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In this paper we present some properties of tangent and normal cones of epi-Lipschitz subsets
of complete Riemannian manifolds. The fact that epi-Lipschitz subsets of complete Riemannian
manifolds are absolute neighborhood retracts is proved. A notion of Euler characteristic of
epi-Lipschitz subsets of complete Riemannian manifolds is introduced. Moreover, we provide a
sufficient condition which ensures that the Euler characteristic of this class of sets is equal to
one. Then, these results are applied to equilibrium theory on complete parallelizable Riemannian
manifolds.
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1. Introduction

In 1978, Rockafellar [35, 36] introduced the concept of epi-Lipschitz subsets of
finite dimensional Euclidean spaces. In [13, 15] Cornet and Czarnecki proved that
every nonempty epi-Lipschitz subset of R

n can be defined by a nondegenerate
Lipschitz inequality, and provided necessary and sufficient conditions for the exis-
tence of equilibria, generalized equilibria and fixed points for set valued mappings
defined on epi-Lipschitz subsets of Rn. Other applications to the marginal cost
pricing are given in [6]. Some other works and applications dealing with the class
of epi-Lipschitz subsets of linear spaces include those by Borwein, Lucet and Mor-
dukhovich [8], Cornet [13], Jourani [24], Czarnecki and Rifford [17], Lorenz [32],
Gudovich, Kamenskii and Quincampoix [20].
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In various aspects of mathematics such as equilibrium theory, optimization and
matrix analysis, smooth and nonsmooth functions arise naturally on smooth man-
ifolds; see, e.g. [27, 29, 31]. Unlike an Euclidean space a manifold in general does
not have a linear structure and therefore new techniques are needed for dealing
with functions defined on manifolds.

This paper deals with the class of epi-Lipschitz subsets of Riemannian mani-
folds which is of particular importance, since it includes closed convex sets with
nonempty interior and sets defined by finite smooth inequality constraints satisfy-
ing a nondegeneracy assumption. In [22] the authors studied epi-Lipschitz subsets
of complete Riemannian manifolds and obtained a characterization of this class of
sets as follows.

Let M be a complete finite dimensional Riemannian manifold and S be a closed
subset of M . Then the following assertions are equivalent.

(a) S is epi-Lipschitz.

(b) There is a locally Lipschitz function ϕ :M → R such that
(i) S = {x ∈M : ϕ(x) ≤ 0},
(ii) If ϕ(x) = 0, then 0 /∈ ∂ϕ(x),
(iii) ∂S = ∂(intS) = {x ∈M : ϕ(x) = 0}.

In this paper, we present some properties of tangent and normal cones of epi-
Lipschitz subsets of complete Riemannian manifolds. Then, we prove that if f :
M → R is a locally Lipschitz function defined on a complete Riemannian manifold
M and [a, b] is a closed interval of real line with compact inverse image f−1[a, b],
then Ma = {x ∈ M : f(x) ≤ a} is a neighborhood retract of Mb = {x ∈
M : f(x) ≤ b} provided that [a, b] does not contain any critical value of f ,
that is, a ≤ f(x) ≤ b ⇒ 0 /∈ ∂f(x). It provides a nonsmooth generalization
of the “noncritical neck principle� of Morse’s theory on Riemannian manifolds.
Moreover, it has a fundamental role to prove our results in Section 6.

Furthermore, we introduce a notion of Euler characteristic of an epi-Lipschitz
subset S of a complete Riemannian manifold M . When S ⊂ R

n is a compact
C1 submanifold with boundary, the Euler characteristic of S is defined by the
topological degree of the Gauss mapping GS with respect to zero, see [33]. In
the absence of smoothness assumptions on the set S, Cornet followed the same
approach, with the only difference that the Gauss mapping was set valued. He
defined the Euler characteristic of S by using the Cellina-Lasota degree of upper
semicontinuous mappings with compact convex values, see [14]. In [16, Remark
2.13] it was proved that this notion of Euler characteristic is equal to the classical
Euler characteristic. Following [14] we define a notion of Euler characteristic of
epi-Lipschitz subsets of complete Riemannian manifolds. Our definition of this
notion is a generalization of Cornet’s definition and coincides with the classical
one in Euclidean spaces.

It is worthwhile to mention that the results regarding Euler characteristic χ and
equilibrium theory which are obtained in this paper, are not local. Moreover, if S
is an epi-Lipschitz subset of a complete Riemannian manifold M with χ(S) 6= 0,
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then for every open neighborhood U of M which U ∩ S 6= ∅, χ(S ∩ U) is not
necessarily nonzero.

The rest of the paper is organized as follows. In Section 2, we introduce some basic
definitions and notations. Section 3 is concerned with the properties of tangent
and normal cones of epi-Lipschitz subsets of complete Riemannian manifolds. In
Section 4, the fact that epi-Lipschitz subsets of complete Riemannian manifolds
are absolute neighborhood retracts, is proved. Section 5 is devoted to the definition
of topological degree of set valued mappings defined from n-dimensional manifold
M to 2n-dimensional manifold cotangent bundle TM∗ or tangent bundle TM . In
Section 6, we define the Euler characteristic of epi-Lipschitz sets in complete Rie-
mannian manifolds. Then some results regarding this notion which are useful in
equilibrium theory are proved. Moreover, a sufficient condition on the function
ϕ defined in [22, Theorem 5.5] which ensures that the Euler characteristic of this
class of sets is equal to one, is obtained. Finally, in Section 7 we provide sufficient
conditions for the existence of equilibria for a class of set valued mapping F de-
fined on a compact epi-Lipschitz subset S of a complete parallelizable Riemannian
manifold M with valued in tangent bundle. Our assumption on the epi-Lipschitz
set S is a topological one, which involves the Euler characteristic of the set S.

2. Preliminaries

In this paper, we use the standard notations and known results of Riemannian
manifolds, see, e.g. [18, 25, 28]. Throughout this paper, M is an n-dimensional
complete manifold endowed with a Riemannian metric 〈., .〉x on the tangent space
TxM . As usual we denote by B(x, δ) the open ball centered at x with radius δ, by
intN(clN) the interior (closure) of the set N . Also, let S be a nonempty closed
subset of a Riemannian manifold M , we define dS :M −→ R by

dS(x) := inf{d(x, s) : s ∈ S},

where d is the Riemannian distance onM . Moreover, B(S, ε) := {x ∈M : dS(x) ≤
ε}. Recall that the set S in a Riemannian manifold M is called convex if every
two points p1, p2 ∈ S can be joined by a unique geodesic whose image belongs to
S. For the point x ∈ M , expx : Ux → M will stand for the exponential function
at x, where Ux is an open subset of TxM . Recall that expx maps straight lines
of the tangent space TxM passing through 0x ∈ TxM into geodesics of M passing
through x. An n-dimensional parallelizable manifoldM is a manifold of dimension
n having vector fields E1, ..., En such that at any point p of M the tangent vectors
E1(p), ..., En(p) provide a basis of the tangent space at p. An example with n = 1
is the circle: we can take E1 to be the unit tangent vector field, say pointing in
the anti-clockwise direction. More generally, any Lie group G is parallelizable. It
is worthwhile to mention that if M is an n-dimensional parallelizable manifold,
there are forms w1, ..., wn such that at any point p of M the cotangent vectors
w1(p), ..., wn(p) provide a basis of the cotangent space at p.

We will also use the parallel transport of vectors along geodesics. Recall that for
a given curve γ : I → M , number t0 ∈ I, and a vector V0 ∈ Tγ(t0)M , there exists
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a unique parallel vector field V (t) along γ(t) such that V (t0) = V0. Moreover, the
mapping defined by V0 7→ V (t1) is a linear isometry between the tangent spaces
Tγ(t0)M and Tγ(t1)M , for each t1 ∈ I. In the case when γ is a minimizing geodesic
and γ(t0) = x, γ(t1) = y, we will denote this mapping by Lxy, and we will call
it the parallel transport from TxM to TyM along the curve γ. Note that, Lxy is
well defined when the minimizing geodesic which connects x to y, is unique. For
example, the parallel transport Lxy is well defined when x and y are contained in a
convex neighborhood. In what follows Lxy will be used wherever it is well defined.
The isometry Lyx induces another linear isometry L∗

yx between TxM
∗ and TyM

∗,
such that for every σ ∈ TxM

∗ and v ∈ TyM , we have 〈L∗
yx(σ), v〉 = 〈σ, Lyx(v)〉.

We will still denote this isometry by Lxy : TxM
∗ → TyM

∗.

