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Abstract

In this paper a fast solver for discrete free boundary value problems which is based on
hierarchical higher order discretizations is presented. The numerical method consists
of a finite element discretization with B–spline ansatz functions of arbitrary degree
combined with a monotone multigrid method for the efficient solution of the resulting
discrete system. In particular, the potential of the scheme in the fast and accurate
computation of American style option prices in the Black–Scholes framework and of
their derivatives with respect to the underlying is investigated. Due to the higher order
discretization, the derivatives, also called Greek letters, can be stably and accurately
determined via direct differentiation of the basis functions. Considering the valuation
of plain vanilla American stock options, we show that our solution method is compet-
itive to the best schemes proposed in the literature when accurate approximations to
the derivatives are required. It provides the first multigrid approach based on higher
order basis functions which is directly applicable to American option pricing.

Keywords: American options, Greek letters, free boundary value problems, linear com-
plementary problems, finite elements, cardinal higher order B–splines, monotone multigrid
methods
AMS-Classification: 65M55, 65N30, 35J85 65D07, 65D99, 90C33

1 Introduction

The overwhelming majority of all traded options are of American–style. However, no
general closed–form solution for their valuation is known. Therefore, one has to resort to
analytical approximations or to numerical pricing methods. Here, one has to keep in mind
that often not only fair option prices are required, but also accurate approximations to
the derivatives of the option price, e.g., with respect to time or to the underlying. The
derivatives, also called Greek letters or Greeks, play a crucial role as hedge parameters
in the analysis of market risks. They can – in contrast to option prices – not directly
be observed in the market. This fact is further increasing the demand for numerical
schemes for their approximation. Usually, the Greek letters are computed by numerical
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differentiation of option values. Here, the option values must be approximated up to high
accuracy in order to obtain stable and reliable results.

In the Black–Scholes framework [BS], the valuation of American options requires the
solution of a particular free boundary value problem. A finite difference or finite element
discretization leads to a discrete linear complementary problem which can also be regarded
as an obstacle problem. Since the work of [BC], it is known that the most efficient
solvers for this kind of problems are multigrid techniques. However, due to inconsistent
approximations of the free boundary on coarser grids, the scheme from [BC], called PFAS
is sometimes lacking stability. Moreover, no convergence proof is known.

This disadvantage could be resolved by the work of Kornhuber [Ko1] with the introduction
of monotone multigrid methods (MMG). In the last decade, they have been applied in
[Ko1, Ko2, Kr] with great success to problems from continuum mechanics. Their key
ingredients are sophisticated restriction operators for obstacle functions which arise from
a consistent handling of the free boundary, and a special truncation of the basis functions.
Unfortunately, the method is restricted to continuous piecewise linear functions, also called
hat functions. To our knowledge, this also applies to all other multigrid approaches (e.g.,
[BC, HM, Ho, Ko1, Ko2, Kr, Ma, Oo, Tai]) for linear complementary problems proposed in
the literature. Taking derivatives of approximations obtained by hat functions, however,
will lead to unstable and misleading results.

The main difficulty in generalizing monotone multigrid methods to higher order basis
functions is a suitable handling of the obstacle condition of the problem. Via the use of a
B–spline basis, this difficulty could be recently resolved in a companion paper [HK], which
led to the first generalization of the monotone multigrid method to arbitrary smooth basis
functions. Using arguments of [Ko1], global convergence and optimal complexity of the
B–spline–based monotone multigrid method could be proved. By construction, one can
expect special robustness of the scheme and full multigrid efficiency in the asymptotic
range. Moreover, the use of smooth basis functions admits a direct determination of the
derivatives of the solution.

In this paper, we apply the B–spline–based monotone multigrid method in order to com-
pute American option prices as well as their derivatives with respect to the underlying up
to high accuracy and investigate the performance of the scheme by numerical examples.

The paper is structured as follows. In Section 2, we apply a finite difference discretization
in time and a higher order B–spline-based finite element discretization in space to the
free boundary problem which describes the fair price of an American option in the Black–
Scholes framework. In Section 3, we generalize the projective Gauss–Seidel scheme to
higher order basis functions and illustrate the monotone multigrid method from [Ko1] as
a fast solver for the discrete form. Finally, in Section 4, the potential of the new scheme
for the approximation of plain vanilla American option price sensitivities is demonstrated
by numerical experiments. We show that our scheme is competitive to the best schemes
proposed the literature when accurate approximations to the derivatives of the option
value are required. In Section 5, we indicate some possible extensions of our scheme to
higher dimensional option pricing problems, to adaptive grid refinements and to higher
order time discretizations.
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2 The Computation of American Price Sensitivities via a
Higher Order Finite Elements Method

In this section, the free boundary value problem which describes the fair price of an Amer-
ican option is introduced. A weak form is derived and discretized with finite differences in
time and finite elements in space. This leads to a discrete linear complementary problem
which is solved by a projective variant of the Gauss–Seidel relaxation. By using sufficiently
smooth basis functions, the derivatives of the option value can be determined by direct
differentiation of the finite element ansatz functions.

2.1 The Pricing of American Options

Options are financial contracts that give its owner the right, but not the obligation, to
buy (call option) respectively to sell (put option) an underlying security (e.g. an asset) at
specified times in the future for an agreed strike price K. European options can only be
exercised at the maturity date T , whereas American options can be exercised at any time
at or before the maturity date. For a plain vanilla put option we have at time t = T a
payoff of

(1) H(S, T ) = max{0,K − S(T )}.

The enormous success and systematic trade of financial derivatives in the recent years led to
the need for fast and accurate pricing techniques. As options are getting more and more
complex and their valuation more and more complicated, sophisticated computational
methods have been developed and continue to be an active field of research. For traders
not only the value V = V (S, t) of an option at time t < T is important, but also the
derivatives, e.g., with respect to time, to the underlying or to volatility, as they play a
crucial role in the analysis of market risks. In this paper we restrict ourself to the space
derivatives

Delta :=
∂V

∂S
and Gamma :=

∂2V

∂S2
.

