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1. Introduction

The second order subjet of a function f at some point x as the Taylor expan-
sion of a twice differentiable function which minorizes f and coincides with
f at x was introduced in [7]. A fuzzy calculus for subjets was first proved
for real valued functions in [9]. Using the separable calculus rule which may
be found in [8], the result of [9] was later shown to hold for extended real
valued functions by Ioffe and Penot in [13]. Independently Eberhard and
Nyblom proved an equivalent result via approximation by infimal regular-
ization, without using the separable calculus rule; see [10]. In the paper by
Ioffe and Penot [13], a qualification assumption was proposed that enabled
the development of a subdifferential calculus for limiting subjets. It should
be noted that the prominent role which first and second order generalized
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differentiability play in connection with many fields of mathematics such as
optimization and control theory was widely recognized; see [6, 11].

The concept of generalized differentiability is often considered in finite
dimensional or infinite dimensional Banach spaces where the linear structure
of the space plays an important role. However, nondifferentiable, or non-
smooth functions arise naturally in many problems on smooth manifolds. A
manifold is not necessarily a linear space therefore, new techniques are needed
for adequately address nonsmooth problems on manifolds.

In the last few years several results have been obtained on various as-
pects of nonsmooth and variational analysis as well as their applications on
Riemannian manifolds; see e. g., [1, 2, 5, 12, 14, 15]. In [3] the authors in-
troduced second order subjets on Riemannian manifolds and carried out a
systematic study of second order viscosity subdifferentials and viscosity solu-
tions to second order partial differential equations on Riemannian manifolds.

Our aim is to obtain fuzzy calculus rules for subjets of order two on
a finite dimensional Riemannian manifolds. Then using these fuzzy calculus
rules and various qualification assumptions, calculus rules for limiting subjets
are deduced; see [13]. We do not know whether the localization for the second
order singular subjet through charts holds and it seems that our main results
may not be proved by local techniques.

In this paper, we use the standard notations and known results of Rie-
mannian manifolds. In what follows, M is a finite dimensional manifold en-
dowed with a Riemannian metric 〈., .〉x on the tangent space TxM . We iden-
tify (via the Riemannian metric) the tangent space of M at a point x with
the cotangent space at x, denoted by TxM

∗. As usual, expx : Ux → M will
stand for the exponential function at x, where Ux is an open subset of TxM .
Recall that the set S in a Riemannian manifold M is called convex if ev-
ery two points p1, p2 ∈ S can be joined by a unique geodesic whose image
belongs to S.

The space of bilinear forms on TxM (respectively symmetric bilinear
forms) is denoted by L2(TxM) (respectively L2

s(TxM)). Elements of L2
s(TxM)

will be denoted by letters A, B, P, C, D and those of TxM∗ by ξ, η, x∗, y∗.
Also Ls(TxM) denotes the space of symmetric linear operators in TxM and
L(TxM,TyN) (respectively Ls(TxM,TyN)) denotes the space of linear op-
erators (respectively symmetric linear operators ) from TxM to TyN . For
A ∈ L2

s(TxM), B ∈ L2
s(TyN) and C ∈ L(TxM,TyN) we set

Q(A,B,C) =
(

A C∗

C B

)
∈ L2

s(TxM × TyN),

where ∗ denotes the adjoint. Let M be a Riemannian manifold and x ∈ M ,
the conic set L2+

s (TxM) of positive semidefinite symmetric bilinear forms
induces a natural order on L2

s(TxM). For A and B in L2
s(TxM), we denote

A ≥ B to mean A−B ∈ L2+
s (TxM).
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By iM (x) we denote the injectivity radius of M at x, that is the supre-
mum of the radius r of all balls B(0x, r) in TxM for which expx is a diffeo-
morphism from B(0x, r) onto B(x, r). Similarly, i(M) will denote the global
injectivity radius of M , that is i(M) = inf{iM (x) : x ∈ M}.

For a minimizing geodesic γ : [0, l] → M connecting x to y in M, and for
a vector v ∈ TxM there is a unique parallel vector field P along γ such that
P (0) = v, this is called the parallel translation of v along γ. The mapping
TxM � v �→ P (l) ∈ TyM is a linear isometry from TxM onto TyM . This map
is denoted by Lxy. Its inverse is of course Lyx. This isometry naturally induces
an isometry (which we will still denote by Lxy), TxM∗ � ξ �→ Lxyξ ∈ TyM

∗,
defined by

〈Lxyξ, v〉y := 〈ξ, Lyxv〉x.
Similarly, Lxy induces an isometry L2(TxM) � A �→ LxyA ∈ L2(TyM) de-
fined by

〈Lxy(A)v, v〉y := 〈A(Lyxv), Lyxv〉x. (1.1)

Note that Lxy is well defined when the minimizing geodesic which connects x
to y, is unique. For example, the parallel transport Lxy is well defined when
x and y are contained in a convex neighborhood. In what follows, Lxy will
be used wherever it is well defined.