Recall that a real valued function f defined on a Riemannian manifoldM is said to
satisfy a Lipschitz condition of rank k on a given subset S of M if | f(x)−f(y) |≤
kd(x, y) for every x, y ∈ S, where d is the Riemannian distance on M . A function
f is said to be Lipschitz near x ∈M if it satisfies the Lipschitz condition of some
rank on an open neighborhood of x. A function f is said to be locally Lipschitz
on M if f is Lipschitz near x, for every x ∈ M . Also, a set valued mapping
F : X ⇉ Y , where X, Y are topological spaces is said to be upper semicontinuous
at x if for every open neighborhood U of F (x), there exists an open neighborhood
V of x, such that

y ∈ V =⇒ F (y) ⊆ U.

Furthermore, a set valued mapping F : X ⇉ Y , where X, Y are topological
spaces, is said to be lower semicontinuous at x if for every open neighborhood U
with U ∩ F (x) 6= ∅, there exists an open neighborhood V of x, such that

y ∈ V =⇒ F (y) ∩ U 6= ∅.

It is worth pointing out that a set valued mapping F : X ⇉ Y , where X, Y are
topological spaces, is said to be lower semicontinuous (upper semicontinuous) if F
is lower semicontinuous (upper semicontinuous) at every point x ∈ X.

3. Tangent and normal cones

We start with the definition of the generalized gradient of locally Lipschitz func-
tions on Riemannian manifolds; for more details see [22].

Definition 3.1. Let M be a Riemannian manifold, x ∈M and let f :M → R be
a locally Lipschitz function. The generalized gradient of f at x, denoted by ∂f(x)
is defined as follows:

∂f(x) = ∂(f ◦ expx)(0x),

where ∂(f ◦ expx)(0x) is the generalized gradient of f ◦ expx at 0x as a locally
Lipschitz function defined on a subset of TxM ∼= R

n.

Remark 3.2. Let M be a finite dimensional Riemannian manifold and let f :
M → R be a locally Lipschitz function. Suppose that (y, v) ∈ TM and Br(y)
is a geodesic ball around y. Then the function x 7→ σ(Lxy(∂f(x)), v) is upper
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semicontinuous on Br(y), where σ is the support function of the set Lxy(∂f(x)).
Hence for every γ ∈ R and (y, v) ∈ TM,

{x ∈ Br(y) : γ < inf
ξ∈∂f(x)

〈Lyx(v), ξ〉}, (1)

is an open subset of M , see [22].

Let us present some definitions and properties of normal and tangent cones.

Definition 3.3. Let S be a nonempty closed subset of a Riemannian manifold
M , x ∈ S and (ϕ,U) be a chart of M at x. Then the (Clarke) tangent cone to S
at x, denoted by TS(x) is defined as follows:

TS(x) := dϕ(x)−1[Tϕ(S∩U)(ϕ(x))],

where Tϕ(S∩U)(ϕ(x)) is tangent cone to ϕ(S ∩ U) as a subset of Rn at ϕ(x).

Obviously, 0x ∈ TS(x) and TS(x) is closed and convex. In the case of submanifolds
of Rn, the tangent space and the normal space are orthogonal to one another.
In an analogous manner, for a closed subset S of a Riemannian manifold M the
normal cone to S at x, denoted by NS(x), is defined as the (negative) polar of the
tangent cone TS(x), i.e.

NS(x) := TS(x)
◦ := {ξ ∈ TxM

∗ : 〈ξ, z〉 ≤ 0 ∀z ∈ TS(x)}.

An easy consequence of this definition is the following proposition.

Proposition 3.4.

(a) NS(x) is a closed convex cone.

(b) NS(x) = dϕ(x)∗(Nϕ(S∩U)(ϕ(x))), where Nϕ(S∩U)(ϕ(x)) is the normal cone to
ϕ(S ∩ U) as a subset of Rn at ϕ(x).

For the definitions of tangent and normal cones to subsets of Rn see [12, 34].

The following theorem is a consequence of [26, Theorem 1.4.1].

Theorem 3.5. Let S be a closed convex subset of a Riemannian manifold M ,
then

(a) NS(x) = {ξ ∈ TxM
∗ : 〈ξ, exp−1

x (y)〉 ≤ 0 for every y ∈ S}.

(b) TS(x) = cl{λ exp−1
x (y) : λ ≥ 0, y ∈ S}.

Let us define epi-Lipschitz sets in Riemannian manifolds and present some prop-
erties of tangent and normal cones to epi-Lipschitz sets in complete Riemannian
manifolds.

Definition 3.6. Let M be a Riemannian manifold. The subset S ⊂M is said to
be epi-Lipschitz if at every point x ∈ S, NS(x) ∩ (−NS(x)) = {0}.

Example 3.7. Every closed convex set S with nonempty interior in a manifold
M is epi-Lipschitz.
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Theorem 3.8. Let M be a complete Riemannian manifold and S be an epi-
Lipschitz closed set in M . Then,

(a) the set valued mapping x 7→ NS(x) is upper semicontinuous on S.

(b) the set valued mappings x 7→ intTS(x) and x 7→ TS(x) are lower semicontin-
uous on S.

To prove Theorem 3.8, we need the following lemma from [22].

Lemma 3.9. Let M be an n-dimensional manifold. Consider the set valued map-
ping G : M ⇉ TM∗ such that G(x) ⊆ TxM

∗ for every x ∈ M . Suppose that in a
chart (ψ,W ) at x ∈M,G is represented by

G(y) =

{
n∑

i=1

gi(y)dxi|y : {dxi|y} is a local basis of TyM
∗ in the chart (ψ,W )

}
.

Then, G is an upper semicontinuous (lower semicontinuous) mapping at x if and
only if g : W ⇉ R

n defined by g(y) := {(g1(y), g2(y), . . . , gn(y))} is upper semi-
continuous (lower semicontinuous) at x.

Analogously, this lemma can be proved when the set valued mappingG :M ⇉ TM
is defined such that G(x) ⊆ TxM for every x ∈M .

Now we come to the proof of Theorem 3.8.

Proof. We just prove part (a). The proof of part (b) is similar. Let M be an
n-dimensional manifold and (ϕ,U) be a chart of an arbitrary point x. For each
z ∈ U ∩ S, we define

T (z) := Nϕ(U∩S)(ϕ(z)).

Note that ϕ(U ∩ S) is an epi-Lipschitz subset of Rn, so the mapping

F : ϕ(U ∩ S) ⇉ R
n,

defined by F (y) := Nϕ(U∩S)(y) is upper semicontinuous on ϕ(U ∩ S) and T (z) =
F ◦ ϕ(z). Thus, T is upper semicontinuous on U ∩ S. On the other hand

NS(x) = dϕ(x)∗[Nϕ(U∩S)(ϕ(x))],

and

dϕ(x)∗

[
n∑

i=1

πi(Nϕ(U∩S)(ϕ(x)))ei

]
=

n∑

i=1

πi(Nϕ(U∩S)(ϕ(x)))dϕ(x)
∗(ei),

where {ei} is a basis of Rn and πi is the projection function on the ith coordinate.
Since {dϕ(y)∗(ei)} is a local basis of TyM

∗ in the chart (ϕ,U) and T is upper
semicontinuous at x, it follows from Lemma 3.9 that NS is upper semicontinuous
at x.
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4. Main results

In this section, we prove that if f :M → R is a locally Lipschitz function defined
on a complete Riemannian manifold M and [a, b] is a closed interval of real line
with compact inverse image f−1[a, b], then Ma = {x ∈ M : f(x) ≤ a} is a
neighborhood retract of Mb = {x ∈ M : f(x) ≤ b} provided that [a, b] does not
contain any critical value of f , that is, a ≤ f(x) ≤ b ⇒ 0 /∈ ∂f(x). Then we
provide a nonsmooth generalization of the “noncritical neck principle� of Morse’s
theory.

Let us recall the notion of convexity radius of a Riemannian manifold which plays
an important role in the rest of the paper.

Theorem 4.1 (Whitehead). Let M be a Riemannian manifold. For every x ∈
M , there exists c > 0 such that for all r > 0 with 0 < r < c, the open ball
B(x, r) = expxB(0x, r) is convex.

The convexity radius of a Riemannian manifold M at a point x ∈ M is the
supremum of the numbers r > 0 such that ball B(x, r) is convex. We denote this
supremum by c(x,M). The global convexity radius of M is defined by c(M) =
inf{c(x,M) : x ∈ M}. By Whitehead’s theorem c(x,M) > 0, for every x ∈ M .
On the other hand, it is well known that the function x 7→ c(x,M) is continuous
on M [25, Corollary 1.9.10]. Therefore, if K ⊆M is compact, then c(K) > 0.

