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Zusammenfassung

Wir beschäftigen uns in der vorliegenden Arbeit mit der mikroskopischen Si-
mulation molekularer Systeme in Lösung. Die explizite Simulation des Gesamtsy-
stems ist wegen der hohen Zahl der Lösungsmittelmoleküle zu aufwendig. Daher
wird der Einfluss des Lösungsmittels implizit mittels des sogenannten Potential of
Mean Force (PMF) berücksichtigt. Die effiziente Berechnung eines solchen impliziten
Lösungsmittelmodells ermöglicht dann eine effizientere Simulation des Gesamtsy-
stems von gelöstem Stoff und Lösungsmittel. Vielversprechende Ansätze, das PMF
näherungsweise zu berechnen, bieten Integralgleichungsmethoden zur Approximati-
on der mittleren Dichte von Flüssigkeiten. Existierende Verfahren basieren praktisch
ausnahmslos auf der Ornstein-Zernike Gleichung, können allerdings aufgrund des
immer noch hohen numerischen Aufwands und der benutzten Näherungen nicht als
effizientes implizites Lösungsmittelmodell verwendet werden.

Wir leiten daher ausgehend von der YBG-Hierarchie der statistischen Physik ein
neues Modell, das sogenannte BGY3d Modell, für die Approximation der Dichte
atomarer Lösungsmittel um einen gelösten Stoff herum her. Wir verwenden dabei
zum ersten mal in diesem Zusammenhang die Kirkwood Approximation. Mittels
eines speziellen Produktansatzes ist es uns möglich, das BGY3d Modell numerisch
sehr effizient zu lösen. Der Rechenaufwand erweist sich als deutlich geringer als der
des 3d-HNC Verfahrens von Beglov und Roux, welches auf der Ornstein-Zernike
Gleichung basiert. Bei diesem Vergleich stellt sich ebenfalls heraus, dass die Kirk-
wood Approximation zur gleichen Gesamtgenauigkeit der Ergebnisse führt, dabei
allerdings dem 3d-HNC Verfahren in der Näherung der Höhe und der Position des
ersten Maximums der Dichteverteilung überlegen ist.

Um auch die Dichteverteilung realistischer Lösungsmittel berechnen zu können,
erweitern wir unser Modell so, dass auch molekulare Flüssigkeiten als Lösungsmittel
betrachtet werden können. Neben der Kirkwood Approximation für die Interak-
tionen zwischen den Molekülen, verwenden wir nun die sogenannte Normalized
Site-Site Superposition Approximation von Taylor und Lipson für die Interaktio-
nen innerhalb der Lösungsmittelmoleküle. Außerdem ist das molekulare BGY3d
Modell (BGY3dM) in der Lage, die Dichte von Lösungsmitteln, die sowohl durch
kurzreichweitige Potentiale, wie z.B. das Lennard-Jones Potential, als auch durch
das langreichweitige Coulomb Potential beschrieben werden, effizient zu berechnen.
Der Vergleich von Ergebnissen des BGY3dM Modells mit Ergebnissen aus Molekül-
dynamiksimulationen zeigt, dass unsere Modellierung und die daraus resultieren-
de Dichteverteilung eine gute Approximation liefern. Der Rechenaufwand für das
BGY3dM Verfahren ist dabei zwei bis drei Größenordnungen kleiner als der einer
Moleküldynamiksimulation. In numerischen Beispielrechnungen führt die Anwen-
dung unseres BGY3dM Verfahrens auf die Berechnung der Dichteverteilung von
Kohlenstoffdisulfid um verschiedene Moleküle herum zu realistischen Dichte- und
Ladungsverteilungen.
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wieder auf den richtigen Weg gebracht hat. Bei Prof. Dr. Rolf Krause möchte ich
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Chapter 1

Introduction

Proteins are essential parts of any organism and participate in every process within
cells. For instance, they work as catalysts for biochemical reactions (enzymes), as
oxygen carriers in our blood cells (hemoglobin) and are responsible for our skin and
eye color (pigments). All enzymes, pigments, hormones etc. are proteins. Hence,
the understanding of their structure and function is an important step in order to
understand life.

Twenty different amino acids constitute the basis of which the proteins are built
as linear polymers. The linear composition of a protein is easy to obtain. But
its biological functionality strongly depends on the three-dimensional configuration
of the protein. Only in this functional form the protein can interact with other
molecules e.g. by a key and lock mechanism. Its three-dimensional structure is
fully governed by the linear sequence of its amino acids. In nature, after a protein
is assembled from the amino acids as a linear chain, it folds up in a matter of
seconds or minutes to take on its functional three-dimensional conformation. But
how the specific amino acid sequence affects the folded structure of a protein is by
far not understood, yet. Hence, the protein-folding problem remains one of the most
fundamental unsolved problems of molecular biology and is a key-topic of current
research.

Computer simulations are an effective tool to investigate the protein-folding prob-
lem. The ultimate goal is to compute the native state of a protein, i.e. its three-
dimensional shape, from the knowledge of the amino acid sequence alone. For this,
a detailed representation of the protein as well as its natural environment needs to
be implemented in the computer. This environment is a liquid solution. It cannot
be neglected since the interaction between the protein and the solution plays an
important role for the protein’s structure. But the efficient incorporation of the sol-
vent effects into the computer simulation is a major challenge. In a naive approach,
the solute, i.e. the protein, as well as the solvent, e.g. water, are considered by a
fully atomistic representation. This clearly leads to a very detailed description of
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2 Chapter 1. Introduction

the solute-solvent interaction. But the explicit simulation of the solvent then re-
quires the major part of the computational effort. Hence, this approach is merely
applicable to small solutes but is simply unfeasible if an extensive simulation of a
protein is required as this would be the case in a protein-folding simulation.

Currently, the most promising approach to overcome these complexity issues is
to include the solvent effects by a so-called implicit solvent model. In such a model,
the solute-solvent interactions are approximated without introducing new degrees
of freedom to the system. Existing implicit solvent models yield qualitatively good
results, yet are not able to reproduce experimental data on a quantitative level of
detail. First attempts to design accurate implicit solvent models were made by
employing methods based on the liquid state integral equation theories. Hirata,
Rossky and Pettitt [51] were the first to formulate a method applicable to solute-
solvent systems in 1983. Hereafter, many authors considered the integral equation
theories with respect to the approximation of solvent effects for simple solutes. In
principle, these methods are able to approximate the solvent effects accurately. But
they cannot be applied to the protein-folding problem, yet, since they are still com-
putationally too expensive when employed in simulations of large molecules such
as proteins. We will therefore formulate and investigate a new method also based
on the integral equation theories yet involving an approximation never considered
before concerning the application of accurate and effective approximation of solvent
effects in solute-solvent simulations – the Kirkwood approximation.

The native configuration of a protein represents a stable state of the system and
is therefore a macroscopic property. Such macroscopic properties are assumed to be
constituted by all possible microscopic states of the system. In principle, it should
be possible to derive all macroscopic properties if sufficient information about the
molecular interaction is given. The transfer from a microscopic level to the macro-
scopic quantity, the observable, is accomplished by a so-called ensemble average,
i.e. an average over all possible microscopic states. Unfortunately, these ensemble
averages can be computed exactly only for very few systems, as e.g. the ideal gas
or the two-dimensional Ising model for ferromagnets. Computer simulations are
able to approximate such ensemble averages. The standard tools in computational
biology are Monte Carlo and molecular dynamics methods. They sample the phase
space, that is the space of all possible microscopic states of a system, by a stochastic
or a deterministic procedure, respectively. The ensemble average can then be ap-
proximated by a direct sum of the microscopic quantity of interest evaluated at the
sampling points in phase space. This way, any desired macroscopic property of the
system can be computed, assuming that the exact molecular interaction potential
is known. Both methods, Monte Carlo and molecular dynamics, have been applied
to a wide variety of molecular systems with great success. Besides the application
to molecular systems [72, 106] they are for instance employed in the simulation of
liquids [2] or in the field of nano-technology [102].
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However, Monte Carlo and molecular dynamics methods do not always yield
satisfactory results in acceptable time. This is due to the enormous computational
effort necessary to reach convergence. In the protein-folding problem, these com-
plexity problems are caused by two different properties of the system: First, the
phase space of a large molecule like a protein is divided into regions that are only
connected by unprobable transitions. Each region represents a so-called meta-stable
configuration of the molecule. These unprobable transitions between meta-stable
states make sampling of the entire phase space very challenging. The second issue is
the simulation of the environment of the protein. Proteins always appear in solution
which has to be implemented in the computer simulation as well. The solvent is a
fluid, e.g. water, which consists of small molecules that have to be included explicitly
in a large number in order to form the bulk solvent. This drastically increases the
dimension of the phase space. The number of required solvent molecules depends
on the size of the protein and the size of the domain but can easily reach tens of
thousands of particles. Hence, the computational effort of Monte Carlo and molec-
ular dynamics methods to reach convergence is also increased by several orders and
is beyond the capability of today’s computers.

A protein in water is a typical representative of what we call a solute-solvent
system. In these systems the properties of the solute are at the center of interest,
i.e., the ensemble average is to be computed of a microscopic quantity that does
not explicitly depend on the solvent degrees of freedom. Nevertheless, the macro-
scopic property is strongly influenced by the specific solvent due to the microscopic
solute-solvent interaction. In the case of a folded protein for example, the stable
configuration indeed depends on the type of the solvent. But obviously, the config-
uration of the solute does not depend explicitly on the solvent degrees of freedom.
It is therefore possible to derive the so-called potential of mean force (PMF) which
incorporates the effects on the solute due to the solvent implicitly, i.e. without in-
troducing new degrees of freedom to the system. With respect to the macroscopic
properties, the systems with explicit and implicit solvent representation are iden-
tical. Formally, the PMF is derived by integrating the probability density of the
system over all solvent degrees of freedom. This leads to an interaction potential
that only depends on the solute degrees of freedom and contains the solvent effects
implicitly. Figure 1.1 illustrates the difference between the two approaches. The left
plot shows a typical configuration of a biomolecular system: A protein is to be sim-
ulated in aqueous solution. To this end, the water molecules are included explicitly
in the simulation box. However, no explicit solvent molecules are necessary by the
use of the PMF. Instead, a force field that implicitly incorporates the solvent effects
on the solute is considered. This is indicated by the red field of Figure 1.1 (right).

The introduction of the PMF formally simplifies the simulation of solute-solvent
systems since only the solute degrees of freedom have to be considered. However,
the exact computation of the PMF is as challenging as the exact computation of the
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Figure 1.1. Left: A protein (blue ribbon) surrounded by H2O molecules
(explicit solvent). Right: The same protein with implicit solvent indicated by the red
field.

ensemble average of the entire system. Again, the PMF can be computed exactly
only for very few simple systems. Hence, we need to resort to efficient approximation
approaches. In principle, Monte Carlo and molecular dynamics methods can be
applied in order to approximate the PMF. But this has an essential drawback:
Since no parametrization of the PMF is known, it has to be computed anew for
any configuration of the solute. Hence, every step of a simulation of the solute-
solvent system with an implicit solvent model would comprise the approximation
of the PMF by a Monte Carlo or a molecular dynamics simulation. This is also
computationally unfeasible. Therefore, other methods have to be considered that
approximate the PMF more effectively.

Existing implicit solvent models employed for simulations of biomolecular sys-
tems are very simple approximations to the PMF [103, 104]. They are only able
to include the most important solvent effects on a qualitative level of detail. The
most popular model is the so-called GB/SA continuum model of solvation. It is a
combination of a model that approximates the van der Waals interaction between
solute and solvent by means of the solvent accessible surface area (SASA) and the
generalized Born (GB) model for the approximation of the electrostatic interactions.
Both parts can be evaluated with a numerical complexity that is linearly dependent
on the number of solute particles. Note however that it is intended for qualitative
not quantitative studies and therefore cannot give accurate predictions of solvation
free energies or other properties of the solute-solvent interaction.

In recent years, the development of new implicit solvent models that reproduce
the solvent effects more accurately and that are still numerically tractable has been
advanced by many authors. The most promising approaches are the methods based
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on the liquid state integral equation theories. These integral equations emerge from
a hierarchy of equations for the reduced probability distributions which can be em-
ployed to compute the ensemble averages by lower-dimensional integrals. Likewise,
the PMF can be computed by an integral over a reduced probability distribution.
To be more precise, if one restricts the solute-solvent interaction to pair-potentials,
the required reduced probability distribution is equivalent to the average solvent
density around the solute. The assumption of pair-potentials is admissible since
all popular force-fields for biomolecular simulation comprise only pair-potentials for
the solute-solvent interaction. This provides the best compromise between accuracy
and computational effort. The computation of the average solvent density again
corresponds to the computation of an ensemble average. But the liquid state in-
tegral equation theories can be used as a starting point to develop methods that
approximate the solvent density around an arbitrary solute.

The integral equation theories have been developed to compute macroscopic
properties of fluids without explicitly performing the integration over the full phase
space. They have been applied very successfully to simple pure fluids, to fluids at
interfaces as well as to molecular fluids [45, 47]. The theories can be divided into
two classes depending on the fundamental relation of classical statistical mechanics
they are based on. On the one hand this is the Ornstein-Zernike equation and on
the other hand the YBG-hierarchy (Yvon, Born, Green), see [47]. Since both equa-
tions are underdetermined they cannot be solved without additional assumptions.
These assumptions then yield so-called closure relations, i.e. additional equations.
The difference in the approaches based on the Ornstein-Zernike equation and the
YBG-hierarchy lies in the employed closure relations. In the literature, the Ornstein-
Zernike based methods are widely used for the investigation of atomic and molecular
fluids. This may be due to the fact that they can be reduced to one-dimensional
equations in the case of spherical symmetry. A wide variety of closure relations has
been developed for the Ornstein-Zernike equation and their theoretical background
is well understood [45,47]. On the other hand, methods based on the YBG-hierarchy
are less popular. They share the drawback that their reduction to one-dimensional
equations in the case of spherical symmetry is not trivial. Hence, their approximate
solution by computer simulation requires a greater computational effort. Neverthe-
less, they have been applied to atomic fluids, to fluids at interfaces, and, in recent
years, to polymers [32, 116].

Concerning the application to the solute-solvent systems, the literature is largely
focused on Ornstein-Zernike based methods. Ikeguchi and Doi [53] and Beglov
and Roux [10] have employed the Ornstein-Zernike equation together with the
hypernetted-chain (HNC) and Percus-Yevick (PY) closure for the computation of
the density of a simple monoatomic solvent around solutes of arbitrary shape. Ko-
valenko, Hirata et al. [61–67] and Beglov, Roux et al. [12, 28] have extended the
methods in order to be able to cope with molecular solvents as well. The so-called
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3d-RISM-PLHNC and 3d-RISM-HNC methods have been applied to several solute-
solvent systems, as e.g. alkanes, alcohols, carboxylic acids and simple amides in
water. In [28] solvation free energies of several solute-solvent systems are computed
and the results are in acceptable agreement with experimental data. The errors
are assumed to be the result of the approximation comprised in the closure rela-
tions. Therefore, the authors propose empirical corrections in order to improve the
agreement between theory and experimental data.

To our knowledge, methods based on the YBG-hierarchy have never been con-
sidered for the computation of solvent densities in solute-solvent systems. They
could enable the incorporation of new approximations that have not been employed
for this application, yet. Furthermore, the numerical solution of a method based
on the YBG-hierarchy could prove to be more efficient when full three-dimensional
resolution of the solvent density is required as it is typically the case in solute-
solvent systems. Developments that are related to the application of solute-solvent
systems where made in the field of polymeric fluids. To this end, Eu and Gan [32],
Taylor and Lipson [116] and Attard [4] have developed methods based on the
YBG-hierarchy that have been quite successfully applied to several polymer mod-
els [40–43,117–119,121,122]. In these models, a polymer chain consists of either hard
or soft spheres with rigid or flexible bonds. But neither chains with different types
of particles nor more complex interaction potentials as e.g. the Coulomb potential
have been considered.

We are going to present a new approach based on the YBG-hierarchy and inves-
tigate in full detail its usefulness for the computation of solvent density distributions
around a solute of arbitrary shape. Therefore, we first derive our BGY3d model for
monoatomic solvents directly from the YBG-hierarchy. We employ the Kirkwood
superposition approximation as our closure relation. We show how the resulting
BGY3d equations can be transformed such that an efficient numerical solution in
three dimensions by means of Fourier transformations is possible. Application of
our model to solvents interacting by the Lennard-Jones potential reveals that the
results are of the same quality as those obtained by Beglov and Roux [10] with their
Ornstein-Zernike based method. However, the computational effort is much smaller
in our approach. When compared to a molecular dynamics simulation, the solution
of our BGY3d model even performs about four orders of magnitude faster for the
computation of the solvent density. Hence, our model yields a drastic improvement
with respect to the computational efficiency.

In order to be able to consider more realistic solvents, we further extend our
model to molecular solvents. To this end, the solvent molecules are modeled as rigid
bodies. The intramolecular distribution functions are derived by taking the limit of
an infinite restoring force between two bonded particles. The resulting molecular
BGY3d (BGY3dM) equations can be used to compute the site densities, i.e. the
densities of the atoms that constitute the solvent molecules, of a complex molecular
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solvent around an arbitrary solute. These equations can efficiently be solved in
three-dimensions by means of Fourier transformations as in the case of monoatomic
solvents. We are further able to consider solvents with charged sites. The numerical
treatment of the Coulomb interaction requires a special splitting of the potential
in order to cope with the long-range part. A comparison of the results with those
obtained by a molecular dynamics simulation shows a similar agreement as in the
case of monoatomic solvents. The gain with respect to the computational effort
still is close to three orders of magnitude for the solution of the BGY3dM model
compared to a molecular dynamics simulation.

The computed results of our method based on the YBG-hierarchy clearly show
that it performs at least as good as the Ornstein-Zernike based methods concerning
the evaluation of the PMF of solute-solvent systems. The new BGY3d and BGY3dM
models are superior with respect to computational effort and comparable with re-
spect to accuracy. They can deal with the most important interaction potentials
in the field of biomolecular simulation, namely with the short-range Lennard-Jones
and with the long-range Coulomb potential. However, it is an approximative model.
Hence, the accuracy could for example be improved by introducing empirical cor-
rections to the approximations as it also necessary for the Ornstein-Zernike based
methods.

The remainder of this monograph is organized as follows: Some basic concepts of
classical and statistical mechanics are introduced in Chapter 2. We briefly present
the two most popular computational methods for molecular simulation on a micro-
scopic scale, namely the Monte Carlo and the molecular dynamics methods. As a
motivation we explain why there is a need for more specialized methods for a very
important class of applications, i.e., for so-called solute-solvent systems. We discuss
the liquid state integral equation theories for simple pure fluids since they provide
the fundamental concepts for the development of accurate implicit solvent models.

In Chapter 3, we present important characteristics of the solute-solvent sys-
tems. The potential of mean force (PMF) is formally introduced and some classical
methods to approximate it are presented. Further, we show how the PMF can be
computed by means of the solvent density.

We give an overview of existing methods for the computation of solvent densities
around complex solutes based on the integral equation theories in Chapter 4. Here,
we derive our BGY3d and BGY3dM models based on the YBG-hierarchy. Our
special product approach for the solvent densities facilitates an efficient numerical
treatment of the resulting integro-differential equations.

The numerical details for the solution of our BGY3d and BGY3dM equations
are presented in Chapter 5. To this end, we discuss our implemented algorithm
and the discretization. We further validate our methods for monoatomic and molec-
ular solvents with respect to convergence and accuracy by comparing the results
to molecular dynamics simulations. We assess their efficiency and compare it to
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the 3d-HNC method of Beglov and Roux [10]. Here, it turns out that our BGY3d
method for monoatomic solvents is superior to the 3d-HNC method with respect to
computational effort.

We apply our BGY3dM model for molecular solvents to some realistic solute-
solvent systems in Chapter 6. We compute the site densities of carbon disulfide
around several solutes with different properties concerning their size and their partial
charges. To this end, the BGY3dM model leads to reasonable density and charge
distributions of the solvent. Finally, we summarize our findings in Chapter 7 and
give an outlook on future developments of the BGY3d and BGY3dM models.



Chapter 2

Theory of Simple Liquids

We will first present the fundamental concepts of classical mechanics and statistical
physics on the basis of simple liquid systems. The goal is to understand the connec-
tion between the microscopic description of a system and its macroscopic properties.
We begin with the microscopic description, i.e. the description of the system on the
atomic level which is fully described by the inter-atomic interaction. To this end,
we assume that the system is described with appropriate accuracy by the laws of
classical mechanics. Moreover, the interaction between the particles is described
by an empirical potential function, since the incorporation of quantum mechanical
effects is still unfeasible with today’s computers in extensive microscopic simulations
with thousands of particles.

The transfer from the microscopic description to the macroscopic level is ac-
complished by the concepts of statistical mechanics. Since the respective relations
cannot be evaluated exactly, we will present methods that can approximately com-
pute macroscopic quantities from the microscopic representation of a system. These
are the Monte Carlo and molecular dynamics methods on the one hand and the
liquid state integral equation theory on the other hand. The former methods are
applicable quite generally whereas the latter is a more specialized theory that as-
sumes certain properties of the atomic interaction and the macroscopic property
under consideration. We will present the integral equation theories in more detail,
since they build the basis for our derivations concerning the solute-solvent systems.

2.1 Classical Mechanics

Molecular systems can be described on the microscopic level by a discrete number
N of particles. We assume that the dynamics of such a system is governed by the
laws of classical mechanics. To describe the system, each particle has a label i,
i = 1, 2 . . . , N , a position xi ∈ R

d and a momentum pi ∈ R
d. We only consider the

case of three dimensions d = 3. In order to specify the complete dynamical state of a

9
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system, knowledge of all positions x1, . . . ,xN and the conjugate momenta p1, . . . ,pN

is necessary. Hence, the system has 6N degrees of freedom. It is convenient to define
the phase space ΓN which is the set of all possible states of a system consisting of
N particles:

ΓN(Ω) =
{
(p,x) : p ∈ R

3N ,x ∈ ΩN

}
(2.1)

with

ΩN = Ω× · · · × Ω︸ ︷︷ ︸
N times

, Ω ⊆ R
3.

We write short (p,x) for (p1, . . . ,pN ,x1, . . . ,xN). All dynamical functions emerge
from the set of functions on phase space and are written as a(p,x). The total
energy which is the sum of the kinetic energy and the potential energy of the system
appears as a special function. The kinetic energy is due to the motion of the particles
whereas the potential energy is a result of the interactions between the particles.
We assume the absence of any external field. It is further assumed that the system
is conservative, i.e., the total energy is conserved. The total energy is represented
by the Hamiltonian

H(p,x) = Hkin + Hpot

=
1

2

N∑

i=1

p2
i

mi

+ V (x1,x2, . . . ,xN ) (2.2)

with Hkin the kinetic energy and Hpot the potential energy. The potential V describes
the interaction of the particles.

The dynamics of a system is fully governed by its N position vectors and N
momenta which are functions of time: x(t), p(t). Their time-dependence is described
by Hamilton’s equations of motion

ẋi(t) =
∂H(p,x)

∂pi
, i = 1, . . . , N,

ṗi(t) = −∂H(p,x)

∂xi
, i = 1, . . . , N. (2.3)

The dot ˙ is short notation for the time derivative ∂x
∂t

. A system with particle
coordinates x0 and momenta p0 at time t = 0 evolves according to (2.3) and we write
x(t) = x(t;p0,x0) and p(t) = p(t;p0,x0). The function x(t;p0,x0) for an interval
t ∈ [0, tend] is called a trajectory. The set of points (p(t),x(t)) for −∞ ≤ t ≤ ∞
defines the orbit of the system in phase space, i.e. the set of all points the system
can reach.

The equations of motion (2.3) describe the time evolution of the microscopic sys-
tem. However, a specific representation of a trajectory does not have any significance
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concerning the macroscopic properties of the system. The view of a microscopic sys-
tem that is located at a specific point in phase space at a specific time has to be
replaced by the concept that the macroscopic system is represented by all possible
microscopic states. Hence, it has to be clarified how the microscopic description is
exactly connected to the macroscopic properties of a system.

2.2 Statistical Mechanics

The dynamics of a microscopic system is fully governed by the Hamiltonian mechan-
ics described above. Corresponding microscopic dynamical quantities are functions
of the phase space variables (p,x) only. These may depend also on the parameters
r ∈ R

3 and t, the position in physical space and the time, respectively. Properties
of the system on the macroscopic level are described by fields, i.e. functions A(r, t)
which depend on r and t only. The purpose of statistical mechanics is to bridge the
scales by identifying for every microscopic quantity its unique macroscopic corre-
spondence

a(p,x)Stat. Mech.
−→

A(r, t).

In order to create such a correspondence we need a mapping from phase space to
physical space. This mapping associates for a given point (r, t) in (physical) space
and time and with each function a(p,x) on phase space a scalar. We write

A(r, t) = 〈a(p,x)〉 = 〈a〉. (2.4)

The mapping is linear and maps scalars in phase space to scalars in physical space.
It is realized by

〈a〉 =

∫

ΓN

a(p,x)π(p,x) dpdx (2.5)

with π(p,x) a function on phase space which is positive definite,

π(p,x) ≥ 0, ∀ p,x, (2.6)

and satisfies the normalization condition
∫

ΓN

π(p,x) dpdx = 1. (2.7)

Functions π, which satisfy conditions (2.6) and (2.7), are called distribution func-
tions. The basic postulate of classical statistical mechanics is that the state of a
system is completely determined by the specification of the distribution function.
An observable A, i.e. a macroscopic quantity, is associated with a microscopic func-
tion a by relation (2.5), see e.g. [8] for a more detailed description of the postulate.

The properties of the distribution function π lead to the interpretation as phase
space probability density. To be more precise, π dpdx is the probability to find the
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system within the infinitesimal domain p + dp, x + dx in phase space. The integral
in (2.5) can therefore be understood as weighted average of the microscopic function
a and is sometimes called the phase space average of a. In classical mechanics
the state of a system is represented by a single point in phase space. This view
is replaced by the knowledge of the distribution function in statistical mechanics,
where all points in phase space are considered weighted with their probability. This
totality of possible single point states endowed with the probability density is called
the statistical ensemble.

The specific realization of the probability density specifies some important prop-
erties of the macroscopic system. It defines e.g. whether a system has constant
energy, temperature or mass. The respective microscopic systems then differ in
their ability to exchange energy or particles with their environment. Examples are
the micro canonical, the canonical and the grand canonical ensemble. In the micro
canonical ensemble the system is completely isolated and cannot exchange energy
or mass with its environment. In the canonical ensemble the system is coupled to a
so-called heat reservoir such that it has a constant temperature. If the system can
also exchange mass with its environment, this is called the grand canonical ensem-
ble. We will now discuss the properties of the canonical ensemble in more detail
since it is the ensemble which we will employ in the following.

The Canonical Ensemble

As already noted above, a system in the canonical ensemble can exchange energy
with the environment which is called the heat reservoir. Since the heat reservoir is
assumed to be very large, this leads to a constant temperature of the system under
consideration. The volume |Ω| and the number of particles in the system N are also
constant. We now define the set Γc of all possible states (p,x) the system in the
canonical ensemble can assume

Γc = ΓN(Ω). (2.8)

It equals the entire phase space (2.1). However, the probability of any state in Γc

depends on its energy. The probability distribution is given by

πc(p,x) =
Z−1(N, Ω, T )

N !h3N
e−βH(p,x) (2.9)

with β = 1
kBT

and kB the Boltzmann constant, Planck’s constant h and the factor
N !, which accounts for the fact that the particles are indistinguishable. The function
Z(N, Ω, T ) is called the partition function of the canonical ensemble and is given by

Z(N, Ω, T ) =
1

N !h3N

∫

Γc

e−βH(p,x) dpdx. (2.10)
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The integration over momenta can be carried out exactly, which leads to

Z(N, Ω, T ) =
1

N !h3N

∫

ΩN

∫

R3N

e−βH(p,x) dpdx (2.11)

=
1

N !h3N

∫

ΩN

∫

R3N

e
−β

„

1
2

PN
i=1

p2
i

mi
+V (x)

«

dpdx (2.12)

=
1

N !h3N

∫

R3N

e
−β

„

1
2

PN
i=1

p2
i

mi

«

dp

∫

ΩN

e−βV (x) dx (2.13)

=
1

N !h3N

(∫ +∞

−∞

e−β p2

2m dp

)3N ∫

ΩN

e−βV (x) dx (2.14)

=
λN

c

N !

∫

ΩN

e−βV (x) dx (2.15)

with λc =
(

2mπ
βh2

)3/2

. The configurational part of the partition function can be

computed exactly only for very few simple systems as e.g. the ideal gas. In general, it
has to be approximated. Other thermodynamic properties of the canonical ensemble
are related to the partition function by the relation

F (N, Ω, T ) = − 1

β
ln Z(N, Ω, T ) (2.16)

with F (N, Ω, T ) the free energy of the system.

The Thermodynamic Limit

The probability distribution of the canonical ensemble (2.9) can now be used to com-
pute the ensemble average (2.5). By this, we can compute macroscopic properties
from the microscopic description of the system. However, these averages formally
depend on the domain and the number of particles of the system. Observables,
however, should be independent of these quantities. The fact that for very small
systems, the ensemble averages lead to macroscopic properties that depend on the
size of the system, is called the finite size effect. If we increase the system size, the
ensemble average converges in the limit of infinite volume and particle number, i.e.

A(r, t; ρ, T ) = lim
|Ω|→∞,N→∞

N
|Ω|

=const

∫

ΓN

a(p,x)π(p,x) dpdx. (2.17)

The number density ρ = N
|Ω|

has to be constant in this limit process. The resulting
observable A is a function of this density and the temperature. The transition to
the infinite system size is called the thermodynamic limit. In this limit all ensembles
are equivalent.
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Practically, it is sufficient to consider systems that are appropriately big instead
of taking the limit to infinity. This works very well for many applications of interest.
The above considerations lead however to an important aspect when we try to
approximate ensemble averages by computer simulations. When we employ small
microscopic systems, we always have to struggle with the the finite size effect, i.e.,
the ensemble averages still depend on the system size. But the system size can only
be increased to a certain extend due to the limited computational power of today’s
computers. Under certain conditions, other approaches can reduce the finite size
effect. The introduction of periodic boundary conditions implements for example a
periodic system of infinite size. Yet, the finite size effect is one of the main reasons
why computer simulations on a microscopic scale, even for homogeneous systems,
are not (yet) able to reproduce all effects which are observed macroscopically.

Time Evolution of the Phase Space Probability Distribution

The probability distribution π completely describes the state of a system. So far, we
only considered systems at equilibrium, i.e., the distribution function is a constant
function over time. As an example for a system not at equilibrium, we consider a
gas confined in a box that is divided by a wall into two parts. At times t < t0 the
gas is located only in the left half of the box. At t = t0 the wall is removed and the
gas can expand into the right half. Surely, after a very short time t = t0 + ∆t the
probability to find any gas at the right wall of the box still is zero. Obviously, the
system is not at equilibrium. But how does the function π(p,x, t) evolve for t > t0?
This evolution is described by the Liouville equation

∂π

∂t
= {H, π} (2.18)

with the Hamiltonian H (2.2) and the Poisson-Brackets {.} defined by

{A, B} =

N∑

i=1

(
∂A

∂xi
· ∂B

∂pi
− ∂A

∂pi
· ∂B

∂xi

)
. (2.19)

Here, the dot · denotes the scalar product of two vectors in R
3. The Liouville

equation can be seen as the 6N dimensional analogue of the continuity equation of
a classical fluid. Probability can neither be destroyed nor created as time evolves,
i.e., the normalization condition (2.7) holds for any t.

If we use Hamilton’s equations of motion (2.3), we can write (2.18) as

∂π

∂t
= −

N∑

i=1

(
∂π

∂xi
· ẋi +

∂π

∂pi
· ṗi

)
. (2.20)
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The time dependence of any observable A can be described in a similar manner as

dA

dt
=

∂A

∂t
+

N∑

i=1

(
∂A

∂xi
· ẋi +

∂A

∂pi
· ṗi

)
. (2.21)

Exact solutions of equation (2.18) can only be found for very simple examples. For
realistic systems it is not immediately useful due to its high complexity. Yet, it can
be formally simplified by integration over N − n particle degrees of freedom. This
results in a hierarchy of equations which can be used as the starting point of the
liquid state integral equation theories. They will be presented in Section 2.4.2.

2.3 Molecular Simulation

As we have learned in the preceding Section, statistical mechanics teaches us how
to compute observables, which are macroscopic functions of space and time, from
microscopic quantities, which are functions of the momenta and the positions of the
particles. In principle, it is then possible to compute macroscopic properties of a
system if the Hamiltonian, i.e. the interaction potential V in (2.2), is known. By
this, computer simulations can replace real world experiments to a certain extend,
assuming that enough information about the microscopic composition of the material
under consideration is available.

We will consider some practical aspects of computing the partition function or
ensemble averages (2.5). In general, this is a very challenging task. Except for some
simple choices of potential functions in the Hamiltonian (2.2), it is not possible to
compute the integral exactly. Hence, computational methods are used to approx-
imate (2.5). However, standard integration techniques cannot be adapted easily
to this problem because of the high dimension of the phase space ΓN . Numerical
quadrature methods run into complexity problems already for small particle num-
bers. This is also known as the curse of dimensionality, which simply describes the
fact, that the cost of computing integrals like (2.5) depends exponentially on the
number of particles, i.e. the dimension of the problem [13]. A discretization of the
phase space ΓN by a full grid would require O(n6N) points if n is the number of
grid points in one dimension and N the total number of particles. This is unfeasible
except for very small numbers of particles.

To overcome the curse of dimensionality one can further investigate the structure
of the phase space. Depending on the probability measure πc of the canonical
ensemble, not all possible configurations q = (p,x) are equally important for the
integral (2.5). Hence, most computational methods in molecular simulation sample
the phase space taking into account the known (relative) probability of the points.
This way, the use of a full grid is avoided and the phase space is explored according to
the probability distribution. These methods lead to the exact solution for an infinite
number of sampling points. For a finite number of sampling points, statements about
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the error are statistically in nature, i.e., if important parts of the phase space where
not sufficiently sampled, the true error can be much greater than its statistical
estimate. Nevertheless, these methods often yield reasonable results for numbers of
computational steps that are feasible with today’s computers.

In the next sections, we will shortly present the ideas of Monte Carlo and molec-
ular dynamics methods. These methods belong to the standard tools in the field of
biomolecular simulation and can generally be applied in order to compute ensemble
averages like

〈a〉 =

∫

ΓN

a(p,x)π(p,x) dpdx.

2.3.1 Monte Carlo

The Monte Carlo method is a stochastic method. A sequence of points is to be
constructed that obeys the given probability distribution π, which depends on the
application. For this, any point in the integration domain is computed by a stochas-
tic procedure. Since the Monte Carlo concept can generally be adopted to any in-
tegration problem, a lot of algorithms exist that implement the generation of point
sequences differently. We want to simulate the canonical ensemble of a molecular
system. To this end, the most popular method is the Metropolis algorithm [79].

We assume that the microscopic quantity a does not depend on the momenta

a(p,x) = a(x).