In the famous and well–established Black–Scholes model [BS] the stochastic process gen-
erating the price S(t) of the underlying asset is modeled as a geometric Brownian motion

dS(t) = µS(t) dt + σ S(t) dB(t).

As usual, B(t) denotes a one–dimensional standard Brownian motion. The parameters
µ ∈ R and σ ∈ R+ are the drift and the volatility of the stochastic process S(t). Under
additional assumptions on the financial market and the central assumption of absence of
arbitrage, it is well–known that the fair price of a European option satisfies the linear,
instationary, backward partial differential equation

(2) LV :=
∂

∂t
V +

σ2

2
S2 ∂2

∂S2
V + rS

∂

∂S
V − rV = 0,

where r ∈ R+ denotes the interest rate for a riskless investment. Taking suitable boundary
conditions into account, an analytic solution of the Black–Scholes equation (2) can be
derived and is given by the famous Black–Scholes formula [BS].
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As American options can – in contrast to European ones – be exercised at all times
t ≤ T , their valuation is more involved. For all t ≤ T not only the option value must be
determined but also whether or not the option should be exercised. In the Black–Scholes
framework, the fair value of an American option can be determined by the solution of a
free boundary value problem of the Black–Scholes equation (2) in the domain R+ × [0, T )
(cf. [WHD]). We formulate it for the case of an American put option, i.e., for the payoff
H(S, t) as in (1).

Problem 2.1 (Free Boundary Problem) Find V = V (S, t) and Sf = Sf (t), such that

LV (S, t) = 0 for S > Sf and 0 ≤ t < T,

V (S, t) = H(S, t) for S ≤ Sf and 0 ≤ t < T,

with the boundary data

V (S, t) = 0 for S →∞ and 0 ≤ t < T,

the final data
V (S, T ) = H(S, T ) for S ≥ 0

and the conditions, that V and ∂V /∂S are continuous on the free boundary Sf .

Note that the boundary condition V (S, t) = K for S → 0 is already implied by the
condition V (S, t) = H(S, t) for S ≤ Sf . The free boundary Sf , which is part of the
solution, separates the part of the domain where it is optimal to exercise the option
immediately from the part where it is favorable to keep the option. It therefore describes
the optimal exercise price of the option. Note that the right of early exercise leads to the
condition V (S, t) ≥ H(S, t) for all S > 0 and 0 ≤ t ≤ T and can therefore also be regarded
as an lower obstacle condition to the American option price V .
Despite much effort, a closed–form solution of Problem 2.1 is not yet known except for the
infinite horizon case [Mc]. Thus, the derivation of analytical approximations or numerical
methods for the valuation of American options is still an active field of research.
Due to their flexibility and simplicity the most common approaches used by financial
institutions are binomial methods introduced by [CRR]. There are many extensions and
improvements on this approach (e.g., [Bn, By, FG, BG2, LR]). Analytical approximations
include the works [Mi, BW, BjS, Ro, Ge, Wh, GJ]. Other approaches include Monte Carlo
simulation (see [BG3] for a review), the method of lines [Me, CF], penalty methods [FV]
and techniques from linear optimization theory [DH]. A discretization of the free boundary
problem by finite difference methods was initially proposed by [BrS] and is also considered
in [GS, HW, TR]. Finite element methods were used by [WHD, FVZ, ZS, ZFV]. Note
that finite element or finite difference approaches provide an approximation to the whole
surface, which is defined by all option values V (S, t) for S > 0 and 0 ≤ t ≤ T , whereas most
of the other methods approximate just a certain single value V (S0, 0). The computation
of derivatives of American option prices is explicitly considered in [C, BG1, PV, R, WW].
In [WW], an analytic approximation [BW], a finite difference method with hat functions
[BrS] and a binomial tree in the variant of [LR], called Leisen–Reimer trees, are compared
with regard to their performance in approximating American option price sensitivities.
The author concludes that Leisen–Reimer trees are the superior method.
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One can generalize the standard Black–Scholes model by the assumption of stochastic
volatility (cf., e.g., [BR]). This way, a free boundary value problem of the above form
is obtained, but in two space dimensions. Solutions via finite difference discretization
combined with the PFAS multigrid scheme from [BC] are discussed in [CP, Oo]. Since
the work shows the need for higher order Black–Scholes solvers, we also mention the
asymptotic model [FPS] to price American options with stochastic volatility, which is
based on accurate approximations to the third derivative ∂3V/∂S3 of the solution V of an
one–dimensional Black–Scholes model.

2.2 Transformation and Weak Formulation

The starting point of finite element methods is a weak formulation of Problem 2.1. The
first step in the derivation, which can be found in more detail in [Hz, WHD], is a refor-
mulation into a linear complementary problem such that the free boundary does not show
up explicitly anymore. Then, the nonlinear transformations

(3) S = Kex, t = T − 2 τ

σ2
, V (S, t) = K e−

x
2
(q−1)−( 1

4
(q−1)2+q)τ y(x, τ),

with q := 2r/σ2, are used to transform the Black–Scholes equation (2) into the parabolic
heat equation

(4)
∂y

∂τ
− ∂2y

∂x2
= 0

in the new variable y(x, τ) in order to avoid numerical complications with the treatment
of the convective term and to simplify the implementation. The transformation of the
payoff function H(S, t) gives the transformed payoff function

(5) g(x, τ) := e
1
4
(q+1)2τ max{e

x
2
(q−1) − e

x
2
(q+1), 0}.

The transformation of the boundary data leads to

(6) lim
x→±∞

y(x, τ) = lim
x→±∞

g(x, τ), y(x, 0) = g(x, 0).

To simplify the treatment of the boundary conditions, we reduce the problem (in contrast
to [WHD]) to homogeneous boundary data by substituting

(7) u(x, τ) := y(x, τ)− g(x, τ).

