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Abstract

This paper studies the ANOVA decomposition of a d-variate function f defined
on the whole of Rd, where f is the maximum of a smooth function and zero (or f
could be the absolute value of a smooth function). Our study is motivated by option
pricing problems. We show that under suitable conditions all terms of the ANOVA
decomposition, except the one of highest order, can have unlimited smoothness. In
particular, this is the case for arithmetic Asian options with both the standard and
Brownian bridge constructions of the Brownian motion.
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1 Introduction

In this paper we study the ANOVA decomposition of d-variate real-valued functions f
defined on the whole of Rd, where f fails to be smooth because it is the maximum of a
smooth function and zero. That is, we consider

f(x) = ϕ(x)+ := max(ϕ(x), 0), x ∈ Rd, (1)

with ϕ a smooth function on Rd. The conclusions will apply equally to the absolute value
of ϕ, since

|ϕ(x)| = ϕ(x)+ + (−ϕ(x))+.

Our study is motivated by option pricing problems, which take the form of (1) because a
financial option is considered to be worthless once its value drops below a specified ‘strike
price’.
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In a previous paper [8] we considered the smoothness of the terms of the ANOVA
decomposition when a d-variate function such as (1) is mapped to the unit cube in a
suitable way. There we found, under suitable conditions, that the low-order terms of the
ANOVA decomposition can be reasonably smooth, even though f itself has a ‘kink’ arising
from the max function in (1). Essentially, this occurs because the process of integrating
out the ‘other’ variables has a smoothing effect. The smoothness matters if quasi-Monte
Carlo [13, 14] or sparse grid [4] methods are used to estimate the expected values of
financial options expressed as high dimensional integrals, because the convergence theory
for both of these methods assumes that the integrands have (at least) square integrable
mixed first derivatives [7, 10], a property that is manifestly not true for the ‘kink’ function.
But a rigorous error analysis becomes thinkable if, on the one hand, the higher order
ANOVA terms are small (as is often speculated to be the case – this is the notion of
‘low superposition dimension’ introduced by [6]), and on the other hand if the low-order
ANOVA terms all have the required smoothness property.

In the present paper we avoid the mapping to the unit cube, and instead treat the
problem as one posed on the whole of Rd. In this case the results turn out to be more sur-
prising, in that the effect of integrating out a single variable can be unlimited smoothness
with respect to the other variables, in contrast to an increase in smoothness of just one
degree in the case of the unit cube. These results are expected to lay the foundation for
a future rigorous error analysis of direct numerical methods for option pricing integrals
over Rd, methods that do not involve mapping Rd to the unit cube.

The structure of the paper is as follows. In Section 2 we establish the mathematical
background, including the definition of the ANOVA decomposition, and define the nota-
tion. In Section 3 we demonstrate the smoothing effect produced by integrating out a
single variable. In Section 4 we apply the results to the problem of pricing Asian options,
with the striking result that, in the case of both the standard and Brownian bridge con-
structions, every term of the ANOVA decomposition except for the very highest one has
unlimited smoothness. Numerical examples in Section 5 complete the paper.

2 Background

Let ρ be a continuous and strictly positive univariate probability density function, i.e.,
ρ(t) > 0 for all t ∈ R and

∫∞
−∞ ρ(t) dt = 1. From this we construct a d-variate probability

density

ρd(x) :=
d∏
j=1

ρ(xj) for x = (x1, . . . , xd) ∈ Rd.

For p ∈ [1,∞], we consider the weighted Lp space defined over Rd, denoted by Lp,ρd(Rd),
with the weighted norm

∥f∥Lp,ρd
=

{(∫
Rd |f(x)|p ρd(x) dx

)1/p
if p ∈ [1,∞),

ess supx∈Rd |f(x)| if p = ∞.
(2)

It can be verified using Hölder’s inequality that ∥f∥Lp,ρd
≤ ∥f∥Lp′,ρd

for p ≤ p′, and hence

Lp′,ρd(Rd) ⊆ Lp,ρd(Rd) ⊆ L1,ρd(R
d) for 1 ≤ p ≤ p′ ≤ ∞. (3)
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If a function f defined on Rd is integrable with respect to ρd, i.e., if f ∈ L1,ρd , we write

Idf :=

∫
Rd

f(x) ρd(x) dx.

Then

|Idf | ≤
∫
Rd

|f(x)| ρd(x) dx = ∥f∥L1,ρd
.

Throughout this paper we assume that the dimension d is fixed, and we write

D := {1, 2, . . . , d}.

2.1 Univariate integration and the ANOVA decomposition

For j ∈ D and f ∈ L1,ρd(Rd), let Pj be the projection defined by

(Pjf)(x) =

∫ ∞

−∞
f(x1, . . . , xj−1, tj, xj+1, . . . , xd) ρ(tj) dtj for x = (x1, . . . , xd) ∈ Rd.

Thus Pjf is the function obtained by integrating out the jth component of x with respect
to the weight function ρ, and so is a function that is constant with respect to xj. For
convenience we often say that Pjf does not depend on this component xj, and we write
interchangeably

(Pjf)(x) = (Pjf)(xD\{j}),

where xD\{j} denotes the d − 1 components of x apart from xj, and we express the
corresponding (d − 1)-dimensional Euclidean space by RD\{j}. By Fubini’s theorem [5,
Section 5.4], Pjf exists for almost all xD\{j} and belongs to L1,ρD\{j}(RD\{j}).

For u ⊆ D we write
Pu =

∏
j∈u

Pj.

