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ON THE METRIC PROJECTION ONTO PROX-REGULAR

SUBSETS OF RIEMANNIAN MANIFOLDS

SEYEDEHSOMAYEH HOSSEINI AND MOHAMAD R. POURYAYEVALI

(Communicated by Sergei K. Suslov)

Abstract. Prox-regular subsets of Riemannian manifolds are introduced. A
characterization of prox-regular sets based on the hypomonotonicity of the
truncated limiting normal cone is obtained. Moreover, some properties of
metric projection mapping and distance function corresponding to the prox-
regular sets are presented.

1. Introduction

It is well known that for a closed convex set S in a Hilbert space H, the metric
projection is Lipschitz and the distance function from S is differentiable everywhere
outside of S. It was shown in [19] that for a class of (not necessarily convex) sets,
the corresponding metric projection exists and is Lipschitz in a neighborhood of
each set. These sets were studied under the name of “prox-regular” sets in [17]. It
was proved in [18] that the prox-regularity is a necessary and sufficient condition
for existence and Lipschitz continuity of metric projection. Moreover, the authors
established a characterization of prox-regular sets in Hilbert spaces based on the
hypomonotonicity of the truncated limiting normal cone.

Unlike a Hilbert space, a manifold in general does not have a linear structure,
and therefore new techniques are needed for dealing with the concepts of metric
projection and distance function from sets in manifolds. Moreover, these notions
are not of local type and cannot be studied by local techniques. A number of results
regarding metric projection and distance function corresponding to the convex sets
in Riemannian manifolds have been obtained. In [21] the differentiability of the
metric projection for a closed locally convex subset S of a finite dimensional Rie-
mannian manifold M was shown. Moreover, the author proved that the distance
function from S near and outside of S is of class C1.

In 1981, Greene and Shiohama proved that for a closed totally convex set S of a
finite dimensional Riemannian manifold M , there exists an open set W containing
S such that the metric projection is locally Lipschitz on W ; see [8]. It was shown
in [9] that for a closed convex set S of a finite dimensional Hadamard manifold M ,
the metric projection is single-valued and Lipschitz on M .
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234 S. HOSSEINI AND M. R. POURYAYEVALI

The concept of a monotone vector field on Riemannian manifolds which was a
generalization of a monotone operator was introduced in [16]. The relationship
between convexity and monotonicity has been studied in numerous papers such as
[22].

Our goal is to generalize the results regarding metric projection of totally convex
subsets obtained in [8] to prox-regular subsets of Riemannian manifolds. We intro-
duce the notions of regular sets and regular functions on manifolds. Then a subclass
of regular sets named prox-regular which contains convex sets is introduced. More-
over, hypomonotone mappings on convex subsets of a Riemannian manifolds are
considered and by using these mappings a characterization for prox-regular sets is
obtained. Other properties of prox-regular sets related to the corresponding metric
projection and distance function are given. In fact, we prove that for a prox-regular
subset S of a Riemannian manifold M there exists an open set W containing S such
that the metric projection is a single-valued continuous mapping on W . Moreover,
we show that if M is a Hadamard manifold, then the metric projection is locally
Lipschitz on W and the distance function from S is C1+ on W \ S.

2. Preliminaries

In this paper, we use the standard notation and known results of Riemannian
manifolds; see, e.g., [6, 11, 13]. Throughout this paper,M is a C∞ finite dimensional
manifold endowed with a Riemannian metric 〈., .〉x on the tangent space TxM ∼= R

n.
As usual we denote by B(x, δ) the open ball centered at x with radius δ and by

N the closure of the set N . Let S be a nonempty closed subset of a Riemannian
manifold M . We define dS : M −→ R by

dS(x) := inf{d(x, s) : s ∈ S },

where d is the Riemannian distance on M .
We will make extensive use of the exponential mapping expx throughout the

paper. Recall that for every x ∈ M there exists a mapping expx, defined on a
neighborhood of 0x in the tangent space TxM , and taking values in M , which is a
local diffeomorphism and maps straight line segments passing through 0x ∈ TxM
onto geodesic segments in M passing through x. Any open neighborhood U of
x ∈ M that is the diffeomorphic image under expx of an open neighborhood of 0x
is called a normal neighborhood of x. We will also use the parallel transport of
vectors along geodesics. For a given curve γ : I → M, number t0 ∈ I, and a vector
V0 ∈ Tγ(t0)M, there exists a unique parallel vector field V (t) along γ(t) such that
V (t0) = V0. Moreover, the mapping defined by V0 �→ V (t1) is a linear isometry
between the tangent spaces Tγ(t0)M and Tγ(t1)M, for each t1 ∈ I. In the case when
γ is a minimizing geodesic and γ(t0) = x, γ(t1) = y, we will denote this mapping
by Lxy, and we will call it the parallel transport from TxM to TyM along the curve
γ. Note that Lxy is well defined when the minimizing geodesic which connects x to
y is unique. In what follows, Lxy will be used wherever it is well defined.

