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Abstract. The simulation of the Liquid Composite Moulding process is an important step
for the manufacturing of composites with textile reinforcements. However, its fast direct numerical
simulation is impossible on the microscale due to computational complexity reasons. We have to
resort to the macroscale instead. Here, an essential task is the fast and accurate prediction of the
permeability of textile microstructures. For textiles composed of impermeable yarns, we discuss the
homogenisation of the Stokes equations. This leads to Darcy’s law on the macroscale and gives
the permeability via the so-called unit cell problems. These equations are then discretised and
solved numerically. For textiles composed of permeable yarns, their dual porosity is accounted for
by a fictitious domain approach in form of the Stokes/Brinkman equations. The results of our
permeability computations in textiles are validated and compared to experimental data.
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1. Introduction. New materials with textile microstructures are used in an
increasing number of industrial high-performance products such as aerospace com-
ponents, boat hulls or racing car bodies since they combine strength and stiffness
with lightness and corrosion-resistance. To manufacture these composite materials,
Liquid Composite Moulding is employed, which comprises of a family of processes
for the injection of resin into a closed cavity filled with fibre preforms. During the
injection stage, the fabric conforms to the mould and is subjected to deformation and
distortion which cause the individual fibre layers to nest, bend and shear. Here, the
local permeability values of the preform differ significantly. These local changes in
the permeability influence the formation of voids and bubbles, the degree of infiltra-
tion and the injection time. Therefore, the computation of the permeability and its
changes due to bending, shearing, or nesting is a vital step in the design of the Liquid
Composite Moulding process [30].

For the permeability prediction of fabric preforms, we must describe their geo-
metric structure. To this end, we use the WiseTex [31] and LamTex [18] software.
A representation of a textile geometry is shown in Figure 1.1 at different levels of
resolution: On the microscale the fabric consists of individual strands of fibres (a).
On the next coarser scale the fibres are bundled into tows or yarns (b), which are
woven or stitched together to form an interconnected fabric network (c). In many
cases the textile consists of periodic patterns of interlaced yarns or tows and can thus
be conveniently described by repeated unit cells. The mould is then completely filled
with fabric, i.e. covered with repeated unit cells (d). Altogether, the geometry of a
fabric involves at least one microscale.

For the computation of permeability, we have to face the following two situations:
If the yarns are impermeable, the resin infiltrating a fabric like the one shown in
Figure 1.1 flows through the empty pores and channels of the fabric. In this case, the
homogenisation of the Stokes equations yields Darcy’s law on the macroscale. On the
other hand, if the fabric’s tows or yarns are porous themselves, then the resin also
flows within the yarn on the microscale. In this case, we account for the porosity of
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Fig. 1.1. A hierarchy of textile structures from left to right: the fibres (a, 0.00001 m), the
fabric unit cell (b, 0.01 m), the composite unit cell (c, 0.1 m), the composite part (d, 1 m) [Pictures
by courtesy of S.V. Lomov].

the textile on both scales by employing the so-called Stokes/Brinkman equations to
predict the effective permeability of the fabric.

The contribution of this article is as follows. We use homogenisation to justify
Darcy’s law on the textile macroscale. In particular, we show that the computation
of the permeability of a textile fabric defined by the solution of the unit cell problems
in homogenisation theory is indeed equivalent to its computation by Darcy’s law as
e.g. done in [21] and in many other practical approaches to the subject. Furthermore,
we discuss the validity of the Stokes/Brinkman equations which accounts for the dual
porosity of textiles. We argue that, within the yarns, the Stokes/Brinkman equations
reduce to Darcy’s law and that their homogenisation yields a homogenised equation
on the macroscale, which is again of Darcy type. As Mei, Auriault and Ng [19, p.295]
point out: “There are many more theoretical papers applying the method of homog-
enization to a large variety of physical problems than there are quantitative solutions
of the cell problems. The latter, however, is ultimately necessary to complete the
scientific task.” Indeed, we find that the theory of homogenisation is well accounted
for in the literature (cf. [2, 13, 20, 25] and the references therein), but its numerical
implementation and practical validation is scarce [15, 21, 24]. We therefore also dis-
cretise the derived equations with a finite volume method on a regular staggered grid
and solve for the permeability. Then, we validate our numerical results against expe-
rimental data and show that we obtain good predictions for typical model problems.
We furthermore apply our presented method to industrial textile reinforcements and
give the corresponding permeability results.

The remainder of this article is organised as follows. In Section 2, we present
the homogenisation of the Stokes equations and discuss the equivalence of different
approaches for the computation of permeability for a numerical model problem. We
then apply our approach to real industrial textiles composed of impermeable yarns and
compare the computed permeability to experimental data. In Section 3, following [3],
we discuss a dual porosity model for permeable yarns and present the fictitious domain
method for the description of viscous flow in a single domain which embeds such yarns.
The homogenisation of the resulting Stokes-Brinkman equations yields Darcy’s law
on the macroscale. For a numerical model problem, we show that the corresponding
unit cell problem on the mesoscale approximates the Stokes unit cell problem on
the microscale. Then, our dual porosity approach is applied to an industrial textile
consisting of permeable yarns, and we compare the permeability of such a textile to
experimental data.

2. Homogenisation of the Stokes equations in textile fabrics. In this
section we show that the homogenisation of the Stokes equations, which describe
the flow between solid yarn stacks in a periodically repeated textile cell on the mi-
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Fig. 2.1. Sketch of the porous geometry Ω on the microscale and its unit cell Y . On the
macroscale, the effective parameter K contains all information about the microscopic pore geometry.

croscale, yields Darcy’s law on the macroscale. Our interest in this is two-fold: On
the one hand, there are a number of purely heuristic approaches, where filtration
laws like Darcy’s are successfully applied without any theoretical justification for the
particular problem. On the other hand, in most literature on homogenisation the-
ory [2, 13, 20, 25], porous media are considered which are composed of disconnected
grains only. However, textile fabrics consist of connected yarn stacks. In the case of
connected solid and fluid parts, homogenisation has been e.g. studied by Allaire [1]
on a theoretical level so far. We show that textiles, which consist of connected solid
and fluid parts, indeed fulfil the geometrical constraints in that work. See also [6]
for the homogenisation in fibrous media which consist of layers of parallel fibres and
compare the references to the scarce mathematical articles on fibrous porous media
therein.