Hence, the integration over the momenta can be carried out exactly, see Section 2.2,
and we only have to sample the configurational part of the phase space. This is done
in the Metropolis algorithm by adding a small random displacement ∆xk to the old
configuration of the system xk in each iteration step k. The new configuration is
accepted or rejected with probability

min

(
1,

e−βV (xk+∆xk)

e−βV (xk)

)
, (2.22)

where V is the potential function. If the new step is accepted, we set xk+1 =
xk + ∆xk, otherwise xk+1 = xk. After K computational steps, a sequence of points
(xk) is generated that obeys the probability distribution of the configurational part
of the canonical ensemble. The Monte Carlo approximate of the observable can be
computed from this sequence of points by

〈a〉 ≈ 1

K

K∑

i=1

a(xk). (2.23)

In other words, the Metropolis algorithm samples the phase space according to the
probability distribution of the canonical ensemble. Then, a simple average of the
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microscopic quantity evaluated at the sampling points gives an approximation of
the observable, i.e. the integral (2.5). In the limit of K → ∞ steps the sum (2.23)
should equal the ensemble average (2.5). For this, the ergodicity of the Monte Carlo
algorithm is required, i.e., any possible x can be assumed by the algorithm from any
initial configuration x0 in a finite number of steps. The Metropolis algorithm itself
is not ergodic, since it cannot overcome an infinite energy barrier. A combination
of the Metropolis algorithm with another Monte Carlo scheme can however produce
an ergodic algorithm. One could e.g. start the Metropolis algorithm from several
randomized initial configurations x0 that are sampled by an ergodic algorithm.

The advantage of the Metropolis algorithm, as opposed to quadrature methods
that would uniformly sample the phase space, is that the knowledge of the relative
probability of two configurations is sufficient for the approximation of the integral.
Otherwise, it would be necessary to compute also the partition function of the canon-
ical ensemble, i.e. the normalization of the probability distribution. Similar to the
Monte Carlo method a sequence of points according to the probability distribution
is also constructed during a molecular dynamics simulation.

2.3.2 Molecular Dynamics

Molecular dynamics deals with the solution of Newton’s equations of Motion

ẋi = vi, ṗi = −∇xi
V (x), i = 1, 2, · · · , N (2.24)

with xi the positions, pi the momenta and vi = pi

mi
the velocity of the ith particle.

The dot in ẋi denotes the partial time derivative. These equations can be derived
from the classical Hamiltonian H (2.2), see Section 2.1. The equations describe
the time evolution of a molecular system, i.e., the solution is a trajectory x(t) =
x(t;x0,p0) with initial configuration x0 and momenta p0.

The connection to our ensemble average (2.5) is made by the ergodic hypothesis.
The hypothesis basically states that the ensemble average can be replaced by a time
average as

∫

ΓN

a(p,x)π(p,x) dpdx = lim
tend→∞

1

tend

∫ tend

0

a(p(t),x(t)) dt (2.25)

with x(t) the trajectory and p(t) the time evolution of the momenta of a molecular
dynamics simulation. By this, it is assumed that it is just as good to observe
a system over a long time as it is to consider many independent realizations of
the system. We can easily to imagine a system, where the ergodic hypothesis is
erroneous. If for example two configurations are separated by a very high (infinite)
energy barrier, it is impossible for the system to reach one configuration from the
other. Hence, time average and ensemble average differ in this case. Nevertheless,
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in many practical applications of classical mechanics the hypothesis is assumed to
make sense, see e.g. [46]. As in the case of the Metropolis algorithm one could also
combine molecular dynamics with a simple Monte Carlo scheme in order to produce
an ergodic molecular dynamics/Monte Carlo hybrid scheme.

An additional problem arises if we compute the trajectory approximately by a
computer simulation. Even if we assume that (2.25) holds, it is not immediately
clear whether it also applies for the discrete trajectory, i.e.

∫

ΓN

a(p,x)π(p,x) dpdx = lim
Nt→∞

1

Nt

Nt∑

i=1

a(p(ti),x(ti)) (2.26)

with Nt the number of discrete time steps. Mathematically, Newton’s equations of
motion constitute a system of ODEs that can be solved by a time integration scheme.
It can be shown that in order for (2.26) to be true, the integration scheme has to
conserve the volume in phase space over time, i.e., the volume of any set of points in
phase space that is moved according to the equations of motions is conserved. Such
integration schemes are called symplectic, see [46] for details. As a consequence,
symplectic integrators have the property to approximate well the ensemble averages
(2.5) instead of the trajectory x(t) itself.

The Hamiltonian in (2.2) describes a micro canonical system. The simulation
of the canonical ensemble is realized by so-called thermostats. To this end, the
coupling to the heat reservoir can be realized by introducing a frictional term into
Newton’s equations of motion which then read as

ẋi = vi, ṗi = −∇xi
V (x)− ξ(t)mivi, i = 1, 2, · · · , N. (2.27)

Depending on the sign of ξ(t) the system gains or looses energy. The function
ξ(t) could be computed such that the kinetic energy and the temperature would
be constant. Instead, it is more convenient to use the Nosé-Hoover thermostat,
see [46]. Here, the heat reservoir is simulated as an additional degree of freedom
which determines the strength of the coupling. This way, the temperature is allowed
to fluctuate around its desired value. The size of the fluctuation is determined by
the coupling parameter.

A molecular dynamics simulation with the Nosé-Hoover thermostat can be used
to compute ensemble averages in the canonical ensemble by (2.25) and (2.26). If we
again assume that the microscopic quantity does not depend on the momenta, the
molecular dynamics approximate of the observable is

〈a〉 ≈ 1

Nt

Nt∑

i=1

a(x(ti)). (2.28)

It is quite striking that the Monte Carlo and the molecular dynamics methods
are very similar in the way the ensemble averages are computed. In both cases, a
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sequence of points in configurational space is generated that obeys the probability
distribution of the canonical ensemble. Then, the approximation of the phase space
integral (2.5) can be computed by a simple average over the microscopic quantity
evaluated at the points, compare equations (2.23) and (2.28). The only difference is
the generation of the sequence of points, which is a stochastic procedure in the case
of Monte Carlo. To this end, we have to ensure that the algorithm is ergodic. That
can be guaranteed at least for a combination of the Metropolis algorithm with an
ergodic Monte Carlo scheme. The procedure of generating the sequence of points
is deterministic in the case of molecular dynamics. Here, ergodicity can also be
guaranteed only for a combination of molecular dynamics and Monte Carlo. But it
is plausible for many systems of classical mechanics. In summary, both methods are
applicable and popular in the application field which is relevant for this thesis.

2.3.3 Limitations of Microscopic Simulation

As already discussed above, ergodicity is required to guarantee that the sums in
(2.23) and (2.28) converge to the ensemble average. Numerically, the methods are
limited by the number of steps Kmax that are feasible with today’s computers.
Generally, one can assume the methods to yield reasonable results if the computed
average does not change with more than a given error ǫ for K > Kmax. For a
large number of applications this is the case. On the other hand, there also exist
a lot of applications which take the computational methods to their limits. Large
biomolecules as e.g. proteins are a good example. These molecules can exhibit
several distinct meta-stable configurations, i.e., a transition between these meta-
stable states is very unlikely. Since the probability for a transition is very small,
the Monte Carlo as well as the molecular dynamics methods require a tremendous
amount of computational steps in order to sufficiently sample the phase space. In
this case, convergence of the averages (2.23) and (2.28) is very slow.

Another negative example are system, where the microscopic quantity of interest
depends explicitly only on a small fraction of all degrees of freedom of the entire
system. We call such a system a solute-solvent system, where only the solute degrees
of freedom are of interest. A protein in water is a typical representation of a solute-
solvent system. Properties of the solute, as e.g. the native configuration of the
protein, are to be computed. But the solute is influenced by the solvent and all
microscopic quantities depend at least implicitly also on the solvent. The number of
solvent degrees of freedom, however, can considerably exceed the number of solute
degrees of freedom. Hence, the dimension of phase space becomes very large and
sampling very slow. In spite of these problems, Monte Carlo and molecular dynamics
are often applied to solute-solvent systems, see e.g. [72].

Nevertheless, it is of great interest to develop methods that are able to compute
ensemble averages without sampling the entire phase space explicitly. The liquid
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state integral equation theories provide such methods for simple liquids.

2.4 Liquid State Integral Equation Theory

The probability density π(p,x) describes the probability of finding the system in a
small volume in phase space around (p,x). Observables are linked to microscopic
quantities by a weighted average (2.5) with π as weighting function. Hence, we are
now able, in principle, to compute any desired macroscopic property of the system by
performing the ensemble average. But the integration domain, i.e. the phase space,
is very high dimensional. Hence, Monte Carlo and molecular dynamics methods do
not converge in acceptable time for many applications of interest. The situation
could be improved by reducing the dimension of the integration domain. Thus, we
investigate how the ensemble average can be transformed into an integral over a
domain with lower dimension.

2.4.1 Reduced Distribution Functions

We consider a microscopic quantity depending only on n < N particles, i.e.

a = a(q1, . . . ,qn) = a(q(n)),

where we write short q = (p,x) and use

q(n) = q1, . . . ,qn and q(N−n) = qn+1, . . . ,qN .

Of course, the choice of the first n particles is arbitrary. Since the particles are
indistinguishable, there exist N !

(N−n)!
different choices of n particles. Thus, we can

write the ensemble average (2.5) as

〈a〉 =
N !

(N − n)!

∫

ΓN

a(q(n))π(q(N)) dq(N)

=

∫

Γn

a(q(n))π
(n)(q(n)) dq(n) (2.29)

with

π(n)(q(n)) =
N !

(N − n)!

∫

ΓN−n

π(q(N)) dq(N−n). (2.30)

The function π(n) is called reduced probability density and gives the probability of
finding n of the N particles in a small volume around q(n). For two positive numbers
n < m ≤ N , it holds

π(n)(q(n)) =
(N −m)!

(N − n)!

∫

Γm−n

π(m)(q(m)) dq(m−n). (2.31)



2.4. Liquid State Integral Equation Theory 21

In the canonical ensemble (2.9) the (reduced) probability density can be further
simplified. It can be factorized into a function of the momenta and a function of
the coordinates

π(n)(p(n),x(n)) = P(n)(p(n))ρ
(n)(x(n)) (2.32)

with

P(n)(p(n)) =
n∏

i=1

(
β

2πmi

) 3
2

e
−β

|pi|
2

2mi , (2.33)

and we can write

ρ(n)(x(n)) =
N !

(N − n)!
Z−1

Ω

∫

ΩN−n

e−βV (x(N)) dx(N−n) (2.34)

with

ZΩ =

∫

ΩN

e−βV (x(N)) dx(N). (2.35)

Here, ΩN−n ⊂ R
3(N−n) and ΩN ⊂ R

3N represent the configurational parts of the
phase spaces ΓN−n and ΓN , respectively. We further split the n-particle density ρ(n)

into

ρ(n)(x(n)) = ρng(n)(x(n)) (2.36)

with the average density ρ and the n-particle distribution function g(n). Two suc-
cessive distribution functions are related through

gn(x1, . . . ,xn) =
ρ

(N − n)

∫

Ω

g(n+1)(x1, . . . ,xn+1) dxn+1. (2.37)

By the formal introduction of the reduced probability density the ensemble av-
erage can be performed by an integration with reduced dimension 3n assuming that
the microscopic quantity depends only on n particles. For very small numbers n
this leads to an integral which can be approximately solved by numerical quadra-
ture methods. But we shifted the problem of high-dimensional integration to the
computation of the reduced distribution functions, which are also defined by a high-
dimensional integral. Their exact computation is again restricted to very simple
systems, as e.g. the ideal gas. In more realistic cases they have to be approximated
as well. This can be done by means of the so-called YBG-hierarchy.

2.4.2 The YBG-Hierarchy

In order to understand the concepts of the liquid state integral equation theories
it is most suitable to start the considerations with the Liouville equation. For
this, we recall that the time evolution of the phase space probability distribution
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π(p,x) obeys the Liouville equation (2.18). We restrict the potential function to be
composed by a sum of pairwise terms

V (x1, . . . ,xN) =

N∑

i=1

N∑

j=i+1

v(xi,xj) (2.38)

and note that the forces Fij between particle i and j are defined as

Fij = F(xi,xj) = −∇xi
v(xi,xj). (2.39)

Then, we can use the definition of the Hamiltonian (2.2) and write the Liouville
equation as

∂π

∂t
= −

N∑

i=1

pi

mi
· ∂π

∂xi
−

N∑

i=1

N∑

j=1,j 6=i

Fij ·
∂π

∂pi
−

N∑

i=1

Fext
i ·

∂π

∂pi
, (2.40)

where Fext
i are external forces acting on particle i. We are going to transform

equation (2.40) so that it becomes a relation for the reduced distribution functions.
For this, it is integrated over N − n positions and momenta and multiplied by the
factor N !

(N−n)!
. We can use the definition of the reduced probability density π(n) (2.30)

and the fact that π is symmetric under exchange of particles. Then we find that

∂π(n)

∂t
+

n∑

i=1

pi

mi

· ∂π(n)

∂xi

+
N∑

i=1

Fext
i ·

∂π(n)

∂pi

= − N !

(N − n)!

N∑

i=1

N∑

j=1,j 6=i

∫

Γ(N−n)(V )

Fij ·
∂π

∂pi
dx(N−1)dp(N−n)

= −
n∑

i=1

n∑

j=1,j 6=i

Fij ·
∂π(n)

∂pi

− N !

(N − n)!

n∑

i=1

N∑

j=n+1

∫

Γ(N−n)(V )

Fij ·
∂π

∂pi

dx(N−n)dp(N−n)

= −
n∑

i=1

n∑

j=1,j 6=i

Fij ·
∂π(n)

∂pi
−

n∑

i=1

∫

Γ1(V )

Fin+1 ·
∂π(n+1)

∂pi
dxn+1dpn+1, (2.41)

where we wrote dp(N−n) for dpn+1 · · · dpN and dx(N−n) for dxn+1 · · · dxN . This
equation links the reduced probability density π(n) to the reduced probability density
π(n+1),

(
∂

∂t
+

n∑

i=1

[
pi

mi

· ∂

∂xi

+

{
Fext

i +
n∑

j=1,j 6=i

Fij

}
· ∂

∂pi

])
π(n)

= −
n∑

i=1

∫

Γ1(V )

Fin+1 ·
∂π(n+1)

∂pi
dxn+1dpn+1. (2.42)
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The set of equations for n = 1, . . . , N − 1 is called the BBGKY-hierarchy after
Bogolyubov, Born, Green, Kirkwood and Yvon.

For the Hamiltonian (2.2) in the canonical ensemble the (reduced) probability
densities can be factorized as

π(n)(p(n),x(n)) = P(n)(p(n))ρ
(n)(x(n)) (2.43)

with

P(n)(p(n)) =

n∏

i=1

(
β

2πmi

) d
2

e
−β

|pi|
2

2mi (2.44)

only depending on the momenta. Inserting into equation (2.42) at equilibrium, i.e.
∂
∂t

π(n) = 0, and noting that

∂

∂pi
P(n)(p(n)) = − β

mi
piP(n)(p(n)) (2.45)

and ∫

R3

P(n+1)(p(n+1)) dpn+1 = P(n)(p(n)), (2.46)

this gives

n∑

i=1

pi ·
(

∂

∂xi
− β

[
Fext

i +
n∑

j=1,j 6=i

Fij

])
ρ(n)(x(n))

= β

n∑

i=1

pi ·
∫

Ω

Fin+1ρ
(n+1)(x(n+1)) dxn+1. (2.47)

Here, Ω ⊆ R
3 is the spatial domain of the system. The relation must be independent

of the choice of the momenta pi. Hence, it must hold term by term, which leads us
to the YBG-hierarchy (Yvon, Born, Green),

kBT∇x1g
(n)(x(n)) =

n∑

i=2

F1ig
(n)(x(n))

+ ρ

∫

Ω

F1n+1g
(n+1)(x(n+1)) dxn+1, (2.48)

where we used ρ(n) = ρng(n) and set the external forces to Fext
i = 0.

2.4.3 The Born-Green Equation

The YBG- and the BBGKY-hierarchy are not immediately useful, since they relate
one unknown function to another. In order to solve (2.48) a closure relation between
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g(n+1) and g(n) is required. The case n = 2 is the best investigated one, see [47].
Since for isotropic fluids we have

∫

Ω

Fijg
(2)(xi,xj) dxj = 0, (2.49)

the relation can be transformed to

kBT∇x1

(
ln(g(2)(x1,x2)) + βv(x1,x2)

)

= ρ

∫

Ω

F13

(
g(3)(x1,x2,x3)

g(2)(x1,x2)
− g(2)(x1,x3)

)
dx3. (2.50)

Together with the Kirkwood superposition approximation [59]

g(3)(x1,x2,x3) = g(2)(x1,x2)g
(2)(x1,x3)g

(2)(x2,x3), (2.51)

this yields the Born-Green equation

kBT∇x1

(
ln(g(2)(x1,x2)) + βv(x1,x2)

)

= ρ

∫

Ω

F13 g(2)(x1,x3)
(
g(2)(x2,x3)− 1

)
dx3. (2.52)

For a given pair potential v(x1,x2) the Born-Green equation can be solved to give
g(2). For low densities ρ the results are in good agreement with those obtained by
Monte Carlo or molecular dynamics methods or analytical results in the case of a
hard sphere fluid [47]. This is quite astonishing if one considers the fact that all
correlations of order three and higher are neglected by the Kirkwood approximation.
The effects due to the higher order correlations become more definite at higher
densities where this closure results in less satisfactory pair distributions.

Finding better closures for (2.50) is a very challenging task. According to
Meeron [77] and Salpeter [105] the triplet correlation function can formally exact be
expressed as

g(3)(x1,x2,x3) = g(2)(x1,x2)g
(2)(x1,x3)g

(2)(x2,x3) eτ(x1,x2,x3,ρ) (2.53)

with τ(x1,x2,x3, ρ) =
∑∞

n=1 ρnδn+3(x1,x2,x3). The coefficients δn+3(x1,x2,x3)
consist of certain terms of the Mayer cluster expansion, the so-called simple 123-
irreducible diagrams, see [77,105] or [47] for details. The coefficients δ4 and δ5 were
computed for a Lennard-Jones fluid [97, 98], but the computation of higher order
terms still is not feasible with today’s computers.

Better results for dense fluids can be obtained by using the Fisher-Kopeliovich
closure [35] for the quadruplet distribution function

g(4)(x1,x2,x3,x4)

≈ g(3)(x1,x2,x3)g
(3)(x1,x2,x4)g

(3)(x1,x3,x4)g
(3)(x2,x3,x4)

g(2)(x1,x2)g(2)(x1,x3)g(2)(x1,x4)g(2)(x2,x3)g(2)(x2,x4)g(2)(x3,x4)
. (2.54)
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Inserting into (2.48) for n = 3 this gives a relation for the triplet distribution function
g(3), called BGY2 equation [70,94]. Lee et al. [70,94] computed g(3) for a hard sphere
fluid. The results were significantly better than those obtained with the Kirkwood
approximation and with the Percus-Yevick model (2.59) which we will introduce
later. They proved that the BGY2 theory is superior to the closure (2.53) truncated
after δ5. But to our knowledge the BGY2 theory has never been applied to other
potential functions than the hard sphere potential.

In summary, there is still no other closure than the Kirkwood approximation
(2.51) which is physically reasonable on the one hand and computationally tractable
on the other hand. Yet, as we pointed out before, the accuracy of the superposition
approximation for low densities is satisfactory and comparable to the accuracy of
the most popular closures for the Ornstein-Zernike equation, that we will introduce
in the following section.

2.4.4 The Ornstein-Zernike Equation

Ornstein and Zernike [82] first introduced a new concept, where the pair distribution
function g(2)(x1,x2) is calculated by means of so called correlation functions, see
e.g. [47]. It describes the fact that the total correlation h(x1,x2) = g(2)(x1,x2)− 1
of two particles is due to the direct correlation of these particles c(x1,x2) and the
indirect correlation mediated through all other particles. Mathematically, this is
written as

h(x1,x2) = c(x1,x2) + ρ

∫

Ω

c(x1,x3)c(x2,x3) dx3 (2.55)

+ ρ2

∫

Ω

c(x1,x3)c(x3,x4)c(x2,x4) dx3dx4

+ . . . ,

with ρ the density of the fluid. By substituting the definition for h(x2,x3) back into
(2.55), this can also be represented as the famous Ornstein-Zernike equation

h(x1,x2) = c(x1,x2) + ρ

∫

Ω

c(x1,x3)h(x2,x3) dx3. (2.56)

An important fact to note is that the Ornstein-Zernike equation is exact; there is no
approximation involved. It simply relates the total correlation function h(x1,x2) to
the direct correlation function c(x1,x2), which is defined by (2.56). However, both
functions are not known in advance. It is plausible to suppose that the range of the
function c(x1,x2) is comparable to that of the pair potential v(x1,x2), whereas the
range of h(x1,x2) can be much longer due to the effects of all other particles.

In order to solve (2.56) one needs a second equation, the closure relation. This
also relates the direct and the total correlation function and includes additionally
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the pair potential v. Such closure relations can be obtained by functional expansions
of the density or of the pair potential where one particle is kept fixed, see [47]. The
most popular example of a closure relation is the hypernetted chain closure (HNC)

h(r) = e−βv(r)+h(r)−c(r) − 1. (2.57)

Since all functions in (2.57) depend only on the distance of the particles, it can be
written in terms of this distance directly, i.e. r = r12 = |x1 − x2| in this case. As
mentioned above, relation (2.57) is not exact but approximated. In order to account
for the error, a so-called bridge function b(r) is introduced,

h(r) = e−βv(r)+h(r)−c(r)+b(r) − 1. (2.58)

Formally, equation (2.58) is now exact. There is however no exact expression for
b(r) which is computable. Hence, the approximation of the bridge function is the
key point of today’s integral equation theories, see [47]. Popular bridge functions
for simple liquids are the hypernetted chain (HNC) closure (2.57), b(r) = 0, or the
Percus-Yevick approximation

b(r) = ln (1 + h(r)− c(r))− h(r) + c(r). (2.59)

Together with either form of (2.58), the system of equations (2.56) can be solved
for a given pair potential v(r).

Extensions to the HNC and PY model have been considered in the literature,
see [47] for an overview. Since the HNC and PY models can be derived by functional
Taylor expansions truncated at first order, the question naturally arises whether a
truncation at second order would significantly improve the model. These second or-
der models have been tested for Lennard-Jones fluids and show a clear improvement
compared to the first order models, with the drawback of being numerically awk-
ward to handle. In the case of the HNC closure the approximation can be improved
by known bridge functions of a simple reference system. This is called the refer-
ence HNC approximation (RHNC). To this end, the bridge function b(r) in (2.58)
is computed for the reference system b0(r). One usually chooses a hard sphere fluid
as reference fluid since it is the only fluid for which the bridge function is known
with sufficient accuracy. The diameter of the spheres appears as a free parameter
of the model and can be adjusted to reproduce known results. The overall agree-
ment with the results of Monte Carlo simulations is then very good. Other closure
relations were proposed that introduce an adjustable parameter or function. These
closures contain the HNC and PY closures as special cases and allow to adjust the
approximation in order to yield improved results for a reference system such as a
fluid of hard spheres, see [76] for an overview. Even though these adjustable closure
relations can be in very good agreement with known results, they do not lead to a
self consistent theory of liquid state, since the determination of the free parameters
is an empiric procedure.
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2.4.5 Comparison of Different Approximations

We will now shortly discuss the differences between the different equations and
approximations. At a first sight, it seems that the Born-Green equation (2.52) and
the Ornstein-Zernike equation (2.56) together with the HNC or PY closure are not
linked together. But it is not surprising that they can be transformed into each
other. For example, it can be shown that the Ornstein-Zernike equation with a
special closure relation recovers the Born-Green equation, see [47]. Therefore, this
is really a comparison of different approximations of the same model. However, we
will stay with the strict separation of the models based on the YBG-hierarchy and
the Ornstein-Zernike based models in our discussion, since we want to underline their
difference with respect to the numerical solution. Moreover, their respective form
is predestinated for the usage of certain approximations, even though the models
can be transformed into each other. This will be investigated in chapter 5 in more
detail. Nevertheless, we will now present some results for pure fluids computed with
the Born-Green equation (BG) and the HNC- and the PY-closure together with the
Ornstein-Zernike equation in order to illustrate their differences without discussing
any numerical procedure. A more detailed investigation of the differences between
the integral equation methods can be found e.g. in [58].

The computed pair distribution functions and the direct correlation functions for
a simple monoatomic fluid at reduced temperature T = 1.65 and number densities
ρ = 0.3, 0.5, 0.8 are shown in Figures 2.1, 2.2 and 2.3. The interaction is described
by the Lennard-Jones potential (with ǫ = 1 and σ = 1)

vLJ(r) = 4ǫ

((σ

r

)12

−
(σ

r

)6
)

. (2.60)

In the case of the Born-Green equation, the direct correlation function is computed
by inserting the total correlation function h = g − 1 into the Ornstein-Zernike
equation (2.56). Here, we omit the subscript (2) od the pair distribution function.

An important observation is that the resulting functions in Figures 2.1 - 2.3
become more similar with decreasing density. This is substantiated by the fact that
all three approximations give the correct result of

g(r) = e−βvLJ (r) (2.61)

in the limit ρ→ 0. It can be shown that they all yield the correct expression of order
ρ of the density expansion of g, see [47]. But they differ for all higher order terms
of the expansion. Hence, the differences become larger with increasing ρ. Here, the
BG equation plays a special role. As can be seen in Figure 2.3 (right), the BG model
leads to an unphysical direct correlation function at density ρ = 0.8. This looks like
an obvious deficiency of this model, but shows how sensitive the total and direct
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Figure 2.1. Left: Pair distribution function for ρ = 0.3. Right: Correspond-
ing direct correlation function.
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Figure 2.2. Left: Pair distribution function for ρ = 0.5. Right: Correspond-
ing direct correlation function.

correlation functions are linked together. Since the direct correlation function does
not appear in the BG model, the approximation errors can lead to this behavior.
But the computed pair distribution functions can still be of the same quality as in
the case of the other approximations.

In the literature, solutions to the BG, HNC and PY equations have been ob-
tained for a variety of pair potentials over a wide range of temperatures and den-
sities. Comparison of results for the Lennard-Jones potential showed that the PY
approximation is superior at all thermodynamic states that have been studied. But
even this approximation produces a noticeable error for the pair distribution func-
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Figure 2.3. Left: Pair distribution function for ρ = 0.8. Right: Correspond-
ing direct correlation function.

tion [47]. The main peak in g(r) is too large in magnitude and appears at to small a
value of r. The following pattern of oscillation is out of phase compared to the one
obtained by Monte Carlo simulations. The situation gets even worse in the vicinity
of critical points of the phase diagram, such as the liquid-gas transition. The char-
acteristics of these regions are large density fluctuations. This leads to anomalous
behavior of thermodynamic properties of the fluid which is difficult to extract from
numerical solutions of the integral equations. Hence, all three approximation routes
are not regarded to be a satisfactory theory of liquid state.

The extensions of the BG equation and the HNC and PY approximations al-
ready described in sections 2.4.2 and 2.4.4 lead to significant improvements of the
computed thermodynamic properties, even though very accurate results still cannot
be obtained in all cases. But these extensions all entail the drawback of being nu-
merically less practicable. The development of new closure relations that improve
the accuracy of the models and still lead to computationally tractable methods is
subject of today’s research.

2.4.6 Summary

The liquid state integral equation theories provide methods to compute the reduced
distribution functions of pure liquids without explicitly performing the integration
over phase space. They are based on the YBG-hierarchy on the one hand and on the
Ornstein-Zernike equation on the other hand. Even though the equations are only
different formulations of the same theory, they all require specific approximations
in order to be solvable. Hence, the methods yield different results according to
their approximations, whereas their respective formulations yield different numerical
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algorithms. This has led to distinct fields of application for the YBG-hierarchy and
the Ornstein-Zernike based methods. The latter have been applied to pure simple
fluids, complex molecular fluids and also to solute-solvent systems, which we will
introduce in the following chapter. Methods based on the YBG-hierarchy, however,
have found less attention in the literature. Beside their application to simple fluids
and fluids at interfaces they are mainly employed for the investigation of polymers.
This is indeed related to molecular fluids, but, to our knowledge, these methods
have never been applied to other molecular fluids or solute-solvent systems.
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Solute-Solvent Systems

The investigation of chemical or biological processes on the microscopic scale is a
very important application of molecular simulations. To this end, molecular sys-
tems in liquid solution are to be simulated. The protein folding problem is a very
famous example of such a system. Here, the three-dimensional configuration of
the protein, which consists of a linear sequence of amino acids, is to be computed.
Proteins naturally appear in aqueous solution. Hence, the incorporation of the
solvent effects is one of the most important aspects concerning the accurate repro-
duction of experimental data. The solvent can have a variety of influences on the
solute. These include e.g. hydrogen-bonding or dielectric shielding of the long-range
Coulomb forces.

The naive, but yet important approach is to choose an all-atom representation
for the whole system, i.e., the solute as well as the solvent molecules are included
explicitly. This method can provide the most detailed description of the effects the
solvent has on the solute. However, it is not exempt from approximations. Beside
the general uncertainty, how detailed the empirical force fields used in molecular
simulations can reproduce experimental data, the evaluation of the potentials often
implies approximations in order to be efficiently computable. Examples are the
truncation of the potential behind a certain cut-off radius or the use of an infinite
number of periodic cells when computing long-rang forces with Ewald techniques,
see [46] for details.

The large computational costs of sampling the solvent degrees of freedom are,
however, the major problem when explicit solvent molecules are included into the
simulation box. In order to incorporate the solvent effects sufficiently well, a large
number of solvent molecules is necessary to form the bulk solution. Hence, a major
fraction of time is spent for computing a detailed trajectory of the solvent, although
the behavior of the solute is at the center of interest. Due to these problems of
explicit solvent representation, computationally less expensive models for including
solvent effects are of great interest. These models should describe the effects with

31
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appropriate accuracy without introducing new degrees of freedom to the system. In
contrast to the simulation with explicit solvent molecules, such models are called
implicit solvent models.

It is instructive to begin the description of implicit solvent models with a sta-
tistical mechanics description of the solvent effects. Hence, we will first give the
definition of the potential of mean force. Hereafter, some of the most popular im-
plicit solvent models are presented before we focus our attention to the liquid state
integral equation methods.

3.1 Potential of Mean Force

We now consider a system consisting of a single arbitrary molecule, which we call
the solute M , and a bulk of solvent molecules, the solvent S. The solute consists of
NM particles whereas the solvent consists of NS particles. The Hamiltonian of this
system can be written as

H(pM ,pS,xM ,xS) =
1

2

NM∑

i=1

(pM
i )2

mM
i

+
1

2

NS∑

i=1

(pS
i )2

mS
i

+ V (xM
1 , · · · ,xM

NM
,xS

1 , . . . ,xS
NS

),

(3.1)
where pM ,pS are the momenta, xM ,xS the positions and mM

i , mS
i the masses of the

solute and the solvent particles, respectively. The potential can be further divided
into a part VM describing the intramolecular interaction of the solute, a part VS

describing the interactions within and between the solvent molecules and a part
VMS which consists of the interactions between the solute and the solvent atoms

V (xM ,xS) = VM(xM ) + VS(xS) + VMS(xM ,xS). (3.2)

Hence, the Hamiltonian can also be written in separated form

H(pM ,pS,xM ,xS) = HM(pM ,xM) + HS(pM ,xS) + HMS(pM ,pS,xM ,xS). (3.3)

This system still includes the solvent degrees of freedom explicitly. Observables of
this system can be computed by microscopic averages in the canonical ensemble as

〈a〉 = C−1

∫

ΩN

a(xM ,xS)e−βV (xM ,xS) dxMdxS (3.4)

with C =

∫

ΩN

e−βV (xM ,xS) dxMdxS,

where we assumed that the microscopic quantity a does not depend on the momenta.
The domain ΩN denotes the spatial part of the phase space ΓN . If we now further
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assume that a does not depend on the solvent degrees of freedom, the integral can
be written as

〈a〉 = C−1

∫

ΩNM

a(xM)e−βVM (xM )

∫

ΩNS

e−β(VMS(xM ,xS)+VS(xS)) dxSdxM (3.5)

with ΩNM
and ΩNS

the configurational domains of the solute and the solvent, respec-
tively. Hence, the inner integral can be computed separately. The formal integration
of this inner part leads directly to the idea of the potential of mean force (PMF).
It is defined by integrating the Boltzmann factor e−βV (x) over the solvent degrees of
freedom,

e−βV PMF (xM ) = C−1
S

∫

ΩNS

e−β(VM (xM )+VS(xS)+VMS (xM ,xS)) dxS

= e−βVM (xM )C−1
S

∫

ΩNS

e−β(VS(xS)+VMS(xM ,xS)) dxS (3.6)

with CS =

∫

ΩNS

e−βVS(xS) dxS. (3.7)

The PMF can also be written in an additive way

V PMF (xM) = VM(xM)− 1

β
ln

(
C−1

S

∫

ΩNS

e−β(VS(xS)+VMS(xM ,xS)) dxS

)
(3.8)

= VM(xM) + W (xM), (3.9)

where W (xM) is defined by (3.9) and contains only the energy due to the solute-
solvent interaction. It is therefore also called the solvation free energy. The Hamil-
tonian of the reduced system now reads as

HPMF (pM ,xM) =
1

2

NM∑

i=1

(pM
i )2

mM
i

+ V PMF (xM) (3.10)

and the microscopic average (3.5) can be written as

〈a〉 = C−1
PMF

∫

ΩNM

a(xM)e−βV PMF (xM ) dxM (3.11)

with CPMF =

∫

ΩNM

e−βV PMF (xM ) dxM . (3.12)

A comparison of equations (3.5) and (3.11) shows that the introduction of the PMF
is just a formal transformation. The ensemble averages (3.4) and (3.11) lead to
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the exact same results. The transformation shifts the problem of sampling the
solvent degrees of freedom to the computation of the integral defining the PMF
(3.8). In practice, the integral can be solved exactly only for very simple systems
that are not of interest with respect to the application in biomolecular simulations.
Hence, approximate methods have to be employed in order to compute the PMF.
In principle, molecular dynamics or Monte Carlo type simulations can be applied.
However, due to the high dimension of the phase space the convergence is very slow.
For applications, where the PMF has to be computed repeatedly, one uses much
simpler models instead. These models are either based on a continuum description of
the solvent or use very crude approximations to the solute-solvent interactions. They
include model parameters which are fitted to reproduce results from experimentally
well-known systems. Applied to other solute-solvent systems, these models can yield
qualitative approximations of some important solvent effects.

Models which incorporate the solvent effects by (approximations to) the PMF
(3.8) are called implicit solvent models. We will give a short overview of the most
popular implicit solvent models as they are used in molecular dynamics or Monte
Carlo simulations of biomolecular systems.

3.2 Implicit Solvent Models

As we have seen in the previous section, the computation of the PMF involves the
solution of a high dimensional integral which is prohibitive when repeatedly evalua-
tion of the PMF is necessary, as in molecular dynamics or Monte Carlo simulations.
Hence, approximations to the PMF are used, which are computationally more effi-
cient. In most force fields, the PMF is represented as a sum of a part induced by
the short-range repulsive and by the van der Waals forces W vdW , and a part due to
the long-range electrostatic interactions W pol,

W (xM) = W vdW (xM) + W pol(xM). (3.13)

Formally, the two parts of (3.13) are given by

W vdW (xM) = − 1

β
ln

(
C−1

S

∫

ΩNS

e−β(VS(xS)+V vdW
MS (xM ,xS)) dxS

)
, (3.14)

W pol(xM) = − 1

β
ln



∫
ΩNS

e−β(VS(xS)+V vdW
MS (xM ,xS)+V pol

MS
(xM ,xS)) dxS

∫
ΩNS

e−β(VS(xS)+V vdW
MS

(xM ,xS)) dxS


 (3.15)

with CS defined as in (3.7). Due to this separation, different models for the approxi-
mation of the short-range and the long-range effects of the solvent can be employed.
In the next sections we will present some of the most important models for both
parts (3.14) and (3.15).
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Figure 3.1. SASA of a sample protein (Trp-cage)

3.2.1 Solvent Accessible Surface Area

One of the most important implicit solvent models is the model based on the solvent
accessible surface area (SASA). It goes back to Lee and Richards [69] who have tried
to quantify the burial of hydrophobic side chains in the protein folding problem.
They have observed that the hydrophobic side chains of the proteins tend to cluster
together in the interior of the protein, whereas the hydrophilic side chains are better
soluble in water. They concluded, that the surface tension of the solvent in direct
contact with the surface of the protein is a measure for the force exerted to the
solute atoms due to the solvent. This surface tension is proportional to the SASA.