It is worthwhile to mention that for Riemannian manifold M ×N ,

L(x,y)(x1,y1) : T(x,y)(M ×N) → T(x1,y1)(M ×N)

is defined by
L(x,y)(x1,y1)(v, w) := (Lxx1v, Lyy1w). (1.2)

Recall that the Hessian D2ϕ of a C2 smooth function ϕ on a Riemannian
manifold M is defined by

D2ϕ(X,Y ) = 〈∇X∇ϕ, Y 〉,
where ∇ϕ is the gradient of ϕ, X, Y are vector fields on M and ∇YX
denotes the covariant derivative of X along Y (see [16, p. 31]). The Hessian
is a symmetric tensor field of type (0, 2) and, for a point p ∈ M, the value
D2ϕ(X,Y )(p) only depends on ϕ and the vectors X(p), Y (p) ∈ TpM. So
we can define the second derivative of ϕ at p as the symmetric bilinear form
d2ϕ(p) : TpM × TpM → R

(v, w) �→ d2ϕ(p)(v, w) := D2ϕ(X,Y )(p),

where X, Y are any vector fields such that X(p) = v, Y (p) = w. A useful way
to compute d2ϕ(p)(v, v) is to take geodesic γ with γ′(0) = v and calculate

d2

dt2
ϕ(γ(t))

∣∣∣
t=0

.

We will often write d2ϕ(p)(v)2 instead of d2ϕ(p)(v, v).
Let f : M → (−∞,+∞] be a lower semicontinuous function. The second

order subjet of f at a point x ∈ domf = {x ∈ M : f(x) < ∞} is defined by
J2,−f(x) :=
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{(dϕ(x), d2ϕ(x)
)

: ϕ ∈ C2(M,R), f −ϕ attains a local minimum at x}.
If (ξ, A) ∈ J2,−f(x), we say that ξ is a first order subdifferential of f,

and A is a second order subdifferential of f at x. Note that J2,−f(x) is a
subset of TxM∗ × L2

s(TxM).
Recall that a sequence (An) with An ∈ L2

s(TxnM) is said to converge
to A ∈ L2

s(TxM) provided xn converges to x in M and for every vector field
V defined on an open neighborhood of x we have that 〈AnV (xn), V (xn)〉
converges to 〈AV (x), V (x)〉.

Similarly, a sequence (ξn) with ξn ∈ TxnM
∗ converge to ξ provided that

xn → x and 〈ξn, V (xn)〉 → 〈ξ, V (x)〉.
For a lower semicontinuous function f : M → (−∞,+∞] defined on

a Riemannian manifold M , the second order limiting subjet of f at a point
x ∈ M is defined by (see [3])

J̄2,−f(x) :={(ξ, A) ∈ TxM
∗ × L2

s(TxM) : ∃xn ∈ M, ∃(ξn, An) ∈ J2,−f(xn)

s.t. (xn, f(xn), ξn, An) → (x, f(x), ξ, A)}.
(1.3)

The following proposition is well known for the case when M = R
n. This

known result can be extended to the Riemannian setting (see [3, p. 313]).

Proposition 1.1. Let f : M → (−∞,+∞] be a lower semicontinuous function.
Suppose that x ∈ dom(f), ξ ∈ TxM

∗ and A ∈ L2
s(TxM). Then the following

statements are equivalent:

(a) (ξ, A) ∈ J2,−f(x).
(b) f(expx(v)) ≥ f(x) + 〈ξ, v〉x + 1

2 〈Av, v〉x + o(‖v‖2).
(c) lim inf‖v‖→0 ‖v‖−2(f ◦ expx(v)− f ◦ expx(0)− 〈ξ, v〉x − 1

2 〈Av, v〉x) ≥ 0.
(d) For any ε > 0 the function

v �→ f ◦ expx(v) − f ◦ expx(0) − 〈ξ, v〉x − 1
2
〈Av, v〉x + ε‖v‖2

has a local minimum at 0x.

2. Fuzzy calculus rules for subjets of order two

In order to prove fuzzy calculus rules for second order subjets on Riemannian
manifolds, the following lemmas are needed.

Lemma 2.1. ([1, Lemma 6.5]). Let M be a Riemannian manifold and x0, y0 ∈
M be such that d(x0, y0) < min{iM (x0), iM (y0)}. Then

Ly0x0

(
∂d(x0, y0)

∂y

)
= −∂d(x0, y0)

∂x
.

Lemma 2.2. ([3, Proposition 3.1]). Let M be a Riemannian manifold. Con-
sider the function ϕ(x, y) = d(x, y)2 defined on M ×M . Assume that M has
positive sectional curvature. Then

d2ϕ(x, y)(v, Lxyv)2 ≤ 0,
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for all v ∈ TxM and x, y ∈ M with d(x, y) < min{iM (x), iM (y)}.
Lemma 2.3. ([3, Theorem 2.10]). Let M1, . . . ,Mk be Riemannian manifolds,
and Ωi ⊂ Mi be open subsets. Define Ω = Ω1×· · ·×Ωk ⊂ M1×· · ·×Mk = M.
Let ui be lower semicontinuous functions on Ωi, i = 1, . . . , k, let ϕ be a C2

smooth function on Ω and set

ω(x) = u1(x1) + · · · + uk(xk)

for x = (x1, . . . , xk) ∈ Ω. Assume that x̂ = (x̂1, . . . , x̂k) is a local minimum
of ω−ϕ. Then, for each ε > 0 there exist bilinear forms Ai ∈ L2

s(Tx̂iMi), i =
1, . . . , k, such that (

∂

∂xi
ϕ(x̂), Ai

)
∈ J̄2,−ui(x̂i)

for i = 1, . . . , k, and the block diagonal matrix with entries Ai satisfies⎛
⎜⎝

A1 . . . 0
...

