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ABSTRACT

The central objective of our analysis is to significantly enhance the quality

of radar derived precipitation estimates by as fully as possible exploiting the in-

formation contained in the spatial and temporal variability of 3D radar volume

data. The results presented are yet based on pseudo-radar data and rain rates

of a regional weather forecasting model and 12 true radiosoundings as well. We

pursue two approaches: The first approach estimates total rainfall from an in-

dividual storm over its lifetime while the second approach assesses the areawide

instantaneous rainfall from a multiplicity of such storms by the use of measure-

ments of the areal coverage of the storms exceeding a threshold radar reflectivity.

We extend the concept by adding further predictors in order to significantly en-

hance the rainfall estimates. The horizontal expected value and the horizontal

standard deviation of enclosed reflectivities at the ground, the mean brightband

fraction and its trend, the fractional area with reflectivities exceeding a threshold

τ and an orographic rainfall amplifier provide relative errors smaller than 10%

in approximately 75% of the considered rain events in the first approach. In the

second approach we achieve a relative error below 10% in approximately 63%

elements of the test set.
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1. Introduction

Flash flood forecasting, the engineering design of flood control structures, and the oper-

ation and control of sewerage systems or water supply forecasting require quantitative areal

precipitation estimates which challenge the potential of current observation systems (Kra-

jewski and Smith, 2002). The range of temporal and spatial scales involved in precipitation

generation especially in convective situations renders current rain gauge networks largely in-

appropriate for this task. The existing ground based radar networks have by far the largest

potential to provide adequate space-time distributions of surface rainfall for any hydrological

and also meteorological application.

Radar-derived precipitation estimation is, however, still hampered by a range of error

sources. Besides ground clutter, beam blocking, anomalous propagation and attenuation

the uncertainty of the so-called Z-R-relations – the transformation of the measured radar

reflectivity Z into an estimate of the local precipitation intensity R – alone can cause errors up

to 200% (Fabry et al., 1992). Despite intensive research since the dawn of radar meteorology,

one of the first Z-R-relations ever published – the famous relation by Marshall et al. (1955)

– is still most frequently used for the operational conversion of radar reflectivities into rain

rates. Dynamic Z-R-relations, which follow the changes in the drop size distributions caused

by changing regimes in the precipitation generation process might be the best solution in the

end, but we still miss both, the knowledge of an exploitable connection between these regimes

and related dropsize distributions as well as a method to detect these regimes from available

observations. The exploitation of polarization has up to now mainly led to a much better

identification of different hydrometeor types and a reduction of attenuation effects. Even
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though promising approaches in quantitative rainfall estimation with polarimetric radar exist

(Ryzhkov et al., 2005), they have not yet materialized in operational applications.

In this paper, we introduce two approaches which completely abandon the concept of

local precipitation intensity estimation by Z-R-relations, which in our view has hindered

quantitative precipitation estimation by a too narrow interpretation of the radar data. We

hypothesize that an improved quantitative areal precipitation estimation can be achieved

by more extensively exploiting the spatial and temporal variability of the radar signals

produced by the complete precipitation generating system, e.g., by a convective cell during

its life span. We have to concede that this concept will not provide immediate access to the

local instantaneous rain rates requested, e.g., by hydrology; but we might be able to provide

more reliable estimates of rainfall integrated over time or space, which in turn can be used

to constrain estimates based on local Z-R-relations using a disaggregation technique (Hagen

et al, 2003).

We search for so-called Integral Radar Volume Descriptors (IRVD), which can be derived

from the three dimensional radar volume data and which are supposed to contain relevant

information on the underlying precipitation process. This idea is not new; Doneaud et

al. (1981) investigated a technique for estimating the total rain volume of precipitation

events from radar data without invoking a Z-R-relationship. They found that the total

rainfall produced by individual storms can also be estimated simply by considering only the

horizontal extent and the duration of radar-observed precipitation. Doneaud et al. (1981)

however, did not present a convincing explanation for the high correlations found. Later,

Atlas et al. (1990) recovered their approach and presented a unified theory for both, the

estimation of the total rainfall of an individual storm and for the average instantaneous rain
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rate from a multiplicity of such storms. Our re-analysis of their theory and extension of their

concept with IRVDs is not yet based on real radar data but on pseudo-radar data derived

from simulations with a regional weather forecasting model. On one hand, this will limit

the conclusions from the study to a demonstration of the potential of the method (without

proving it in the real world). Assuming that current atmospheric models sufficiently describe

the dynamics and microphysics of precipitation processes, the study will, however, give an

upper limit to accuracies achievable with real radar data. On the other hand, current direct

precipitation measurement networks consisting of rain gauges alone are insufficient for a

validation and further exploitation of the concept. We will discuss ways to circumvent this

problem later in the paper.

The outline of this paper is as follows. Section 2 summarizes the main concept of the

unified theory by Atlas et al. (1990). After describing the data base for our analysis in

Section 3, we will introduce an enhancement of the method by defining a suite of integral

radar volume descriptors (IRVD) in Section 4. Section 5 shortly introduces the regression

methods, and results of their application including the new IRVDs are presented in Sections

a and b. Finally, conclusions and an outlook are given.

2. Basics

Atlas et al. (1990) developed a unified theory for the estimation of both,

1. the total rainfall produced by an individual convective storm over its lifetime, and

2. the areawide instantaneous rainfall from a variety of such storms
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from the measurements of the areal coverage of storms above a threshold radar reflectivity.