In the next step, the unbounded transformed domain R× (0, σ2T/2] is substituted by the
computational domain

Ω := Ix × Iτ := [xmin, xmax]× (0, σ2T/2] ⊂ R2

with fixed values xmin < 0 < xmax. In [JLL], it is proved that the resulting localization
error decreases uniformly for increasing Ω.
Finally, a weak formulation can be derived by multiplying the transformed problem by a
test function and integrating by parts. The obstacle condition as well as the homogeneous
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boundary and initial conditions are integrated in the definition of the set of admissible
test functions

K := {v ∈ H(Ω) : v(x, τ) ≥ 0, v(xmin, τ) = v(xmax, τ) = 0, v(x, 0) = 0 for all (x, τ) ∈ Ω} ,

where H(Ω) denotes the Sobolev space of all functions v = v(x, τ) ∈ L2(Ω), which
are weakly differentiable with respect to x and strongly differentiable with respect to τ .
The transformed solution u(x, τ) can now be determined by the solution of the following
parabolic variational inequality, where 〈·, ·〉 denotes the L2– inner product in Ix.

Problem 2.2 (Weak Formulation) Find u ∈ K, such that

〈∂u

∂τ
, v − u〉+ a(u, v − u) ≥ f(v − u) for all v ∈ K,

where a : H(Ω)×H(Ω) → R and f : H(Ω) → R are defined by

a(u, v) :=
∫ xmax

xmin

∂

∂x
u

∂

∂x
v dx, f(v) := −

∫ xmax

xmin

∂g

∂τ
v +

∂g

∂x

∂v

∂x
dx.

Since the bilinear form a(·, ·) is symmetric and positive definite, Problem 2.2 admits a
unique solution u ∈ K (cf. [EO]). From Problem 2.2 the American option value V can
finally be derived by a back transformation of u via (7) and (3).

2.3 Discretization

We discretize Problem 2.2 by finite differences in time and finite elements in space. Due
to the demand of accurate approximations to the derivatives we use a B–spline basis of
arbitrarily order k for the space discretization. As we show in subsection 2.3.2, this basis
also has advantages in the handling of the obstacle condition.

2.3.1 Time discretization

Let τm := m ∆τ , m = 0, . . . , M , M ∈ N be an equidistant discretization of time interval Iτ

with step size ∆τ := 1
2σ2T/M . Let further H1

0 (Ix) denote the Sobolev space of functions
with zero trace on the boundary and define um := u(·, τm) ∈ H1

0 (Ix). A finite difference
discretization of the time derivative in Problem 2.2 by a θ–scheme, which interpolates
between an explicit (θ = 0) and an implicit (θ = 1) representation, leads to an elliptic
variational inequality in each time step.

Problem 2.3 (Semi–discrete Form) Find um+1 ∈ K, such that

a∆τ (um+1, v − um+1) ≥ fm(v − um+1) for all v ∈ K

where
K :=

{
v ∈ H1

0 (Ix) : v(x) ≥ 0 for all x ∈ Ix

}
and a∆τ : H1

0 (Ix)×H1
0 (Ix) → R and fm : H1

0 (Ix) → R are given by

a∆τ (u, v) :=
∫ xmax

xmin

u v +θ∆τ
∂u

∂x

∂v

∂x
dx, fm(v) :=∆τf(v)+

∫ xmax

xmin

um v+
[
(θ − 1)∆τ

∂um

∂x

]
∂v

∂x
dx.

Note that fm depends on the solution um ∈ H1
0 (Ix) of the previous time step. Specific for

θ = 1
2 the Crank–Nicholson scheme is obtained. In [BHR] the regularity um+1 ∈ H5/2−ε

is shown for arbitrary ε > 0.
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2.3.2 A B–spline–based Finite Element Discretization in Space

Now, a higher order finite element discretization is applied to Problem 2.3, which is based
on cardinal B–spline functions. Let xi := xmin + i h, i = 0, . . . , N − 1, N ∈ N, be
an equidistant discretization of the space interval Ix := [xmin, xmax] with step size h :=
(xmax − xmin)/(N − 1) and let Sh ⊂ H1

0 (Ix) be a finite dimensional space of piecewise
polynomials. If piecewise linear functions vh ∈ Sh are used for the space discretization,
the side condition

(8) vh(x) ≥ 0 for all x ∈ Ix

from Problem 2.3 is obviously satisfied if the set of pointwise inequalities

(9) vh(xi) ≥ 0 for all i = 0, . . . , N − 1

hold. Trying to generalize this idea to piecewise functions vh of higher degree, one is
confronted with the problem that for given x ∈ [xi, xi+1] the estimate

(10) min {vh(xi), vh(xi+1)} ≤ vh(x) ≤ max {vh(xi), vh(xi+1)}

is not valid anymore. This shows that controlling function values on grid points does not
suffice to ensure a side condition of the form (8) in the higher order case and explains why
higher order nodal Lagrange basis functions are not suited for the problem at issue.
Instead, we propose here a construction using B–splines as higher order basis functions,
which compares B–spline expansion coefficients instead of function values, and heavily
profits from the fact that B–splines are nonnegative. More information on finite element
methods for boundary value problems with B–splines can, e.g., be found in [Hg]. There, a
modification of the B–spline basis, which leads to so called web–splines, is used to handle
general domains and general boundary conditions. Due to the homogeneous boundary
conditions (the solution is even zero in a neighborhood of the boundary as shown in [Hz])
and due to the rectangular domain, such a modification, however, is not necessary for the
problem under consideration. For readers’ convenience, we recall the relevant facts about
B–splines from [Bo].