. . .
...

0 . . . Ak

⎞
⎟⎠ ≥ H − εI,

where H = d2ϕ(x̂) ∈ L2
s(Tx̂M).

Remark 2.4. Let M be a Riemannian manifold. Then:
(a) An easy consequence of the definition of the parallel translation along a
curve as a solution to an ordinary linear differential equation, implies that
the mapping

C : TM∗ → Tx0M
∗, C(x, ξ) = Lxx0(ξ),

is continuous at (x0, ξ0), that is, if (xn, ξn) → (x0, ξ0) in TM∗ then Lxnx0(ξn)
→ Lx0x0(ξ0) = ξ0, for every (x0, ξ0) ∈ TM∗; see [1, Remark 6.11].
(b) By the continuity properties of the parallel transport and the geodesic,
see [4, Theorem 35], for fixed point z ∈ M and for each ε > 0, there exists a
number δ > 0 such that:

‖LxyLzx − Lzy‖ ≤ ε provided that d(x, y) < δ.

Theorem 2.5. Let M be a complete Riemannian manifold with positive sec-
tional curvature. Suppose that f, g are functions on M which are lower semi-
continuous near x and finite at x and (ξ, A) ∈ J2,−(f + g)(x). Then for
any ε > 0 there are 2 triples (xi, ξi, Ai), i = 1, 2, such that, (ξ1, A1) ∈
J2,−f(x1), (ξ2, A2) ∈ J2,−g(x2), d(xi, x) < ε, for i = 1, 2, |f(x1) − f(x)| <
ε, |g(x2) − g(x)| < ε,

‖Lx1x(ξ1) + Lx2x(ξ2) − ξ‖ < ε,

and
Lx1x(A1) + Lx2x(A2) ≥ A− εI.

Proof. Without loss of generality we may assume that ξ = 0, A = 0. Since
both f and g are lower semicontinuous, it follows that for given ε > 0, there
exists ρ > 0 such that

f(y) ≥ f(x) − ε, g(y) ≥ g(x) − ε if d(y, x) < ρ. (2.1)
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Proposition 1.1 implies the existence of a real number δ with 0 < δ <
min(ε, ρ) such that

(f + g) ◦ expx(v) − (f + g) ◦ expx(0) +
1
2
ε‖v‖2x > 0 if ‖v‖x ≤ δ, v �= 0.

Therefore

f(z) + g(z) − f(x) − g(x) +
1
2
εd(z, x)2 > 0 if d(z, x) ≤ δ, z �= x. (2.2)

Now we define hn on M ×M as follows:

hn(p, q) := f ◦ expp(0) + g ◦ expq(0) +
n

2
d(p, q)2 +

ε

2
(d(p, x)2 + d(x, q)2)

− f ◦ expx(0) − g ◦ expx(0).

We have that hn(x, x) = 0, and hn(p, q) ≥ −2ε if d(x, q) ≤ δ, d(p, x) ≤ δ.
By the completeness of M it follows that hn attains its minimum on B̄(x, δ)×
B̄(x, δ) at a point (pn, qn).

As hn(pn, qn) ≤ hn(x, x) = 0, we conclude from (2.1) that
n

2
d(pn, qn)2 ≤ 2ε,

which means that d(pn, qn) → 0 as n → ∞.

Let us extract a subsequence of (pn, qn) (without relabelling) such that
(pn, qn) → (w,w). Then by lower semicontinuity of hn(p, q)

f(w) + g(w) − f(x) − g(x) + εd(w, x)2 ≤ lim inf
n→∞ hn(pn, qn) ≤ 0,

and (2.2) implies that w = x. Thus (pn) → x and (qn) → x, in particular
d(pn, x) < min( ε2 ,

1
2 ), d(x, qn) < min( ε2 ,

1
2 ), |f(pn)−f(x)| < ε

2 and |g(qn)−
g(x)| < ε

2 for large n. Moreover, Remark 2.4 implies that for sufficiently large
n,

‖LpnxLqnpn − Lqnx‖ < ε.

On the other hand, for n large enough d(pn, qn) < i(B̄(x, δ)). Now we fix
such n and consider pn, qn. Then we apply Lemma 2.3 with u1 = f, u2 = g
and

ϕ(p, q) = −1
2
(nd(p, q)2 + εd(p, x)2 + εd(x, q)2) + f(x) + g(x). (2.3)

Hence there exist bilinear forms B1,n ∈ L2
s(TpnM), B2,n ∈ L2

s(TqnM) such
that

(
∂

∂p
ϕ(pn, qn), B1,n) ∈ J̄2,−f(pn) and (

∂

∂q
ϕ(pn, qn), B2,n) ∈ J̄2,−g(qn).