In the first case, the volume rainfall V , defined as the integral of the instantaneous local

rain rate R both, over the entire area Ao and over the storm duration T , is estimated by the

product of the so-called area-time integral (ATI) of the radar echo in excess of a specified

threshold τ over the lifetime of the storm with a factor S(τ):

V = S(τ) · ATI. (1)

ATI is approximated by the sum of the areas ai with reflectivities above τ over the time

intervals ∆ti:

ATI ≈
∑

ai∆ti (2)

In the second case, the average areawide rain rate 〈R〉 is estimated from the fraction of the

area A(τ) with reflectivities above the threshold τ divided by the overall considered area A0:

〈R〉 = S(τ)
A(τ)

Ao

. (3)

The common coefficient S(τ) in both equations depends on the population distribution of

the rain rate R via

S(τ) =

∫

∞

0
RP (R)dR

∫

∞

τ
P (R)dR

, (4)

where P(R) denotes the value of the probability density function (pdf) at the rain rate R.

The approaches of Doneaud et al. (1981) and Atlas et al. (1990) obviously assume that S(τ)

is constant for a given threshold τ , i.e. the theory relies on the existence of a well-behaved pdf

of the rain rate either of a single storm during its lifetime, or of an ensemble of storms during

one time instant. A storm undergoes typical changes in its appearance during its lifetime,

e.g. the growing stage, the convective and the stratiform stage. A well-behaved pdf thus
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means that all storms follow similar sequences of stages producing similar rain rates during

their lifetimes. Deviations between the resulting pdfs of the storms are thus responsible for

the scatter of V about a regression line between V and ATI. Doneaud et al (1981) and Atlas

et al. (1990) assume that this scatter is small and a climatological distribution of R can

be used. Analogously, a multiplicity of different cells in different stages of evolution in the

observational area are sufficient for the existence of such a well-behaved pdf in the second

case.

3. Data base: pseudo-radar data and modelled precipi-

tation

Ground-based radars measure the temporally and spatially distributed backscattering of

microwave radiation by precipitation-size hydrometeors. More precisely, the backscattered

microwave radiation depends on the size, shape and phase of the hydrometeors as well as on

their density within the radar volume. The quantitative development of the IRVD method,

needs a sufficiently dense station network of rain gauges providing temporally highly-resolved

measurements to estimate areal precipitation in the first place. Our first attempts with radar

data led to the conclusion that even the existing German network of gauges with higher

than daily resolution does by no means satisfy these conditions, i.e. many storms pass

the network mostly undetected. Moreover, real radar data suffer from the various errors

mentioned above. To circumvent these problems in a first evaluation of the methodology, we

have chosen to base our analysis on pseudo-radar data and modelled precipitation, which can
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be easily obtained from runs of a meso-scale weather prediction model. We used simulations

of the operational Lokal-Modell of the German Weather Service (DWD), which became

recently the regional forecast model COSMO of the European Consortium for Modelling

(see http://www.cosmo-model.org). The general goal of COSMO is to develop, improve and

maintain the non-hydrostatic limited-area atmospheric model, which is used for both for

operational and for research applications by the members of the consortium. The national

meteorological services of Germany, Switzerland, Italy, Greece, Poland and Romania are

COSMO members. In the analysis we use the pseudo-radar data and rain rates generated

by COSMO-DE (version LM3.16), a 2.8 km resolution version of COSMO (Doms et al., 2002,

2005) centered over Germany for a period of three days: July 17, 2004, July 8, 2005 and

August 19, 2005. The data used is available in 0.025 degree spatial (roughly 2.8 km) and 10

minutes temporal resolution. Figure 1 shows one snapshot of the pseudo-reflectivities at the

bottom layer for each day considered, respectively. On July 17, 2004, a convergence line with

strong thunderstorms traverses the model area in a northeastern direction. On the second

day considered, on July 8, 2005, a multiplicity of cells were rotating about a low-pressure

area centered over central Europe. From August 19 to 23 a weather system prevailed in

Central Europe, which often results in prolonged and heavy precipitation. In these cases

a low pressure front develops in the Gulf of Genoa. This front moves warm, moist air in

a north or north-easterly direction until it hits the Alps where it is forced upwards. We

included August 19, 2005 in our analyses.

In COSMO-DE grid-scale clouds and precipitation are described using single-moment

bulk schemes, i.e. Kessler type (Kessler, 1969). The non-precipitation water categories

are supposed to be monodisperse whereas the precipitation particles (rain, snow, graupel)
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are assumed to be exponentially distributed. For raindrops this distribution is called the

Marshall-Palmer distribution (Marshall and Palmer, 1948). The pseudo-radar reflectivities

for these precipitation particles are calculated assuming Rayleigh scattering (Sauvageot,

1992) under the assumptions of the single-moment bulk scheme. It is worth mentioning that

graupel and snow particles are calculated as wet particles above 0oC, i.e. the particles receive

a water-coat. Consequently, the so-called brightband can be detected in the pseudo-radar

data. Cloud ice and cloud water are neglected in the reflectivities. Altogether, the reader

should keep in mind, that the variability of the droplet and particle size distribution is only

partially taken into account.

In order to pursue the first approach (total rainfall estimation of a single storm) the

SARTrE (Scale Adaptive Radar Tracking Environment)-tracking algorithm (Simon, 2004)

is applied to the field of reflectivities near the ground (bottom layer). An edge detection

operator strategy is performed including prior smoothing and subsequent application of the

Mexican hat operator, an established approach in digital image processing. The successive

application of the Gaussian kernel smooths the reflectivity field into coarser and coarser

structures with increasing standard deviation of the kernel, thus providing the opportunity

to focus the analysis on different scales. One hundred rain events with time spans between

1 and 10.5 hours could be traced. These pursued rain events can consist of several cells, of

one single continuous cell or a raining system at large but convective systems dominated at

the 3 days considered. The accumulated enclosed area of the traced systems ranges between

0.36 · 104 km2 and 174.287 · 104 km2. In Table 1, the number of observed storms and the

standard deviation σ of the applied Gaussian kernel are listed for the three days. Using

σ = 6 results in 141 different cells on July 8, 2005, in the time step shown in Figure 1
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(middle) for example.