The following remark contains some properties of parallel transport which will be
used in the rest of the paper.

Remark 4.2. Let M be a Riemannian manifold.

(a) An easy consequence of the definition of the parallel translation along a curve
as a solution to an ordinary linear differential equation, implies that the mapping

(x, ξ) ∈ TxM 7→ Lxx0
(ξ),

where x is in a neighborhood of x0 is well defined and continuous at (x0, ξ0),
that is, if (xn, ξn) → (x0, ξ0) in TM , then Lxnx0

(ξn) → Lx0x0
(ξ0) = ξ0, for every

(x0, ξ0) ∈ TM ; see [2, Remark 6.11].

(b) By the continuity properties of the parallel transport and the geodesics, see
[3, Theorem 35], for fixed point z and for each ε > 0, there exists a number δ > 0
such that:

‖LxyLzx − Lzy‖ ≤ ε provided that d(x, y) < δ.

(c) Utilizing the properties of the exponential map on M , for fixed point x ∈ M
and for each ε > 0, we may find number δx > 0 such that:

‖d(exp−1
x )(y)− Lyx‖ ≤ ε provided that d(x, y) < δx.

(d) Recall that the exponential map is defined on an open subset U of TM . Define
a new map F : U →M ×M by

F (q, v) = (q, expq v).
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Then by the inverse function theorem, F is diffeomorphism from some open neigh-
borhood V of (x, 0) to its image [30, Lemma 5.12]. Therefore, one can find
a geodesic ball B(x, r) around x such that for every p ∈ B(x, r) the function
fp,x : B(x, r) → TxM defined by

fp,x(y) = Lyx(d(exp
−1
y )(p)),

is continuous at x.

Now, we define the notion of locally Lipschitz vector fields on Riemannian mani-
folds.

Definition 4.3. Let M be a Riemannian manifold. A mapping X : M → TM
satisfying Xy ∈ TyM for all y ∈ M is said to be Lipschitz vector field of rank k
near a given point x ∈M , if for some ε > 0, we have

‖LyzX(y)−X(z)‖ ≤ kd(y, z) for all z, y ∈ B(x; ε),

where B(x; ε) is convex, and Lyz is parallel transport along the unique geodesic
connecting z and y.

Note that if we consider the Riemannian metrics on M and TM , then the above
definition is equivalent to the usual definition of locally Lipschitz functions on
metric spaces, see [9, p. 241]. Any two Riemannian metrics being each bounded
locally by a constant multiple of the other, give equivalent concepts of Lipschitz
continuity though not the same local Lipschitz constant.

Remark 4.4. If X is a smooth vector field on a compact subset of a Riemannian
manifold M . Then, k defined by

k = sup
‖Lγ(X(γ(0)))−X(γ(1))‖

length γ
,

is finite, where γ : [0, 1] →M varies over all geodesics and Lγ is parallel transport
along γ. For more details see [9, p. 241].

In all the following, suppose that a, b are real numbers, a < b, and let

Ma = {x ∈M : f(x) ≤ a}, Mb = {x ∈M : f(x) ≤ b},

Mab = f−1([a, b]).

Theorem 4.5. Let f : M → R be a locally Lipschitz function on a complete
Riemannian manifold M . Assume that a, b are real numbers, a < b such that the
set Mab is nonempty and compact and for all x ∈Mab, 0 does not belong to ∂f(x).
Then

(a) there exists a neighborhood M̃ of Mb and a locally Lipschitz mapping r from

M̃ to Ma such that
(i) r(x) = x, for all x ∈Ma,
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(ii) f(r(x)) = a, for all x ∈ M̃ \Ma.

(b) there exists ε ∈ (0, b − a) such that for all x in f−1((a, a + ε]) and y in
f−1([a, a+ ε]), with r(x) = r(y),

〈exp−1
x r(x), Lyx(ξ)〉 < 0, for all ξ ∈ ∂f(y).

We prepare the proof of Theorem 4.5 by the following lemmas; see [5].

Lemma 4.6. Under the assumptions of Theorem 4.5, there exists a bounded open
neighborhood Ω of Mab, two positive real numbers β, θ and smooth vector field
X : Ω → TΩ such that,

0 < β < inf
ξ∈∂f(x)

〈ξ, Lyx(X(y))〉, for all x, y ∈ Ω, d(x, y) ≤ θ.

Proof. Set c = c(B(Mab, 1)). We claim that there exist numbers 0 < ε ≤ 1 and
α > 0 such that for all x ∈ B(Mab, ε), the set

A(x, α) := {(y, u) ∈ TM : d(y, x) < c/3, α < inf
ξ∈∂f(x)

〈Lyx(u), ξ〉}

is nonempty. On the contrary, assume that it is not true. Then there exists
a sequence {xq} such that for all q, xq ∈ B(Mab, 1/q) and the set A(xq, 1/q) is
empty. Since the set B(Mab, 1) is compact, without loss of generality, we can
suppose that {xq} converges to some element x̄, which clearly belongs to Mab.
Since 0 does not belong to ∂f(x̄), a nonempty, closed, convex subset of Tx̄M

∗, by
a separation theorem, there exists (x̄, ū) in Tx̄M and a real number γ such that
0 < γ < infξ∈∂f(x̄)〈ū, ξ〉. It follows from Remark 3.2 that the set

{x ∈ B(x̄, c/3) : γ < inf
ξ∈∂f(x)

〈Lx̄x(ū), ξ〉}

is open and contains x̄. Hence, for q large enough, the set A(xq, 1/q) is nonempty.
Thus we arrive at a contradiction which ends the proof of the claim.

We now let ε > 0 and α > 0 be defined as in the above claim, we also let
Ω := intB(Mab, ε), and for (y, u) ∈ TM , we define

A−1(y, u) := {x ∈M : (y, u) ∈ A(x, α)}

= {x ∈ B(y, c/3) : 0 < α < inf
ξ∈∂f(x)

〈Lyx(u), ξ〉}.

By Remark 3.2, A−1(y, u) is an open subset of M . From the above claim,

B(Mab, ε) ⊆ ∪(y,u)∈TMA
−1(y, u)

and, from the compactness of B(Mab, ε), there exists a finite number of elements
such that

B(Mab, ε) ⊆ V := ∪n
i=1A

−1(yi, ui).
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Hence, there exists a C∞ partition of unity {λi : i = 1, ..., n} subordinate to open
covering {A−1(yi, ui) : i = 1, ..., n} of V . We now define, for all i, the set

Ki = B(Mab, ε) ∩ suppλi,

where suppλi := {x ∈ V : λi(x) > 0}. Then Ki is compact and is a subset of
A−1(yi, ui).

Since A−1(yi, ui) is an open set, for each x ∈ A−1(yi, ui), there exists δx > 0 such
that B(x, δx) ⊆ A−1(yi, ui). Hence, Ki ⊆ ∪x∈A−1(yi,ui)B(x, δx/2). Extracting a
finite subcover by the compactness of Ki, we find points {xij : j = 1, ..., n} such
that Ki ⊆ ∪n

j=1B(xij, δxi
j
/2). Therefore, considering η := 1

2
min{δxi

j
}, and using

the continuity of the distance function on the compact set Ki, one has

B(Ki, η) ⊂ A−1(yi, ui), for i = 1, . . . , n.

Since Mab is compact it follows that for x ∈ Ki ⊆ A−1(yi, ui), i ∈ {1, . . . , n}, there
exists s ∈Mab such that dMab

(x) = d(x, s). Hence

dMab
(yi) ≤ d(s, yi) ≤ d(x, yi) + d(x, s) ≤

c

3
+ ε.

Without any loss of generality one can suppose that ε+ c
3
< 1, then yi ∈ B(Mab, 1)

and B(yi, c) is convex. Now for any i ∈ {1, . . . , n}, let y ∈ B(yi, c/3), vi = exp−1
yi
(y)

and let γi(t) = expyi(tvi) be the unique geodesic in B(yi, c/2) joining yi to y. Then
the map gi : B(yi, c/2) → TM defined by gi(y) := Lyiy(ui) obtained by parallel
translation of ui from yi to y along γi is smooth; see [19, p. 148]. Hence, the map
X : V → TM defined by

X(y) =
n∑

i=1

λi(y)Lyiy(ui),

is a smooth vector field.