Here the ordering within the product is not important because, by Fubini’s theorem,
PjPk = PkPj for all j, k ∈ D. Thus Puf is the function obtained by integrating out all
the components of x with indices in u. Note that P 2

u = Pu and PD = Id.
The ANOVA decomposition of f (see, e.g., [6, 12]) is

f =
∑
u⊆D

fu,

with fu depending only on the variables xj with indices j ∈ u, and with fu satisfying
Pjfu = 0 for all j ∈ u. The functions fu satisfy the recurrence relation

f∅ = Idf and fu = PD\uf −
∑
v(u

fv.

Often this recurrence relation is used as the defining property of the ANOVA terms fu.
It is known, for example from the recent paper [11], that the ANOVA terms fu are given
explicitly by

fu =
∑
v⊆u

(−1)|u|−|v|PD\vf = PD\uf +
∑
v(u

(−1)|u|−|v|Pu\v(PD\uf). (4)
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In the latter form it becomes plausible that the smoothness of fu is determined by PD\uf ,
since we do not expect the further integrations Pu\v in the terms of the second sum to
reduce the smoothness of PD\uf ; this expectation is proved in Theorem 2 below.

2.2 Sobolev spaces and weak derivatives

For j ∈ D, let Dj denote the partial derivative operator

(Djf)(x) =
∂f

∂xj
(x).

Throughout this paper, the term multi-index refers to a vector α = (α1, . . . , αd) whose
components are nonnegative integers, and we use the notation |α| = α1 + · · · + αd to
denote the sum of its components. For any multi-index α = (α1, . . . , αd), we define

Dα =
d∏
j=1

D
αj

j =
d∏
j=1

(
∂

∂xj

)αj

=
∂|α|∏d
j=1 ∂x

αj

j

, (5)

and we say that the derivative Dαf is of order |α|.
Let C(Rd) = C0(Rd) denote the linear space of continuous functions defined on Rd. For

a nonnegative integer r ≥ 0, we define Cr(Rd) to be the space of functions whose classical
derivatives of order ≤ r are all continuous at every point in Rd, with no limitation on
their behaviour at infinity. For example, the function f(x) = exp(

∑d
j=1 x

2
j) belongs to

Cr(Rd) for all values of r. For convenience we write C∞(Rd) = ∩r≥0Cr(Rd).
In addition to classical derivatives, we shall consider also weak derivatives in this

paper. By definition, the weak derivative Dαf is a measurable function on Rd which
satisfies∫

Rd

(Dαf)(x) v(x) dx = (−1)|α|
∫
Rd

f(x) (Dαv)(x) dx for all v ∈ C∞
0 (Rd), (6)

where C∞
0 (Rd) denotes the space of infinitely differentiable functions with compact sup-

port in Rd, and where the derivatives on the right-hand side of (6) are classical partial
derivatives. It follows that DjDk = DkDj for all j, k ∈ D, that is, the ordering of the
weak first derivatives that make up Dα in (5) is irrelevant.

If f has classical continuous derivatives everywhere, then they satisfy (6), which in
the classical sense is just the integration by parts formula. In principle all derivatives in
this paper may be considered as weak derivatives, since classical derivatives are also weak
derivatives.

For p ∈ [1,∞], we consider two kinds of Sobolev space: the isotropic Sobolev space
with smoothness parameter r ≥ 0, for r a nonnegative integer,

Wr
d,p,ρd

=
{
f : Dαf ∈ Lp,ρd(Rd) for all |α| ≤ r

}
,

and the mixed Sobolev space with smoothness multi-index r = (r1, . . . , rd),

Wr
d,p,ρd,mix =

{
f : Dαf ∈ Lp,ρd(Rd) for all α ≤ r

}
,
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where α ≤ r is to be understood componentwise, and the derivatives are weak derivatives.
See, e.g., [2, 3] for more details about Sobolev space weak derivatives. For convenience
we also write W0

d,p,ρd
= Lp,ρd(Rd) and W∞

d,p,ρd
= ∩r≥0Wr

d,p,ρd
.

The norms corresponding to the two kinds of Sobolev space can be defined, for exam-
ple, by

∥f∥Wr
d,p,ρd

=

( ∑
|α|≤r

∥Dαf∥2Lp,ρd

)1/2

and ∥f∥Wr
d,p,ρd,mix

=

(∑
α≤r

∥Dαf∥2Lp,ρd

)1/2

,

where ∥ · ∥Lp,ρd
denotes the weighted Lp norm (2). Due to (3), we have

Wr
d,p′,ρd

⊆ Wr
d,p,ρd

and Wr
d,p′,ρd,mix ⊆ Wr

d,p,ρd,mix for 1 ≤ p ≤ p′ ≤ ∞.

Additionally, it is easily seen that the isotropic and the mixed Sobolev spaces are related
by

Wr
d,p,ρd,mix ⊆ Wr

d,p,ρd
iff min

j∈D
rj ≥ r and Wr

d,p,ρd
⊆ Wr

d,p,ρd,mix iff r ≥ |r|. (7)

In particular, we have

W(s,...,s)
d,p,ρd,mix ⊆ Wr

d,p,ρd
iff s ≥ r and Wr

d,p,ρd
⊆ W (s,...,s)

d,p,ρd,mix iff r ≥ s d.

We stress that there is no containment relation between Wr
d,p,ρd

and Cr(Rd). A smooth

function from Cr(Rd) may grow arbitrarily fast at infinity, and so may not have a finite
weighted Lp norm with respect to the weight function ρd. On the other hand, for a
function from Wr

d,p,ρd
, its derivatives of order even less than r might not be continuous.

