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SUMMARY

Sparse grids provide an efficient representation of discrete solutions of PDEs and are
mainly based on specific tensor products of one-dimensional hierarchical basis functions.
They easily allow for adaptive refinement and compression. We present special finite
difference operators on sparse grids that possess nearly the same properties as full grid
operators. Using this approach, partial differential equations of second order can be
discretized straightforwardly. We report on an adaptive finite difference research code
implementing this on sparse grids. It is structured in an object oriented way. It is
based on hash storage techniques as a new data structure for sparse grids. Due to the
direct access of arbitrary data traditional tree like structures can be avoided. The above
techniques are employed for the solution of parabolic problems. We present a simple
space-time discretization. Furthermore a time-stepping procedure for the solution of the
Navier Stokes equations in 3D is presented. Here we discretize by a projection method
and obtain Poisson problems and convection-diffusion problems.

SPARSE GRIDS

A detailed introduction to the field of sparse grids can be found in [BUN92, GRI91,
ZENO91]. Nevertheless, the most important aspects are described in what follows.

Let us consider the piecewise linear hierarchical basis in one dimension [FFAB09,Y S E86]
as a starting point for sparse grids. The generalization from one dimension to the d-
dimensional case can be done by a tensor product ansatz. Counting dimensions in the
corresponding subspace splitting of the resulting full grid discretization space in two di-
mensions with piecewise bilinear hierarchical basis functions, it follows that the number
of grid points in subspaces T}, ;, with iy + i, = c is 2°72. The contribution of subspaces
Til 2

far as the Ly- and the maximum norm are concerned, and of order O(27°) with respect

1,22
with 7; 4+ i3 = ¢ to the interpolant of a function u is of the same order O(27%) as



Table 1: comparison of sparse and full grids

property ‘ regular sparse grid ‘ full grid ‘
accuracy in L, O(h? - (log(h~H)2=1)) | O(R?)
accuracy in L O(R* - (log(h=H)1)) | O(R?)
accuracy in || -|la | O(R') O(hY)

# grid points O(N - (log(N)=1)) O(N?)
d=3,N=21 1.1-10° 1.1-10°
d=3,N=2% 3.3-10% 1.2-10'®

to the energy norm (of the Laplacian) if u fulfills some smoothness requirements, which

are 6‘221;2 € C(Q) in a classical setting (£ is the corresponding domain). Analogously, in
172

d dimension u has to fulfill -2 ¢ C(Q). For the proofs of this estimates see [BUN92].
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Considering costs versus accuracy it seems more reasonable to take a triangular scheme
of subspaces into account rather than a quadratic scheme. This triangular schema of
subspaces which can be found in Figure 1 (left side) defines sparse grids. A sparse grid
on level 5 can be found in Figure 1 (right side).
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Figure 1: Triangular scheme of subspaces (left) and sparse grid on level 5 (right).

Due to the construction by subspaces, adaptivity is provided in a natural way. The
great advantage of sparse grids compared to full grids is their substantially less number
of grid points for comparable interpolation errors. A comparison can be found in Table
1.

For further information on sparse grids we refer to [BUN92, BDZ96, BD97, GRI91,
GRI97, SCH98, ZEN91] and the references therein.



FINITE DIFFERENCES ON SPARSE GRIDS

Amongst others, discretizations of partial differential equations can be obtained using
finite elements and finite differences. The theory and application of finite element dis-
cretizations on sparse grids so far can be found in [BUN92, BUN96, DOR97, ZENO91]
and the references therein. Due to the hierarchical basis the resulting matrices, i.e. the
stiffness matrices and mass matrices, are not sparse. Hence, a naive application of the
matrices in a matrix vector multiplication can not be performed in O(n) operations where
n is the number of grid points. However, using a factorized representation of the finite
element matrices gives optimal complexity O(n), just as in the full grid case. Addition-
ally, multigrid methods have been studied, implemented and tested for finite elements on
sparse grids. In the case of finite elements the resulting matrices for constant coefficients
on sparse grids remain symmetric for symmetric operators. One drawback of the finite
element method is the difficult implementation already in two dimensions, that is a ma-
jor problem in three or even more dimensions for general differential operators involving
non-constant coefficient functions.