Since Ω̄ is compact and f is locally Lipschitz on M , it follows that there exists
k > 0 such that for every x ∈ Ω and every ξ ∈ ∂f(x) one has ‖ξ‖∗ < k. Let
m := max{‖ui‖ : i = 1, ..., n} and choose ε0 > 0 satisfying ε0 < min{1, α

2mk+2m
}.

Then by Remark 4.2, there exists η1 > 0 such that for each i ∈ {1, ..., n},

‖LyxLyiy − Lyix‖ ≤ ε0 provided that d(x, y) < η1 and x, y ∈ A−1(yi, ui). (2)

Now let x, y ∈ Ω with d(x, y) < θ := min{η, η1} and let I(y) := {i : λi(y) > 0}.
Then for i ∈ I(y), we have x ∈ B(Ki, η) ⊂ A−1(yi, ui). Hence (yi, ui) ∈ A(x, α),
which implies α < infξ∈∂f(x)〈Lyix(ui), ξ〉. It follows from (2) that for each ξ ∈
∂f(x),

|〈ξ, LyxLyiy(ui)− Lyix(ui)〉| < ‖ξ‖∗‖LyxLyiy − Lyix‖‖ui‖ < kε0m.

Hence
α < inf

ξ∈∂f(x)
〈ξ, Lyix(ui)〉 < inf

ξ∈∂f(x)
〈ξ, LyxLyiy(ui)〉+ kε0m.
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Due to the choice of ε0, if we let β := α− 2mε0k − ε0m− ε20m, then we get

0 < β < inf
ξ∈∂f(x)

〈ξ, LyxLyiy(ui)〉.

Now, for each ξ ∈ ∂f(x), we have 〈ξ, Lyx(X(y))〉 =
∑n

i=1 λi(y)〈ξ, LyxLyiy(ui)〉.
Hence

0 < β =
n∑

i=1

λi(y)β <
n∑

i=1

λi(y) inf
ξ∈∂f(x)

〈ξ, LyxLyiy(ui)〉

≤ inf
ξ∈∂f(x)

〈ξ, Lyx(X(y))〉.

As required.

Let X : Ω → TΩ be defined as in Lemma 4.6 and for x ∈ Ω, let φ(., x) denote the
maximal integral curve of X passing through x, that is, φ(., x) is the solution of

�x(t) = X(x(t)), x(0) = x, (3)

with the maximal interval of definition I(x).

Lemma 4.7. Let Ω and β > 0 be as in Lemma 4.6. Then for all x ∈ Ω and for
all t1, t2 ∈ I(x) with t2 ≥ t1

f(φ(t2, x))− f(φ(t1, x)) ≥ β(t2 − t1).

Proof. Since the map φ is C∞, for all x ∈ Ω the function t 7→ g(t) := f(φ(t, x)) is
locally Lipschitz on I(x). It follows from [22, Theorem 3.3] that for all t1, t2 ∈ I(x)
with t2 > t1,

g(t2)− g(t1) ∈ {u(t2 − t1) : u ∈ ∂g(t), t ∈ (t1, t2)}.

On the other hand by [22, Theorem 3.2] we have that

∂g(t) ⊆ co{∂〈u, exp−1
φ(t,x) ◦φ(., x)〉(t) : u ∈ ∂f(φ(t, x))}

⊆ co{〈u, �φ(t, x)〉 : u ∈ ∂f(φ(t, x))}

= {〈u, �φ(t, x)〉 : u ∈ ∂f(φ(t, x))}

= {〈u,X(φ(t, x)) : u ∈ ∂f(φ(t, x))〉}.

Therefore by Lemma 4.6 ∂g(t) ⊂ [β, ,+∞), which implies

g(t2)− g(t1) = f(φ(t2, x))− f(φ(t1, x)) ≥ β(t2 − t1).

Lemma 4.8. There exists a compact neighborhood K ofMab and a Lipschitz func-
tion τ : K → R such that,

(i) τ(x) ∈ I(x) and |τ(x)| ≤ |a− f(x)|/β,

(ii) f(φ(τ(x), x)) = a, for all x ∈ K.
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Proof. Applying the same argument as the one in [5, p. 325] one can find numbers
a′, b′ such that a′ < a < b < b′ and the set K = Ma′b′ ∩ Ω is closed in M .
Since M is complete the latter implies that K is compact. Also, one can prove
that, for all x ∈ K, there exists a unique real number τ(x) in I(x) such that
|τ(x)| ≤ |a− f(x)|/β and f(φ(τ(x), x)) = a.

It remains to show that the function τ is Lipschitz. First, we prove that the
restriction of the function τ : K → R to the compact setK+ = {x ∈ K : f(x) ≥ a}
is locally Lipschitz. By Remark 4.4, for every x ∈ K, there is a convex ball B(x, ε)
such that X is Lipschitz on B(x, ε) of rank

k2 = sup
‖Lγ(X(γ(0)))−X(γ(1))‖

length γ
,

where γ : [0, 1] → M varies over all geodesics, and Lγ is the parallel transport

along γ, and K ⊂
⋃l

j=1B(xj, εj/2). Let ǫ = min{εj/2, c(K+)/2} then for each
y ∈ K+, there exists B(y, δy) such that if x1, x2 ∈ B(y, δy) and t ∈ I(x1) ∩ I(x2),
then d(φ(t, x1), φ(t, x2)) < ǫ.

Let x1, x2 be two arbitrary points in B(y, δy) ∩ K+ and we let t1 = τ(x1) and
t2 = τ(x2). Since f(φ(τ(x1), x1)) = a ≤ f(x1) = f(φ(0, x1)), by Lemma 4.7
τ(x1) = t1 ≤ 0, similarly is t2. Without any loss of generality, we can suppose that
t1 ≤ t2 ≤ 0, so that |τ(x1)− τ(x2)| = t2− t1. Since f(φ(t1, x1)) = f(φ(t2, x2)) = a,
from Lemma 4.7 one gets

β|τ(x2)− τ(x1)| ≤ f(φ(t2, x1))− f(φ(t1, x1)) = f(φ(t2, x1))− f(φ(t2, x2)).

From Lemma 4.7, φ(t2, x2) ∈ Ma′b′ ∩ Ω ⊂ K and also φ(t2, x1) ∈ Mab′ ∩ Ω ⊂ K,
a = f(φ(t1, x1)) ≤ f(φ(t2, x1)) ≤ f(φ(0, x1)) ≤ b′. Since f is locally Lipschitz on
M and K is compact, then f is Lipschitz on K with constant k1. consequently,

β|τ(x2)− τ(x1)| ≤ k1d(φ(t2, x1), φ(t2, x2)),

also there exists B(xj, εj/2) such that φ(t, x1), φ(t, x2) ∈ B(xj, εj), we end the
proof by showing that

d(φ(t2, x1), φ(t2, x2)) ≤ k d(x1, x2),

with

k = exp[k2.(b
′ − a)/β].

Indeed, since t1 ≤ t2 ≤ 0, for all t ∈ [t2, 0], from Lemma 4.7 both φ(t, x2) and
φ(t, x1) belong to Mab′ ∩ Ω ⊂ K, also d(φ(t, x1), φ(t, x2)) < c(K+)/2. Define

ψ(t) = d2(φ(t, x2), φ(t, x1)) exp(2k2t).

Then, there exists v ∈ Tφ(t,x1)M such that expφ(t,x1)(v) = φ(t, x2) and γ(t) =
expφ(t,x1)(tv) is the unique minimal geodesic connecting φ(t, x1) and φ(t, x2). By
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[2, Lemma 6.5],

Lφ(t,x2)φ(t,x1)

(
∂d

∂y
(φ(t, x1), φ(t, x2))

)
= −

∂d

∂x
(φ(t, x1), φ(t, x2)),

Lφ(t,x2)φ(t,x1)

(
∂d

∂y
(φ(t, x1), φ(t, x2))

)
=

v

‖v‖
.

Now, d
dt
d2(φ(t, x1), φ(t, x2)) is equal to

2d(φ(t, x1), φ(t, x2))

(
−v

‖ − v‖
, Lφ(t,x1)φ(t,x2)

v

‖v‖

)
(X(φ(t, x1)), X(φ(t, x2)))

= 2d(φ(t, x2), φ(t, x1))

〈
v

‖v‖
, Lφ(t,x2)φ(t,x1)(X(φ(t, x2))−X(φ(t, x1))

〉
.

