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Summary. This paper is concerned with automatic enrichment in the particle-
partition of unity method (PPUM). The goal of our automatic enrichment is to
recover the optimal convergence rate of the uniform h-version independent of the
regularity of the solution. Hence, we employ enrichment not only for modeling pur-
poses but rather to improve the approximation properties of the numerical scheme.
To this end we enrich our PPUM function space in an automatically determined
enrichment zone hierarchically near the singularities of the solution. To overcome
the ill-conditioning of the enriched shape functions we present an appropriate lo-
cal preconditioner. The results of our numerical experiments clearly show that the
hierarchically enriched PPUM recovers the optimal convergence rate globally and
even shows a kind of superconvergence within the enrichment zone. The condition
number of the stiffness matrix is independent of the employed enrichment and the
relative size of the enrichment zone.
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1 Introduction

Singular and discontinuous enrichment functions are used for the modeling
of e.g. cracks in many meshfree methods [5, 20], the extended finite element
method (XFEM) [4, 6, 18], the generalized finite element method (GFEM)
[10–12] or the particle-partition of unity method (PPUM) [22]. In most cases,
the considered enrichment functions serve the purpose of modeling only. Hence
the approximation properties of the resulting numerical scheme are limited by
the regularity of the solution and no improvement in the asymptotic conver-
gence rate is obtained. A naive approach to overcome this issue is the use of a
predefined constant enrichment zone [21]. This however leads to a fast growth
of the condition number of the stiffness matrix and thereby has an adverse
effect on the overall accuracy of the approximation. In [7] the use of an ad-
ditional cut-off function which controls the enrichment zone was suggested.
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This approach yields some improvement, i.e. a less severe increase of the con-
dition number. However, ultimately an ill-conditioned stiffness matrix arises
also in this approach. The observed deterioration of the condition number can
be remedied only by an appropriate basis transformation and projection—in
essence a special preconditioner.

In this paper we focus on enrichment of the PPUM, however, the presented
techniques can be applied also to other PU-based enrichment schemes. In
particular we present an hierarchical enrichment procedure which defines an
intermediate enrichment zone for the discretization. For each patch within
this intermediate enrichment zone we construct a local basis transformation
and a local projection (i.e. a special local preconditioner) which eliminates
the global ill-conditioning due to the enrichment functions completely. The
presented scheme attains a stable discretization independent of the employed
enrichment functions and an optimal global convergence rate of the uniform
h-version; i.e., the uniform h-version converges globally with a rate that is
not limited by the regularity of the solution. For instance we obtain an O(h)
convergence in the energy-norm using linear polynomials globally. Within the
enrichment zone the local convergence behavior is even O(h1+δ) with δ > 0
in the energy-norm.

The remainder of this paper is organized as follows. In Section 2 we give
a short review of the essential ingredients of the multilevel PPUM. In Section
3 we introduce our hierarchical enrichment scheme and the construction of
our local preconditioner which yields a stable basis of the global PPUM space
independent of the employed enrichment. The results of our numerical exper-
iments are given in Section 4. These results clearly show that we obtain an
optimal convergence behavior of the uniform h-version of the PPUM globally
and that the condition number of the stiffness matrix does not suffer from
the employed enrichment. Within the enrichment zone we obtain an almost
quadratic convergence using linear polynomials only. Finally, we conclude with
some remarks in Section 5.

2 Particle–Partition of Unity Method

In this section let us shortly review the core ingredients of the PPUM, see
[14, 15, 21] for details. In a first step, we need to construct a PPUM space
V PU, i.e., we need to specify the PPUM shape functions ϕiϑ

n
i where the

functions ϕi form a partition of unity (PU) on the domain Ω and the functions
ϑn

i denote the associated approximation functions considered on the patch
ωi := supp(ϕi), i.e. polynomials ψs

i or enrichment functions ηt
i . With these

shape functions, we then set up a sparse linear system of equations Aũ = f̂
via the classical Galerkin method. The linear system is then solved by our
multilevel iterative solver [15,17]. However, we need to employ a non-standard
variational formulation of the PDE to account for the fact that our PPUM
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Fig. 1. Subdivision corresponding to a cover on level J = 4 with initial point
cloud (left), derived coarser subdivisions on level 3 (center), and level 2 (right) with
respective coarser point cloud.

shape functions—like most meshfree shape functions—do not satisfy essential
boundary conditions explicitly.

The fundamental construction principle employed in [14] for the con-
struction of the PU {ϕi} is a d-binary tree. Based on the given point data
P = {xi | i = 1, . . . , N̂}, we sub-divide a bounding-box CΩ ⊃ Ω of the domain
Ω until each cell

Ci =
d∏

l=1

(cli − hl
i, c

l
i + hl

i)

associated with a leaf of the tree contains at most a single point xi ∈ P ,
see Figure 1. We obtain an overlapping cover CΩ := {ωi} from this tree by
defining the cover patches ωi by

ωi :=
d∏

l=1

(cli − αhl
i, c

l
i + αhl

i), with α > 1. (2.1)

Note that we define a cover patch ωi for leaf-cells Ci that contain a point
xi ∈ P as well as for empty cells that do not contain any point from P . The
coarser covers Ck

Ω are defined considering coarser versions of the constructed
tree, i.e., by removing a complete set of leaves of the tree, see Figure 1. For
details of this construction see [14,15,21].

To obtain a PU on a cover Ck
Ω with Nk := card(Ck

Ω) we define a weight
function Wi,k : Ω → R with supp(Wi,k) = ωi,k for each cover patch ωi,k by

Wi,k(x) =
{
W ◦ Ti,k(x) x ∈ ωi,k

0 else (2.2)

with the affine transforms Ti,k : ωi,k → [−1, 1]d and W : [−1, 1]d → R the
reference d-linear B-spline. By simple averaging of these weight functions we
obtain the functions

ϕi,k(x) :=
Wi,k(x)
Si,k(x)

, with Si,k(x) :=
Nk∑
l=1

Wl,k(x). (2.3)
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We refer to the collection {ϕi,k} with i = 1, . . . , Nk as a partition of unity
since there hold the relations

0 ≤ ϕi,k(x) ≤ 1,
Nk∑
i=1

ϕi,k ≡ 1 on Ω,

‖ϕi,k‖L∞(Rd) ≤ C∞,k, ‖∇ϕi,k‖L∞(Rd) ≤
C∇,k

diam(ωi,k)