FINITE DIFFERENCE OPERATORS

The easier implementation of finite differences in arbitrary dimensions compared to the
implementation of finite elements is one motivation for the development of these operators.
Finite difference operators on sparse grids for first, second or higher derivatives can all
be obtained in the same way. As finite difference on full grids use nodal values, it seems
natural that the starting point for the sparse grid operators are also nodal values rather
than hierarchical values. If a discrete derivative in coordinate direction j € {1,...,d} has

to be computed, one has to perform 3 steps, cf. [GRI97, SCH98] (I = {1,2,...,d}):

1. apply a transformation Hjgj;y from the nodal basis to the hierarchical basis in each
coordinate direction except j

2. apply the finite difference stencil Dj in coordinate direction j (the stencils are just
the same as in the well known full grid case) according to the local mesh parameter
on the respective one-dimensional grid lines

3. apply a transformation HI_{lj} from the hierarchical basis back to the nodal basis in

each coordinate direction except j

Using this scheme, the d-dimensional discrete Laplace reads
d
-1
A= Z HiyDjjHigy
7=1

and a convective part of an elliptic partial differential equation of second order can be
written as

d
bV =3 biH; DiHigy.
7=1



Here, D;; denotes a one-dimensional stencil for second derivatives, e.g. h;’[1 —2 1], and
D, represents a stencil for first derivatives, e.g. backward, forward, upwind or centered
differences. All of these stencils have to be applied according to the local mesh parameters
hii. As in the finite element case, the corresponding matrices are not sparse. But in
contrast to the finite element case, we obtain non-symmetric discretization matrices even
for non-self adjoint operators. Due to the lack of symmetry we use BICGSTAB as iterative
solver for the arising linear systems of equations where we use the inverse of the diagonal of
the matrices as preconditioner. Although the discretization matrices are not symmetric,
the eigenvalues remain real and positive. Furthermore, the discretization matrices for
the Laplace are P-matrices [H.J91], i.e. all k-by-k principal minors of the discretization
matrices are positive for 1 < k& < n where n denotes the number of grid points. Note
that, in the case of full grids, this approach drops down to well known finite difference

stencils [SC H98|.

CONSISTENCY AND STABILITY

Finite differences on sparse grids possess the same order of consistency as on full grids.
Here, the order of consistency in the sparse grid case in measured according to the finest
occurring mesh parameter which is on the boundary. The proofs for these assertions are

based on Taylor series expansions and can be found in [SCH98]. The assumptions that
have to be made are u € C421(Q).

Table 2: Order of consistency for sparse grid finite differences.

‘ operator ‘ order of consistency
0%/0x* | O(h?) (second order)
A O(h?) (second order)
0% /0xdy | O(h) (first order)
0/0x O(h) (first order: forward/backward/upwind difference)
/0% O(h?

h*) (second order: centered difference)

As consistency and stability lead to convergence, stability of the above approach is of
major interest. Therefore, we computed the eigenvalues of the Laplace in two dimensions
numerically on successive levels of discretization. As it can be seen in Table 3, the smallest
eigenvalue tends to 272 which is the smallest eigenvalues of the continuous operator, and
the largest eigenvalue as well as the norm of the matrices increases by a factor of 4 which
indicates that the condition number is proportional to A~?. Preconditioning with the
diagonal of the discretization matrices leads to condition numbers that are proportional
to h~!. Note that, preconditioning the Laplace on full grids with the diagonal of the
discretization matrix is useless as the diagonal is just a scaled identity.



Table 3: Extreme eigenvalues and condition numbers x of the sparse grid finite difference
Laplace operator in 2 dimensions.

‘ Level ‘ Amin ‘ Amaz ‘ K ‘ quotient ‘
1 18.387503 69.612496 3.79 | —
2 19.273832 263.300596 13.66 | 3.61
3 19.587081 | 1031.815928 52.67 | 3.86
4 19.691734 | 4103.953343 | 208.43 | 3.96
5 19.724926 | 16391.988294 | 831.24 | 3.99
6 19.735029 | 65543.997071 | 3320.36 | 3.99

DESIGN OF A SPARSE GRID CODE

The goal for the development of our finite difference sparse grid code is to be able to
test and to verify different types of discretizations on sparse grids and to tackle different
types of partial differential equations. Hence a flexible and modular design is a must.

Techniques such as abstract data types and object oriented programming provide
such a flexibility, see [ABL97]. However, they often lead to slow inefficient code due to
an over-use of design features. For example, overloading the arithmetic operators ‘4’ and
“*? for vectors in C++ usually is less efficient than proving directly a saxpy operation for
expressions of av + W type. Performing tree traversal for the operations above is even
slower. Hence, splitting a large code into many small functions and loops may lead to
inefficiencies, which cannot be resolved by an optimizing compiler.
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Figure 2: Hierarchy of abstractions of a sparse grid code. General abstractions (left) and
differential operators (right).