Since X is k2-Lipschitz on B(xj, εj), so

∣∣∣∣
〈

v

‖v‖
, Lφ(t,x2)φ(t,x1)(X(φ(t, x2)))−X(φ(t, x1))

〉∣∣∣∣ ≤ k2 d(φ(t, x2), φ(t, x1)).

Thus,

d

dt
ψ(t) ≥ exp(2k2t). 2d

2(φ(t, x1), φ(t, x2))(−k2)

+ exp(2k2t) 2k2d
2(φ(t, x1), φ(t, x2)),

which means, d
dt
ψ(t) ≥ 0, so that ψ(t) is increasing and

d2(φ(t2, x1), φ(t2, x2)) ≤ exp(−2k2t2)d
2(φ(0, x1), φ(0, x2)) ≤ k2 d2(x1, x2),

that proves τ is locally Lipschitz on compact set K+, so is Lipschitz on K+.
Similarly, one shows that the restriction of τ to the compact set K− = {x ∈
K : f(x) ≤ a} is also Lipschitz. Consequently, τ is Lipschitz by the following
lemma.

Lemma 4.9. Let M and N be two Riemannian manifolds. Assume that A1, A2

are two closed subsets of M and g1 : A1 → N , g2 : A2 → N are two locally
Lipschitz functions. Moreover, g1(x) = g2(x) provided that x ∈ A1 ∩ A2. If
A1 ∩ A2 ⊂ int(A1 ∪ A2), then g : A1 ∪ A2 → N defined by

g(x) =

{
g1(x) x ∈ A1

g2(x) x ∈ A2,

is a locally Lipschitz function.

Proof. We give the proof only for the case that y is a boundary point of A1 and A2,
other cases are left to the reader. For this purpose, set δ := min{δ1, δ2, δ3}, where
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g1 is Lipschitz on A1 ∩ B(y, δ1), g2 is Lipschitz on A2 ∩ B(y, δ2), and B(y, δ3) ⊂
A1∪A2, also B(y, δ) is convex. We proceed to show that g is Lipschitz on B(y, δ).
Suppose that z, w are two arbitrary points in B(y, δ) and γ : [0, 1] → B(y, δ) is
the unique minimal geodesic which connects z and w. Therefore, limt→1− γ(t) =
z and limt→0+ γ(t) = w. For the cases, z, w ∈ A1 or z, w ∈ A2, the proof is
straightforward. Assume that, z ∈ A2 \A1 and w ∈ A1 \A2, then B(y, δ)∩Ac

1 and
B(y, δ) ∩ Ac

2 are open sets respectively containing z and w. If we set

Θ1 = sup{θ1 > 0 : γ(t) ∈ B(y, δ) ∩ Ac
1 for− θ1 < t− 1 < 0},

Θ2 = sup{θ2 > 0 : γ(t) ∈ B(y, δ) ∩ Ac
2 for 0 < t < θ2},

then,
γ(t) ∈ A1 ∩ A2 ∩B(y, δ) provided that Θ2 ≤ t ≤ −Θ1 + 1.

It is sufficient to use z0 = γ(t0) in A1 ∩ A2 ∩B(y, δ), then

d(g(z), g(w)) ≤ d(g(z), g(γ(t0))) + d(g(w), g(γ(t0)))

= d(g2(z), g2(γ(t0))) + d(g1(w), g1(γ(t0))

≤ k1d(γ(1), γ(t0)) + k2d(γ(0), γ(t0))

≤ max{k1, k2}

(∫ t0

0

‖dγ(t)‖dt+

∫ 1

t0

‖dγ(t)‖dt

)

= max{k1, k2}

∫ 1

0

‖dγ(t)‖dt = max{k1, k2}d(z, w),

where for i = 1, 2, ki is Lipschitz constant of gi on B(y, δ).

We now come to the proof of Theorem 4.5.

Proof. (a) Let Ω, a′, b′ be defined as in Lemma 4.8, and let M̃ = {x ∈M : f(x) ≤

a} ∪ {x ∈ Ω : a ≤ f(x) ≤ b′} = Ma ∪ K+. Hence M̃ is a neighborhood of Mb.

Define r : M̃ →Ma by

r(x) =

{
φ(τ(x), x) if x ∈ K+

x if f(x) ≤ a.

Since Ma ∩K+ = {x ∈ M : f(x) = a} ⊂ int M̃ , it follows from Lemma 4.8 and
Lemma 4.9 that r is locally Lipschitz and the proof of part (a) is complete.

(b) For ε0 in the proof of Lemma 4.6, there exists η′ such that (see [22, Theorem
2.10])

Lyx(∂f(y)) ⊆ ∂f(x) + ε0BTxM∗ provided that d(x, y) < η′.

Now, for each x ∈ K, there exists δx with 0 < δx ≤ c(K)/2,

‖LxpLqx − Lqp‖ < ε0/3 provided that d(x, p) < δx, (4)

‖Lxp(d(exp
−1
x )(q))− d exp−1

p (q)‖ < ε0/3 provided that d(x, p) < δx, (5)

‖Lxp(d(exp
−1
x (q)))− LxpLqx‖ < ε0/3 provided that d(x, q) < δx. (6)
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By the compactness of K, there exists {xi : i = 1, .., n} such that K ⊆⋃n

i=1B(xi, δxi
/2). Let δ ≤ min{δxi

/2}. If p, q ∈ K with d(p, q) < δ, then there
exists xi such that p, q ∈ B(xi, δxi

). Thus, by (4), (5), (6), we obtain

‖Lqp − d(exp−1
p )(q)‖ < ε0. (7)

Now, let η′′ = min{η′, θ, δ} where θ has been obtained in Lemma 4.6. It is straight-
forward to show, there exists ε ∈ (0, b − a) such that if x, y ∈ f−1([a, a + ε]) and
r(x) = r(y), then d(x, y) < η′′. Now, let x ∈ f−1((a, a + ε]), y ∈ f−1([a, a + ε])
with r(x) = r(y) and let ξ ∈ ∂f(y). We consider the mapping ψ from [τ(x), 0] to
R defined by

ψ(t) := 〈− exp−1
x (φ(t, x)), Lyx(ξ)〉.

The function ψ is well defined, since φ(t, x) ∈ f−1[a, a + ε] and r(y) = r(x) =
φ(τ(x), x) = r(φ(t, x)), so d(φ(t, x), x) < η′′ ≤ c(K)/2. Moreover, d(φ(t, x), x) <
η′′ ≤ δ, thus (7) implies

‖d(exp−1
x )(φ(t, x))− Lφ(t,x)x‖ < ε0,

by Lemma 4.6,

α− kε0m < 〈Lφ(t,x)x(X(φ(t, x))), ξx〉,

where Lyx(ξ) = ξx + ε0v with v ∈ BTxM∗ , ξx ∈ ∂f(x) and α, k,m are defined in
the proof of Lemma 4.6.

Now,

d

dt
ψ(t) =

〈
−d exp−1

x (φ(t, x))

(
∂φ

∂t
(φ(t, x))

)
, Lyx(ξ)

〉

=

〈
−d exp−1

x (φ(t, x))

(
∂φ

∂t
(φ(t, x))

)
, (ξx + ε0v)

〉

≤ 〈−Lφ(t,x)x(X(φ(t, x))), ξx〉+ 〈〈−Lφ(t,x)x(X(φ(t, x))), ε0v〉+ ε0mk + ε20m

< − α+ 2ε0mk + ε0m+ ε20m = −β < 0,

where β is defined in the proof of Lemma 4.6. Consequently, ψ is decreasing.
Clearly, ψ(0) = 0, ψ(τ(x)) = 〈− exp−1

x r(x), Lyx(ξ)〉. So,

〈exp−1
x r(x), Lyx(ξ)〉 < 0.

Hence the proof of part (b) is complete.

