-pairing
(VH , VH,`,h) (which in fact computes ΠHuh for ` → ∞) allows to reduce the oversampling
parameter with decreasing Hκ until, for Hκ2 ≈ 1, the correction can be removed because P1-
FEM becomes quasi-optimal; see Figure 2(c) which depicts relative L2-errors of the method.

Finally, we want to show that a different choice of interpolation operator in the definition
(4.2) of the remainder space can lead to very different practical performance (within the range
of the theoretical predictions though). Figure 3 shows the results for the above experiment
when the operator QH from (3.8) is used instead of IH . It turns out that, for this example,
the decay of the correctors is much faster so that the same accuracy is achieved with basis
functions that are far more localized. A similar observation has been made previously in the

1While the present paper was still under review, this observation has been justified theoretically in the
follow-up paper [GP15]; see also [Pet15].
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(a) Results for multiscale method (6.2).
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(b) Results for V -best-approximation in VH,`,h.
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(c) Results for multiscale Petrov-Galerkin method
with trial space VH and test space V ∗H,`,h.
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(d) Results for standard Galerkin in the space VH .

Figure 1. Numerical experiment of Section 7.1: Results for the multiscale
method (6.2), a modification based on the trial-test-pairing (VH , V

∗
H,`,h) and

standard P1-FEM with several choices of the wave number κ depending on
the uniform coarse mesh size H = N−1

dof . The reference mesh size h = 2−14

remains fixed. The oversampling parameter is tied to the coarse mesh size
via the relation ` = | log2H| in (a)-(c).

context of high-contrast diffusion problems [BP14, PS14]. This improved performance can
not be quantified by the existing theory and requires further investigation.

7.2. Scattering from a triangle. The second experiment considers the scattering from
sound-soft scatterer occupying the triangle ΩD. The Sommerfeld radiation condition of
the scattered wave is approximated by the Robin boundary condition on the boundary
ΓR := ∂ΩR of the artificial domain ΩR :=]0, 1[2 so that Ω := ΩR \ ΩD is the computational

domain; see Figure 4(a). The incident wave uinc(x) := exp
(
iκ x ·

(
cos(1/2)
sin(1/2)

))
is prescribed
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(a) Results for multiscale method (6.2).
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(b) Results for V -best-approximation in VH,`,h.
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(c) Results for multiscale Petrov-Galerkin method
with trial space VH and test space VH,`,h.

Figure 2. Numerical experiment of Section 7.1: Results for multiscale
method (6.2) with wave number κ = 28 depending on the uniform coarse
mesh size H = N−1

dof . The reference mesh size h = 2−14 remains fixed. The
oversampling parameter ` varies between 1 and 10.

via an inhomogeneous Dirichlet boundary condition on ΓD := ∂ΩD and the scattered wave
satisfies the model problem (2.1.a) with the boundary conditions

u = −uinc on ΓD,

∇u · ν − iκu = 0 on ΓR.

The error analysis of the previous sections extends to this setting in a straight-forward way.
By introducing some function u0 ∈ W 1,2(Ω) that satisfies the above boundary conditions,
the problem can be reformulated with homogenous boundary conditions and the additional
term −a(u0, v) on the right side of (2.3). This corresponds to having the modified right hand
side f + ∆u0 + κ2u0 in the strong form (2.1.a) of the problem. If u0 can be chosen such
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(a) Results for multiscale method (6.2) based on
quasi-interpolation QH .
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(b) Results for V -best-approximation in VH,`,h based
on quasi-interpolation QH .
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(c) Results for multiscale Petrov-Galerkin method
with trial space VH and test space VH,`,h based on
quasi-interpolation QH .

Figure 3. Numerical experiment of Section 7.1: Results for multiscale
method (6.2) with interpolation operator QH for wave number κ = 28 de-
pending on the uniform coarse mesh size H = N−1

dof . The reference mesh size
h = 2−14 remains fixed. The oversampling parameter ` varies between 1 and
8.

that ∆u0 ∈ L2(Ω), then all error bounds of this paper remain valid. For weaker right hand
sides the rates with respect to H are reduced accordingly. Note, however, that the L2-norm
of the modified right-hand side may depend on κ as it is the case in the present experiment
where u0 is related to the incident wave. The best-approximation properties of the method
(cf. Remark 4.1) are not affected by this possible κ-dependence of the errors.
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Ω:=]0,1[
2
\Ω

D

Ω
D

(a) Computational domain Ω with
scatterer ΩD.

(b) Initial coarse mesh. (c) Uniformly refined coarse mesh.

Figure 4. Computational domain of the model problem of Section 7.2 and
corresponding coarse meshes.

The numerical experiment considers the following values for the wave number, κ =
22, 23, 24, 25, and aims to study the dependence between the wave numbers and the ac-
curacy of the numerical method. We choose uniform coarse meshes with mesh widths
H = 2−2, . . . , 2−5 as depicted in Figures 4(b)–4(c). The experiment focuses on the role
of localization and keeps the fine scale h = 2−9 fixed. This is roughly κ−2 for the largest
κ considered in the experiment so that there is some confidence that the fine scale error is
not dominant and that the plotted reference errors also reflect the true errors, at least in
the targeted regime H ≈ κ−1. For numerical experiments with variable fine-scale parameter
h we refer to [GP15]. The reference mesh Th is derived by uniform mesh refinement of the
coarse meshes and has mesh width h = 2−9.

As in the previous experiment, we consider the reference solution uh ∈ Vh of (6.3) with
the above data and compare it with coarse scale approximations uH,`,h ∈ VH,`,h (cf. Defi-
nition 6.2) depending on the coarse mesh size H and the oversampling parameter `. Here,
we are using again the canonical quasi-interpolation IH . Figures 5 and 6 show the results
which conform to the theoretical predictions. If the oversampling parameter is chosen appro-
priately (` = | log2H|) then pollution effects are eliminated for both the multiscale method
(6.2) and for the Petrov-Galerkin method based on the trial-test-pairing (VH , VH,`,h) – the
localized and fully discretized version of the stabilized method (4.21). Moreover, the low
regularity of the solution does not affect the convergence rates of the multiscale method
(6.2) when compared with the reference solution uh, whereas reduced rates are observed
for the Petrov-Galerkin method based on the trial-test-pairing (VH , VH,`,h) as expected (due
to the limited approximation properties of P1 functions in the Sobolev spaces W s,2(Ω) for
s < 11/7). The regularity of the solution, however, does affect the accuracy of the reference
solution uh and, hence, limits the overall accuracy of our approximation. The possibility
of automatic balancing the local fine scale errors of the corrector problems, the localization
error, the global coarse error, and further errors due to quadrature and inexact algebraic
solvers is a desirable feature of the method that needs to be addressed by future research.
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