The SASA encloses the volume that the solvent atoms are excluded from. Fol-
lowing the concept of Lee and Richards [69], it is traced out by the center of a solvent
probe sphere rolling over the molecular surface of the solute. The molecular surface
is simply defined by the union of the surfaces of the spheres determined by the van
der Waals radius around any atom. In other words, the solvent-excluded volume is
the union of the so-called expanded atoms. The expanded atom is a sphere centered
at the position of the solute atom with its van der Waals radius increased by the
solvent probe radius, see [101]. Figure 3.1 shows the SASA of a small protein.

Formally, the solvation free energy due to the SASA model is written as

W vdW (xM) ≈
NM∑

i=1

σiAi(x
M) (3.16)

with the empirical solvation parameter σi of atom i and its fraction of the SASA
Ai. The Ai depend on the positions of all solute atoms because they contain only
the fraction of the surface accessible to the solvent. Sometimes an even simpler
approach is used with

W vdW (xM) ≈ σAtot(x
M ). (3.17)
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Here, the (non-polar) solvation free energy is proportional to the total SASA and
an empirical parameter σ.

During the last decades many algorithms were introduced to efficiently compute
the SASA. Since the SASA model is intended to be used as an implicit solvent
model within a molecular dynamics or Monte Carlo simulation, its fast computation
is of major interest. The computational cost should be of the same order as the
evaluation of the solute potential, i.e. O(NM) or O(NM log(NM)). The existing
algorithms can be divided into approximate and exact methods. The first exact
analytical algorithms were introduced by Connolly [22] and Richmond [101]. Here,
the accessible surfaces of intersecting spheres are computed. These algorithms were
later improved with respect to computational efficiency, see [36, 124], and stability,
see [31, 44]. The first approximate algorithm to compute the SASA was developed
by Shrake and Rupley [107] and later improved by Legrand and Merz [71]. To this
end, a large number of points is distributed on the surface of a each solute atom.
The SASA is proportional to the number of points that are not located inside any
other van der Waals sphere of a solute atom. Another approximate algorithm by
Caflisch et al. [34] uses an approximate analytical expression with empirical fitted
parameters. More recently, an algorithm has been developed that uses alpha shapes
for computing the SASA, see [29, 73].

The approximate algorithms are usually computationally more efficient, but
share the drawback of computing the SASA inaccurate with an error of several
percents. A general problem of using the SASA in implicit solvent models for molec-
ular dynamics is the discontinuity of the derivatives of the SASA with respect to
the positions of the solute atoms. This can lead to numerical instabilities during a
simulation, see [125] for some situations where these problems occur. In the context
of alpha shapes, the simulation of simplicity-principle [30] is proposed to handle
these instabilities. Basically, the input data, i.e. the positions of the solute atoms,
are moved by a small displacement in order to avoid the degenerate cases without
affecting the results very much.

The SASA model has become the standard tool in molecular simulation. It
describes the non-polar solvent effects only on a qualitative level of detail but has
the major advantage of being efficiently computable. It is included in most available
codes for biomolecular simulation, e.g. CHARMM [16], AMBER [23] and TINKER
[91].

A very simple approach which is related to the SASA model is the scaled particle
theory [90, 96, 112]. The reversible work to produce a spherical cavity in a solvent
consisting of hard spheres can be computed analytically, as long as the radius of the
cavity is smaller than a certain value. Generalizations have been introduced for van
der Waals liquids which involve experimental parameters. The leading terms of this
expression represent the solvent-exposed surface area of the cavity and its curvature.
Neglecting the curvature term leads to the idea, on which the SASA model is based.
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3.2.2 The Poisson-Boltzmann Model

Popular implicit solvent models for the electrostatic part of the PMF employ a
continuum description of the electrostatic interaction, where the solvent is treated
as a continuum with relative permittivity εS (typically εS = 80 for water). To this
end, the electrostatic potential ΦS(r) acting on the charges of the solute can be
computed by the Poisson equation

∇ · ε(r)∇ΦS(r) = −ρ(r) in Ω (3.18)

with the charge density ρ(r) of the solute defined by

ρ(r) =

NM∑

i=1

qiδ(r− xM
i ) (3.19)

and qi the charge of the solute particle i. The position-dependent relative permit-
tivity ε(r) is defined as

ε(r) =

{
εM for r ∈ ΩM

εS for r ∈ Ω \ ΩM
(3.20)

where εM = 1 is the relative permittivity in the volume of the solute ΩM ⊂ Ω
and Ω ⊂ R

3 is the total domain of the system. For simplicity, the dielectric con-
stant in vacuum is set to ε0 = 1 in our discussion. The electrostatic part of the
PMF can be computed from the solution of (3.18) by the so-called reaction field
Φrf(r) = ΦS(r)− ΦV (r), which is the electrostatic potential ΦS(r) minus the refer-
ence potential ΦV (r). The reference potential represents the solution of (3.18) with
ε(r) set to 1 everywhere. The PMF is then approximated by

W pol(xM) ≈
NM∑

i=1

qiΦrf (x
M
i ). (3.21)

The Poisson equation can be extended to the Poisson-Boltzmann equation if ions in
the solvent are present. The electrostatic potential is then given by

∇ · ε(r)∇ΦS(r)− κ2(r)ΦS(r) = −4πρ(r) (3.22)

with κ the Debeye length which characterizes the screening effects due to the pres-
ence of the ions. Its position-dependence is similar to that of ε, i.e., it varies sharply
from 1 inside the solute to a value > 1 in the bulk solvent.

In this model, it is assumed that the relative permittivity is uniform except in
the vicinity of the solute-solvent boundary. Such a form for ε can be derived from
a statistical mechanics integral in the limit of small solvent molecules described as
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non-polarizable hard spheres, see [11]. The results of the Poisson-Boltzmann model
of continuum electrostatics depend sensitively on the atomic partial charges and the
location of the dielectric boundary, i.e. the boundary ∂ΩM of ΩM . If constructed on
the basis of the SASA, the atomic radii must be considered as free parameters of
the implicit solvent model as well, see [81, 110] for parametrization schemes.

The solution of equation (3.18) or (3.22) can be obtained by standard numerical
algorithms using finite difference discretization. This approach is however still to
costly compared with the evaluation of the inter-solute potential VM . Alternatively,
the boundary element method, which uses finite elements distributed on the dielec-
tric boundary, can be employed, see [128]. The computation of analytical gradients
of the PMF is possible in either approach. But if repeated computation of both the
PMF and its gradient is required, all numerical methods for the Poisson-Boltzmann
equation are computationally too costly. Hence, methods have been developed that
approximate the exact continuum electrostatic potential.

Generalized Born Model

The most popular approximation for the Poisson-Boltzmann equation is the so-
called generalized Born (GB) model. The derivation of this model starts with the
energy of a sphere with radius αi and a point charge qi in its center immersed into
a medium of relative permittivity εS,

W born = −
(

1− 1

εS

)
q2
i

2α
. (3.23)

This is the Born equation. The total electrostatic energy of a set of charged spheres
at infinite distance is then given by

V pol
tot =

NM∑

i=1

NM∑

j=i+1

qiqj

εSrij
− 1

2

(
1− 1

εS

) NM∑

i=1

q2
i

αi

=

NM∑

i=1

NM∑

j=i+1

qiqj

rij
−
(

1− 1

εS

) NM∑

i=1

NM∑

j=i+1

qiqj

rij
− 1

2

(
1− 1

εS

) NM∑

i=1

q2
i

αi
(3.24)

where rij = |xi − xj|. The first term of (3.24) is the standard Coulomb energy in
vacuum whereas the second and the third term of (3.24) are due to the presence of
a medium of relative permittivity εS. In order to account for the actual shape of
the solute molecule the two last terms are combined and extended to

W pol ≈ −
(

1− 1

εS

) NM∑

i=1

NM∑

j=1

qiqj

fGB
, (3.25)
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with the deshielding function fGB defined by

fGB =
√

(rij + αij)−D with αij =
√

αiαj , D =
r2
ij

2α2
ij

. (3.26)

The αi are treated as parameters in this derivation of Still and coworkers [111].
They are fitted to give comparable energies as other methods for small molecules.
Improvements of the original deshielding function (3.26) have been proposed by
other authors, see e.g. [54].

Due to the semianalytical nature of the GB model, the computational expense
for the evaluation of the energy as well as of the gradient is comparatively low.
The obtained accuracy is comparable with other methods to approximate the elec-
trostatic energy [111]. However, problems arise for larger solutes such as proteins,
since typical effects as the charge burial in the interior of the protein are difficult to
account for. Nevertheless, the GB model is a very popular implicit solvent model in
molecular dynamics simulations. Combined with the SASA model for the non-polar
part of the PMF, it forms the GB/SA continuum model for solvation and is im-
plemented in most available packages for biomolecular simulation, see also Section
3.2.1.

3.2.3 Specialized Implicit Solvent Models

If one assumes that the solvation free energy arises due to the short-range interaction
between solute and solvent, the SASA model is a reasonable approximation. The
Coulomb force, however, is a long-range interaction. Nevertheless, SASA models
are used to approximate the full PMF including electrostatic interactions. These
models are called full SASA models, see [104]. An important drawback of the full
SASA models is the difficulty in taking into account the dielectric shielding of the
electrostatic interactions. The shielding should vary clearly when moving a charged
particle from a position fully exposed to the solvent to a position buried in the
interior of the solute. One can overcome this deficiency by introducing a distance
dependent relative permittivity and by neutralizing residues carrying a net charge.

The most simple but also computational most efficient methods are the so-called
knowledge-based potentials. They are especially useful when an extensive search
of configurations is required, as for the minimization of the free energy. These
potentials are built upon experimental observations of known structures of proteins.
By analyzing large data bases of these protein structures one has observed that
the number of residue pairs at a certain distance follows the Boltzmann principle.
Hence, potentials have been introduced that give a free energy depending on the
distance of the residue pairs in the protein. In the most simple approach, the forces
are repulsive for polar pairs of residues and attractive for pairs of non-polar residues,
see [109]. This gives the correct behavior of folded proteins where non-polar residues
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tend to form a core in the interior of the protein, whereas the polar residues tend
to reside at the surface of the protein. These methods however can of course not
be expected to include all solvation effects or to provide accurate results for the
solvation free energy.

The so-called mixed implicit/explicit schemes try to provide a compromise be-
tween the accuracy and the computational effort. Here, a limited number of solvent
molecules is inserted explicitly in the vicinity of the solute. Typically, the region
containing the solute and the explicit solvent molecules is represented by a sphere.
Outside this sphere, the bulk solvent is treated implicitly by an effective solvent
boundary potential. Different approaches exist with respect to the definition of
the sphere radius. In [17] the radius is constant, which means that the number of
explicit solvent molecules must be allowed to vary in order to account for density
fluctuations. In contrast to that, in [9], the number of explicit solvent molecules
is constant and the sphere radius is determined by the outermost solvent molecule.
This has the advantage of being more flexible with respect to large configurational
changes of the solute. It has been shown in [9] that the solvation free energies do
not depend sensitively on the number of explicit solvent molecules with this latter
approach.

We presented some of the most popular implicit solvent methods in order to give
an overview of the methods that are widely used within Monte Carlo or molecular
dynamics simulations for the approximation of the solvent effects. All presented
methods share the drawback that they cannot yield to accurate predictions of the
solvent free energy in general. Hence, much effort has been put into the development
of more accurate but still efficient approximations of the PMF. The most promising
methods are based on the liquid state integral equation theories of statistical me-
chanics. They are able to approximate the mean solvent density around the solute,
which in turn can then be used to compute the PMF.

3.3 Computing the PMF via Reduced Distribution Functions

If we consider the PMF V PMF (xM) (3.8) and recall the definition of the reduced
distribution functions of Section 2.4.1, we can identify the integral leading to the
PMF with a reduced distribution function. This way, we can simply write

V PMF (xM) = − 1

β
ln(ρNM g(NM )(xM))

= − 1

β
ln(g(NM )(xM ))− cρ (3.27)

with cρ = 1
β

ln(ρNM ). The constant shift cρ can be neglected, since it has no influence

on the properties of the system. However, (3.27) is just a transformation of (3.8) and
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does not simplify the problem of high-dimensional integration in any sense. However,
there exist methods that approximate these reduced distribution functions directly.
Unfortunately, these approximations become worse with increasing order NM of the
distribution function. It is therefore more convenient to use lower order distribution
functions for the computation of the PMF. This can be done if we consider a special
but yet important class of potential functions.

To see this, we first consider the computation of the forces of the PMF −∇V PMF .
They are exactly the forces of the full potential V (xM ,xS) averaged over the solvent
degrees of freedom with the solute atoms in fixed position,

∇xM V PMF (xM ) = 〈∇xM V (xM ,xS)〉(xM ) (3.28)

with

〈a(xM ,xS)〉(xM ) = C−1
MS

∫

ΩNS

a(xM ,xS)e−βV (xM ,xS) dxS (3.29)

and

CMS =

∫

ΩNS

e−βV (xM ,xS) dxS.

If we now assume that the solute-solvent interaction potential can be written as a
sum over pairwise terms,

VMS(xM ,xS) =

NM∑

i=1

NS∑

j=1

vMS(xM
i ,xS

j ), (3.30)

we can transform (3.28) to yield

∇xM V PMF (xM) = ∇xM VM(xM) +∇xM W (xM)

= ∇xM VM(xM) +

NM∑

i=1

NS∑

j=1

〈∇xM
vMS(xM

i ,xS
j )〉(xM )

= ∇xM VM(xM) +

NM∑

i=1

∫

Ω

∇xM
vMS(xM

i , r)ρ(NM+1)(r|xM) dr (3.31)

with the conditional probability

ρ(NM +1)(r|xM) =
ρ(NM +1)(r,xM)

ρ(NM )(xM )
(3.32)

and Ω ⊂ R
3 the domain of the system. In this derivation, we used the definition

of the reduced probability (2.34) for the integral (3.29) as well as the normalization
CMS, which is actually a function of the solute coordinates.
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Similarly, we can compute the energy of the PMF. But unlike in the case of the
forces we now have

V PMF (xM) 6= 〈V (xM ,xS)〉(xM ).

However, the free energy of a solute at infinite dilution can also be defined as the
reversible work which is necessary to take the solute from vacuum into the solvent by
a step by step process [104]. Formally, we introduce a coupling parameter λ ∈ [0, 1],
which switches the solute-solvent interactions on or off, i.e., we write

VMS(xM ,xS) = VMS(xM ,xS; λ), (3.33)

where λ = 0 corresponds to a non-interacting reference system and λ = 1 to the
fully interacting system. Then, the reversible work is defined as

W (xM) =

∫ 1

0

〈
∂VMS(xM ,xS; λ′)

∂λ′

〉

(xM ,λ′)

dλ′, (3.34)

where the average is defined as in (3.29) with the parameter λ in VMS set to λ′. If
we now again assume that the solute-solvent interaction potential can be written as
a sum over pairwise terms,

VMS(xM ,xS; λ) =

NM∑

i=1

NS∑

j=1

vMS(xM
i ,xS

j ; λ),

we can transform the average in (3.34) as

〈
∂VMS

∂λ

〉

(xM ,λ)

=

〈
∂

∂λ

NM∑

i=1

NS∑

j=1

vMS(xM
i ,xS

j ; λ)

〉

(xM ,λ)

(3.35)

=

NM∑

i=1

∫

Ω

〈
NS∑

j=1

δ(r− xS
j )

〉

(xM ,λ)

∂vMS(xM
i , r; λ)

∂λ
dr (3.36)

=

NM∑

i=1

∫

Ω

〈ρ(r)〉(xM ,λ)

∂vMS(xM
i , r; λ)

∂λ
dr, (3.37)

where 〈ρ(r)〉(xM ,λ) is the average solvent density at position r with the solute in

fixed position xM and the coupling parameter set to λ. By inserting this back into
(3.34), we can compute the PMF by solving an integral over a single vector r and
the parameter λ

W (xM) =

NM∑

i=1

∫ 1

0

∫

Ω

〈ρ(r)〉(xM ,λ)

∂vMS(xM
i , r; λ)

∂λ
dr dλ. (3.38)
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The average solvent density can be identified with the conditional probability from
(3.31)

〈ρ(r)〉(xM ) =

〈
NS∑

j=1

δ(r− xS
j )

〉

(xM )

= ρ(NM +1)(r|xM). (3.39)

This relation can again easily be verified by inserting the definition of the reduced
probability (2.34) into (3.39).

Now, we can compute the energy and the forces of the PMF by low-dimensional
integrals if we know the reduced conditional probability

ρ(NM +1)(r|xM) = ρg(NM +1)(r|xM). (3.40)

We have already seen in Chapter 2 that the liquid state integral equation theories
are able to compute reduced distribution functions of pure liquids. The situation in
solute-solvent systems is slightly different. Here, the configuration of the solute is
given and we are interested in the density of the solvent around that solute config-
uration. The integral equation theories can be extended to such situations. Many
authors have developed methods for the computation of solvent densities based on
the Ornstein-Zernike equation. These methods will be presented in the following.
Further, we will derive our new method based on the YBG-hierarchy.





Chapter 4

Approximation of Solvent
Densities

As we have seen in the previous chapter, the knowledge of the solvent density around
the solute is sufficient to compute the potential of mean force in the case of pair
potentials. The solvent density is associated with a reduced distribution function as
described in Section 3.3. These reduced distribution functions are given as integrals
over the probability distribution of the canonical ensemble. Such high-dimensional
integrals cannot be computed in appropriate time with today’s methods. They can
be approximated by Monte Carlo integration or molecular dynamics simulations,
which sample the whole phase space and, hence, are extremely time-consuming.
No other method is known to be applicable to such integrals due to the high-
dimensionality of phase space.

Nevertheless, in the past decades approximative methods have been developed
to compute the pair distribution function of pure liquids. These liquid state integral
equation theories, already presented in Chapter 2, are either based on the YBG-
hierarchy or the Ornstein-Zernike equation. The advantages and disadvantages of
the different methods concerning the computation of pair distribution functions of
pure liquids are well understood, see Section 2.4.5. However, the extension to the
treatment of solute-solvent systems is focused on methods based on the Ornstein-
Zernike equation. Several authors, as e.g. Beglov and Roux [10–12,28], Chandler et
al. [20, 21], Kovalenko and Hirata [61, 65], Pettitt and Karplus [85, 86] or Richardi,
Fries et al. [37, 99, 100] and many more have developed methods to compute the
solvent density based on the Ornstein-Zernike equation and related theories. But
to our knowledge, no such extension exists based on the YBG-hierarchy. This is
why we investigate the value of the YBG-hierarchy concerning the computation of
solvent densities.

In this chapter, we will describe the extension of the liquid state integral equation
theories to the computation of solvent densities around solutes of arbitrary shape.
To this end, we will consider simple monoatomic fluids as well as complex molecular
solvents. We will first discuss Ornstein-Zernike based methods known from the

45
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literature before we will derive our BGY3d equation for monoatomic solvents and
the new molecular BGY3d equation (BGY3dM), both based on the YBG-hierarchy.

4.1 Definition of the Solvent Density

In order to understand, how the reduced distribution functions and the solvent den-
sity are connected, we first consider as a simple example a homogeneous monoatomic
fluid for which we know the pair distribution function g(2). We assume that one atom
is held in fixed position xM

1 . We then know the probability to find another atom at
position x. The probability is simply given by the conditional probability g(2)(x|xM

1 ),
where

g(2)(x|xM
1 ) =

g(2)(x,xM
1 )

g(1)(xM
1 )

(4.1)

and we have g(1)(xM
1 ) = 1 for a homogeneous fluid. We obtain the average density

of particles around the fixed particle at xM
1 by multiplying with the overall density

ρ of the solvent:
ρS(x) = ρg(2)(x|xM

1 ) (4.2)

with
ρS(x) := 〈ρ(x)〉 .

Hence, the knowledge of the pair distribution of a homogeneous fluid is equivalent
to the knowledge of the average fluid density around a single fixed particle, which
we hereafter identify with the solute. If the solute consists of more than one, let us
say NM , particles, the situation becomes more difficult. We now need to know the
probability to find a solvent particle in position x with the solute atoms being fixed
at positions xM

1 , . . . ,xM
NM

. That is, we need to know the NM +1-particle distribution
function and it holds

ρS(x) = ρg(NM+1)(x|xM) (4.3)

with the conditional probability

g(NM +1)(x|xM) =
g(NM+1)(x,xM)

g(NM )(xM)
.

Hence, the methods that will be described in the next sections try to approximate
the conditional (NM +1)-particle distribution function g(NM+1)(x|xM). Note that all
Ornstein-Zernike based methods indeed approximate the total correlation function
h = g(2) − 1 which is assumed to be disturbed by an external potential exerted by
the solute as we will see in the following sections.

The above discussion considered all particles, solute as well as solvent particles,
to be identical. This is of course not a reasonable assumption. The extension
to more realistic systems, where the solute consists of different particle types, is
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straight-forward and has only an effect on the potential functions and forces between
solute and solvent particles. Further extensions to systems with molecular solvents,
however, need more involved considerations and will be discussed in Sections 4.2.2
and 4.3.3.

4.2 Ornstein-Zernike based Methods

A lot of effort has been put into the application of the Ornstein-Zernike equation
to solute-solvent systems by several authors. The standard equations of the liq-
uid state integral equation theory can be applied to monoatomic solvents around a
monoatomic solute, as we have seen above. The extension to more complex solutes
with arbitrary shapes leads to the so-called 3d-HNC [10,53] or 3d-PY [53] methods.
The molecular Ornstein-Zernike equations (MOZ) [14, 15, 38] allow to compute dis-
tribution functions of molecular solvents, as e.g. water, taking also into account the
rotational degrees of freedom. As a reduction of the full angular-dependent distribu-
tion functions, the so-called radial site-site distribution functions of molecular sol-
vents can be computed more easily. The reference interaction site model (RISM) [20]
has been developed as the first theory for site-site correlation functions. A different
approach is based on the density functional theory (DFT) [21, 27], which is also
able to compute site-site distribution functions. However, the ultimate goal is to
combine molecular solvents with solutes of arbitrary shape. Efforts in this direction
have been made by combining the RISM model with the 3d-HNC method [12,28,61],
by a reduction of the MOZ equations to three-dimensional space [24] and by keeping
the full three-dimensional dependence of the DFT approach [12]. In the following,
we will try to arrange the development of these methods and related works to give
a whole picture of existing methods concerning the computation of solvent densities
in solute-solvent systems.

4.2.1 Solutes in Monoatomic Solvents

The extension of the standard Ornstein-Zernike model (2.56) together with the HNC
(2.57) or PY (2.59) approximations to solutes of arbitrary shape is straight-forward.
Instead of reducing the equations to the spherical symmetric case, the full three-
dimensional dependence is kept in equations (2.56), (2.57) and (2.59). Ikeguchi
and Doi [53] computed the average distribution of a monoatomic water model by a
Picard iteration of the transformed Ornstein-Zernike equation in Fourier space

γ̂(k) =
ρĉ(k)2

1− ρĉ(k)
(4.4)

with γ(x) = h(x)− c(x) and either the HNC

c(x) = e−βV (x)+γ(x) − γ(x)− 1 (4.5)
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or the PY closure
c(x) = e−βV (x)(1 + γ(x))− γ(x)− 1. (4.6)

For details about the transformation of the Ornstein-Zernike equation, see Appendix
B. Here, V (x) is the total disturbing potential that acts on a solvent particle due
to the solute,

V (x) =

NM∑

i=1

v(xM
i ,x). (4.7)

The results are in qualitative agreement with the water density measured by a
molecular dynamics simulation. However, since a monoatomic water model is used,
no information about specific densities of the oxygen and hydrogen atoms can be
gained.

Beglov and Roux [10] used a slightly different method to compute the average
density of Lennard-Jones particles around a solute. Combination of the HNC closure
and the Ornstein-Zernike equation leads to

h(x) = e−βV (x)+ρ(h∗c)(x) − 1, (4.8)

where the asterix ∗ stands for the convolution

(h ∗ c)(x) :=

∫

Ω

h(x− x′)c(x′) dx′, (4.9)

and Ω ⊆ R
3 is the domain of the system. Multiplication with the bulk density ρ

and insertion of the deviation from the bulk density ∆ρ(x) := ρS(x)− ρ yields the
3d-HNC equation

∆ρk+1(x) = λρ
(
e−βV (x)+(∆ρk∗c)(x) − 1

)
+ (1− λ)∆ρk(x) (4.10)

with the mixing factor λ ∈ [0, 1]. Here, the potential V (x) is again defined as the
total disturbing potential due to the solute as in (4.7). But unlike in the method
of Ikeguchi and Doi, the direct correlation function c(x) appears as an input to the
method and is computed for the pure undisturbed fluid with the standard HNC ap-
proximation (2.57). Beglov and Roux tested the method against densities computed
with molecular dynamics, the RISM method (which will be introduced in Section
4.2.2) and what they call the superposition approximation (SA)

ρSA(x) = ρ

NM∏

i=1

g(2)(xM
i ,x) (4.11)

with g(2) computed for the homogeneous fluid. They compared the numbers of the
closest solvent particles and the height of the first maximum of the density profile.
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The results of the 3d-HNC method were in good agreement with the molecular dy-
namics simulations when compared to the RISM and SA approximations. However,
the height of the first maximum is always overestimated by 3d-HNC. Nevertheless,
the method is able to reproduce fairly accurately the magnitude and the position of
the density peaks around non-spherical solutes.

A first attempt to compute the spatial distribution of a more complex solvent
around a non-spherical solute was made by Beglov and Roux [11] by employing
the mean spherical approximation (MSA) for a water model. To this end, a water
molecule is represented by a non-polarizable hard sphere with an embedded dipole
at its center. The direct correlation function for pure water can be calculated ana-
lytically for the MSA model of water. A system of equations for the solvent density
and the solvent polarization was then solved by an iterative scheme. The method
reduces to the well-known equations of macroscopic electrostatics in the limit of
infinitely small spheres. Although the 3d-MSA method yields qualitative promising
results, it is quantitatively not very accurate. This is partly due to the linearized
theory of polarization which has been employed.

4.2.2 Molecular Solvents

Since most fluids are not satisfyingly described by monoatomic models, the extension
of the integral equations to molecular solvents is mandatory. One possible route is to
describe the molecules of the liquid as rigid bodies with three translational and three
rotational degrees of freedom, which we denote by x and Θ, respectively. The pair
distribution function g, the total correlation function h and the direct correlation
function c are functions of the translational as well as of the rotational degrees of
freedom,

g = g(x1,x2,Θ1,Θ2), h = h(x1,x2,Θ1,Θ2), c = c(x1,x2,Θ1,Θ2). (4.12)

Note that the functions indeed only depend on the relative positions of two molecules
although the parametrization suggests a full 12-dimensional dependence. The gen-
eralization of the Ornstein-Zernike equation to molecular solvents then reads as

h(x1,x2,Θ1,Θ2) = c(x1,x2,Θ1,Θ2)

+

∫

Ω

∫

ΩΘ

c(x1,x3,Θ1,Θ3)h(x2,x3,Θ2,Θ3) dx3dΘ3, (4.13)

see [45] for details. The set Ω ⊆ R
3 describes the domain of the system and ΩΘ

contains all possible orientations of a molecule. In most cases, the rotational degrees
of freedom are represented by Euler-angles [37, 38, 45, 99]. For this special case we
have

ΩΘ = {(χ, θ, φ)| χ ∈ [0, 2π], θ ∈ [0, π], φ ∈ [0, 2π]} . (4.14)
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All closure relations given in Section 2.4.4 are still applicable for the case of molec-
ular fluids with the total correlation function h and the direct correlation function
c now also depending on the rotational degrees of freedom. However, the computa-
tional effort to solve the molecular Ornstein-Zernike equation (4.13) together with an
appropriate closure relation is much greater than in the case of a monoatomic fluid.
All functions appearing in (4.13) and the volume of integration are six-dimensional.
Hence, further approximations have to be used in order to be able to solve these
equations.

One important idea, which goes back to the work of Blum and Torruella [14,15],
is to write all functions as expansions of so-called rotational invariances,

h(x1,x2,Θ1,Θ2) =
∑

i

hi(|x1 − x2|)Φi(Θ1,Θ2, r̄) (4.15)

with r̄ = x1−x2

|x1−x2|
. The functions hi only depend on the distance of molecule 1 and 2,

whereas the dependence on all rotational degrees of freedom has been shifted to the
fixed set of Φi. The Φi are typically a linear combination of spherical harmonics.
Their exact definition can be found e.g. in [45]. It is generally possible to solve the
resulting system of equations for hi and ci by inserting these expansions into the
Ornstein-Zernike equation and into the HNC closure relation. The exact derivation
of these MOZ-HNC equations is very involved and will not be given here, see [38]
for details. The infinite sum of (4.15) is truncated after some imax <∞ for practical
use. Fries and Patey [38] observed that, for a dipolar hard sphere fluid, imax ≈ 16
is sufficient to reproduce the radial distribution function, the internal energy and
the dielectric constant very accurately. The method has also been applied to liquid
acetone and chloroform [100] and a non-aqueous electrolyte solution [37]. It is shown
that the results for liquid structure and dielectric constants are in good agreement
with values obtained by Monte Carlo simulations. However, the application to
polar water models [99] showed that the MOZ-HNC model is not able to predict
the O-H distribution functions satisfactorily. The authors conclude that the HNC
approximation is not appropriate to describe the structure of H-bonded liquids as
water. Nevertheless, the MOZ-HNC model is the only computational method that
is able to reproduce the rotational dependency of the distribution functions.

Interaction Site Models

If the interaction of the molecules is described by a so-called site-site potential, the
computation of many properties of interest only requires the knowledge of the site-
site distribution functions gαγ. In this terminology, the sites are the atoms which
constitute the molecules. Hence, gαγ(x

α
1 ,xγ

2) is the distribution function between site
α of a molecule 1 and site γ of molecule 2. The link between the site-site and the
molecular distribution functions is given by integrating the molecular distribution
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function over all degrees of freedom subject to the constraint that site α and site γ
have a separation of rαγ ,

gαγ(r
αγ) =

∫

Ω

∫

Ω

∫

ΩΘ

∫

ΩΘ

g(x1,x2,Θ1,Θ2)

× δ(x1 − lα1 (Θ1)− x2 + lγ2(Θ2)− rαγ) dx1dx2dΘ1dΘ2. (4.16)

Here, lα1 (Θ1) denotes the (orientation-dependent) vector displacement of site α in

molecule 1. For molecules which are composed of s sites, there are obviously s(s+1)
2

site-site distribution functions. Some of these functions can be identical if the sites
are identical, as e.g. the hydrogen sites in a H2O molecule. But the complete set of
site-site distribution functions contains less information than the molecular distribu-
tion function. Hence, g(x1,x2,Θ1,Θ2) cannot be reconstructed from the gαγ(r

αγ).
This is intuitive, since the site-site distribution function gαγ(r

αγ) depends on less
degrees of freedom than g(x1,x2,Θ1,Θ2).

The interaction site model (ISM) is a theory designed to compute the site-site
correlation functions for the case, where the intermolecular pair potential is modeled
by the site-site form, i.e.,

v(x1,x2,Θ1,Θ2) =
∑

α,γ

vαγ(|xα
1 − xγ

2 |) (4.17)

with the position xα
1 of site α in molecule 1. The key ingredient of the ISM theory

is an Ornstein-Zernike-like equation for the site-site correlation functions

hαγ =
∑

α′,γ′

ωαα′ ∗ cα′γ′ ∗ ωγ′γ + ρ
∑

α′,γ′

ωαα′ ∗ cα′γ′ ∗ hγ′γ. (4.18)

This can be written more conveniently in Fourier space as

Ĥ = Ŵ ĈŴ + ρŴ ĈĤ (4.19)

with the capital letters indicating matrices with the site-site functions as entries,
i.e., (Ĥ)αγ = ĥαγ , (Ŵ )αγ = ω̂αγ and (Ĉ)αγ = ĉαγ . The hat indicates a function in
Fourier space. Here, ωαγ is the intramolecular correlation function

ωαγ(r) =
1

4π(rαγ
0 )2

δ(|r| − rαγ
0 ) (4.20)

with rαγ
0 the intramolecular distance between sites α and γ. For α = γ, we set

rαγ
0 = 0 for completeness. The intramolecular correlation functions describe the

constraints which fully determine the structure of the rigid molecule. Equation
(4.18) is called site-site Ornstein-Zernike (SSOZ) equation and was first introduced
by Chandler and Andersen [20]. A detailed derivation can be found in [25] or
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[45]. It is formally exact, since it can be understood as definition of the site-site
direct correlation functions cαγ. Supplemented with a closure relation, the SSOZ
equation can be solved for the site-site distribution functions gαγ = hαγ + 1. The
closure relations can easily be transferred from the monoatomic case by replacing the
correlation functions by their site-site analogs, giving one relation for every site-site
pair.

Early applications of the ISM model have mainly focused on the so-called fused
hard sphere model, where vαγ(r) =∞ for r ≤ σ and vαγ(r) = 0 for r > σ, with σ the
hard sphere radius, see [45] for an overview. The application of the ISM model to a
hard sphere fluid is referred to as the reference interaction site model (RISM1). The
results for the site-site distribution functions are in qualitative agreement with those
from Monte Carlo simulations. The accuracy however can be low. The deviation
for important features is sometimes up ot 20% [45]. When applied to other short
range potential functions as the Lennard-Jones potential, the results are of similar
quality. Therefore, the RISM model is called a qualitative theory [45].

In order to incorporate long range effects like the Coulomb potential, some mod-
ifications have to be introduced. This is mainly necessary because it is very difficult
to determine the correct boundary conditions of a finite domain in this case. Hirata
and Rossky [50] proposed a method, which they call the extended RISM (XRISM).
It is based on the assumption that, for most fluids, the direct correlation function
c(r) behaves as c(r) → −βv(r) for r → ∞. Hence, we replace c(r) → c(r) − φ(r)
with φ(r) = −βv(r), and the SSOZ equation (4.18) can be written in renormalized
form, see [50] for details. By this procedure, the long-range Coulomb potential does
not appear explicitly in the renormalized SSOZ equations. The XRISM model has
been applied to several pure liquids, as e.g. a simplified diatomic liquid with charged
sites [49, 50], liquid methanol [88] and several water models [87]. All results show a
good qualitative agreement of the site-site correlation functions with those obtained
by Monte Carlo simulations. The coordination numbers as well as the positions
of structural features are well represented. However, as already stated above, the
accuracy is not satisfactory, especially regarding the magnitudes of the peaks of
the correlation functions. Moreover, the RISM model, together with a closure that
obeys c(r)→ −βv(r) for large r, is not able to correctly predict the relative permit-
tivity of the continuum [25, 45]. However, this deficiency can easily be eliminated
by replacing the known XRISM dielectric constant by a phenomenological one [51].
Finally, Perkyns and Pettitt [83] introduced the dielectrically consistent reference
interaction site model (DRISM), where a modification of the bridge function in the
HNC closure leads to a corrected dielectric constant of the solvent.