The computation of the stationary quantities in (3) needed for the second approach does

not require the application of the costly SARTrE-tracking algorithm. All values can be di-

rectly derived from the COSMO-DE output: To compute the IRVDs we randomly sample for

τ = 18 dBZ, areas of arbitrary size Ao while the fraction A(τ)/Ao – the area with reflectivity

above a threshold τ and the total area – has to be larger than a predefined threshold F0. We

investigate three different choices of the value, i.e. we take F0 ∈ {0, 0.01, 0.05}. Concerning

τ = 18 dBZ we follow Lopez et al. (1983). They used radar data from the Florida Area

Cumulus Experiment (FACE), integrated areas in excess of this threshold and found high

correlations between daily rainfall volumes and time-averaged areal coverage. The restriction

A(τ)/Ao ≥ F0 is motivated by a verification of (3) on the data (see below). Randomization

is done in the following way: First, the complete rectangular area of the model domain is

split into four rectangular subdomains of the same size and one is randomly chosen. Then,

the location of the global maximum of 〈R〉 in the subdomain is determined which is also a

local maximum of the whole area. Finally, two points are sampled randomly from the full

domain assuming a Gaussian distribution with σ = 0.3 unit edge length of the observation

area and expected value at the, previously computed, local maximum. The two points then

define a rectangular area of size Ao and we test if A(τ)/Ao ≥ F0. If this is not the case

then the field is discarded. This procedure is applied separately for each time step for the

pseudo-radar data from the three days. As well as in the first approach, the area addressed

in this approach may contain several raining systems in large and convective cells. The areas

Ao that are selected by this method range from a size of 7.73 km2 to 9.53·105 km2 and for

each area the IRVDs, that will be defined in the following, can be directly computed.
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For both approaches, the knowledge of temperature and pressure in different heights

is needed for the calculation of some IRVDs defined in Section 4. These variables are,

however, not taken from the model output but are estimated from the nearest true ra-

diosounding to better emulate the real case. Radiosoundings at Schleswig (54:32N, 9:33O),

Greifswald (54:06N, 13:24O), Emden-Königspolder (53:21N, 7:13O), Bergen (52:49N, 9:56O),

Essen-Bredeney (51:24N, 6:58O), Fritzlar (51:08N, 9:17O), Oppin (51:33, 12:04O), Meiningen

(50:34N, 10:23), Idar-Oberstein (49:42N, 7.20O), Stuttgart (48:50N, 9:12O), Kümmerbruck

(49:26N, 11:54O) and Oberschleissheim (48:15N, 11:33O) from DWD are available for the

days considered. At best radiosoundings at 0, 6, 12 and 18 UTC are available. The needed

meteorological variables are taken from the nearest radiosounding in time and space.

4. Integral Radar Volume Descriptors

Using the threshold τ = 18 dBZ a verification of the basic equations (1) and (3) on the

basis of the pseudo-radar data and the modelled rainfall showed that the unified theory

provides only very crude rainfall estimates. For the first approach the rainfall amounts differ

between 2.6 · 108m3 and 1.53 · 1014m3. Especially in case of small area-time integrals relative

errors in excess of 500% are observed. The resulting relative error in V of 51 out of 100 rain

events is larger than 100% if we apply the approach by keeping S(τ) constant. In 28 cases

the relative error is smaller than 50%.

For the second approach the data set (events) at our disposal is much larger than in the

first approach. In this case, a verification of equation (3) on the data showed that the error in

〈R〉 depends on the choice of the threshold parameter. For F0 = 0 the error ranges between
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an underestimation of max. 98% up to an overestimation of max. 1296%. In 15.3% of the

testcases, the relative error was below 10% and in 30.2% of the testcases it was below 20%.

If we slightly increase the threshold to F0 = 0.01, the error remains in the same range for

under– and overestimation. However, in 16.2% (31.6%) of the tests the error was below 10%

(20%). For the largest threshold F0 = 0.05 the maximal overestimation was significantly

smaller (529%) than in the previous cases while the number of tests with errors below 10%

and 20% could not be improved. Since the different choices of F0 led to significantly different

results in our verification, we distinguish these cases for the second approach what enables

us to investige whether this effect can be eliminated by addition of further IRVDs or whether

it is due to the model itself.

Altogether, we can conclude that the simple model by Doneaud et al. (1981) does not

improve current quantitative rainfall estimations.

In our strategy to achieve enhanced space- and time-integrated rainfall estimates, we

assume that the inclusion of further information on the spatial and temporal variability of

the radar signal can be used in the future to guide or at least constrain static Z-R relations.

We are guided by the assumption that useful information about the precipitation process

can be extracted from the three-dimensional radar reflectivity structure, and that we will be

able to obtain this information by the use of a few integral radar volume descriptors.

The definitions of considered IRVDs are listed below:

• Duration D: The length of the observation period of a raining system.

• Area-time integral ATI, Area A(τ), Area Ao, Fractional area A(τ)/Ao (see (2) and
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(3)).

• Mean horizontal expected value HMEAN and mean horizontal standard deviation

HSTD: In order to estimate the expected value and the standard deviation of the

horizontally inclosed linear reflectivities at the ground, all accumulated values are in-

terpreted as a realization of a Weibull distributed random variable to take into account

the skewness and different shapes of the distribution (Rinne, 1997).