Definition 2.4 (B–splines) For k ∈ N and n = N + k− 1 let ∆h := {θi}i=1,...,n+k be an
equidistant expanded knot sequence in the interval Ix with grid spacing h of the form

(11) θ1 = . . . = θk = xmin < θk+1 < . . . < θn < xmax = θn+1 = . . . = θn+k

with θk+i = xi. Then the B–splines Ni,k,∆h
of order k are recursively defined by

(12)

Ni,1,∆h
(x) =

{
1, if x ∈ [θi, θi+1)
0, else

Ni,k,∆h
(x) =

x− θi

(k − 1) h
Ni,k−1,∆h

(x) +
θi+k − x

(k − 1) h
Ni+1,k−1,∆h

(x).

for i = 1, . . . , n.
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We also use the abbreviation Ni,k = Ni,k,∆h
, when only one grid is considered. It is known

that B–splines have the properties supp Ni,k ⊆ [θi, θi+k] (local support), Ni,k(x) ≥ 0 for
all x ∈ Ix (nonnegativity) and Ni,k ∈ Ck−2(Ix) (differentiability). Moreover, the set
Σh := {N1,k, . . . , Nn,k} constitutes a locally independent and unconditionally stable basis
with respect to to ‖ · ‖Lp , 1 ≤ p ≤ ∞, for the finite dimensional space Nk,∆h

:= spanΣh

of the splines of order k.

Lemma 2.5 If the B–spline coefficients vi, gi of two B–spline functions vh, gh ∈ Nk,∆h

satisfy vi ≥ gi for all i = 1, . . . , n, then vh(x) ≥ gh(x) holds for all x ∈ Ix.

Proof: Using the representation

vh =
n∑

i=1

vi Ni,k, gh =
n∑

i=1

gi Ni,k

and the nonnegativity Ni,k(x) ≥ 0 for all x ∈ Ix, we deduce

vh(x)− gh(x) =
n∑

i=1

(vi − gi) Ni,k(x) ≥ 0 for all x ∈ Ix.

2

Here and below, we use the subscript i in vi = (vh)i to denote B–spline expansion coeffi-
cients and boldface letters v to denote B–spline coefficient vectors v := (v1, . . . , vn)T ∈ Rn.
By applying Lemma 2.5 with gh = 0, the side condition (8) can now be ensured for
B–spline functions of general order k similar to (9) by the conditions

(13) vi ≥ 0 for all i = 1, . . . , n.

Choosing Sh := Nk,∆h
the space of B–splines of order k and approximating the exact

solution um+1 ∈ H1
0 (Ix) of Problem 2.3 by a discrete function um+1

h ∈ Sh with the B–
spline coefficient vector um+1 ∈ Rn, the obstacle condition um+1 ≥ 0 in Ix of Problem 2.3
can now be replaced by the pointwise side condition um+1 ≥ 0. Following the computations
of [Hz, WHD], one therefore obtains the following discrete form of Problem 2.2, which has
to be solved in each time step.

Problem 2.6 (Discrete Variational Inequality) Find 0 ≤ um+1 ∈ Rn, such that

(14) (v − um+1)T
(
Cum+1 − bm

)
≥ 0

hold for all 0 ≤ v ∈ Rn. Here the matrix C = (Ci,j) ∈ Rn×n is defined by

(15) Ci,j :=
∫ xmax

xmin

Ni,kNj,kdx + θ∆τ

∫ xmax

xmin

N ′
i,kN

′
j,kdx =: Bi,j + θ∆τAi,j

where N ′
i,k := ∂Ni,k/∂x. The right hand side bm is given by

bm := ∆τ rm + (B + (θ − 1)∆τA) um

where

(16) rm
i := −

∫ xmax

xmin

∂g

∂τ
(x, τm) Ni,k(x) +

∂g

∂x
(x, τm) N ′

i,k(x)dx.
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For the solution of Problem 2.6 the error estimates ‖um+1−um+1
h ‖1 = O(h) and ‖um+1−

um+1
h ‖1 = O(h3/2−ε) in the H1– Sobolev norm are proved in [BHR], provided Sh is the

space of continuous piecewise linear resp. piecewise quadratic functions. Note that Prob-
lem 2.6 can be equivalently written in the form of the linear complementary problem

(17)

Cum+1 ≥ b
um+1 ≥ 0

(um+1)T
(
Cum+1 − b

)
= 0

and be regarded as an obstacle problem with the zero function as obstacle (cf. [EO]) .

Remark 2.7 Note that this solution approach can immediately be adapted to the pricing
of European and Bermudan options (cf. [WHD]). In each time step, where prior exercise
of the option is not possible, the variational inequality (14) must just be replaced by the
corresponding variational equality.

In the case of equidistant grids, simple explicit formulas for the entries Ai,j and Bi,j of
the stiffness matrix A and the mass matrix B from (15) can be found in [Hg].
To compute the vector rm ∈ Rn at time step m from (16), the transformed payoff function
g(x, τm) ∈ H1(Ix) at time step τm is approximated by a function gm

h ∈ Sh and expanded
as

(18) gm
h (x) =

n∑
i=1

gm
i Ni,k(x).

By substituting this representation into (16), one derives the discrete right hand side

(19) rm =
(
Cgm+1 − (B + (θ − 1)∆τA) gm

)
/∆τ.

By the approximation properties of B–splines (see [Bo]) the resulting approximation error
is of same order as the discretization error. Alternatively, an explicit formula for the
computation of rm in the special case of equidistant grids and the function g from (5) is
given in [Hz].

2.4 Approximations to the Greek Letters

The use of smooth basis functions in the finite element approach is motivated by the
possibility to determine the space derivatives of the solution by direct differentiation of
the ansatz functions. This way, numerical differentiation can be avoided and a much
higher accuracy can be expected. This will indeed be confirmed in Section 4 by numerical
examples.

Lemma 2.8 For fixed τ , let y(x, τ) be the solution of the heat equation (4) with boundary
data (6). Then the Greeks letters Delta and Gamma are given by the identities

∂ V (S, t)
∂S

= e−
x
2
(q+1)−( 1

4
(q−1)2+q)τ

(
y′(x, τ)− 1

2
(q − 1) y(x, τ)

)
,

∂2 V (S, t)
∂S2

= e−
x
2
(q+3)−( 1

4
(q−1)2+q)τ

(
y′′(x, τ)− q y′(x, τ) +

1
4
(q2 − 1) y(x, τ)

)
/K.