1Most authors do not distinguish between ISM and RISM. Therefore the abbreviation RISM is
mostly found in the literature, although no hard sphere (reference) model is considered. In order
to agree with the literature, we will also use RISM hereafter.
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4.2.3 Solutes in Molecular Solvents

The extension of the RISM model to solutes surrounded by molecular solvents was
first given by Hirata, Rossky and Pettitt [51]. The derivation starts with the RISM
integral equation for a mixture of general composition defined by

̺H̺ = U ∗ C ∗ U + U ∗ C ∗ ̺H̺. (4.21)

Here, the ∗ of two matrices stands for a matrix convolution product

(U ∗ C)αγ =
∑

δ

Uαδ ∗ Cδγ . (4.22)

Each factor of (4.21) is a S × S matrix, where S is the total number of molecular
sites in the mixture, i.e., if si is the number of sites in molecule i, we have

S =

µ∑

i=1

si (4.23)

for µ different species. If we restrict ourselves to two different species, the solute M
and the solvent S, the matrices can be written as

̺ =

(
ρS 0
0 ρM

)
, U =

(
US 0
0 UM

)
,

H =

(
HSS HSM

HMS HMM

)
, C =

(
CSS CSM

CMS CMM

)
. (4.24)

To this end, ρS and ρM are the number densities of the solvent and the solute, re-
spectively. The submatrices are labeled to indicate the species which are included,
i.e., the submatrix HSM contains entries hSαMγ which denote the total correlation
functions between site α of the solvent and site γ of the solute. The intramolecular
correlations are contained in U . Since there are no intramolecular correlations be-
tween solvent and solute, the entries USM and UMS are zero. The link between the
matrices W S and W M with the entries as defined in (4.20) is given by W S = ρSUS

and W M = ρMUM , respectively.
Using (4.24) in equation (4.21) leads to a system of equations

ρSHSSρS = US ∗ CSS ∗ US + US ∗ CSS ∗ ρSHSSρS

+ US ∗ CSM ∗ ρMHMSρS, (4.25)

ρMHMSρS = UM ∗ CMS ∗ US + UM ∗ CMS ∗ ρSHSSρS

+ UM ∗ CMM ∗ ρMHMSρS, (4.26)

ρMHMMρM = UM ∗ CMM ∗ UM + UM ∗ CMS ∗ ρSHSMρM

+ UM ∗ CMM ∗ ρMHMMρM , (4.27)
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where the fourth equation for ρSHSMρM can be left out since HSM = (HMS)T . Now,
we consider the case where the solute is in infinite dilution, i.e. ρM → 0. Then, the
third equation (4.26) can be neglected in comparison to the others and we get

HSS = W S ∗ CSS ∗W S + W S ∗ CSS ∗ ρSHSS, (4.28)

HMS = W M ∗ CMS ∗W S + W M ∗ CMS ∗ ρSHSS, (4.29)

HMM = W M ∗ CMM ∗W M + W M ∗ CMS ∗ ρSHSM . (4.30)

Equation (4.28) can be solved separately, if endowed with an appropriate closure
relation, since it is an equation of solvent correlation functions alone. Equation
(4.29) can then be solved to give the solute-solvent site-site correlation functions
and equation (4.30) determines the solute site-site correlation functions. The closure
relations can again simply be transferred from the monoatomic case, since they only
relate correlation functions of the same site-site pair.

If the superposition approximation is used in order to compute the potential of
mean force (PMF) by the solute site-site distribution functions of the RISM/XRISM
equations, equation (3.27) of Section 3.3 leads directly to a term for the solvent
mediated PMF between sites α and γ of the solute,

V PMF
αγ (rαγ) = − 1

β
ln(hαγ(rαγ) + 1) (4.31)

with rαγ = |xM
α −xM

γ |. This is a very crude approximation of the PMF, since (4.29)
and (4.30) do not take into account the spatial distribution of the solute. This
approximation deteriorates significantly with increasing number of solute sites.

Nevertheless, the solute-solvent RISM/XRISM equations have been applied to
a wide variety of solute-solvent systems. Among these are ions in a simplified di-
atomic polar solvent [51], polar diatomic solutes in water [84], N -butane and 1,2-
dichloroethane in water and CCl4 [130], N -methylalanylacetamide in water [86],
alkali halides in water [89] and alanine dipeptide in water [85]. The quantitative ac-
curacy of the results for these systems is difficult to assess, but it is expected that the
method yields to reasonable results, comparable to those obtained by RISM for pure
molecular fluids. In [92], the DRISM model is used for computing the PMF of ala-
nine tetrapeptide during a molecular dynamics simulation. Since the solute-solvent
RISM equations do not take into account the spatial distribution of the solute, all
site-site distribution functions can be computed once in advance and stored for fast
access. This, together with the fast computation of the PMF by equation (4.31),
make the procedure computationally efficient. The results have been compared to
simple implicit solvent models with a constant and with a linear distance dependent
dielectric constant. When compared to a simulation with explicit water molecules,
the DRISM method showed to be superior to both implicit solvent models. This
is not very surprising since it also incorporates short-range effects such as solvent
packing. Nevertheless, the accuracy of the computed properties is very inaccurate.
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Density Functional Theory

A different approach for the computation of site density distributions is based on
the so-called density functional theory (DFT). The DFT for nonuniform fluids is
based on the fact that the free energy F of a fluid is a function of the density
F = F (ρ(x)) and has its minimum for the mean density of the fluid 〈ρ(x)〉. This
formulation goes back to the work of Lebowitz and Percus [68] and has been used
for the study of interfacial phenomena, mean field treatments of first order phase
transitions, the analysis of wetting transitions, the study of non-periodic crystals and
more, see [21] and the references therein. Chandler et al. [21] developed the general
formulation for the application of the DFT to nonuniform polyatomic systems. Since
the exact expression for the free energy cannot be computed, approximations have
to be introduced. It can be shown that, for a specific approximation in the free
energy functional, the RISM equations are recovered [21].

Donley et al. [27] developed a DFT approach similar to that of Chandler et
al. [21]. To this end, the site-site pair distribution functions are expressed as an
average over the coordinates of two molecules in an effective potential. This effec-
tive potential can be computed by RISM-like equations, see [27] for details. But in
contrast to the RISM theory, the DFT model reproduces the exact site-site distri-
bution functions in the limit of low density. Donley et al. applied their model to a
simple diatomic fluid which led to a good agreement with the results of molecular
dynamics simulations. Reddy et al. [93] tested the DFT approach of Donley et al.
against two different integral equation theories for the modified simple point charge
(SPC) model of water. In this comparison, the DFT method was superior to the
other methods. The application to the standard SPC model of water showed how-
ever qualitative differences in the site-site distribution functions due to the missing
repulsive potential between the oxygen and the hydrogen sites. Sumi et al. [114] em-
ployed the DFT ansatz to derive their site-density integral equation (SDIE). Here, a
set of equations for the three-dimensional site-density functions is formulated as clo-
sure for the RISM equations. Application of the SDIE to a diatomic Lennard-Jones
fluid yielded good agreement with a simulation at low densities [114]. The exten-
sion of the SDIE method to polymer fluids also led to accurate results compared to
molecular dynamics simulations [113]. In [115], a more efficient implementation of
the SDIE has been applied to Cl2, HCl and water. The computed site-site pair dis-
tribution functions for Cl2 and HCl again showed good qualitative agreement with
simulation results. However, the O-O distribution function for water could not be
reproduced correctly, as this is the case with any other integral equation method. A
similar method has been developed by Yethiraj et al. [127] in the context of poly-
meric liquids modeled by hard sphere chains. Here, a different free-energy functional
is used and the method is tested against Monte Carlo simulations with reasonable
results for the pair distribution functions.
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Three-Dimensional Density Distribution of Molecular Solvents

As already noted, the solute-solvent RISM equations do not contain any information
about the spatial distribution of the solute. All site-site solute-solvent correlation
functions are spherically symmetric. This is an inappropriate approximation espe-
cially for larger solute molecules, since it assumes that all solute sites are equally
exposed to the solvent. Hence, the contribution to the solvent-mediated free energy
of partially or completely buried solute atoms is clearly overestimated. To over-
come this deficiency, several authors developed methods to include the full three-
dimensional shape of the solutes.

Cortis et al. [24] derived a three-dimensional integral equation by averaging the
molecular Ornstein-Zernike equation over the orientation of the solvent molecule
consistent with one site of the solvent remaining at a fixed distance from the solute
at the origin. The method is called the molecular origin-site Ornstein-Zernike inte-
gral equation (MSOZ). The resulting site distribution functions contain full three-
dimensional information regarding the structure of the solute molecule. The equa-
tion is supplemented with several three-dimensional generalizations of the HNC
closure. The MSOZ method has been applied to several pure non-polar and polar
fluids. To this end, the site-site distribution functions have been obtained by angle
averaging of the three-dimensional site distribution functions around a fixed solvent
molecule. The accuracy of the spherical symmetric site-site distribution functions
has been shown to be more accurate than those obtained by the RISM method.

Kovalenko and Hirata [61] introduced a new view on the solute-solvent RISM
equations which allows to treat solutes of arbitrary shapes. Equation (4.28) is used
to compute the site-site correlation functions for the pure solvent. The solute is
seen as a single particle of arbitrary form. Therefore, the intramolecular correlation
matrix of the solute W M is simply a scalar of value one and equation (4.29) becomes

HMS = CMS ∗W S + CMS ∗ ρSHSS (4.32)

or

hMS
γ =

∑

α

cMS
α ∗ ωS

αγ +
∑

α

cMS
α ∗ ρShS

αγ (4.33)

for all sites γ of the solvent. However, the interaction between solute and solvent
is still described by a site-site potential, i.e., the total solute-solvent potential of
solvent site γ is

V MS
γ (x) =

NM∑

α=1

vMS
αγ (xM

α ,x). (4.34)

Endorsed with the three-dimensional HNC closure (4.5) with V MS
γ as above, equa-

tion (4.33) can be solved to give the full spatial correlation function of each solvent
site. The method was applied to compute the spatial distribution of water around
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a single water molecule and the density profile of water near a crystalline layer of
Lennard-Jones sites [61]. Together with the partially linearized hypernetted chain
approximation (PLHNC) [62], a modified closure to account for very strong elec-
trostatic attractions, the 3d-RISM equations were employed to compute the PMF
for the N ,N -dimethylaniline cation and the anthracene anion in acetonitrile as sol-
vent [62]. A comparison of the results for sodium chloride in water with results
from a molecular dynamics simulation showed a good agreement [65, 66]. An im-
provement was introduced by applying an empirical bridge function in the 3d-HNC
closure in order to counter the overestimation of water ordering around a hydropho-
bic solute [63]. This yields a drastically improved agreement with simulation data
for the thermodynamics of hydration for rare gases and alkanes in water. The 3d-
RISM-PLHNC method has also been applied to study met-enkephalin in water with
reasonable results [64]. In [67], a so-called self-consistent three-dimensional reference
interaction site model (SC-3d-RISM-HNC) is proposed for the special case of ionic
solutes in a polar molecular solvent. To this end, the first equation of the RISM
model for the pure solvent is replaced by equation (4.33), where one solvent atom is
considered as the solute in fixed position. Hence, full three-dimensional resolution of
the direct correlation function cS

α is already obtained for the pure solvent. Inserted
into the Ornstein-Zernike equation together with a three-dimensional HNC closure,
this yields the total correlation function of the ion around the fixed solvent molecule.
This concept is particular, since the roles of the solute and the solvent seem to be
exchanged. But this is really a transformation of coordinates and therefore an equiv-
alent representation of the total correlation function. The SC-3d-RISM-HNC model
has been applied to Na+ and Cl− ions in water with an improved agreement of the
ion hydration structure and thermodynamics when compared to the conventional
RISM-HNC approach.

Beglov and Roux [12] use the DFT ansatz to derive an integral equation method
for the computation of three-dimensional solvent densities around solutes of arbi-
trary shape. To this end, they use the free energy functional of Chandler et al. [21]
truncated at second order of the intramolecular and the intermolecular correlations.
Minimization of this functional with respect to the site density leads to an integral
equation for the mean density which can also be written as a system of two coupled
equations,

cMS
γ (x) = e−βV MS

γ (x)+hMS
γ (x)−cMS

γ (x) − hMS
γ (x) + cMS

γ (x)− 1, (4.35)

ρhMS
γ (x) =

∑

α

cMS
α ∗ χS

αγ(x) (4.36)

with the susceptibility of the pure solvent

χS
αγ = ρωS

αγ + ρ2hS
αγ . (4.37)

The first equation (4.35) is indeed the HNC approximation which is recovered by
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the DFT approach. The second equation introduces the intra- and intermolecular
correlations of the solvent through the susceptibility function which appears as an
input. It is computed by the standard RISM-HNC method as described above.
This method is also referred to as 3d-RISM-HNC method. In [12], the equations
(4.35) and (4.36) were used to compute the density of water around a single water
molecule and N -methylacetamide. The solute-solvent site-site radial distribution
functions were computed from the mean solvent densities and showed reasonable
hydrogen bonding features. However, the O-H site-site distribution functions differs
from the H-O site-site distribution function, which should not be the case in an
exact theory due to symmetry. This is a deficiency of the method, which has already
been noticed for the RISM equations. It is due to the inadequate incorporation of
the intramolecular correlations which are only considered to second order. Hence,
Du and coworkers [28] introduced a so-called hydrogen bridge function in order to
incorporate the short-range hydrogen-oxygen intramolecular correlation to lowest
order. This bridge function includes a free parameter which can be used to fit
the results to experimental values. The susceptibility of pure water computed by
molecular dynamics and the RISM-HNC model were combined in order to improve
the short-range structures of the hydrogen-oxygen correlation functions. Then, the
3d-RISM-HNC equations were used to compute the free energy of some N -alkanes,
N -alcohols, N -carboxylic acids and simple amides [28]. The computation of the free
energies employed the thermodynamic integration, see equation (3.34) of Section 3.3.
The comparison of the results with experimental data showed a qualitatively good
agreement. The lack of accuracy is due to an overestimation of the water hydrogen
density in the neighborhood of negatively charged groups and the overestimation
of the pressure in the HNC closure. The authors propose to further improve the
empirical bridge function by an extensive adjustment in order to give accurate results
for a large training set of molecular solutes.

4.2.4 Summary

The integral equation theories based on the Ornstein-Zernike equation for computing
the solvent density around a solute provide a powerful framework for the develop-
ment of new approaches to incorporate solvent effects in molecular simulations. So
far however, the methods still involve computations that are too complex in order
to be used in simulations, where a repeated evaluation of the potential of mean force
is required. On the other hand, the accuracy of the computation of thermodynamic
properties such as the free energy needs to be improved. This can be achieved by
adjusting free parameters, as for example in the empirical bridge functions, in order
to fit the method to known (experimental) data. One finally concludes that the ap-
proximations that pose a compromise between accuracy and numerical tractability
still have a substantial effect on the results. This is clearly undesirable but cannot
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be avoided with today’s theories. Hence, further research that is also concerned with
new theories and concepts that have not been considered so far is necessary. This
is why we focus on the YBG-hierarchy together with the Kirkwood approximation
which, to our knowledge, have not been employed in the context of solute-solvent
systems in the literature.

4.3 Methods based on the YBG-Hierarchy

Concerning the computation of solvent density distributions in solute-solvent sys-
tems, the literature focuses on methods that are somehow linked to the Ornstein-
Zernike equation. This is quite surprising, since equations from the YBG-hierarchy
(2.48) have already been used in the context of non-uniform fluids. In this case, the
first equation of the hierarchy can be written as

∇ ln(ρ(x)) = Fext(x) +

∫

Ω

F(x,x′)g(2)(x,x′)ρ(x′) dx′ (4.38)

with external force Fext. This relation can be used to compute the density ρ(x)
for a fluid which is disturbed by the external force. Examples of applications are
the computation of the density profile in the vicinity of walls or free liquid surfaces,
liquid-liquid interfaces or liquids in narrow slits, see [47] for an overview. It is
important to note that, due to the non-uniform disturbance, the pair distribution
function g(2)(x,x′) in this formulation does not only depend on the distance |x−x′|,
but also on the absolute positions x and x′. Hence, equation (4.38) is exact and a
closure relation is again required in order to express g(2) by known functions. The
easiest relation one can consider is to replace g(2) by the pair distribution function
of the undisturbed fluid at some averaged density ρ. But more sophisticated closure
relations are also known, see [47]. The application of equation (4.38) to a solvent
disturbed by a solute seems to be obvious, but has never been considered so far.
Therefore, we will investigate an equation which is very similar to (4.38) in this
context. We call it BGY3d equation. Indeed, (4.38) and the BGY3d equation
are identical if the pair distribution function of the undisturbed fluid in (4.38) is
employed. But to see this, we will now derive the BGY3d equation in detail.

4.3.1 Derivation of the BGY3d Equation

We consider a system with a solute consisting of NM atoms and NS monoatomic
solvent particles surrounding the solute in a box Ω = [0, L]3. The box has to be
chosen large enough such that the effects of the solute atoms on the solvent can be
neglected at the boundaries of the box. For now, we assume that all solute as well
as all solvent particles are identical. We want to compute the solvent density for
a fixed position xM of the solute, where we write short xM for xM

1 , . . . ,xM
NM

. This
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density ρS(x) is given by the NM +1-particle distribution function with NM particle
positions fixed, i.e.

ρS(x) = ρg(NM+1)(x|xM) (4.39)

with the conditional probability

g(NM +1)(x|xM) =
g(NM+1)(x,xM)

g(NM )(xM)
. (4.40)

As we have seen in section 2.4.2, we can compute the NM +1-distribution function by
the corresponding equation from the YBG-hierarchy together with an appropriate
closure relation. The equation to solve for the distribution function g(NM+1) is given
by

∇xg
(NM +1)(x,xM) = β

NM∑

i=1

F(x,xM
i )g(NM+1)(x,xM)

+ βρ

∫

Ω

F(x,x′)g(NM+2)(x,x′,xM) dx′. (4.41)

Hence, we need an approximation of g(NM+2)(x,x′,xM) by lower order distribution
functions in order to be able to solve (4.41).

We are going to consider the so-called n-level Kirkwood closure relations [108].
They relate the n-particle distribution function to distribution functions of lower
order:

g(n)(x1, . . . ,xn) ≈
n−1∏

k=2

∏

1≤i1<i2<···<ik≤n

g(k)(xi1 ,xi2 , . . . ,xik)
(−1)n−1−k

. (4.42)

Examples of (4.42) are the Kirkwood approximation (2.51) for n = 3 and the Fisher-
Kopeliovich closure (2.54) for n = 4. Approximation of g(NM+2)(x1, . . . ,xNM+2) by
this closure gives

g(NM+2)(x1, . . . , xNM +2) ≈ g(NM+1)(x1, . . . ,xNM+1)g
(NM+1)(x1, . . . ,xNM

,xNM +2)

×
∏

1≤i1<i2<···<iNM−1≤NM

g(NM+1)(xi1 , . . . ,xiNM−1
,xNM+1,xNM +2)

×
NM∏

k=2

∏

1≤i1<i2<···<ik≤NM+2

g(k)(xi1 ,xi2, . . . ,xik)
(−1)NM +2−1−k

. (4.43)

The first two terms of the right hand side of (4.43) are identical with the NM + 1-
particle distribution functions of (4.41). All other terms are recursively further
approximated by (4.42). This finally yields

g(NM+2)(x,x′,xM) ≈
g(NM+1)(x,xM) g(NM+1)(x′,xM) g(2)(x,x′)

g(NM )(xM)
, (4.44)
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where we identified xNM+1 and xNM+2 with x and x′ from equation (4.41), respec-
tively. Inserting (4.44) into (4.41) leads to an integral equation for the NM + 1-
particle distribution function

∇xg
(NM+1)(x,xM) = β

NM∑

i=1

F(x,xM
i )g(NM+1)(x,xM) (4.45)

+ βρ
g(NM+1)(x,xM)

g(NM )(xM)

∫

Ω

F(x,x′)g(2)(x,x′) g(NM+1)(x′,xM) dx′.

Since we are looking for the probability to find a solvent particle at position x
provided that the solute particles are at positions xM , we insert the conditional
probability (4.40) into (4.45) and obtain

∇xg
(NM+1)(x|xM) = β

NM∑

i=1

F(x,xM
i )g(NM+1)(x|xM) (4.46)

+ βρ g(NM+1)(x|xM)

∫

Ω

F(x,x′)g(2)(x,x′) g(NM+1)(x′|xM) dx′.

We call (4.46) the BGY3d equation. The pair distribution function g(2) appears
as an input in equation (4.46). It can be computed for example by the Born-
Green equation (2.52), which can further be regarded as special case of the BGY3d
equation. If the solute consists of one solvent particle, we have g(NM+1)(x|xM) =
g(2)(x|xM) and equation (4.46) can be used to compute the pair distribution function
g(2).

As stated above, the BGY3d equation is identical to equation (4.38) for a non-
uniform fluid with a special approximation to g(2), if one regards the influence of
the solute particles on the solvent as external force disturbing the solvent. To our
knowledge, equation (4.38) has never been solved with full three-dimensional reso-
lution of the density ρ(x). Hence, all external forces Fext considered so far in the
literature result in symmetry properties that allow to use a simplified form of (4.38).
This is not reasonable for our application, since we are going to consider solutes of
arbitrary shape. Hence, we have to solve the BGY3d equation (4.46) in three dimen-
sions. However, equation (4.46) exhibits some properties which are disadvantageous
for its numerical treatment. This is why we introduce some transformations that
allow for an efficient numerical solution on a three-dimensional grid.

4.3.2 Transformation of the BGY3d equation

In order to simplify matters, we first introduce some notation. Since we will always
consider a system with NM solute atoms, we will abbreviate g(x) = g(NM+1)(x|xM),
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F(x,xM) =
∑NM

i=1 F(x,xM
i ) and ∇ = ∇x in the following. The BGY3d equation

then reads as

∇g(x) = β F(x,xM)g(x) (4.47)

+ βρ g(x)

∫

Ω

F(x,x′)g(2)(x,x′)g(x′) dx′.

First, we want to investigate the case of ρ→ 0, which can be interpreted as a system
consisting of two single solvent particles around the solute. Equation (4.47) then
becomes

∇g0(x) = β F(x,xM)g0(x). (4.48)

This is a system of partial differential equations. If we remember that F(x,xM) =
−∇

∑NM

i=1 v(x−xM
i ), we can easily give the analytic solution of equation (4.48) which

we denote by

g0(x) = e−β
PNM

i=1 v(x−xM
i ). (4.49)

This holds for any pair potential v, e.g., the Lennard-Jones or the Coulomb potential.
An important point to note is that these potentials have a singularity for |x−xM

i | =
0. This is reasonable from a physical point of view, since in classical mechanics two
particles cannot be at the exact same position. This is why we postulate that
the probability of this situation is zero and, indeed, we have g0(x)|x=xM

i
= 0 for

i = 1, 2, . . . , NM . This also holds for the solution of (4.47), because, for small values
of |x − xM

i |, the singular force term strongly dominates the right hand side. For
this, the integral term is assumed to be bounded. This is not immediately clear due
to the singularity of the force F(x,x′) for |x− x′| = 0. But we know that the pair
distribution function of the pure solvent behaves as

g(2)(x,x′)→ e−βv(x−x′) for x→ x′. (4.50)

If we note that

x−ae−x−b → 0 for x→ 0 (4.51)

holds for any a, b > 0, we can conclude that the product of the force and the pair
distribution function vanishes for |x − x′| = 0 and all popular types of potential
functions. Figure 4.1 illustrates the situation for the Lennard-Jones potential. The
exponential decrease of the pair distribution function dominates the polynomial
increase of the force, and all components of the product Fg(2) are continuous and
<∞ for every x. Hence, the integral term of (4.47) is bounded.

In summary, we can conclude that the solution of the full problem (4.47) ap-
proaches the solution of the reduced problem (4.49) at the solute particle positions

g(x)→ g0(x) for x→ xM
i , i = 1, 2, . . . , NM , (4.52)



4.3. Methods based on the YBG-Hierarchy 63

0 1 2 3 4 5
−1

0

1

2

3

r

F
(r

) 
an

d 
g(2

) (r
)

 

 

F(r)
g(2)(r)

0 1 2 3 4 5
−35

−30

−25

−20

−15

−10

−5

0

5

r

F
(r

) 
g(2

) (r
)

 

 

F(r)g(2)(r)

Figure 4.1. Left: Radial component of the force F and the pair distribution
function g(2) for a Lennard-Jones fluid. Right: Radial component of the product of
Fg(2).

which effectively means

g(x)→ 0 for x→ xM
i , i = 1, 2, . . . , NM , (4.53)

and the solution g is well-defined at the solute particle positions.

Product Approach

Even though the solution of (4.47) is well-defined everywhere, the singular force
term will be problematic to handle numerically. The singularity causes very stiff
systems that are difficult to solve. Hence, we will introduce an approach which
will eliminate the singular term in (4.47). From the observation that the solution g
approaches the solution g0 at the solute particle positions, we conclude that g can
be written as a perturbation of g0. Therefore, we write the solution as

g = g0g̃. (4.54)

By this choice, we have fixed g = 0 at the solute particle positions, but we do not
further restrict the solution by this approach, since g0(x) 6= 0 for all x 6= xM

i , i =
1, 2, . . . , NM . Next, we insert (4.54) into (4.47) and obtain

g0(x)∇g̃(x) + g̃(x)∇g0(x) = β F(x,xM )g0(x)g̃(x)

+ βρ g0(x)g̃(x)

∫

Ω

F(x,x′)g(2)(x,x′)g(x′) dx′. (4.55)

We know that
g̃(x)

(
∇g0(x)− β F(x,xM)g0(x)

)
= 0, (4.56)
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because we have chosen g0 as solution of (4.48). We end up with

g0(x)

(
∇g̃(x)− βρ g̃(x)

∫

Ω

F(x,x′)g(2)(x,x′)g(x′) dx′

)
= 0. (4.57)

Since g0 is zero only at the solute particle positions, the term in brackets has to
vanish. This term is easier to handle numerically, since no singular term is involved.

However, we will further investigate an enhancement of the approach (4.54). We
now assume that g̃ can be expressed as

g̃(x) = e−u(x). (4.58)

This restricts g̃ to be a strict positive function, which is again reasonable from the
physical point of view, since probability distributions have to be strictly positive,
see Section 2.2. Inserting (4.58) into (4.57) gives

e−u(x)

(
∇u + βρ

∫

Ω

F(x,x′)g(2)(x,x′)g(x′) dx′

)
= 0. (4.59)

Again, the term in the brackets has to vanish, which yields

∇u = −βρ

∫

Ω

F(x,x′)g(2)(x,x′)g(x′) dx′. (4.60)

This equation is actually a system of three equations for a scalar function u. In
order to combine these equations, we apply the divergence to each side and get

∆u = −βρ ∇ ·
∫

Ω

F(x,x′)g(2)(x,x′)g(x′) dx′ with g(x) = g0(x)e−u(x). (4.61)

Again, the · denotes the scalar product of two vectors in R
3. Equation (4.61) is

our final result for the computation of the density of monoatomic solvents around
a solute of arbitrary shape. We will solve (4.61) numerically in Chapter 5. Then,
it will become evident that the approach (4.54) together with (4.58) is the key idea
which makes an efficient numerical solution of the BGY3d equation possible.

4.3.3 BGY3dM Equation for Molecular Solvents

With the original BGY3d equation (4.46), only monoatomic solvents can be consid-
ered. This is a restriction which inhibits its use for most real solvents, as e.g. water.
Thus, we now investigate how the BGY3d model can be extended to molecular
solvents.

The YBG-hierarchy has already been used to compute properties of isolated
molecules and molecular fluids. However, all investigations in the literature only
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consider very simple potential functions in the context of polymers. Whittington
and Dunfield [126] were the first to derive a BGY equation for a single isolated
polymer. They employed two simple closure approximations, the so-called indepen-
dence approximation and the Markov approximation, see [126]. By this, they were
able to reproduce well-known self-consistent field equations for a single polymer.
Later, Lipson [74], Lipson and Andrews [75] and Taylor and Lipson [120] have used
the BGY equation together with the Kirkwood approximation for lattice polymers.
To this end, the polymer can only assume discrete configurations, since the posi-
tions of the polymer sites are restricted to a spatial lattice. Eu and Gan [32] have
analyzed the Kirkwood hierarchy for polymeric fluids. In their approach, integral
equations are provided for both the intermolecular and the intramolecular pair dis-
tribution functions. They applied their integral equations to an isolated polymer
comprised of soft spheres [40], to a polymeric fluid, where the sites are modeled as
hard spheres [41, 42], to single polymers with soft and hard spheres and Lennard-
Jones potential [42], and to isolated hard-sphere and square-well chains with lengths
of up to 1000 sites [43]. Taylor and Lipson [116] have derived a site-site BGY equa-
tion for hard-sphere dimers from the molecular BGY equation. In this derivation,
triplet as well as quadruplet distribution functions appear. Motivated by results for
isolated chains, they employ a so-called normalized site-site superposition approxi-
mation for the intramolecular triplet and quadruplet distribution functions, which
they found to give better results when dealing with multi-site distribution functions
involving connected particles. In [117, 118], they tested the equations for longer
chains and rings of hard-spheres with good agreement when compared to other sim-
ulation data. Taylor, Lipson et al. [119,122] have extensively studied their equations
for isolated square-well chains and rings. The results are in very good agreement
with Monte Carlo simulations for shorter chains and higher temperatures. In [121],
they consider a fluid of square-well dimers and get satisfactory results for lower den-
sities of the fluid. Finally, Attard [4] derived a site-site BGY equation for polymeric
fluids directly from the YBG-hierarchy. He introduced a new triplet superposition
approximation for the intramolecular distribution functions and tested the model
for fluids of hard-sphere chains with mostly accurate results.

In summary, quite a few models based on the YBG-hierarchy have been de-
veloped for polymeric fluids. These models include flexible as well as stiff bonds
and mainly differ in the approximations applied to the intramolecular distribution
functions. In the literature, these models have been used to compute the pair distri-
bution functions of different polymeric fluids. To this end, the models were always
reduced to lower-dimensional equations exploiting the spherical symmetry of the
distribution functions.

We will now derive our molecular BGY3d equation designed to compute the site
distribution functions of a molecular solvent in the vicinity of an arbitrary solute.
Here, no symmetry can be taken advantage of and the full three-dimensional dis-
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tribution has to be computed for realistic potential functions, such as the Lennard-
Jones and the Coulomb potential.

Derivation of the Site-Site BGY3dM Equation

We begin with the Liouville equation (2.40) at equilibrium and without external
forces

N∑

i=1

pi

mi

· ∂π

∂xi

+
N∑

i=1

N∑

j=1,j 6=i

Fij ·
∂π

∂pi

= 0. (4.62)

We apply the same factorization of the probability distribution as in Section 2.4.2:

π(p,x) = P(p)ρ(x) (4.63)

with

P(p) =

N∏

i=1

(
β

2πmi

) d
2

e
−β

|pi|
2

2mi (4.64)

and
∂

∂pi
P(p) = − β

mi
piP(p). (4.65)

Inserting this factorization in (4.62) yields

N∑

i=1

pi

mi
· ∂ρ(x)

∂xi
− β

N∑

i=1

pi

mi
·
(

N∑

j=1,j 6=i

Fij

)
ρ(x) = 0. (4.66)

The above equation has to be valid independently of the momenta pi. Hence, it
must hold term by term, i.e.,

∂ρ(x)

∂xi
− β

N∑

j=1,j 6=i

Fij ρ(x) = 0 (4.67)

for every i = 1, . . . , N .
In contrast to Section 2.4.2, we now consider the case where the particles are

not identical. We assume s different species of particles. The index of a quantity
assigns the quantity to the respective species, e.g.,

N =

s∑

α=1

Nα, ρ =

s∑

α=1

ρα (4.68)

for the total number of particles and the number densities. As a consequence of the
existence of different species, not all particles are indistinguishable any more. Thus,
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we have to distinguish in the definition of the reduced particle densities what type
of particles are integrated over,

ρ(n1,...,ns)(x1
1, . . . ,x

1
n1

,x2
1, . . . ,x

s
ns

) =
N1!

(N1 − n1)!
· · · Ns!

(Ns − ns)!
(4.69)

×
∫

Ω

ρ(x1
1, . . . ,x

1
N1

,x2
1, . . . ,x

s
Ns

) dx(N1−n1) · · · dx(Ns−ns),

where we use the notation dx1
(N1−n1) = dx1

n1+1 · · · dx1
N1

. The index of ρ(n1,...,ns) now
explicitly denotes the remaining number of particles for each species. The relation
between the particle density and the distribution function reads as

ρ(n1,...,ns) = ρn1
1 · · · ρns

s g(n1,...,ns). (4.70)

We mainly use the alternative notation g
(2)
αγ and g

(3)
αγη for the distribution functions,

where α, γ, η = 1, . . . , s specify the species of particle one, two or three, respectively.
We now integrate equation (4.67) over N − 2 particle degrees of freedom. Note

that there are s(s+1)
2

different possibilities to choose the n1, . . . , ns such that n1 +

· · ·+ ns = 2. Further multiplication by N1!
(N1−n1)!

· · · Ns!
(Ns−ns)!

and taking into account

relation (4.70) yields

∇xα
1
g(2)

αγ (xα
1 ,xγ

2) = βFαγ(x
α
1 ,xγ

2)g
(2)
αγ (xα

1 ,xγ
2)

+ β
s∑

η=1

ρη

∫

Ω

Fαη(x
α
1 ,xη

3)g
(3)
αγη(x

α
1 ,xγ

2 ,x
η
3) dxη

3 (4.71)

for every α, γ = 1, . . . , s. Here, Fαγ denotes the force between atoms of the species
α and γ,

Fαγ(x
α
1 ,xγ

2) = −∇xα
1
vαγ(x

α
1 ,xγ

2). (4.72)

Equation (4.71) requires a closure relation in order to be solvable. If we insert the

Kirkwood approximation (2.51) for the triplet distribution function g
(3)
αγη(xα

1 ,xγ
2 ,x

η
3),

we get a coupled system of s(s+1)
2

equations for the pair distribution functions

∇xα
1
g(2)

αγ (xα
1 ,xγ

2) = βFαγ(x
α
1 ,xγ

2)g
(2)
αγ (xα

1 ,xγ
2)

+βg(2)
αγ (xα

1 ,xγ
2)

s∑

η=1

ρη

∫

Ω

Fαη(x
α
1 ,xη

3)g
(2)
αη (xα

1 ,xη
3)g

(2)
γη (xγ

2 ,x
η
3) dxη

3 (4.73)

for α, γ = 1, 2, . . . , s.

That is, we have derived a system of equations for the pair distribution functions of a
mixture of s different particle species. However, we are interested in the distribution
functions for molecular solvents. Hence, we will further advance the above equations
to also handle intramolecular interactions.
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We consider an arbitrary molecular fluid. The molecules consist of s not nec-
essarily different particles, the so-called sites. Hence, we compose a mixture of s
particle species where the first particle of every species belongs to molecule one, the
second particle of every species belongs to molecule two, and so on. Formally, we
write

Xi = (x1
i ,x

2
i , . . . ,x

s
i ) for i = 1, . . . , NS, (4.74)

where Xi contains all 3s coordinates of the particles that constitute molecule i. The
number of particles and their density is equal for all species

NS := N1 = N2 = · · · = Ns and ρS := ρ1 = ρ2 = · · · = ρs. (4.75)

Hence, NS is the total number of molecules and ρS is the molecular density. So
far, we did not say anything about the structure of a molecule. That is, because
it is not necessary to know anything more than the fact, that each particle has
an additional property which makes it possible to distinguish between particles of
different molecules. The consequence of this is reflected in the definition of the
reduced n-particle density

ρ(n1,...,ns)(x1
1, . . . ,x

1
n1

,x2
1, . . . ,x

s
ns

) =
NS!

(NS − nS)!
(4.76)

×
∫

Ω

ρ(x1
1, . . . ,x

1
N1

,x2
1, . . . ,x

s
Ns

) dx(N1−n1) · · · dx(Ns−ns),

where the only difference to equation (4.70) is the factor NS !
(NS−nS)!

