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SUMMARY

A parallel version of an adaptive multigrid solver for elliptic partial differential equa-
tions is described. It operates on a finite difference discretization on quad-tree and oct-tree
meshes, which are obtained by adaptive mesh refinement. A fast parallel load balancing
strategy for the parallel multigrid equation solver is proposed that is defined by a space-
filling Hilbert curve and is applicable to arbitrary shaped domains. Some numerical
experiments demonstrate the parallel efficiency and scalability of the approach.

AN ADAPTIVE MULTIGRID SOLVER

Our goal is to solve an elliptic partial differential equation as fast as possible. We
consider a multigrid preconditioner, adaptive grid refinement and their efficient paral-
lelization. We have to develop a parallel multigrid code that is almost identical to the
sequential implementation. The computational workload has to be distributed into simi-
lar sized partitions and, at the same time, the communication between the processors has
to be small. The underlying computer model takes into account the local processor exe-
cution time and the communication time. The first term is proportional to the number of
operations and the second one depends on the amount of data to be transferred between
Processors.

The PDE is discretized by finite differences on a l-irregular quad-tree or oct-tree grid.
We set up the operator as a set of difference stencils from one node to its neighboring
nodes in the grid, which can be easily determined: Given a node, its neighbors can be
only on a limited number of levels, or one level up or down. The distance to the neighbor
is determined by the refinement level they share.

So pure geometric information is sufficient to apply the finite difference operator to
some vector. Hence we avoid the storage of the stiffness matrix or any related informa-
tion. For the iterative solution of the equation system, we have to implement matrix
multiplication, which is to apply the operator to a given vector.



We use an additive version of the multigrid method for the solution of the equation
system, i.e. the so called BPX preconditioner [7]. This requires an outer Krylov iterative
solver. The BPX preconditioner has the advantage of an optimal O(1) condition number
and an implementation of order O(n), which is optimal, even in the presence of degenerate
grids. Furthermore, this additive version of multigrid is also easier to parallelize than
multiplicative multigrid versions.

The straightforward implementation is similar to the implementation of a multigrid V-
cycle. However, the implementation with optimal order is similar to the hierarchical basis
transformation and requires one auxiliary vector. Two loops over all nodes are necessary,
one for the restriction operation and one for the prolongation operation. They can be
both implemented as a tree traversal. However, by iterating over the nodes in the right
order, two ordinary loops over all nodes are sufficient, one forward and one backward.

A parallel version of multiplicative multigrid usually is based on a partition of all
nested grids. The domain ) is decomposed into several sub-domains );, which induces
partitions of all grids. Each processor holds a fraction of each grid in such a way that these
fractions of each grid form a nested sequence. Hence each operation on a specific level is
partitioned and mapped to all processors. Furthermore the communication during grid
transfer operations is small because of nested sequences on a processor. This means that
one has to treat global problems on each level, which are partitioned to all processors. The
intra-grid communication has to be small, that is the number of nodes on the boundary
of the partition should be small. Furthermore the amount of work on coarse grid levels
usually is small and each processor does not compute much. There are several strategies
to deal with the coarse grid problem in general, such as to centralize the computation on
a master processor, to perform identical computations on all processors or to modify the
coarse grid correction step.

A static partition of the domain into strips or squares can be used for uniform grids
and has been used for the first parallel multigrid implementations [14, 8], see also the
survey [18]. In contrast to the geometry oriented parallelization of multiplicative multigrid
methods, the additive multigrid version or additive multilevel preconditioners can be
parallelized in a more flexible way. The overall workload has to be partitioned, but we do
not have to consider individual levels. Here, also the communication takes place in a single
step for all nodes, which are located on the boundary of at least one grid of the nested
sequence. The multilevel BPX preconditioner for a uniform grid has been parallelized in
[4, 31]. These approaches can easily be generalized to block-structured grids.