9



Proof: Using the transformations (3) and the identity ∂S/∂x = Kex, the assertion can
easily be verified by the product rule of differentiation. 2

For τ = τm, y(x, τm) and the partial derivatives y(j)(x, τm) can be obtained from the finite
element solution um

h (x) of Problem 2.6 using (7) and (18). The function values um
h (x)

and the derivatives (um
h )(j)(x) can efficiently and stably be determined by the well–known

recursion formulas for the valuation of B–splines and their derivatives (cf. [Bo]), provided
B–splines of order k ≥ j + 2 are used.

3 Fast Solution of the discrete form

In this section we present a fast solver for Problem 2.6. In the first subsection, the
projective Gauss–Seidel scheme from [Cr] is generalized to a B–spline basis. This scheme
is then used as smoothing component within a multigrid scheme to obtain convergence
rates which are independent of the grid spacing h.

3.1 B–spline–based Projective Gauss–Seidel Schemes

In order to emphasize the h–dependency, we adapt our notation and write the discrete
linear complementary problem (17) in the operator form

(20)
Lhuh ≥ fh,

uh ≥ gh,

(uh − gh)(Lhuh − fh) = 0

with fh, gh, uh ∈ Sh and the linear operator Lh. Note that the zero obstacle function
in (17) is replaced by a general discrete obstacle gh ∈ Sh, and that the time index m is
omitted for the sake of clarity. Since the operator Lh, which corresponds to the matrix
C from (15), is symmetric and positive definite, the linear complementary problem (20)
can be solved by the projective Gauss–Seidel scheme, provided Sh denotes the space of
continuous piecewise linear functions (cf. [Cr]). Given an iterate uν

h in the ν–th iteration,
a standard Gauss–Seidel sweep

ūν
h := S (uν

h)

is supplemented by a projection
uν+1

h := P ūν
h

in order to satisfy the side condition uν+1
h ≥ gh. For each grid point xi ∈ Ix, the projection

of a piecewise linear function vh is usually performed by

(21) P vh(xi) := max{vh(xi), gh(xi)}.

In order to generalize the projection to higher order functions vh, one is, however, again
confronted by the problem that the estimate (10) is not valid anymore. Once more, the
difficulty can be resolved by the use of a B–spline basis. In that case, the projection can
be realized by Lemma 2.5 similar to (21) but involving B–spline coefficients vi by setting

(22) P vi := max{vi, gi}
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for i = 1, . . . , n. Because of the tensor–product structure of the discrete solution set
{v ∈ Rn : vi ≥ gi for i = 1, . . . , n} ⊂ Rn, the convergence of the resulting projective Gauss–
Seidel scheme follows using the same arguments as in [Cr]. Furthermore, under the as-
sumption of no degeneracy (cf. [Cr, EO]), which is satisfied for Problem 2.6, it follows
that the contact set of the solution uh, defined by all coefficients ui for which equality
holds, is identified after a finite number of iterations. This implies that the asymptotic
convergence rate of the projective Gauss–Seidel scheme is of the order 1−O(h2), as it is
well–known for the Gauss–Seidel scheme in the unconstrained case. Therefore, one suffers
under unsatisfactorily slow convergence rates for small grid spacings h.

3.2 The Monotone Multigrid Algorithm (MMG)

For boundary value problems, it is well-known that the disadvantage of the h–dependency
of the Gauss–Seidel relaxation can be overcome by multigrid techniques. This also applies
to variational inequalities and linear complementary problems as it is demonstrated by a
wide range of literature (e.g. [BC, HM, Ho, Ko1, Ko2, Kr, Ma, Oo, CP, Tai]). However,
all cited works are restricted to discretizations with piecewise linear functions. This gap
was closed in [HK], where the monotone multigrid method (MMG) from [Ko1] could be
generalized to smooth basis functions by using a B–spline basis. If we introduce a nested
sequence of finite–dimensional spaces

S1 ⊂ S2 ⊂, . . . ,⊂ SL ⊂ H1
0 (Ix)

with equidistant grids ∆` := ∆h`
, ` = 1, . . . , L, L ∈ N, and grid spacings h`−1 := 2 h`,

the monotone multigrid method can be implemented as a variant of a standard multigrid
scheme by adding a projection step as in (22) and employing special restriction operators
r, r̃ for the inter–grid transfer.

Algorithm 3.1 MMG` Let uν
` := uν

h`
∈ S` be a given approximation in the ν–th cycle

on level ` ≥ 1. Then, the MMG algorithm consists of the following steps:

1. A–priori–smoothing: uν,1
` := (P ◦ S)η1(uν

` ).

2. Coarse grid correction: d` := f` − L`u
ν,1
` ,

f`−1 := rd`,
g`−1 := r̃(g` − uν,1

` ),
L`−1 := rL`p.

If ` = 1, exactly solve the linear complementary problem

Lh`−1
v`−1 ≥ f`−1,
v`−1 ≥ g`−1,

(v`−1 − g`−1)(L`−1v`−1 − f`−1) = 0.

If ` > 1, do γ steps of MMG`−1 with start value u0
`−1 := 0 and solution v`−1.

Set uν,2
` := uν,1

` + p v`−1.
3. A–posteriori–smoothing: uν+1

` := (P ◦ S)η2(uν,2
` ).

The number of a–priori and a–posteriori–smoothing steps is denoted by η1 and η2, respec-
tively. For γ = 1 one obtains a V–cycle, for γ = 2 a W–cycle iteration. To apply Algorithm
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3.1 to the valuation of American options (i.e., to Problem 2.6), we choose the different
components as follows: The spaces S` := Nk,∆`

are defined as the spaces of B–splines of
order k as motivated before. The a–priori and the a–posteriori–smoothing steps P ◦ S
are realized as in (22) by the projective Gauss–Seidel scheme. The prolongation operator
p = p`

`+1 : S` → S`+1 is defined by the B–spline refinement relation (cf. [Bo])

Ni,k,∆`
=

k∑
j=0

21−k

(
k

j

)
N2i−1+j,k,∆`+1

.