In practice, real-life textiles are significantly irregular due to the manufacturing
process. Then, the multiple layers of textiles are most often nested and not arranged
periodically. This may be accounted for by a homogenisation approach which includes
stochastic variation of the geometry [7]. Nevertheless, in this article we assume an
ideal periodic fabric, which principally consist of patterns of interlaced yarns or tows
that repeat in the different directions.

2.1. Derivation of macroscopic equations. First, we require a mathematical
description of admissible porous geometries. Throughout this article Ω ⊂ R3 denotes
an open, bounded and connected set with a smooth boundary of class C1. Let ε > 0
and let the microscale be covered by a regular mesh of size ε. Each cell shall be
denoted by Y ε

i = ]0, ε[
3

with 1 ≤ i ≤ N(ε), where N(ε) = |Ω|ε−3(1 + o(1)) denotes
the number of cells. Within each cell, we define the solid part Y ε

Si
which is also of the

order ε. The fluid domain Ωε ⊂ Ω is obtained from Ω by removing these periodically
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distributed solid parts, i.e.

Ωε = Ω −
N(ε)
⋃

i=1

Y ε
Si

. (2.1)

Furthermore, we define the unit cell Y = ]0, 1[
3

by a linear homeomorphism Πε
i

of each cell Y ε
i with ratio of magnification 1/ε, i.e. we rescale the cells Y ε

i to one.
Hence,

YS = Πε
i (Y

ε
Si

) and YF = Πε
i (Y

ε
Fi

) (2.2)

denote the solid and the fluid part of the unit cell. See Figure 2.1 for an example of
a simple porous microgeometry. A textile unit cell is shown in Figure 2.2.

Next, we need a model for the fluid flow on the microscale between the yarns. For
most flow problems in textiles on the microscale the advective inertial forces are small
compared to the viscous forces. This flow behaviour is modelled by the incompressible
Stokes equations

∇pε − µ∆uε = f in Ωε

∇ · uε = 0 in Ωε

uε = 0 on ∂Ωε











Pε, (2.3)

where uε : Ωε → R3 denotes the velocity field for the microscale geometry and pε :
Ωε → R denotes the corresponding pressure.1 Furthermore, f stands for volumetric
forces such as gravity and µ denotes the viscosity.

In homogenisation theory the upscaled equation is obtained by letting the finer
scale tend to zero. The basic idea behind this limit process is that the complicated
microstructure averages out. To this end, one employs a multiscale expansion [20],
which contains the behaviour of the fluid on the two different length scales x and x/ε

uε = ε2
{

u0

(

x,
x

ε

)

+ εu1

(

x,
x

ε

)

+ ε2u2

(

x,
x

ε

)

+ ...
}

pε = ε0
{

p0

(

x,
x

ε

)

+ εp1

(

x,
x

ε

)

+ ε2p2

(

x,
x

ε

)

+ ...
}

.
(2.4)

Such an expansion for the velocity uε and the pressure pε is inserted into the fluid
equations (2.3) on the microscale, along with similar transformations of the operators
∇ and ∆. In a next step, the limit limε→0 uε is studied, which corresponds to letting
the pore structure vanish. This is exemplified in Figure 2.1. For details on the
homogenisation approach see [2, 13, 20, 25].

Note that equations (2.3) do not consist of a single Stokes problem, but of a
whole series of problems Pε when we let ε pass to zero. That is, the sequence of
solutions (uε, pε) is not defined in a fixed domain independent of ε but in varying sets
Ωε. However for homogenisation theory, convergence in fixed Sobolev spaces on Ω is
required [27]. Therefore, we have to extend the velocity uε and the pressure pε from
Ωε to the whole domain Ω by

ũε =

{

uε in Ωε

0 in Ω\Ωε

and p̃ε =







pε in Ωε

1
˛

˛

˛
Y ε

Fi

˛

˛

˛

∫

Y ε
Fi

pε dy in Y ε
Si

for 1 ≤ i ≤ N(ε). (2.5)

1Note that the homogenisation of the Navier-Stokes equations yields different equations on the
macroscale (e.g. Darcy’s law, a nonlinear Navier-Stokes system with two pressures or ill-posed
homogenised equations) depending on the influence of the nonlinear convective term [2, 20, 25].
However, if inertia effects are negligible, the formal asymptotic expansion again gives Darcy’s law.
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Fig. 2.2. Example of a textile’s fabric unit cell [Right picture by courtesy of S.V. Lomov].

For simple geometries which are composed of disconnected grains that are entirely
included in an ε-sized cell, Tartar [27] proved the existence of an extension for the
pressure (2.5) which allows to pass from the Stokes equations Pε to the limit problem
of Darcy’s law. However, textiles typically consist of connected solid and fluid parts.
This more realistic case is studied by Allaire [1]. Furthermore, he also accounts for
solid cells Y ε

Si
that are allowed to cut the boundary, which (in Theorem 2.1) restricts

the pressure p̃ε to converge only locally in L2
loc(Ω)\R.

To apply this approach in our context, we have to verify Allaire’s assumptions on
porous geometries for our textiles. To this end, we require some notational details.
We denote by ES ⊂ R3 the closed set that is obtained by Y -periodic repetition of
YS in the entire space R3 and we denote its fluid counterpart by EF . The following
hypotheses have to be satisfied [1]:

i. YF and YS have strictly positive measures in Ȳ .
ii. EF and the interior of ES are open sets with C1 boundaries and are locally

located on one side of their boundary; furthermore EF is connected.
iii. YF is an open set with a local Lipschitz boundary.

Let us consider the implications of these hypotheses for textiles in more detail. One
elementary cell Y of a textile consists of both fabric and fluid parts as depicted in
Figure 2.2. Therefore, assumption (i) is fulfilled. Furthermore, we assume that textiles
consist of periodic repeat cells with the obstacles touching the boundary. Therefore,
the solid part YS as well as the fluid part YF of the repeat cell must be Y -periodic and
the repetitions of YS and YF in R3, i.e. EF and ES , must be fully connected. Thus,
both have a C1 boundary, and assumption (ii) is fulfilled. Furthermore, we assume
that the boundary of YF is sufficiently regular so that (iii) holds.

Altogether, Allaire’s requirements fit with the properties of textiles intended
for LCM processes. Consequently, the following theorem holds for our periodically
repeated textile fabrics. It states that the solutions (ũε, p̃ε) converge to the solutions
of Darcy’s law for ε → 0.