(2.4)

with constants 0 < C∞,k < 1 and C∇,k > 0 so that the assumptions on the
PU for the error analysis given in [2] are satisfied by our PPUM construction.
Furthermore, the PU (2.3) based on the cover Ck

Ω obtained from the scaling
of a tree decomposition with α > 1 satisfies

µ({x ∈ ωi,k |ϕi,k(x) = 1}) ≈ µ(ωi,k),

i.e., the PU has the flat-top property, see [17,22]. This ensures that the product
functions ϕi,kϑ

n
i,k are linearly independent, provided that the employed local

approximation functions ϑn
i,k are linearly independent with respect to {x ∈

ωi,k |ϕi,k(x) = 1}. Hence, we obtain global stability of the product functions
ϕi,kϑ

n
i,k from the local stability of the approximation functions ϑn

i,k.
In general the local approximation space Vi,k := span〈ϑn

i,k〉 associated
with a particular patch ωi,k of a PPUM space V PU

k consists of two parts: A
smooth approximation space, e.g. polynomials Ppi,k(ωi,k) := span〈ψs

i 〉, and
an enrichment part Ei,k(ωi,k) := span〈ηt

i〉, i.e.

Vi,k(ωi,k) = Ppi,k(ωi,k) + Ei,k(ωi,k) = span〈ψs
i , η

t
i〉.

Note that for the smooth space Ppi,k we employ a local basis ψs
i,k on ωi,k, i.e.

ψs
i,k = ps ◦ Ti,k and {ps} denotes a stable basis on [−1, 1]d. The enrichment

functions ηt
i,k however are often given as global functions ηt on the compu-

tational domain Ω since they are designed to capture special behavior of the
solution at a particular location. Therefore, the restrictions ηt

i,k := ηt|ωi,k
of

the enrichment functions ηt to a particular patch ωi,k may be ill-conditioned
or even linearly dependent on ωi,k, even if the enrichment functions ηt are
well-conditioned on a global scale. Furthermore, the coupling between the
spaces Ppi,k and Ei,k on the patch ωi,k must be considered. The set of func-
tions {ψs

i,k, η
t
i,k} will also degenerate from a basis of Vi,k to a generating

system only, if the restricted enrichment functions ηt
i,k = ηt|ωi,k

can be well
approximated by polynomials ψs

i,k on the patch ωi,k.

Remark 1. The elimination of these linear dependencies and the selection of
an appropriate basis 〈ϑ̃m

i,k〉 for the space Vi,k(ωi,k) is the main challenge in
an enriched PPUM computation (and any other numerical method that em-
ploys enrichment). To this end we have developed a projection operator or
preconditioner

Π∗
i,k : span〈ϑn

i,k〉 → span〈ϑ̃m
i,k〉
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that maps the ill-conditioned generating system 〈ψs
i,k, η

t
i,k〉 = 〈ϑn

i,k〉 to a stable
basis 〈ϑ̃m

i,k〉, see Section 3.

With the help of the shape functions ϕi,kϑ
n
i,k we then discretize a PDE in

weak form
a(u, v) = 〈f, v〉

via the classical Galerkin method to obtain a discrete linear system of equa-
tions Aũ = f̂ . Note that the PU functions (2.3) in the PPUM are in general
piecewise rational functions only. Therefore, the use of an appropriate numer-
ical integration scheme is indispensable in the PPUM as in most meshfree
approaches [1, 3, 8, 9, 15]. Moreover, the functions ϕi,kϑ

n
i,k in general do not

satisfy the Kronecker property. Thus, the coefficients ũk := (un
i,k) of a discrete

function

uPU
k =

Nk∑
i=1

ϕi,k

di,k∑
n=1

un
i,kϑ

n
i,k =

Nk∑
i=1

ϕi,k

( dPi,k∑
s=1

us
i,kψ

s
i,k +

dEi,k∑
t=1

u
t+dPi,k

i,k ηt
i,k

)
(2.5)

with dPi,k := dimPi,k, dEi,k := dim Ei,k and di,k := dPi,k + dEi,k on level k do not
directly correspond to function values and a trivial interpolation of essential
boundary data is not available.

2.1 Essential Boundary Conditions

The treatment of essential boundary conditions in meshfree methods is not
straightforward and a number of different approaches have been suggested. In
[16] we have presented how Nitsche’s method [19] can be applied successfully
in the meshfree context. Here, we give a short summary of this approach. To
this end, let us consider the model problem

−div σ(u) = f in Ω ⊂ Rd

σ(u) · n = gN on ΓN ⊂ ∂Ω
u · n = gD,n on ΓD = ∂Ω \ ΓN

(σ(u) · n) · t = 0 on ΓD = ∂Ω \ ΓN

(2.6)

In the following we drop the level subscript k = 0, . . . , J for the ease of
notation.

Let us define the cover of the Dirichlet boundary

CΓD
:= {ωi ∈ CΩ |ΓD,i 6= ∅}

where ΓD,i := ωi ∩ ΓD and γD,i := diam(ΓD,i). With these conventions we
define the cover-dependent functional

JCΩ
(w) :=

∫
Ω

σ(w) : ε(w) dx−2
∫

ΓD

(n ·σ(w)n)n ·w ds+β
∑

ωi∈CΓD

γ−1
D,i

∫
ΓD,i

(w ·n)2 ds
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with some parameter β > 0. Minimizing JCΩ
with respect to the error u−uPU

yields the weak formulation

aCΩ
(w, v) = lCΩ

(v) for all v ∈ V PU (2.7)

with the cover-dependent bilinear form

aCΩ
(u, v) :=

∫
Ω

σ(u) : ε(v) dx−
∫

ΓD

(n · σ(u)n)n · v ds

−
∫

ΓD

(n · σ(v)n)n · u ds+ β
∑

ωi∈CΓD

γ−1
D,i

∫
ΓD,i

u · nv · n ds

and the corresponding linear form

〈lCΩ
, v〉 :=

∫
Ω

fv +
∫

ΓN

gNv −
∫

ΓD

gD,n(n · σ(v)n) + β
∑

ωi∈CΓD

γ−1
D,i

∫
ΓD,i

gD,nv · n ds

There is a unique solution uPU of (2.7) if the regularization parameter β is
chosen large enough; i.e., the regularization parameter β = βV PU is dependent
on the discretization space V PU. This solution uPU satisfies optimal error
bounds if the space V PU admits the inverse estimate