Some information on this question is given by the Sobolev embedding theorem: for a
Sobolev space defined on a bounded open domain Ω (without a weight function ρd), the
Sobolev embedding theorem tells us that Wr

d,p(Ω) ⊆ C(Ω) if r > d/p, where Ω denotes the

closure of Ω. It follows that for a function f ∈ Wr
d,p,ρd

, its restriction to Ω belongs to C(Ω)
for r > d/p (the continuous weight function ρd being irrelevant on a bounded domain Ω),
and since this applies for arbitrary Ω, we see that Wr

d,p,ρd
⊆ C(Rd) if r > d/p. A similar

argument applied to the derivatives of f yields

Wr
d,p,ρd

⊆ Ck(Rd) if r > k +
d

p
. (8)

2.3 Notations

We now introduce a number of notations used throughout the paper.
For a given index j ∈ D, we sometimes need to distinguish the jth component of a

given vector x ∈ Rd. We achieve this by writing

x = (xj,xD\{j}),

where as noted previously xD\{j} denotes the d− 1 components of x apart from xj. More
generally, for a given set u ⊆ D we write

xu = (xj)j∈u
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to denote the set of components xj of x for which j ∈ u. The cardinality of a set u is
denoted by |u|.

For u ⊆ D, we write ru = (rj)j∈u and ρu(xu) =
∏

j∈u ρ(xj), and we define

Wr
u,p,ρu and Wru

u,p,ρu,mix

to be the subspaces of Wr
d,p,ρd

and Wr
d,p,ρd,mix, respectively, which contain those functions

that are constant with respect to the components whose indices are outside of u (that is,
functions that depend only on the variables xu). To help to identify the relevant variables,
we say that xu belongs to Ru. With this new notation, we have Wr

D,p,ρD
= Wr

d,p,ρd
and

Wr
D,p,ρD,mix = Wr

d,p,ρd,mix.

2.4 Useful theorems

The classical Leibniz theorem allows us to swap the order of differentiation and integration.
In this paper we need a more general form of the Leibniz theorem as given below.

Theorem 1 (The Leibniz Theorem) Let p ∈ [1,∞). For f ∈ W1
d,p,ρd

we have

DkPjf = PjDkf for all j, k ∈ D with j ̸= k.

Proof. We wish to prove that PjDkf is the weak derivative of Pjf with respect to xk.
From the definition (6) it follows that we need to prove

−
∫
Rd

(Pjf)(x) (Dkv)(x) dx =

∫
Rd

(PjDkf)(x) v(x) dx for all v ∈ C∞
0 (Rd). (9)

For arbitrary v ∈ C∞
0 (Rd), we begin from the left-hand side of (9):

−
∫
Rd

(Pjf)(x)(Dkv)(x) dx = −
∫
Rd

(∫ ∞

−∞
f(tj,xD\{j}) ρ(tj) dtj

)
(Dkv)(x) dx

=

∫ ∞

−∞

(
−
∫
Rd

f(tj,xD\{j}) (Dkv)(x) dx

)
ρ(tj) dtj, (10)

where in the last step we used Fubini’s theorem to interchange the order of integration.
Fubini’s theorem is applicable because the last integral is finite for v ∈ C∞

0 (Rd), as follows
from∣∣∣∣∫ ∞

−∞

∫
Rd

f(tj,xD\{j}) (Dkv)(x) dx ρ(tj) dtj

∣∣∣∣
≤
∫ ∞

−∞

∫
RD\{j}

∫ ∞

−∞
|f(tj,xD\{j})| ρ(tj) ρD\{j}(xD\{j})

|(Dkv)(xj,xD\{j})|
ρD\{j}(xD\{j})

dxj dxD\{j} dtj

≤
∫ ∞

−∞

∫
RD\{j}

|f(tj,xD\{j})| ρ(tj) ρD\{j}(xD\{j}) dxD\{j} dtj

×

(
sup

xD\{j}∈V

∫ ∞

−∞
|(Dkv)(xj,xD\{j})| dxj

)
× 1

infxD\{j}∈V ρD\{j}(xD\{j})
< ∞,
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where V = {xD\{j} ∈ RD\{j} : (xj,xD\{j}) ∈ supp(v) for some xj ∈ R} is a compact set
because of the compactness of supp(v).

Now we use again the definition of weak derivative (6), this time in the inner integral
of (10), followed again by Fubini’s theorem, to obtain from (10)

−
∫
Rd

(Pjf)(x) (Dkv)(x) dx =

∫ ∞

−∞

(∫
Rd

(Dkf)(tj,xD\{j}) v(x) dx

)
ρ(tj) dtj

=

∫
Rd

(∫ ∞

−∞
(Dkf)(tj,xD\{j}) ρ(tj) dtj

)
v(x) dx

=

∫
Rd

(PjDkf)(x) v(x) dx,

which is precisely the right-hand side of (9) as required. This proves for j ̸= k that DkPjf
exists, and is equal to PjDkf . 2

The next theorem is an application of the Leibniz theorem; it establishes that Pjf
inherits the smoothness of f .

Theorem 2 (The Inheritance Theorem) Let r ≥ 0 and p ∈ [1,∞). For f ∈ Wr
d,p,ρd

we have
Pjf ∈ Wr

D\{j},p,ρD\{j}
for all j ∈ D.

Proof. Consider first r = 0. For f ∈ Lp,ρd(Rd) we want to show that Pjf ∈ Lp,ρD\{j}(RD\{j}).
We have

∥Pjf∥Lp,ρD\{j}
=

(∫
RD\{j}

∣∣∣∣∫ ∞

−∞
f(x) ρ(xj) dxj

∣∣∣∣p ρD\{j}(xD\{j}) dxD\{j}

)1/p

. (11)

For q satisfying 1/p + 1/q = 1, we estimate the inner integral in (11) using Hölder’s
inequality as follows∣∣∣∣∫ ∞

−∞
f(x) ρ(xj) dxj

∣∣∣∣p ≤
(∫ ∞

−∞
|f(x)| (ρ(xj))1/p (ρ(xj))1/q dxj

)p
≤
(∫ ∞

−∞
|f(x)|p ρ(xj) dxj

)(∫ ∞

−∞
ρ(xj) dxj

)p/q
=

∫ ∞

−∞
|f(x)|p ρ(xj) dxj. (12)

Substituting (12) into (11), we conclude that ∥Pjf∥Lp,ρD\{j}
≤ ∥f∥Lp,ρd

<∞.

