
Valuation of performance-dependent options in a Black-
Scholes framework

Thomas Gerstner, Markus Holtz
Institut für Numerische Simulation, Universität Bonn, Germany

Ralf Korn
Fachbereich Mathematik, TU Kaiserslautern, Germany

Abstract

In this paper, we introduce performance-dependent options as the appropriate finan-
cial instrument for a company to hedge the risk arising from the obligation to pur-
chase shares as part of a bonus scheme for their executives. We determine the fair
price of such options in a multidimensional Black-Scholes model which results
in the computation of a multidimensional integral whose dimension equals the
dimension of the underlying Brownian motion. The integrand is typically discon-
tinuous, though, which makes accurate solutions difficult to achieve by numerical
approaches. As a remedy, we derive a pricing formula which only involves the
evaluation of smooth multivariate normal distributions. This way, performance-
dependent options can efficiently be priced as it is shown by numerical results.
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1 Introduction

Today, often long term incentive and bonus schemes form a major part of the wages
of the executives of companies. One widespread form of such schemes consists in
giving the participants a conditional award of shares. More precisely, if the partic-
ipant stays with the company for at least a prescribed time period, he will receive
a certain number of shares of the company at the end of the period. The exact
amount of shares is usually linked to the success of the company measured via a
performance criterion such as the company’s gain over the period or its ranking
among comparable firms.

It is now a huge risk for a company to leave the resulting positions unhedged. As
the purchase of vanilla call options on the maximum number of possibly needed
shares binds to much capital, the appropriate financial instruments in this situation
are so-called performance-dependent options. These options are financial deriva-
tives whose payoff depends on the performance of one asset in comparison to a
set of benchmark assets. Thereby, we assume that the performance of an asset is
determined by the relative increase of the asset price over the considered period
of time. The performance of the asset is then compared to the performances of
the benchmark assets. For each possible outcome of this comparison, a different
payoff of the derivative can be realized.

We use a multidimensional Black-Scholes model, see, e.g., Karatzas [1] or Korn



and Korn [2] for the dynamics of all asset prices required for the performance rank-
ing. The martingale approach then yields a fair price of the performance-dependent
option as a multidimensional integral whose dimension equals the dimension of the
underlying Brownian motion. The integrand is typically discontinuous, however,
which makes accurate numerical solutions difficult to achieve.

The main aim of this paper is to demonstrate that the combination of a closed-
form solution to the pricing problem for performance-dependent options with suit-
able numerical integration methods clearly outperforms standard numerical approa-
ches. The derived formula only involves the evaluation of smooth multivariate nor-
mal distributions which can be computed quickly and robustly by numerical inte-
gration. In various numerical results we illustrate the efficiency of this approach
and its possibility to evaluate high-dimensional normal distributions in a superior
way.

2 Performance-dependent options

Bonus schemes whose payoff depends on certain success criteria are a way to
provide additional incentives for the executives of a company. Often, the execu-
tives obtain a conditional amount of shares of the company. The exact number
depends on the ranking of the company’s stock price increase in comparison to
other (benchmark) companies. Such schemes induce uncertain future costs for the
company, though. The appropriate way to hedge these risks are options which
include the performance criteria in the definition of their payoff function, so-called
performance-dependent options. In the following, we aim to derive pricing formu-
las for the fair price of these options.

We assume that there aren assets involved in total. The asset of the considered
company gets assigned label1 and then− 1 benchmark assets are labeled from2
to n. The price of thei-th asset varying with timet is denoted bySi(t), 1 ≤ i ≤ n.
All stock prices at timet are collected in the vectorS(t) = (S1(t), . . . , Sn(t)).

2.1 Payoff profile

First, we need to define the payoff of a performance-dependent option at timeT .
To this end, we denote the relative price increase of stocki over the time interval
[0, T ] by

∆Si = Si(T )/Si(0).

We save the performance of the first asset in comparison to a given strike priceK
(typically, K = S1(0)) and in comparison to the benchmark assets at timeT in a
ranking vectorRank(S(T )) ∈ {+,−}n which is defined by

Rank1(S(T )) =

{
+ if S1(T ) ≥ K,

− else
and Ranki(S(T )) =

{
+ if ∆S1 ≥ ∆Si,

− else



for i = 2, . . . , n. For each possible rankingR ∈ {+,−}n, a bonus factoraR ∈
IR+ defines the payoff of the performance-dependent option. For explicit examples
of such bonus factors see Section 3. In all cases we defineaR = 0 if R1 = −.

The payoff of the performance-dependent option at timeT is then defined by

V (S(T ), T ) = aRank(S(T )) (S1(T )−K). (1)

In the following, we aim to determine the fair priceV (S(0), 0) of such an option
at the current timet = 0.

2.2 Multivariate Black-Scholes model

We assume that the stock price dynamics are given by

dSi(t) = Si(t)

µidt +
n∑

j=1

σijdWj(t)

 (2)

for i = 1, . . . , n, whereµi denotes the drift of thei-th stock,σ then×n volatility
matrix of the stock price movements andWj(t), 1 ≤ j ≤ n, ann-dimensional
Brownian motion. The matrixσσT is assumed to be positive definite.