‖(n · σ(v)n)‖2
− 1

2 ,CΓD
≤ C2

V PU‖v‖2
E = C2

V PU

∫
Ω

σ(v) : ε(v) dx (2.8)

for all v ∈ V PU with respect to the cover-dependent norm

‖w‖2
− 1

2 ,CΓD
:=

∑
ωi∈CΓD

γD,i‖w‖2
L2(ΓD,i)

with a constant CV PU depending on the cover CΩ and the employed local bases
〈ϑn

i 〉 only. If CV PU is known, the regularization parameter βV PU can be chosen
as βV PU > 2C2

V PU to obtain a symmetric positive definite linear system [19].
Hence, the main task associated with the use of Nitsche’s approach in the
PPUM context is the efficient and automatic computation of the constant
CV PU , see [16,21]. To this end, we consider the inverse assumption (2.8) as a
generalized eigenvalue problem locally on each patch ωi ∈ CΓD

and solve for
the largest eigenvalue to obtain an approximation of C2

V PU .
In summary, the PPUM discretization of our model problem (2.6) using the

space V PU on the cover CΩ is carried out in two steps: First, we estimate the
regularization parameter βV PU from (2.8). Then, we define the weak form (2.7)
and use Galerkin’s method to set up the respective symmetric positive definite
linear system Aũ = f̂ . This linear system is then solved by our multilevel
iterative solver [15,17].



A Particle-Partition of Unity Method Part VIII: Hierarchical Enrichment 7

3 Hierarchical Enrichment and Local Preconditioning

The use of smooth polynomial local approximation spaces Vi,k = Ppi,k in our
PPUM is optimal only for the approximation of a smooth or regular solution u.
In the case of a discontinuous and singular solution u there are essentially two
approaches we can pursue: First, a classical adaptive refinement process which
essentially resolves the singular behavior of the solution by geometric sub-
division, see [17,22]. Second, an algebraic approach that is very natural to the
PPUM, the explicit enrichment of the global approximation space by special
shape functions ηs. This approach is also pursued in other meshfree methods
[5, 20], the XFEM [4, 6, 18] or the GFEM [10–12]. Most enrichment schemes
however focus on modeling issues and not on approximation properties or the
conditioning of the resulting stiffness matrix.

In this section we introduce an automatic hierarchical enrichment scheme
for our PPUM that provides optimal convergence properties and avoids an
ill-conditioning of the resulting stiffness matrix due to enrichment. To this
end, we consider a reference problem from linear elastic fracture mechanics

−div σ(u) = f in Ω = (−1, 1)2,
σ(u) · n = gN on ΓN ⊂ ∂Ω ∪ C,

u = gD on ΓD = ∂Ω \ ΓN .
(3.1)

The internal traction-free segment

C := {(x, y) ∈ Ω |x ∈ (−0.5, 0.5) and y = 0}

is referred to as a crack. The crack C induces a discontinuous displacement
field u across the crack line C with singularities at the crack tips cl := (−0.5, 0)
and cu := (0.5, 0). Hence, the local approximation spaces Vi,k employed in our
PPUM must respect these features to provide good approximation.

The commonly used enrichment strategy employs simple geometric infor-
mation only. A patch ωi,k (or an element) is enriched by the discontinuous
Haar function if the patch is (completely) cut by the crack C, i.e.

Ei,k := HC
±Ppi,k and Vi,k := Ppi,k +HC

±Ppi,k . (3.2)

Note that in fact most other enrichment procedures employ Ei,k = HC
± only.

If the patch ωi,k contains a crack tip ξtip, i.e. cl ∈ ωi,k or cu ∈ ωi,k, then the
patch is enriched by the respective space of singular tip functions

Wtip := {
√
r cos

θ

2
,
√
r sin

θ

2
,
√
r sin θ sin

θ

2
,
√
r sin θ cos

θ

2
} (3.3)

given in local polar coordinates with respect to the tip ξtip, i.e. Ei,k = Wtip|ωi,k
.

This yields the local approximation space

Vi,k := Ppi,k +Wtip
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for a patch ωi,k that contains the tip ξtip. Let us summarize this geometric
modeling enrichment scheme in the following classifier function eM : Ck

Ω →
{lower tip, upper tip, jump, none}

eM (ωi,k) :=


lower tip if cl ∈ ωi,k and cu 6∈ ωi,k,
upper tip if cl 6∈ ωi,k and cu ∈ ωi,k,
jump if {cl, cu} ∩ ωi,k = ∅ and C ∩ ωi,k 6= ∅,
none else.

(3.4)

Note that the direct evaluation of eM for all patches ωi,k ∈ Ck
Ω requires O(Nk)

rather expensive geometric operations such as line-line intersections.
Even though this enrichment is sufficient to model a crack and captures the

asymptotic behavior of the solution at the tip, this strategy suffers from vari-
ous drawbacks. With respect to the discontinuous enrichment the main issue
is that very small intersections of a patch with a crack cause an ill-conditioned
stiffness matrix which can compromise the stability of the discretization; e.g.
when the volumes of the sub-patches induced by the cut with the crack differ
substantially in size. This is usually circumvented by a predefined geometric
tolerance parameter which rejects such small intersections. In the case of a
one-dimensional enrichment space Ei,k = HC

± this approach is sufficient—if
the tolerance parameter is chosen relative to the diameter of the patch. For a
multi-dimensional enrichment space Ei,k = HC

±Ppi,k this approach can be too
restrictive to obtain optimal results.

The crack tip enrichment space Wtip given in (3.3) models the essential be-
havior of the solution at the tip. However, the singularity at the tip has a sub-
stantially larger zone of influence than just the containing patch. Therefore,
the simple geometric modeling enrichment (3.4) is not sufficient to improve
the asymptotic convergence behavior of the employed numerical scheme.

These issues can be overcome with the help of our multilevel sequence of
covers Ck

Ω and a local preconditioner. Starting on the coarsest level k = 0 of
our cover sequence we consider the cover C0

Ω = {ωi,0} and define the inter-
mediate enrichment classifier I0 : C0

Ω → {lower tip, upper tip, jump, none}
by the geometric/modeling enrichment scheme discussed above

I0(ωi,0) := eM (ωi,0).