Theorem 2.1 (Darcy’s law). Let the assumptions (i)-(iii) be fulfilled and let
(uε, pε) denote the solution of the Stokes problem Pε. Then, ũε/ε2 converges weakly
in L2(Ω)3 to u, and p̃ε converges strongly in L2(Ω)\R to p, where (u, p) is the solution
of the homogenised problem

P0 =



















u =
1

µ
K(f −∇p) in Ω

∇ · u = 0 in Ω

u · ν = 0 on ∂Ω,

(2.6)

and ν is the unit normal. The permeability tensor K = Kij is defined by

Kij = 〈∇ywi : ∇ywj〉Y (2.7)
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for 1 ≤ i, j ≤ 3, where 〈 · 〉Y = 1
|Y |

∫

Y
· dy. Here, : denotes the Frobenius inner

product, and wi denotes the solution of the cell problem: For 1 ≤ i, j ≤ 3 find
(wi, πi) ∈ H1(YF )3 × L2(YF )\R such that

−∆wi + ∇πi = ei in YF

∇ · wi = 0 in YF

wi = 0 on ∂YS

wi, πi Y − periodic,

(2.8)

where ei is the vector with components ei
j = δij .

Proof. See Allaire [1].
Note that it can be shown that K is symmetric and positive definite and that

there holds the equation

〈∇ywi : ∇ywj〉Y = 〈wi
j〉Y , (2.9)

where wi
j denotes the j-th component of wi for 1 ≤ i, j ≤ 3, [25]. This allows for a

simplified computation of the permeability tensor K.

2.2. Permeability computation. In this subsection we show that the compu-
tation of the permeability K by the unit cell problems is equivalent to the solution
of the Stokes equations and the subsequent insertion of ui

ε and pi
ε into Darcy’s law.

Here, the Stokes equations have to be solved three times in the repeat cell Y ε of the
porous medium, i.e. for 1 ≤ i ≤ 3, we have to find {ui

ε, pi
ε} such that

∇pi
ε − µ∆ui

ε = f i in Y ε
F

∇ · ui
ε = 0 in Y ε

F

ui
ε = 0 on ∂Y ε

S

ui
ε, pi

ε Y ε-periodic.

(2.10)

Then, for 1 ≤ j ≤ 3, we insert {ui
ε, pi

ε} into Darcy’s law. This results in

〈

ui
ε,j

〉

Yε
=

1

µ

3
∑

k=1

Kjk

(

f i
k −

〈

∂pi
ε

∂xk

〉

Yε

)

, (2.11)

where ui
ε,j now denotes the j-th component of the vector ui

ε. Note here that the
average pressure drop vanishes since the pressure is periodic, i.e.

〈

∂pi
ε

∂xk

〉

Yε

= 0.

Note furthermore that the permeability is an intrinsic property of the geometry.
Therefore, K neither depends on the force f nor on the viscosity µ of (2.10). Thus,
we may choose f i

k = δik and µ = 1 in (2.11) which yields

Kij = Kji =
〈

ui
ε,j

〉

Yε
. (2.12)

Since the permeability depends on the geometry only, we are also allowed to
rescale the size of the repeat cell Y ε to one as in (2.2). With this in mind, a comparison
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of the above computation of permeability by equations (2.10) and (2.12) with the
solution of the unit cell problems (2.8) and the subsequent definition of permeability
(2.9) shows that both approaches are indeed the same.

Alternatively, in many practical experiments a pressure drop (δp)i is applied as the
driving force in the Stokes equations (2.10). The pressure pi

ε can then be subdivided
into a periodic and a linear varying part

pi
ε = p̂i

ε + (δp)i.

Again, since K is independent of the magnitude of the pressure drop, we may choose
(δp)i = −xi so that

∇pi
ε = ∇p̂i

ε − ei.

Then, the first equation in (2.10) reads as

∇p̂i
ε − µ∆ui

ε = ei.

If we now insert the solution of the Stokes equations into Darcy’s law, the permeability
can again be computed by (2.12).

We conclude that there are now two equivalent approaches for the computation
of K:

(a) By Darcy’s law from a prior solution of the Stokes equations (with a volume
force or an applied pressure gradient).

(b) From the unit cell problems (2.8).
In the following, we discuss the numerical implementation of both approaches and
compute K for a simple test problem. We then apply approach (a) for the perme-
ability computation of industrial textiles from real-life applications.

2.3. Numerical treatment of Darcy’s law and the unit cell problems.
Both the numerical solution of the unit cell problems (2.8) and the computation of
the permeability by Darcy’s law (2.12) involve the solution of the Stokes equations.
As a basis for our implementation, we use the three-dimensional instationary Navier-
Stokes solver NaSt3DGP developed at the Institute for Numerical Simulation at the
University of Bonn [10]. Here, we solve the Stokes equations numerically on a regular
staggered grid with a finite volume discretisation. NaSt3DGP employs a Chorin
projection method. Moreover, we use a pseudo time-stepping technique to advance
to the steady state. For this, we discretise the Stokes equations implicitly in time by
a Crank-Nicolson scheme.

Note that we also experimented with the full Navier-Stokes equations for the
computation of permeability. However, for our textile applications, the convective
term was extremely small and hence could be neglected. Also, a direct Stokes solver
without pseudo time-stepping has been recently implemented for the considered textile
geometries [28, 29].

In the following, we always compute K11 only. Therefore, we skip the upper index
of the velocity components and write w1 = (wi)i=1,...,3 and u1 = (ui)i=1,...,3.

2.3.1. Test problem: 3D array of spheres. As a simple first example, we
compare our numerical permeability computations with semi-analytical results for a
porous medium which consists of cubic arrays of spheres. Note that such beds of
spheres are employed in the numerical simulation of filters, catalytic packs or heat ex-
changers. This setup is by far not adequate for actual textile permeability problems,
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Table 2.1
Convergence table for the computation of permeability K11 in a 3D array of spheres with radii

r = 0.1, r = 0.2 and r = 0.3.

Cells K11 for r = 0.1 K11 for r = 0.2 K11 for r = 0.3

323 3.9528−1 1.2473−1 4.5216−2

643 3.8447−1 1.2330−1 4.4667−2

1283 3.8213−1 1.2292−1 4.4437−2

Table 2.2
Computation of the permeability K11 in a 3D array of spheres for different radii r and com-

parison to semi-analytical results from [26].