. Here, NS is the
total number of molecules in the system and nS is the number of molecules that
the reduced density ρ(n1,...,ns) depends on. We give a small example: If we consider
water (H2O) as solvent and wish to compute ρ(1,0,2)(x1

1,x
3
1,x

3
2), we have nS = 2,

since the reduced density depends on molecules one and two. But we have nS = 3
for ρ(1,0,2)(x1

1,x
3
2,x

3
3), since now molecules one, two and three are involved. In other

words, the reason for the factor NS !
(NS−nS)!

is that the molecules are indistinguishable

and there are NS !
(NS−nS)!

ways to choose nS different molecules. In consequence, the
relation between the reduced particle density and the distribution function reads as

ρ(n1,...,ns) = ρnS

S g(n1,...,ns). (4.77)

We now want to compute the two-particle distribution functions by means of
the Liouville equation (4.67). Hence, we choose two arbitrary particles xα

1 and xγ
2

of molecule 1 and 2, integrate (4.67) over the remaining N − 2 particle degrees of
freedom, multiply the whole equation by NS !

(NS−nS)!
and insert relation (4.77). This
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gives

∇xα
1
g(2)

αγ (xα
1 ,xγ

2) = βFαγ(x
α
1 ,xγ

2)g
(2)
αγ (xα

1 ,xγ
2)

+β
s∑

η=1

ρS

∫

Ω

Fαη(x
α
1 ,xη

3)g
(3)
αγη(x

α
1 ,xγ

2 ,x
η
3) dxη

3

+β
s∑

η=1,η 6=α

∫

Ω

Fi
αη(x

α
1 ,xη

1)g
(3)
αγη(x

α
1 ,xγ

2 ,x
η
1) dxη

1

+β

s∑

η=1,η 6=γ

∫

Ω

Fαη(x
α
1 ,xη

2)g
(3)
αγη(x

α
1 ,xγ

2 ,x
η
2) dxη

2, (4.78)

where the superscript i denotes the intramolecular interaction. If we choose the two
particles xα

1 and xγ
1 from the same molecule, this similarly yields

∇xα
1
g(2)

αγ (xα
1 ,xγ

1) = βFi
αγ(x

α
1 ,xγ

1)g
(2)
αγ (xα

1 ,xγ
1)

+β

s∑

η=1

ρS

∫

Ω

Fαη(x
α
1 ,xη

2)g
(3)
αγη(x

α
1 ,xγ

1 ,x
η
2) dxη

2

+β
s∑

η=1,η 6=α,η 6=γ

∫

Ω

Fi
αη(x

α
1 ,xη

1)g
(3)
αγη(x

α
1 ,xγ

1 ,x
η
1) dxη

1. (4.79)

Equations (4.78) and (4.79) form a set of s(s+1)
2

different equations for all possible
site-site pair distribution functions of the system. They look similar to equation
(4.71) for a simple monoatomic mixture, but contain additional terms which lack
the ρS factor in front of the integral. These are the terms that account for the
intramolecular correlations. To close the system of equations, we again insert the
Kirkwood approximation (2.51) and get

∇xα
1
g(2)

αγ (xα
1 ,xγ

2) = βFαγ(x
α
1 ,xγ

2)g
(2)
αγ (xα

1 ,xγ
2) (4.80)

+βg(2)
αγ (xα

1 ,xγ
2)

s∑

η=1

ρS

∫

Ω

Fαη(x
α
1 ,xη

3)g
(2)
αη (xα

1 ,xη
3)g

(2)
γη (xγ

2 ,x
η
3) dxη

3

+βg(2)
αγ (xα

1 ,xγ
2)

s∑

η=1,η 6=α

∫

Ω

Fi
αη(x

α
1 ,xη

1)g
(2)
αη (xα

1 ,xη
1)g

(2)
γη (xγ

2 ,x
η
1) dxη

1

+βg(2)
αγ (xα

1 ,xγ
2)

s∑

η=1,η 6=γ

∫

Ω

Fαη(x
α
1 ,xη

2)g
(2)
αη (xα

1 ,xη
2)g

(2)
γη (xγ

2 ,x
η
2) dxη

2
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together with

∇xα
1
g(2)

αγ (xα
1 ,xγ

1) = βFi
αγ(x

α
1 ,xγ

1)g
(2)
αγ (xα

1 ,xγ
1) (4.81)

+βg(2)
αγ (xα

1 ,xγ
1)

s∑

η=1

ρS

∫

Ω

Fαη(x
α
1 ,xη

2)g
(2)
αη (xα

1 ,xη
2)g

(2)
γη (xγ

1 ,x
η
2) dxη

2

+βg(2)
αγ (xα

1 ,xγ
1)

s∑

η=1,η 6=α,η 6=γ

∫

Ω

Fi
αη(x

α
1 ,xη

1)g
(2)
αη (xα

1 ,xη
1)g

(2)
γη (xγ

1 ,x
η
1) dxη

1.

Next, we have to specify how the intramolecular interactions differ from the in-
termolecular ones. The intermolecular interactions are, as always, described by pair
potentials such as the Lennard-Jones or the Coulomb potential. They are respon-
sible for the properties of the solvent. The intramolecular interactions, however,
account for the geometric structure of the molecules that constitute the solvent. To
this end, the molecules are considered to be rigid bodies, i.e., the distance between
every pair of particles within the same molecule is constant. This implies that this
model is only reasonable for solvents whose molecules have a single geometric config-
uration at the considered conditions. Water, as one of the most important solvents,
is an example for such a fluid. For it to be more realistic, the particles of a molecule
should be allowed to fluctuate around their mean positions, i.e., a molecule should
be able to contain energy. Nevertheless, these internal vibrations are neglected in
our model as in any other liquid state integral equation theory for molecular fluids,
see Section 4.2. This is reasonable, since the effect of the internal degrees of freedom
on the site-site distribution functions are small.

In order to model the rigid body molecules, we first introduce a harmonic po-
tential as intramolecular interaction:

vi(xα
1 ,xγ

1) = κ(rαγ
1 − rαγ

0 )2, ∀ α 6= γ (4.82)

with rαγ
1 = |xα

1 − xγ
1 | and rαγ

0 the desired intramolecular distance between particles

of species α and γ. The constant κ defines the strength of the potential. The s(s−1)
2

different distances rαγ
0 completely specify the configuration of the molecule. The

potential (4.82), however, does not lead to fixed distances within the molecule, but
allows fluctuations around the desired distances. Therefore, we investigate the limit
where the constant κ, which determines the strength of the force that constrains two
particles to their desired distance, goes to infinity, i.e., we consider lim

κ→∞
vi(xα

1 ,xγ
1 ; κ).

We examine equation (4.81), which determines the intramolecular pair distribution
functions, and assume that, in this limit, the solution of equation (4.81) is strongly
dominated by the first term of the right hand side, and that all integral terms can
be neglected, i.e.,

∇xα
1
g(2)

αγ (xα
1 ,xγ

1 ; κ) = βFi
αγ(x

α
1 ,xγ

1 ; κ)g(2)
αγ (xα

1 ,xγ
1 ; κ) for κ→∞. (4.83)
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The dependence on κ is explicitly written in the arguments in order to distinguish
between g

(2)
αγ (xα

1 ,xγ
1 ; κ) and the final version of g

(2)
αγ (xα

1 ,xγ
1) which will not depend on

this parameter. The solution of (4.83) is

g(2)
αγ (xα

1 ,xγ
1 ; κ) = c(κ, rαγ

0 )e−βvi(xα
1 ,xγ

1 ;κ)

= c(κ, rαγ
0 )e−βκ(rαγ

1 −rαγ
0 )2 . (4.84)

In particular, this is a solution of (4.83) for any factor c(κ, rαγ
0 ). We introduce

this factor such that we get a reasonable limit limκ→∞ which obeys the desired
normalization condition

lim
κ→∞

∫

Ω

g(2)
αγ (rαγ

1 ; κ) drαγ
1 = 1 (4.85)

with rαγ
1 = xα

1 − xγ
1 . Remember that the pair distribution function only depends on

the distance of the sites α and γ. We choose

c(κ, rαγ
0 ) =

√
4βκ

π

1

4π(rαγ
0 )2

. (4.86)

With this choice of c(κ, rαγ
0 ) we can investigate the limit of κ→ ∞ in more detail.

We find for the convolution with an arbitrary function f
∫

Ω

f(rαγ
1 − r′)g(2)

αγ (rαγ
1 ) drαγ

1 = lim
κ→∞

∫

Ω

f(rαγ
1 − r′)g(2)

αγ (rαγ
1 ; κ) drαγ

1

= lim
κ→∞

∫

Ω

f(rαγ
1 − r′)

√
4βκ

π

e−βκ(rαγ
1 −rαγ

0 )2

4π(rαγ
0 )2

drαγ
1

=

∫

Ω

f(rαγ
1 − r′)

δ(rαγ
1 − rαγ

0 )

4π(rαγ
0 )2

drαγ
1 . (4.87)

Equation (4.87) represents the definition of the delta distribution as the limit of a
Dirac sequence, see e.g. [60]. The result is very intuitive, since the two particles xα

1

and xγ
1 have to remain exactly at a distance of rαγ

0 if the restoring force is infinite.
The factor 4π(rαγ

0 )2 represents the surface of the sphere with radius rαγ
0 and ensures

the correct normalization.
Now, we have developed a formalism to describe the molecules as rigid bodies

within equations (4.80) and (4.81). We even know all solutions of equations (4.81),

g(2)
αγ (xα

1 ,xγ
1) =

δ(rαγ
1 − rαγ

0 )

4π(rαγ
0 )2

, ∀ α 6= γ (4.88)

and only have to take care of equations (4.80). But before we insert (4.88) into
(4.80), we take a closer look at the second integral term of equation (4.80), since it
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contains the intramolecular force Fi. Inserting vi from (4.82), using relation (4.88)
and taking the limit κ→∞ leads to

lim
κ→∞

∫

Ω

Fi
αη(x

α
1 ,xη

1; κ)g(2)
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1 ,xη
1; κ)g(2)
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1. (4.89)

In lines four and six of (4.89), we used the property of the convolution,

d

dx
(a(x) ∗ b(x)) =

da(x)

dx
∗ b(x) = a(x) ∗ db(x)

dx
, (4.90)

to shift the gradient to g
(2)
γη (xγ

2 ,x
η
1) and finally outside the integral. Altogether, we

can write down our final result for the site-site pair distribution functions
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2)g
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with

ω(xα
i ,xη

i ) =
δ(rαη

i − rαη
0 )

4π(rαη
0 )2

. (4.92)

We call equations (4.91) the site-site BGY3dM (SS-BGY3dM) equations.
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Molecular BGY3d (BGY3dM) Equation

With (4.91) we have developed equations for the site-site pair distribution functions
of molecular fluids. However, the goal is to compute the site densities of a molecular
solvent around an arbitrary solute

ρS
α(xα

1 )|xM = ρSg(NM+1)
α (xα

1 |xM) (4.93)

with the conditional probability g
(NM+1)
α (xα

1 |xM) and xM ∈ R
3NM the fixed config-

uration of the solute. Analog to the derivation of the site-site BGY3dM equations,
we obtain the corresponding equation for g

(NM+1)
α (xα

1 ,xM) as
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1
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1)g
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M) dxη
1. (4.94)

As before, Fα(xα
1 ,xM) is the total force exerted on solvent particle xα

1 due to the
solute. We again insert the n-level Kirkwood closure relations (4.42) and divide by
g(NM )(xM). This yields

∇xα
1
g(NM+1)

α (xα
1 |xM) = βFα(xα

1 ,xM)g(NM+1)
α (xα

1 |xM) (4.95)
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2|xM) dxη
2
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∇xα
1

∫
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η (xη

1|xM)ω(xα
1 ,xη
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1,

where we already considered the result of (4.89). This is the molecular BGY3d

(BGY3dM) equation. The site-site pair distribution functions g
(2)
αη (xα

1 ,xη
2) appear

as input into the equations and can be computed in advance by equations (4.91).
The most important innovation of equation (4.95) is the second integral term of the
right hand side. This part accounts for the intramolecular correlations of the solvent
molecules.

4.3.4 Improved Approximation for the Intramolecular
Interactions

In the derivation of the molecular BGY3d equation we employed the n-level Kirk-
wood closure relation (4.42) for all occurring n-particle distribution functions. It
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was shown by Reiss [95] for monoatomic fluids that, in the thermodynamic limit,
i.e. infinite number of particles in an infinite volume, the Kirkwood approximation
is the optimal superposition approximation for the triplet distribution function. At-
tard [4] expanded this statement to the purely intermolecular triplet distribution
functions of molecular liquids. An important observation of this statement is that
the Kirkwood approximation

g(3)(x1,x2,x3) ≈
g(2)(x1,x2)g

(2)(x1,x3)g
(2)(x2,x3)

g(1)(x1)g(1)(x2)g(1)(x3)
(4.96)

is the only superposition of pair functions which obeys the correct asymptotic con-
ditions [4], i.e.

g(3)(x1,x2,x3)→ g(2)(x2,x3)g
(1)(x1) for |x1| → ∞. (4.97)

This asymptotic limit is only exact to order N−1, with N the number of particles.
Equation (4.97) states that particle one becomes uncorrelated to the remaining two
particles when it is far away.

For molecular fluids, the situation is different. Here it is known that the Kirk-
wood approximation for triplet distribution functions is not a satisfying choice if
the triplet distribution function includes intramolecular distributions. To see this,
we recall that the error terms of the asymptotic limit (4.97) are of the order N−1,
i.e., they can be neglected in the thermodynamic limit. This does however not ap-
ply for the intramolecular parts, since the number of sites per molecule is constant.
Hence, the approximation has to be modified if the correct asymptote and normal-
ization conditions are to be satisfied. These conditions for the mixed intra- and
intermolecular triplet distribution function read as follows:

g(3)
αγη(x

α
1 ,xγ

2 ,x
η
2)→ g(2)

γη (xγ
2 ,x

η
2)g

(1)
α (xα

1 ) for |xα
1 | → ∞, (4.98)

g(3)
αγη(x

α
1 ,xγ

2 ,x
η
2)→ 0 for |xγ

2 | → ∞ (4.99)

for the asymptotic conditions and further

∫

Ω

g(3)
αγη(x

α
1 ,xγ

2 ,x
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2) dxα

1 =
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ρS
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γη (xγ
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2), (4.100)

∫

Ω
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2 ,x
η
2) dxγ

2 = g(2)
αη (xα

1 ,xη
2) (4.101)

for the normalization conditions. As before, NS is the number of molecules in the
fluid and ρS is the molecular density. The asymptotic conditions are very intuitive,
since the distribution function obviously has to approach zero if the distance of two
sites of the same molecule becomes large. Attard [4] has developed a formalism
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to compute the optimal pair functions to superpose. They can be computed by
iteration of the two equations describing the normalization condition (4.101),

g(2)
αη (xα

1 ,xη
2) = Γαη(x

α
1 ,xη

2)

∫
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∫
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2) dxη
2. (4.102)

Hence, the superposition approximation in this case can be explicitly written as

g(3)
αγη(x

α
1 ,xγ

2 ,x
η
2) = g(2)

γη (xγ
2 ,x

η
2)Γαγ(x

α
1 ,xγ

2)Γαη(x
α
1 ,xη

2) (4.103)

with the two functions Γαγ and Γαη as the solutions of equations (4.102). Note, that
only the intermolecular pair functions have to be computed. This approximation
satisfies all conditions (4.98) – (4.101) and is therefore the optimal choice. The obvi-
ous disadvantage is that it requires the iterative solution of two coupled equations.
Moreover, approximation (4.103) would complicate the numerical solution of our
BGY3dM model since the product approach could not be employed, as we will see
later. This is why we pursue a more pragmatic approach.

In [116], Taylor and Lipson studied the BGY equation for hard sphere dimers.
To this end, they derive an equation for the site-site pair distribution functions from
the molecular BGY equation. Here, the dimers are treated as rigid bodies with
translational and rotational degrees of freedom. This model requires approxima-
tions for triplet and quadruplet distribution functions which contain both intra- and
intermolecular parts. They employ the so-called normalized site-site superposition
approximations (NSSA). For the triplet distribution function, this approximation
can (in our notation) be written as
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with
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(4.105)

and the normalization functions
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2 . (4.106)

These conditional probability functions account for the correlations between the
site-site functions due to the constraints imposed by the presence of connected sites.
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It is obviously a simplified version of equation (4.103) but has the advantage of being
readily evaluated. Nevertheless, it leads to a much better approximation than the
Kirkwood superposition approximation when dealing with multi-site distribution
functions involving connected pairs [116].

We follow the argumentation of Taylor and Lipson and use the approximation
(4.104) in our BGY3dM model. However, in order to keep the computational effort
on an acceptable level, we have to further simplify the approximation. To be more
precise, we insert (4.104) for those triplet distribution functions which include in-
tramolecular correlations. In the case of the site-site BGY3dM equations, these are
the triplet distribution functions g

(3)
αγη(xα

1 ,xγ
2 ,x

η
1) and g

(3)
αγη(xα

1 ,xγ
2 ,x

η
2), see equation

(4.78). We then transform and simplify the corresponding integral term to yield a
term which can be numerically evaluated with acceptable effort, see Chapter 5 for
all numerical details. For the first triplet distribution function and the respective
integral term this gives
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with g
(2)
αη (xα

1 ,xη
1) = ωαη(x

α
1 ,xη

1) in our case. In the second line, we already considered
the limit of an infinite intramolecular restoring force, compare the derivation (4.89).

In the fourth line, we replaced g
(2)
γη by its normalized form g̃

(2)
γη;α. By this, it is possible

to transform the term so that it involves a single integral only, which is numerically
advantageous. Numerical tests in Chapter 5 will reveal that this approximation
leads to reasonable results. For the second triplet distribution function and the
corresponding integral term, we employ the full NSSA approximation for now:

s∑

η=1,η 6=γ
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Ω

Fαη(x
α
1 ,xη

2)g
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αγη(x

α
1 ,xγ
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≈ g(2)
αγ (xα

1 ,xγ
2)
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η=1,η 6=γ

1
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γ
2 ,x

η
2) dxη

2.
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The actual implementation of this term will be discussed in Chapter 5.
Now we have to transfer the NSSA approximation to the conditional NM + 2-

particle distribution function as it appears in the BGY3dM equation (4.94) (third
line). For this, we insert the n-level Kirkwood approximation (4.42) and simply
divide by the normalization functions analog to (4.104). This yields

s∑

η=1,η 6=α

1
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∫
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1
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. (4.109)

The derivation is equivalent to (4.107). The replacement of g
(NM+1)
η by its normalized

form again simplifies the computation of this term. The normalization functions are
defined by

nη
α(xα

1 ) =

∫
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ωαη(x
α
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1)g
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η (xη

1|xM) dxη
1,
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η (xη

1) =
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ωαη(x
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1 ,xη

1)g
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α (xα

1 |xM)dxα
1 . (4.110)

We are now able to insert the terms with improved approximation for the intramolec-
ular interactions into the SS-BGY3dM and the BGY3dM equations. The resulting
equations can be transformed along the lines of Section 4.3.1 for the monoatomic
BGY3d equation in order to simplify their numerical treatment.

4.3.5 Transformations of the Site-Site BGY3dM and BGY3dM

Equations

The structure of the site-site BGY3dM as well as the BGY3dM equations is very
similar to that of the original BGY3d equation (4.46). This is advantageous, since
we can adopt the results of Section 4.3.1 for the original BGY3d equation. With the
exact same arguments, the solution of the BGY3dM equations (4.95) approaches
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zero at the solute particle positions for any site of the solvent molecules. Hence, we
can adopt the transformations of the BGY3d equation in Section 4.3.1 in order to
facilitate the numerical treatment of the equations.

We first consider the BGY3dM equations (4.95). To this end, we can insert the
product as well as the exponential ansatz and write

gα(xα
1 ) = g0

α(xα
1 )e−uα(xα

1 ) (4.111)

with

g0
α(xα

1 ) = e−β
PNM

i=1 v(xα
1 −xM

i ) (4.112)

as the solution of

∇xα
1
gα(xα

1 ) = βFα(xα
1 ,xM)gα(xα

1 ), (4.113)

where we again use the short notation and leave out the xM indices and the super-
script (NM + 1). Following the argumentation of Section 4.3.2, we insert (4.111)
into (4.95) and apply the divergence. This results in

∆xα
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s∑

η=1

ρS∇xα
1
·
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. (4.114)

Here, we also considered the intramolecular term (4.109) with the improved ap-
proximation. This is the transformed BGY3dM equation, our final result for the
computation of site distribution functions of molecular solvents around an arbitrary
solute.

Secondly, we can equivalently transform the site-site BGY3dM equations and
use

g(2)
αγ (xα

1 ,xγ
2) = g0

αγ(x
α
1 ,xγ

2)e
−u

(2)
αγ (xα

1 ,xγ
2 ) (4.115)

with

g0
αγ(x

α
1 ,xγ

2) = e−βvαγ (xα
1 −x

γ
2 ) (4.116)

as the solution of

∇xα
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αγ (xα
1 ,xγ

2) = βFαγ(x
α
1 ,xγ

2)g
(2)
αγ (xα

1 ,xγ
2), (4.117)

where vαγ(x
α
1 −xγ

2) is the potential between sites α and γ of molecules one and two,
respectively. As above, we now insert (4.115) into (4.91), consider the improved
approximation terms (4.107) and (4.108), apply the divergence and finally end up
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with
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. (4.118)

We employ the NSSA approximation without any modifications in the last line.
The numerical evaluation of this term is challenging, but it will lead to reasonable
results, as we will see in Chapter 5. Equations (4.118) are the transformed site-site
BGY3dM equations, which can be used to compute the site-site pair distribution
functions that are further necessary as input to the BGY3dM equations (4.114).

The advantage of the formulations (4.118) and (4.114) is, as already described,
that the singular force terms do not appear outside the integrals, thereby facilitating
the numerical treatment. Since we will compute the convolution integrals by means
of Fourier transformations, the Laplace operator can be realized as diagonal scaling
in Fourier space, which is numerically very efficient. Together, this yields an efficient
method to compute the site distribution functions around arbitrary solutes. Numer-
ical tests of the site-site BGY3dM and BGY3dM equations will be investigated in
Chapter 5. Further, we will consider actual applications of the BGY3dM model in
Chapter 6.





Chapter 5

Numerical Aspects

In Chapter 4 we have derived the BGY3d and the BGY3dM models for the com-
putation of solvent densities around solutes of arbitrary shape. To this end, the
BGY3d model deals with monoatomic solvents, whereas the BGY3dM model is able
to consider complex molecular solvents. In this Chapter, we are going to present
the numerical algorithms for solving the BGY3d as well as the BGY3dM equations.
We will present their discretization and discuss the numerical error. Furthermore,
we will also investigate the approximation error of the models due to the closure
relations involved. For this, we will compare results obtained by the new BGY3d
and BGY3dM models with results from molecular dynamics simulations and the
3d-HNC method of Beglov and Roux [10].

The solution of the BGY3d and of the BGY3dM models requires the prior com-
putation of the pair distribution functions of the pure solvent. To this end, we
employ the Born-Green equation (2.52) in the case of monoatomic solvents and the
SS-BGY3dM equations (4.91) in the case of molecular solvents. The structure of
these equations is almost identical to that of the BGY3d and BGY3dM models.
They involve the same approximations and are discretized the same way. It follows
that the Born-Green equation and the SS-BGY3dM model are suited better for the
investigation of the discretization error, since they do not involve a precomputed
function. This is why we will discuss the discretization error on the basis of these
equations. In order to quantify the approximation error of the models, we will com-
pute pair distribution functions and site density distributions around simple solutes
and compare them to results from molecular dynamics simulations. In the case
of three-dimensional density distributions, this investigation is complicated by the
slow convergence of the molecular dynamics results. They will still exhibit signifi-
cant fluctuations even after hundreds of millions of time steps. Hence, we will finally
also compare the computational effort of our BGY3d and BGY3dM models and a
molecular dynamics simulation.

81
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5.1 Numerical Solution of the BGY3d Equation

We are now going to investigate in full detail the numerical solution of the BGY3d
model, which we derived in Section 4.3.1. Therefore, we introduce a short notation
and write the BGY3d equation (4.61) as

∆u = −βρ ∇ ·Kg in Ω (5.1)

with

Kg(x) =

∫

Ω

F(x,x′)g(2)(x,x′)g(x′) dx′ (5.2)

and
g(x) = g0(x) e−u(x). (5.3)

Equation (5.1) is a non-linear integro-differential equation. As before, Ω ⊆ R
3

denotes the spatial domain of the system. We have to choose the domain large
enough such that finite size effects can be neglected, see also Section 2.2. That is, we
assume u(x) ≈ 0 outside the domain and can define Dirichlet boundary conditions
u(∂Ω) = 0. This is possible due to the short-range character of the distribution
functions1. Furthermore, we can always enlarge the domain without affecting the
solution. In particular, we can choose Ω = R

3.
To cope with the non-linearity, we apply a fixed point iteration, which leads to

a series of linear integro-differential equations.

Algorithm 5.1 ((Damped) Fixed Point Iteration of the BGY3d Equation).

1. u0 = 0; l = 0;

2. l← l + 1; gl−1 = g0 e−ul−1
; solve

∆ul = −βρ∇ ·Kgl−1 in Ω (5.4)

and set
ul ← νul + (1− ν)ul−1. (5.5)

3. If
||ul − ul−1||L∞ < νχ (5.6)

stop; else go to 2.

Here, 0 < ν ≤ 1 is a factor that damps the iteration in order to guarantee
convergence. The constant χ defines the stopping criterion of the iteration.

1For many types of interaction potentials, the short-range character of pair distribution func-
tions can even be shown rigorously, see [1].
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By the application of the fixed point iteration, the problem is transformed into
a series of linear PDEs (5.4). After evaluating the right hand side of (5.4), we get
a Poisson problem with Dirichlet boundary conditions ul(∂Ω) = 0. The boundary
condition results from the fact that we want to choose the finite domain such that
the solution g is constant outside the domain. We choose this constant to be 1,
which leads us to the described boundary condition. We apply the Laplace operator
in Fourier space in order to solve the Poisson equation. To this end, the Laplace op-
erator is represented as a diagonal matrix. This has the advantage of fast evaluation
but assumes periodic boundary conditions. We can however choose the domain large
enough such that the solution of the Poisson problem (5.4) is identical for periodic
and Dirichlet boundary conditions, assumed that the force and the pair distribution
function are of short range.

We now consider the evaluation of the right hand side of (5.4). For this, we first
introduce a short notation Ai(x) := Fi(x)g(2)(x) for i = 1, 2, 3. If we set the domain
to Ω = R

3, we can apply the convolution theorem which states that

F3(Ai ∗ g) = F3(Ai)F3(g), (5.7)

where the asterix ∗ denotes again the convolution. Furthermore, F3 is the Fourier
transform in three dimensions

ĝ(k) := F3(g)(k) =

∫

R3

g(x)e−2πık·x dx, (5.8)

and the inverse Fourier transform reads as

F−1
3 (ĝ)(x) =

∫

R3

ĝ(k)e2πık·x dk. (5.9)

Hence, the convolution integral (5.2) can be computed as

(Kg)i = F−1
3 (F3(Ai)F3(g)) , i = 1, 2, 3 (5.10)

The representation of the convolution integral by means of Fourier transformations
enables a very efficient computation with complexity O(n3 log(n3)) if the fast Fourier
transform (FFT) is employed. Here, n denotes the degrees of freedom for one di-
mension.

In order to cope with the divergence of Kg, we make the following observations:
Since the Fi are antisymmetric and g(2) is a symmetric function, Ai is antisymmetric
as well. Hence, the convolution of Ai with a constant is zero and we can write

Ai ∗ g = Ai ∗ (g − 1) = Ai ∗ h (5.11)

with h = g − 1. Now, we use the fact that the derivative of the convolution can be
shifted to its arguments

∂xi
(Ai ∗ h) = (∂xi

Ai) ∗ h = Ai ∗ (∂xi
h). (5.12)
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Therefore, we obtain for the derivative of the convolution

∂xi
(Kg)i = F−1

3 (F3(Ai)F3(∂xi
h)) (5.13)

with
F3(∂xi

h) = 2πıkiF3(h), (5.14)

since h(x)→ 0 for |x| → ∞.
If we now expand the solution ul in a Fourier series

ul =

∫

R3

ûle2πık·x dk = F−1
3 (ûl), (5.15)

where the e2πık·x are the basis functions of the Fourier space, application of the
Laplace operator simply yields

∆F−1
3 (ûl) =

∫

R3

ûl∆e2πık·x dk

= −
∫

R3

ûl(2π)2|k|2e2πık·x dk

= −(2π)2F−1
3 (ûl|k|2), (5.16)

i.e., the derivative can be shifted to the basis function. Summing up, we can write
equation (5.4) as

(2π)2F−1
3 (ûl|k|2) = 2πıβρF−1

3

(
3∑

i=1

kiF3(Ai)F(hl−1)

)
. (5.17)

Here, the arguments of the inverse Fourier transforms have to be identical up to a
constant and we have

ûl(k) =
ıβρ

2π

3∑

i=1

ki

|k|2F3(Ai)F3(h
l−1) (5.18)

with
hl−1 = gl−1 − 1 and gl−1 = g0 e−ul−1

. (5.19)

The value corresponding to the zero wavelength is not defined by this relation. We
therefore set ûl(0) = 0 and thereby enforce the normalization

∫

Ω

ul(x) dx = 0 (5.20)

in every step of the fixed point iteration. The function ul is constant except for
a very localized region at the center of the domain, if we assume a short-range
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potential. Hence, the normalization (5.20) approximates the Dirichlet boundary
condition ul(∂Ω) = 0 sufficiently well, if the domain Ω is large enough. The solution
ul can then simply be computed by (5.15),

ul = F−1
3 (ûl) (5.21)

with ûl from (5.18) and ûl(0) = 0. This way, the solution of the Poisson equation
(5.4) requires only one Fourier transform and one inverse Fourier transform in each
step of the fixed point iteration. Note, that the Fourier transforms of the Ai, i =
1, 2, 3, can be computed and stored in advance.

Solution of the Born-Green Equation

The Born-Green equation (2.52) for the pair distribution function of the pure solvent
can be regarded as special case of the BGY3d equation, where a single fixed solvent
atom acts as solute. Then, we have g(x) = g(2)(x|xM) and equation (5.1) is the
Born-Green equation with

KBG
g (x) =

∫

Ω

F(x,x′)g(x− x′)g(x′) dx′ (5.22)

and

g(x) = g0(x) e−u(x). (5.23)

This way, we can follow the same argumentation as above, apply the fixed point
iteration and use the Fourier transformation for the convolution of (5.22). This
leads to the solution of the Poisson problem

ul = F−1
3 (ûl) (5.24)

with

ûl(k) =
ıβρ

2π

3∑

i=1

ki

|k|2F3(A
l−1
i )F3(h

l−1), ûl(0) = 0 (5.25)

and

Al−1
i (x) = Fi(x)gl−1(x), hl−1 = gl−1 − 1 and gl−1 = g0 e−ul−1

, (5.26)

as one step of the fixed point iteration. The only difference to equation (5.21) is
that the vector Al now also depends on the solution gl. Hence, three additional
Fourier transformations are required in each iteration step, but the same numerical
implementation can be used for the Born-Green equation and the BGY3d equation.
Both methods are identical, except for the definition of the vector Al.
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5.1.1 Discretization

In order to discretize equations (5.21) and (5.24), we choose a computational domain
Ω = [0, L]3 ⊂ R

3. We approximate all functions on a regular grid of size N = n3

with n the number of grid points in one dimension. The grid points are defined by
xh(i) = ih for i ∈ [0, n− 1]3 ⊂ N

3 with the mesh size h = L
n

and the length L of the
domain in one dimension. We call Ωh the set of grid points

Ωh = {xh(i) | i ∈ [0, n− 1]3}. (5.27)

All functions are approximated (in the function space) on this grid and are rep-
resented as vectors in R

N . The discrete (approximated) version of a function
f : Ω → R is denoted by fh ∈ R

N . It holds for a known function f at the grid
points that

(fh)i = f(xh(i)), ∀ i ∈ [0, n− 1]3. (5.28)

Functions in Fourier space are approximated on a grid with mesh size hk = 1
L
, i.e.,

the discrete points are given by k(i) = ihk for i ∈ [0, n− 1] ⊂ N
3. Here, we set

Ωhk
= {kh(i) | i ∈ [0, n− 1]3}. (5.29)

Hence, we have chosen the same number of grid points N = n3 for the discretization
in real and Fourier space. We employ the fast Fourier transform (FFT) algorithm
as it is implemented in the FFTW [39] to compute the discrete Fourier transforms.

The numerical procedure is as follows: All given functions, the force F, the pair
distribution function g(2) and the initial guess u, are approximated on the grid. Then,
we apply the discrete version of Algorithm 5.1, i.e., we solve (5.4) in every step of
the fixed point iteration by (5.21) and (5.24) in the case of the BGY3d equation and
the Born-Green equation, respectively. We stop the iteration if ‖ul

h−ul−1
h ‖Lh

∞
< νχ,

where ‖.‖Lh
∞

is the discrete version of the L∞-norm,

‖ul
h‖Lh

∞
:= max

i
|(ul

h)i|. (5.30)

There are two sources of errors if we solve equation (5.1) by the numerical pro-
cedure described above. First, the discrete Fourier transform on the finite domain
Ω enforces periodicity of the functions on Ω, although our continuous functions are
not periodic with respect to Ω. Secondly, we have the discretization error itself.
The interplay of these errors and their specific influence on the convergence will be
investigated in more detail in the next section.

5.1.2 Convergence

We investigate the convergence of our discretization of the BGY3d model (5.1). As
a start, we illustrate the two sources of errors, finite domain and discretization, for
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σ1 = σ2 = 1.0 σ1 = σ2 = 0.1 σ1 = 1.0, σ2 = 0.1
dof eLh

2
eLh

∞
eLh

2
eLh

∞
eLh

2
eLh

∞

323 2.236−8 4.329−5 3.071−3 1.006+2 2.702−5 6.589−2

643 7.392−9 4.330−5 1.150−5 2.448+0 1.769−8 1.253−4

1283 2.564−9 4.330−5 2.023−11 1.278−5 1.943−12 9.567−8

2563 9.022−10 4.330−5 9.144−21 7.105−15 6.413−13 9.937−8

5123 3.186−10 4.330−5 2.895−21 7.105−15 2.219−13 1.003−7

Table 5.1. Errors of the numerical convolution for different values of σ1, σ2

and numbers of degrees of freedom (dof).

the convolution of two Gaussians. We choose

fi(x) =
1

(2πσ2
i )

3
2

e
− x2

2σ2
i , i = 1, 2, (5.31)

and compute the convolution

f1 ∗ f2 =

∫

R3

f1(x− x′)f2(x
′) dx′. (5.32)

The analytical solution is given by

f ∗(x) =
1

(2π(σ2
1 + σ2

2))
3
2

e
− x2

2(σ2
1
+σ2

2
) . (5.33)

The numerical convolution is computed on the finite domain Ω = [−5, 5]3 by means
of the discrete Fourier transform. We measure the discrete L2- and L∞-error of the
numerical solution for different values of σ1 and σ2 and different mesh sizes h of the
domain discretization:

eLh
2

= ||f ∗ − f ∗
h ||Lh

2
=

1

N

(∑

i

|f ∗(xh(i))− (f ∗
h)i|2

) 1
2

,

eLh
∞

= ||f ∗ − f ∗
h ||Lh

∞
= max

i
|f ∗(xh(i))− (f ∗

h)i|, (5.34)

with f ∗
h the discrete solution of the numerical convolution.

The results for up to N = 5123 grid points are shown in Table 5.1 and Figure 5.1.
First, one can clearly observe the influence of the width of the Gaussian functions on
the error. The convolution of the two Gaussians with σ1 = σ2 = 1.0 shows a nearly
constant error for any mesh size h, because the functions are very broad and smooth.
Here, the error due to the finite domain size dominates, since the functions have a
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Figure 5.1. L∞-error (left) and L2-error (right) of the numerical convolu-
tion for different values of σ1, σ2 and numbers of degrees of freedom (dof).

non-negligible value at the boundaries. For σ1 = σ2 = 0.1, however, the influence of
the finite domain is negligible. Now, the functions are more sharply defined such that
they are not well-approximated with few degrees of freedom. Here, the exponential
convergence of the discrete Fourier transform can be observed. The case σ1 = 1.0
and σ2 = 0.1 illustrates how the two sources of error interplay. The error due to the
finite domain is constant, but is exceeded by the discretization error up to N = 1283

grid points.
The observations of this simple test teach us that we have to appropriately choose

the size of the domain and the resolution of the grid in order to get small errors at
acceptable costs. We can easily choose the domain size large enough such that all
functions nearly vanish at the boundaries in the case of short-range potentials such
as the Lennard-Jones potential.