In the next step we define the associated intermediate enrichment spaces EI
i,k

for k = 0

EI
i,k :=


Wcl

if lower tip = Ik(ωi,k),
Wcu if upper tip = Ik(ωi,k),
HC
±Ppi,k if jump = Ik(ωi,k) and C ∩ ωi,k 6= ∅,

0 else.

(3.5)

with dE
I

i,k := card({ηt
i,k}) and the respective intermediate approximation

spaces
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V I
i,k := Ppi,k + EI

i,k = span〈ψs
i,k, η

t
i,k〉 = span〈ϑn

i,k〉

with dV I

i,k := dPi,k +dE
I

i,k and dPi,k = dim(Ppi,k). Using all functions ϑn
i,k, i.e. ψs

i,k

and ηt
i,k, we setup the local mass matrix Mi,k with the entries

(Mi,k)m,n :=
∫

ωi,k∩Ω

ϑn
i,kϑ

m
i,k dx for all m,n = 1, . . . , dV

I

i,k . (3.6)

From the eigenvalue decomposition

OT
i,kMi,kOi,k = Di,k with Oi,k, Di,k ∈ RdV I

i,k×dV I

i,k (3.7)

of the matrix Mi,k where

OT
i,kOi,k = I

dV I

i,k

, (Di,k)m,n = 0 for all m 6= n

we can extract a stable basis 〈ϑ̃m
i,k〉 by a simple cut-off of small eigenvalues.

To this end let us assume that the eigenvalues (Di,k)m,m are given in decreas-
ing order, i.e. (Di,k)m,m ≥ (Di,k)m+1,m+1. Then we can easily partition the
matrices OT

i,k and Di,k as

OT
i,k =

(
ÕT

i,k

KT
i,k

)
, Di,k =

(
D̃i,k 0

0 κi,k

)
where the mth row of the rectangular matrix ÕT

i,k is an eigenvector of Mi,k

that is associated with an eigenvalue (Di,k)m,m = (D̃i,k)m,m ≥ ε (Di,k)0,0 and
KT

i,k involves all eigenvectors that are associated with small eigenvalues. Since
(D̃i,k)m,m ≥ ε (Di,k)0,0 the operator

Π∗
i,k := D̃

−1/2
i,k ÕT

i,k

is well-defined and can be evaluated stably. Furthermore, the projection Π∗
i,k

removes the near-null space of Mi,k due to the cut-off parameter ε and we
have

Π∗
i,kMi,k(Π∗

i,k)T = D̃
−1/2
i,k ÕT

i,kMi,kOi,kD̃
−1/2
i,k = IdΠ

i,k

where dΠ
i,k := card{(Di,k)m,m ≥ ε (Di,k)0,0} denotes the row-dimension of

ÕT
i,k and Π∗

i,k. Hence, the operator Π∗
i,k maps the ill-conditioned generating

system 〈ϑn
i,k〉 = 〈ψs

i,k, η
t
i,k〉 to a basis 〈ϑ̃m

i,k〉 that is optimally conditioned —
it is an optimal preconditioner.

Assuming that the employed local basis 〈ψs
i,k〉 is well-conditioned and that

ε is small we have Ppi,k ⊂ span〈ϑ̃m
i,k〉 so that if dim(Ppi,k) = dΠ

i,k we can remove
the enrichment functions ηt

i,k completely from the local approximation space
and use Vi,k = Ppi,k . Therefore, we define our final enrichment indicator
Ek : Ck

Ω → {lower tip, upper tip, jump, none} on level k as
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Ek(ωi,k) :=
{
Ik(ωi,k) if dim(Ppi,k) 6= dΠ

i,k,

none else.
(3.8)

The local approximation space Vi,k assigned to an enriched patch ωi,k is given
by

Vi,k := Π∗
i,kV

I
i,k = span〈ϑ̃m

i,k〉 (3.9)

On the next finer level k + 1 we utilize the geometric hierarchy of our cover
patches to define our intermediate enrichment indicator Ik+1. Recall that for
each cover patch ωi,k+1 there exists exactly one cover patch ωĩ,k such that
ωi,k+1 ⊂ ωĩ,k, compare Figure 1. Hence we can define our intermediate en-
richment indicator Ik+1 on level k + 1 as

Ik+1(ωi,k+1) :=


Ek(ωĩ,k) if Ek(ωĩ,k) 6= jump,
jump if Ek(ωĩ,k) = jump and C ∩ ωi,k 6= ∅,
none else

directly from the enrichment indicator Ek on level k and a minimal number of
geometric operations. With this intermediate enrichment indicator we apply
the above scheme recursively to derive the enrichment indicators El for all
levels l = 1, . . . , J . Finally, we obtain stable local basis systems 〈ϑ̃m

i,l〉 and
the respective approximation spaces Vi,l = span〈ϑ̃m

i,l〉 for all cover patches
ωi,l ∈ Cl

Ω on all levels l = 0, . . . , J . Recalling that our PU functions ϕi,l

satisfy the flat-top condition (see Section 2) this is sufficient to obtain the
stability of the global basis 〈ϕi,lϑ̃

m
i,l〉 for the PPUM space V PU

l on level l.1

Remark 1. Note that we do not need to apply the local preconditioner Π∗
i,k

for the evaluation of the basis 〈ϕi,kϑ̃
m
i,k〉 in each quadrature point during the

assembly of the stiffness matrix. It is sufficient to transform the stiffness matrix
AGS

k on level k which was assembled using the generating system 〈ψs
i,k, η

t
i,k〉

by the block-diagonal operator Π∗
k with the block-entries

(Π∗
k)g,h :=

{
Π∗

g,k, g = h

0 else,

for all g = 1, . . . , Nk; i.e., we obtain the stiffness matrix Ak with respect to
the basis 〈ϕi,kϑ̃

m
i,k〉 on level k as the product operator

Ak = Π∗
kA

GS
k (Π∗

k)T .

Remark 2. Note that in the discussion above we have considered the identity
operator I on the local patch ωi,k, i.e. the mass matrix Mi,k. However, we can
construct the respective preconditioner also for different operators e.g. the

1Actually we need to apply the construction of the preconditioner to the operator
MFT

i,k which involves integrals on {x ∈ ωi,k |ϕi,k(x) = 1} instead of the complete
patch ωi,k.
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operator −∆+ I which corresponds to the H1-norm. In exact arithmetic and
with a cut-off parameter ε = 0 changing the operator in the above construction
has an impact on the constants only. However, due to our cut-off parameter
ε we may obtain a different subspace span〈ϑ̃m

i,k〉 for different operators with
the same ε.