Following [Ha2], we choose the restriction r = r`+1
` : S`+1 → S`, which is used to transfer

the defect d` to coarser grids, as the adjoint of the prolongation p. In our case, one
obtains the weighted restriction r = 1

2 p. In order to obtain the coarse grid obstacle
function g`−1 := r̃(g` − uν,1

` ), a special restriction operator r̃ = r̃`+1
` : S`+1 → S` should

be used, which differs from r in general and leads to monotone approximations of the
obstacle. As we show in the next section, the monotonicity of restriction operators leads
to admissible new iterates uν,2

` in the sense that the side condition

(23) uν,2
` ≥ g`

is satisfied. This is one of the underlying ideas of monotone multigrid methods and leads
to special robustness of the scheme.

Remark 3.2 The convergence of the scheme can be significantly further accelerated if
the coarse grid basis functions are adapted in each iteration step to the actual position of
the free boundary by a suitable truncation operator. This leads to the truncated version
(TrMMG) of the monotone multigrid method (cf. [Ko1, HK]).

3.2.1 The Construction of Monotone Obstacle Approximations

In this section we summarize the main results from [HK] with regard to the construction of
monotone restriction operators r̃. The construction is not obvious for B–splines of general
order k. It is based on the nonnegativity and on the refinement properties of B–splines.
In the following, we fix two levels ` and ` + 1 and expand the lower obstacle function
S̃ := g` − uν,1

` ∈ S` and its approximation S := g`−1 ∈ S`−1 with B–spline coefficient
vectors c̃ ∈ Rn` and c ∈ Rn`−1 as

S̃ =
n∑̀
i=1

c̃i Ni,k,∆`
=: c̃TNk,∆`

, S =
n`−1∑
i=1

ci Ni,k,∆`−1
=: cT Nk,∆`−1

,

where n` depends on the number of grid points in ∆` and n`−1 = (n` − 1 + k)/2.

Definition 3.3 (Monotone Coarse Grid Approximation) A function S ∈ S`−1 is
called an upper monotone coarse grid approximation to S̃ ∈ S` if S(x) ≥ S̃(x) holds for
all x ∈ Ix.

Remark 3.4 The condition (23) is satisfied if g`−1 is an upper monotone coarse grid
approximation to g` − uν,1

` , since

uν,2
` := uν,1

` + p v`−1 ≥ uν,1
` + p g`−1 ≥ uν,1

` + g` − uν,1
` ≥ g`.
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For hat functions such approximations are constructed in [Ma] and [Ko1]. For B–splines
of general order k monotone coarse grid approximations can be obtained by the following
proposition, which we cite from [HK].

Proposition 3.5 The B–spline Lk := qT
k Nk,∆`−1

with expansion coefficients

(24) qk,i := max {c̃2i−k, . . . , c̃2i} for i = 1, . . . , n`−1

is a monotone upper coarse grid approximation to the B–spline S̃ = c̃T Nk,∆`
.

Within a monotone multigrid scheme, it can be expected that better approximations of the
obstacle function on coarse grids lead to more efficient coarse grid corrections and thus to a
faster convergence. As shown in [HK], the approximations Lk can further be improved via
a linear optimization formulation. By Fourier–Motzkin Elimination in the case k = 2 and
a new optimization algorithm, called OCGC, in the case k > 2 (approximate) solutions
can be obtained in optimal O(n`) operations. These lead to the following coarse grid
approximations S which we cite only for the cases k = 2, 3, 4 for the sake of simplicity.
The general formula and all proofs can be found in [HK].

Proposition 3.6 The B–spline S = cT Nk,∆`−1
with recursively defined coefficients c1 :=

q2,1 and
ci := max{2 c̃2i − q2,i+1, c̃2i−1, 2 c̃2i−2 − ci−1} for i = 2, . . . , n

in the case k = 2, c1 = q3,1 and

ci := max
{
4 c̃2i−3 − 3 ci−1,

4
3 c̃2i−2 − 1

3ci−1,
4
3 c̃2i−1 − 1

3q3,i+1, 4 c̃2i − 3 q3,i+1

}
in the case k = 3, and c1 = q4,1 and

ci := max
{

8 c̃2i−4 − 6 ci−1 − ci−2, 2 c̃2i−3 − ci−1,
4
3 c̃2i−2 − 1

6ci−1 − 1
6qi+1,

2 c̃2i − qi+1, 8 c̃2i − 6 qi+1 − qi+2

}
in the case k = 4, where qk,i is defined as in (24), is an upper monotone coarse grid approx-
imation to the lower obstacle S̃ = c̃T Nk,∆`

. It is an improvement of the approximation
Lk from Proposition 3.5 in the sense that c ≤ qk holds.

Remark 3.7 In the special case k = 2 our B–spline–based monotone multigrid scheme
corresponds to the multigrid method from [Ma] if the obstacle transfer is performed as
described in Proposition 3.5. Moreover, if the coarse grid approximations are constructed
according to Proposition 3.6, one recovers the monotone multigrid scheme from [Ko1].

For illustration, in Figure 1 lower obstacle functions g`−1 := r̃(g` − uν,1
` ) are displayed

for levels ` = 2, 3, 4 as they typically arise if the MMG algorithm is applied to American
option valuation with continuous piecewise linear (left) and C1–smooth piecewise quadratic
(right) basis functions. The obstacle functions restrict the size of the coarse grid correction
v`−1 such that the new iterate uν,2

` = uν,1
` + p v`−1 is admissible, i.e., equal or above

the transformed payoff function g`. The restriction operator r̃ is chosen as derived in
Proposition 3.6. Note that the value x = 0, where the coarse grid correction is least
restricted, corresponds to the strike price S = K by back transformation.