We have based our code on several fundamental abstractions, which are well sepa-
rated both in functionality and in implementation. This guarantees that we do not loose
efficiency in a substantial way due to this separation. We have identified the following
building blocks, see figure 2 (left). They are ordered from low level, computationally



expensive and efficient, to high level routines, where efficiency is achieved through call
of some efficient subroutines. Similar abstractions can be found in other object oriented
software packages for partial differetial equatins such as Diffpack, see [BL97].

e grid: geometric description of an adaptively refined sparse grid and provides i/o,
refinement and addressing, or e.g. a full grid for debugging purposes

e vector: a large container for real numbers, including BLAS level 1

e field: a (solution) function on a sparse grid. It provides a mapping between a grid
and a vector and interprets the data as (collocated) scalar or vector field

e operator: the finite difference operators and operates on grids, see figure 2 (right)

e solver: different iterative (Krylov) solvers, uses a differential operator

HASH STORAGE TECHNIQUES

Previous implementations of adaptive sparse grid were based on tree data structures,
see [ZENO91]. Each node of the grid is represented by some data, such as a solution
value and several auxiliary values, and several pointers to other nodes. At least two of
the pointers point to hierarchical sons of the node in one direction. Other pointers link
the node to sons in other directions and to the father node. All operations, including
all numerical operations such as saxpy operations were implemented as tree traversals,
which is complicated to develop, error prone, and slow compared to vector operations, see
above.

We propose a different storage technique here, which discards trees and pointers and
is based on hash addressing instead, see [W.595, SCH98|. Initially our motivation to
substitute the tree was a shortage of development and coding time. The coordinates of a
node often can be computed easily, they are coded in a specific way and form a key for a
hash table. Hash storage is based on a mapping of the data to a vector (table) by a hash
function, see figure 3. Given a cheap, deterministic and optimal hash function, each piece
of data can be retrieved in constant time by its key. However, real hash functions lead to
collisions in the vector, which can be resolved e.g. by chaining. In a statistical setting,
the average access time in the hash table is still constant time O(1).

The coding and hash table lookup can be separated completely from the remaining
code. The coordinates of any of the 2d son or d father nodes in all directions of a sparse
grid can be computed by simple integer operations. A specific son node may or may not
exist, a fact which is reported from the hash table lookup operation. We can discard the
necessary pointers of the tree, which saves both memory and administration of the tree.
In an adaptively refined sparse grid, the nearest neighbor nodes cannot be computed like
for a regular sparse grid. The direct lookup is substituted by a small search procedure,
looking for the neighbor in the hash table. This has no impact on the overall complexity
of a finite difference operator, however.

We did not specify the hash function so far. Several functions based on pseudo-
random numbers experimentally perform very well. A special choice can be used for the



Figure 3: Hash table, collision resolution with chaining.

parallelization of a hash based code such as [IW.595, PB96]. Space-filling curves can be
used for dynamically partitioning the nodes onto a parallel computer and as a hash key
on the local processor, see [GZ98].

APPLICATIONS TO SPACE-TIME DISCRETIZATIONS

Let us consider the numerical solution of a parabolic boundary-initial-value problem.
Standard algorithms separate the problem into a time and a space discretization. A
solution at a timeslice t = ¢; is computed from one or several previous time steps ;, 7 < 1.
An implicit Euler discretization in time leads to an elliptic boundary-value problem in
space for each time step t;.

We propose a different approach here. We rewrite the time dependent problem, e.g.
a heat equation in the domain Q C R?

u = Au (1)

into a boundary value problem in the domain [tsiars, tena) X € C R of one dimension
higher:

a d 62

- _ - =0 2

=1

A first order upwind discretization of % in space-time now is equivalent to the previous
implicit Euler discretization in time. The numerical approximation is not affected. A
space-time discretization (equation 2) implies the storage of the solution at all time slices
at once, a d+ 1 dimensional manifold, which is more expensive than the storage of a small
number of time slices in the time-stepping algorithm (equation 1). Hence Space-time
discretizations are used for special purposes only, see [V AN93|.

However, the storage of a d + 1 dimensional space-time manifold in sparse grids can
be almost as expensive as the storage of a d dimensional space manifold. The number of
nodes of a regular space-time discretization is a factor of |logh| higher than of a single
space discretization. In the case of a specific time-periodic problem, where the complete



history in ¢ has to be stored anyway, sparse grids have been applied successfully, see
[BALY4|.

