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Abstract - Permeability of textiles is a key characteristic for
composite manufacturing. Measurement of textile permeabil-
ity is a time and resource consuming process, hence numerical
prediction of the permeability is required. Using the law of
Darcy, permeability can be derived from a simulation of the
fluid flow, i.e. after solving the Navier-Stokes or Brinkman
equations. In this paper we present the results of simulations
with an extended version of the freely available finite differ-
ence CFD software package NaSt3DGP and we compare the
results with those obtained from a Lattice-Boltzmann code.
The results are validated with theory and experimental data.
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I. I NTRODUCTION

Liquid Composite Molding (LCM) is a rapidly developing
manufacturing process. It involves: laying up of a textile
reinforcement in a mold of a desired 3D shape; injection of
a liquid resin; polymerization (thermosets) or solidification
(thermoplasts) of the resin [12]. Permeability of textiles is
a key characteristic for composite manufacturing and is of
particular importance for the injection stage of LCM. The
evaluation of textile permeability gained importance due to
the often encountered problems of non-uniform impregna-
tion, void and dry spot formation.
The permeability is a geometric characteristic related to
the structural features of the textile at several length scales.
Textile is a porous medium, so permeability can be defined
using Darcy’s law

〈~u〉 = − 1
νρ

K · 5 〈P 〉 , (1)

with 〈~u〉 the fluid velocity,ν andρ the fluid viscosity and
density,P the pressure,〈〉 volume averaging andK the per-
meability tensor of the porous medium. Equation (1) is a
homogenized equation, the information of the internal ge-
ometry of the reinforcement being ”hidden” inK. Finite
element or finite difference Darcy solvers require the input
of K. Unfortunately, measurement of textile permeability
is time and resource consuming [8], hence reliable predic-
tion of K is required for the Darcy solvers.
For the calculation ofK, we can determine the flow in a
unit cell, since textile has a periodic pattern (Fig.1). The
inter-yarn flow is described by the incompressible Navier-
Stokes equations (2), in case the model is limited to creep-
ing, single-phase, isothermal, unidirectional saturated flow
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of a Newtonian fluid. The first equation states the conserva-
tion of momentum (momentum equation), the second equa-
tion is the continuity equation (conservation of mass).

{
D~u
Dt = ∂~u

∂t + (~u · ∇)~u = − 1
ρ∇p + ν∆~u

∇ · ~u = 0
(2)

Intra-yarn flow depends on the local permeability tensor of
the towK−1

tow, and is described by

{
∂~u
∂t + (~u · ∇)~u− νK−1

tow · ~u = − 1
ρ∇p + ν∆~u

∇ · ~u = 0,
(3)

which are the Brinkman equations [13] without neglecting
the convection.

Fig. 1. A unit cell setup

A key task in permeability modeling is the characteriza-
tion of the reinforcement. For the creation of a single
layer of the reinforcement, we use the WiseTex software
[9], [10]. In practice however, often the permeability of a
multi-layered reinforcement is required. Building the ge-
ometry model of a multi-layered reinforcement is a com-
plex additional step, for which the LamTex software has
been developed [11]. The results of WiseTex and LamTex
provide the input for the flow simulation tool.
We develop a software package, FlowTex, for the compu-
tation of the permeability tensor of textiles. A first version
of FlowTex, based on a Lattice Boltzmann model for fluid
flow, has been tested and validated [3]. In this paper we
discuss a new module of FlowTex, based on a finite differ-
ence discretization of the Navier-Stokes equations (2) and
the Brinkman equations (3). Results of the permeability
predictions with the new module are compared with results
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obtained with the Lattice-Boltzmann software, with ana-
lytical results for a model problem and with experimental
data. Note that experimental validation is often missing in
papers describing other software for permeability predic-
tion.

II. N UMERICAL APPROACH

A. Solution of the Navier-Stokes equations

For simulations in an irregular geometry, typically finite
volume or finite element discretizations are used. They
have the advantage that irregular and/or adaptively con-
structed meshes can easily be dealt with. However, for the
flow through a complex fibrous structure, it is very difficult
and time consuming to generate appropriate meshes. For
that reason, we have chosen to solve equations (2) and (3)
numerically on a regular staggered grid (Fig.2) with a finite
difference discretization. In the staggered grid approach,
the pressure is discretized at the center of the cells, while
the velocities are discretized on the edges. This avoids the
occurrence of non-physical oscillations in the pressure.

B. Geometry issues/Boundary conditions

If we neglect the intra-yarn flow, the yarns are treated as
impermeable. Grid points can be in the fluid domain (’fluid
points’) or in the solid yarn domain (’solid points’). At the
boundaries between the fluid and the solid, no-slip bound-
ary conditions are set. We have chosen for a lineair approx-
imation of the solution at the boundaries:

Vi,j,k = −Vi+1,j,k,

if Vi,j,k is a solid point, andVi+1,j,k is a fluid point. We use
a second order discretization of the Navier-Stokes equa-
tions, but since the geometry is approximated to first order,
we cannot obtain second order accuracy at the borders. In-
cluding a second order description of the geometry would
not only lead to geometry problems we avoid by using the
finite difference method, but a second order approximation
of the boundary conditions would also create numerical sta-
bility problems.
Using a first order approximation of the yarns, means that
fine meshes are required to obtain an accurate result. How-
ever, unlike accurate and automatic mesh-generators, some
fast and stable PDE-solvers are freely available.