We will now investigate how the numerical accuracy improves when we increase
the mesh size of the discretization. For this, we consider the solution of the Born-
Green equation by algorithm (5.1) with the Lennard-Jones potential, i.e., we choose
the force to be

FLJ = −∇xv
LJ(x), vLJ(r) = 4ǫ

((σ

r

)12

−
(σ

r

)6
)

. (5.35)

We employ the Born-Green equation for this convergence test, since it does not
comprise a function which is only approximately known, as this is the case for the
BGY3d equation. But all observations also apply to the BGY3d equation, because
the discretizations are identical.

We do not know the analytical solution for the considered problem. Hence, we
compare the results for different resolutions of the grid. That is, we compute the pair
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Figure 5.2. L∞-error (left) and L2-error (right) for different values of ρ.

distribution function for N1 = 323, N2 = 643, N3 = 1283, N4 = 2563 and N5 = 5123.
We then measure the error between the solution on the finest grid (level 5) and all
other solutions. To this end, we linearly interpolate all functions to the finest grid
and compute the discrete L2- and L∞- errors between the interpolated solution and
the solution on the finest grid gh5 ,

eLh
2

= ‖gh5 − g̃hl
‖Lh

2
=

1

N5

(∑

i

|(gh5)i − (g̃h)i|2
) 1

2

, (5.36)

eLh
∞

= ‖gh5 − g̃hl
‖Lh

∞
= max

i
|(gh5)i − (g̃h)i|, (5.37)

where g̃h indicates the solution with mesh size h interpolated to the finest level. The
choice of the simulation parameters can be found in Table 5.2. The values for the
density ρ of the fluid and the inverse temperature are chosen to represent the liquid
state of the system. The damping factor in the fixed point iteration has been chosen
to be ν = 0.9, ν = 0.5 and ν = 0.3 for ρ = 0.3, ρ = 0.5 and ρ = 0.8, respectively.

Ω = [−5, 5]3 ρ = 0.3, 0.5, 0.8 β = 0.6061
ǫ = 1.0 σ = 1.0 χ = 10−6

Table 5.2. Parameters of the model problem.

Table 5.3 and Figure 5.2 show the results for different values of the density
ρ. Obviously, the error significantly decreases up to N = 2563. However, the
magnitude of the L∞-error shows that, even for the finest resolution, the solution
is still not approximated with good accuracy. This is caused by the sharp flank
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ρ = 0.3 ρ = 0.5 ρ = 0.8
dof eLh

2
eLh

∞
eLh

2
eLh

∞
eLh

2
eLh

∞

323 2.706−6 1.022+0 2.793−6 1.081+0 - -
643 1.078−6 4.403−1 1.140−6 4.659−1 1.369−6 5.472−1

1283 3.271−7 1.644−1 3.495−7 1.743−1 4.215−7 2.064−1

2563 8.125−8 4.729−2 8.698−8 5.034−2 1.050−7 5.947−2

Table 5.3. Errors of the BGY3d method for different values of ρ and dif-
ferent numbers of degrees of freedom (dof). Note that for ρ = 0.8 and N = 323 the
fixed point iteration of the BGY3d method does not converge.

of the pair-distribution functions from zero to the first peak, compare also Figures
2.1 – 2.3. This region is dominated by the factor g0 = e−βvLJ (x), which is infinitely
often differentiable but very sharp and therefore difficult to approximate by our
discretization. Hence, the reduction of the error is dominated by the approximation
of the constant function g0. This is why we will further investigate the solution with
respect to its product structure in more detail.

The pair distribution function is computed in each step of the fixed point iteration
(5.1) by our product approach

gl(x) = g0(x)e−ul(x) with g0(x) = e−βvLJ (x), (5.38)

where ul is the solution of the Poisson equation (5.4) of step l. As stated above,
the function g0 is very sharp and difficult to approximate. Hence, we now repeat
the simulations above with a slightly different computation of gh: Instead of gh, we
now interpolate uh to the finest grid before we compute gh by (5.38) on the finest
grid. This way, we can compare the solution of the fixed point iteration for different
resolutions without the influence of the function g0.

Table 5.4 and Figure 5.3 show the results for different values of the density ρ for
the modified interpolation of the solution. The absolute values of the L∞- and the
L2-errors are now considerably improved. The rate of the error reduction decreases
from 0.066 between level 1 and 2 to 0.26 between level 3 and 4 in the case of the
L∞-error and of density ρ = 0.3. A similar behavior can be observed for the other
densities and the L2-error. Due to the small number of different grid sizes, an
asymptotic rate cannot be determined yet. One may wonder why the roughness
of g0 does not have a stronger influence on the solution through the integral term
(5.22) (where it is again incorporated through g from (5.38)). Since the sharp region
of g0 is very localized, the result of the integral term is very smooth and only weakly
affected by the poor approximation of g0, which explains the significantly smaller
errors measured with this procedure.
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Figure 5.3. L∞-error (left) and L2-error (right) for different values of ρ
and different numbers of degrees of freedom (dof). The function g0 is multiplied on
the finest grid.

ρ = 0.3 ρ = 0.5 ρ = 0.8
dof eLh

2
eLh

∞
eLh

2
eLh

∞
eLh

2
eLh

∞

323 5.396−7 1.406−1 8.250−7 3.891−1 - -
643 6.710−8 9.298−3 9.418−8 2.350−2 2.819−7 1.313−1

1283 1.301−8 1.651−3 2.287−8 2.892−3 5.674−8 7.330−3

2563 3.127−9 4.256−4 5.516−9 7.523−4 1.396−8 1.940−3

Table 5.4. Errors of the BGY3d method for different values of ρ and differ-
ent numbers of degrees of freedom (dof). The function g0 is multiplied on the finest
grid. Note that for ρ = 0.8 and N = 323 the fixed point iteration of the BGY3d
method does not converge.

In summary, the solution of the BGY3d equation is satisfactorily approximated
for all grid resolutions with N ≥ 2563, i.e., the relative L∞-error is roughly 5% when
compared to a solution with N = 5123 grid points. The major part of this error is
due to the difficult approximation of the constant function g0 and is localized at the
sharp peak of this function. The smooth regions of the distribution functions are well
approximated even for small number of degrees of freedom, as is indicated by the low
L2-errors. Nevertheless, we have to keep in mind that the actual error between our
approximated solution and the (unknown) exact solution may be greater, but this
difference should be negligible, since the probability distributions are not expected
to exhibit very fine structures. In the following, we will use N = 2563 grid points
when possible. Sometimes this has to be reduced to N = 1283 for special reasons
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Figure 5.4. Convergence of the fixed point iteration for different values of ρ
in the L∞-norm (left) and the L2-norm (right).

which will be explained in the corresponding section.
Finally, we are going to discuss the convergence of the non-linear fixed point

iteration. Figure 5.4 shows the convergence history for N = 2563 and different
densities, i.e., the logarithmic plots of

1

ν
‖ul

h − ul−1
h ‖Lh

∞
and

1

ν
‖ul

h − ul−1
h ‖Lh

2

with ul
h being the discrete solution of the linearized problem (5.4) of step l of the

fixed point iteration. A decrease of the norms indicates the contracting property of
the fixed point iteration, which is a condition for convergence. Indeed, the L2-norm
shows a monotonic decrease during iteration, whereas regions of increase can be
observed in the L∞-norm. This is because the discrete L∞-norm is more sensitive to
the discrete approximation of the solution. Strong local changes may cause a short
increase of the norm, since it is sensitive with respect to the exact location of the
grid points. This happens especially at the beginning of the iteration process. The
discrete L2-norm is more robust due to the averaging process involved and shows
a monotonic decrease. Hence, the fixed point iteration converges for our choice of
the initial u0

h and the damping factor ν. Asymptotically, linear convergence can
be observed for all densities. The rate of convergence however becomes worse with
increasing density due to the stronger influence of the the non-linear term.

5.2 Test of the BGY3d Model

In this section we are going to investigate the model errors of the BGY3d equations
in more detail. We have seen in Section 5.1.2 that the numerical errors can be
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controlled if we appropriately choose the size of the domain and the resolution of
the grid. We will show that the numerical errors are negligible when we compare
the results of the BGY3d equation with results gained from molecular dynamics
simulations. The deviations between the results will be dominated by the model
error of the BGY3d model. This is due to the approximations involved in the
model. In order to classify the BGY3d equation within existing methods, all results
will also be compared to the 3d-HNC model of Beglov and Roux [10].

5.2.1 Computing the Solvent Density with Molecular Dynamics

In order to analyze the model error of the BGY3d equation, we are going to compare
the BGY3d results with those of a molecular dynamics simulation. To be more
precise, we compute the mean solvent density of a simple Lennard-Jones fluid around
a solute composed of one, two, three or four particles with both the BGY3d method
and by a molecular dynamics simulation. In general, the mean solvent density can
be computed by

〈ρ(x)〉(xM ) =

〈
NS∑

i=1

δ(x− xS
i )

〉

(xM )

= C−1
MS

∫

ΩNS

NS∑

i=1

δ(x− xS
i )e−V (xM ,xS) dxS, (5.39)

with

CMS =

∫

ΩNS

e−V (xM ,xS) dxS, (5.40)

where we have only used the definition of 〈.〉(xM ) (3.29) from Section 3.3. The
integral in (5.39) describes the spatial part of an integral over the phase space of
the solvent’s degrees of freedom. It can be computed by a molecular dynamics
simulation by means of the ergodic hypothesis, i.e., the ensemble average 〈.〉(xM ) can

be replaced by a time average of the molecular dynamics trajectory xS(t) for large
times tend. The hypothesis states that

C−1
MS

∫

ΩNS

NS∑

i=1

δ(x−xS
i )e−V (xM ,xS) dxS = lim

tend→∞

1

tend

∫ tend

0

NS∑

i=1

δ(x−xS
i (t)) dt (5.41)

holds, where xS
i (t) is the position of solvent particle i at time t. The approximated

trajectory of a computer simulation is given only at discrete time steps tk, and the
integral has to be replaced by a sum

1

tend

∫ tend

0

NS∑

i=1

δ(x− xS
i (t)) dt ≈ 1

Nt

Nt∑

k=1

NS∑

i=1

δ(x− xS
i (tk)), (5.42)
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where Nt is the total number of time steps.
The actual implementation of (5.42) is as follows: A periodic box Ω = [0, L]3

is filled with solvent particles at the desired overall density. For convenient post-
processing, the solute particles are placed in the center of the box. Then, a molecular
dynamics simulation in the canonical ensemble is run with the solute particles fixed
at their positions, i.e., all forces between solvent and solute particles are computed,
but the solute particles do not move. At every time step tk, the instantaneous
solvent density ρtk is computed. The densities are approximated on a regular grid
as described in Section 5.1.1. The transformation of the particle distribution to the
grid is done by linear interpolation,

(ρtk)i =

NS∑

j=1

∫

Λh,i

φh,i(x)δ(x− xS
j (tk)) dx, (5.43)

where the index i defines a grid point and φh,i is the hat function in three dimensions
centered at xh(i) with support Λh,i. After Nt time steps, the approximation of the
mean solvent density can be computed by the sum of the particle densities at all
time steps,

〈ρ(xh(i))〉(xM ) ≈
1

Nt
(ρ[0,tend])i with ρ[0,tk ] =

k∑

j=1

ρtj . (5.44)

The situation becomes easier when we want to compute the pair distribution
function g(2) of the pure solvent. It is given by an ensemble average over any pair
of solvent particles

g(2)(r) =
1

ρ
〈δ(|xS

i − xS
j | − r)〉 for any i, j = 1, . . . , NS, i 6= j. (5.45)

This is only a one-dimensional function, and any pair of solvent particles can be used
to compute it. These two aspects drastically improve the rate of convergence. De-
tails on how the pair distribution function can be computed by molecular dynamics
simulations can be found in the literature, see e.g. [46].

Remember that the equality in (5.41) is only valid in the limit of infinite time.
Hence, the number of time steps required for a sufficient convergence of the right
hand side of (5.42) may be very large. And indeed, we observe distinct fluctuations of
the solvent densities computed from a molecular dynamics simulation. These errors
can be identified especially in the settings where the full three-dimensional density
is computed. Nevertheless, the computation of the solvent density by molecular
dynamics allows us to quantify the model error of the approximate models, since
most important features of the functions are satisfactorily reproduced, as we will
see in the following.
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5.2.2 Comparison of BGY3d with Molecular Dynamics

We will now to present numerical results computed with the BGY3d model, the
3d-HNC method of Beglov and Roux [10] and molecular dynamics simulations, re-
spectively. The setting for our simulations is as follows: We choose a box Ω and
place the solute atoms in the middle of the box surrounded by the solvent with
number density ρ. In these tests, all particles (solute and solvent) are identical and
interact via the Lennard-Jones potential

vLJ(r) = 4ǫ

((σ

r

)12

−
(σ

r

)6
)

. (5.46)

We perform several simulations with different solvent densities and numbers of solute
atoms. The solute atoms are placed so they have distance σ

1
6 to each other and their

center of mass is at the origin. Table 5.5 lists the parameters that were used for
the different tests. We employ the same discretization for the BGY3d and 3d-HNC
model and the density computed by the molecular dynamics simulation. We choose
χ = 10−6 as the stopping criterion for all fixed point iterations.

Ω = [−5, 5]3 N = 1283, 2563 T = 1.65
ǫ = 1.0 σ = 1.0 m = 1.0

Table 5.5. Parameters for domain, discretization, temperature, potential
and mass of the particles.

The 3d-HNC method is solved as described in [10]. This is basically an iteration
of (4.10),

∆ρk+1(x) = νρ
(
e−βV (x)+∆ρk(x)∗c(x) − 1

)
+ (1− ν)∆ρk(x). (5.47)

The direct correlation function c of the pure solvent has to be computed beforehand.
To this end, the standard spherical symmetric Ornstein-Zernike equation (B.5) with
HNC closure as described in Appendix B is used. Unlike in [10], we use ∆ρ0 =
ρ(g0 − 1) with g0(x) = e−vLJ (x) from (4.49) as initial guess for the fixed point
iteration. The mixing factor ν is not changed during the iteration.

We have noticed that iteration of (4.10) can be numerically unstable if the con-
dition ∫

Ω

∆ρ(x) dx = 0 (5.48)

is not fulfilled with appropriate accuracy. This can happen because of the finite
size of the domain or the discretization error of the convolution integral. This error
accumulates in the 3d-HNC method, since the direct correlation function c(x) is
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symmetric and hence, the convolution of c(x) with a constant does not vanish.
However, this can be easily avoided by enforcing condition (5.48) at every iteration
step. We implement this during the computation of the convolution by setting the
zero wavelength component of the Fourier transform of ∆ρl to zero, i.e., we set

∆̂ρl(0) = 0 for every l of the fixed point iteration.
We use the molecular dynamics package TREMOLO [123] for the molecular

dynamics simulations. We employ periodic boundary conditions, and the potential
is truncated and smoothed to zero at a distance rcut. The smoothing function is
defined as

S(r) =





1 for r ≤ rl,

1− (r − rl)
2(3rcut − rl − 2r)/(rcut − rl)

3 for rl < r < rcut,
0 for r ≥ rcut,

(5.49)

with rl = 2.3σ and rcut = 2.5σ. Hence, we actually use the potential

vLJ
MD(r) = 4ǫS(r)

((σ

r

)12

−
(σ

r

)6
)

. (5.50)

This implies that we do not use the exact same potentials for the different methods.
If one however considers the deviations between the approximative models and the
molecular dynamics results, this error can be neglected. In the case of one solute
particle, the solvent density corresponds to the pair distribution function of the pure
solvent

〈ρ(x)〉(xM
1 ) = ρg(2)(r) with r = |x|. (5.51)

The pair distribution functions can be more efficiently computed by molecular dy-
namics as described above, resulting in the radial component of the three-dimensional
spherical symmetric distribution. For a comparison with the BGY3d and 3d-HNC
results, we interpolate the radial component of the density distribution onto the
three-dimensional grid.

In order to improve the convergence of the molecular dynamics simulation con-
cerning the systems where full three-dimensional resolution of the density is neces-
sary, we reduce the grid resolution to N = 1283 and repeat every simulation with
different initial values for the momenta of the solvent particles. Afterwards, the
resulting densities of the two simulations are averaged.

We use time steps of size ∆t = 0.005 for systems with solvent density ρ = 0.3
and time steps of size ∆t = 0.001 for all other systems. The constant temperature
ensemble is realized by a Nosé-Hoover-Thermostat, see [46] for details.

In order to compare the results of the different methods, we will plot the devi-
ations between the results of molecular dynamics and the respective other method
(BGY3d or 3d-HNC),

gdiff
h = |gh − gMD

h |. (5.52)
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Here, gh stands for the discrete result of the BGY3d (gBGY
h ) or the 3d-HNC (gHNC

h )
method. Moreover, we will compute certain quantities which allow conclusions about
the method’s accuracy, namely the discrete L2-norm of the deviation

eLh
2

= ‖gh − gMD
h ‖Lh

2
=

1

N

(∑

i

|(gh)i − (gMD
h )i|2

)1
2

, (5.53)

the discrete L∞-norm of the deviation

eLh
∞

= ‖gh − gMD
h ‖Lh

∞
= max

i
|(gh)i − (gMD

h )i| (5.54)

and the difference between the maxima of each density

emax = |max
i

(gh)i −max
i

(gMD
h )i|. (5.55)

Note that the molecular dynamics densities gMD
h also are not exempt from errors,

see the discussion above. Hence, the resulting error quantities should be interpreted
carefully.

We first have to transform the results of the different methods to solvent distri-
butions with identical normalization

1

|Ω|

∫

Ω

g(x) dx = 1, (5.56)

where |Ω| is the volume of the domain Ω. The BGY3d method directly computes
g(x), the 3d-HNC method computes the deviation of the density ∆ρ(x), and the
molecular dynamics simulation results in the solvent density2 ρ(x). The relation
between g(x), ρ(x) and ∆ρ(x) is

ρ(x) = ρ̄ + ∆ρ(x) = ρ̄g(x) with ρ̄ =
1

|Ω|

∫

Ω

ρ(x) dx. (5.57)

It can be used to compute g(x) from either ρ(x) in the case of molecular dynamics
or from ∆ρ(x) in the case of the 3d-HNC method.

Results

We now present the results of the BGY3d, the 3d-HNC method and the molecular
dynamics simulations. Table 5.6 shows the computed error quantities for all results.
Figures 5.5 – 5.7 show plots of the radial component of the solutions and deviations
from the molecular dynamics results for the systems with spherical symmetric solute.

2To this end, we employ the short notation and leave out the 〈.〉(xM ) indicating the ensemble
average with fixed solute for all functions.
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MD BGY3d 3d-HNC
ρ NM max g max g eLh

2
eLh

∞
emax max g eLh

2
eLh

∞
emax

0.3 1 1.77 1.83 1.95−06 0.16 0.07 1.81 1.61−06 0.18 0.04
0.5 1 1.85 1.89 1.94−06 0.11 0.04 1.93 2.48−06 0.26 0.08
0.8 1 2.28 2.17 8.63−06 0.28 0.12 2.45 5.73−06 0.54 0.17
0.5 2 3.20 3.48 1.76−05 0.44 0.28 3.54 1.48−05 0.65 0.33
0.5 3 5.01 6.07 2.13−05 1.16 1.07 6.15 1.61−05 1.37 1.15
0.5 4 5.25 6.54 2.53−05 1.36 1.29 6.44 1.75−05 1.39 1.19

Table 5.6. Comparison of BGY3d and 3d-HNC with molecular dynamics
results for systems with different solvent densities ρ and numbers of solute particles
NM .
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Figure 5.5. Left: Pair distribution function for ρ = 0.3. Right: Deviation
of pair distribution function from molecular dynamics.

Figures 5.8 through 5.10 show cut planes of the densities and the deviations for the
systems with full three-dimensional densities. As already pointed out above, the
densities computed by molecular dynamics for more than one solute atom exhibit
distinct fluctuations which indicate that the solution is not yet finally converged.
However, the magnitude of the fluctuations is small enough when compared to the
approximation errors of the two continuous models considered.

Some general observations can be made. The deviation of both models, the
BGY3d model and the 3d-HNC model, grows with increasing overall solvent density
and increasing number of solute particles. However, the smallest deviation for our
BGY3d model appears for one solute atom and the intermediate density ρ = 0.5.
Compared to the molecular dynamics result, the oscillation pattern behind the first



5.2. Test of the BGY3d Model 99

0 1 2 3 4 5
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

r

g

 

 

MD
BGY3d
3d−HNC

0 1 2 3 4 5
0

0.1

0.2

0.3

r

|g
−

gM
D
|

 

 

BGY3d
3d−HNC

Figure 5.6. Left: Pair distribution function for ρ = 0.5. Right: Deviation
of pair distribution function from molecular dynamics.
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Figure 5.7. Left: Pair distribution function for ρ = 0.8. Right: Deviation
of pair distribution function from molecular dynamics.

peak of both approximate models gets more and more out of phase with increasing
density. This effect is stronger for the BGY3d model. It is known to be a result of the
two-particle superposition approximation, see e.g. [3]. The approximation can only
be improved by considering three-particle interactions in the integral terms. The
L∞-error and the error at the maximum emax are smaller for BGY3d, except for the
system with four solute atoms. Hence, the major difference of the approximations
obtained by the BGY3d and by the 3d-HNC model can be stated as follows: The
BGY3d model approximates better the position and the height of the main peak,
whereas the 3d-HNC model is superior in approximating the oscillation which follows
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Figure 5.8. Top: Solvent distribution for two solute particles computed
with molecular dynamics (left) and the BGY3d method (right) at the x3 = 0 plane.
Bottom: Deviation of the BGY3d model (left) and deviation of the 3d-HNC method
(right) at the x3 = 0 plane.

this first peak. This can be observed very well in the deviation plots of Figures 5.8,
5.9 and 5.10. The plots corresponding to BGY3d show a clear pattern behind the
first peak but no dark red color. The 3d-HNC plots do not exhibit this pattern as
clearly but feature the dark red color at the main peak.

Table 5.7 shows the computation times for all three methods. The great discrep-
ancy of the computation times between systems with one and systems with more
than one solute atoms stems from the different numerical treatments of the systems.
In the case of molecular dynamics, we exploited the symmetry and improved the
convergence by computing the pair distribution function for all pairs of particles
of the solvent. This drastically reduces the computing time compared to the full
three-dimensional density. In case of the BGY3d and 3d-HNC models, the solution
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Figure 5.9. Top: Solvent distribution for three solute particles computed
with molecular dynamics (left) and the BGY3d method (right) at the x3 = 0 plane.
Middle: Deviation of the BGY3d model (left) and deviation of the 3d-HNC method
(right) at the x3 = 0 plane. Bottom: Deviation of the BGY3d model (left) and
deviation of the 3d-HNC method (right) at the x2 = 0 plane.
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Figure 5.10. Top: Solvent distribution for four solute particles computed
with molecular dynamics (left) and the BGY3d method (right) at the x3 = 0 plane.
Middle: Deviation of the BGY3d model (left) and deviation of the 3d-HNC method
(right) at the x3 = 0 plane. Bottom: Deviation of the BGY3d model (left) and
deviation of the 3d-HNC method (right) at the x2 = 0 plane.
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MD BGY3d 3d-HNC
ρ NM steps time ν steps time ν steps time

0.3 1 4.0+6 13200s 0.9 26 1951s 0.9 58 1397s
0.5 1 4.0+6 26820s 0.5 37 1762s 0.5 56 1270s
0.8 1 4.0+6 51780s 0.3 119 5624s 0.1 168 3998s
0.5 2 2× 1.4+8 2× 269h 0.5 32 98s 0.5 86 225s
0.5 3 2× 1.4+8 2× 270h 0.5 38 117s 0.5 129 331s
0.5 4 2× 1.4+8 2× 272h 0.5 40 127s 0.5 117 304s

Table 5.7. Comparison of molecular dynamics, BGY3d and 3d-HNC with
respect to computation time for systems with different solvent densities ρ and num-
bers of solute particles NM . All simulations were performed on a single Intel(R)
Xeon(TM) CPU 3.20GHz with six Gigabyte of RAM. Note that the solution for
systems with one solute atom were computed with N = 2563 grid points, whereas
N = 1283 grid points were employed for the other systems, see also the correspond-
ing remarks in the text.

for the systems with one solute atom were computed with N = 2563 grid points,
whereas N = 1283 grid points were used for the other systems as this was the maxi-
mum number of grid points that was feasible with respect to the molecular dynamics
simulation.

The computation time of the approximate models is significantly smaller for all
systems considered. The difference is particularly high for two, three and four solute
atoms. More than 22 days were necessary in order to reach a reasonable convergence
of the density computed by the molecular dynamics simulations. This is four orders
of magnitude longer than the numerical solution of our BGY3d model. A comparison
of the computation times for the BGY3d and the 3d-HNC model shows that the
BGY3d model is faster for the non-symmetric cases, whereas it is slower for systems
with only one solute. This is caused by the different preconditions of the two models.
The 3d-HNC model requires the direct correlation function of the pure solvent as
input. This function can be precomputed very efficiently by a reduced solving of
an one-dimensional equation. The time spent to solve this reduced equation is
negligible compared to the computing time of the 3d-HNC method. Concerning
the BGY3d model, the solution of systems with only one solute atom corresponds
to the solution of the Born-Green equation, as already explained in Section 5.1.
However, the solution of the Born-Green equation is numerically more expensive,
since it requires three additional FFTs for every step of the fixed point iteration.
A simplification of the three-dimensional convolution integrals in the Born-Green
equation is also possible to some extent, if one exploits the symmetry. This way,
the computing time could be reduced. But since we are most interested in the
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computation of the full three-dimensional density distributions of the solvent, we do
not further consider the simplification of the Born-Green equation. Details can be
found e.g. in [58].

In practice, the relevant systems are those that feature more complex solutes,
since the computation of the pair distribution function or the computation of the
direct correlation function can be done beforehand once for any density. To this
end, the BGY3d and 3d-HNC models are significantly less time consuming than the
molecular dynamics simulation. They compute the distribution functions four orders
of magnitudes faster. Their approximation error however is still non-negligible and
will produce noticeable errors for any quantity which is derived from the computed
solvent densities. Nevertheless, the development of such continuous models for the
computation of the solvent density is an important step in the direction of more
accurate implicit solvent models for molecular simulations. By this, it would be
possible to approximate the solvent effects more accurately than by any classical
implicit solvent model.

5.3 Numerical Solution of the BGY3dM Equations

In this section, we are going to discuss the algorithm to solve the molecular BGY3d
(BGY3dM) equations numerically. Algorithm 5.1 presented in Section 5.1 for the
BGY3d equation for monoatomic fluids has to be adjusted in order to cope with
the additional terms incorporating the intramolecular constraints of the solvent
molecules. Furthermore, we now have to compute all different site density dis-
tribution functions simultaneously, which means that we have to solve a system of
coupled non-linear equations. Last but not least, we also want to consider long-range
forces with the BGY3dM equations. Namely, we will consider polar molecules and
therefore have to include the Coulomb potential in our model. This potential will
require a special treatment, since it has a non-vanishing value at the boundaries of
the computational domain, unlike the short-range potentials.

In order to simplify our discussion of the numerical solution of the BGY3dM
model, we will restrict the presentation to solvents whose molecules consist only
of two different particle species, which we call species A and species B. Hence, we
have to compute three site-site pair distribution functions and two site distribution
functions around a solute. We will consider two- and three-site models of fluids. The
configuration of the rigid molecules is given by the distance rAB

0 in case of a two-site
model or by the distance rAB

0 and the angle θBAB in case of a three-site model. For
rigid three-site molecules, this obviously prescribes also the distance rBB

0 which we
need for the BGY3dM equations. Further, every site of the molecule carries a charge
qA or qB and is associated with a set of Lennard-Jones parameters ǫA, ǫB and σA,
σB. The Lennard-Jones parameters for any pair of intermolecular sites is computed
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according to the Lorentz-Berthelot mixing rules:

ǫαγ =
√

ǫαǫγ , σαγ =
σα + σγ

2
, α, γ = A, B. (5.58)

These parameters completely determine the respective model.
In the next section, we will write down explicitly the BGY3dM and SS-BGY3dM

equations for a two-site solvent model, before we discuss the discretization of the
equations. Then, we will explain how to include the long-range Coulomb potential
into the model. Finally, we will test the SS-BGY3dM and BGY3dM model against
results from molecular dynamics simulations.

5.3.1 BGY3dM Equations for a Two-Site Model

We now consider a fluid which consists of molecules with two different particle
species. Hence, we have to compute two different site density distributions, gA

and gB. In addition, the BGY3dM equations also include the three different site-site
distribution functions of the pure fluid: g

(2)
AA, g

(2)
AB and g

(2)
BB, which we have to compute

beforehand. The number densities of the two species are equal, ρA = ρB = ρS, where
ρS is the molecular number density of the solvent. The BGY3dM equations (4.114)
for the two-site model solvent read as follows:

∆x1uA(x1) = −βρA∇x1 ·
∫

Ω

FAA(x1,x2)g
(2)
AA(x1,x2)gA(x2) dx2

−βρB∇x1 ·
∫

Ω

FAB(x1,x2)g
(2)
AB(x1,x2)gB(x2) dx2

−∆x1 ln

(∫

Ω

ωAB(x1,x2) g̃B;A(x2) dx2

)
, (5.59)

∆x1uB(x1) = −βρA∇x1 ·
∫

Ω

FAB(x2,x1)g
(2)
AB(x2,x1)gA(x2) dx2

−βρB∇x1 ·
∫

Ω

FBB(x1,x2)g
(2)
BB(x1,x2)gB(x2) dx2

−∆x1 ln

(∫

Ω

ωAB(x2,x1)g̃A;B(x2) dx2

)
, (5.60)

with

gα(x1) = g0
α(x1)e

−uα(x1), g0
α(x1) = e−βV M

α (x1,xM ), α = A, B, (5.61)

g̃α;γ(x1) =
gα(x1)∫

Ω
ωAB(x1,x2)gγ(x2) dx2

, α, γ = A, B, (5.62)
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and

ωAB(x1,x2) =
δ(r12 − rAB

0 )

4π(rAB
0 )2

, r12 = |x1 − x2|. (5.63)

The function V M
α (x1,x

M) denotes the potential between the solute and the solvent
particle α = A, B. Here, we use a rather simplified notation where we number se-
rially the position vectors xi and skip the indices that indicate their particle type
and molecule number, as this is redundant information. Similarly, we have to com-
pute the three different site-site distribution functions according to the SS-BGY3dM
equations (4.91):

∆x1u
(2)
AA(x1,x2) =− βρA∇x1 ·

∫

Ω

FAA(x1,x3)g
(2)
AA(x1,x3)g

(2)
AA(x2,x3) dx3

− βρB∇x1 ·
∫

Ω

FAB(x1,x3)g
(2)
AB(x1,x3)g

(2)
AB(x2,x3) dx3

− β∇x1 ·
∫
Ω
FAB(x1,x3)g̃

(2)
AB;A(x1,x3)ωAB(x2,x3) dx3

nB
AA(x1,x2)

−∆x1 ln

(∫

Ω

ωAB(x1,x3)g̃
(2)
AB;A(x2,x3) dx3

)
, (5.64)

∆x1u
(2)
BB(x1,x2) =− βρA∇x1 ·

∫

Ω

FAB(x3,x1)g
(2)
AB(x3,x1)g

(2)
AB(x3,x2) dx3

− βρB∇x1 ·
∫

Ω

FBB(x1,x3)g
(2)
BB(x1,x3)g

(2)
BB(x2,x3) dx3

− β∇x1 ·
∫
Ω
FAB(x3,x1)g̃

(2)
AB;B(x3,x1)ωAB(x3,x2) dx3

nA
BB(x1,x2)

−∆x1 ln

(∫

Ω

ωAB(x3,x1)g̃
(2)
AB;B(x3,x2) dx3

)
, (5.65)

∆x1u
(2)
AB(x1,x2) =− βρA∇x1 ·

∫

Ω

FAA(x1,x3)g
(2)
AA(x1,x3)g

(2)
AB(x3,x2) dx3

− βρB∇x1 ·
∫

Ω

FAB(x1,x3)g
(2)
AB(x1,x3)g

(2)
BB(x2,x3) dx3

− β∇x1 ·
∫
Ω
FAA(x1,x3)g̃

(2)
AA;B(x1,x3)ωAB(x3,x2) dx3

nA
AB(x1,x2)

−∆x1 ln

(∫

Ω

ωAB(x1,x3)g̃
(2)
BB;A(x2,x3) dx3

)
, (5.66)
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with

gαγ(x1,x2) = g0
αγ(x1,x2)e

−uαγ(x1,x2), g0
αγ(x1,x2) = e−βvαγ(x1,x2),

g̃αγ;η(x1,x2) =
gαγ(x1,x2)

nη
αγ(x1,x2)

,

nη
αγ(x1,x2) =

∫

Ω

ωαη(x1,x3)gγη(x2,x3) dx2, α, γ, η = A, B

and ωAB(x1,x2) as in (5.63). The solutions of equations (5.64), (5.65) and (5.66)
can then be used as input for the BGY3dM equations (5.59) and (5.60).

5.3.2 Algorithmic Details

The numerical treatment of the non-linearity of the BGY3dM model is analogous to
that of the BGY3d model for monoatomic solvents, see Section 5.1. The only differ-
ence is that we now have to deal with a system of non-linear equations. We again
introduce a short notation, where we write the right hand sides of equations (5.59)
and (5.60) simply as KA(x; gA, gB) and KB(x; gA, gB), respectively. To this end,
the dependency on the density distributions of each species is explicitly indicated.
Hence, equations (5.59) and (5.60) read in short notation as

∆xuA(x) = KA(x; gA, gB) in Ω, (5.67)

∆xuB(x) = KB(x; gA, gB) in Ω. (5.68)

As in the case of the BGY3d equation, this system of non-linear equations is trans-
formed into a series of coupled linear equations by applying the fixed point iteration,
see Algorithm 5.2.

Algorithm 5.2 ((Damped) Fixed Point Iteration of the BGY3dM Equations).

1. u0
A

= 0; u0
B

= 0; g0
A

= e−βV M
A ; g0

B
= e−βV M

B ; l = 0;

2. l← l + 1; Solve

∆xu
l
A
(x) = KA(x; gl−1

A
, gl−1

B
) in Ω (5.69)

and set

ul
A
← νul

A
+ (1− ν)ul−1

A
, (5.70)

gl
A

= g0
A

e−ul
A.

3. Solve
∆xu

l
B
(x) = KB(x; gl

A
, gl−1

B
) in Ω (5.71)
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and set

ul
B
← νul

B
+ (1− ν)ul−1

B
, (5.72)

gl
B

= g0
B

e−ul
B.

4. If
||ul

A
− ul−1

A
||L∞ < νχ (5.73)

and
||ul

B
− ul−1

B
||L∞ < νχ, (5.74)

stop; else go to 2.

Again, ν is a damping parameter which ensures convergence. The iteration is
stopped if the L∞-norm of the change between successive iterations is smaller than
the fixed threshold νχ. The discussion about the correct definition of the bound-
ary conditions is postponed to Section 5.3.3. For now, we again employ periodic
boundary conditions.