3.1 Error Bound

Due to our hierarchical enrichment we obtain a sequence of PPUM spaces V PU
k

with k = 0, . . . , J that contain all polynomials up to degree pk = mini pi,k on a
particular level k and all enrichment functions ηt (up to the cut-off parameter
ε) in the enrichment zone E on all levels k. Hence the global convergence rate
of our enriched PPUM is not limited by the regularity of the solution u. To
confirm this assertion let us consider the splitting

u = up + χ̃Eus

where up denotes the regular part of the solution u, us the singular part,
and χ̃E is a mollified characteristic function of the enrichment zone E which
contains all singular points of u, i.e. of us. Multiplication with 1 ≡

∑N
i=1 ϕi

yields

u =
N∑

i=1

ϕiup +
N∑

i=1

ϕiχ̃Eus.

Let us further consider the PPUM function (we drop the level index k for the
ease of notation in the following)

uPU :=
∑

E(ωi)=none

ϕi$i +
∑

E(ωi) 6=none

ϕi($i + ei)

where E(ωi) denotes the enrichment indicator given in (3.8), $i ∈ Ppi and
ei ∈ Ei. For the ease of notation let us assume that E(ωi) = none holds for
all patches ωi with i = 1, . . . ,M − 1 and E(ωi) 6= none holds for all patches
ωi with i = M, . . . , N so that we can write

uPU =
M−1∑
i=1

ϕi$i +
N∑

i=M

ϕi($i + ei).

With the assumption

supp(χ̃E) ∩
M−1⋃
i=1

ωi = ∅, i.e. χ̃E

M−1∑
i=1

ϕi ≡ 0,

we can write the analytic solution u as
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u =
M−1∑
i=1

ϕiup +
N∑

i=M

ϕi(up + χ̃Eus)

and obtain the error with respect to the PPUM function uPU as

uPU − u =
M−1∑
i=1

ϕi($i − up) +
N∑

i=M

ϕi(($i + ei)− (up + χ̃Eus)). (3.10)

By the triangle inequality we have

‖u− uPU‖ ≤ ‖
M−1∑
i=1

ϕi($i − up)‖

+‖
N∑

i=M

ϕi(($i + ei)− (up + χ̃Eus))‖.
(3.11)

The first term on the right-hand side corresponds to the error of a PPUM ap-
proximation of a regular function with polynomial local approximation spaces.
For the ease of notation let us assume h = diam(ωi) and pi = 1 for all
i = 1, . . . , N , then we can bound this error term with the help of the standard
PUM error analysis [2] by O(h) in the H1-norm, i.e.

‖
M−1∑
i=1

ϕi($i − up)‖H1 ≤ O(h).

To obtain an upper bound for the second term of (3.11)

JE := ‖
N∑

i=M

ϕi(($i + ei)− (up + χ̃Eus))‖

we consider the equality

up + χ̃Eus = up + (χ̃E − 1)us + us

and attain an upper bound of JE again by the triangle inequality

JE = ‖
N∑

i=M

ϕi(($i + ei)− (up + (χ̃E − 1)us + us))‖

≤ ‖
N∑

i=M

ϕi($i − (up + (χ̃E − 1)us))‖

+‖
N∑

i=M

ϕi(ei − us)‖.

The function up + (χ̃E − 1)us is regular since χ̃E = 1 in the vicinity of the
singular points of us. Hence, we can bound the first term on the right-hand
side
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‖
N∑

i=M

ϕi($i − (up + (χ̃E − 1)us))‖H1 ≤ O(h)

again by O(h). Assuming that the enrichment functions resolve the singular
part us of the solution u we can choose ei = us and so the second term
vanishes and we obtain the upper bound

‖
N∑

i=M

ϕi(($i + ei)− χ̃E(up + us))‖H1 ≤ O(h)

for the error in supp(χ̃E) ⊂ E. This yields the error bound

‖u− uPU‖H1 ≤ O(h)

for the global error on the domain Ω.
Note however that we can obtain a better estimate for the error in the

enrichment zone; i.e., the hierarchically enriched PPUM shows a kind of su-
perconvergence within the enrichment zone. To this end consider the case
us = 0, i.e., the approximation of a regular solution u = up by an enriched
PPUM. Then, JE becomes

JE = ‖
N∑

i=M

ϕi(($i + ei)− up))‖

and the standard error bound O(h) ignores all degrees of freedom collected
in ei which are associated with the restrictions ηt|ωi,k

of the enrichment func-
tions to the local patches. Globally, the functions ηt represent a specific (type
of) singularity. The restrictions ηt|ωi,k

however are regular functions (if the
patch does not contain the singular points of ηt) and can improve the local ap-
proximation substantially. Hence, a better bound for JE for regular solutions
u can be attained.

For a singular solution us 6= 0 we can utilize this observation by considering
the splitting of the enrichment part ei on a particular patch in two local
components ei = es

i + ep
i . On each patch ωi with i = M, . . . , N this splitting

can be chosen to balance the two error terms on the right-hand side of the
inequality

JE = ‖
N∑

i=M

ϕi(($i + ep
i + es

i )− (up + χ̃Eus))‖

≤ ‖
N∑

i=M

ϕi(($i + ep
i )− (up + (χ̃E − 1)us))‖

+‖
N∑

i=M

ϕi(es
i − us)‖.

This can yield a much smaller error since the regular function up +(χ̃E −1)us

is now approximated by more degrees of freedom, i.e., by all polynomials and
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a number of enrichment functions restricted to the local patch ωi. Hence, the
Galerkin solution which minimizes JE (i.e. minimizes (3.10) with respect to
the energy-norm) can show a much better convergence of O(h1+δ) with δ > 0
in the enrichment zone than the global O(h) behavior.

The impact of this observation is that the coefficients of the asymptotic
expansion of the solution, e.g. the stress intensity factors, can be extracted
from the solution with much higher accuracy and better convergence behavior
in the enrichment zone than the global error bound implies.

Remark 3. Note that due to our cut-off parameter ε > 0 our local function
spaces Vi,k may not contain all enrichment functions ηt

i,k. Especially we may
encounter the situation that a particular patch ωi,k+1 employs less enrichment
functions than its parent patch ωĩ,k ⊃ ωi,k+1; i.e., the local approximation
spaces Vi,k+1 and Vĩ,k are nonnested due to the cut-off. Hence, the parameter
δ in the discussion given above may not be constant on all levels and the
measured convergence rates can jump due to the cut-off.