Consider now r ≥ 1. Let j ∈ D and let α be any multi-index with |α| ≤ r and αj = 0.
Since f ∈ Wr

d,p,ρd
, we have ∥Dαf∥Lp,ρd

< ∞. To show that Pjf ∈ Wr
D\{j},p,ρD\{j}

we need

to show that ∥DαPjf∥Lp,ρD\{j}
< ∞. We first observe that for any function g its weak

derivative Dαg can be written in the form

Dαg =

( |α|∏
i=1

Dki

)
g,
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where ki ∈ D \ {j}, and k1, . . . , k|α| need not be distinct. We then write successively

DαPjf =

( |α|∏
i=1

Dki

)
Pjf =

( |α|∏
i=2

Dki

)
PjDk1f

= · · · = Dk|α|Pj

( |α|−1∏
i=1

Dki

)
f = Pj

( |α|∏
i=1

Dki

)
f = PjD

αf,

where each step involves a single differentiation under the integral sign, and is justified
by the Leibniz theorem (Theorem 1) because (

∏ℓ
i=1Dki)f ∈ W r−ℓ

d,p,ρd
⊆ W1

d,p,ρd
for all

ℓ ≤ |α| − 1 ≤ r − 1. We have therefore

∥DαPjf∥Lp,ρD\{j}
= ∥PjDαf∥Lp,ρD\{j}

=

(∫
RD\{j}

∣∣∣∣∫ ∞

−∞
(Dαf)(x) ρ(xj) dxj

∣∣∣∣p ρD\{j}(xD\{j}) dxD\{j}

)1/p

≤
(∫

Rd

|(Dαf)(x)|p ρd(x) dx
)1/p

= ∥Dαf∥Lp,ρd
< ∞,

where we applied Hölder’s inequality as in (12). This completes the proof. 2

The implicit function theorem stated below is crucial for the main results of this paper.
In the following, S denotes the closure of the set S.

Theorem 3 (The Implicit Function Theorem) Let j ∈ D. Suppose ϕ ∈ C1(Rd) sat-
isfies

(Djϕ)(x) ̸= 0 for all x ∈ Rd. (13)

Let
Uj := {xD\{j} ∈ RD\{j} : ϕ(xj,xD\{j}) = 0 for some (unique) xj ∈ R}. (14)

If Uj is not empty then there exists a unique function ψj ∈ C1(Uj) such that

ϕ(ψj(xD\{j}),xD\{j}) = 0 for all xD\{j} ∈ Uj,

and for all k ̸= j we have

(Dkψj)(xD\{j}) = −(Dkϕ)(x)

(Djϕ)(x)

∣∣∣∣
xj =ψj(xD\{j})

for all xD\{j} ∈ Uj. (15)

If in addition ϕ ∈ Cr(Rd) for some r ≥ 2, then ψj ∈ Cr(Uj).

Proof. If x = (xj,xD\{j}) ∈ Rd satisfies ϕ(x) = 0 and (Djϕ)(x) ̸= 0, then [9, Theorem
3.2.1] asserts the existence of an open set Aj,x ⊆ RD\{j}, depending on j and x, such
that xD\{j} ∈ Aj,x, and the existence of a unique continuously differentiable function
ψj,x : Aj,x → R such that xj = ψj,x(xD\{j}) and

ϕ(ψj,x(x
′
D\{j}), x

′
D\{j} ) = 0 for all x′

D\{j} ∈ Aj,x.
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If we take two points x and y such that the corresponding sets Aj,x and Aj,y overlap,
then the functions ψj,x and ψj,y for each of these two domains must give the same values
in the overlap region, by uniqueness. Given that (13) holds for all x ∈ Rd, we therefore
have a globally defined, single unique continuously differentiable function ψj : Uj → R
such that for x ∈ Rd

ϕ(x) = 0 if and only if xj = ψj(xD\{j}).

Implicit differentiation of

ϕ(ψj(xD\{j}), xD\{j} ) = 0, xD\{j} ∈ Uj,

with respect to xk then yields (15). For ϕ ∈ Cr(Rd), repeated differentiation then shows
that ψj ∈ Cr(Uj). 2

Note that the derivatives in the implicit function theorem are classical derivatives, and
the condition (13) holds for all x ∈ Rd, as opposed to other results and definitions in
this paper which hold for almost all x ∈ Rd. Note also that the condition (Djϕ)(x) ̸= 0,
when combined with the continuity of Djϕ, means that Djϕ is either everywhere positive
or everywhere negative. In this paper we will only use the implicit function theorem for
functions ϕ for which Uj = RD\{j}.

3 Smoothing for functions with kinks

In this section we consider a function of the form

f(x) = ϕ(x)+, x ∈ Rd, where ϕ ∈ C∞(Rd). (16)

We shall always assume that the equation ϕ(x) = 0 defines a smooth (d− 1)-dimensional
manifold. From the implicit function theorem (Theorem 3) this is the case if, for example,
there exists at least one j ∈ D such that (Djϕ)(x) ̸= 0 for all x ∈ Rd. The function f
is continuous but has a kink along the (d− 1)-dimensional manifold ϕ(x) = 0. Clearly f
can be differentiated pointwise once with respect to any one of the d variables except on
the manifold ϕ(x) = 0. Indeed for k ∈ D we have

(Dkf)(x) =

{
(Dkϕ)(x) if ϕ(x) > 0,

0 if ϕ(x) < 0.