As in the monoatomic case, the linearized equations (5.70) and (5.72) can be
solved easily in Fourier space. Due to the superposition principle, the contributions
of each integral term on the right hand sides of (5.59) and (5.60) can be computed
separately. The first two terms corresponding to the intermolecular interactions are
computed exactly as in the monoatomic case, see Section 5.1. The remaining terms,
corresponding to the intramolecular interactions, require a convolution of a density
distribution function with a delta distribution. This is also computed in Fourier
space. To this end, the Fourier transformation of the delta distribution is done
analytically. It holds that

F3 (δ(r12 − rαγ
0 )) (k) =

2

|k| sin(2π|k|rαγ
0 )rαγ

0 , (5.75)

where we exploited the spherical symmetry of the delta distribution, see also Ap-
pendix A. Hence, we have

F3(ωαγ)(k) =
sin(2π|k|rαγ

0 )

2π|k|rαγ
0

(5.76)

and we can compute the whole intramolecular term as

ln

(∫

Ω

ωαγ(x1,x2)g̃α;γ(x2) dx2

)
= ln

[
F−1

3

(
sin(2π|k|rαγ

0 )

2π|k|rαγ
0

F3(g̃α;γ)

)]
. (5.77)

The Laplacian present in front of this term in the BGY3dM equations is compensated
by the application of the inverse of the Laplacian in Fourier space.
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Additionally, we have to compute the normalized distribution function g̃α;γ. To
this end, we can compute the normalization function similar to (5.77) by

nγ
α(x1) =

∫

Ω

ωαγ(x1,x2)gγ(x2) dx2

= F−1
3

(
sin(2π|k|rαγ

0 )

2π|k|rαγ
0

F3(gγ)

)
(x1). (5.78)

Then, gα has to be divided by nγ
α. Since the distribution functions are strictly

non-negative, this also holds for the normalization function. However, nγ
α can be

very small for some x1 ∈ Ω. This may lead to numerical instabilities and makes
a regularization of this term necessary. Therefore, we introduce a regularization
parameter ǫg and compute the division by

gα(x1)

nγ
α(x1)

≈ gα(x1)

max(nγ
α(x1), ǫg)

, ∀ x1 ∈ Ω. (5.79)

In the numerical tests, the choice ǫg = 10−2 showed to be the optimal one, since it
produces a numerically stable method and leads to negligible differences compared
to smaller values. Hence, this value has been used for any results computed with
the BGY3dM equations.

Computation of the Site-Site Distribution Functions

The three site-site distribution functions of the diatomic molecular fluid are required
as input of the BGY3dM equations (5.59) and (5.60). They are computed as the
solutions of the SS-BGY3dM equations (5.64), (5.65) and (5.66). These equations
are treated analogously to the BGY3dM equations. The only difference lies in the
additional integral term which also models an intramolecular part of the interaction.
In short notation, the SS-BGY3dM equations read as

∆xuAA(x) = KAA(x; gAA, gAB) in Ω, (5.80)

∆xuBB(x) = KBB(x; gBB, gAB) in Ω, (5.81)

∆xuAB(x) = KAB(x; gAA, gBB, gAB) in Ω. (5.82)

Again, a fixed point iteration with a damping parameter ν and a parameter χ for
the stopping criterion is employed in order to solve the equations, see Algorithm 5.3.
Periodic boundary conditions are assumed for the linearized equations until their
correct definition in Section 5.3.3.
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Algorithm 5.3 ((Damped) Fixed Point Iteration of the SS-BGY3dM Equations).

1. u0
AA

= 0; u0
BB

= 0; u0
AB

= 0;
g0
AA

= e−βVAA ; g0
BB

= e−βVBB; g0
AB

= e−βVAB;
l = 0;

2. l ← l + 1; Solve

∆x1u
l
AA

(x) = KAA(x; gl−1
AA

, gl−1
AB

) in Ω (5.83)

and set

ul
AA
← νul

AA
+ (1− ν)ul−1

AA
, (5.84)

gl
AA

= g0
AA

e−ul
AA .

3. Solve
∆xu

l
BB

(x) = KBB(x; gl−1
BB

, gl−1
AB

) in Ω (5.85)

and set

ul
BB
← νul

BB
+ (1− ν)ul−1

BB
, (5.86)

gl
BB

= g0
BB

e−ul
BB .

4. Solve
∆xu

l
AB

(x) = KAB(x; gl
AA

, gl
BB

, gl−1
AB

) in Ω (5.87)

and set

ul
AB
← νul

AB
+ (1− ν)ul−1

AB
, (5.88)

gl
AB

= g0
AB

e−ul
AB .

5. If
||ul

AA
− ul−1

AA
||L∞ < νχ (5.89)

and
||ul

BB
− ul−1

BB
||L∞ < νχ (5.90)

and
||ul

AB
− ul−1

AB
||L∞ < νχ (5.91)

stop; else go to 2.
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As for the BGY3dM equations, the different integral terms of the right hand
sides can be computed separately. The intermolecular integral terms are treated
analogously to the Born-Green equation in the monoatomic case, see Section 5.1.
The terms of type

ln

(∫

Ω

ωαη(x1,x3)g̃γη;α(x2,x3) dx3

)

have already been discussed above. The computation of the intramolecular terms
including the intermolecular force requires some additional considerations. Terms
of type

∆−1
x1
∇x1 ·

∫
Ω
Fαη(x1,x3)g̃

(2)
αη;γ(x1,x3)ωγη(x2,x3) dx3

nη
αγ(x1,x2)

(5.92)

have to be computed explicitly. Since we do not want to further simplify (5.92), it
has to be computed in a step by step procedure. This is numerically quite expensive
but leads to the best results. First, g̃

(2)
αη;γ has to be computed as described above, see

equation (5.79). Then, the denominator and the divisor of (5.92) can be computed.
In case of the denominator, this is done by

∫

Ω

Fαη(x1,x3)g̃
(2)
αη;γ(x1,x3)ωγη(x2,x3) dx3 = F−1

3

(
F3(Fαηg

(2)
αη;γ)

sin(2π|k|rγη
0 )

2π|k|rγη
0

)
.

(5.93)
The subsequent division again requires a regularization for the same reasons as
already described above. However, since a differential operator has to be applied to
the result of the division, this case is even more difficult. The operator is applied by
a multiplication of ki

2π|k|2
in direction i = 1, 2, 3 in Fourier space. Hence, a Fourier

transform of the result of the division is required prior to the multiplication of the
factor. The Fourier components decay faster if the function is smooth in real space.
However, the division by the normalization function can lead to very rough results
if the normalization functions contains small values. This may result in large errors,
since the Fourier components of a rough function do not decay fast, and this again
leads to large errors at the boundaries. This is why we choose a new regularization
constant ǫω = 10−1 with a relatively large value and replace the exact division by

∫
Ω
Fαη(r− r′)g̃

(2)
αη;γ(r− r′)ωγη(r

′) dr′

max(nη
αγ(r), ǫω)

, ∀ r ∈ Ω. (5.94)

Numerical tests revealed that this choice produces a stable method with an error
that is small compared to the approximation error, as we will see in Section 5.4.

As the last step of computing the term (5.92), the factor ki

2π|k|2
is multiplied in

Fourier space for each direction i = 1, 2, 3 and the result is summed up and trans-
formed back to real space. This three-step procedure to compute the intramolecular
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term is necessary in order to apply the full NSSA approximation (4.104). It is numer-
ically more expensive but provides good results when compared to pair distribution
functions computed with molecular dynamics, see Section 5.4.

5.3.3 Treatment of the Coulomb Potential

So far, we restricted our discussion to the Lennard-Jones potential, which is a short-
range potential. The short-range potential leads to short-range distribution func-
tions and hence, all integral terms are also of short range. This has been an im-
portant prerequisite to restrict the computation of the BGY3d equations to a finite
domain, see Section 5.1.2. Now, we are going to discuss how to include a potential
function that is not of short range, i.e., the potential decays more slowly than 1

r3 ,
with r being the distance in three-dimensional space. Namely, we want to consider
the Coulomb potential which decays as 1

r
. This potential is very important when

dealing with biomolecular applications, since the partial charges of realistic solvent
molecules cannot be neglected. Important examples are water (H2O) or all alcohols
(CH3OH, C2H5OH, . . . ). However, the distribution functions remain short-ranged
even though a long-range interaction is employed. In the case of Coulomb systems,
this can be shown rigorously [1]. The screening effect of charges provides a more
descriptive explanation provides: In a fluid, negatively charged particles tend to
gather next to a positively charged particle and vice versa. Hence, no clusters of
particles of the same type are built and all charges are roughly equally distributed.
Hence, there is no net force on the particles caused by particles at large distances.
This leads to distribution functions that are of short range, also in Coulomb systems.

Nevertheless, the incorporation of the Coulomb potential requires some changes
in the numerical computation of the respective integral terms. This affects all terms
that contain the intermolecular force. Since these terms differ only in one of the
distribution functions included, they can all be treated in the same way. Hence, we
discuss the problem exemplarily on the basis of the following (notationally simplified)
integral ∫

Ω

F(r′ − r)gα(r′ − r)gγ(r
′) dr′ (5.95)

with the total force
F = FLJ + FC

consisting of a Lennard-Jones and a Coulomb part. The two distribution functions
gα and gγ are arbitrary and can in particular also be identified with intramolecular
distribution functions.

The main difficulty in computing (5.95) is caused by the application of the dis-
crete Fourier transform in order to compute the convolution integral (5.95). The
discrete Fourier transform assumes the functions to be periodic with respect to the
computational domain Ω. Functions that decay to zero at the boundaries of the
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domain satisfy this condition, as is the case for the product of the Lennard-Jones
force and a pair distribution function. However, the product Fgα does not vanish
at the boundary if a long-range force is employed. Moreover, the components of the
force vector are antisymmetric, so that the periodically continued function exhibits
a jump at the boundary. Hence, the use of the discrete Fourier transform is pro-
hibitive in this situation. Yet, we can transform the integral in order to circumvent
this problem. The following idea is borrowed from the particle-particle–particle-
mesh method (P3M) [52] and the particle-mesh-Ewald method (PME) [26] that
have been developed for the efficient computation of long-range forces in molecular
dynamics or Monte Carlo simulations. According to these concepts, the Coulomb
force can be divided into a part which exhibits a singularity at zero distance but
is short-range, and a part which is smooth and of long range. This is achieved
by shielding the point charge by a charge distribution. This charge distribution is
chosen to be Gaussian,

̺(r) =

(
G√
π

)3

e−G2|r|2 (5.96)

with a parameter G that determines the width of the function. The special form of
the charge distribution is chosen, such that it features fast decaying Fourier compo-
nents. We will take advantage of this fact later. For now, it is enough to know that
the Coulomb potential (and its force) between two particles is divided by means of
this shielding function into the following parts

vC(r) = vCs(r) + vCl(r) = qbΦ
s(r) + qbΦ

l(r),

FC(r) = FCs(r) + FCl(r) = −∇vCs(r)−∇vCl(r) (5.97)

with Φs and Φl the solutions of the Poisson equations

−∆Φs =
1

ǫ0

qa(δ3 − ̺) in R
3,

−∆Φl =
1

ǫ0

qa̺ in R
3 (5.98)

where qa and qb denote the charges of the two particles and ǫ0 is the dielectric con-
stant. For the special choice of the function ̺, the solution can be given analytically.
We have

vCs(r) =
1

4πǫ0

qaqb
erfc(G|r|)
|r| , (5.99)

vCl(r) =
1

4πǫ0
qaqb

erf(G|r|)
|r| (5.100)

with erf the error function and erfc = 1 − erf the complementary error function.
Figure 5.11 shows a plot of both functions erf(|r|)

|r|
and erfc(|r|)

|r|
compared to 1

|r|
and
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Figure 5.11. The functions erf(|r|)
|r|

, erfc(|r|)
|r|

, 1
|r|

, and 1
|r|6

in a linear plot (left)

and a semi-logarithmic plot (right).

1
|r|6

. The complementary error function decays rapidly, even faster than 1
|r|6

. On the

other hand, the error function decays as slowly as 1
|r|

but is smooth even at |r| = 0.

We now want to use these properties and transform the integral (5.95) in order
to make it efficiently computable. The total force F consists of a Lennard-Jones
part FLJ and a Coulomb part FC which can be splitted as discussed above. Hence,
we transform the first part of the convolution integral (5.95) according to

Fgα = (FLJ + FCs + FCl) gα

= (FLJ + FCs) gα + FCl (gα − 1 + 1)

=
[
(FLJ + FCs + FCl) gα − FCl

]
+ FCl. (5.101)

For the entire integral, this leads to

∫

Ω

F(r′ − r)gα(r′ − r)gγ(r
′) dr′ (5.102)

=

∫

Ω

(
F(r′ − r)gα(r′ − r)− FCl(r′ − r)

)
gγ(r

′) dr′

+

∫

Ω

FCl(r′ − r)gγ(r
′) dr′.

The first term can be treated as before, since the part in outer brackets is of short
range if gα is also short-ranged. The second integral can be written as

∫

Ω

FCl(r′ − r)gγ(r
′) dr′ = −∇r

∫

Ω

vCl(r′ − r)gγ(r
′) dr′, (5.103)
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where we used again the fact that the derivative of a convolution can be shifted
to its arguments. Now, we can take advantage of the rapid decay of the Fourier
components of vCl. The Fourier transformation can even be given analytically as

F3(v
Cl)(k) =

qaqb

ǫ0
e−

π2

G2 |k|
2

. (5.104)

Hence, this integral can be computed easily by multiplying the Fourier components
of vCl and gγ and a subsequent inverse Fourier transformation of the result. The
operator ∇r in front of the integral is neutralized by the inverse operator on the left
hand side of the SS-BGY3dM or BGY3dM equations and therefore does not need
to be computed explicitly.

There are also intramolecular terms which involve the long-range Coulomb force
comprised in the SS-BGY3dM equations. Since the NSSA approximation is used
in this case, the differential operators do not cancel out any more and have to be
computed explicitly. The long-range part of these terms is then computed as

∆−1
r ∇r ·

∇r

∫
Ω

vCl(r− r′)ω(r′) dr′

max(n(r), ǫω)
, ∀r ∈ Ω, (5.105)

where the analytical Fourier components of vCl and ω are used to compute the
convolution.

Cancellation of the Long-Range Parts

Even though we know the exact Fourier components of the long-range part of the
Coulomb potential vCl, we add an error source by computing the discrete inverse
Fourier transformation of a long-range function. Here, it is assumed that the prod-
uct ṽClg̃γ of the Fourier components of vCl and gγ is periodic with respect to the
computational domain. Numerically, this is not a problem if the Fourier compo-
nents decay to zero at the boundaries. Nevertheless, the assumption of periodicity
produces an error at the boundaries for any convolution of a distribution function
with the long-range part of the Coulomb potential. Recall that the distribution
functions are of short range even in that case, see [1]. Hence, the sum of the long-
range parts of the different terms in the BGY3dM or SS-BGY3dM equations has to
vanish. It follows that we have to pay attention when choosing the computational
order especially for our decomposition of the solution

g(x) = g0(x)e−u(x),

since the function u is of long range as well as

g0(x) = e−β(vLJ (x)+vCs(x)+vCl(x)).
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Multiplication of both terms, as suggested by the decomposition, would lead to large
errors, and the short-range nature of the solution could not be guaranteed. Instead,
a different decomposition is advantageous when long-range potentials are involved:

g(x) = g̃0(x)e−βvCl(x)−u(x) with g̃0(x) = e−β(vLJ (x)+vCs(x)). (5.106)

Now, the two long-range functions vCl and u directly sum up and the result is only
of short-range. By this, we do not change the SS-BGY3dM or BGY3dM equations,
as they are given in (4.118) and (4.114), respectively. We only change the order of
computation of the distribution function g such that it is numerically more stable.
However, we still have to be careful. It cannot be guaranteed that the initial guess
u0 of the fixed point iteration of the SS-BGY3dM or BGY3dM equations fulfills the
short-range condition, i.e., that the long-range parts of u0 and vCl cancel out. The
result would be a distribution function that is not of short range, which in turn
would produce large errors in the next iteration step. Therefore, we have to enforce
the correct boundary conditions in order to guarantee that the fixed point iteration
converges and leads to a short-range solution.

Boundary Conditions

For the short-range potentials, we could choose the finite domain such that peri-
odic and Dirichlet boundary conditions lead to identical results for the linearized
problems in the fixed point iteration. Things get more complicated if the long-range
Coulomb potential is employed. As discussed above, the long-range parts of the
solution of the Poisson problems appearing in Algorithms 5.2 and 5.3 have to cancel
out with the long-range parts of vCl in order to give a function that vanishes at the
boundaries. Since this short-range condition is not guaranteed for the iterates ul, we
have to enforce the Dirichlet boundary conditions in order to stabilize the iteration.

If we omit all indices for particle type and iteration count, the Poisson problem
arising in each step of our Algorithms 5.2 and 5.3 can be written as

∆ũ = K(g) + β∆vCl in Ω, ũ(∂Ω) = 0, (5.107)

where we introduced the long-range potential vCl into the differential equation in
order to get zero boundary conditions. Hence, we have chosen ũ such that

g(x) = g̃0(x)e−ũ(x) (5.108)

with g̃0 from (5.106). The solution ũ can also be represented by a difference of two
functions ũ = ū− u∗ which are also solutions of two Laplace equations

∆ū = K(g) + β∆vCl in Ω, ū(∂Ω) = f,

∆u∗ = 0 in Ω, u∗(∂Ω) = f,



5.3. Numerical Solution of the BGY3dM Equations 117

with some function f at the boundary. The solution of the first line ū can be identi-
fied with u + βvCl, where u is the solution computed by diagonal scaling in Fourier
space. To this end, we employ periodic boundary conditions which correspond to
some Dirichlet boundary conditions, represented by the function f in this case. If
we now subtract u∗, the solution of

∆u∗ = 0 in Ω, u∗(∂Ω) = ū(∂Ω), (5.109)

we get the solution of (5.107) with the correct boundary conditions,

ũ(∂Ω) = ū(∂Ω)− u∗(∂Ω) = 0. (5.110)

Finally, we can compute the distribution function by (5.108).
The procedure described above seems very circuitous, but it has turned out to

stabilize the non-linear iteration very well. Combined with a small damping factor ν,
it leads to short-range distribution functions for the SS-BGY3dM as well as for the
BGY3dM equations, as we will see later. This separated correction of the boundary
conditions even makes it possible to keep the fast solution of the Laplacian in Fourier
space, even though the involved long-range functions are not exactly periodic. This
causes an error which is localized near the boundaries, assuming that the distribution
functions are of short range. This error is removed by subtracting the solution of
(5.109).

Equation (5.109) is solved by a standard finite difference discretization with a
seven point stencil. This way, we can use the same grid as for the Poisson equation
(5.107). The resulting systems of equations are solved by the iterative GMRES
method with Block Jacobi preconditioning, as it is implemented in PETSc [5–7].

Instead of solving a second Laplace problem in order to correct the boundary
conditions, we also could have chosen to solve the original Poisson equation (5.107)
by a finite difference scheme. Then, a correction of the boundary conditions would
not be necessary. However, the separation into two problems has a distinct advan-
tage. The computation of the right-hand side of (5.107) is done by means of Fourier
transformations. Hence, the additional diagonal scaling to solve for the Laplace in
Fourier space can be done with linear complexity. The solution of the Laplace prob-
lem (5.109) with zero right-hand side, however, becomes easier as the fixed point
iteration proceeds. This is because the change of the distribution functions at the
boundary becomes very small at later iterations. This again makes the solution of
the Laplacian with zero right-hand side very efficient. The solution of the last iter-
ation is a good initial guess for the subsequent iteration. The computational effort
for the correction of the boundary condition will turn out to be nearly negligible,
which will be discussed in more detail in the following section.
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Figure 5.12. A schematic of a HCl molecule.

5.3.4 Discretization and Convergence

The actual discretization of the linearized equations in the fixed point iterations
(5.2) and (5.3) is exactly as in the monoatomic case, see Section 5.1.1. In order
to test the convergence of the discretization, we will now consider a model fluid
and compute the SS-BGY3dM site-site pair distribution functions of this fluid for
different grid sizes.

The model is lent from [49], where it is called a HCl-like model (hydrogen chlo-
ride) because of the properties of the particle species. We will follow this notation
and use the subscripts H and Cl. Nevertheless, it should be underlined that it is
not meant to be a realistic model for HCl but serves as a simple test fluid. The pa-
rameters for the diatomic HCl-like model are given in Table 5.8. Figure 5.12 shows
a schematic HCl molecule.

Beside the Lennard-Jones potential, the particles now also interact via the long-
range Coulomb potential. The total intermolecular potential between particles of
species α and γ can be written as

vI
αγ(r) = vLJ

αγ (r) + vC
αγ(r)

= 4ǫαγ

((σαγ

r

)12

−
(σαγ

r

)6
)

+ ǫC
qαqγ

r
(5.111)

with r = |xα − xγ| and α, γ = H, Cl. With our choice of unit system we have

ǫC ≈ 331.84
kcal Å

mol e2 .

The parameters for the Lennard-Jones potential are computed according to the
Lorentz-Berthelot mixing rules:

ǫαγ =
√

ǫαǫγ , σαγ = 0.5(σα + σγ), α, γ = H, Cl. (5.112)

We solve the SS-BGY3dM equations for the HCl-like model with number density
ρ = 0.018/Å3 and temperature T = 420K (β = 1.1989). We choose χ = 10−2 for
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mCl = 35.453 u mH = 1.008 u rHCl
0 = 1.257 Å

qCl = −0.2 e qH = 0.2 e
ǫCl = 0.5143 kcal/mol ǫH = 0.0397 kcal/mol
σCl = 3.353 Å σH = 2.735 Å

Table 5.8. Parameter values for the HCl-like model fluid.

the stopping criterion of the fixed point iteration and a damping factor of ν = 0.01.
The parameter G, which determines the width of the charge distribution during the
evaluation of the Coulomb potential, is set to G = 0.8/Å. Further, we use a domain
Ω = [−10Å, 10Å]3 and grids with N1 = 323, N2 = 643, N3 = 1283 and N4 = 2563

grid points. Then, the discrete solutions3 for g
(2)
HH, g

(2)
HCl and g

(2)
ClCl are computed for

all grid resolutions. These solutions are linearly interpolated to the finest grid and
the discrete L2- and L∞-errors between the interpolated solutions and the solution
on the finest grid are evaluated, compare Section 5.1.2 for the exact definition of the
error norms. The results are presented in Table 5.9 and Figure 5.13.

H-H H-Cl Cl-Cl
dof eLh

2
eLh

∞
eLh

2
eLh

∞
eLh

2
eLh

∞

323 2.310−3 1.397−1 4.627−3 3.975−1 7.825−3 4.594−1

643 8.602−4 4.424−2 1.640−3 1.513−1 2.731−3 1.790−1

1283 3.011−4 1.269−2 4.517−4 4.773−2 8.006−4 5.224−2

Table 5.9. L2- and L∞-errors for the HCl-like model and different grid sizes.

The results exhibit a similar behavior as in the monoatomic case. The L∞-error
of the H-H distribution function is reduced by a factor of 0.38 between resolution
level 1 and level 2 and a factor of 0.32 between level 2 and level 3. Hence, we see
a nearly linear convergence. Yet, we cannot observe any asymptotic behavior, since
we have too little data. A similar behavior can be observed for the L2-error and the
other distribution functions. This may indicate that the error is again dominated by
the approximation of the sharp function g0 of our approach g = g0e

−u, as it has been
in the case for the monoatomic solvent. It further stands out that the errors of the
site-site pair distribution functions considerably differ in their absolute values. One
can conclude that the H-H and H-Cl distribution functions are smoother than the Cl-
Cl distribution function for this model fluid and are therefore better approximated.
This will be confirmed by the results of Section 5.4, where we will present the actual

3We leave out the subscript h, which indicates a discrete function.
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Figure 5.13. L∞-error (left) and L2-error (right) for the HCl-like model
and different grid sizes.

distribution functions computed for this model. We will again use 2563 grid points
for the comparison of the SS-BGY3dM results with molecular dynamics simulations
in the following. The comparison between BGY3dM and molecular dynamics has
to be performed with 1283 grid points due to the bad convergence of the molecular
dynamics results in case of full three-dimensional density distributions.

Figure 5.14 shows the convergence history for the HCl-like model with N = 1283,
ν = 0.02 and χ = 10−2. Recall that the equations for the H-H, H-Cl and Cl-Cl pair
distribution function are solved simultaneously. Hence, the method required 822
steps in total to converge. On the one hand, this is caused by the small damping
factor, which is required because of the long-range Coulomb force. On the other
hand, Figure 5.14 clearly shows that the error starts to decrease monotonically for
all functions only after iteration 400, even in the case of the L2-norm. This is be-
cause the equations for the three distinct pair distribution functions are coupled
and influence each other in a highly non-linear way through their respective solu-
tions. Compared to the monoatomic case of the BGY3d equation, this causes the
SS-BGY3dM and BGY3dM equations to be much more challenging to solve. Once
all functions approach the neighborhood of their final solution, a monotonic decrease
of all norms can be observed. The oscillations in the discrete L∞-norm are the re-
sult of the bad approximation of the real L∞-norm, as already explained for the
monoatomic case of the BGY3d equation, see Section 5.1.2. Asymptotically, the
convergence is linear and has a rate of about 0.99 for all distribution functions.

Computational Costs

In this section, we are going to discuss briefly the computational costs necessary to
solve the SS-BGY3dM or the BGY3dM equations. We have already seen, that the
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Figure 5.14. Convergence of the fixed point iteration for the HCl-like model
in the L∞-norm (left) and the L2-norm (right).

number of fixed point iterations is considerably larger than in the case of monoatomic
solvents and is on the order of several hundred iterations. Each iteration consists of
the computation of the right hand side of the Poisson equation, the solution of the
Laplacian in Fourier space and the solution of a second Laplace problem to correct
the boundary conditions. For a two-site solvent like HCl, a total of 96 and 28 Fourier
transforms are computed at each iteration for the SS-BGY3dM and BGY3dM equa-
tions, respectively. The amount of Fourier transforms is larger for the SS-BGY3dM
equations, since there are three pair distribution functions in comparison to two sin-
gle site distribution functions of the BGY3dM equations. Additionally, there is an
intra-molecular term present only in the SS-BGY3dM equations. This term in par-
ticular is computationally very expensive due to the NSSA approximation involved,
see also Section 5.3.2.

The computational effort for the numerical solution of the second Laplace prob-
lem (5.109), which is required to correct the boundary conditions, is comparatively
small. For simplicity, we choose to solve it by the iterative GMRES method as it is
implemented in PETSc [5–7]. We use the solution vector of the preceding fixed point
iteration as initial guess for the GMRES iteration. Figure 5.15 shows the number of
GMRES steps performed until iteration 500. As above, we solved the SS-BGY3dM
equations for the HCl-like model with N = 1283 grid points. Figure 5.15 exhibits an
interesting characteristic. The number of GMRES steps rapidly decreases until it-
eration 300. From there, between zero and two GMRES steps have to be performed
at each iteration in order to take the Euclidean norm of the residual below 10−4,
which has been chosen as stopping criterion. That is because the Laplace problems
do not differ significantly at subsequent iterations. This reduces the computational
costs of this boundary correction tremendously. In our special example, the per-
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Figure 5.15. Number of GMRES steps at each iteration of the fixed point
iteration.

centage of the computing time for the boundary correction was about six percent
of the total computation time. 83% of this portion were spent during the first 300
fixed point iterations. Moreover, the choice of the GMRES solver is not optimal.
Hence, the computing time necessary for the boundary correction, especially during
the first iterations, could be reduced even more by employing e.g. a multigrid solver.
However, this would have only a small effect on the entire computational costs and
will therefore not be considered further.

It follows that the total computational costs are dominated by the number of
discrete Fourier transforms to be computed at each iteration. The numerical solution
of the example considered above required about 114 minutes on 32 processors of the
linux cluster Himalaya [48], that is about 14 minutes per 100 iterations. The same
problem computed with N = 2563 grid points with the same amount of processors
required approximately 140 minutes per 100 iterations, which is ten times slower.
This is an acceptable factor if we consider the complexity of O(n3 log(n3)) for the
three-dimensional discrete Fourier transform with n the number of grid points in one
direction, and the increased costs for the parallel communication. The computing
time per 100 iterations for the solution of the BGY3dM equations are about 3.2
times faster than for the SS-BGY3dM equations with the same grid resolution, as
can be expected due to the reduced number of discrete Fourier transforms.

5.4 Test of the BGY3dM Model

We now investigate the model errors of the SS-BGY3dM and BGY3dM equations.
To this end, we compare the results computed by our SS-BGY3dM and BGY3dM
models with results from molecular dynamics simulations. In order to exemplify
the dependence of the quality of the approximation on the considered solvent, we
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will consider a two-site model of a fluid and compute results for two different pa-
rameter sets of this model. Moreover, we will discuss the symmetry violation due
to the approximations involved in the methods. Finally, results for the site density
distributions around a simple solute will be presented and compared to molecular
dynamics results.

5.4.1 Comparison of SS-BGY3dM with Molecular Dynamics

We consider the two HCl-like models of [49]. The first has already been described
in Section 5.3.4 with the parameter set from Table 5.8 and the structure shown in
Figure 5.12. The second is a slight modification of the first. One Lennard-Jones
parameter of the hydrogen atom is decreased to σH = 0.4Å which is about seven
times smaller than before. We call the different models simply Model 1 and Model
2, respectively. We again choose χ = 10−2 for the stopping criterion of the SS-
BGY3dM method and ν = 0.01 for the damping factor of the fixed point iteration.
The width of the charge distribution for the evaluation of the Coulomb potential is
set to G = 0.8/Å. We further set Ω = [−10Å, 10Å]3, ρ = 0.018/Å3 and β = 1.1989
for the SS-BGY3dM equation as well as for the molecular dynamics simulation. The
intermolecular potential is given by (5.111). In the case of the molecular dynamics
simulation, we do not assume the HCl molecules to be rigid bodies, but model the
intramolecular bond by a harmonic potential:

vb(r) = kb(r − rHCl
0 )2, r = |xH − xCl|. (5.113)

The choice of kb = 500 kcal

mol Å
2 allows fluctuations of the bond length of less than

0.003Å. Hence, the difference of the resulting distribution functions between the
rigid molecule and the molecule equipped with this bond-potential will not be no-
ticeable. We again employ the molecular dynamics package TREMOLO [123]. To
this end, the Coulomb interaction is computed by the smooth-particle-mesh-Ewald
method (SPME), see e.g. [46]. For all further details about the molecular dynamics
simulation and about the computation of the distribution functions from a molecular
dynamics trajectory refer to Section 5.2.1.

In order to compare the results of SS-BGY3dM and molecular dynamics, we
again compute the error values eLh

2
, eLh

∞
and emax, which we already used for the

monoatomic BGY3d equation in Section 5.2.2. Their respective values for the H-H,
H-Cl and Cl-Cl pair distribution functions are given in Table 5.10 for Model 1 and
Model 2. Figures 5.16, 5.17, 5.18 and 5.19, 5.20, 5.21 show the radial component of
the solutions of both methods and the deviation between them.

The characteristic properties of a method that employs the Kirkwood approxi-
mation can be identified in each of the figures. The exact position and the height
of the first peak do not match those of the molecular dynamics results except for
the H-H distribution of Model 1. The frequency of the subsequent oscillation is too
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MD SS-BGY3dM
max g max g eLh

2
eLh

∞
emax

H-H (Model 1) 1.32 1.32 3.549−6 6.223−2 0.00
H-Cl (Model 1) 1.29 1.37 4.385−6 8.698−2 0.08
Cl-Cl (Model 1) 1.99 1.93 1.491−5 3.194−1 0.06

H-H (Model 2) 1.14 1.13 6.893−6 2.692−1 0.00
H-Cl (Model 2) 1.17 1.18 7.516−6 3.000−1 0.01
Cl-Cl (Model 2) 2.07 2.48 2.896−5 5.756−1 0.41

Table 5.10. Comparison of SS-BGY3dM with molecular dynamics results
for the HCl-like models.
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Figure 5.16. Radial Component of the H-H distribution function (Model
1): Comparison (left) and deviation (right) between SS-BGY3dM and molecular
dynamics results.

low. These errors are known to be a consequence of the two-particle superposition
approximation and can only be handled by considering a three-particle interaction,
as already denoted in Section 5.2.2.

A comparison of the errors for the different site-site distribution functions of
Model 1 reveals that their magnitude differs significantly. The L2- and L∞-errors
of the Cl-Cl distribution function are about 3.5 times larger than the H-Cl errors.
Hence, the quality of the approximation depends on the different potential param-
eters of the respective particle species. In this special example, the Cl-atoms have
a much stronger Lennard-Jones interaction, which obviously influences the quality
of the solution in a negative sense. The comparison to the results of Model 2 un-
covers another difficulty. All errors are increased for this model, which is due to the
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Figure 5.17. Radial Component of the H-Cl distribution function (Model
1): Comparison (left) and deviation (right) between SS-BGY3dM and molecular
dynamics results.
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Figure 5.18. Radial Component of the Cl-Cl distribution function (Model
1): Comparison (left) and deviation (right) between SS-BGY3dM and molecular
dynamics results.

decreased value of σH considered for Model 2. This leads to more different particle
species and, hence, worsens the approximation of the SS-BGY3dM equations. Es-
pecially the H-H and H-Cl distribution functions of Model 2 show major deficiencies
in the prediction of the position of the first flank of the function. However, similar
problems can be observed for the solution of the Ornstein-Zernike based extended
RISM equations of Hirata and Rossky in reference [49].

We can conclude that the exact characteristics of the site-site distribution func-
tions are very difficult to approximate, as long as the approximations only comprise
pair distribution functions. Obviously, the approximation of the SS-BGY3dM equa-
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Figure 5.19. Radial Component of the H-H distribution function (Model
2): Comparison (left) and deviation (right) between SS-BGY3dM and molecular
dynamics results.
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Figure 5.20. Radial Component of the H-Cl distribution function (Model
2): Comparison (left) and deviation (right) between SS-BGY3dM and molecular
dynamics results.

tions perform better for more similar particle species. All important features of
the distribution functions of the HCl-like Model 1 were reproduced. It follows that
the general form and especially the modeling of the intramolecular bonds of the
SS-BGY3dM equations is validated by the results.

Symmetry Issues

The site-site pair distribution functions g
(2)
αγ are symmetric under exchange of par-

ticles, i.e. g
(2)
αγ = g

(2)
γα , since they only depend on the distance of the two sites. It
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Figure 5.21. Radial Component of the Cl-Cl distribution function (Model
2): Comparison (left) and deviation (right) between SS-BGY3dM and molecular
dynamics results.

follows that the solutions of the exact equations of the YBG-hierarchy for the site-
site pair distribution functions (4.78) are independent of the order of the particle
types. If we now consider our two-side model fluid with particle types A and B and
change the particle order in the derivation of the SS-BGY3dM equations for the
mixed pair distribution function, we get the following equation for g

(2)
BA instead of

equation (5.66) for g
(2)
AB:

∆x1u
(2)
BA(x1,x2) =− βρA∇x1 ·

∫

Ω

FBA(x1,x3)g
(2)
BA(x1,x3)g

(2)
AA(x2,x3) dx3

− βρB∇x1 ·
∫

Ω

FBB(x1,x3)g
(2)
BB(x1,x3)g

(2)
BA(x3,x2) dx3

− β∇x1 ·
∫
Ω
FBB(x1,x3)g̃

(2)
BB;A(x1,x3)ωAB(x2,x3) dx3

nB
AB(x1,x2)

−∆x1 ln

(∫

Ω

ωAB(x3,x1)g̃
(2)
AA;B(x2,x3) dx3

)
. (5.114)

Please note, that this is not a simple relabeling of indices but a different derivation
of the mixed site-site term. This is a consequence of choosing a different term of
the transformed Liouville equation (4.67) by exchanging the types of the first two
particles.