13
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Figure 1: Lower coarse grid obstacle functions g` for the coarse grid correction and grids
∆`, ` = 2, 3, 4 as they typically arise when the MMG–algorithm is applied to American
option pricing with continuous, piecewise linear (left) and C1–smooth, piecewise quadratic
finite element ansatz functions (right).

The restriction operators r̃ from Proposition 3.5 as well as from Proposition 3.6 can im-
mediately be modified such that they can be used in the truncated version TrMMG from
Remark 3.2. In [HK] it is shown by numerical experiments that the truncated version
combined with the obstacle approximations according to Proposition 3.6 is the fastest
convergent variant. When applied to American option pricing, the scheme requires only
one or two smoothing steps on each refinement level. It recovers asymptotic convergence
rates which are independent of the grid size h. In the case k = 3 the convergence rates
are bounded by about 0.27 for one smoothing step and 0.17 for two smoothing steps on
each refinement level.

4 Numerical Results

In this section we investigate the performance of our scheme by numerical examples. In
the first two subsections, we compute fair prices of short and long term plain vanilla
American Put options and its derivatives with respect to the stock price. In particular,
we analyze the influence of basis functions of different smoothness. In subsection 4.3, we
then compare the performance of our scheme to the performance of Leisen–Reimer trees
[LR] in the approximation of the second derivative Gamma.

4.1 Plain Vanilla American Put Option Prices

In our first experiment we consider an American put option with strike price K = 100,
maturity T = 0.5 and an underlying stock with volatility σ = 0.4 which pays no dividends.
The interest rate is assumed to be r = 6%. Following [AC], the value V (S, 0) obtained
from the average of a 1000 step and a 1001 step binomial method is regarded as ’exact’.
Against this benchmark we compute the pointwise errors of our B–spline–based finite
element scheme (B-FEM) with

14



Stock price S = 80 S = 90 S = 100 S = 110 S = 120 Comp. time
”exact” V (S, 0) 21.6059 14.9187 9.9458 6.4352 4.0611 3.45 Sec.
B-FEM, k = 2 0.0073 0.0154 0.0471 0.0410 0.0341 0.006 Sec.
B-FEM, k = 3 0.0194 0.0299 0.0223 0.0177 0.0200 0.008 Sec.
B-FEM, k = 4 0.0399 0.0074 0.0412 0.0332 0.0324 0.01 Sec.

Table 1: Short term American Put value (K = 100, σ = 0.4, d = 0.0, r = 0.06, T = 0.5),
and pointwise errors of B-FEM scheme with N = 128 and M = 16 space and time steps.

Stock price S = 80 S = 90 S = 100 S = 110 S = 120 Comp. time
”exact” V (S, 0) 29.2601 24.8023 21.1294 18.0849 15.5428 3.45 Sec.
B-FEM, k = 2 0.0363 0.0511 0.0237 0.0287 0.0334 0.028 Sec.
B-FEM, k = 3 0.0341 0.0504 0.0241 0.0300 0.0351 0.02 Sec.
B-FEM, k = 4 0.0216 0.0411 0.0169 0.0243 0.0304 0.036 Sec.

Table 2: Long term American Put value (K = 100, σ = 0.4, d = 0.02, r = 0.06, T = 3),
and pointwise errors of B-FEM scheme with N = 128 and M = 64 space and time steps.

• C0– smooth, piecewise linear B–splines (k = 2),

• C1– smooth, piecewise quadratic B–splines (k = 3),

• C2– smooth, piecewise cubic B–splines (k = 4).

We used an uniform grid, θ = 1 and the space interval Ix = [−5, 5]. Since the scheme
is much more sensible to the the number of space steps N compared to the number of
times steps M , we chose N = 128 and M = 16. This leads to a overall number of 2, 048
unknowns. The results are listed in Table 1. The speed of the scheme is measured in
computational time in seconds and displayed in the last column. The computations were
performed on a dual Intel(R) Xeon(TM) CPU 3.06GHz workstation. No calculation took
longer then 0.01 seconds. The computation of the five option values by the average of a
1000 step and a 1001 step binomial method took 3.45 seconds. Note, that finite element
or finite difference approaches provide an approximation to the whole surface V (S, t) with
S ≥ 0 and 0 ≤ t ≤ T , whereas tree methods have to be restarted for every single value
V (S0, 0). In Table 2 we list the errors, which result from the valuation of the same
American put, but with much longer maturity T = 3 and a dividend payment of d = 2%
of the underlying. Due to the longer maturity, we chose a larger number of time steps
M = 64.
As the errors are of similar size for different orders k we conclude that for the computation
of the option value the use of piecewise linear functions (k = 2) in the finite element scheme
suffice. This, however, is no longer true if also derivatives of the option price with respect
to the underlying have to be computed as we show in our next numerical examples.

4.2 American Option Price Sensitivities

We now consider an plain vanilla American call option with parameters

(25) K = 10, σ = 0.6, r = 2.5%, d = 0.0, T = 1.
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In this scenario, the value of an American and European Call are identical, such that
the Black–Scholes formula [BS] can be used to obtain benchmark values for the option
price and for the Greek letters. For the numerical computations, we used an uniform grid,
θ = 1/2, the space interval Ix = [−5, 5] and B–spline ansatz functions of orders k = 2, 3, 4
as in the last subsection. If the basis functions are sufficiently smooth, the derivatives of
the solution V are determined by direct differentiation via Lemma 2.8. In the other case
numerical differentiation is used.
On the left hand side of Figure 2, 3 and 4, we displayed the L2–errors at time t = 0 which
arise if we compute the option value, Delta and Gamma with our scheme, respectively, for
different numbers N = M of unknowns. Due to the Crank–Nicholson time discretization
quadratic convergence is the best that can be expected. One can see that the option value
is computed in quadratic convergence for all orders k, but not the derivatives. The j–th
derivative ∂(j)V/∂S(j) is only determined in quadratic convergence if basis functions of
order k ≥ j + 2 are used.
For the same choice of basis functions, we displayed on the right hand side of Figures 2,
3 and 4 the corresponding distributions of the pointwise error at time t = 0 in the case
N = M = 275. The much more accurate approximation of Delta and Gamma obtained
by the use of higher order basis functions and direct differentiation is clearly visible.