C. Solution of the Brinkman equations

If we include the intra-yarn flow, the Brinkman equations
(3) must be solved in the yarn points. The Brinkman equa-
tions are similar to the Navier-Stokes equations, and the
same approach can be used. Equation (3) converges to
equation (2) for largeKtow. We solve (3) on the whole
domain, now treating every point in a similar way. At
fluid points, Ktow is set to∞, for yarnsKtowis typically
10−4 ≤ Ktow ≤ 10−7 . This leads to highly discontinu-
ous coefficients in the discretized PDEs, at the boundaries

Brinkman point

Navier-Stokes point

Fabric Repeat

Fig. 2. Top,middle: A 2D-textile model and its first order approx-
imation on the grid; bottom: 3D voxel geometry

between fluid and yarn points. However, the permeability
term, which can be seen as a local reaction term, has only
influence on the diagonal of the discretized system. Using
a simple Jacobi preconditioner avoids numerical instabili-
ties.

D. Implementation

A finite difference Navier-Stokes solver, NaSt3DGP was
developed by the research group of Prof. Michael Griebel
in the institute of Numerical Simulation at the University of
Bonn [6],[1]. For the solution of the Navier-Stokes equa-
tions (2), the Chorin projection method is used. First the
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momentum equation is solved to predict a new velocity
field. This new velocity field, however, will not satisfy the
continuity equation. Substitution of the predicted velocity
into the continuity equation, leads to a Poisson equation for
the pressure. After solving the Poisson equation, the new
divergence free velocity field is computed.
The NaSt3DGP code works completly in parallel on MPI
[2] platforms and provides several second order TVD up-
wind schemes for space discretization and an explicit Euler
as well as a second order Adams-Bashfort scheme for time
discretization. Furthermore NaSt3DGP offers several itera-
tive solvers (SOR, Red-Black, BiCGStab) for the according
Poisson system.
The implementation of the boundary conditions and the
spatial derivatives, does not allow solid cells bordered by
two fluid cells in one direction. Otherwise boundary con-
ditions cannot be set correctly. If, after discretization, such
solid cells appear, they will be deleted.

We have adapted the code to our needs. For the unit
cell setup, we implemented periodic boundary conditions
in three directions for the velocities, and periodic bound-
ary conditions up to a constant gradient for the pressure
(Fig.1). Discretization of the Brinkman equations leads to
a straightforward implicit implementation of the reaction
term.
For the Brinkman solver, a nested iteration strategy is im-
plemented. The flow is first computed on a coarse mesh,
and the solution is then transferred to a finer mesh, with
first order interpolation for both velocity and pressure val-
ues. Starting from this initial approximation, the flow is
then computed on the finer mesh. This procedure is re-
peated until the solution is obtained on the finest mesh.
Using the average~u over a cross section, the permeability
K is derived from Darcy’s law (1) . Convergence ofK

, reaching the steady state or a maximum number of time
steps, can be used as stopping criterion. For the input of the
geometry, an interface between WiseTex and the Navier-
Stokes and Brinkman code has been developed.

III. R ESULTS AND VALIDATION

Validation tests with the Navier-Stokes and the Brinkman
solver show very good results. Here, we present the re-
sults of one artificial setup, and of two realistic reinforce-
ments for which we have experimental verification. For-
ward Euler time integration, and the VONOS [15] scheme
for the spatial discretization was used. The Poisson equa-
tion was solved using the BiCGStab [14] method with Ja-
cobi preconditioning. Calculations are performed on a
AMD Opteron(tm) Processor 244, 1.7GHz.

A. Parallel Square Array (PSA)

A.1 Impermeable Array

For the flow trough a parallel array of impermeable tows,
theoretical, numerical and experimental data are available

TABLE I
RESULTS OF THEPSA-SETUP

Vf ∆x #gridpoints #iterationsKalong

20 0.1 1000 1200 0.05876

0.05 8000 3900 0.04881

0.03 35937 10100 0.04626

0.025 64000 19100 0.04537

62 0.1 729 350 0.004906

0.05 5832 850 0.003374

0.03 27000 2100 0.003337

0.025 46656 2950 0.003178

Fig. 3. Permeability of Parallel Square Arrays with different fiber
volume fractions. Full lines: theoretical permeability; circles:
Lattice-Boltzmann results; squares: Navier-Stokes results.