As already mentioned above, this exchange would have no effect for the exact
equations. However, since we introduced approximations in order to be able to
solve the equations, the question arises whether the solution of the approximated
equations are also symmetric under particle exchange. Numerical tests indicate
that this is not the case. As an example, we present the results of the SS-BGY3dM
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MD SS-BGY3dM
max g max g eLh

2
eLh

∞
emax

H-H (AB) 1.32 1.32 3.549−6 6.223−2 0.00
H-Cl (AB) 1.29 1.37 4.385−6 8.698−2 0.08
Cl-Cl (AB) 1.99 1.93 1.491−5 3.194−1 0.06

H-H (BA) 1.32 1.22 5.785−6 1.281−1 0.10
H-Cl (BA) 1.29 1.18 8.335−6 2.645−1 0.12
Cl-Cl (BA) 1.99 1.73 1.741−5 4.562−1 0.26

Table 5.11. Comparison of SS-BGY3dM (AB) and SS-BGY3dM (BA) with
molecular dynamics results for the HCl-like model (Model 1).
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Figure 5.22. Radial Component of the H-H distribution function (Model 1):
Comparison (left) and deviation (right) between SS-BGY3dM (AB), SS-BGY3dM
(BA) and molecular dynamics results.

equations for our HCl-like model (Model 1), where we used equation (5.114) instead
of (5.66). The results computed with (5.66) (A=H, B=Cl) are labeled by AB,
whereas the new results computed with (5.114) (A=Cl, B=H) are labeled by BA.
Table 5.11 shows the results for both ways compared to the molecular dynamics
results. Radial plots of the AB and BA results are depicted in Figures 5.22, 5.23
and 5.24.

It is obvious that the results differ considerably for the two approaches to com-
pute the mixed site-site pair distribution function. Since the pair distribution func-
tions with two equal sites (H-H, Cl-Cl) also depend on the mixed function, they
differ as well. The bottom line is that the error of the approximation depends on
the particle types involved. This is not surprising, since the values of the potential
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Figure 5.23. Radial Component of the H-Cl distribution function (Model 1):
Comparison (left) and deviation (right) between SS-BGY3dM (AB), SS-BGY3dM
(BA) and molecular dynamics results.
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Figure 5.24. Radial Component of the Cl-Cl distribution function (Model 1):
Comparison (left) and deviation (right) between SS-BGY3dM (AB), SS-BGY3dM
(BA) and molecular dynamics results.

parameters of the different particle types affect the relative errors of the different
terms. The more similar the particle types become, the smaller is the difference
between the AB- and BA-results, which even vanishes for identical particle types.
The second observation is that the deviation of the BA-functions compared to the
molecular dynamics results is consistently larger than for the AB-functions. Hence,
it would have been advantageous to choose the AB-equation in this case. This raises
the question how we can choose the order of particle types in advance in order to
obtain a better accuracy. This is still an open question. It would require a detailed
understanding of how the approximation errors involved in the many different terms
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MD SS-BGY3dM
max g max g eLh

2
eLh

∞
emax

H 1.96 1.56 3.594−5 4.134−1 0.39
Cl 3.39 2.38 9.671−5 1.215+0 1.00

Table 5.12. Comparison of BGY3dM with molecular dynamics results for
the HCl-like solvent around a HCl molecule as solute.

interact and lead to the error of the solution. For now, we have to compare the
results of both ways with the results of a molecular dynamics simulation in order to
decide.

5.4.2 Comparison of BGY3dM with Molecular Dynamics

Finally, we test the BGY3dM model with respect to the computation of solvent
densities around an arbitrary solute. For this, we again employ the HCl-like model
(Model 1) already described in the preceding Section. A single HCl molecule is con-
sidered as the solute. It is placed symmetrically along the x1-axis at the center of the
simulation box. The site-site pair distribution functions of the pure solvent, which
are required as input of the BGY3dM model, are computed by the SS-BGY3dM
model. All other simulation parameters are taken from Section 5.4.1. Details on
how the site density distribution is computed by molecular dynamics can be found
in Section 5.2.1. In this case, a total of 3.2 108 molecular dynamics time steps were
necessary in order to reach a satisfactory level of convergence.

The computed site densities and their deviation are depicted in Figure 5.25. The
computed error quantities can be found in Table 5.12. The molecular dynamics re-
sults still show distinct fluctuations, but all features of the distribution functions
have clearly developed. A comparison of the results between the BGY3dM model
and molecular dynamics shows a satisfying agreement. The low L2-errors indicate a
good overall approximation. The main peaks and the subsequent oscillation pattern
are reproduced with an accuracy that can be expected considering the approxima-
tions involved. The main deviation can be observed at the location of the main
peaks of the distributions. All other errors are not resolved in the plots due to the
fluctuations of the molecular dynamics results. Hence, the L∞-error is about 0.4
and 1.2 for the hydrogen and the chloride distribution, respectively, and can also
be located at the main peaks. The error of the chloride distribution function is
considerably larger, as it was also the case for the Cl-Cl pair distribution functions,
see Section 5.4.1. Recall that the site-site pair distribution functions required as
input of the BGY3dM model have already been computed with the approximate
SS-BGY3dM model. Hence, the approximation error enters twice: directly via the
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Figure 5.25. Distribution functions for the HCl-like model around a single
HCl solute computed with the BGY3dM model (top) and with molecular dynam-
ics (middle) and deviation between them (bottom) at the x3 = 0 plane. Hydrogen
distribution (left) and chloride distribution (right). The solute is not shown.
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approximation involved in the BGY3dM model and by the use of the approximated
site-site pair distribution functions computed with the SS-BGY3dM model.

In conclusion, the results are very promising. The BGY3dM model is able to
reproduce the important features of the site distribution functions around a solute
with satisfying accuracy for the considered model solvent. As indicated by the
results for the site-site pair distribution functions, the performance can be worse for
different solvents. But still, the approximation of the site densities by the BGY3dM
model is very efficient. In order to obtain the results, we have performed 32 molecular
dynamics simulations for any site distribution with different initial configurations
of the solvent velocities. Each simulation comprised 107 time steps and required
about 122h of computing time on one processor of the cluster Himalaya [48]. The
solution of the BGY3dM model on 32 processors of Himalaya required only 954s for
315 iteration steps, which is two–three orders of magnitudes faster, assuming that
the different molecular dynamics simulations can be performed simultaneously.

5.4.3 Summary

We have shown that the BGY3dM model can be solved efficiently and provides
reasonable good results when compared to site-site pair distribution functions and
site densities computed by a molecular dynamics simulation. The results validate the
general form of the derived SS-BGY3dM and BGY3dM equations. In particular, the
modeling of the rigid bonds in the solvent molecules and the comprised normalized
site-site superposition approximation (NSSA) of Taylor and Lipson [116] in the
intramolecular terms have proven to appropriately approximate the structure of
the solvent molecules.

Nevertheless, the BGY3dM model does not work well for every solvent model,
yet. We have learned in various numerical tests that the method sometimes fails
to converge or leads to obviously unphysical results. Problems arise for example
for higher densities, lower temperatures or strong interactions. We assume that the
reason for this behavior again originates in the nature of the Kirkwood superposi-
tion approximation. This approximation is perfectly suited for large separations of
particles or in the limit of zero density. However, the error becomes larger for the
problematic situations just described. This typically leads to a considerable overes-
timation of the main peaks of the distribution functions. In combination with the
non-linear coupling of several equations for different site density functions, this can
yield convergence problems of the non-linear iteration.

Nonetheless, this is not a problem of the Kirkwood approximation alone. The
various methods based on the Ornstein-Zernike equation struggle with similar is-
sues. Convergence problems are not reported in the literature, but the accuracy of
the computed results often is not satisfactory, see e.g. [49] concerning the XRISM
method of Hirata and Rossky [50] for the HCl-like models. A possible way out is
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given by the so-called empirical bridge functions as employed by Du, Beglov and
Roux [28] or Kovalenko and Hirata [63] in order to improve the results of their
methods for water as solvent. These bridge functions can account for deficiencies
that are particular for the approximation and the solvent considered. They employ
free parameters that have to be fitted by an empirical procedure, such that they
lead to an improved accuracy. This would also be possible for our BGY3dM model.
However, the empirical adjustment is a rather technical task and is therefore beyond
the scope of this thesis.

Compared to the computation of the site densities by a molecular dynamics
simulation, our approximate BGY3dM models based on the liquid state integral
equation theories exhibit a drastically reduced computation time. The reduction of
the computing time has been two–three orders of magnitude for the HCl-like solvent
with a HCl molecule as solute. To this end, we even employed a combined molecular
dynamics/Monte Carlo method by performing several individual molecular dynamics
simulations with different initial configurations. This way, we were able to parallelize
the computation using as many processors as there were employed for the solution
of the BGY3dM equations. The reduction is indeed smaller as it was the case for
monoatomic solvents, but it is still the difference between some minutes and several
days. However, we should in fact compare the computational effort needed for the
approximation of the potential of mean force (PMF) instead of the solvent densities.
Regarding the forces of the PMF, their computation requires a further integral over
the domain Ω if the solvent density is known. This can be computed with linear
complexity. With respect to the computational effort, the direct approximation of
the forces of the PMF by a molecular dynamics simulation is, however, equivalent
to the approximation of the solvent density. Hence, our observations concerning the
computing time for the approximation of the solvent densities are also valid for the
approximation of the PMF.

However, in order to be applicable in an implicit solvent model, the computing
times of the approximate models have to be reduced even further. This could be
achieved, for example, by exploiting the similarity of the density distributions when
the solute configuration changes only slightly, as it would be the case in subsequent
time steps of a molecular dynamics simulation. A different discretization of the
BGY3dM model may also lead to a more efficient numerical method. However, this
is not a trivial task and is therefore postponed to future work.





Chapter 6

Applications

In the preceding chapter we have seen that the SS-BGY3dM and the BGY3dM
equations lead to reasonable results for appropriate parameter sets of molecular
solvents. In this chapter we are going to present examples of applications of the
BGY3dM equations. We will consider a realistic fluid which is employed as solvent
in chemical applications. The site distribution functions of the solvent species will be
computed and presented for several solutes. From this, we will compute the charge
distribution around the solute and discuss some basic properties of the different site
and charge distributions.

6.1 Carbon Disulfide as Solvent

We consider carbon disulfide (CS2) as solvent. Carbon disulfide is a colorless liquid
which is mainly used to solve fats, rubber, resins and waxes, among other applica-
tions, see e.g. [19]. The CS2 molecule is linear and has no dipole moment. It is a
non-polar solvent. For our numerical computations we employ the model of Zhu et
al. [129]. As before, the functional form of the interaction potential is given as a
sum of Lennard-Jones and Coulomb terms. The potential between two sites α and
γ with α, γ = C, S is given by

vαγ(rαγ) = vLJ
αγ (rαγ) + vC

αγ(rαγ)

= 4ǫαγ

((
σαγ

rαγ

)12

−
(

σαγ

rαγ

)6
)

+ ǫC
qαqγ

rαγ
(6.1)

with rαγ = |xα − xγ| and ǫC ≈ 331.84 kcal Å
mol e2

. The respective parameter values are
given in Table 6.1. The linear structure of the CS2 molecule is shown in Figure 6.1
(left).

The carbon disulfide model is a three-site model. Compared to the BGY3dM
equations of a two-site model, as given in (5.59) and (5.60), the equations for a

135
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Figure 6.1. Configuration of the carbon disulfide molecule (left) and the
site-site pair distribution functions computed by molecular dynamics (right).

mC = 12.011 u mS = 32.065 u rCS
0 = 1.56 Å

qC = −0.308 e qS = 0.154 e rSS
0 = 3.12 Å

ǫC = 0.1013 kcal/mol ǫS = 0.3950 kcal/mol
σC = 3.200 Å σS = 3.520 Å

Table 6.1. Parameter values for the carbon disulfide model of Zhu et al. [129].

three-site model comprise some additional intramolecular terms. However, we will
not explicitly state the BGY3dM equations for the three-site model, since they can
easily be deduced from the general formula (4.114).

As input for the BGY3dM equations, the site-site pair distribution functions of
carbon disulfide are required. Since the SS-BGY3dM equations for the carbon disul-
fide model lead to unphysical results, we compute these functions by a molecular

dynamics simulation of 80 CS2 molecules at a number density of ρ = 0.01/Å
3

and a
temperature of T = 360K with periodic boundary conditions. We have to use a rel-
atively high temperature in order to ensure convergence of the BGY3dM equations.
However, the maximum difference between the site-site pair distribution functions
at room temperature (T = 298, 15K) and T = 360K is only about five percent at
the first peak of the S-S distribution function. The qualitative characteristics of
the functions are exactly conserved. Since the boiling point of real carbon disulfide
lies at Tb = 319.15K, the considered liquid system corresponds to a closed volume
under pressure. The resulting pair distribution functions of the molecular dynamics
simulation are depicted in Figure (6.1) (right).
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Figure 6.2. Site distribution functions of carbon disulfide around a CS2

molecule. Carbon distribution at the x3 = 0 plane (left) and sulfur distribution at
the x3 = 0 plane (right).

Figure 6.3. Charge distribution of carbon disulfide around a CS2 molecule.
Cut at the x3 = 0 plane (left) and isosurface plot (right).

Carbon Disulfide as Solute

As a first example we compute the site distribution functions of carbon disul-
fide around a single CS2 molecule as solute. The computational domain is set to
Ω = [−14Å, 14Å]3. Figure 6.2 shows the site distributions at the x3 = 0 plane.
The carbon distribution function shows a broad maximum around the entire solute
molecule. This is a superposition of the van der Waals attraction modeled by the
Lennard-Jones potential between the carbon atoms and the solute, and the Coulomb
attraction between the solvent carbon and the solute sulfur atoms. The solvent sul-
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Figure 6.4. Site distribution functions of carbon disulfide around a hexane
molecule. Carbon distribution at the x3 = 0 plane (left) and sulfur distribution at
the x3 = 0 plane (right).

fur distribution shows a sharp peak around the solute carbon particle due to the
strong Coulomb interaction between them. This can also be observed in Figure 6.3,
where the charge distribution is plotted. The charge distribution for carbon disulfide
can be computed from the site distribution functions by

gcharge = qCgC + 2qSgS (6.2)

with qα the charge of site α, α = C, S. As expected, the plots validate that charges
with opposite sign are more likely to be found next to each other than charges with
equal sign. Hence, a closed band of high density of positive sulfur atoms evolves
around the solute carbon whereas the solvent carbon is more likely to be found next
to the solute sulfur atoms.

Hexane as Solute

As second solute we consider a hexane molecule (C6H14). Hexane is a colorless,
highly flammable liquid and a non-polar solvent. It is a common constituent of
gasoline and glues. As solvent, it is used to extract oils from crops such as soybeans,
flax, peanuts, and safflower seed. It is also used as a cleansing agent in the textile,
furniture, shoemaking and printing industries [80]. Hexane has five isomers. We
consider the straight chain isomer CH3(CH2)4CH3. The potential parameters for
hexane are taken from the general-purpose force field OPLS [57]. The simulation
domain is set to Ω = [−16Å, 16Å]3.

Figure 6.4 shows the carbon and sulfur distributions around hexane at the x3 = 0
plane. In these plots the hexane molecule is raised 2Å above the plane for visual-
ization purposes. As already observed for the carbon disulfide molecule as solute,
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Figure 6.5. Site distribution functions of carbon disulfide around a hexane
molecule. Isosurface plot of carbon distribution (left) and isosurface plot of sulfur
distribution (right).

the carbon distribution has a broad maximum around the solute, whereas the sul-
fur distribution shows more distinct maxima between the positions of the positively
charged hydrogen atoms. At both ends of the hexane chain, the sulfur maxima are
considerably smaller. As can also be seen in Figure 6.5 the first maximum of the
carbon as well as the sulfur distribution build a nearly closed shell around the entire
solute molecule. This is because the hexane molecule is non-polar and the van der
Waals interaction modeled by the Lennard-Jones potential is the dominant force in
this case.

Methanol as Solute

In contrast to hexane, we now consider methanol as polar solute. Methanol is
the simplest alcohol and has the chemical formula CH3OH. It is a colorless, highly
flammable liquid used as a petrol additive, solvent or as antifreeze [78]. Due to the
alcohol specific OH-group, methanol is a polar molecule. The oxygen and hydrogen
atoms carry strong opposite charges. This makes methanol soluble in water and
other polar solvents but insoluble in non-polar solvents as carbon disulfide or hexane.
We again employ the OPLS force field [57] for the parameter set of methanol. The
computational domain is Ω = [−14Å, 14Å]3 in this case.

In the OPLS force field the hydrogen of the OH-group is modeled as pure charge
carrying site without Lennard-Jones interaction. However, for numerical stability of
the BGY3dM equations, a hard core is required at the position of any atom. There-
fore, we also introduce Lennard-Jones parameters for the oxygen bonded hydrogen
and choose σH = 3.4Å and ǫH = 0.03kcal/mol. The value of σH is artificially high for
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Figure 6.6. Site distribution functions of carbon disulfide around a methanol
molecule. Carbon distribution at the x3 = 0 plane (left) and sulfur distribution at
the x3 = 0 plane (right).

Figure 6.7. Charge distribution of carbon disulfide around a methanol
molecule. Cut at the x3 = 0 plane (left) and isosurface plot (right).

a hydrogen atom of the OH-group, but it has been required for stable convergence of
the BGY3dM equations. Yet, we should motivate this choice. We observed that the
carbon density of the CS2 solvent is overestimated in the neighborhood of strong
positively charged particles as the hydrogen atom. This is partly due to a lack
of intramolecular coupling in the BGY3dM model. In the intramolecular terms of
the BGY3dM model the coupling of the carbon and the sulfur sites is incorporated
without considering the relative position of the two sulfur atoms. This is a three-
body effect that is neglected by the n-level Kirkwood approximation. Taking the
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three-body effect into account would lower the carbon density next to the hydrogen
atom, because sulfur has a low density in the vicinity of positive charges. Hence,
we choose the high value of σH in order to compensate for the missing three-body
correction.

Figure 6.6 shows the carbon and sulfur distributions around methanol at the
x3 = 0 plane. Again, the methanol molecule is raised 2Å above the plane for
visualization purposes. It is obvious that the strong Coulomb interaction highly
influences the behavior of the distribution functions. The negatively charged solvent
carbons are more likely to be found in the vicinity of the positive solute hydrogens,
whereas the solvent sulfur atoms are dominantly attracted by the negative oxygen
site. This is even more definite in the plots of the charge distributions of Figure
6.7. We also notice a negatively charged cloud behind the strong positive sulfur
peak next to the solute oxygen atom. This charge minimum forms partly due to the
intramolecular bond between carbon and sulfur, but also due to the intermolecular
attraction of different solvent atoms. The whole picture reveals the well-known fact
that charges tend to neutralize each other. Hence, the net forces on a particle in
a fluid at equilibrium are exerted only by nearby particles although the long-range
Coulomb potential is involved.

Butyric Acid

As a last example, we compute the solvent density around butyric acid. Butyric
acid is a carboxylic acid with structural formula C4H8O2. It belongs to the so-called
fatty acids which are in their form of esters constituents of all kinds of animal fats
and plant oils. As esters, the fatty acids are bonded to a backbone structure as e.g.
glycerol. Butyric acid is commonly known, since it is responsible for the unpleasant
odor of rancid butter. For more details about butyric acid see e.g. [18]. We again
use the OPLS [57] force field for the potential parameter set of butyric acid. The
computational domain is set to Ω = [−16Å, 16Å]3.

Similar to methanol, butyric acid has a charged functional group, the COOH-
group. Hence, we are again faced with the problem that the BGY3dM equations
tend to overestimate the solvent carbon density next to strong positively charged
particles. In order to account for this, we again choose a relatively large value for
σH in the COOH-group, i.e., we set σH = 3.4Å and ǫH = 0.03kcal/mol in this case.
Additionally, we have to damp the Coulomb force by a factor of 0.9 in order to
reach convergence of the BGY3dM equations. That corresponds to a reduction of
all partial charges by a factor of

√
0.9 ≈ 0.95.

The results for the carbon and sulfur distribution functions around butyric acid
are depicted in Figure 6.8. As before, the solute molecule is raised 2Å above the
plane. The strong repulsion between the solvent carbon and solute oxygen atoms
is evident. On the other hand, large peaks of the sulfur density can be found in
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Figure 6.8. Site distribution functions of carbon disulfide around butyric
acid. Carbon distribution at the x3 = 0 plane (left) and sulfur distribution at the
x3 = 0 plane (right).

Figure 6.9. Charge distribution of carbon disulfide around butyric acid. Cut
at the x3 = 0 plane (left) and isosurface plot (right).

the vicinity of the solute oxygen atoms. The same behavior can be observed for
the charge distributions of Figure 6.9. The strong positive charge of the hydrogen
is neutralized by a negative charge cloud of the solvent, whereas the oxygen atoms
are surrounded by positive solvent charges. This reveals a similar behavior as for
methanol as solute. Strong charges of the solute are neutralized by opposite charge
clouds of the solvent. Hence, the charge distribution of the solvent rapidly decays
to zero for large distances to the solute.
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Summary

We presented the density profiles of the solvent sites of carbon disulfide around sev-
eral solutes. Homogeneous solutes as e.g. hexane lead to closed shells of high carbon
and sulfur densities around the entire solute. Here, the van der Waals interaction
dominates. The density profiles for solute molecules with stronger partial charges, as
e.g. methanol and butyric acid, exhibit, however, distinct regions of higher carbon or
sulfur density according to their charge distributions. Especially the solvent charge
distributions revealed important properties of charged systems. Typical features of
Coulomb systems, where the attraction of opposite-signed charges and the rejection
of equal-signed charges lead to the neutralization of local charge distributions, can
be observed. Hence, the solvent site distribution functions are of short range, even
though the potential function is not. As already pointed out in Section 5.3.3, this can
also be proved rigorously, see [1]. The numerical solution of our BGY3dM model
showed that this important property is reproduced even for complex distribution
functions in three-dimensions.

In summary, the BGY3dM equations are able to compute reasonable site density
distributions around complex solute molecules in three dimensions. These site dis-
tributions can be used to compute the potential of mean force, i.e. the free energy of
the solute-solvent system and the mean force exerted on the solute by the solvent.
The BGY3dM method is, however, not yet stable with respect to the parameter sets
of the interaction potentials involved. Certain combinations, in particular strong
attractions between different particle species, do not lead to satisfactory results. In
order to account for this, we slightly altered the potential parameters of the respec-
tive particle species. A different approach would be to improve the approximations
contained in the BGY3dM equations by empirical functions that can be adapted
to the solvent under consideration. This approach would be similar to the bridge
functions of Beglov, Roux et al. [12,28] and Kovalenko and Hirata [63] employed for
the computation of the site distribution functions of water. A further investigation
along these lines is, however, beyond the scope of this thesis.





Chapter 7

Conclusions

We presented and investigated a novel computational model for the simulation of
solute-solvent systems based on the YBG-hierarchy. The presented model allows
for the efficient approximation of the solvent density around a solute of arbitrary
shape. The solvent density can be used to compute the potential of mean force
(PMF) which in turn allows for an incorporation of the solvent effects without the
need to explicitly include solvent molecules into the simulation. This way, a more
efficient simulation of the entire solute-solvent system becomes possible. Existing
implicit solvent models approximate the PMF very poorly. Hence, it is important
to develop methods that improve the accuracy of the implicit solvent models while
keeping the computational effort tractable for repeated evaluation.

Promising developments were made by the application of the liquid state inte-
gral equation theories. Several authors developed methods based on these theories
that can compute solvent densities around solutes of arbitrary shape. It stands
out that practically all methods found in the literature are based on the Ornstein-
Zernike equation and mostly employ the hypernetted chain (HNC) closure. However,
these methods do not lead to satisfactory results in all situations. Additionally, the
computational effort involved still makes a repeated evaluation during an extensive
solute-solvent simulation unfeasible. To overcome these issues we pursued a dif-
ferent approach. We derived our BGY3d and BGY3dM models starting from the
YBG-hierarchy together with the Kirkwood superposition approximation. Beside
the investigation of the Kirkwood approximation which has never been applied in
this context, the development of our method based on the YBG-hierarchy enabled
us to investigate a new numerical algorithm which indeed proved to be superior with
respect to the computational costs in the case of monoatomic solvents. With respect
to accuracy our BGY3d and BGY3dM models yield to almost identical results when
compared to methods based on the Ornstein-Zernike equation from the literature.

We derived our BGY3d model employing the Kirkwood approximation in order
to compute the solvent density of simple monoatomic solvents around arbitrary
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solutes. We are able to efficiently solve the non-linear BGY3d equation with full
three-dimensional resolution by means of a fixed point iteration. In each step of
this iteration a Poisson problem is solved by diagonal scaling in Fourier space. The
pair-distribution functions which are required as input of the BGY3d equation are
computed beforehand by the Born-Green equation which can be seen as a special case
of the BGY3d equation. We compared the results to those obtained by the Ornstein-
Zernike based 3d-HNC method of Beglov and Roux [10] and to distribution functions
computed by molecular dynamics simulations. We found that our approach gave
a similar overall accuracy as the 3d-HNC method. A more detailed analysis shows
that our BGY3d method is superior in the prediction of the height and position
of the first peak of the distribution functions, whereas the 3d-HNC method leads
to a better agreement of the subsequent oscillation pattern. Moreover, the BGY3d
model proved to be superior to the 3d-HNC model concerning the computational
costs. This is due to the considerably reduced number of non-linear iteration steps of
our method. Compared to the molecular dynamics simulation the computing time
for our BGY3d method was four orders of magnitude smaller, which is a substantial
gain with respect to computational effort.

In order to consider more realistic systems, we extended our model to molecular
solvents. To this end, the molecular BGY3d (BGY3dM) model comprises terms for
the intermolecular interactions as well as for the intramolecular interactions. The
intramolecular terms were derived to model rigid bonds by taking the limit of an in-
finite restoring force between two bonded particles. This way, the solvent molecules
are represented as rigid bodies. As before, the intermolecular terms incorporate the
Kirkwood superposition approximation. This approximation, however, is not appro-
priate for the intramolecular terms. Here, different approximations have to be em-
ployed in order to ensure the correct asymptotic behavior. For this, we incorporated
a slightly modified version of the normalized site-site superposition approximation
(NSSA) of Taylor and Lipson [116]. The intramolecular terms together with the
NSSA approximation turned out to model the rigid bonds of the solvent molecules
very well. As a further advance of the method, the optimal approximation for the
intramolecular terms as derived by Attard [4] could be incorporated.

Beside the short-range Lennard-Jones potential, we also considered the long-
range Coulomb interaction. For this, we introduced a splitting of the Coulomb
potential into a singular short-range part and a smooth long-range part. The short-
range part is processed in exactly the same way as the Lennard-Jones potential.
The long-range part has fast decaying analytic Fourier components and is therefore
directly inserted in Fourier space. Nevertheless, the inverse Fourier transform of this
long-range part leads to undesirable boundary conditions that have to be corrected.
The correction comprises the solution of an additional Laplace problem. It can
efficiently be solved by a finite difference scheme with an iterative GMRES solver.
Finally, we also derived the site-site BGY3dM (SS-BGY3dM) equations in order
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to compute the site-site pair distribution functions of the pure solvent which are
required as input of the BGY3dM model.

A comparison of the results computed by the (SS-)BGY3dM model and by molec-
ular dynamics showed a similar performance as in the case of monoatomic solvents.
All important characteristics of the site-site pair distribution functions and the site
density distributions are reproduced. Hence, the general form of the (SS-)BGY3dM
model including the modeling of the intramolecular bonds is validated by the results.
Likewise, the application of the BGY3dM model to the site density computation of
carbon disulfide as solvent around several realistic solutes lead to reasonable density
and charge distributions. The reduction of the computational effort compared to
a molecular dynamics simulation for the computation of the site densities is sub-
stantial even in the case of complex molecular solvents. For a two-site model of a
HCl-like solvent the BGY3dM method computed the results about two-three orders
of magnitudes faster. This is an important step in the development of an implicit
solvent model that allows repeated evaluations of an accurate approximation to the
PMF.

It is a well-known problem that methods based on the liquid state integral equa-
tion theories do not lead to satisfactory results in all situations [47]. This is due to
the approximations involved. In general, all methods perform worse with increas-
ing density, decreasing temperature or for strong interactions between two particle
species. Especially the computation of densities for water as solvent is very chal-
lenging due to the strong Coulomb interaction between the oxygen and hydrogen
sites of the H2O molecule. Water is the most important fluid in general and as a
solvent. It is known to be a very complex fluid and there exist many different em-
pirical water models intended for microscopic simulation. But none of these models
is able to reproduce all of the properties of water with appropriate accuracy. Hence,
the model is usually chosen such that it reproduces well only one property that is
assumed to be important for the respective application. Most general purpose force
fields such as CHARMM [16], AMBER [23] and OPLS [57] employ the TIP3P [55]
and TIP4P [56] water models for the simulation of biomolecular systems. Hence,
the application of the integral equation theories to the TIP3P water model is an
important test. Both the 3d-RISM-HNC method of Du, Beglov and Roux [28] and
the 3d-HNC-PLHNC method of Kovalenko and Hirata [63] did not lead to accurate
results for TIP3P water. Hence, the methods were extended by so-called empirical
bridge functions in order to improve their accuracy. These bridge functions account
for the overestimation of water ordering around a hydrophobic solute.

Our experiments with the (SS-)BGY3dM model revealed that its application to
TIP3P water is also very challenging. It is known that the Kirkwood approximation
can cause an overestimation of the first peak of the pair distribution or site density
function [3] for high densities or strong interactions. This is a result of the neglected
three-particle interaction. Due to this approximation error the BGY3dM and SS-
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BGY3dM models do not lead to satisfactory results or even do not converge in certain
situations. One approach to overcome this problem would be the introduction of
empirical corrections as it was described for the Ornstein-Zernike based methods
[28, 63]. By this, one can account for deficiencies which are characteristic for the
employed approximation and the respective application. This has already been
suggested by Attard [3] concerning the Kirkwood approximation. It would however
require an extensive adjustment of the empirical functions and is therefore beyond
the scope of this thesis.

The major advantage of an implicit solvent model based on the integral equation
theories is the enormous reduction of the computational effort needed in order to in-
clude the solute-solvent effects in a microscopic simulation. However, a considerable
reduction of the computing time would still be necessary for any integral equation
method in order to allow for repeated evaluation of the potential of mean force
during a Monte Carlo or molecular dynamics simulation of a complex solute-solvent
system. Concerning this application they still cannot replace the classical implicit
solvent models, which approximate the potential of mean force very roughly. In or-
der to enable an even more efficient numerical solution of our BGY3d and BGY3dM
models two approaches are conceivable: First, a finite element discretization of the
BGY3d or BGY3dM equations could yield a reduction of the degrees of freedom
and thereby a decrease of the computational effort. But it is important to keep
in mind that the discretization should allow for an efficient evaluation of the con-
volution integrals appearing in both models. This could be achieved for example
by a low-rank approximation of the convolution matrices as it has been employed
by Fedorov et al. [33] in combination with a wavelet basis for the solution of the
radial symmetric Ornstein-Zernike equation. Moreover, an efficient representation
of the occurring matrices could also enable the application of Newton’s method in
order to solve the non-linear equations. This would improve the convergence of the
non-linear iteration and thereby the computing time. Our current discretization
would however lead to full Jacobi matrices, which is acceptable only on a coarse
grid resolution. Hence, Newton’s method could only serve as a coarse level solver in
a multi-grid like scheme or special matrix compression techniques would have to be
employed.

In summary, we developed our BGY3dM model based on the YBG-hierarchy
and showed that it is able to efficiently compute the solvent densities of complex
molecular solvents around solutes of arbitrary shape with good accuracy. By this,
it is possible to compute the potential of mean force for the solute-solvent system
and thereby to consider the solvent effects on the solute implicitly. For the first
time we considered the Kirkwood approximation in this context. When compared
to an Ornstein-Zernike based method from the literature, our numerical algorithm
proved to compute the solvent densities in a highly efficient way. The accuracy of
the results can be improved by empirical corrections in the same way as it is done for
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the Ornstein-Zernike based methods. Hence, the BGY3dM model has demonstrated
to be applicable to any complex solute-solvent system. However, further research
is necessary in order to even more reduce the computational effort required for the
numerical solution of the BGY3dM model such that it can be applied as implicit
solvent model during a large-scale realistic biomolecular simulation.





Appendix A

Convolution of Spherical
Symmetric Functions

We want to compute the convolution of two spherical symmetric functions,

f1, f2 : R
3 → R,

(f1 ∗ f2)(x) =

∫

R3

f1(|x′|)f2(|x− x′|) dx′. (A.1)

According to the convolution theorem, the convolution can be computed by means
of the Fourier transform. It is

(f1 ∗ f2) = F−1
3 (F3(f1)F3(f2)) (A.2)

with the Fourier transform and its inverse in 3 dimensions,

f̃(k) = F3(f)(k) =

∫

R3

f(x)e−2πık·x dx, (A.3)

f(x) = F−1
3 (f̃)(x) =

∫

R3

f̃(k)e2πık·x dk. (A.4)

The three-dimensional Fourier transform of a spherical symmetric function can
be further simplified. Due to the invariance of integral (A.3) under rotation, it is
sufficient to consider the case k = (0, 0, k). Then we have in polar coordinates
k · x = kr sin θ with x = (r cos ϕ cos θ, r sin ϕ cos θ, r sin θ) and (A.3) simplifies to

F3(f)(k) =

∫ ∞

0

∫ π
2

−π
2

∫ π

−π

f(r)e−2πıkr sin θr2 cos θ dϕdθdr

= 2π

∫ ∞

0

f(r)r2

−2πıkr

[
e−2πıkr sin θ

]π
2

−π
2

dr

=
2

k

∫ ∞

0

f(r)r sin(2πkr) dr (A.5)

=: FB(f)(k) (A.6)
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The analogous simplification holds for the inverse Fourier transform, (A.4)

F−1
3 (f̃)(r) =

2

r

∫ ∞

0

f̃(k)k sin(2πkr) dk = FB−1(f̃)(r). (A.7)

The transforms (A.5) and (A.7) are called the Fourier-Bessel transforms. The radial
component of the convolution (A.2) can now be easily computed as

(f1 ∗ f2) = FB−1 (FB(f1) · FB(f2)) . (A.8)



Appendix B

Transformations of the
Ornstein-Zernike Equation

In order to solve the Ornstein-Zernike equation some transformations are very useful.
For a homogeneous fluid, the Ornstein-Zernike equation (2.56) can be written as

h(r) = c(r) + ρ

∫

Ω

c(|r− r′|)h(r′) dr′ (B.1)

with r = |r| and r′ = |r′|. The integral is a convolution integral. Hence, we can use
the convolution theorem which states that

F3(c ∗ h) = F3(c)F3(h) (B.2)

with F3 the three-dimensional Fourier transform. The asterix ∗ denotes the convo-
lution

(c ∗ h)(r) =

∫

Ω

c(|r− r′|)h(r′) dr′. (B.3)

Since the functions c and h are spherically symmetric, the three-dimensional Fourier
transform reduces to the Fourier-Bessel transform

FB(c)(k) =
2

k

∫ ∞

0

c(r)r sin(2πkr) dr, (B.4)

i.e., the radial component of F3(c)(k) can be computed by a one-dimensional in-
tegral, i.e. F3(c)(|k|) = FB(c)(k). For a detailed derivation of the Fourier-Bessel
transform see Appendix A.

The Ornstein-Zernike equation (B.1) has a nice algebraic form in Fourier space
and is therefore often written in this form,

ĥ(k) = ĉ(k) + ρĉ(k)ĥ(k), (B.5)

where we write ĥ = F3(h). It is sometimes advantageous to use γ = h− c in (B.5)
instead of h,

γ̂(k) =
ρĉ2(k)

1− ρĉ(k)
. (B.6)
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Together with either the HNC

c(r) = e−βv(r)+γ(r) − γ(r)− 1 (B.7)

or the PY closure
c(r) = e−βv(r)(1 + γ(r))− γ(r)− 1, (B.8)

equation (B.6) can be solved very efficiently by an iteration scheme, see [47] for
details.
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