• Mean echo-top-height METH: The mean altitude above which the radar reflectivity

is lower than 12dBZ (Rosenfeld, 1995a).

• Maximum vertical standard deviation MVSTD: The maximum standard deviation of

the vertical reflectivity field at the center of reflectivity (analogue definition to centre

of gravity) during the observation period.

• Temporally averaged vertical mean value MVMEAN : The temporal average of the

mean values of the vertical reflectivity field at the center of reflectivity. The latter

is defined similar to the center of gravity, i.e. the coordinates are weighted by the

reflectivities.

• Mean brightband fraction MBB: The brightband fraction is the fraction of the echo

area with maximum vertical reflectivities within ±1 km of the 0o C altitude. The

calculation of the brightband fraction at different time steps of the observation period

is very similar to the definition introduced by Rosenfeld et al. (1995a, 1995b). It

is based on the 0o C altitude estimated from the nearest radiosounding and on the

vertical reflectivity field. Calculating the reflectivity field with a vertical resolution of
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0.1 km at the center of reflectivity, the brightband fraction amounts to 1 for example,

if all 21 values within ±1 km from the 0o C altitude are the maximum values below the

echo-top-height. Considering a storm during its lifetime, the mean brightband fraction

is calculated on the basis of all brightband fractions during the observation time steps.

• Mean effective efficiency MEe: The definition of the effective efficiency Ee introduced

by Rosenfeld et al. (1990) is based on the water vapor mixing ratios at the base (Qb)

and top (Qt) of the cloud:

Ee =
Qb − Qt

Qb

. (5)

Consequently, Ee describes the fraction of water vapor carried up through the cloud

base which is potentially available for precipitation. Actual calculations use the satu-

ration mixing ratios which are determined from the Magnus equation (Kraus, 2001) at

800m (Qb) and at the echo-top-height (Qt), respectively. The height of 800m repre-

sents a rough etimate for typical cloud-base conditions. The necessary meteorological

variables like temperature or pressure at different heights are taken from the nearest

radiosounding.

• Trends in MBB and trend-to-noise ratios: All descriptors mentioned above describe

mean characteristics of the system or the considered raining area. However, a system

undergoes changes in its characteristic during its lifetime. Major stages are the growing

stage, the convective and the stratiform or dissipative stage. The trend in the bright-

band fraction should give an indication of the stage of evolution of the system during

the observation; a positive (negative) trend in the brightband fraction indicates a sys-

tem in the decaying (growing) stage. However, a variety of factors like the estimation
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of the 0o C level, splitting and merging of cells and, especially in the case of complex

systems containing several small cells, the calculation of the brightband fraction at the

center of reflectivity makes the signal noisy. Consequently, two different trend esti-

mates are considered: the well-known least-squares estimator TBB of the linear trend

in the observational brightband fraction and a robustified estimator RTBB. The latter

is calculated by setting brightband fractions smaller than 0.1 equal to 0.1 and also

by setting values larger than 0.9 equal to 0.9. Furthermore, the respective trend-to-

noise ratios based on the least-squares estimator (TNBB) and the robustified estimator

(RTNBB) are offered in order to represent the significance of the trend. The standard

deviation of the brightband fraction STDBB is offered as self-contained descriptor, too.

• Orographic rainfall amplifier ORO+ and ORO±: Roe (2005) assumed that the rate

of condensation C of water vapor is very close to the temporal rate of change of the

saturated moisture content. It provides an upper bound on the precipitation rate that

can be achieved due to a to stable upslope ascent of saturated air, where at every level

the vertical velocity equals the orographically forced lifting at the surface:

C = −
∫

∞

zs

~u · ∇zs

d

dz
[ρqsat]dz (6)

= ρ0q
sat
0 ~u · ∇zse

−
zs

Hm

with the e-folding scale height for atmospheric moisture

Hm = − a

bΓ
,

where a = 17.67 and b = 243.5o C, Γ is the temperature lapse rate, zs the surface

elevation, qsat the saturation-specific humidity, ρ the air density, ~u the wind speed and
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the subscript 0 denotes a variable’s value at z = 0.

However, unlike Roe, we assume that saturation is not achieved until 800m height (cp.

definition of the cloud base height in MEe). Consequently, in our application ρ0 and

q0 denote the air density and the saturation-specific humidity at height z, where

z = max{zs , 800m}. (7)

We estimate the vertical velocity w = ~u · ∇zs using the difference in surface heights at

the centers of reflectivity of a tracked cell in subsequent time steps and the temporal

resolution (600 s) of the radar data. Furthermore, we use the moist adiabatic lapse

rate Γ = 0.006oCm−1, the temperature T (z) and pressure p(z) from the nearest radio

sounding in order to estimate qsat(z) and the ideal gas law for estimation of the density

ρ(z).

The total condensation rate Ci is calculated for every time step during the observation

period. The orographic rainfall amplifier ORO+ summarizes all positive contributions

Ci during the tracking period, while the descriptor ORO± summarizes all positive and

negative contributions Ci during the tracking period. Consequently, the latter also

takes into account negative values Ci due to a downslope descent.

• Mean wind shear MSHEAR: This descriptor includes the change in wind speed and

direction with height in the atmosphere. Vertical wind shear lets the updraft separate

from the downdraft, allowing the storm to survive longer and even become stronger.