It can be easily verified that this is the weak derivative of f by checking the condition (6).
Following (16), we assume additionally that ϕ ∈ Wr

d,p,ρd
for some r ≥ 1 and p ∈ [1,∞),

that is, we assume that ϕ belongs to the intersection of Wr
d,p,ρd

and C∞(Rd). Then for any
k ∈ D we have

∥Dkf∥Lp,ρd
=

(∫
Rd

|(Dkf)(x)|p ρd(x) dx
)1/p

=

(∫
x∈Rd :ϕ(x)≥0

|(Dkϕ)(x)|p ρd(x) dx
)1/p

≤ ∥Dkϕ∥Lp,ρd
< ∞.
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Thus we conclude that
f ∈ W1

d,p,ρd
∩ C(Rd). (17)

It then follows from the inheritance theorem (Theorem 2) with r = 1 that Pjf ∈
W1

D\{j},p,ρD\{j}
for all j ∈ D.

In the following theorem we show that integration with respect to xj can have a
smoothing effect: we prove that Pjf ∈ Wr

D\{j},p,ρD\{j}
provided that a number of conditions

on ϕ are satisfied:

(i) ϕ ∈ Wr
d,p,ρd

∩ C∞(Rd).

(ii) Djϕ never changes sign, see (13).

(iii) For each xD\{j} ∈ RD\{j} there exists xj ∈ R such that ϕ(xj,xD\{j}) = 0, that is,
the set Uj defined by (14) is precisely Uj = RD\{j}.

(iv) A special condition on the growth of the derivatives of ϕ holds for this value of r,
see (19) below. (We will say more about (19) in the next section.)

Theorem 4 Let r ≥ 1, p ∈ [1,∞), and ρ ∈ C∞(R) be a strictly positive probability
density function. Let

f(x) = ϕ(x)+, where ϕ ∈ Wr
d,p,ρd

∩ C∞(Rd).

Let j ∈ D and suppose that

(Djϕ)(x) ̸= 0 for all x ∈ Rd,

and that

for each xD\{j} ∈ RD\{j} there exists xj ∈ R such that ϕ(xj,xD\{j}) = 0. (18)

Then there exists a unique function ψj ∈ C∞(RD\{j}) such that ϕ(x) = 0 if and only if
xj = ψj(xD\{j}) for all x ∈ Rd. Assume additionally that∫

RD\{j}

∣∣∣∣∣
∏a

i=1[(D
α(i)

ϕ)(ψj(xD\{j}),xD\{j})]

[(Djϕ)(ψj(xD\{j}),xD\{j})]b
ρ(c)(ψj(xD\{j}))

∣∣∣∣∣
p

ρD\{j}(xD\{j}) dxD\{j} < ∞

for all integers 2 ≤ a ≤ 2r − 2, 1 ≤ b ≤ 2r − 3, 0 ≤ c ≤ r − 2, |α(i)| ≤ r − 1, (19)

where α(i) are multi-indices with d components. Then

Pjf ∈ Wr
D\{j},p,ρD\{j}

.

Proof. Given that ϕ ∈ C∞(Rd), (Djϕ)(x) ̸= 0 for all x ∈ Rd, and (18) holds, it follows
from the implicit function theorem (Theorem 3) with Uj = RD\{j} that there exists a
unique function ψj ∈ C∞(RD\{j}) for which

ϕ(xj,xD\{j}) = 0 ⇐⇒ ψj(xD\{j}) = xj for all (xj,xD\{j}) ∈ Rd. (20)

10



This justifies the existence of the function ψj as stated in the theorem.
For the function f(x) = ϕ(xj,xD\{j})+ we can write Pjf as

(Pjf)(xD\{j}) =

∫
xj∈R :ϕ(xj ,xD\{j})≥0

ϕ(xj,xD\{j}) ρ(xj) dxj. (21)

Note that the condition (Djϕ)(x) ̸= 0, when combined with the continuity of Djϕ, means
that Djϕ is either everywhere positive or everywhere negative. For definiteness we assume
that

(Djϕ)(x) > 0 for all x ∈ Rd;

the other case is similar. It follows that, for fixed xD\{j}, ϕ(xj,xD\{j}) is a strictly in-
creasing function of xj. Hence we can write (21) as

(Pjf)(xD\{j}) =

∫ ∞

ψj(xD\{j})

ϕ(xj,xD\{j}) ρ(xj) dxj.

To simplify our notation, for the remainder of this proof we write

ψ ≡ ψj and y ≡ xD\{j}.

Now we differentiate Pjf with respect to xk for any k ̸= j, and we obtain from the
chain rule that

(DkPjf)(y) =

∫ ∞

ψ(y)

(Dkϕ)(xj,y) ρ(xj) dxj − ϕ(ψ(y),y) · ρ(ψ(y)) · (Dkψ)(y). (22)

(Note that all of the derivatives on the right-hand side of (22) are classical derivatives.)
The second term on the right-hand side of (22) is zero, since it follows from (20) that
ϕ(ψ(y),y) = 0. Differentiating again with respect to xℓ for any ℓ ̸= j, allowing the
possibility that ℓ = k, we obtain

(DℓDkPjf)(y)

=

∫ ∞

ψ(y)

(DℓDkϕ)(xj,y) ρ(xj) dxj − (Dkϕ)(ψ(y),y) · ρ(ψ(y)) · (Dℓψ)(y), (23)

and we see from (15) that Dℓψ can be substituted by

(Dℓψ)(y) = − (Dℓϕ)(ψ(y),y)

(Djϕ)(ψ(y),y)
.

Note that, unlike the second term in (22), the second term in (23) does not vanish in
general.