Cells r K11 Darcy K11 Cell K11 [26] Abs. err. Rel. err

643 0.10 3.8447−1 3.8447−1 3.8219−1 2.28−3 0.60%

643 0.15 2.0926−1 2.0926−1 2.0805−1 1.21−3 0.58%

643 0.20 1.2330−1 1.2330−1 1.2327−1 3.00−5 0.02%

643 0.25 7.4091−2 7.4091−2 7.4668−2 5.77−4 0.77%

643 0.30 4.4667−2 4.4667−2 4.4501−2 1.66−4 0.37%

643 0.35 2.5216−2 2.5216−2 2.5246−2 3.00−5 0.12%

which will be considered later in Subsections 2.4 and 3.7 in more detail. It merely
serves to show the basic properties of our numerical homogenisation approach. Here,
the permeability tensor takes the form K = K11I for the isotropic sphere with I the
unit matrix, i.e. we only need to compute K11.

As a first step we compute the permeability by the unit cell problems on suc-
cessively refined grids for sphere radii r = 0.1, 0.2 and 0.3. Results are shown in
Table 2.1. Furthermore, we compute the grid convergence rate

ρ(r) = ln

(‖w1,2h − w1,4h‖l1
2h

‖w1,h − w1,2h‖l1
h

)

/ ln 2

of the velocity component w1 in the flow direction. Here, ‖·‖l1
h

denotes the discrete

l1-norm evaluated on the grid with mesh size h. The subscripts h, 2h and 4h denote
solutions or evaluations on grids with mesh sizes h, 2h and 4h, respectively.2 We
obtained ρ(0.3)=1.26, ρ(0.2)=1.86 and ρ(0.1)=2.21, i.e. the order of convergence
improves with smaller sphere size. This is to be expected since a larger sphere means
more boundary cells, which are approximated to first order only.

In the same setup, Sangani and Acrivos [26] found general solutions of the Stokes
equations as a series formulation, whose coefficients were determined numerically.
The authors computed the dimensionless drag force F to which the first entry of
the permeability tensor is related by K11 = 1

6πrF . We solve both the unit cell
problems and the Stokes equations as input for Darcy’s law for the computation of
the permeability. These steady state numerical results, as well as the semi-analytical
ones, are given in Table 2.2 for different sphere radii.3

2The time step in our instationary solver is restricted by that on the finest mesh. Here, we stop

the computation when
‚

‚

‚
wn+1

1,h − wn
1,h

‚

‚

‚

l1
h

≤ 1−10, i.e. the difference between the velocity component

w1 of two successive time steps falls below the threshold 1−10.
3Note that in [26], instead of the radius, scaled sphere volume fractions χ = (Vf /Vfmax)1/3 are

used. In an arbitrary single cell of length L, the volume fraction Vf = 4πr3/3L3 denotes the total
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Table 2.3
Permeability results for the Monofilament Fabric Natte 2115 with one layer and two layers with

minimal and maximal nesting. L = (Lx, Ly, Lz) denotes the length of the fabric unit cell.

Model Lx (mm) Ly (mm) Lz (mm) Resolution Kxx (mm2)
Single-layer 2.26 2.16 0.4 226 × 216 × 40 3.289−4

Minimum nesting 2.26 2.16 0.8 226 × 216 × 80 3.289−4

Maximum nesting 2.26 2.16 0.78 226 × 216 × 78 2.023−4

Fig. 2.3. Non-nested layering of the Monofilament Fabric Natte 2115.

We see from Table 2.2 that the computation of the permeability K11 by the
unit cell problems is indeed equivalent to the solution of the Stokes equations and
the subsequent insertion of u1

ε and p1
ε into Darcy’s law, i.e. both methods give the

same results for K11. Furthermore, we observe that all computed values are in good
agreement with those obtained analytically by Sangani and Acrivos [26]. They deviate
no more than 0.8%. Note that the permeabilities given in Table 2.1 do not converge to
the semi-analytical values. This cannot be expected anyway, since the semi-analytical
results rely on analytical as well as on numerical approximations themselves.

2.4. Computation of textile permeability. Now, we apply our approach to
real industrial textiles which consist of impermeable yarns. A key task in permeabili-
ty modelling is the geometric description of textile structures which will result in the
reinforcement of the composite material after the LCM process. The basic geometric
structure of a textile can be described by a single layer model for which we employ
the WiseTex software [31] developed at the Katholieke Universiteit Leuven in Bel-
gium. More complex textile structures, however, are multi-layered and the different
layers are ‘nested’. Building the geometry model of a multi-layered reinforcement is
an additional step, for which we use the LamTex software [18]. An example is given
in Figure 2.3 and Figure 2.4. Figure 2.3 shows successively stacked layers which are
just simple repetitions of the first layer. However, in real-life textiles, neighbouring
fabric layers further interact due to e.g. compression and other outer forces. Then
the multiple layers tend to nest and no longer form a direct repetition of the single
layer. Thus, a norm cell with more than just one single layer is to be employed. This
also resembles the experimental setup. An example is given in Figure 2.4, where a
non-nested and a maximally nested two-layer cell are shown, i.e. a cell for which the
two layers fit maximally into each other. In laboratory experiments the layers even
involve random nesting since they are randomly compressed in the mould cavity due
to fabrication pressure and other outer forces. In the following, we use approach (a)
of Section (2.2), i.e. we first solve the Stokes equations and then Darcy’s law for the
computation of K.

As a typical example we consider the Monofilament Fabric Natte 2115. It

fraction of the cell that is occupied by the solid. Furthermore, Vfmax = π/6 corresponds to the case
when the spheres are in contact. Since we solve the problems in a unit cell, there holds χ = 2r.
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Fig. 2.4. Two layers of the Monofilament Fabric Natte 2115; left: no nesting (top) and max-
imum nesting (bottom) discretised with grid cell size 0.01; right: 3D flow field and its 2D cut
calculated in the fabric.

is made of interwoven strands of PVC coated glass fibres, which are heated after the
impregnation process so that the PVC coating melts and crossing yarns are fused
together. This fabric is depicted in Figure 2.4. Natte 2115 is an ideal test fabric
for permeability measurements on actual textile reinforcements in the laboratory. It
consists of impermeable yarns, it is stable and reusable and it has many useful proper-
ties for permeability validation [28]. The full description of the Monofilament Fabric
Natte 2115 can be found in [11, 12].

For our numerical calculations, we discretise the textile model with a very high
resolution of ∆x = ∆y = ∆z = 0.01. Then, according to approach (a), we solve
the Stokes equations in a unit cell and insert the resulting velocity and pressure into
Darcy’s Law to obtain K. The computed flow field of the velocity component u1 is
shown in Figure 2.4 together with a 2D cut, which displays the textile geometry and
the flow between the yarns.