We define the mean wind shear MSHEAR as the average magnitude of wind vector

difference in 850 and 500hPa during the observation period. Wind vectors are taken

from the nearest radio sounding.
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• Mean compactness MCOM : The compactness of a cell is the ratio of inclosed area to

circumference. We suppose more intense convection with increasing compactness, i.e.

stronger storms and convection in case of a continuous cell compared to a combination

of several smaller cells. In order to avoid an increase of the descriptor with increasing

size, we define the compactness of a system

COM =

√
Nin

Nout

, (8)

where Nin is the number of inclosed pixels and Nout is the number of pixels on the

edge of the cell. MCOM is defined as the average compactness during the observation

period of the system.

The descriptors which include a characterization of the vertical structure of the reflectivity

field are computed from the reflectivity field in 0.1 km resolution at the center of reflectivity

of a cell at a time step. These IRVDs are the mean brightband fraction, the temporal

trend in the brightband fraction, the mean effective efficiency, the mean echo-top-height, the

maximum vertical standard deviation and the vertical mean value. Some descriptors provide

information about the average state of the system during the observation period. In these

cases, an averaging over the observation period is performed, e.g. the brightband fraction

or the echo-top-height is determined for every time step of the observation period for the

determination of the mean brightband fraction or the mean echo-top-height, respectively.

Other descriptors contain cumulative information, e.g. the area Ao of the storm. In these

cases, the inclosed area of the considered cell or any other parameter of each time step are

accumulated to define the descriptors. Some descriptors, however, characterize the evolution

of a system during its observation and thus can only be used for the instationary case (first
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approach).

We now describe in detail the methods to enhance the estimation of the total rainfall of a

storm during its lifetime and the instantaneous areawide rain rate, respectively.

5. Data regression

From the mathematical point of view, we make the assumption that a possibly nonlinear

functional relation between the response variable y and the respective IRVD’s exists, i.e. we

assume that

y = f(x1, . . . , xn). (9)

In the first approach we have y = V/ATI, while for the second approach we define the

response variable y as the quotient of 〈R〉 and A(τ)/Ao. Each input variable xi, i = 1 . . . n,

stands for one single IRVD. The function f has to be determined from discrete data points

in such a manner that

(a) it fits well to the available data and

(b) gives good predictions for new data points.

In order to determine a function f fulfilling both requirements let f belong to a Hilbert space

H and let B := {ϕ1, ϕ2, . . .} be a basis of H. Then, f can be expanded with real coefficients

c1, c2 . . . in the infinite series

f(x1, . . . , xn) =
∞
∑

i=1

ci ϕi(x1, . . . , xn). (10)

For numerical computations, this expansion has to be discretized, i.e. the sum has to be

truncated at a finite value ℓ. Since the resulting finite basis Bℓ is a subset of B, it spans
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a subspace Hℓ ⊂ H. The choice of the subspace Hℓ and its approximation properties for

functions from H strongly affects the quality of the expected solutions.

Now, since the new IRVD’s are collected in an n-dimensional vector x := (x1, . . . , xn)T ,

where each component stands for an IRVD, the regressor has to be computed based on the

given data points. Furthermore, we need a second data set to evaluate the quality of the

computed regressor independently of the learning data. Therefore, we split the data at our

disposal into a training- and a test-set of the form

Ptrain := {(y1,x1), . . . , (yP1
,xP1

)} and (11)

Ptest := {(ỹ1, x̃1), . . . , (ỹP2
, x̃P2

)}.

The two sets are randomly sampled from the whole data set. They are of the same size

and have no common elements. The overall error of the computed solution consists of

two parts: The estimation error that depends on the choice of the training set Ptrain and

the approximation error that depends on the approximation space Hell. From statistical

learning theory, it is known that the estimation error can be reduced for fixed Hell by an

enlargement of the training data set. On the other hand, for a fixed size of the data set,

the approximation error decreases when the space Hell is enlarged, but the estimation error

increases. This means that the overall error can only be reduced by an enlargement of both,

the training set and the approximation space. Now, if the training set is small, like in the

first approach, we have to restrict ourselfes to a relative small approximation space.
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a. Multiple linear regression

In the first approach a well-known multiple linear regression is performed. In order to take

into account possible non-linear relationships each of the 21 different descriptors is offered

up to the power 5, resulting in 105 potential regressors. This corresponds to the choice of

basis functions ϕi(xj) := xi
j, j = 1, . . . , 21, i = 1, . . . , 5, which results in the polynomial

f(x1, . . . , xn) = c1,1 x1 + . . . + c1,5 x5
1 + . . . (12)

. . . + c21,1 x21 + . . . + c21,5 x5
21.

A model selection criterion to deal with colinearities among the potential regressors and

for developing parsimonious models is stepwise regression (Storch and Zwiers, 1999). This

procedure combines forward selection and backward elimination steps. As forward selection

progresses, descriptors selected early on may become redundant when related descriptors

are selected during later steps. Therefore, in stepwise regression, backward elimination

is performed after every forward selection step to remove unnecessary variables from the

model, i.e. by setting the respective coefficients to cj,i = 0. Forward selection and backward

elimination steps are repeated until no further significant changes are made to the model.

For an evaluation of the rainfall estimates provided by the regression modell should be

compared to those obtained from a fixed Z-R relation. However, in case of the pseudo-radar

data used it would be an unfair game. As already mentioned in Section 3, reflectivities

in the model are calculated using Rayleigh approximation and an exponential distribution

(i.e. Marshall-Palmer for rain) for the precipitation particles. The spectral parameter Λ is

replaced then by the predicted mass fraction. Consequently, a simple Z-R-relation would

lead to an exact retrieval - it is a trivial solution for rain in a single-moment bulk scheme.
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Alternatively, a leave-one-out cross-validation (LOOCV) is applied for an evaluation of the

method. Thus, stepwise regression is performed 100 times on the basis of 99 of the rain

events in order to calculate the error of the rainfall estimate of the remaining hundredth rain

event.