4 Numerical Results

In this section we present some results of our numerical experiments using
the hierarchically enriched PPUM discussed above. To this end, we introduce
some shorthand notation for various norms of the error u−uPU, i.e., we define

eL∞ :=
‖u− uPU‖L∞

‖u‖L∞
, eL2 :=

‖u− uPU‖L2

‖u‖L2
, eH1 :=

‖u− uPU‖H1

‖u‖H1
. (4.1)

For each of these error norms we compute the respective algebraic convergence
rate ρ by considering the error norms of two consecutive levels l − 1 and l

ρ := −
log

(
‖u−uPU

l ‖
‖u−uPU

l−1‖

)
log( dofl

dofl−1
)

, where dofk :=
Nk∑
i=1

dim(Vi,k). (4.2)

Hence the optimal rate ρH1 of an uniformly h-refined sequence of spaces with
pi,k = p for all i = 1, . . . , Nk and k = 0, . . . , J for a regular solution u is
ρH1 = p

d where d denotes the spatial dimension of Ω ⊂ Rd. This corresponds
to the classical hγH1 notation with γH1 = ρH1d = p.

To assess the quality of our hierarchical enrichment scheme we consider
the simple model problem

−∆u = f in Ω = (−1, 1)2 ⊂ R2,
u = g on ∂Ω, (4.3)

where we choose f and g such that the analytic solution u is given by

u(x, y) =
√
r(sin

θ

2
+ cos

θ

2
)(1 + sin θ) + (x2 − 1) + (y2 − 1) + 1 (4.4)
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Table 1. Relative errors e (4.1) and convergence rates ρ (4.2) with respect to the
complete domain Ω.

J dof N eL∞ ρL∞ eL2 ρL2 eH1 ρH1
1 28 4 7.262−2 − 5.011−2 − 1.663−1 −
2 70 16 4.741−2 0.47 3.096−2 0.53 1.449−1 0.15
3 226 64 1.614−2 0.92 1.098−2 0.88 8.826−2 0.42
4 868 256 5.192−3 0.84 2.974−3 0.97 4.544−2 0.49
5 3400 1024 1.488−3 0.92 7.779−4 0.98 2.296−2 0.50
6 13456 4096 4.491−4 0.87 1.990−4 0.99 1.148−2 0.50
7 53214 16384 1.317−4 0.89 5.034−5 1.00 5.864−3 0.49
8 210036 65536 3.748−5 0.92 1.266−5 1.01 3.010−3 0.49
9 837176 262144 1.042−5 0.93 3.173−6 1.00 1.405−3 0.55
10 3288341 1048576 2.942−6 0.92 8.078−7 1.00 7.367−4 0.47

where r = r(x, y) and θ = θ(x, y) denote polar coordinates, see Figure 2. This
solution is discontinuous along the line

C := {(x, y) ∈ Ω |x ∈ (−1, 0) and y = 0}

and weakly singular at the point (0, 0). The model problem (4.3) with the
considered data f and g is essentially a scalar analogue of a linear elastic
fracture mechanics problem such as (3.1). Hence, we employ the enrichment
functions (3.2) and (3.3) with respect to the crack C in our computations.

We consider a sequence of uniformly refined covers Ck
Ω with α = 1.3 in

(2.1) and local polynomial spaces Ppi,k = P1 on all levels k = 1, . . . , J for the
discretization of (4.3). The number of patches on level k is given by Nk = 22k.
On the levels k ≤ 3 we use the geometric/modeling indicator eM (3.4) as
enrichment indicator, on the finer levels k > 3 we use the recursively defined
hierarchical enrichment indicator (3.8), see Section 3. Hence, the subdomain

Etip := (−0.25, 0.25)2 ⊂ Ω = (−1, 1)2 (4.5)

denotes the initial enrichment zone with respect to the point singularity of
(4.4) at (0, 0) on the levels k > 3, see Figure 4.5. The respective intermedi-
ate local enrichment spaces EI

i,k are defined by (3.5) and the resulting local
approximation spaces Vi,k by (3.9). The local preconditioner Π∗

i,k is based on
the local mass matrix and employs a cut-off parameter ε = 10−12.

Since the solution is singular at (0, 0) a classical uniform h-version without
enrichment (or just modeling enrichment) yields convergence rates (4.2) of
ρL2 = 2

3 and ρH1 = 1
3 only. Due to our hierarchical enrichment we anticipate

to recover the optimal convergence rates ρL2 = 1 and ρH1 = 1
2 globally. The

convergence behavior inside Etip can be better, see Section 3.1.
We assess the quality of our local preconditioner Π∗

i,k by studying the
convergence behavior of our multilevel solver [13,15,21] applied to the enriched
PPUM discretization using the transformed basis ϑ̃m

i,k locally. We denote the
respective linear system on level k by

Akũk = f̂k, (4.6)
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Fig. 2. Contour plot of the solution (4.4).
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Fig. 4. Contour plot of the error uPU
k − u for k = 5, 6, 7 (from left to right).

where ũk := (um
i,k) denotes the coefficient vector associated with the PPUM

function

uPU
k =

Nk∑
i=1

ϕi,k

di,k∑
m=1

um
i,kϑ̃

m
i,k

and f̂ denotes a moment vector with respect to the PPUM basis functions
〈ϕi,k ϑ̃

m
i,k〉 on level k.

We employ a standard V (1, 1)-cycle with block-Gauß–Seidel smoother
[13, 15, 21] for the iterative solution of (4.6). We consider three choices for
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Fig. 5. Convergence history for a V (1, 1)-cycle multilevel iteration with block-Gauß–
Seidel smoother and nested iteration initial guess (left: convergence of residual vector
(4.8) in the l2-norm, center: convergence of iteration update (4.7) in the L2-norm,
right: convergence of iteration update (4.7) in the energy-norm).

the initial guess: First, a nested iteration approach, where the solution uPU
k

obtained on level k is used as initial guess on level k + 1. Note that this ap-
proach avoids unphysical oscillations in the initial guess which can otherwise
spoil the convergence of the iterative solution process. Therefore, we also con-
sider the choices of a vanishing initial guess and a random valued initial guess
for the iterative solver to enforce these unphysical oscillations in the initial
guess. The condition number of the iteration matrix is bounded by a constant
if the asymptotic convergence rate of the iterative solver is independent of the
number of levels. In our context this also means that we find no deterioration
of the condition number due to the enrichment.