Set

η1,n :=
∂

∂p
ϕ(pn, qn) = −1

2

(
2nd(pn, qn)

∂d

∂p
(pn, qn) + 2εd(pn, x)

∂d

∂p
(pn, x)

)

= n exp−1
pn (qn) + ε exp−1

pn (x). (2.4)
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The third equality can be checked, for instance, by using the first formula of
the arc-length (see [16, p. 90]). Also set

η2,n :=
∂

∂q
ϕ(pn, qn) = −1

2

(
2nd(pn, qn)

∂d

∂q
(pn, qn) + 2εd(x, qn)

∂d

∂q
(x, qn)

)

= n exp−1
qn (pn) + ε exp−1

qn (x). (2.5)

Without loss of generality we can suppose that

k = max{‖B1,n‖, ‖B2,n‖, ‖η1,n‖, ‖η2,n‖} ≤ 1.

Otherwise we change ϕ into

ϕ(p, q) = − 1
2k

(nd(p, q)2 + εd(p, x)2 + εd(x, q)2) + f(x) + g(x),

and Bi,n, i = 1, 2 into Bi,n

k .
On the other hand,

η1,n + Lqnpn(η2,n) =n exp−1
pn (qn) + ε exp−1

pn (x)

+ Lqnpn
(
n exp−1

qn (pn) + ε exp−1
qn (x)

)
=ε exp−1

pn (x) + εLqnpn(exp−1
qn (x)).

Note that Lemma 2.1 implies that Lqnpn(n exp−1
qn (pn)) = −n exp−1

pn (qn), so
the last equality is true.

Since parallel translation preserve the norm, we have

‖Lpnx (η1,n + Lqnpn(η2,n)) ‖ = ‖η1,n + Lqnpn(η2,n)‖
= ‖ε exp−1

pn (x) + εLqnpn(exp−1
qn (x))‖

≤ ε‖ exp−1
pn (x)‖ + ε‖ exp−1

qn (x)‖
= εd(pn, x) + εd(x, qn) < ε

1
2

+ ε
1
2

= ε.

(2.6)

Using the smoothness of the function (x1, x2) �→ d(x1, x2)2, we deduce that
the function F (p, q) := d(p, x)2+d(x, q)2 is smooth. Hence, there exists k1 > 0
such that

1
2
d2F (pn, qn)(v, Lpnqn(v))2 ≤ k1, for all v ∈ TpnM, ||v|| = 1.

Lemma 2.2 implies −nd2(d2)(pn, qn)(v, Lpnqn(v))2 ≥ 0. Therefore,

d2ϕ(pn, qn)(v, Lpnqn(v))2 ≥ −k1ε for all v ∈ TpnM, ‖v‖ = 1.

Without loss of generality we can assume that

d2ϕ(pn, qn)(v, Lpnqn(v))2 ≥ −ε for all v ∈ TpnM, ‖v‖ = 1.

Therefore Lemma 2.3 implies that

〈B1,nv, v〉 + 〈B2,nLpnqn(v), Lpnqn(v)〉 ≥ −ε− εI(v, Lpnqn(v))2.

Hence

〈B1,nv, v〉 + 〈B2,nLpnqn(v), Lpnqn(v)〉 ≥ −ε− ε(‖v‖2 + ‖Lpnqn(v)‖2).
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Now assume that v = Lxpn(u), where u is an arbitrary unite vector in TxM .
Thus

〈B1,nLxpn(u), Lxpn(u)〉 + 〈B2,nLpnqn(Lxpn(u)), Lpnqn(Lxpn(u))〉
≥ −ε− 2ε‖Lxpn(u)‖2.

By Definition 1.1

〈Lpnx(B1,n)u, u〉 + 〈Lpnx(LqnpnB2,n)u, u〉 ≥ −ε− 2ε‖u‖2 = −3ε. (2.7)

Hence, we proved that there exist (η1,n, B1,n)∈ J̄2,−f(pn), (η2,n, B2,n)∈
J̄2,−g(qn) such that d(pn, x) < ε/2, d(x, qn) < ε/2 and |f(pn)− f(x)| < ε/2,
|g(qn) − g(x)| < ε/2.

By (1.3) there exists (η1,m, B1,m) ∈ J2,−f(pn,m) such that pn,m → pn,
f(pn,m) → f(pn), η1,m → η1,n, andB1,m → B1,n.

Also, there exists (η2,m, B2,m) ∈ J2,−g(qn,m) such that qn,m → qn,
g(qn,m) → g(qn), η2,m → η2,n, and B2,m → B2,n. Now, for m large enough

‖Lpn,mx(η1,m) + Lqn,mx(η2,m)‖ ≤ ‖Lpn,mx(η1,m) − Lpnx(η1,n)‖
+ ‖Lpnx(η1,n) + LpnxLqnpn(η2,n)‖
+ ‖Lqnx(η2,n) − Lqn,mx(η2,m)‖
+ ‖LpnxLqnpn(η2,n) − Lqnx(η2,n)‖

≤ 4ε.