The explicit solution of the stochastic differential equation (2) is then given by

Si(T ) = Si(X) = Si(0) exp (µiT − σ̄i + Xi) (3)

for i = 1, . . . , n with

σ̄i :=
1
2

n∑
j=1

σ2
ijT

and

Xi :=
n∑

j=1

σijWj(T ).

Hence,X = (X1, . . . , Xn) is aN(0,Σ)-normally distributed random vector with
Σ = σσT T .

2.3 Martingale approach

In the above multi-dimensional Black-Scholes setting, the option priceV (S(0), 0)
is given by the discounted expectation

V (S(0), 0) = e−rT E[V (S(T ), T )] (4)

of the payoff under the unique equivalent martingale measure, i.e. the driftµi in (3)
is replaced by the riskless interest rater for each stocki. Plugging in the density



functionϕ0,Σ of the random vectorX, we get that the fair price of a performance-
dependent option with payoff (1) is given by then-dimensional integral

V (S(0), 0) = e−rT

∫
Rn

∑
R∈{+,−}n

aR(S1(T )−K) χR(S(T ))ϕ0,Σ(x) dx. (5)

Thereby, the expectation runs over all possible rankingsR and the characteristic
functionχR(S(T )) is defined by

χR(S(T )) =

{
1 if Rank(S(T )) = R

0 else
.

2.4 Pricing formula

We will now derive an analytical expression for the solution of (5) in terms of
smooth functions. We denote the Gauss kernel by

ϕµ,Σ(x) :=
1

(2π)d/2(detΣ)1/2
e−

1
2 (x−µ)T Σ−1(x−µ)

and denote the multivariate normal distribution corresponding toϕ0,Σ with mean
zero and covariance matrixΣ and the integral limits

ci =

{
bi if Ri = +
−∞ else

and di =

{
∞ if Ri = +
bi else

for i = 1, . . . , n

which are depending on the rankingR ∈ {+,−}n by

ΦR(Σ,b) :=
∫ d1

c1

. . .

∫ dn

cn

ϕ0,Σ(x)dx.

Furthermore, we define the comparison relationx ≥R y for two vectorsx,y ∈
IRn with respect to the rankingR by

x ≥R y :⇔ Ri(xi − yi) ≥ 0 for 1 ≤ i ≤ n.

To proof our main theorem we need the following two lemmas.

Lemma 2.1 Letb, q ∈ IRn ,A ∈ IRn×n with full rank andΣ ∈ IRn×n symmetric
and positive definite. Then∫

Ax≥Rb

eqT xϕ0,Σ(x)dx = e
1
2qT ΣqΦR(AΣAT ,b−AΣq).



Proof: A simple computation shows

eqT xϕ0,Σ(x) = e
1
2qT ΣqϕΣq,Σ(x)

for all x ∈ IRn. Using the substitutionx = A−1y + Σq we obtain∫
Ax≥Rb

eqT xϕ0,Σ(x)dx = e
1
2qT Σq

∫
Ax≥Rb

ϕΣq,Σ(x)dx

= e
1
2qT Σq

∫
y≥Rb−AΣq

ϕ0,AΣAT (y)dy
(6)

and thus the assertion. 2

Lemma 2.2 We haveRank(S(T )) = R exactly ifAX ≥R b with

A :=



1 0 . . . 0

1 −1
...

...

... 0
... 0

1 0 0 −1


and b :=



ln K
S1(0)

− rT + σ̄1

σ̄1 − σ̄2

...

σ̄1 − σ̄n


whereA ∈ IRn×n andb ∈ IRn.

Proof: Using (3) we see that Rank1 = + is equivalent to

S1(T ) ≥ K ⇐⇒ X1 ≥ ln
K

S1(0)
− rT + σ̄1

which yields the first row of the systemAX ≥R b. Moreover, fori = 2, . . . , n
the outperformance criterion Ranki = + can be written as

S1(T )
S1(0)

≥ Si(T )
Si(0)

⇐⇒ X1 −Xi ≥ σ̄1 − σ̄i

which yields rows2 to n of the system. 2

Now we can state the following pricing formula which, in a slightly more special
setting, can be found in Korn [3].

Theorem 2.3 In our market setting determined by the price model (2), the price
of a performance-dependent option with payoff (1) is given by

V (S(0), 0) =
∑

R∈{+,−}n

aR

(
S1(0)ΦR(C,d)− e−rT KΦR(C,b)

)
whereC := AΣAT andd := b−AΣe1 with A andb defined as in Lemma 2.2
and withe1 being the first unit vector.



Proof: The characteristic functionχR(S(T )) in the integral (5) can be eliminated
using Lemma 2.2 and we get

V (S(0), 0) = e−rT
∑

R∈{+,−}n

aR

∫
Ax≥Rb

(S1(T )−K)ϕ0,Σ(x)dx. (7)

By (3), the integral term can be written as

S1(0)erT−σ̄1

∫
Ax≥Rb

ex1 ϕ0,Σ(x)dx−K

∫
Ax≥Rb

ϕ0,Σ(x)dx.