Let us introduce the notion of an L-retract in Riemannian manifolds; see [4]. A
subset S of Riemannian manifold M is said to be an L-retract if there exist a
neighborhood V of S in M , a retraction r : V → S i.e. r(x) = x, x ∈ S, and a
constant L > 0 such that

d(x, r(x)) ≤ LdS(x), for all x ∈ V.
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Remark 4.10. It is proved in Theorem 4.5 that if S is a compact epi-Lipschitz
subset of a complete Riemannian manifoldM , then there exists a locally Lipschitz
retraction for S, i.e. there are an open neighborhood U of S and a retraction
r : U → S which is locally Lipschitz. Hence, for each x ∈ U , there exists ǫ(x) >
0 such that the restriction of r to the open ball B(x, 2ǫ(x)) is Lipschitz with
constant L(x) > 0. By the compactness of S, there are x1, . . . , xk ∈ S such that
S ⊆

⋃k

i=1B(xi, ǫ(xi)). Now set L := max{L(xi) : i = 1, . . . , k}, and V :=⋃k

i=1B(xi, ǫ(xi)). For each x ∈ V , the Hopf-Rinow theorem implies that there
exists y ∈ S such that dS(x) = d(y, x). Moreover, there exists xi ∈ S such that
x ∈ B(xi, ǫ(xi)) and d(x, y) ≤ d(x, xi) < ǫ(xi). Hence, x, y ∈ B(xi, 2ǫ(xi)) and
d(r(x), r(y)) ≤ L(xi)d(x, y). Therefore,

d(r(x), x) ≤ d(x, y) + d(r(x), r(y)) ≤ (L+ 1)d(x, y).

Hence, every compact epi-Lipschitz subset of a complete Riemannian manifold is
L-retract.

We conclude this section by the following theorem which will not be used here but
is worth pointing out, see [1] for another proof.

Theorem 4.11. Let M be a complete Riemannian manifold and let f : M → R

be a locally Lipschitz function. Assume that a, b are real numbers, a < b such that
the set Mab is nonempty and compact and for all x ∈ Mab, 0 does not belong to
∂f(x). Then there exists a continuous mapping H :M × [0, 1] →M such that

(i) for every s ∈ [0, 1], Hs : M → M is a homeomorphism, where Hs(x) =
H(s, x).

(ii) H0 is identity.

(iii) H1(Ma) =Mb

Proof. For c, d ∈ R, we define M(c,d) := f−1(c, d). Since there exists an open set
Ω containing Mab, we may choose ε > 0 such that for all x in M(a−ε,a) and M(b,b+ε)

we have X(x) 6= 0 where X is defined in Lemma 4.6. Hence by [7, Theorem 3.14],
for p ∈ M(a−ε,a) there exists a chart (V, ψ) at p such that V ⊂ M(a−ε,a) and the
flow θ of X is given by

θ(t, y1, y2, . . . yn) = (y1, y2, . . . , yn + t) for all t ∈ R.

Moreover, ψ(p) = (0, 0, . . . , 0) and ψ∗(X) = ∂
∂yn

at every point of V . We claim that

there exists T0 ∈ R such that θ(T0, 0, . . . , 0) ∈M(b,b+ε). Indeed, f(θ(0, 0, . . . , 0)) =
f(0, 0, . . . , 0) < a and by the theorem of Rademacher (see [2, Theorem 5.7]) f
is differentiable almost everywhere. Hence by Lemma 4.6, at the points where f
is differentiable we have X(f) > 0. Thus almost everywhere on ψ(V ) we have
∂f

∂yn
> β. Therefore if we choose T0 =

b−a
β

then

f(T0)− f(0) =

∫ T0

0

∂f

∂yn
dyn > b− a.
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This means f(θ(T0, 0, . . . , 0)) = f(T0) > b. Now by the continuity of θ one can find
an open neighborhood W of p,W ⊂ V such that for all q ∈W, θ(T0, q) ∈M(b,b+ε).
Thus, for q ∈W and 0 ≤ t ≤ T0 we have θ(t, q) ∈M(a−ε,b+ε).

By [23, Corollary 3.3.5] there is a Lipschitz change of coordinate (ϕ,U) such that
p ∈ U ⊂ W and ϕ(y1, y2, . . . , yn−1, s) = (y1, y2, . . . , f(y1, y2, . . . , yn−1, s)). In this
coordinate we have

f(θ(t, q)) = f(q) + t, q ∈ U, 0 ≤ t ≤ T0.

Now the proof can be completed along the same lines as [37, Corollary, 4.27].

5. Topological degree

This section is devoted to the definition of the topological degree of set valued
mappings defined from an n-dimensional oriented complete manifold M to 2n-
dimensional manifold cotangent bundle TM∗ or tangent bundle TM .

Let D be an open bounded subset of an n-dimensional complete oriented Rieman-
nian manifold M , we denote by C(clD,TM, 0) the set of all set valued mappings
F : clD ⇉ TM satisfying: (i) F is upper semicontinuous, with nonempty, con-
vex, and compact values, (ii) 0 /∈ F (x) if x ∈ ∂D, and (iii) if x ∈ clD, then
F (x) ⊂ TxM . Note that since F−1(0) is compact in M , there exist charts (ϕi, Ui),
i = 1, . . . , l, such that F−1(0) ⊆

⋃l

i=1 Ui. Now for every F ∈ C(clD,TM, 0), we
denote by deg(F, 0) the topological degree of F which is defined as follows; see [21,
p. 133].

Definition 5.1. Let ϕi : Ui → R
n be a chart (preserving orientation). Consider

Tϕi : TUi → TRn, defined by Tϕi(p, v) = dϕip(v). Then Tϕi ◦ F ◦ ϕ−1
i de-

fines a set-valued upper semicontinuous mapping gi : ϕi(Ui) ⇉ R
n, gi(ϕi(x)) =

(gi,1(ϕi(x)), ..., gi,n(ϕi(x))). It is easy to see that if {Ek}
n
k=1 is a local basis on Ui,

then F (x) =
∑n

k=1 gi,k(ϕi(x))Ek(x) on Ui. Now deg(F, 0) :=
∑l

i=1 deg(gi, 0).

In the previous definition we used the Cellina-Lasota definition in order to define
deg(gi, 0). Hence, in the case of Euclidean spaces Definition 5.1 coincides with the
Cellina-Lasota definition, see [11].

To be sensible definition, the degree of F should not depend on the representative
gi of F . There is a slight flaw which will become apparent when we examine what
happens if we change the ordered basis {E1(x), ..., En(x)} of TxM to the ordered
basis {Ē1(x), ..., Ēn(x)}. If A is the transition matrix corresponding to the change
of bases E1(x), ..., En(x) → Ē1(x), ..., Ēn(x). Then,

deg(Agi, 0) = sgn(detA) deg(gi, 0).

This means that the degree function defined in this way depends on the choice
of the basis. The problem is solved by using the widely used terminology of
differential geometry. The bases {E1(x), ..., En(x)} and {Ē1(x), ..., Ēn(x)} of TxM
have the same orientation, if the matrix A has the positive determinant. When
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we fix an ordered basis {E1(x), ..., En(x)} of TxM , the definition of the orientation
gives us an equivalence relation in the set of all bases of TxM , with exactly two
equivalence classes. Hence, for an n-dimensional complete oriented Riemannian
manifold M , the topological degree of F is well defined.

A similar definition holds for the set valued mapping F defined on the closure of an
open bounded subset of an n-dimensional complete oriented Riemannian manifold
M to the cotangent bundle TM∗.

We denote by C(∂D, TM, 0) the set of all set valued mappings F : ∂D ⇉ TM ,
satisfying: (i) F is upper semicontinuous, with nonempty, convex, and compact
values, (ii) for x ∈ ∂D, 0 /∈ F (x) and F (x) ⊂ TxM .

Definition 5.2. Let F ∈ C(∂D, TM, 0), then the topological degree of F , also
denoted by deg(F, 0), is defined by;

deg(F, 0) := deg(F̄ , 0),

where F̄ is an arbitrary set valued mapping in C(clD,TM, 0) which extends F to
clD.

A similar definition holds for the set valued mapping F defined on the boundary
of an open bounded subset of an n-dimensional complete oriented Riemannian
manifold M to the cotangent bundle TM∗.

Note that ifM is parallelizable, then there exists fk : clD ⇉ R
n, k = 1, ..., n, such

that for every x ∈ clD, F (x) =
∑n

k=1 fk(x)Ek(x). Hence deg(F, 0) := deg(f, 0),
more precisely, deg(F, 0) :=

∑
deg(f ◦ ϕ−1

i , 0), where ϕi is a local chart of xi ∈
F−1(0).

6. The Euler characteristic of an Epi-Lipschitz subset of a complete
Riemannian manifold

Now, we define the Gauss set valued mapping of an epi-Lipschitz set in a complete
oriented Riemannian manifold as follows.

Definition 6.1. Let M be a complete oriented Riemannian manifold and S be a
closed epi-Lipschitz set in M . The set valued mapping GS : ∂S ⇉ TM∗ defined
by

GS(x) = co[NS(x) ∩ Sx],

where Sx is the unit sphere of TxM
∗, is called the Gauss mapping of S.