Similarly, one can deduce that

Lpn,mx(B1,m) + Lqn,mx(B2,m) ≥ −6εI.

For large m, d(pn,m, pn) < ε/2, d(qn,m, qn) < ε/2, |f(pn,m) − f(pn)| < ε/2,
and |g(qn,m)−g(qn)| < ε/2. Now we fix such an m and call it α. It remains to
set x1 = pn,α, x2 = qn,α, ξ1 = η1,α, ξ2 = η2,α, A1 = B1,α, A2 = B2,α. �

The following proposition is concerned with the composition operation.
It is proved in the case when M and N are finite dimensional Euclidean
spaces, see [13]. In a similar way one can prove the case when M and N are
finite dimensional Riemannian manifolds.

Proposition 2.6. Let M and N be Riemannian manifolds, x ∈ M , y ∈ N .
Suppose that g : N → R ∪ {∞} is lower semicontinuous near y and finite at
y. Consider the function f on M ×N given by f(p, q) = g(q).
(a) For any (η,B)∈J2,−g(y) and A ∈ L2

s(TxM), A ≤ 0, S ∈ L(TxM,TyN),
one has, setting D := B + S ◦A ◦ S∗ and C := S ◦A,

((0, η), Q(A,D,C)) ∈ J2,−f(x, y),

in particular, ((0, η), Q(0, B, 0)) ∈ J2,−f(x, y).
(b) Conversely, if ((ξ, η), P ) ∈ J2,−f(x, y) and P = Q(A,D,C), then ξ =

0, A ≤ 0 and for any positive α there exist an S ∈ L(TxM,TyN), such
that C = S ◦ (A− αI), B := D − S ◦ (A− αI) ◦ S∗, (η,B) ∈ J2,−g(y)
and Q(0, B, 0) ≥ P −Q(αI, 0, 0).
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We proceed now to derive fuzzy chain rule for second order subjets on
Riemannian manifolds.

Theorem 2.7. Let M be a complete Riemannian manifold with positive sec-
tional curvature and F : M → R

n be a map of class C1 near x ∈ M . Suppose
that g : Rn → R is lower semicontinuous near y = F (x) and finite at y. Set
f = g ◦ F and assume that (ξ∗, A) ∈ J2,−f(x). Then, for each ε > 0, there
are z ∈ M, ξ ∈ TzM

∗, r, ζ, η ∈ R
n and B ∈ L2

s(R
n), C ∈ L2

s(TzM) such
that d(z, x) < ε, ‖r − y‖ < ε, ‖Lzxξ − ξ∗‖ < ε, ‖ζ − η‖ < ε and

(ξ, C) ∈ J2,−(η ◦ F )(z), (ζ,B) ∈ J2,−g(r), (2.8)

C + dF (z)∗ ◦B ◦ dF (z) ≥ LxzA− εI. (2.9)

Proof. Let x ∈ M , y = F (x). Since F is C1, there exists k > 0 such that for
ε > 0 small enough and for all q ∈ M with d(q, x) ≤ ε, ‖dF (q)‖ ≤ k.

Let h1(p, r) = g(r) and h2 denote the indicator function of graph F .
Moreover, assume that h = h1 +h2. Obviously, for each (p, r), h(p, r) ≥ f(p).
Therefore for every δ > 0,

h(p, r) − h(x, y) ≥ f ◦ expx(u) − f ◦ expx(0) ≥ 〈ξ∗, u〉 +
1
2
[〈Au, u〉 − δ‖u‖2],

for all u ∈ TxM provided that ‖u‖x is sufficiently small. By Proposition 1.1

((ξ∗, 0), Q(A, 0, 0)) ∈ J2,−h(x, y).

Hence Theorem 2.5 implies the existence of xi, yi, x∗
i , y

∗
i and Pi, i = 1, 2,

such that

((x∗
i , y

∗
i ), Pi) ∈ J2,−hi(xi, yi), i = 1, 2, (2.10)

L(x1,y1)(x,y)P1 + L(x2,y2,)(x,y)P2 ≥ Q(A, 0, 0) − ε(2 + 2k2)−1I,

‖Lx1x(x∗
1) + Lx2x(x

∗
2) − ξ∗‖x < ε, ‖y∗

1 + y∗
2‖ < ε,

d(xi, x) < ε, ‖yi − y‖ < ε, i = 1, 2.

By Proposition 2.6 we have x∗
1 = 0, and there is a B ∈ L2

s(R
n) such

that (y∗
1 , B) ∈ J2,−g(y1) and Q(0, B, 0) ≥ P1−Q(ε(2+2k2)−1I, 0, 0), so that

L(x1,y1)(x,y)Q(0, B, 0) + L(x2,y2)(x,y)P2 ≥ Q(A, 0, 0) − ε(1 + k2)−1I.