In Figure 3 we give the plots of the relative errors with respect to the L∞-
norm, the L2-norm, the H1-norm, and the energy-norm. From these plots and
the respective convergence rates ρL∞ , ρL2 , and ρH1 given in Table 1 we can
clearly observe the anticipated optimal global convergence of our hierarchically
enriched PPUM with ρL2 = 1 and ρH1 = 1

2 . On level k = 10 we obtain 7 digits
of relative accuracy in the L2-norm and 4 digits in the H1-norm. In Figure
4 we have depicted contour plots of the error uPU

k − u for levels k = 5, 6, 7
using the same scaling for all plots. We can clearly see the enrichment zone
Etip from these plots and observe the fast reduction of the error due to the
refinement.

The convergence behavior of our multilevel solver with a nested iteration
initial value is depicted in Figure 5. We consider the convergence of the iter-
ative update cPU

k,iter associated with the coefficient vector

c̃k,iter := ũk,iter − ũk,iter−1 (4.7)

with respect to the L2-norm and the energy-norm as well as the convergence
of the residual vector

r̂iter := f̂k −Akũk,iter (4.8)

in the l2-norm. All depicted lines are essentially parallel with a gradient of
−0.25 indicating that the convergence rate of our multilevel solver is 0.25 and
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Fig. 6. Convergence history for a V (1, 1)-cycle multilevel iteration with block-Gauß–
Seidel smoother and zero (upper row) and random (lower row) initial guess (left:
convergence of residual vector (4.8) in the l2-norm, center: convergence of iteration
update (4.7) in the L2-norm, right: convergence of iteration update (4.7) in the
energy-norm).

independent of the number of levels and thereby independent of the number
of enriched patches and the number of enrichment functions. In Figure 6 we
give the respective convergence behavior using a vanishing initial guess and a
random valued initial guess to enforce the presence of unphysical oscillations
in the (early) iterates. Again we observe that all depicted lines have essen-
tially the same gradient −0.25 which is identical to the lines given in Figure
5. Hence, there is no amplification of unphysical oscillations and our multi-
level solver converges with the same rate of 0.25 independent of the employed
initial value. The convergence behavior of our iterative multilevel solver is
independent of the number of patches and the number of enrichment degrees
of freedom. Therefore, the condition number of the iteration matrix is sta-
ble and independent of these parameters. Our hierarchical enrichment scheme
with local preconditioning avoids a deterioration of the condition number and
thereby a deterioration of the stability due to the enrichment completely.

Finally, let us focus on the local convergence properties of our enriched
PPUM discretization within the enrichment zone Etip (4.5). To this end, we
define three subdomains

E1 := Etip =
(
− 1

4
,
1
4

)2

, E2 :=
(
− 1

8
,
1
8

)2

, E2 :=
(
− 1

16
,

1
16

)2

(4.9)
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Table 2. Relative errors e (4.1) and convergence rates ρ (4.2) with respect to the
subsets E1, E2, and E3 from (4.9).

J dof N eL∞ ρL∞ eL2 ρL2 eH1 ρH1
with respect to E1

2 28 4 4.329−2 0.94 3.245−2 1.03 9.040−2 0.72
3 70 16 3.145−2 0.35 2.061−2 0.50 6.313−2 0.39
4 178 36 1.058−2 1.17 5.325−3 1.45 2.559−2 0.97
5 562 100 3.385−3 0.99 1.390−3 1.17 9.671−3 0.85
6 2002 324 1.018−3 0.95 3.534−4 1.08 3.495−3 0.80
7 7248 1156 2.965−4 0.96 8.867−5 1.07 1.272−3 0.79
8 25926 4356 8.477−5 0.98 2.217−5 1.09 4.629−4 0.79
9 100298 16900 2.387−5 0.94 5.539−6 1.03 1.577−4 0.80
10 340007 66564 6.648−6 1.05 1.745−6 0.95 3.933−4 −0.75

with respect to E2
3 28 4 1.659−2 1.23 1.178−2 1.33 3.599−2 1.00
4 112 16 4.200−3 0.99 3.707−3 0.83 1.216−2 0.78
5 252 36 1.209−3 1.54 8.846−4 1.77 4.271−3 1.29
6 700 100 3.040−4 1.35 2.133−4 1.39 1.472−3 1.04
7 2268 324 7.329−5 1.21 5.210−5 1.20 5.182−4 0.89
8 7500 1156 1.819−5 1.17 1.287−5 1.17 1.901−4 0.84
9 26576 4356 4.555−6 1.09 3.202−6 1.10 7.596−5 0.72
10 101194 16900 1.671−6 0.75 1.072−6 0.82 6.574−5 0.11

with respect to E3
4 28 4 3.567−3 1.69 2.447−3 1.80 1.096−2 1.35
5 112 16 9.241−4 0.97 7.710−4 0.83 4.124−3 0.70
6 252 36 2.651−4 1.54 1.803−4 1.79 1.471−3 1.27
7 700 100 6.244−5 1.42 4.338−5 1.39 5.247−4 1.01
8 2268 324 1.495−5 1.22 1.056−5 1.20 1.882−4 0.87
9 7376 1156 3.685−6 1.19 2.612−6 1.18 8.269−5 0.70
10 26470 4356 1.794−6 0.56 9.266−7 0.81 6.490−5 0.19

and measure the relative errors (4.1) and convergence rates (4.2) with respect
to E1, E2, and E3 of (4.9). According to Section 3.1 we anticipate to find
a faster convergence within the enrichment zone tip than for the complete
domain Ω. The plots given in Figure 7 and the measured rates displayed in
Table 2 clearly show this anticipated behavior. Note that we find about 6
digits of relative accuracy in the L2-norm and about 4 digits in the H1-norm
on E1, i.e. in the vicinity of the singularity. Up to level k = 9 we find ρH1 ≈ 0.8
within the subdomains E1, E2, and E3 whereas globally we have the optimal
rate ρH1 = 0.5. Hence, we obtain a convergence behavior better than O(h3/2)
in the enrichment zone with respect to the energy-norm using enriched linear
local approximation spaces only.