The following theorem gives us some properties of the Gauss mapping GS. The
proof of it can be obtained along the same lines as [14, Proposition 3.1].

Theorem 6.2. Let S be a closed epi-Lipschitz set in a complete oriented Rieman-
nian manifold M . Then the Gauss set valued mapping GS is upper semicontinuous
with nonempty, convex, compact values and for every x ∈ ∂S, 0 /∈ GS(x). More-
over, there is an upper semicontinuous set valued mapping with nonempty, convex
and compact values which is an extension of GS on S.
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Using Theorem 6.2 and Definition 5.2 we define the Euler characteristic of a
nonempty compact, epi-Lipschitz subset S of an n-dimensional complete oriented
Riemannian manifold M , by χ(S) = deg(GS, 0).

Following [14, Propositions 3.2 and 3.3], the next theorem and its subsequent corol-
lary can be proved for epi-Lipschitz subsets of complete parallelizable Riemannian
manifolds.

Theorem 6.3. Let S be an epi-Lipschitz and nonempty compact set in a com-
plete parallelizable Riemannian manifold M , and let G : ∂S ⇉ T ∗M be an up-
per semicontinuous set valued mapping, with nonempty, convex, compact values
such that for every x ∈ ∂S, G(x) ⊂ TxM

∗ and G(x) ∩ −NS(x) = ∅. Then
χ(S) = deg(G, 0) = deg(Ḡ, 0), where Ḡ : S ⇉ TM∗ is every upper semicontinuous
set valued mapping with nonempty, convex, compact values, which extends G to S
and for every x ∈ S satisfies Ḡ(x) ⊂ TxM

∗.

Corollary 6.4. Let S be an epi-Lipschitz and nonempty compact set in a com-
plete parallelizable Riemannian manifold M , and let G : ∂S ⇉ T ∗M be an upper
semicontinuous set valued mapping, with nonempty, convex, compact values such
that for every x ∈ ∂S, G(x) ⊂ TxM

∗ and G(x) ∩NS(x) 6= ∅, and 0 /∈ G(x). Then
χ(S) = deg(G, 0) = deg(Ḡ, 0), where Ḡ : S ⇉ TM∗ is every upper semicontinuous
set valued mapping with nonempty, convex, compact values, which extends G to S
and for every x ∈ S satisfies Ḡ(x) ⊂ TxM

∗.

In the following theorem an equivalent definition of the Euler characteristic is
obtained.

Theorem 6.5. Let S be an epi-Lipschitz and nonempty compact set in a complete
parallelizable Riemannian manifold M .

(a) There exists a continuous vector field X : S → TM such that for every
x ∈ ∂S

X(x) ∈ intTS(x) ⊂ TS(x) \ {0}.

(b) If F : S ⇉ TM is an upper semicontinuous set valued mapping with non-
empty, convex, and compact values such that

F (x) ⊂ TxM for every x ∈ S, (8)

and
F (x) ⊂ TS(x) \ {0} for every x ∈ ∂S, (9)

then χ(S) = deg(−F, 0).

Proof. (a) The proof is along the same lines as [14, Proposition 3.4]. However,
we must prove that Michael’s selection theorem holds when S is a subset of n-
dimensional parallelizable Riemannian manifold M and T : S ⇉ TM is a lower
semicontinuous mapping with nonempty, convex values with T (x) ⊂ TxM , for
every x ∈ S. In this case, let t : S ⇉ R

n be such that T (x) =
∑n

i=1 ti(x)Ei(x)
where {Ei(x)}

n
i=1 is an ordered basis of TxM . Since M is a fully normal space,
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Micheal’s selection theorem holds for the set valued mapping t and there is a
continuous function f : S → R

n such that f(x) ∈ t(x) for every x ∈ S. We define
f̄ : S → TM by f̄(x) =

∑n

i=1 fi(x)Ei(x) where f(x) = (f1(x), ..., fn(x)). Then f̄
is continuous and f̄(x) ∈ T (x) for each x ∈ S.

(b) Suppose that F (x) =
∑n

i=1 fi(x)Ei(x), where {Ei(x)}
n
i=1 is an ordered basis of

TxM for each x ∈ S. We define G : ∂S ⇉ TM∗ by G(x) = −
∑n

i=1 fi(x)wi(x),
where {wi(x)}

n
i=1 is an ordered basis of TxM

∗ for every x ∈ S. Moreover, for all
x ∈ S,

〈Ei(x), wj(x)〉 =

{
1 i = j

0 i 6= j.

We claim that

G(x) ∩ −NS(x) = ∅ for all x ∈ ∂S.

Then we conclude from Theorem 6.3 that, χ(S) = deg(G, 0) = deg(−F, 0). We
proceed by contradiction. Let y =

∑n

i=1 yiwi(x) ∈ G(x) ∩ −NS(x) then from (9)
and the relationship between F and G, −

∑n

i=1 yiEi(x) ∈ TS(x) \ {0}. So that∑n

i=1 y
2
i ≤ 0 which means y = 0 and this contradiction completes the proof.

Theorem 6.6. Let S be a convex and compact set in a complete parallelizable
Riemannian manifold M with a nonempty interior. Then χ(S) = 1.

Proof. Let x̄ ∈ intS and define f : S → TM by

f(x) := exp−1
x (x̄).

By Theorem 3.5, the function f satisfies the conditions of Theorem 6.5, so that
χ(S) = deg(−f, 0). By [2, Lemma 6.5], if exp−1

x (x̄) =
∑n

i=1 vi(x)Ei(x) then
exp−1

x̄ (x) = −Lxx̄(exp
−1
x (x̄)) = −

∑n

i=1 vi(x)Lxx̄(Ei(x)) where for every x ∈ M ,
{Ei(x)}

n
i=1 is an ordered basis of TxM . On the other hand, d exp−1

x̄ (x̄) : Tx̄M →
Tx̄M is identity function. So χ(S) = deg(−f, 0) = 1.

Let us point out the following theorem which is a characterization of epi-Lipschitz
subsets of complete Riemannian manifolds, (see [22] for a proof).

Theorem 6.7. Let M be a complete Riemannian manifold and S be a closed
subset of M . Then the following assertions are equivalent.

(a) S is epi-Lipschitz.

(b) There is a locally Lipschitz function ϕ :M → R such that
(i) S = {x ∈M : ϕ(x) ≤ 0},
(ii) If ϕ(x) = 0, then 0 /∈ ∂ϕ(x),
(iii) ∂S = ∂(intS) = {x ∈M : ϕ(x) = 0}.

We are going to investigate the relationship between the Euler characteristic of
epi-Lipschitz subsets of complete Riemannian manifolds and a function ϕ which
satisfies in the conditions of Theorem 6.7.
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Theorem 6.8. Let S be a nonempty and compact epi-Lipschitz set in a complete
parallelizable Riemannian manifold M . Let ϕ be a function satisfying the condi-
tions of Theorem 6.7 such that if ϕ(x) > 0 then 0 /∈ ∂ϕ(x). Then χ(S) = 1.

It is worth pointing out that Theorem 4.5 will be fundamental to the proof of
Theorem 6.8. Under the assumptions of Theorem 6.8, let γ : M → [0, 1] be
a smooth function such that γ(x) = 0 if x ∈ B(∂S, 1/2) and γ(x) = 1 if x /∈
intB(∂S, 1). We define the function ϕ̃ :M → R by

ϕ̃(x) =

{
(1− γ(x))ϕ(x) + γ(x) sgnϕ(x) ϕ(x) 6= 0

0 ϕ(x) = 0,

denoting sgn t = t/|t| if t ∈ R \ {0}. Then ϕ−1[0, 1) ⊂ ϕ̃−1[0, 1) ⊂ intB(∂S, 1).
Therefore ϕ−1[0, 1] is compact and by the compactness of S, for every ǫ > 0,
ϕ−1[−ǫ, 1] is compact. Also, there is ǫ′ > 0 such that for every x ∈ ϕ−1[−ǫ′, 0],
zero does not belong to ∂ϕ(x). Hence by Theorem 4.5, there exist ε > 0, a

neighborhood M̃ of {x ∈ M : ϕ(x) ≤ 1} and a locally Lipschitz mapping r from

M̃ to Mε := {x ∈M : ϕ(x) ≤ −ε} satisfying the following conditions,

(i) r(x) = x for x ∈Mε,

(ii) if x ∈ ∂S, then sup{〈ξ, exp−1
x (r(x))〉 | ξ ∈ ∂ϕ(x)} < 0.

We now come to the proof of Theorem 6.8.