Hence

L(x,y)(x2,y2)L(x1,y1)(x,y)Q(0, B, 0) + P2

≥ L(x,y)(x2,y2)Q(A, 0, 0) − L(x,y)(x2,y2)ε(1 + k2)−1I. (2.11)

We define G : U(0x2) ⊂ Tx2M → R
n by

G(u) := F ◦ expx2(u) − F ◦ expx2(0).

Then the inclusion for i = 2 in (2.10) implies that for each δ > 0,

0 ≥ 〈x∗
2, u〉 + 〈y∗

2 , G(u)〉 +
1
2
〈P2(u,G(u)), (u,G(u))〉 − δ(‖u‖2 + ‖G(u)‖2),

(2.12)
for all sufficiently small u ∈ U(0x2).
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Note that since F is differentiable at x2 it follows that

G(u) = dF (x2)(u) + o(‖u‖). (2.13)

Furthermore, we define C ∈ L2
s(Tx2M) by

〈Cu, u〉 := 〈P2(u, dF (x2)(u)), (u, dF (x2)(u))〉.
Now, considering (2.11) at (u, dF (x2)(u)), using (1.1) and (1.2) we conclude
that

〈dF (x2)∗ ◦B ◦ dF (x2)u, u〉 + 〈Cu, u〉 ≥ 〈A(Lx2xu), Lx2xu〉 − 〈εIu, u〉
which means

dF (x2)∗ ◦B ◦ dF (x2) + C ≥ Lxx2A− εI.

On the other hand, we obtain from (2.12) and (2.13) that

−〈y∗
2 , F ◦ expx2(u) − F ◦ expx2(0)〉 ≥ 〈x∗

2, u〉 +
1
2
〈Cu, u〉 − δ(1 + k2)‖u‖2,

provided u is sufficiently close to zero in Tx2M. As δ is an arbitrary positive
number we get

(x∗
2, C) ∈ J2,−(−y∗

2 ◦ F )(x2),
and we arrive at the proof if we set r = y1, ζ = y∗

1 , η = −y∗
2 , z = x2, ξ =

x∗
2. �

3. Main Results

In this section using fuzzy calculus rules obtained in the previous section,
calculus rules for limiting subjets are deduced.

Definition 3.1. Let M be a Riemannian manifold and x ∈ M . Suppose that
A is a subset of L2

s(TxM) and A ∈ A, we say A is efficient in A if ‖A‖ =
min{‖B‖ : B ≥ A, B ∈ A}.

Suppose that f : M → (−∞,+∞] is a lower semicontinuous function
defined on a Riemannian manifold M , x ∈ dom(f). Consider the set

J2,−f(x, ξ) := {A ∈ L2
s(TxM) : (ξ, A) ∈ J2,−f(x) }.

The efficient elements of J2,−f(x, ξ) denoted by J2,ef(x, ξ) will be called
efficient subhessians of f at x for ξ. Moreover, we define the second order
efficient subjet of f at x denoted by J2,ef(x) as

J2,ef(x) := {(ξ, A) : A ∈ J2,ef(x, ξ)}.
Since J2,−f(x, ξ) is a closed subset of L2

s(TxM), it has an element of least
norm.

The following lemma is a direct consequence of [3, corollary 2.3].

Lemma 3.2. Let f : M → (−∞,+∞] be a lower semicontinuous function
defined on a Riemannian manifold M , x ∈ dom(f). Then

(ξ, A) ∈ J2,ef(x) ⇔ (ξ, A) ∈ J2,e(f ◦ expx)(0x).
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Definition 3.3. Let f : M → (−∞,+∞] be a lower semicontinuous function
defined on a Riemannian manifold M , x ∈ dom(f). We define the second
order singular subjet of f at x denoted by J2,∞f(x) as

J2,∞f(x) :={(ξ, A) : ∃xn ∈ M, ∃(ξn, An) ∈ J2,ef(xn), ∃λn ∈ (0,+∞)

s.t. (λn, xn, f(xn), λnξn, λnAn) → (0, x, f(x), ξ, A)}.
(3.1)

Definition 3.4. Let M be a Riemannian manifold, and let F : M → R
n

be continuous at x, we define the second order singular cosubjet of F at x
denoted by D2

∞F (x, y) as follows,

D2
∞F (x, y) :={(ξ, A) : ∃xn ∈ M, ∃zn ∈ R

n, ∃(ξn, An) ∈ J2,e〈zn, F (xn)〉,
∃λn > 0 s.t. (λn, zn, xn, λnξn, λnAn) → (0, y, x, ξ, A)}.

(3.2)

Definition 3.5. Let M be a Riemannian manifold, and let F : M → R
n be

continuous at x, we define the second order singular cojet of F at x denoted
by D

2
F (x, y) as follows,

D
2
F (x, y) :={(ξ, A) : ∃xn ∈ M, ∃zn ∈ R

n, ∃(ξn, An) ∈ J2,−〈zn, F (xn)〉,
s.t. (zn, xn, ξn, An) → (y, x, ξ, A)}.

(3.3)

We do not know whether the analogue of Lemma 3.2 for the second
order singular subjet holds.