Table 2.3 shows the computed permeability K11 of the x-direction for different
nesting structures of the Natte 2115. Here, we consider a one- and a two-layer cell
with varying degrees of nesting. First of all, both the permeability computations for
one layer and for two layers with minimum nesting give the same results. In this case,
the second layer is a simple repetition of the first. Therefore the same result is to be
expected and reflects our periodicity assumption on the textile structure. Second, if
the layers are maximally nested, less fluid flows through the textile and, accordingly,
the permeability decreases.

Note that practical experiments and measurements are usually performed with
several layers of the Natte 2115 to fit to the laboratory setup: The layers are com-
pressed in the mould cavity. This leads to a random variety of degrees of nesting
including maximally nested parts which prevent fluid flow through the textile. As
a result, any measured experimental permeability must be lower than that for the
purely non-nested case. As a first approximation to this situation, we computed an
average permeability between minimum and maximum nesting. The obtained value
was 2.656−4mm2. Note that this averaged value and the experimentally obtained
value of 2.7−4 mm2±10% coincide quite well. Nevertheless, further computations in-
volving random nesting are necessary to confirm this result since permeability does
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Fig. 3.1. Sketch of a dually porous geometry Ω. On the microscale it contains porous obstacles
and therefore has two unit cells. On the mesoscale, the geometric information about the porous
obstacles is contained in the effective parameter K

p
ε . Here, we solve the Brinkman unit cell problems

(3.10) for the computation of K for Darcy’s law on the macroscale.

not depend linearly on the volume fraction; see also [28].

3. Coupled Flow Problems in Plain and Porous Media. So far we con-
sidered the case of solid yarn stacks. We now turn to porous yarns, where flow also
takes place inside the yarns. Thus, we consider domains Ωε = Ωf

ε ∪ Λε ∪ Ωp
ε , where

Ωf
ε still denotes the pure fluid domain which now embeds porous obstacles Ωp

ε (cf.
Figure 3.1). The regular hypersurface Λε separates the fluid and the porous domain.
Now, we have to additionally model the flow in the porous obstacles by e.g. the
Darcy or Brinkman equations in Ωp

ε, and we further have to couple this model with
the Stokes equations in the fluid domain Ωf

ε .
In this section, we shortly discuss coupling conditions which are formulated on

the mesoscale; see Figure 3.1. Then, we propose the Stokes/Brinkman model as a
single system of partial differential equations in both Ωf

ε and Ωp
ε. The error between

this unified approach and a coupling approach with explicit interface conditions can
be estimated [3]. We extend this estimate to non-scalar permeabilities. Furthermore,
we present the homogenisation of the Stokes/Brinkman equations on the mesoscale,
which yields Darcy’s law on the macroscale and a further set of unit cell problems for
the computation of K.
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3.1. Explicit interface conditions. Suppose that flow in the porous obstacles
Ωp

ε is modelled by Darcy’s law

up
ε = −Kε

µ
(∇pp

ε − fp)

∇ · up
ε = 0,

(3.1)

and the flow in Ωf
ε is modelled by the Stokes equations

−µ∆uf
ε + ∇pf

ε = f f

∇ · uf
ε = 0.

(3.2)

The coupling of these two systems is mathematically difficult, since the Stokes equa-
tions and Darcy’s law are PDEs of different order and thus need a different number
of conditions on their common interface.4 If instead the flow in the porous obstacles
is modelled by the Brinkman equation in Ωp

ε

−µ̃∆up
ε + ∇pp

ε + µK−1
ε up

ε = fp

∇ · up
ε = 0,

(3.3)

the coupling with the Stokes equations is more straightforward, since both equations
are PDEs of the same order.5 One possibility for their coupling are the transmission
conditions

uf
ε |Λε

= up
ε|Λε

and
(

−pf
εI + µ∇uf

ε

)

· ν|Λε
= (−pp

εI + µ∇up
ε) · ν|Λε

(3.4)

on the interface Λε, where again ν denotes the unit normal. In the next step, we
reformulate this approach as a single system of partial differential equations for the
flow both in the pure fluid and in the porous domain.

3.2. The Stokes/Brinkman equations. The coupled Stokes/Brinkman equa-
tions are given by

−µ̃∆uε + ∇pε + µK−1
ε uε = f in Ωε

∇ · uε = 0 in Ωε

uε = 0 on ∂Ωε,

(3.5)

where Kε is a positive definite diagonal tensor and µ̃ > 0 denotes an effective
Brinkman viscosity. Here, the different parts of the domain are taken into account by
their characteristic permeability, which has a finite value for the porous domain and
an infinite value for the pure fluid domain. In addition, the viscosity may vary from
its specific value in the pure fluid domain to some effective value in the porous part.

To be precise, we set

Kε =

{

∞ in Ωf
ε

Kp
ε in Ωp

ε.
and µ̃ = µ in Ωε

4To this end, the Beavers-Joseph condition for the velocity may be employed. This can be
experimentally and mathematically justified (cf. [5, 15, 20, 23] and the references cited therein).

5Note that a Brinkman type equation similar to (3.3) can be derived by homogenisation theory if,
in contrast to Section 2, we assume that the obstacle size passes faster to zero than the inter-obstacle
distance ε. The resulting equation is then valid for very low porosities only; cf. [14, 15] and the
references cited therein.
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Then, in the fluid region Ωf
ε , this selection of parameters implies that equations (3.5)

reduce to the Stokes equations (3.2). In the porous region Ωp
ε, we take Kε = Kp

ε,
i.e. the Darcy permeability of the porous medium. Then, the only difference between
equation (3.5) and Darcy’s law (3.1) is the additional term µ̃∆uε. Since typical textile
permeabilities Kp

ε range from 10−4 mm2 to 10−7 mm2, the penalisation term µK−1
ε uε

becomes very large. If we choose µ̃ = µ, it dominates µ̃∆uε by many orders, and thus
we approximately solve Darcy’s Law in the porous part Ωp

ε .
6

3.3. Error Estimate for the Stokes/Brinkman Equations. In [3] Angot
proves an estimate for the error between the Stokes/Brinkman equations (3.5) and
the explicitly coupled system of the Stokes equations (3.2) and the Brinkman equa-
tion (3.3 - 3.4). For this estimate a scalar permeability is assumed, since in the
articles [3] and [4] fluid-solid configurations are of main interest, as opposed to the
fluid-porous ones. For our applications, the anisotropic textile geometry has to be
accounted for by a permeability in tensor form. In the following, we therefore extend
Angot’s estimate [3] to the case that Kp

ε is a positive definite diagonal matrix. Here,
V = {u ∈ H1

0 (Ωε)
3 such that ∇ ·u = 0} denotes the Hilbert space of divergence-free

functions.