Application of Lemma 2.1 withq = e1 shows that the first integral equals

e
1
2eT

1 Σe1ΦR(AΣAT ,b−AΣe1) = eσ̄1ΦR(C,d).

By a further application of Lemma 2.1 withq = 0, we obtain that the second
integral equalsKΦR(C,b) and thus the assertion holds. 2

Note that the price of a performance-dependent option does not depend on the
stock pricesS2(0), . . . , Sn(0) of the benchmark companies but only on the joint
volatility matrix Σ. The pricing formula of Theorem 2.3 allows an efficient valua-
tion of performance-dependent options in the case of moderate-sized benchmarks.
It requires the computation of up to2n manyn-dimensional normal distributions.
The actual number of integrals equals twice the number of nonzero bonus factors
aR. In the case of large benchmarks, the complexity and dimensionality of the
pricing formula can prevent its efficient application, though. These problems can
be circumvented by using a reduced Black-Scholes model and suitable tools from
computational geometry, for details see [4].

3 Numerical Results

In this Section, we present numerical examples to illustrate the use of the pricing
formula of Theorem 2.3. In particular, we compare the efficiency of our algorithm
to the standard pricing approach (denoted by STD) of quasi-Monte Carlo simu-
lation of the expected payoff (4) based on Sobol point sets, see, e.g., Glasserman
[5]. Monte Carlo instead of quasi-Monte Carlo simulation led to significantly less
accurate results in all our experiments. We systematically compare the use of our
pricing formula with

• Quasi-Monte Carlo integration based on Sobol point sets (QMC),
• Product integration based on the Clenshew Curtis rule (P),
• Sparse Grid integration based on the Clenshew Curtis rule (SG)

for the evaluation of the multivariate cumulative normal distributions (see Genz
[6]). The Sparse Grid approach is based on [7]. All computations were performed
on a dual Intel(R) Xeon(TM) CPU 3.06GHz processor.

We consider a Black-Scholes market withn = 5 assets. Thereby, we investigate
the following three choices of bonus factorsaR in the payoff function (1):



Example 3.1 Linear ranking-dependent option:

aR =

{
m/(n− 1) if R1 = +
0 else.

Here,m denotes the number of outperformed benchmark assets. The payoff depends
on the rank of our company among the benchmark assets. If the company ranks
first, there is a full payoff(S1(T ) − K)+. If it ranks last, the payoff is zero. In
between, the payoff increases linearly with the number of outperformed bench-
mark assets.

Example 3.2 Outperformance option:

aR =

{
1 if R = (+, . . . ,+)
0 else.

A payoff only occurs ifS1(T ) ≥ K and if all benchmark assets are outperformed.

Example 3.3 Linear ranking-dependent option combined with an outperformance
condition:

aR =

{
m/(n− 1) if R1 = + and R2 = +
0 else.

The bonus depends linearly on the numberm of outperformed benchmark com-
panies like in Example 3.1. However, the bonus is only paid if company two is
outperformed. Company two could, e.g., be the main competitor of our company.

In all cases, we use the model parametersK = 100, S1(0) = 100, T = 1,
r = 5% and as volatility matrix

σ =


0.1515 0.0581 0.0373 0.0389 0.0278
0.0581 0.2079 0.0376 0.0454 0.0393
0.0373 0.0376 0.1637 0.0597 0.0635
0.0389 0.0454 0.0597 0.1929 0.0540
0.0278 0.0393 0.0635 0.0540 0.2007

 .

The computed option prices and discounts compared to the price of the corre-
sponding plain vanilla option given by9.4499 are displayed in the second and
third column of Table 1. The number of normal distributions (# Int) which have to
be computed is shown in the last column.

The convergence behaviour of the four different approaches (STD, QMC, P,
SG) to price the performance-dependent options from the Examples 3.1 – 3.3 are
displayed in Figure 1. There, the time is displayed which is needed to obtain a
given accuracy. One can see that the standard approach (STD) and the product
integration approach (P) perform worst for all accuracies. The convergence rates
are clearly lower than one in all Examples. The integration scheme STD suffers



Example V (S1, 0) Discount # Int

3.1 6.2354 34.02% 30

3.2 3.0183 68.06% 2

3.3 4.5612 51.73% 16

Table 1: Option prices, discounts compared to the corresponding plain vanilla
option and number of computed normal distributions.

under the irregularity of the integrand which is highly discontinuous and not of
bounded variation. The product integration approach suffers under the curse of
dimension. The use of the pricing formula from Thereom 2.3 combined with QMC
or SG integration clearly outperforms the STD approach in terms of efficiency in
all considered Examples. The QMC scheme exhibits a convergence rate of about
one independent of the problem. The combination of Sparse Grid integration with
our pricing formula (SG) leads to the best overall accuracies and convergence rates
in all cases. Even very high accuracy demands can be fulfilled in less than a few
seconds.
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Figure 1: Errors and timings of the different numerical approaches to price the
performance-dependent options of Examples 3.1 (top), 3.2 (middle) and
3.3 (bottom).