For every multi-index α = (α1, . . . , αd) with |α| ≤ r and αj = 0, we claim that

(DαPjf)(y) =

∫ ∞

ψ(y)

(Dαϕ)(xj,y) ρ(xj) dxj +

M|α|∑
m=1

gα,m(y), (24)

11



where M|α| is a nonnegative integer, and each function gα,m is of the form

gα(y) := β

∏a
i=1[(D

α(i)
ϕ)(ψ(y),y)]

[(Djϕ)(ψ(y),y)]b
ρ(c)(ψ(y)), (25)

with a, b, c being nonnegative integers, β being an integer, and each α(i) being a multi-
index, satisfying

2 ≤ a ≤ 2|α| − 2, 1 ≤ b ≤ 2|α| − 3, 0 ≤ c ≤ |α| − 2, |α(i)| ≤ |α| − 1,

and |β| ≤ the product of the first (|α| − 2) odd numbers. (26)

We will prove (24)–(26) by induction on |α|. The case |α| = 1 is shown in (22); there we
have M1 = 0. The case |α| = 2 is shown in (23); there we have M2 = 1, and the function

gα,1 is of the form (25), with a = 2, b = 1, c = 0, β = 1, Dα(1)
= Dk, D

α(2)
= Dℓ, and

|α(1)| = |α(2)| = 1.
We now differentiate DαPjf once more: for ℓ ̸= j we have from (24)

(DℓD
αPjf)(y) =

∫ ∞

ψ(y)

(DℓD
αϕ)(xj,y) ρ(xj) dxj

− (Dαϕ)(ψ(y),y) · ρ(ψ(y)) · (Dℓψ)(y) +

M|α|∑
m=1

(Dℓgα,m)(y). (27)

Clearly the first term in (27) has the desired form when compared to the first term in
(24). The second term in (27) is of the form (25), with a = 2, b = 1, c = 0, β = 1,
|α(1)| = |α|, and |α(2)| = 1. For the remaining terms in (27), we have from (25)

(Dℓgα)(y) = β
Dℓ

(∏a
i=1[(D

α(i)
ϕ)(ψ(y),y)]

)
[(Djϕ)(ψ(y),y)]b

ρ(c)(ψ(y))

+ β

∏a
i=1[(D

α(i)
ϕ)(ψ(y),y)]

[(Djϕ)(ψ(y),y)]b
ρ(c+1)(ψ(y)) · (Dℓψ)(y)

− βb

∏a
i=1[(D

α(i)
ϕ)(ψ(y),y)]

[(Djϕ)(ψ(y),y)]b+1
ρ(c)(ψ(y))

·
[
(DℓDjϕ)(ψ(y),y) + (DjDjϕ)(ψ(y),y) · (Dℓψ)(y)

]
,

where

Dℓ

( a∏
i=1

[(Dα(i)

ϕ)(ψ(y),y)]

)

=
a∑
t=1

([
(DℓD

α(t)

ϕ)(ψ(y),y) + (DjD
α(t)

ϕ)(ψ(y),y) · (Dℓψ)(y)
]
·

a∏
i=1
i̸=t

(Dα(i)

ϕ)(ψ(y),y)

)
.

Thus we conclude that Dℓgα is a sum of functions of form (25), but with a increased by
at most 2, b increased by at most 2, c increased by at most 1, |β| multiplied by a factor
of at most b, and with each |α(i)| increased by at most 1.

12



Hence, DℓD
αPjf consists of the first term in (27), plus a sum of functions of the form

(25). This completes the induction proof for (24)–(26). In particular, the bounds in (26)
can be deduced from the induction step.

We are now ready to consider

∥DαPjf∥Lp,ρD\{j}
=

(∫
RD\{j}

|(DαPjf)(y)|p ρD\{j}(y) dy

)1/p

.

Using the special form of DαPjf in (24), we have

|(DαPjf)(y)|p =

∣∣∣∣∣∣
∫ ∞

ψ(y)

(Dαϕ)(xj,y) ρ(xj) dxj +

M|α|∑
m=1

gα,m(y)

∣∣∣∣∣∣
p

≤

∣∣∣∣∫ ∞

ψ(y)

(Dαϕ)(xj,y) ρ(xj) dxj

∣∣∣∣+ M|α|∑
m=1

|gα,m(y)|

p

≤ (M|α| + 1)p−1

∣∣∣∣∫ ∞

ψ(y)

(Dαϕ)(xj,y) ρ(xj) dxj

∣∣∣∣p + M|α|∑
m=1

|gα,m(y)|p


≤ (M|α| + 1)p−1

∫ ∞

ψ(y)

|(Dαϕ)(xj,y)|p ρ(xj) dxj +
M|α|∑
m=1

|gα,m(y)|p
 ,

where in the second to last step we used a generalized mean inequality (see [1, 3.2.4])∑n
i=1 ai
n

≤
(∑n

i=1 a
p
i

n

)1/p

, ai ≥ 0, p ∈ [1,∞),

and in the last step we used Hölder’s inequality as in (12). Thus

∥DαPjf∥Lp,ρD\{j}
≤ (M|α| + 1)1−1/p

∥Dαϕ∥pLp,ρd
+

M|α|∑
m=1

∥gα,m∥pLp,ρD\{j}

1/p

< ∞,

where ∥Dαϕ∥Lp,ρd
< ∞ since ϕ ∈ Wr

d,p,ρd
, and each ∥gα,m∥Lp,ρD\{j}

< ∞ due to the

assumption (19) (compare with (25) and (26)). This proves that Pjf ∈ Wr
D\{j},p,ρD\{j}

as

claimed. 2

In the following theorem, the property (Djϕ)(x) ̸= 0 for all x ∈ [0, 1]d and the
conditions (18) and (19) are assumed to hold for all j in a subset z ⊆ D.