Theorem 3.1 (Error estimate for the Stokes/Brinkman equations). Let δ > 0
be a given parameter and let (uε,δ, pε,δ) ∈ V × L2(Ωε)/R denote the solution of the
Stokes/Brinkman problem (3.5) over the whole fictitious domain Ωε with a positive
definite diagonal second-order tensor Kε, where

Kε|Ωε
f

=
1

δ
I, Kε|Ωp

ε
= Kp

ε .

Furthermore, set µ̃ = µ in Ωε for the effective viscosity. Moreover, let uε be the
solution of the fluid-porous transmission problem (3.2, 3.3, 3.4). Then, if f ∈ L2(Ωε)

3

and if Ωf
ε and Ωp

ε are in C2, the error estimate

||uε,δ − uε||H1(Ω) = O(δ) (3.6)

holds for the solution {uε,δ}δ>0 of (3.5).
Proof. The case of a scalar Kp

ε is dealt with in [3]. Here, we just have to de-
scribe the necessary extensions for positive definite diagonal matrices Kp

ε. The weak
formulation of the Stokes/Brinkman problem (3.5) reads

µ

∫

Ωf
ε

∇uε,δ : ∇ϕ dx + µ̃

∫

Ωp
ε

∇uε,δ : ∇ϕ dx

+µδ

∫

Ωf
ε

uε,δ · ϕ dx + µ

∫

Ωp
ε

(Kp
ε)

−1uε,δ · ϕ dx =

∫

Ωε

f · ϕ dx

(3.7)

for all ϕ ∈ V . Note that the pressure integral vanishes because ϕ is divergence-free
in Ω. We denote the diagonal entries of Kp

ε by (κi)i=1,...,3. Now, we choose ϕ = uε,δ

and divide by µ > 0. This results in
∫

Ωf
ε

|∇uε,δ|2 dx +
µ̃

µ

∫

Ωp
ε

|∇uε,δ|2 dx

+δ

∫

Ωf
ε

|uε,δ|2 dx +

∫

Ωp
ε

3
∑

i=1

κ−1
i u2

ε,δ,i dx =
1

µ

∫

Ωε

f · uε,δ dx.

(3.8)

6How to match µ̃ and µ is a question of ongoing research. Their quotient depends on the geometry
of the porous medium [22]. We refer to [15, p. 27], [22, p. 13] and [23] for a more detailed discussion.
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Note that Kp
ε has only positive entries. Since we aim at an upper estimate for the

left hand side of this equation, we omit the last two positive terms on that side. In
the next step, the proof proceeds with the application of the Cauchy-Schwarz and
Poincaré’s inequality just as in [3].

Furthermore, in order to derive estimate (3.6), the variational formulation of the
difference uε,δ −uε has to be considered. As above, the same positivity argument for
Kp

ε can be applied.
Note that Theorem 3.1 is formulated for no-slip conditions on ∂Ωε. Furthermore,

it needs the interface conditions on Λε to be sufficiently regular, i.e. the porous part
is not allowed to touch the boundary. In contrast to that, textiles have a periodic
structure and thus involve porous parts which might touch the boundary. But if we
consider a slightly larger domain and extend the velocity by zero to its boundary,
Theorem 3.1 still holds.

3.4. Computation of the microscale permeability. There remains the ques-
tion how the permeability Kp

ε of the yarns is determined. We resort to two different
methods:

(a) Follow the same approach as on the mesoscale in Section 2: In a microscale
unit cell (Fig. 3.1, c), Kp

ε can be computed from the solution of the the unit
cell problems.

(b) Employ a simplified computation of Kp
ε by semi-analytical formulas.

The latter approach may be used to avoid the complex numerical modelling of a
further scale of the textile composite. Scanning electron microscopy shows that fibres
are arranged in bundles having the shape of cylinders with ellipsoidal cross-sections [9].
Therefore, to compute the local permeability tensor Kp

ε of the yarns, the fibres in the
yarns are locally approximated as a regular array of cylinders. Then, the components
of Kp

ε can be calculated according to the semi-analytical formulas of Berdichevsky [8]
and Gebart [9] by

K‖ =
R2

8Vf

[

ln
1

Vf
2 − (3 − Vf )(1 − Vf )

]

K⊥ =
16

9π
√

2

(
√

Vf max

Vf

− 1

)

5

2

R2.

(3.9)

Here, Vf denotes the local fibre volume fraction, R is the radius of the cylinders and
Vf max = π/4 is the maximum fibre volume fraction for a quadratic arrangement of
cylinders. The formulas (3.9) give the permeability along (K‖) and orthogonal (K⊥)
to the direction of the cylinder axis. Note that in realistic textiles, the yarns are not
aligned with the unit cell axis. Then, an appropriate projection into the unit cell
coordinate system is required.

Besides the local microscale yarn permeability Kp
ε, we need to compute the

macroscale permeability K as input for Darcy’s law analogously to Section 2. There-
fore, we have to consider the upscaling of the Stokes/Brinkman equations as done
in [23]. This will be discussed in the following section.

3.5. Homogenisation of the Stokes/Brinkman equations. Similar to the
homogenisation of the Stokes equations a formal asymptotic expansion (2.4) can
be inserted into the Stokes/Brinkman equations (3.5). In [23] it is argued that
if µ(Kp

ε)
−1 ≥ O(ε−2), the following Brinkman unit cell problem is obtained: For
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1 ≤ i, j ≤ 3, find (wi, πi) such that

(Kp
ε)

−1wi − µ̃

µ
∆wi + ∇πi = ei in Y

∇ · wi = 0 in Y

wi, πi Y − periodic,

(3.10)

where ei is the vector with components ei
j = δij and

Kij = 〈wi
j〉Y .

In Ω, the upscaled flux is again given by Darcy’s law

u = −K

µ
(∇p − f)

∇ · u = 0.

(3.11)

For porous media with two pore scales, we now have an additional unit cell problem
on the mesoscale (Fig. 3.1, b). This problem has to be solved for the computation of
K for Darcy’s law on the macroscale and requires as input the permeability Kp

ε of
the microscale.