On level k = 10 however we find a sharp jump in the measured conver-
gence rates. For the H1-norm we even find an increase in the error on level
k = 10 compared with level k = 9. Recall from Remark 3 that we may not
expect the measured convergence rates to be constant due to the employed
cut-off in the construction of our projection Π∗

i,k which can yield nonnested
local approximation spaces. The projection operators Π∗

i,k employed in this
computation were based on the identity operator, i.e. on the L2-norm. Hence,
we have eliminated enrichment functions whose contribution to the approxi-
mation of the L2-norm is insubstantial. This however may not be true for the
H1-norm.
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Fig. 7. Convergence history of the measured relative errors e (4.1) with respect to
the subdomains E1 (left), E2 (center), and E3 (right) given in (4.9) with respect to
the L∞-norm, the L2-norm, the H1-norm, and the energy-norm on the respective
level (denoted by E in the legend). The upper row refers to the enriched PPUM
using a preconditioner based on the L2-norm, i.e., the local mass matrix, the lower
row refers to the enriched PPUM using a preconditioner based on the H1-norm, i.e.,
the local stiffness matrix.

According to Remark 2 changing the operator in the construction of Π∗
i,k

can impact the cut-off behavior. Constructing the projection Π∗
i,k based on

the operator −∆ + I yields an elimination of functions that contribute in-
substantially to the H1-norm. This can eliminate (or will at least reduce)
the jumps of the measured convergence rates for the H1-norm (and weaker
norms). From the numbers given in Table 3 where we employ a projection Π∗

i.k

based on the H1-norm we can clearly observe this anticipated improvement,
see also Figure 7. Now we have ρH1 > 0.5 on all levels and ρH1 ≈ 0.7 on level
k = 10 for E1. In Figure 8 we have depicted the enrichment patterns within
Etip for the projections based on the L2-norm and on the H1-norm. For each
patch ωi,k ⊂ Etip on level k = 9, 10 we have plotted the dimension of the local
approximation space Vi,k, i.e., the number of shape functions ϑ̃m

i,k after cut-
off. From these plots we can clearly observe that more enrichment functions
are present in the H1-based approach on level k = 10 than for the L2-based
projection. On level k = 9 the enrichment patterns are almost identical and
so are the measured errors, compare Table 2 and Table 3. On level k = 10
however we see a substantial reduction in degrees of freedom due to the cut-
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Fig. 8. Enrichment pattern on levels k = 9 (left) and k = 10 (right) within the
enrichment zone Etip. Color coded is the dimension of the local approximation space
dim(Vi,k) = card({ϑ̃m

i,k}) (denoted as ’resolution’ in the legend). The upper row
refers to the enriched PPUM using a preconditioner based on the L2-norm, i.e., the
local mass matrix, the lower row refers to the enriched PPUM using a preconditioner
based on the H1-norm, i.e., the local stiffness matrix. In both cases we used a cut-off
parameter of ε = 10−12.

off for the L2-based projection and almost no reduction in degrees of freedom
for the H1-based projection. Hence, the nonnestedness of the respective local
approximation spaces is as expected more severe for the L2-based projection
than for the H1-based projection.

In summary, the presented hierarchical enrichment scheme yields a globally
optimal convergence behavior of O(h) in the energy-norm for the uniform h-
version of the enriched PPUM without compromising the condition number
of the resulting stiffness matrix. This is achieved by a local preconditioner
which eliminates the near-null space of an arbitrary local operator. Within
the enrichment zone the hierarchically enriched PPUM yields a convergence
rate of O(h1+δ) in the energy-norm with δ > 0.

5 Concluding Remarks

We presented an automatic hierarchical enrichment scheme for the PPUM
which yields a stable discretization with optimal convergence properties glob-
ally and a kind of superconvergence within the employed enrichment zone.
The core ingredients of the presented approach are a geometric hierarchy of
the cover patches and a special local preconditioner. The construction of the
presented preconditioner relies on the flat-top property of the employed PU.
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Table 3. Relative errors e (4.1) and convergence rates ρ (4.2) with respect to the
subsets E1, E2, and E3 from (4.9). The local projections Π∗

i,k are based on the
H1-norm.

J dof N eL∞ ρL∞ eL2 ρL2 eH1 ρH1
with respect to E1

2 28 4 4.329−2 0.94 3.245−2 1.03 9.040−2 0.72
3 70 16 3.145−2 0.35 2.061−2 0.50 6.313−2 0.39
4 178 36 1.058−2 1.17 5.325−3 1.45 2.559−2 0.97
5 562 100 3.385−3 0.99 1.390−3 1.17 9.671−3 0.85
6 2002 324 1.018−3 0.95 3.534−4 1.08 3.495−3 0.80
7 7570 1156 2.974−4 0.93 8.867−5 1.04 1.270−3 0.76
8 27516 4356 8.477−5 0.97 2.217−5 1.07 4.613−4 0.78
9 101490 16900 2.387−5 0.97 5.539−6 1.06 1.548−4 0.84
10 397538 66564 6.632−6 0.94 1.384−6 1.02 5.701−5 0.73

with respect to E2
3 28 4 1.659−2 1.23 1.178−2 1.33 3.599−2 1.00
4 112 16 4.200−3 0.99 3.707−3 0.83 1.216−2 0.78
5 252 36 1.209−3 1.54 8.846−4 1.77 4.271−3 1.29
6 700 100 3.040−4 1.35 2.133−4 1.39 1.472−3 1.04
7 2268 324 7.327−5 1.21 5.209−5 1.20 5.182−4 0.89
8 8092 1156 1.819−5 1.10 1.287−5 1.10 1.849−4 0.81
9 27768 4356 4.556−6 1.12 3.200−6 1.13 6.193−5 0.89
10 102632 16900 1.142−6 1.06 7.982−7 1.06 2.702−5 0.63

with respect to E3
4 28 4 3.567−3 1.69 2.447−3 1.80 1.096−2 1.35
5 112 16 9.241−4 0.97 7.710−4 0.83 4.124−3 0.70
6 252 36 2.651−4 1.54 1.803−4 1.79 1.471−3 1.27
7 700 100 6.244−5 1.42 4.337−5 1.39 5.247−4 1.01
8 2268 324 1.495−5 1.22 1.056−5 1.20 1.882−4 0.87
9 8092 1156 3.685−6 1.10 2.606−6 1.10 6.133−5 0.88
10 27368 4356 9.081−7 1.15 6.484−7 1.14 3.038−5 0.58
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