For a larger approximation space, that also considers direct interactions of different

variables, one would have to enhance the polynomial in (12) such that all mixed terms

xa
i x

b
j, i, j = 1 . . . n and a, b = 0 . . . p are present. This would enlarge the approximation

space but result in (p + 1)n terms. Therefore the complexity of the method would grow

exponentially with the dimension n. Now, to handle the, also needed, large data sets and

higher dimensional data an alternative regression method has to be employed. So, we use

sparse grid regresssion for the second approach.

b. Sparse Grid regression

To find a function f that generalizes the relation between the response variable y and

the IRVDs, we apply a sparse grid method (Garcke, 2004) for the large training and test

sets from Section 5 resulting from the second approach. For large data sets there may exist

approximation spaces Hℓ that are better adapted to the data than the space of polynomials.

To achieve this, we apply hierarchical local basis functions, so called sparse grids (Bungartz

and Griebel, 2004). Here, basis functions are constructed as tensor products of piecewise

linear one-dimensional hierarchical basis functions with local support

ϕi,k(x) :=
n
∏

j=1

ϕij ,kj
(xj), ij ∈ {1, 2, . . . , J}, kj ∈ Λij (13)
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and a fixed highest resolution level J . For a detailed description of the hierarchical basis and

the definition of the resolution indices ij and the location index sets Λij we refer to Yserentant

(1992). This construction results in n-dimensional hierarchical basis functions with local

support. Since in all coordinate directions, there exist 2J hierarchical basis functions (on

the interval) the overall number of basis functions is 2Jn. Accordingly the complexity of the

system increases exponentially with the dimensionality of the problem, a behaviour which is

called the curse of dimensionality. To overcome this curse, the sparse grid method only takes

into account basis functions with i1 + . . . + in ≤ J . This reduces the number of degrees of

freedom to 2JJn−1. It can be shown that the same approximation rate is achieved as for the

full grid if some regularity assumptions on H are made, namely H has to be the space H1
mix

of functions with bounded mixed derivatives. This space contains all functions f that have

a finite norm

|| f ||H1

mix([0,1]n) :=

(

∫

[0,1]n

∣

∣

∣

∣

∂nf(x)

∂x1 · · · ∂xn

∣

∣

∣

∣

2

dx

)
1

2

.

A common way to determine the function f from the given training set is to minimize

the Tikhonov-regularized least-squares functional

E(f) :=
1

P1

P1
∑

j=1

(

ℓ
∑

i=1

ci ϕi(xj) − yj

)2

+ λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ℓ
∑

i=1

ci ϕi(·)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

H

(14)

with respect to the real coefficients c1, . . . , cℓ using an appropriate norm || · ||
H
. The regular-

ization factor λ ∈ R is used to balance the interpolation property enforced by the first term

and the smoothness restrictions on f controlled by the norm. Therefore, (a) and (b) are re-

flected and balanced in one functional E(f). Minimizing (14) with respect to the expansion

coefficients leads to a sparse linear system of equations that can be solved by an iterative

method such as the conjugate-gradient iteration.
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6. Results

Now, we show numerical results for both approaches and the respective regression meth-

ods. The application of multiple linear regression to the first approach is presented in Section

a while the sparse grid method is applied to the second approach in Section b.

a. First approach: total rainfall of a storm

The significance of a descriptor depends on the field of non-orthogonal descriptors out

of which it is elected. In the following two different models are presented: For the first

model we exlude the orographic rainfall amplifiers ORO+ and ORO± and the wind shear

MSHEAR from the pool of potential regressors while for the second model all descriptors

listed in Section 4 are offered for detection. These are the only parameters, which are not

directly related to or extracted from the structure of the radar returns. Thus they have

a different quality and might also be more model resolution dependent than the others.

For each model stepwise regression is applied 100 times to 99 values of V/ATI in order to

explain remaining variability with a small set of the IRVD suite (cp. LOOCV described

in Section a). Significant descriptors for the first and the second model and the frequency

of their detection are listed in Table 2. So, the detection frequency of 100 for HMEAN

means, that in all 100 regressions performances this descriptor is detected and makes a

significant contribution. The descriptor HMEAN2 instead is detected in 99 out of 100 cases.

Accordingly, the detection frequency qualifies the sensitivity of a descriptors contribution to

the regression model to small changes in the data set; a high detection frequency underlines

the importance of the descriptor. Obviously, the additional potential descriptors lead to
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considerable differences between both models.

The first model detects the same 7 descriptors in the majority of cases: the horizon-

tal expected value in different powers HMEAN , HMEAN3, HMEAN2, the fractional area

with reflectivities in excess of the threshold to the power of five (A(τ)/Ao)
5, the horizon-

tal standard deviation to the power of four HSTD4, the mean brightband fraction to the

power of three MBB3 and the robustified estimate of the trend in the brightbandfraction

RTBB. Noteworthy, that in most cases descriptors with a higher power are going along with

very small coefficients. So, they are only important for rain events with high values of the

respective descriptor.

On average the first model explains 98.93% of the remaining variance in V/ATI. The

horizontal expected value HMEAN already explains about 95% of the variance. In Figure

2 the ratio V/ATI is drawn against this descriptor for the 100 rain events. Obviously, the

superposition with the significant descriptors HMEAN3 and HMEAN2 achieves a degressive

increase of V/ATI with increasing expected value.