Theorem 5 Let r ≥ 1, p ∈ [1,∞), and ρ ∈ C∞(R) be a strictly positive probability
density function. Let z be a non-empty subset of D, and let

f(x) = ϕ(x)+, with


ϕ ∈ Wr

d,p,ρd
∩ C∞(Rd),

(Djϕ)(x) ̸= 0 for all j ∈ z and all x ∈ Rd,

(18) holds for all j ∈ z,

(19) holds for all j ∈ z.

(28)

13



Then f ∈ W1
d,p,ρd

∩ C(Rd), and

Puf ∈

W1
D\u,p,ρD\u

if z ∩ u = ∅,

Wr
D\u,p,ρD\u

if z ∩ u ̸= ∅,
for all u ⊆ D.

Moreover, the ANOVA terms of f satisfy

fu ∈

{
W1

u,p,ρu if z ⊆ u,

Wr
u,p,ρu if z ̸⊆ u,

for all u ⊆ D.

Proof. The fact that f ∈ W1
d,p,ρd

∩ C(Rd) is already established in (17). For any u ⊆ D,
repeated application of the inheritance theorem (Theorem 2) with r = 1 yields Puf ∈
W1

D\u,p,ρD\u
. If for some u ⊆ D we have z ∩ u ̸= ∅, then there exists j ∈ u such that

Djϕ never changes sign and (18) and (19) hold. In this case Theorem 4 applies and we
have Pjf ∈ Wr

D\{j},p,ρD\{j}
. Repeated applications of the inheritance theorem then yields

Puf = Pu\{j}(Pjf) ∈ Wr
D\u,p,ρD\u

. The smoothness of the ANOVA terms then follows

from the explicit formula (4). 2

To gain more insight into Theorem 5, suppose now that we have the best case z = D.
Then we see that smoothing occurs for all ANOVA terms except for the term with the
highest order.

Corollary 6 Suppose that Theorem 5 holds for z = D. Then for f given by (28) we have

fD ∈ W1
d,p,ρd

and fu ∈ Wr
u,p,ρu for all u ( D.

As a simple illustration, consider now the function ϕ(x) = x1 + · · ·+ xd together with
the standard Gaussian density ρ(t) = e−t

2/2/
√
2π. Clearly, ϕ is smooth, Djϕ ≡ 1 for

all j ∈ D, and the condition (19) holds trivially. Moreover, the condition (18) holds for
all j ∈ D because we always have ϕ(xj,xD\{j}) = 0 by taking xj = −

∑
i̸=j xi. Thus

Theorem 5 holds for z = D, and we conclude that all ANOVA terms of f(x) = ϕ(x)+
are smooth except for the one with the highest order. This result can also be seen by
evaluating Pjf directly, to yield a function of the variables other than xj that is manifestly
smooth.

4 Option pricing problems

The assumption (19) in its current form is not easy to check due to the presence of the
function ψj. However, a sufficient condition for (19) that is easier to check can be obtained
if we know more about the weight function. In particular, when ρ is the Gaussian weight
function we know that ρ1/2 is integrable; in this case we can estimate the expression in

14



(19) as follows:∫
RD\{j}

∣∣∣∣∣
∏a

i=1[(D
α(i)

ϕ)(ψj(xD\{j}),xD\{j})]

[(Djϕ)(ψj(xD\{j}),xD\{j})]b
ρ(c)(ψj(xD\{j}))

∣∣∣∣∣
p

ρD\{j}(xD\{j}) dxD\{j}

≤ sup
xD\{j}∈RD\{j}

(∣∣∣∣∣
∏a

i=1[(D
α(i)

ϕ)(ψj(xD\{j}),xD\{j})]

[(Djϕ)(ψj(xD\{j}),xD\{j})]b
ρ(c)(ψj(xD\{j}))

∣∣∣∣∣
p

[ρD\{j}(xD\{j})]
1/2

)

·
∫
RD\{j}

[ρD\{j}(xD\{j})]
1/2 dxD\{j}

≤ sup
x∈Rd

(∣∣∣∣∣
∏a

i=1[(D
α(i)

ϕ)(xj,xD\{j})]

[(Djϕ)(xj,xD\{j})]b
ρ(c)(xj)

∣∣∣∣∣
p

[ρD\{j}(xD\{j})]
1/2

)
(29)

·
∫
RD\{j}

[ρD\{j}(xD\{j})]
1/2 dxD\{j}.

Thus it suffices to check that the supremum in (29) is finite.
We now explain that these conditions hold for the Asian option pricing problems. We

will not go into details about these problems here; see our previous paper [8, Section 5] for
an elaborate discussion. (Note that in [8] we truncate the integrands near infinity and map
the resulting functions into the unit cube; there is no need to carry out these steps here.) It
suffices to say here that, after a change of variables by either (i) the standard construction,
(ii) the Brownian bridge construction, or (iii) the principal components construction, we
end up with the integral ∫

Rd

f(x) ρd(x) dx,

with ρ(t) = e−t
2/2/

√
2π being the standard Gaussian density, f(x) = ϕ(x)+, and

ϕ(x) =
S0

d

d∑
ℓ=1

exp

((
µ− σ2

2

)
ℓ∆t+ σ

d∑
i=1

Aℓi xi

)
−K, (30)

where S0 is the initial stock price, K is the strike price, µ is the risk-free interest rate, σ is
the volatility, d is the number of (equally-spaced) time steps, ∆t = T/d with T denoting
the final time, and A is a d×d matrix which depends on the construction method (i)–(iii).