Recall that a subset S of a Riemannian manifold M is called convex if every two
points p1, p2 ∈ S can be joined by a unique geodesic whose image belongs to S.
Moreover, for every convex subset U of a Riemannian manifold M and arbitrary
points p1, p2 in U , exp−1

pi
, for i = 1, 2 is well-defined on U and

‖ exp−1
p1

(p2)‖ = d(p1, p2).
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ON THE METRIC PROJECTION ONTO PROX-REGULAR SETS 235

Now we present some definitions and results in nonsmooth analysis on Riemann-
ian manifolds; for more details see [10].

Let M be a Riemannian manifold, x ∈ M and let f : M → R be a locally
Lipschitz function. The Clarke subdifferential of f at x, denoted by ∂Cf(x), is
defined as follows:

∂Cf(x) = ∂C(f ◦ expx)(0x),
where ∂C(f ◦ expx)(0x) is the Clarke subdifferential of f ◦ expx at 0x as a locally
Lipschitz function defined on a subset of TxM .

Let S be a nonempty closed subset of a Riemannian manifold M , x ∈ S and let
(ϕ,U) be a chart of M at x. Then the (Clarke) tangent cone to S at x, denoted by
TC
S (x), is defined as follows:

TC
S (x) := dϕ(x)−1[TC

ϕ(S∩U)(ϕ(x))],

where TC
ϕ(S∩U)(ϕ(x)) is a tangent cone to ϕ(S ∩U) as a subset of Rn at ϕ(x). Note

that the definition of TS(x) does not depend on the choice of the chart ϕ at x; see
[15, Lemma 3.4].

Obviously, 0x ∈ TC
S (x) and TC

S (x) is closed and convex. In the case of subman-
ifolds of Rn, the tangent space and the normal space are orthogonal to each other.
In an analogous manner, for a closed subset S of a Riemannian manifold M the
normal cone to S at x, denoted by NC

S (x), is defined as the (negative) polar of the
tangent cone TC

S (x), i.e.

NC
S (x) := TC

S (x)◦ := {ξ ∈ TxM
∗ : 〈ξ, z〉 ≤ 0 ∀z ∈ TC

S (x)}.

It follows from [5, Proposition 2.5.2] that v ∈ TC
S (x) if and only if for every

normal neighborhood U of x and every sequence (zi) ⊂ exp−1
x (S ∩ U) converging

to 0x and sequence ti in (0,∞) decreasing to 0, there exists a sequence (vi) ⊂ TxM
converging to v such that for all i, zi + tivi ∈ exp−1

x (S ∩ U).
Let M be a Riemannian manifold, x ∈ M and f : M → (−∞,+∞] be a lower

semicontinuous function. The proximal subdifferential of f at x, denoted by ∂P f(x),
is defined as ∂P (f ◦ expx)(0x).

As a consequence of the definition of ∂P (f ◦ expx)(0x) one has that v ∈ ∂P f(x)
if and only if there is t > 0 such that

(2.1) f(y) ≥ f(x) + 〈v, exp−1
x (y)〉 − t/2 d(x, y)2

for every y in a neighborhood of x.
Suppose now that S is a closed subset of a Riemannian manifold M and that

x ∈ S. We define the proximal normal cone to S at x, denoted by NP
S (x), as

NP
exp−1

x (U∩S)
(0x), where U is any normal neighborhood of x.

The following lemma is an easy consequence of the definition of NP
S (x).

Lemma 2.1. Let S be a closed subset of a Riemannian manifold M and let x ∈ S.
Then v ∈ NP

S (x) if and only if there is ρ > 0 such that

〈v, exp−1
x (y)〉 ≤ ρ/2 d(y, x)2,

for every y in a neighborhood of x.