1e-006

1e-005

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

L2
-e

rr
or

number of unknowns

k=2
k=3
k=4

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0 5 10 15 20 25 30 35 40 45 50

po
in

tw
is

e 
er

ro
r

stock price S

k=2
k=3
k=4

Figure 2: Mean square errors for M = N (left) and distribution of the pointwise errors
for N = M = 275 (right) which arise in the computation of the option value at time t = 0
with parameters from (25).

4.3 Comparison to other Schemes

In [WW], a comparison of various pricing methods leads to the conclusion that Leisen–
Reimer trees [LR] are the superior method for the approximation of American option price
sensitivities. Thus, we chose this scheme as a benchmark for our finite element scheme. We
compare the pointwise error in the computation of Gamma ∂2V/∂S2(K, 0) of an American
option with the parameters from (25). The results are displayed on the left hand side
of Figure 5 for an American call option and on the right hand side for an American put
option, respectively. In the first case, an exact benchmark value can be obtained by partial
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Figure 3: Mean square errors for M = N (left) and distribution of the pointwise errors
for N = M = 275 (right) which arise in the computation of Delta at time t = 0 with
parameters from (25).

differentiation of the Black–Scholes formula. In the other case, we approximated Gamma
by numerical differentiation of the average of a 20,000 step and a 20,001 step binomial
method [CRR]. Using the parameter set (25), we obtain ∂2V/∂S2(K, 0) ≈ 0.064572055.
Against this benchmark value we computed the pointwise errors of our scheme (B-FEM)
with basis functions of order k = 2 and k = 4 and the pointwise errors of Leisen–Reimer
trees. Recall that the costs, which are plotted on the x–axis, of a binomial scheme with n
steps are of order O(n2), whereas the costs of our finite element scheme with M time and
N space steps add up to O(N ·M).
One can see in Figure 5 that Leisen–Reimer trees outperform the finite element scheme
with hat functions (k = 2). Both schemes exhibit a pointwise convergence rate of about
ρ = 1/2. In contrast, the finite element scheme with piecewise cubic functions (k = 4)
attains a much better convergence rate of nearly ρ = 1. While this could be expected for
American call options without dividends, where the solution is known to be smooth for
all t < T , it is remarkable for American put options, where the solution is known to have
a jump in the second derivative on the free boundary.

5 Concluding Remarks

In this paper we presented a finite element method which is based on higher order B–spline
discretizations for the approximation of American option prices and their space derivatives
Delta and Gamma. The method was supplemented by an monotone multigrid scheme for
the efficient solution of the discrete form in order to achieve convergence rates which are
independent of the grid spacing h.
Applying the scheme on uniform grids to the pricing of plain vanilla American options, our
numerical experiments lead to the conclusion that just for the computation of the option
value an increase of the polynomial degree of the ansatz functions is not advantageous.
This, however, is no longer true if also the derivatives of the option value with respect to
the underlying are required. Then, the correct choice of the order k of the ansatz functions
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Figure 4: Mean square errors for M = N (left) and distribution of the pointwise errors
for N = M = 275 (right) which arise in the computation of Gamma at time t = 0 with
parameters from (25).

(i.e., k = j + 2 for the j–th derivative) leads to a much higher accuracy and a much faster
convergence. This way, our scheme, which provides the first multigrid approach which is
applicable to higher order discretizations of free boundary value problems, is competitive
to the best schemes proposed in the literature.
We wish to point out that the solution approach can, in principle, be generalized to higher
spatial dimensions and thus also to higher dimensional option pricing problem, as long as
partial differential equations can be derived for the option value, like, e.g, in the case of
American options with stochastic volatility (cf. [BR, CP, Oo]) or in the case of convertible
bonds with stochastic interest rate (cf. [BN, WHD]). Moreover, though the refinement
relations of B–splines become more complicated (cf. [Bo]), all results can be generalized to
non–uniform grids. It can be expected that a finer grid in the most interesting region near
the strike price and a further refined grid near the free boundary would enhance the per-
formance of the scheme significantly (cf. [PH, CP]). Using a suitable error estimator, as
e.g. in [Ko2], it would then also be possible to perform the grid refinement adaptively. Due
to the Crank–Nicholson time discretization at most quadratic convergence of our scheme
can be expected. This limitation could be overcome by a higher order discretization of the
time, e.g. by a Runge–Kutta scheme or by higher order finite elements. Then, also Theta,
the derivative of the option value with respect to time, could be approximated with much
higher accuracy.

Acknowledgments.
I would like to thank Michael Griebel for pointing out the problem of deriving MMG
methods based on higher order basis functions and their possible application to the com-
putation of American options. I also thank Angela Kunoth for her suggestion to use a
B–spline basis and for her continuous encouragement and support throughout my diploma
theses. I am further grateful to Thomas Gerstner, whom I owe most of my knowledge
about option pricing, and to Rolf Krause for helpful discussions on monotone multigrid
methods. Thanks also go to Matthias Reimers, who provided to me useful tips and his

18



 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 100  1000  10000  100000  1e+06

B-FEM k=2
Leisen-Reimer tree

B-FEM k=4

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 100  1000  10000  100000  1e+06

B-FEM k=2
Leisen-Reimer tree

B-FEM k=4

Figure 5: Pointwise convergence to Gamma ∂2V/∂S2(K, 0) of an American Call (left) and
American put (right) with the parameter set (25).

implementation of the Leisen–Reimer trees.
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