Some explanatory notes are useful concerning the detected (robust) trend in the bright-

band fraction. As already mentioned, a positive trend mostly indicates a system in the

decaying stage, and a negative trend indicates a system mostly in the growing stage. We

found that a model equation based exclusively on descriptors reflecting the mean character-

istics of the system tends to underestimate the total rainfall in case of a negative trend in

the brightband fraction, i.e. in the growing stage, because maximum rainfall amounts are

expected near the end of the growing stage. Analoguously, a model equation without infor-

mation about the evolution the systems overestimates the total rainfall in case of a positive

trend in the brightband fraction.
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In the second model, the horizontal expected value remains the most important descriptor

but the orographic rainfall amplifier ORO+ is detected as an important information in all 100

cases, too. In the overwhelming majority of cases the horizontal expected value in different

powers HMEAN , HMEAN3, HMEAN2, HMEAN4, the orographic rainfall amplifier ORO+,

the fractional area with reflectivities in excess of the threshold to the power of five (A(τ)/Ao)
5

and the squared horizontal standard deviation HSTD2 are aslo detected. In contrast to the

first model, the frequency of the descriptor detection decreases less rapidly, and thus it is

more difficult to fix a limit between the more and less important descriptors. On average,

the second model explains 99.25% of the remaining variance in V/ATI.

Comparing the seven descriptors which have been most frequently detected by the two

models, we find that the orographic rainfall amplifier takes over the place of the mean

brightband fraction and its trend while the horizontal expected value, the fractional area

with reflectivities larger τ and the horizontal standard deviation remain among the most

relevant descriptors.

The resulting relative errors in the estimated accumulated rainfall based on the respective

model equations including all significant detected regressors are shown in Figure 3. The

maximum relative error in the first model amounts to 88.5%. This is, however, by far the

largest error and it is associated with the smallest ratio V/ATI = 0.88 mm/h. In 74 (22) out

of 100 rain events the relative error is smaller than 10% (2%). The maximum relative error

in the second model amounts to 103.23%. In 79 (31) out of 100 rain events the relative error

is smaller than 10% (2%). In summary, the second model keeps on reducing the smaller

errors but gives also rise to single extreme high relative errors. However, reconsidering that

systems of different scales with respect to the horizontal extent and rainfall amount (see
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again Figure ??) are traced over considerably different observation periods, both models

show remarkably good results.

b. Second approach: instantaneous rain rate of many storms

The following stationary IRVDs from Section 4 are used to compute the quotient of

instantaeous rain rate 〈R〉 and A(τ)/Ao: HSTD, METH, MBB, MEe and MVSTD. In

addition to the last descriptor, we compute the horizontal average of the vertical mean of

the reflecivities HAVM . To compute the respective descriptors we only include reflectivities

that are above the threshold τ = 18 dBZ. For our calculations, the coordinates x1, . . . , x6 of

the points in training and test set from Section 5 are these values.

Since we consider three different cases F0 ∈ {0, 0.01, 0.05}, the sizes of the respective data

sets differ. They are listed in Table 3. Then, the regressor f is computed by a minimization

of the error functional (14) on the respective training set Ptrain. To evaluate the result, the

average of the relative error between the measured and the predicted value is computed on

the test set Ptest. For each choice of the parameter a different models has been calculated.

For F0 = 0, we chose J = 2 and a regularization parameter λ = 0.00001, for F0 = 0.01 we

use the parameters J = 3 and λ = 0.00001 and in the last case F0 = 0.05 we had J = 2

and λ = 0.000001. The results are depicted in Figure 4. Here, the test set is reordered with

respect to the value of the errors and the regions below 10% and 20% have been marked

light and dark shaded, respectively.

For the first case (F0 = 0, J = 2, λ = 0.00001) the error ranges between an underesti-

mation of 〈R〉/(A(τ)/A0) by 222% and an overestimation by 1052%. For 67% of the events
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the error is smaller than 20% and for 44% it is below 10%. The average relative error for

the test set is 23.1%. In the second case (F0 = 0.01, J = 3, λ = 0.00001) the predictions

range from −143% to 614%. The average relative error is 12.0%, and 84.3% of the errors are

below 20% while 58.3% are below 10%. In the last case (F0 = 0.05, J = 2, λ = 0.000001) we

achieved an average error of 10.3%. In 89.3% of the events the relative error was below 20%

and in 66.2% it was below 10%. Here, we had a maximal undersetimation by 289% and a

maximal overestimation by 250%.

For all models the resolution J is rather small what has a additional regularization

effect on the model. This indicates that the learning data for the regression contained

noise. Comparing these results with those from the verification in the second approach (see

4) we see that the consideration of the IRVD in the nonlinear model leads to significant

improvements. Additionally, the dependence of the results from the choice of the threshold

F0 becomes clearly visible. Increasing its value leads to an improvement of the error. We

conclude, that the second approach is not relieable if A(τ)/Ao ≈ 0.

To investigate the influence of each different IRVD on the error reduction we perform

the same regression as before without the respective descriptor. This can be interpreted as

a constant approximation in this coordinate direction. We restrict ourselves on the third

case F0 = 0.05, since this led to the best results in the previous calculations. The resulting

relative errors can be found in Table 4.

The significance of the descriptors HSTD, HAVM is indicated by the fact that the

test–errors become larger if they are left out of the regression process. Omitting the other

descriptors in Table 4 only led to slightly increased errors, i.e. the dependence on these

variables is weaker. Altogether, this leads to the conclusion that the high–dimensional
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function f(x), i.e. the quotient 〈R〉/(A(τ)/Ao) depending on the IRVDs, has a small gradient.