The discretization of the space-time operator (equation 2) with finite differences on a
sparse grid follows the three-step recipe given in the first chapter. We use a first order
upwind discretization in z( direction and central differences in the remaining directions
T1,...,xq, see figure 4. The standard linear hierarchical basis transform H is used in
space along with the implementation of boundary conditions. In time direction zy we
use a hierarchical basis transform of piecewise constant functions centered towards tepnq.
This corresponds to the first order time discretization and is based on the stencil [0 1 1]
compared to the linear hierarchical basis [% 1 %] The solution at t = tga¢ 1s Implemented
as a Dirichlet condition, while at ¢ = t¢,q there is no boundary condition present. Higher
order one-sided and central finite differences have been tested, too.

Figure 4: Transient heat equation with homogeneous Dirichlet conditions, discretized in
space-time with sparse grids. Initial conditions piecewise constant. 2D (left) and clip
planes through a 3D cube at tga¢ = 0 and tenq = .1 (middle and right).

As a consequence of the sparse grid space-time discretization it is easy to employ
adaptive refinement for time dependent problems. A simple error indicator in R™! of
scaled hierarchical surplus type gives rise to a local refinement in space and at the same
time to a local time-step in the vicinity of the spatial refinement. Compared to standard
procedures with separated space refinement and a global, adaptive time-step control, this
is conceptually very simple. Furthermore a consistent local time-stepping is achieved.

APPLICATIONS TO NAVIER-STOKES EQUATIONS

We now want to apply the finite difference operators on sparse grids to the unsteady
Navier Stokes equations that describe the laminar flow of incompressible and viscous
fluids. Here, the equations of interest are

?;tl + (u-grad)u + grad p = Re 'Au+(1-p3T)g (3)
diva = 0 (4)
6T 1



together with adequate boundary conditions. Here, u, T, p, g, Re and Pr denote the veloc-
ities, temperature, pressure, external forces, Reynolds number and the Prandtl number,
respectively. The coupling of fluid flow and temperature is achieved by the Boussinesq
approach. We discretize equations (3)-(5) using a pressure linked method comparable to
the SIMPLE method. Here, we solve a Laplace equation with Dirichlet boundary con-
ditions for the pressure where we take the tangential components on the boundary into
account to obtain these boundary conditions. A detailed description of this method can
be found in [GREST].

As test cases for our method we consider problems arising in simulating CVD (chem-
ical vapour deposition) phenomena. In this test case fluid is flowing through a CVD
reactor while the apparatus is heated from below. The heat source is centered at (i, %, 0)
of the computational domain Q = [0,1]? and diminishes exponentially on the boundary. A
numerical difficulty lies in the rotating susceptor at the bottom of the reactor. Obviously,
the rotation has influence both on temperature and velocities. Hence, it is reasonable to
employ adaptive refinement to capture the critical criteria (e.g. jumps in the boundary
conditions for the velocities) of the quantities temperature and velocities. The approx-
imate geometry of the reactor can be seen in Figure 5. The marked box that contains
the susceptor (and also the heat source) is the domain of our simulations. On the right
hand side of this figure an associated grid resolving susceptor and heat source can be ob-
tained. Computations are carried out for the moderate Reynolds number Re = 1. Note
that, small Reynolds numbers are realistic for the flow in such a reactor. The impact of
the rotation can be obtained in Figure 6. On the left side of this figure a temperature
distribution in the clip plane indicated in Figure 5 can be seen. In the middle and on
the right side the figure shows the velocity in direction of the flow. Due to the rotation
of the susceptor we obtain a non-symmetric temperature distribution. Furthermore, the
velocity of the fluid above the susceptor reflects the rotation of the susceptor.

outflow

rotating susceptor .
clip plane (x,y,1/4)

Figure 5: Approximate geometry of the reactor and domain of simulation (marked box).

Figure 6: temperature distribution in the clip plane (left) and velocity component in
direction of the flow (middle and right; fluid is flowing from front left to backward right)



CONCLUSIONS

In this paper we have presented several concepts for the solution of partial differential
equations: For the discretization of PDEs we have discussed the well known sparse grids
and a novel discretization scheme on sparse grids, based on the finite differences, including
its properties. For the discretization of time dependent problems, we have introduced

sparse grids discretizations in space-time domain. Furthermore a time stepping projection

method for incompressible Navier Stokes equations has been presented.

For the implementation of such sparse grid methods, we have discussed some software
concepts. This included an object oriented layout of the basic ingredients of such a code
for a highly flexible and modular and still efficient code development. Furthermore an
alternative storage technique based on hash tables for adaptive sparse grids has been dis-

cussed, which showed several advantages such as simplicity and low memory consumption.
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