[16],[5]. Results can be found for different fiber volume
fractions (Vf.), i.e. different radii (Rf) of the cylinders.
Fig.3 shows the theoretical permeability, together with the
calculated permeability, both for flow along the cylinders
and for transversal flow. The graph also shows a com-
parison between the permeabilities obtained with the finite
difference Navier-Stokes solver and the Lattice-Boltzmann
method.
For two volume fractions, Table I shows calculated perme-
ability for different grid spacings. With decreasing∆x, the
permeability converges. Table I also shows the total num-
ber of iterations that are performed to solve the Poisson
equations.
On a finer mesh more iterations are required because of

two reasons: First, pseudo time stepping is used to reach
the steady state. Inside explicit schemes the time-step is re-
stricted by the local mesh size. Thus, a finer mesh requires
a smaller time step, and therefore, more time-steps have to
be taken. Second, the preconditioned BiCGStab scheme
for the Poisson equation converges more slowly to a solu-
tion on a finer mesh [4], so in each timestep more iterations
are required.
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Fig. 4. Permeability of a Parallel Square Array with different
local permeabilities

A.2 Permeable array

Fig.4 shows the results of permeability predictions with the
Brinkman solver. For a fixed volume fraction (60%), the
permeability is calculated for different cylinder permeabil-
ities Ktow. For largeKtow, the permeability of the unit cell
increases to one. AsKtow decreases, the cylinders become
more and more solid and the unit cell permeability con-
verges to the permeability of an impermeable array.

A.3 Nested Iteration

For a parallel array of cylinders with a volume fraction of
60%, the Navier-Stokes solver, the Brinkman solver and
the Brinkman solver with nested iteration are compared
(Table II). The calculations are performed on a(40×40×40)

grid, for the nested iteration starting on a(2 × 2 × 2) grid.
Stopping criterion for the calculations is convergence of the
permeability.
As the Navier-Stokes code only performs calculations on
the fluid cells, the computational cost, expressed as the
number of iterations multiplied with the number of active
gridpoints, is smaller than for the Brinkman solver. The
Navier-Stokes solver iterates on a smaller system of equa-
tions, and reaches steady state faster than the Brinkman
solvers. The nested iteration converges faster than the non-
nested iteration.
When reaching steady state (up to machine precision) is
used as stopping criterion, the calculated permeability only
differs 0.001%, but the computation time is much higher.

B. Monofilament fabric

The Monofilament fabric Natte 2115 is a more realistic
structure which is close to actual textile reinforcements,
and for which permeability is experimentally validated.
The full description of the Monofilament Fabric Natte 2115
test-fabric can be found in [8],[7]. The yarns are imper-
meable, so only the Navier-Stokes equations are solved.

TABLE II
COMPUTATIONAL RESULTS

Navier-
Stokes

Brinkman Brinkman
nested it.

Total nb iterations 79.103 106.103 122.103

Iterations
×gridpoints

2.0 109 6.6 109 5.6 109

Time 2h00 4h05 3h27

Permeability/Rf2

(10−3)

3.54 4.64 4.64

Fig.5 shows the experimental setup and WiseTex model.
The third picture shows the flow velocity field in a 2D-cut.
In the yarns and at the boundaries, the velocity is zero. The
zero velocity surface shows a good approximation of the
textile geometry. The picture shows two layers of textile,
which are maximally nested. Permeability calculations will
give different results for one layer setups and for setups
with minimal, average or maximal nesting.
Fig.6 shows that the predicted permeability depends
strongly on the grid spacing. The first order discretization
of the geometry leads to a slightly different actual geome-
try. This means that for a coarse grid, we actually solve a
different problem, which leads to a higher permeability.

C. Syncoglass

A second structure is Syncoglass (Fig.7). Full description
of the Syncoglass structure can be found in [8],[7]. Fig.8
shows the results of experimental and computational ex-
periments. Both Lattice-Boltzmann and FD-Navier-Stokes
overestimate the permeability in this case. The Natte setup
already showed that a fine mesh is required, and for the
Syncoglass textile an even finer grid is needed. Not only
the first order approximation has effect on the geometry,
but a coarse grid also leads to more deleted cells.

IV. CONCLUSIONS

We presented a software package for the computation of
the permeability of textile reinforcements.
First a textile model is designed with the WiseTex software.
An accurate model is required as slight differences in the
model lead to other permeabilities. Using the model result-
ing from WiseTex, flow simulations are performed to pre-
dict the permeability. We have chosen to solve the Navier-
Stokes and Brinkman equations with the finite difference
discretization.
The method was first validated with an artificial setup: a
parallel array of cylinders. For such setup, the calculated
permeability can be compared with theoretical results. The
results show that for impermeable arrays, the results ob-
tained with the finite difference Navier-Stokes method are
accurate. For permeable arrays theory lacks, but the predic-
tions of the Brinkman solver, including the intra-yarn flow,
show acceptable convergence.
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Fig. 5. The MonoFilament experimental setup and WiseTex
model

To evaluate permeability calculations for real textiles, we
presented validation results for Natte and Syncoglass tex-
tiles, for which experimental data are available.

V. FURTHER RESEARCH

The presented results are promising, but further validation
is necessary. At this moment, the computational cost of
the Navier-Stokes and Brinkmann solver is quite high. We
will develop a parallel version of the FlowTex software for
permeability calculations of textiles, and include numerical
improvements.
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Fig. 6. Results of the Natte permeability calculations

Fig. 7. The Syncoglass WiseTex model
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