Remark 1. It is easy to verify that NP
S (x) = ∂P δS(x); here δS is the indicator

function of S defined by δS(x) = 0 if x ∈ S and δS(x) = ∞ if x /∈ S.
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236 S. HOSSEINI AND M. R. POURYAYEVALI

Let us define the limiting subdifferential of a lower semicontinuous function f
at x, denoted by ∂Lf(x), and the limiting normal cone to a closed subset S of a
Riemannian manifold M at x ∈ S, denoted by NL

S (x), as follows:

∂Lf(x) = {limi→∞vi : vi ∈ ∂P f(xi), xi f−→x},

NL
S (x) = {limi→∞vi : vi ∈ NP

S (xi), xi S−→x},
where xi f−→x means that xi and f(xi) are respectively convergent to x and f(x) and

xi S−→x denotes the convergent sequence {xi} ⊂ S to x .

The following lemma states the connections between Clarke and proximal and
limiting subdifferentials. Also, it shows the relationships between normal cones.

Lemma 2.2. Let M be a Riemannian manifold.
(a) If f is Lipschitz near x, then

∂Cf(x) = co{limi→∞ξi : ξi ∈ ∂P f(xi), xi → x}.
(b) If S is a closed subset of M containing x, then

NC
S (x) = co{limi→∞ξi : ξi ∈ NP

S (xi), xi → x},
where co signifies convex hull.

We conclude this section with the definition of the Bouligand (or contingent)
tangent cone to a closed subset S of a Riemannian manifold M at a point x ∈ S,
which is a generalization of the definition of the contingent cone to a closed subset
of a Banach space; see [5, p. 90]. Let S be a closed subset of a Riemannian manifold
M and x ∈ S. The Bouligand (or contingent) tangent cone to S at x, denoted by
TB
S (x), is defined as follows:

TB
S (x) := { lim

i→∞

zi
ti

: zi → 0x and ti ↓ 0, zi ∈ exp−1
x (S ∩ U)},

where U is a normal neighborhood of x.

3. Main results

3.1. Regular sets and functions on Riemannian manifolds. In this subsec-
tion, we study regular sets and functions on manifolds. Moreover, prox-regular sets
and primal lower nice functions on Riemannian manifolds are defined, and some
related results to these concepts are proved.

Definition 3.1. A function f : M −→ R defined on a Riemannian manifold M is
said to be proximally subdifferentially regular, or regular for short, at x ∈ M if f
is Lipschitz near x, and

∂Lf(x) = ∂Cf(x) = ∂P f(x).

Definition 3.2. A closed subset S of a Riemannian manifold M is said to be
tangentially regular, or regular for short, at x ∈ S if

TC
S (x) = TB

S (x).

It is worth pointing out that every convex set is a regular set. In order to illustrate
nonconvex regular sets, nonconvex prox-regular sets in Riemannian manifolds are
introduced. For the definitions of prox-regular sets and primal lower nice functions
on Riemannian manifolds, we need to use a convex neighborhood around each point.
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ON THE METRIC PROJECTION ONTO PROX-REGULAR SETS 237

The existence of this convex neighborhood is ensured by Whitehead’s theorem; see
[11].

Definition 3.3. A closed subset S of a Riemannian manifold M is said to be prox-
regular at x̄ ∈ S if there exist ε > 0 and ρ > 0 such that B(x̄, ε) is convex and for
every x ∈ S ∩B(x̄, ε) and v ∈ NL

S (x) with ‖v‖ < ε,

(3.1) 〈v, exp−1
x (x′)〉 ≤ ρ/2 d(x′, x)2, for every x′ ∈ S ∩B(x̄, ε).

It is easy to verify that if S is prox-regular at x̄, then NP
S (x̄) is closed.

A closed subset S of a Riemannian manifold M is said to be prox-regular if it is
prox-regular at each point of S. It is worthwhile to mention that convex sets are
prox-regular.

Definition 3.4. Let M be a Riemannian manifold. A lower semicontinuous func-
tion f : M → (−∞,+∞] is said to be primal-lower-nice (p.l.n.) at x̄ ∈ dom(f) if
there exist t0 > 0, b > 0 and ε > 0 such that B(x̄, ε) is convex and

(3.2) f(x′) ≥ f(x) + 〈exp−1
x (x′), v〉 − t/2 d(x′, x)2

provided that t > t0, ‖v‖ < bt, v ∈ ∂P f(x), d(x′, x̄) < ε, d(x, x̄) < ε.

Note that dom(f) denotes the effective domain of f .
One can prove that if f : M → (−∞,+∞] is p.l.n. at x̄, then ∂P f(x̄) is closed.

The following theorem states an interesting property of a function f which is p.l.n.
at x̄ ∈ dom(f). Employing the following theorem, we can prove that if f is p.l.n.
at x̄ and Lipschitz around x̄, then it is regular at x̄.