3.6. Numerical treatment of the Stokes/Brinkman equations. Altoge-
ther, we are now able to compute the permeability of geometries which embed porous
obstacles Ωp

ε . In these domains, we established the validity of the Stokes/Brinkman
equations by Theorem 3.1. Its homogenisation requires the solution of the Brinkman
unit cell problems. To this end, we gave two possibilities for the computation of the
microscale permeability Kp

ε . In the following, we numerically compare the solution
of the Brinkman unit cell problems (3.10) on the mesoscale with the solution of the
Stokes unit cell problems (2.8) on the microscale. Note that in the unit cell, these
problems correspond to the solution of the Stokes/Brinkman equations and the Stokes
equations, respectively, where both are driven by a unit force. Then, we compute the
permeability of a real-life industrial textile.

Here, we again use our solver NaSt3DGP. Then, additionally to the diffusive
term, the Brinkman term µK−1

ε wi, i = 1, ..., 3 has to be transported implicitly in
time to avoid further time-step restrictions due to stability reasons. Again, the Crank-
Nicolson scheme is employed, and the resulting linear system of equations is solved
by the conjugate gradient method.

3.6.1. Test problem: 3D array of cubes. As a test case, we consider a fluid
domain partially filled with cubes (Fig. 3.2). This geometry is a simple example of a
unit cell from a dually porous medium.

On the microscale, where the geometry is resolved explicitly (cf. Fig. 3.1, b),
we face the unit cell problems (2.8), i.e. we solve the Stokes equations both in the
fluid and in the porous domain with periodic boundary conditions and unit force in
x-direction for the computation of the permeability K11. This direct numerical simu-
lation of the flow requires a very fine - in general prohibitively fine - grid resolution.
Instead, we can switch to the mesoscale and solve the Brinkman unit cell problems
(3.10). Then, the porous geometry is no longer explicitly given (cf. Fig. 3.1, b), and
we first have to compute the permeability Kp

ε of the porous part. This is done by
method (a) in Subsection 3.4 and yields Kp

ε,11 = 1.73−1.
7 With this value, we solve

7In dimensionless calculations, the permeability Kε,11 = 1.73−1 has to be rescaled by a factor of
0.06252, which is the squared length of one periodic cell of the geometry in Figure 3.2.
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Table 3.1
Results from the computation of the unit cell problems (2.8) resolved on the microscale and

from the Brinkman unit cell problems (3.10) resolved on successively refined grids on the mesoscale:
Permeability and ratio of Brinkman term versus viscous term.

Problem Resolution K11 Kp
ε,11∆w1/w1: min ... max

Stokes unit cell 256 × 256 × 256 5.43−2 –

Brinkman unit cell 032 × 032 × 032 5.27−2 3.3−6 ... 9.2−4

064 × 064 × 064 5.05−2 5.3−7 ... 2.3−4

128 × 128 × 128 4.97−2 1.2−7 ... 5.9−5

256 × 256 × 256 4.92−2 2.8−8 ... 1.5−5

→

Fig. 3.2. Test geometry: Domain filled partially with a porous medium consisting of cubes.

Fig. 3.3. Results from the computation of the unit cell problems (2.8) resolved on the mi-
croscale and from the Brinkman unit cell problems (3.10) resolved on successively refined grids on
the mesoscale. Drawn is a slice in the direction of the flow field from left to right. Compared are the
contours of the velocity component w1 in the microgeometry with a resolution of 256×256×256 (left)
and in the mesogeometry with a resolution of 32×32×32 (middle) and a resolution of 128×128×128
grid cells (right). The square denotes the porous part of the domain.
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Table 3.2
Convergence table for the solution of the Brinkman unit cell equations in a geometry filled

partially with a porous medium.

1/h ew1

h,1 ρw1

h,1 ew1

h,∞ ρw1

h,∞ ew2

h,1 ρw2

h,1 ew2

h,∞ ρw2

h,∞ eπ
h,1 ρπ

h,1 eπ
h,∞ ρπ

h,∞

32 3.538−3 – 1.341−2 – 5.110−4 – 5.739−3 – 2.863−2 – 0.424 –

64 1.294−3 1.451 6.058−3 1.146 2.332−4 1.132 2.965−3 0.953 1.374−2 1.060 0.294 0.530

128 5.068−4 1.352 2.600−3 1.221 1.021−4 1.192 1.341−3 1.145 6.048−3 1.184 0.177 0.729

the Brinkman unit cell problems on four successively refined grids. The results are
given in Table 3.1.

We observe convergence with successively finer grid resolution for the compu-
tation of permeability by the Brinkman unit cell problems. Note however that the
permeability does not converge to that of the Stokes equations. This is due to the
fact that the Stokes/Brinkman equations in the mesoscale unit cell are merely an
approximation of the Stokes equations in the microscale unit cell, i.e. we always make
a distinguishable error in solving them - instead of the microscopic problem directly.

Nevertheless, we observe that - even for a much coarser resolution - the Stokes
equations are quite well approximated by the Stokes/Brinkman equations. This can
be seen from the similarity in the flow fields depicted in Figure 3.3. This figure also
shows that the oscillations of the flow field in the porous part on the microscale are
averaged by the solution of the Brinkman unit cell equations on the mesoscale.

Let us recall that we have to justify the use of the Brinkman equation in a regime
where Darcy’s law was found to be valid in Section 2. In the case of the above porous
medium filled partially with boxes, the Brinkman term K−1

11 w1 dominates over the
viscous term ∆w1, and hence, in the porous part, the Stokes/Brinkman equations
reduce to Darcy’s law. The ratio K11∆w1/w1 of both terms is given in Table 3.1.
As to be expected, this ratio is very low and varies between 3.3−6 and 9.2−4 on the
coarsest grid. It even improves with a convergence rate of nearly O(h2) on the finer
grids.