We see that ϕ is essentially a sum of exponential functions involving only linear com-
binations of x1, . . . , xd in the exponents. The derivatives of ϕ will contain at worst ex-
ponential functions of the same form, and the growth of these will be defeated by the
Gaussian weight function (or even by the square root of the Gaussian weight function).
More precisely, we have

ϕ ∈ Wr
d,p,ρd

∩ C∞(Rd) for all r ≥ 0 and all p ∈ [1,∞),

and it is straightforward to see that the supremum in (29) will be finite for all r and all
finite p. Furthermore, we have

(Djϕ)(x) =
σ S0

d

d∑
ℓ=1

exp

((
µ− σ2

2

)
ℓ∆t+ σ

d∑
i=1

Aℓi xi

)
Aℓj.
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For the standard construction and the Brownian bridge construction, we already es-
tablished in [8] that the elements Aℓj are always nonnegative, and thus (Djϕ)(x) > 0 for
all j ∈ D and all x ∈ Rd. Moreover, because the matrix elements are nonnegative, it is
easy to see from (30) that for each j and each fixed xD\{j} we have

ϕ(x) = ϕ(xj,xD\{j}) →

{
+∞ as xj → +∞,

−K as xj → −∞.

This ensures that ϕ changes sign and therefore that ψj(xD\{j}) exists for all xD\{j} ∈
RD\{j}. Hence Theorem 5 applies with z = D, i.e., Corollary 6 holds, and we have

fD ∈ W1
d,p,ρd

and fu ∈ Wr
u,p,ρu for all u ( D

for all r ≥ 0 and all p ∈ [1,∞). Since the result holds for all values of r and all finite
values of p, we conclude from (8) that

fD ∈ W1
d,p,ρd

∩ C(Rd) and fu ∈ W∞
u,p,ρu ∩ C∞(Ru) for all u ( D. (31)

Using (7), we conclude also that

fu ∈ Wru
u,p,ρu,mix ∩ C∞(Ru) for all u ( D

for all ru = (rj)j∈u with nonnegative integers rj.
For the principal components construction, we explained in [8] that although the

elements Aℓ1 are positive, the elements Aℓj for j ≥ 2 can take both positive and negative
values, and hence (Djϕ)(x) can change sign. We conclude in this case that

fu ∈

{
W1

u,p,ρu ∩ C(Ru) if z ⊆ u,

W∞
u,p,ρu ∩ C∞(Ru) if z ̸⊆ u,

for all u ⊆ D, (32)

where z denotes the set of indices j for which Djϕ never changes sign, and for which
(18) holds. In particular, since z always contains the index 1, the ANOVA term fu has
maximum smoothness for all subsets u that do not involve the first coordinate. Again
W∞

u,p,ρu can be replaced by Wru
u,p,ρu,mix for all ru = (rj)j∈u with nonnegative integers rj.

5 Numerical results

The aim of our numerical experiment here is to illustrate the smoothing process in a low-
dimensional example. We consider the arithmetic average Asian call option, combined
with the standard construction, the Brownian bridge construction, and the principal com-
ponents construction. In (30) we choose the parameters

d = 4, S0 = 100, σ = 0.2, µ = 0.1, T = 1, and K = 100.

See [8, Section 5.1] for the precise formulas for the elements of the matrix A under the
three construction methods.

Before we present our numerical results, let us first summarize what our theory pre-
dicts.
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• For the standard and Brownian bridge constructions, we know that all the ANOVA
terms of the integrand f(x) = ϕ(x)+ are smooth, with the exception of the final
term f{1,2,3,4} which inherits the kink from f , see (31).

• For the principal components construction, we know that D1ϕ never changes sign,
and we can check numerically that D2ϕ, D3ϕ, and D4ϕ all change sign somewhere
in R4. This indicates that smoothing only occurs if integration with respect to x1
takes place, see (32) with z = {1}. Thus we expect that f{2}, f{3}, f{4}, f{2,3}, f{2,4},
f{3,4}, f{2,3,4} are all smooth, but f{1}, f{1,2}, f{1,3}, f{1,4}, f{1,2,3}, f{1,2,4}, f{1,3,4},
f{1,2,3,4} all have kinks.

In figures 1 and 2 we plot the integrand f and a selection of its ANOVA terms under
the three construction methods. In those cases where the number of variables is greater
than two, we plot just the two-dimensional projections of the first two variables and fix
the remaining variables at the value 0. We restrict the view to [−2, 2]2. It is remarkable
that these figures completely agree with our theoretical predictions.

Creating these figures turned out to be a difficult numerical task. The integrals in
the ANOVA terms were approximated using 300, 000 Sobol′ points, and even then we
observed substantial spikes with the order-4 terms f{1,2,3,4}. A careful analysis showed
that the spikes were not a problem of the numerics but of the graphics: the functions
were evaluated pointwise on a grid of 100 × 100 (with the exception of the three graphs
for f{1,2,3,4} which were evaluated on a grid of 500× 500) and the graphs were plotted by
Matlab via interpolation between the points; the kinks could not be represented correctly
and this is the reason for the spiky behavior near the singularity lines. For successive finer
grids the bumpiness do get better, but the principal problem remains. Another problem
was the subtraction of terms in the ANOVA decomposition. A naive implementation of
the decomposition was numerically unstable and led to serious roundoff error. It was
necessary to sum up the positive and negative terms separately and then perform one
single subtraction at the end.
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Standard Brownian bridge Principal components
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Figure 1: The integrand and its ANOVA terms for the arithmetic average Asian call
option with d = 4 using different construction methods.
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Standard Brownian bridge Principal components
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Figure 2: The integrand and its ANOVA terms for the arithmetic average Asian call
option with d = 4 using different construction methods (continued).
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A. Pinkus, E. Süli and M. J. Todd, eds.), Cambridge University Press, 2006, pp. 106–
161.

[8] M. Griebel, F. Y. Kuo, and I. H. Sloan, The smoothing effect of the ANOVA decom-
position, J. Complexity 26, 523–551 (2010).

[9] S. G. Krantz and H. R. Parks, The Implicit Function Theorem: History, Theory and
Applications, Birkhäuser, 2002.
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