Theorem 3.5. Let M be a Riemannian manifold, and f : M → (−∞,+∞] be
p.l.n. at x̄ ∈ dom(f). Then for all x in a neighborhood of x̄,

∂Lf(x) = ∂P f(x).

Proof. Since f is p.l.n. at x̄, we need only to prove the theorem at x̄. Let t0 > 0,
b > 0 and ε > 0 be such that B(x̄, ε) is convex and

(3.3) f(x′) ≥ f(x) + 〈exp−1
x (x′), v〉 − t/2 d(x′, x)2

provided that t > t0, ‖v‖ < bt, v ∈ ∂P f(x), d(x
′, x̄) < ε, d(x, x̄) < ε. Suppose that

v ∈ ∂Lf(x̄). Then there exist sequences {xn} converging to x̄, and {vn} converging
to v with vn ∈ ∂P f(xn). For all i large enough, {‖Lxix̄(vi)‖} is bounded. Therefore,
one can deduce, for all i large enough, that there is t > t0 such that ‖vi‖ ≤ bt.
Eventually, d(xn, x̄) < ε and we pick t > t0 such that ‖vn‖ < bt. Thus,

(3.4) f(x) ≥ f(xn) + 〈exp−1
xn

(x), vn〉 − t/2 d(x, xn)
2,

for all x with d(x, x̄) < ε. Taking the limit in (3.4) as n → ∞, we get v ∈ ∂P f(x̄). �

In Lemma 3.6 the relationship between prox-regular sets and p.l.n. functions on
Riemannian manifolds is presented. The proof of it can be obtained along the same
lines as [18, Proposition 2.1].

Lemma 3.6. A subset S of a Riemannian manifold M is prox-regular at x̄ ∈ S if
and only if the indicator function of S is p.l.n. at x̄.
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Now we are going to prove the regularity of prox-regular sets in Riemannian
manifolds.

Lemma 3.7. Let M be a Riemannian manifold and let S ⊂ M be prox-regular at
x̄ ∈ S. Then:
(a) TB

S (x̄) ⊆ (NP
S (x̄))◦.

(b) NP
S (x̄) = NL

S (x̄) = NC
S (x̄).

(c) TB
S (x̄) = TC

S (x̄).
(d) TB

S (x̄) is a convex cone.

Proof. To prove (a), let w = lim zi
ti

be in TB
S (x̄), and let v ∈ NP

S (x̄). Then there
exist ε > 0 and ρ > 0 such that

〈 εv

‖v‖ , exp
−1
x̄ (y)〉 ≤ ρ/2 d(y, x̄)2,

for every y in B(x̄, ε). For large enough i, expx̄(zi) ∈ B(x̄, ε) and

〈 εv

‖v‖ ,
zi
ti
〉 ≤ ρ/2

d(expx̄(zi), x̄)
2

ti
.

By limiting, we deduce 〈v, w〉 ≤ 0, which completes the proof of (a).
Let us prove assertion (b). The set S is prox-regular at x̄; hence there exist ε > 0

and ρ > 0, such that B(x̄, ε) is convex and for every x ∈ S∩B(x̄, ε) and v ∈ NL
S (x)

with ‖v‖ < ε,

(3.5) 〈v, exp−1
x (x′)〉 ≤ ρ/2 d(x′, x)2, for every x′ ∈ S ∩B(x̄, ε).

This can be deduced from Theorem 3.5, Lemma 3.6 and the convexity property of
NP

S (x̄).
We turn to (c). It is easy to prove that TC

S (x̄) is a subset of TB
S (x̄). On the other

hand, part (a) and part (b) imply TB
S (x̄) ⊆ (NP

S (x̄))◦ = (NL
S (x̄))

◦ = (NC
S (x̄))◦ =

TC
S (x̄), as required.
Assertion (d) can be obtained from part (c) and the convexity property of TC

S (x̄).
�

3.2. Hypomonotone mappings and their connections with prox-regular
sets. In this subsection we recall the definitions of monotone and strongly mono-
tone mappings on convex subsets of Riemannian manifolds; for more details see [3].
Then, we define hypomonotone mappings on convex subsets of Riemannian man-
ifolds and find the relationship between monotone and hypomonotone mappings.
Furthermore, prox-regular sets are characterized by the hypomonotone truncated
limiting normal cone.