In order to assess the quality of our numerical scheme, we compute the con-
vergence rate for the solution of the Brinkman unit cell problem. Here, in con-
trast to Subsection 2.3.1, we employ the solution computed on the grid with mesh-
width 1/256 as reference solution Ψref, where Ψ ∈ {w1, w2, π}. We define the error
eΨ

h,p = ‖Iref
h Ψh − Ψref‖l

p

h
with p ∈ {1,∞}, where Iref

h denotes the interpolation of
data computed on a mesh with mesh-width h to the reference mesh with mesh-width

1/256. The convergence rate is then given by ρΨ
h,p = ln

(

eΨ

2h,p

eΨ

h,p

)

/ ln 2.8 The resulting

numbers are shown in Table 3.2.
We cannot expect full second order convergence because of the velocity jump of

w1 at the interface. This jump becomes manifest in steep gradients in the pressure
near the interface as well as in the singular behaviour of the components w2 and w3

at the edges of the porous body. Accordingly, we find convergence rates near one
for the velocities as well as for the pressure. Note that the results obtained for the
velocities w2 and w3 are identical due to the symmetry of the problem. Similar to
Subsection 2.3.1 we anticipate ρ to improve for a smaller size of the square porous

8Our solver NaSt3DGP employs a time stepping procedure, and we choose an explicit Euler
scheme with δt = 7.630−7 for the first time step. Then, time is discretised equidistantly by δt =
2.289−4 for the implicit solver for all mesh-widths. We stop the simulation at time t = 0.931.



18

Table 3.3
Parameters of the non-crimp fabrics’ unit cells and computational results with the Stokes (S)

and Stokes/Brinkman (S/B) equations, i.e. results for impermeable and permeable yarns, respec-
tively. The length of the unit cell L = (Lx, Ly, Lz) is given in [mm] and K11 in [mm2 ].

Preform name Lx Ly Lz Resolution K11 S K11 S/B
Bi-axial 3.4 4.92 0.45 85 × 123 × 15 2.73−4 4.03−4

Quadri-axial 8.195 5.06 0.945 149 × 92 × 21 5.21−4 7.90−4

Fig. 3.4. Bottom and top view on a non-crimp fabric with a chain stitch pattern; picture
from [16].

inclusion and therefore, for less interfaces at which the velocity is discontinuous.
In conclusion, the above results advocate the application of the Brinkman unit

cell equations. This approach avoids the high resolution and long computing times
that are needed for the solution on the microscale and leads to a sufficiently accurate
and fast computation of permeability on the mesoscale instead. Note finally, that as
long as the modeling error (3.6) of the Stokes/Brinkman equations is substantially
below the mesh resolution, our approach is also numerically and analytically fully
valid since the numerical error dominates anyway.

3.7. Non-Crimp Fabric. In this section we present experimental validation for
non-crimp fabrics. These fabrics are widely used in the construction of composites
such as wind blades, yachts, aircrafts and helmets. They consist of plies of aligned
fibres which are stitched together with typical angles of 45◦ or 90◦. The alignment of
fibres and the stitching can be seen in Figure 3.4, where an example of a unidirectional
non-crimp fabric is shown. Although the stitching yarns are one order of magnitude
smaller than the fibre bundles they join, they have an important influence on the
permeability since empty spaces are formed around the stitching. We consider two
different types of non-crimp fabrics: a bi-axial and a quadri-axial fabric; see [17] for
a more detailed description. Note that due to the structural properties of the textile,
nesting can be neglected.

The non-crimp fabric has a very dense structure, so that intra-yarn flow becomes
of particular importance. Therefore, we solve the Stokes/Brinkman equations (3.10)
in the unit cell. Here, we resort to the semi-analytical formulas (3.9) for the computa-
tion of the microscale permeability Kp

ε as input for the Stokes/Brinkman equations.
In order to assess the influence of intra-yarn flow and for comparison reasons, we ad-
ditionally solve the Stokes equations for the computation of K as done in Section 2,
i.e. we suppose that the yarns are impermeable.

The two numerical permeabilities are computed for a volume fraction of 38% for
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Fig. 3.5. Results of four experiments on non-crimp fabrics.

the bi-axial and of 40% for the quadri-axial non-crimp fabric. In Table 3.3, we see
a comparison between the permeability computed in the case that intra-yarn flow is
taken into account (the Stokes/Brinkman equations are solved) and in the case that
the yarns are treated as impermeable (the Stokes equations are solved). As expected,
the permeability is considerably lower in the latter case.

Next, to validate our numerical results we refer to measurements obtained from
practical experiments. These were performed by the TECABS consortium (EPFL,
Ecole des Mines de Douai, K.U. Leuven, 2004). For detailed information about the
bi-axial and quadri-axial non-crimp fabrics, see Appendix D of [28]. Figure 3.5 gives
the available numbers. We clearly see a decrease of the permeability with increasing
volume fraction. We furthermore observe from the two bi-axial experiments that there
is quite a variability in the measured permeability. This is due to the fact that the
experimental setup is difficult, i.e. the measurement error is in the range of 10−4. In
comparison, the results of our numerical experiments are approximately in the same
range. For the quadri-axial fabric with a volume fraction of 40%, we obtained a value
of 7.90−4 mm2, and for the bi-axial fabric with a volume fraction of 38%, we ob-
tained a value of 4.03−4 mm2. Nevertheless, the numerically computed permeability
underestimates the experimental values. However, the results clearly improve by the
application of the Stokes/Brinkman equations for intra-yarn flow.

4. Concluding remarks. In this paper we presented a numerical multiscale
method for the computation of permeability of industrial textiles in three dimensions.

First, we considered the case of impermeable textile yarns. Here, we justified
Darcy’s law on the textile macroscale by homogenisation theory. In particular, we
showed that the computation of permeability defined by the solution of the unit cell
problems is indeed equivalent to its computation by Darcy’s law. Our numerical
scheme employs a staggered grid with a finite difference discretisation and a projec-
tion method. We solved the unit cell problems as well as the Stokes equations and
Darcy’s law for the permeability. For a simple test problem our results agreed well
with semi-analytical values from the literature [26]. Furthermore, we computed the
permeability of the industrial textile Monofilament Fabric Natte 2115 and obtained
values which were very close to those measured in practical experiments.

In a second step, we considered the case of permeable textile yarns. To this end,
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we discussed the validity of the Stokes/Brinkman equations which account for the dual
porosity of textiles. Again, homogenisation yields Darcy’s law on the macroscale. We
employed our numerical scheme for the solution of the Stokes/Brinkman unit cell
equations. For a test problem, their solution compares very well with the direct
numerical solution of the Stokes equations on the microscale. Furthermore, we nu-
merically showed the reduction of the Stokes/Brinkman equations to Darcy’s law in
the porous domain. The presented method was then applied to non-crimp fabrics
with permeable yarns. There, our numerically computed permeability also agreed
sufficiently well with available experimental data.
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