Theorem 3.6. Let M be a complete Riemannian manifold with positive sec-
tional curvature and f, g : M → (−∞,+∞] be lower semicontinuous func-
tions. Suppose that x ∈ dom(f)∩dom(g) and the following assumption holds:

if (ξ1, A1) ∈ J2,∞f(x), (ξ2, A2) ∈ J2,∞g(x) and ξ1+ξ2 = 0, A1+A2 ≥ 0,
then

ξ1 = ξ2 = 0 and A1 ≥ 0, A2 ≥ 0.
Then

J̄2,−(f + g)(x) ⊂ J̄2,−f(x) + J̄2,−g(x).

Proof. Assume that (ξ, A) ∈ J̄2,−(f + g)(x). Hence there exist xn ∈ M,
(ξn, An) ∈ J2,−(f + g)(xn) such that (xn, (f + g)(xn), ξn, An) → (x, (f +
g)(x), ξ, A).

Theorem 2.5 implies that for a given positive sequence (εn) converging
to 0 there exist (xi,n, ξi,n, Ai,n), i = 1, 2, such that for every n = 1, 2, ...,
(ξ1,n, A1,n) ∈ J2,−f(x1,n), (ξ2,n, A2,n) ∈ J2,−g(x2,n), d(xi,n, xn) < εn, for
i = 1, 2, |f(x1,n) − f(xn)| < εn, |g(x2,n) − g(xn)| < εn,

‖Lx1,nxn(ξ1,n) + Lx2,nxn(ξ2,n) − ξn‖ < εn, (3.4)

and
Lx1,nxn(A1,n) + Lx2,nxn(A2,n) ≥ An − εnI. (3.5)



604 M. Alavi Hejazi, S. Hosseini and M. R. Pouryayevali Mediterr. J. Math.

Set
μn = min{‖B1‖ + ‖B2‖ : B1 ∈ J2,−f(x1,n, ξ1,n), B2 ∈ J2,−g(x2,n, ξ2,n),

Lx1,nxn(B1) + Lx2,nxn(B2) ≥ An − εnI}.
(3.6)

Without loss of generality we can suppose that ‖A1,n‖ + ‖A2,n‖ = μn and
A1,n ∈ J2,ef(x1,n, ξ1,n), A2,n ∈ J2,eg(x2,n, ξ2,n) for all n = 1, 2, ....

Obviously, (x1,n, f(x1,n)) → (x, f(x)), and (x2,n, g(x1,n)) → (x, g(x)).
Now we define the sequence (rn) as follows:

rn = ‖A1,n‖ + ‖A2,n‖ + ‖ξ1,n‖ + ‖ξ2,n‖.
If (rn) is bounded, then ‖Lxi,nx(ξi,n)‖ i = 1, 2 is bounded in TxM

∗, thus it
has a convergent subsequence. Without relabeling we assume that Lxi,nx(ξi,n)
tends to ηi, for i = 1, 2. Hence for every C∞-vector field V on a neighborhood
of x ∈ M ,

〈ξi,n, V (xi,n)〉 = 〈Lxi,nx(ξi,n), Lxi,nx(V (xi,n))〉 → 〈ηi, V (x)〉,
which means ξi,n converges to ηi for i = 1, 2. Similarly one can prove that
Ai,n has a convergent subsequence to an element Bi, i = 1, 2. We shall prove
that (η1, B1) + (η2, B2) = (ξ, A). By (3.4),

‖Lx1,nxn(ξ1,n) + Lx2,nxn(ξ2,n) − Lxxn(ξ)‖
≤ ‖Lx1,nxn(ξ1,n) + Lx2,nxn(ξ2,n) − ξn‖ + ‖Lxxn(ξ) − ξn‖ → 0.

Moreover, changing Ai,n into

Ai,n−1/2(Lxnxi,n(Lx1,nxn(A1,n)+Lx2,nxn(A2,n)− (An− εnI))), for i = 1, 2,

we obtain (3.5) in the equality form and conclude B1 + B2 = A.
It remains to obtain a contradiction when (rn) → ∞. In this case we

define ωi,n = r−1
n ξi,n and Ci,n = r−1

n Ai,n, i = 1, 2. We can assume that
these sequences converge to some ωi and Ci respectively, for i = 1, 2. Hence
(ω1, C1) ∈ J2,∞f(x), (ω2, C2) ∈ J2,∞g(x) and (3.5), (3.4) imply that ω1 +
ω2 = 0, C1 + C2 ≥ 0. By assumption, ω1 = ω2 = 0, C1 ≥ 0, C2 ≥ 0, and
‖C1‖ + ‖C2‖ = 1. Set