Definition 3.8. Let M be a Riemannian manifold. A mapping T : M ⇒ TM∗

with T (x) ⊂ TxM
∗ for every x ∈ M is said to be monotone on a convex subset U

of M if

〈v1, exp−1
x1

(x2)〉+ 〈v2, exp−1
x2

(x1)〉 ≤ 0,

provided that x1, x2 ∈ U , v1 ∈ T (x1) and v2 ∈ T (x2). Moreover, T is strongly
monotone on U if there exists σ > 0 such that

〈v1, exp−1
x1

(x2)〉+ 〈v2, exp−1
x2

(x1)〉 ≤ −σd(x1, x2)
2,

provided that x1, x2 ∈ U , v1 ∈ T (x1) and v2 ∈ T (x2).
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ON THE METRIC PROJECTION ONTO PROX-REGULAR SETS 239

Definition 3.9. Let M be a Riemannian manifold. A mapping T : M ⇒ TM∗

with T (x) ⊂ TxM
∗ for every x ∈ M is said to be hypomonotone on a convex subset

U of M if there exists σ > 0 such that

〈v1, exp−1
x1

(x2)〉+ 〈v2, exp−1
x2

(x1)〉 ≤ +σd(x1, x2)
2,

provided that x1, x2 ∈ U , v1 ∈ T (x1) and v2 ∈ T (x2).

Similar definitions hold for a set-valued mapping T defined from a Riemannian
manifold M to its tangent bundle TM .

Remark 2. Let U be an open convex subset of a Riemannian manifold M and
let y ∈ U be an arbitrary fixed point. The map d2(., y) : U → R is C1 and
grad( 12d

2(x, y)) = − exp−1
x (y), where grad denotes the gradient vector field. On

the other hand, − exp−1
x (y) = Lyx(exp

−1
y (x)); see [1]. Moreover, grad( 12d

2(x, y)) is
strongly monotone with σ = 1; see [7]. Hence

〈− exp−1
x1

(y), exp−1
x1

(x2)〉+ 〈− exp−1
x2

(y), exp−1
x2

(x1)〉 ≤ −d(x1, x2)
2.

Therefore, if T : M ⇒ TM with T (x) ⊂ TxM for every x ∈ M is σ−hypomonotone
on a convex subset U and y ∈ U , then

〈v1, exp−1
x1

(x2)〉+〈v2, exp−1
x2

(x1)〉 ≤ σ〈exp−1
x1

(y), exp−1
x1

(x2)〉+〈exp−1
x2

(y), exp−1
x2

(x1)〉,
which means x �→ T (x) + σLyx(exp

−1
y (x)) is monotone on U .

The next result provides a characterization for convexity in the case of a differ-
entiable function.

Lemma 3.10. Let U be a convex open subset of a Riemannian manifold M , and
let f : M → R be a differentiable function on U . Then f is convex on U if and
only if the vector field grad(f) is monotone on U .

Proof. See [7]. �

Let us define for r > 0 the mapping NL
S

r
: M ⇒ TM∗ by NL

S
r
(x) = NL

S (x) ∩
B(0x, r) if x ∈ S and NL

S
r
(x) = ∅ if x /∈ S. Note that B(0x, r) is the open ball in

TxM
∗ of center 0x and radius r.

The connection between a prox-regular subset S of a Riemannian manifold M
and the mapping NL

S
r
will now be established. The proof of it can be obtained

along the same lines as [18, Theorem 1.3 (g)],

Theorem 3.11. A closed subset S of a Riemannian manifold M is prox-regular at
x̄ ∈ S if and only if there exist a real number r > 0 and a convex neighborhood U
of x̄ such that NL

S
r
is hypomonotone on U .

3.3. Metric projection and distance function corresponding to the prox-
regular sets. Let M be a Riemannian manifold and S ⊂ M be a nonempty set.
Let

PS(q) = {p ∈ S : d(q, p) = dS(p)}
be the set of metric projection of the point q ∈ M to the set S. In this subsection
we establish our main results. We prove the existence and properties of metric
projection of prox-regular sets in Riemannian manifolds. Due to the theorem of
Hopf-Rinow, if M is a complete finite dimensional manifold, then any closed set
S ⊂ M is proximinal, i.e., PS(q) �= ∅ for all q ∈ M ; see [14, p. 108].
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240 S. HOSSEINI AND M. R. POURYAYEVALI

First we prove that for every prox-regular set in a Riemannian manifold M ,
there exists an open subset containing S on which the metric projection exists and
is continuous.

Theorem 3.12. Let S be a prox-regular subset of a Riemannian manifold M . Then
there exists an open set W containing S such that PS is a single-valued continuous
mapping on W .