Proof. Let B be a closed ball containing a neighborhood of the set S. Define
f : B → TM by f(x) = − exp−1

x (r(x)). Now set K = B \ intS which is compact
and f(x) 6= 0 for all x ∈ K. Employing the properties of the topological degree,
one can deduce

deg(f, 0) = deg(f |S, 0), (10)

where f |S is the restriction of the mapping f to S. On the other hand, by The-
orem 3.5, for every x ∈ ∂B, −f(x) = exp−1

x (r(x)) ∈ TB(x) \ {0}. So Theo-
rem 6.5 implies χ(B) = deg(f, 0). We claim that χ(S) = deg(f |S, 0). Then
(10) and the convexity property of B imply χ(S) = 1. By [22, Corollary 4.12]
NS(x) =

⋃
λ≥0 λ∂ϕ(x), where ϕ satisfies the conditions of Theorem 6.7. Also,

Theorem 4.5 and the bipolar theorem imply

exp−1
x (r(x)) ∈ TS(x).

Since r(x) ∈ Mε which does not meet ∂S, so exp−1
x (r(x)) 6= 0 for every x ∈ ∂S.

Hence from Theorem 6.5 one can obtain χ(S) = deg(f |S, 0), as required.

We conclude this section with a direct consequence of Corollary 6.4 to compute
the Euler characteristic of a compact epi-Lipschitz set in a complete parallelizable
Riemannian manifold which is obtained by using the degree of the set valued
mapping x 7→ ∂ϕ(x), where ϕ is given in Theorem 6.7.
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Theorem 6.9. Let S be a nonempty and compact epi-Lipschitz set in a complete
parallelizable Riemannian manifold M , and let ϕ be a function which satisfies the
conditions of Theorem 6.7, then χ(S) = deg(∂ϕ(.), 0).

7. Applications of Euler characteristic to equilibrium theory

In this section, we present some equilibrium theorems.

Theorem 7.1. Let S be an epi-Lipschitz and nonempty compact set in a complete
parallelizable Riemannian manifold M such that χ(S) 6= 0, and let F : S ⇉ T ∗M
be an upper semicontinuous set valued mapping, with nonempty, convex, compact
values such that for every x ∈ S, F (x) ⊂ TxM

∗. Then there exists s ∈ S such that

0 ∈ F (s)−NS(s).

Proof. On the contrary, assume that for every s ∈ S, 0 /∈ F (s) − NS(s). Then
Theorem 6.3 implies χ(S) = deg(−F, 0). By the properties of degree, there exists
s ∈ S such that 0 ∈ F (s) ⊂ F (s)−NS(s), hence one gets a contradiction.

Theorem 7.2. Let S be an epi-Lipschitz and nonempty compact set in a complete
parallelizable Riemannian manifold M , and let F : S ⇉ TM be an upper semi-
continuous set valued mapping, with nonempty, convex, compact values such that
for every x ∈ S, F (x) ⊂ TxM . Moreover,

0 /∈ F (x), F (x) ∩ TS(x) 6= ∅ for all x ∈ ∂S. (11)

Then χ(S) = deg(−F, 0).

Proof. Let x ∈ ∂S. Since 0 does not belong to F (x) ⊂ TxM , by separation
theorem there exists v(x) ∈ TxM

∗ such that supξ∈F (x)〈ξ, v(x)〉 < 0. We can define
a covector field v on M with value v(x) at x. The upper semicontinuity of F
implies that there are an open neighborhood Ux of x and a positive real number
ǫx such that

sup
ξ∈F (y)

〈ξ, v(y)〉 < −ǫx provided that y ∈ Ux.

Since the set ∂S is compact, there exists a finite subset {x1, ..., xm} inM such that
∂S ⊂

⋃m

j=1 Uxj
. Let ϕj, j = 1, ...,m be a smooth partition of unity subordinate to

the covering Uxj
, j = 1, ...,m, of ∂S. We define a smooth covector field v on M as

follows,

v(x) =
m∑

j=1

ϕj(x)v̄j(x),

where v̄j is the corresponding smooth covector field to Uxj
on M . Moreover

sup
ξ∈F (x)

〈ξ, v(x)〉 < −ǫ provided that x ∈ ∂S, (12)

where ǫ = min{ǫxi
: i = 1, ...,m}. Now (11) and (12) imply v(x) /∈ −NS(x),

for every x ∈ ∂S. It follows from Theorem 6.3 that χ(S) = deg(v, 0). It is
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sufficient to prove deg(v, 0) = deg(−F, 0). Let v(x) =
∑n

i=1 vi(x)wi(x) where
{wi(x)}

n
i=1 is an ordered basis of TxM

∗ for every x ∈ M . Define the vector field
ṽ(x) =

∑n

i=1 vi(x)Ei(x) where {Ei(x)}
n
i=1 is an ordered basis of TxM for every

x ∈M . Moreover, for every x ∈ S,

〈Ei(x), wj(x)〉 =

{
1 i = j

0 i 6= j.

Then, by (11) for every x ∈ ∂S, 0 /∈ co[ṽ(x) ∪ −F (x)]. Indeed, if we assume that
there exist x ∈ ∂S, h ∈ F (x) and 0 ≤ t ≤ 1 such that 0 = (1− t)ṽ(x)− th. Then
from (11), t 6= 1 and ṽ(x) = th/(1− t). Hence

0 > 〈v(x), h〉 = 〈ṽ(x), h〉 ≥ 0,

which is a contradiction. Thus, the properties of the degree imply deg(ṽ, 0) =
deg(−F, 0), see [14, Property D.5]. On the other hand, deg(ṽ, 0) = deg(v, 0) which
ends the proof.

The following theorem is a direct consequence of previous theorem and the prop-
erties of the degree. Moreover, it is a generalization of [5, Theorem 2.2]. Indeed, if
S is a nonempty compact subset of a complete parallelizable Riemannian manifold
M , such that S = {x ∈M : f(x) ≤ 0}, where f :M → R is locally Lipschitz, and
if b = max{f(x); x ∈ coS}, then f−1([0, b]) is compact and for all x ∈ f−1([0, b]),
0 /∈ ∂f(x). Then, Theorem 6.8 implies S is an epi-Lipschitz and compact set in a
complete parallelizable Riemannian manifold M such that χ(S) 6= 0.

Theorem 7.3. Let S be an epi-Lipschitz and nonempty compact set in a complete
parallelizable Riemannian manifold M such that χ(S) 6= 0, and let F : S ⇉ TM
be an upper semicontinuous set valued mapping, with nonempty, convex, compact
values such that for every x ∈ S, F (x) ⊂ TxM . Moreover, suppose that

F (x) ∩ TS(x) 6= ∅ for all x ∈ ∂S.

Then there exists s ∈ S such that 0 ∈ F (s).
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[27] A. Kristály: Location of Nash equilibria: a Riemannian geometrical approach, Proc.
Amer. Math. Soc. 138 (2010) 1803–1810.

[28] S. Lang: Fundamentals of Differential Geometry, Graduate Texts in Mathematics
191, Springer, New York (1999).

[29] Yu. S. Ledyaev, Q. J. Zhu: Nonsmooth analysis on smooth manifolds, Trans. Amer.
Math. Soc. 359 (2007) 3687–3732.

[30] J. M. Lee: Riemannian Manifolds. An Introduction to Curvature, Graduate Texts
in Mathematics 176, Springer, New York (1997).

[31] C. Li, B. S. Mordukhovich, J. Wang, J. C. Yao: Weak sharp minima on Riemannian
manifolds, SIAM J. Optim. 21 (2011) 1523–1560.

[32] T. Lorenz: Epi-Lipschitzian reachable sets of differential inclusions, Syst. Control
Lett. 57 (2008) 703–707.

[33] J. Milnor: Topology from the Differentiable Viewpoint, University Press of Virginia,
Charlottesville (1965).

[34] B. S. Mordukhovich: Variational Analysis and Generalized Differentiation. I: Ba-
sic Theory, Grundlehren der Mathematischen Wissenschaften 331, Springer, Berlin
(2006).

[35] R. T. Rockafellar: Clarke’s tangent cones and the boundaries of closed sets in R
n,

Nonlinear Anal. 3 (1979) 145–154.

[36] R. T. Rockafellar: Directionally Lipschitzian functions and subdifferential calculus,
Proc. Lond. Math. Soc. 39 (1979) 331–355.

[37] J. T. Schwartz: Nonlinear Functional Analysis, Gordon and Breach, New York
(1969).