Dn = Lx1,nxn(A1,n) + Lx2,nxn(A2,n) − (An − εnI) ≥ 0,

and

A′
i,n = Ai,n − βiLxnxi,n(Dn) = (1 − βi)Ai,n + βi(Ai,n − Lxnxi,n(Dn)),

where βi = ‖Ci‖, for i = 1, 2. Note that A1,n ∈ J2,−f(x1,n, ξ1,n), thus Propo-
sition 1.1 implies that for any ε > 0 the function

v �→ f ◦ expx(v) − f ◦ expx(0) − 〈ξ1,n, v〉x − 1
2
〈A1,nv, v〉x + ε‖v‖2,

has a local minimum at 0x. Hence

0 ≤ f ◦ expx(v) − f ◦ expx(0) − 〈ξ1,n, v〉x − 1
2
〈A1,nv, v〉x + ε‖v‖2

≤ f ◦ expx(v) − f ◦ expx(0) − 〈ξ1,n, v〉x − 1
2
〈A′

1,nv, v〉x + ε‖v‖2,
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which means A′
1,n ∈ J2,−f(x1,n, ξ1,n). Similarly, A′

2,n ∈ J2,−g(x2,n, ξ2,n).
Moreover, Lx1,nxn(A′

1,n)+Lx2,nxn(A′
2,n) = An−εnI. Therefore we will arrive

at a contradiction if we prove that ‖A′
1,n‖ + ‖A′

2,n‖ < μn.
We define the sequence αn converging to zero as follows,

αn = ‖r−1
n (An − εnI)‖ + ‖r−1

n Lxnx2,n(Lx1,nxn(A1,n)) − Lxx2,n(C1)‖
+ ‖r−1

n Lxnx1,n(Lx2,nxn(A2,n)) − Lxx1,n(C2)‖.
Since C2 ≥ 0 it follows that for each v in the unite sphere S of Tx1,nM

∗,

〈r−1
n A′

1,nv, v〉
= (1 − β1)〈r−1

n A1,nv, v〉 + β1(〈r−1
n (A1,n − Lxnx1,n(Dn))v, v〉)

≤ (1 − β1)〈r−1
n A1,nv, v〉 + β1(〈r−1

n (A1,n − Lxnx1,n(Dn)) + Lxx1,n(C2)v, v〉).
Let us extract a subsequence of r−1

n A1,n (without relabeling) such that

‖r−1
n A1,n‖ ≤ β1 +

1
n
.

Thus it can be deduced that

|〈r−1
n A′

1,nv, v〉| ≤ (1 − β1)(β1 +
1
n

) + β1αn.

On the other hand rn ∼ μn and

lim supμ−1
n (‖A′

1,n‖ + ‖A′
2,n‖) < 1,

that means ‖A′
1,n‖+‖A′

2,n‖ < μn for n large enough, which is a contradiction.
�

In the following theorem using a qualification assumption based on a
second order singular subjet and cosubjet, a second order chain rule is proved.

Theorem 3.7. Let M be a complete Riemannian manifold with positive sec-
tional curvature and F : M → R

m be a map of class C1 near x ∈ M . Suppose
that g : Rm → R is lower semicontinuous near y = F (x) and finite at y. Set
f = g ◦ F and assume that the following condition is satisfied:

(y∗, B) ∈ J2,∞g(y), (0, C) ∈ D2
∞F (x, y∗),

dF (x)∗ ◦B ◦ dF (x) + C ≥ 0 ⇒ y∗ = 0, B = 0.

Then for any (ξ, A) ∈ J̄2,−f(x), there exist (y∗, B) ∈ J̄2,−g(y) and C ∈
L2
s(TxM) such that (ξ, C) ∈ D

2
F (x, y∗) and

A = dF (x)∗ ◦B ◦ dF (x) + C.

Proof. Assume that (ξ, A) ∈ J̄2,−f(x). Hence there exist xn ∈ M, (ξn, An) ∈
J2,−f(xn) such that (xn, f(xn), ξn, An) → (x, f(x), ξ, A).

Theorem 2.7 implies for a given positive sequence (εn) converging to 0,
there are zn ∈ M, γn ∈ TznM

∗, rn, ζn, ηn ∈ R
m and Bn ∈ L2

s(R
m), Cn ∈

L2
s(TznM) such that d(zn, xn) < εn, ‖rn − yn‖ < εn for yn = F (xn),

‖Lznxnγn − ξn‖ < εn, ‖ζn − ηn‖ < εn and

(γn, Cn) ∈ J2,−(ηn ◦ F )(zn), (ζn, Bn) ∈ J2,−g(rn), (3.7)
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Cn + dF (zn)∗ ◦Bn ◦ dF (zn) ≥ LxnznAn − εnI. (3.8)
Set

μn = min{‖B‖+‖C‖ : B×C ∈ L2
s(R

m)×L2
s(TznM), (3.7) and (3.8) hold }.

Without loss of generality we can suppose that ‖Bn‖ + ‖Cn‖ = μn, for all
n = 1, 2, . . . .

Now we define the sequence (wn) as follows:

wn = ‖Bn‖ + ‖Cn‖ + ‖ηn‖.
If (wn) is bounded, then we conclude the proof. In the case that (wn) →
∞, introducing C ′

n = Lxnzn(An − εnI) − dF (zn)∗ ◦ Bn ◦ dF (zn) leads to a
contradiction along the same lines as the proof of the previous theorem. �
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