Proof. For any q ∈ M , one can find the convex neighborhood B(q, rq) with compact
closure such that d(., q)2 is C∞ and strongly convex on B(q, rq); see [12, 23]. On the
other hand, according to Theorem 3.11, for every q ∈ S there exist a real number

r′q > 0 and a convex neighborhood Uq of q such that NL
S

r′q is hypomonotone on Uq.
Hence, there exist ρq > 0 and εq with 0 < εq < min{rq, r′q} such that

(3.6) 〈v1, exp−1
p1

(p2)〉+ 〈v2, exp−1
p2

(p1)〉 ≤ ρqd(p1, p2)
2,

provided that pi ∈ B(q, εq), vi ∈ NL
S (pi) and ‖vi‖ < εq, i = 1, 2. Let λq <

min{1, ρq}, and set

W :=
⋃

q∈S

B(q, λqεq/(2ρq)).

The set S is contained in the open set W , and for every p ∈ W there exists
q ∈ S such that p ∈ B(q, λqεq/(2ρq)) and dS(p) ≤ d(p, q) < λqεq/(2ρq). Moreover,
λqεq/(2ρq) ≤ εq ≤ rq, which implies that B(q, λqεq/(2ρq)) ⊂ B(q, rq). Since S
is closed and the closure of B(q, rq) is compact, there exists a point p′ ∈ S ∩
B(q, λqεq/(2ρq)) ⊂ S ∩ B(q, rq) such that dS(p) = d(p, p′). In particular dS(p) ≤
d(p, q) < λqεq/(2ρq). Hence there exists p′ ∈ S ∩ B(q, λqεq/(2ρq)) such that p′ ∈
PS(p).

It remains to show that PS(p) = {p′}. We claim that

{λ exp−1
p′ (p) : λ ≥ 0} ⊆ NP

S (p′).

Since p′ ∈ PS(p), it follows that for each s ∈ S, d(p′, p)2 ≤ d(p, s)2. Moreover, let γ
be the unique geodesic connecting p and p′. Now for q on γ close enough to p, we
define ψq : M → R by

ψq(s) = (d(q, s) + d(q, p))2,

which is C2 at p′. For s near p′, let η(t) = expp′(tv) be the unique geodesic
connecting p′ and s. Using Taylor’s Theorem, there exists q′ = expp′(t0v) such
that

0 ≤ d(p, s)2 − d(p′, p)2 ≤ ψq(s)− ψq(p
′)

≤ 〈Dψq(p
′), exp−1

p′ (s)〉

+
1

2
〈D2ψq(q

′)D expp′(t0v)(exp
−1
p′ (s)), D expp′(t0v)(exp

−1
p′ (s))〉

≤ 〈Dψq(p
′), exp−1

p′ (s)〉+
1

2
Cq,q′d(p

′, s)2

= 〈2d(p, p′)∂d
∂y

(q, p′), exp−1
p′ (s)〉+

1

2
Cq,q′d(p

′, s)2,
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where Cq,q′ is obtained as follows:

D2ψq(q
′) = 2(d(q, q′) + d(q, p))

∂2d

∂y2
(q, q′) + 2(

∂d

∂y
(q, q′))2

and

‖∂
2d

∂y2
(q, q′)‖ =

1

d(q, q′)
, ‖∂d

∂y
(q, q′)‖ = 1.

Hence

‖D2ψq(q
′)‖ ≤ 2

d(q, q′) + d(q, p)

d(q, q′)
+ 2 = Cq,q′ .

Also, by Gauss’s lemma [13, Proposition 3.2],

〈D expp′(t0v)(exp
−1
p′ (s)), D expp′(t0v)(exp

−1
p′ (s))〉 = ‖ exp−1

p′ (s)‖2 = d(p′, s)2.

By letting q go to p, 〈2d(p, p′) ∂d∂y (q, p′), exp
−1
p′ (s)〉+ 1

2Cq,q′d(p
′, s)2 tends to

〈2d(p, p′)∂d
∂y

(p, p′), exp−1
p′ (s)〉+ 2d(p′, s)2.