7. Conclusions and Outlook

Analyses based on rainfall and pseudo-radar data simulated by the weather forecast

model COSMO-DE were performed in order to test and extend the unified theory by At-

las et al. (1990) for the estimation of the total rainfall produced by an individual storm

(first approach) and the estimation of areawide instantaneous rainfall (second approach).

Subsequent verification of the accuracy showed that further exploitation of the spatial and

temporal variability of the radar signal in terms of IRVD can significantly enhance the rain-

fall estimates. Doneaud et al. (1981) first employed the area-time integral ATI, Altas et

al. (1990) added the fractional area A(τ)/Ao to the framework of the unified theory and

Rosenfeld (1990) already achieved better results accounting also for the effective efficiency

Ee. We also used the definition of the brighband fraction introduced by Rosenfeld et al.

(1995a, 1995b) for the classification of rain regimes, but we additionally extended the pool

of potential descriptors with descriptors not yet utilized in radar meteorology. The horizon-

tal expected value, the horizontal standard deviation, the orographic rainfall amplifier and

the trend in the brightband fraction as an indicator for the stage of evolution of the system

are the most promising new descriptors presented. It is worth mentioning that the accuracy

of some descriptors strongly depends on the availiability of different meteorological variables

(see again Section 3) which are necessary for their estimation. In this study, the respective

information was taken from 12 different radiosounding stations with up to 4 measurements,

respectively.
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In order to enhance the estimation of the accumulated rainfall of an individual storm,

in the first approach stepwise regression is applied as model selection criterion in order to

achieve a parsimonious multiple regression model. Two different models have been con-

sidered; only the second model takes information about the wind profile and the surface

elevation into account. Leave-one-out cross-validation shows that in 74 (79) out of 100 rain

events the relative error is smaller than 10% in the first (second) model.

For the second approach, the computation of the stationary IRVDs is simpler and the

same data lead to much larger training and test sets. Here we applied a high–dimensional

sparse grid regression method with Thikonov regularization. We distinguished three different

cases to compute the data samples. For each case, different models with different discretiza-

tion levels and regularization parameters have been considered. For the third case, we could

achieve in 66.2% percent of the testcases an error that was below 10%.

Evidently, an evaluation of the models against real radar data and observational preci-

pitation is the next important step. The effects of additional noise caused by radar-based

errors (e.g. clutter, attenuation) and a yet unsufficient data base for observed precipitation

need to addressed. We plan to use radar data to interpolate between the high-resolution

rain-gauge stations in order to construct a resolution-wise adequate while inaccurate data

set for surface rainfall. Here we have to deal with the problem, that the radar data will be

used both for g̈round truthänd for estimation (see again Hagen et al., 2003). This impact,

however, is likely small because the information taken from the radar as information source

will be the IRVDs, which have no direct relation to the information obtained from the radar

to construct the ground truth. Alternatively, we can use the model equations obtained from

our current results and statistically compare the results of their application to real radar
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data against surface rain gauges. This approach should at least be able to decide whether

the precipitation dynamics and microphysics in the model is comparable to reality, leading

to a new method for model validation.
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Fig. 1. One snapshot showing the pseudo-reflectivities (COSMO-DE) in dBZ in the bot-

tom layer from July 17, 2004 (top), July 8, 2005 (middle) and August 19, 2005 (bottom),

respectively.

34



Fig. 2. Horizontal expected value of inclosed linear reflectivites HMEAN versus V/ATI.
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Fig. 3. Relative error in estimated precipitation sums applying the first (top) and the second

model (bottom) in the first approach, respectively.
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Fig. 4. The relative errors of all elements from the respective test-set for each case. F0 = 0

is shown in the top left figure, F0 = 0.01 in the top right and F0 = 0.05 in the bottom figure.

For each result the test-set has been reordered with respect to the error for clarity. The shaded

regions mark the elements with a 10% (light) and 20% (dark) error. We only show errors

in the range of ±300%.
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Table 1. Distribution of 100 traced raining systems over the days considered and a priori

applied Gaussian smoothing (σ in number of rid-cells in one direction) of the reflectivity

field.

Date Gauss kernel’s σ Number of rain events

July 17, 2004 6 26

14 6

July 8, 2005 6 15

10 20

14 5

August 19, 2005 6 16

10 12
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Table 2. Significant detected descriptors and the frequency of their detection with and

without taking into account the orographic rainfall amplifier and the wind shear, denoted as

the first and the second model, respectively.

Significant descriptor Frequency

in the first model

HMEAN 100

HMEAN3 100

HMEAN2 99

(A(τ)/Ao)
5 99

HSTD4 98

MBB3 97

RTBB 87

MEe 17

(A(τ)/Ao) 9

TBB3 8

TNBB3 7

HMEAN4 2

TBB5 1

Significant descriptor Frequency

in the second model

HMEAN 100

HMEAN3 100

HMEAN2 100

ORO+ 100

(A(τ)/Ao)
5 99

HMEAN4 91

HSTD2 90

D 65

ORO+2 65

MSHEAR3 58

ORO±4 43

MSHEAR2 16

ORO±3 16
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Table 3. Sizes of training– and test set for the different values of F0.

F0 0 0.01 0.05

size of Ptrain 13848 10560 6236

size of Ptest 13848 10559 6235
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Table 4. The following errors were achieved for the case F0 = 0.05 in the second approach

if the descriptor in the first column was not included in the calculation.

Omitted parameter Average error in %

none 10.3

HSTD 18.0

MEe 10.6

MBB 10.8

METH 10.8

HAVM 11.0

MVSTD 10.7
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