Therefore

〈exp−1
p′ (p), exp

−1
p′ (s)〉 ≤ d(p′, s)2, for s close enough to p′,

and the proof of the claim is complete.
We now show that PS(p) = {p′}. We proceed by contradiction: let p′′ be any

point of S satisfying d(p, p′′) = dS(p) which belongs toB(q, λqεq/(2ρq)) and p′ �= p′′.
Since the function d(., q)2 is C∞ and strongly convex on B(q, λqεq/(2ρq)), by (3.6),
the previous claim and Theorem 3.5, we deduce that

−ρqd(p
′′, p′)2 ≤ 〈−2ρq

λq
exp−1

p′ (p), exp
−1
p′ (p

′′)〉+ 〈−2ρq
λq

exp−1
p′′ (p), exp

−1
p′′ (p

′)〉

≤ −2
ρq
λq

d(p′′, p′)2,

which means λq ≥ 2, a contradiction.
Now we prove that PS is continuous on W . Suppose the sequence {pi} ⊂ W con-

verges to p0 ∈ W . One can find B(q, λqεq/(2ρq)) such that p0 ∈ B(q, λqεq/(2ρq)).
Hence except for a finite number of pi, the others are in B(q, λqεq/(2ρq)). Thus we
suppose that pi ∈ B(q, λqεq/(2ρq)) for all i = 1, 2, . . . . Moreover,

d(PS(pi), q) ≤ d(pi, q) + d(PS(pi), pi) ≤ 2d(pi, q) ≤ 2λqεq/(2ρq) ≤ rq.

Therefore PS(pi) ∈ B(q, rq) ∩ S, which has compact closure. Consequently, PS(pi)

has a convergent subsequence to some point p′ ∈ B(q, rq) ∩ S. Now d(PS(pi), pi) =
dS(pi) → dS(p0) = d(p′, p0), which implies that PS(p0) = p′ = limi PS(pi), and the
proof is complete. �

Recall that a complete simply connected Riemannian manifold of nonpositive
curvature is called a Hadamard manifold; for more details see [13].

Theorem 3.13. Let S be a prox-regular subset of a Hadamard manifold M . If q
is a point of the boundary S in M , and if λqεq/(2ρq) is as in the proof of Theo-
rem 3.12, then there is a positive constant C such that for any two points p1, p2 in
B(q, λqεq/(2ρq)) \ S,

d(PS(p1), PS(p2)) ≤ Cd(p1, p2).
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Proof. Let p1, p2 be arbitrary points in B(q, λqεq/(2ρq)) \ S. In order to prove
the theorem, we shall use Shapiro’s variational principle; see [20]. Consider the
optimization problems

(3.7) min
z∈S∩B(q,λqεq/(2ρq))

d(p1, z)
2 = min

v∈exp−1
q (S∩B(q,λqεq/(2ρq)))

d(p1, expq(v))
2

and

(3.8) min
z∈S∩B(q,λqεq/(2ρq))

d(p2, z)
2 = min

v∈exp−1
q (S∩B(q,λqεq/(2ρq)))

d(p2, expq(v))
2.

Let PS(pi) = p′i, i = 1, 2. Since M is Hadamard, then by [13, Theorem IX. 4.8],
for every z ∈ S ∩B(q, λqεq/(2ρq)),

(3.9) d(p1, z)
2 − d(p1, p

′
1)

2 ≥ −2〈exp−1
p′
1
(p1), exp

−1
p′
1
(z)〉+ d(p′1, z)

2.

From the prox-regularity property of S,

〈2ρq
λq

exp−1
p′
1
(p1), exp

−1
p′
1
(z)〉 ≤ 1

2
ρqd(p

′
1, z)

2.

Hence it follows from (3.9) that

d(p1, z)
2 − d(p1, p

′
1)

2 ≥ (−λq + 1)d(p′1, z)
2.

Without loss of generality we suppose that exp−1
q is C-Lipschitz on B(q, λqεq/(2ρq)).

Therefore, if expq(wi) = p′i, i = 1, 2 and expq(v) = z, then

d(p1, z)
2 − d(p1, p

′
1)

2 ≥ (−λq + 1)d(p′1, z)
2 ≥ 1

C2
(1− λq)d(w1, v)

2.

By Shapiro’s variational principle,

d(p′1, p
′
2) ≤ Cd(w1, w2) ≤ 2

C3

1− λq
d(p1, p2).

�

Theorem 3.14. Let S be a prox-regular subset of a Hadamard manifold M . Then
for every σ > 0 and q ∈ S, there is a convex neighborhood Uσ around q on which
the function d2S(.) + σd(., q)2 is convex.

Proof. We claim that for arbitrary points q1 and q2 in B(q, λqεq/(2ρq)), we have
that ∂P d

2
S(qi) �= ∅ for i = 1, 2. Otherwise, there exist q′1 and q′2 in B(q, λqεq/(2ρq))

such that for i = 1, 2, ∂P d
2
S(q

′
i) = ∅. By the density theorem [2, Theorem 3.2],

there are points p1 and p2 in B(q, λqεq/(2ρq)) such that for i = 1, 2, ∂P d
2
S(pi) �= ∅.

Then [2, Theorem 3.3] implies that d2S is differentiable at these points. Moreover,
PS(pi) = p′i, i = 1, 2. By [13, Theorem IX. 4. 8], Theorem 3.13 and Remark 2 one
can deduce

(
4C3

1− λq
− 2)(〈exp−1

p1
(q), exp−1

p1
(p2)〉+ 〈exp−1

p2
(q), exp−1

p2
(p1)〉)

≥ −2d(p1, p2)
2 + 4

C3

1− λq
d(p1, p2)

2

≥ −2d(p1, p2)
2 + 2d(p1, p2)d(p

′
1, p

′
2)

≥ −d(p1, p
′
1)

2 − d(p2, p
′
2)

2 − d(p1, p2)
2 − d(p1, p2)

2 + d(p′1, p2)
2 + d(p′2, p1)

2

≥ −2〈exp−1
p1

(p′1), exp
−1
p1

(p2)〉 − 2〈exp−1
p2

(p′2), exp
−1
p2

(p1)〉.
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On the basis of Lemma 3.10 we conclude that d2S + ( 2C3

1−λq
− 1)d(., q)2 is convex

on B(q, λqεq/(2ρq)). This shows our goal, and it also in turn implies that ∂P d
2
S is

nonempty-valued on B(q, λqεq/(2ρq)), which proves our claim. �

Now, we define the notion of locally Lipschitz vector fields on Riemannian man-
ifolds.

Definition 3.15. Let M be a Riemannian manifold. A mapping X : M → TM
satisfying Xy ∈ TyM for all y ∈ M is said to be a Lipschitz vector field of rank k
near a given point x ∈ M if for some ε > 0, we have

‖LyzX(y)−X(z)‖ ≤ kd(y, z) for all z, y ∈ B(x; ε),

where B(x; ε) is convex, and Lyz is the parallel transport along the unique geodesic
connecting z and y.

Note that if we consider the Riemannian metrics on M and TM , then the above
definition is equivalent to the usual definition of locally Lipschitz functions on metric
spaces; see [4, p. 241]. Any two Riemannian metrics, each of which is bounded
locally by a constant multiple of the other, give equivalent concepts of Lipschitz
continuity though not the same local Lipschitz constant.

Remark 3. By Theorem 3.14 we deduce that d2S is differentiable on the neigh-
borhood B(q, λqεq/(2ρq)) which is defined in the proof of Theorem 3.12. Also
[2, Theorem 3.3] implies that for every p1 ∈ B(q, λqεq/(2ρq)) with PS(p1) = p′1,

grad(d2S)(p1) = 2d(p1, p
′
1)

∂d
∂x (p1, q1), where q1 is on the unique geodesic connecting

p1 and p′1 and closed enough to p1. Indeed, X(p) = ∂d
∂x (p, qp) is the unit tangent to

the unique minimizing geodesic segment from p to PS(p), where qp is on the unique
geodesic connecting p and PS(p) and closed enough to p. Along the same lines as
[8, Proposition 4.1] one can prove that the vector field X is locally Lipschitz on
W \ S, where W and S are defined as in the proof of Theorem 3.12.

Theorem 3.16. Let S be a prox-regular subset of a Hadamard manifold M . Then
there exists an open set W containing S such that d2S is C1+ on W \ S; i.e., d2S
is differentiable on W \ S with the locally Lipschitz gradient vector field grad(d2S) :
W \ S → TM .

Proof. Consider the set B(q, λqεq/(2ρq)) which is defined in the proof of Theo-
rem 3.12. Let p1, p2 be arbitrary points of B(q, λqεq/(2ρq)). Assume that the
vector field X defined in Remark 3 is kq Lipschitz on B(q, λqεq/(2ρq)). Then with-
out loss of generality we suppose that d(p2, p

′
2) ≤ d(p1, p

′
1). Thus

‖Lp1p2
(2d(p1, p

′
1)
∂d

∂x
(p1, q1))− 2d(p2, p

′
2)
∂d

∂x
(p2, q2)‖

≤ 2d(p1, p
′
1)‖Lp1p2

(
∂d

∂x
(p1, q1))−

∂d

∂x
(p2, q2)‖+ 2‖d(p1, p′1)− d(p2, p

′
2)‖

≤ 2kqd(p1, p
′
1)d(p1, p2) + 2(d(p1, p

′
2)− d(p2, p

′
2))

≤ 2kqd(p1, p
′
1)d(p1, p2) + 2d(p1, p2) ≤ (

λqεqkq
ρq

+ 2)d(p1, p2),

which completes the proof. �
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