THE LOAD-BALANCING PROBLEM

Parallel multigrid methods on a sequence of adaptively refined grids require some
grid partitioning algorithms. The grid partition problem can be equivalently formulated
as a graph partitioning problem. However, the general graph partitioning problem is
NP-hard. Even the problem to find asymptotically optimal partitions for unstructured
grids is NP-hard [9]. Several heuristic algorithms have been developed in the area of
parallel computing: There are bisection algorithms based on the coordinates of nodes and
elements and there are many algorithms based on the graph of the stiffness matrix, such



as recursive spectral bisection, and multilevel versions of other heuristics. Some PDE
codes also use data diffusion [28] or some specific heuristics [3, 5, 2]. For a survey on grid
partitioning methods we refer to [24].

Graph partitioning can be expensive. However, in the framework of adaptive, element-
wise refinement, partitions and mappings have to be computed quickly and during run-
time. On a shared memory parallel computer, the serial representation of the grid hi-
erarchy in memory and coloring of the elements along with dynamic scheduling of lists
of elements can be used. This has been proposed for a code based on triangles and the
additive hierarchical bases preconditioner [17].

On a distributed memory computer however, the grid hierarchy has to be partitioned
and maintained, which requires a substantial amount of bookkeeping. In [10] a multi-
plicative multigrid method or a finite volume discretization on a grid with quadrilaterals
and hanging nodes is proposed. The elements are partitioned by a hierarchical recursive
coordinate bisection. Test indicated that the repartitioning of coarser levels, when new
elements were created, did not pay off. Adaptive conforming grids consisting of triangles,
which are refined by a bisection strategy, were employed in the parallel multigrid codes
of [2, 28, 19]. Here, different repartitioning strategies for refined grids were used.

The key point of any dynamic data partition method is efficiency. We look for a cheap,
linear time heuristic for the solution of the partition problem. Furthermore the heuristic
should parallelize well. This is why we look for even cheaper partition methods. They
are provided by the concept of space-filling curves.

First we have to define space-filling curves. A curve is space-filling if and only if the
image of the mapping

f o [0,1] =1 ~ Q:=10,1)?, f continuous and surjective

does have a classical positive d-dimensional measure. One of the oldest and most promi-
nent space-filling curve, the Hilbert curve can be defined geometrically [16], see also [26].
If the interval I can be mapped to @ by a space-filling curve, then this must be true also
for the mapping of four quarters of I to the four quadrants of @), see Figure 1. Iterating
this sub-division process, while maintaining the neighborhood relationships between the
intervals leads to the Hilbert curve in the limit case. The mapping is defined by the
recursive sub-division of the interval I and the square ().
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Figure 1: Construction of a Hilbert space-filling curve. The open and the closed curve.

Often some curves as intermediate results of iterative construction procedure are more
interesting than the final Hilbert curve itself. The construction begins with a generator,
which defines the order in which the four quadrants are visited. The generator is applied
in every quadrant and their sub-quadrants. By afine mappings and connections between
the loose ends of the pieces of curves, the Hilbert curve is obtained.



Algorithmically, the Hilbert curve mapping of a point ¢ € [0, 1] can be expressed as
follows. We assume that the number ¢ is given in quaternary representation as 04.¢1¢2¢s . . ..

0
$(04.q1G2q3Ga . ..) = Hg 0 Hyy 0 Hyy 0 Hy, - - <0>

with afine mappings Ho, Hi, Ha, Hs defined as

w(y) = (g 0)()
m(y) = (0 )(5)
() = (0 ) () (

H?’(i) - (—f/2 _B/Q <§>+(1}2>

The related mapping of the discrete Hilbert curve can be obtained by truncation.
Given the number ¢ = 04.¢1G2 . . . ¢, the corresponding position on the Hilbert curve of
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fineness 4" can be computed by

0
$n(04.q1G2 .. . qn) = Hg 0 Hgy0...0H,, (0) :

The discrete Hilbert curve mapping s, can easily be inverted. We will use s;! : Q — [0, 1]
for data distribution. Note that the continuous Hilbert curve s would require further
technical modifications in order to be invertible, see [26].

There are basically two different Hilbert curves for the square, modulo symmetries,
see Figure 1. An open and a closed space-filling curve can be constructed by the Hilbert
curve generator maintaining both neighborhood relations and the sub-division procedure.
The resulting curve is indeed continuous and space-filling. Although each curve of the
iterative construction is injective and does not cross itself, the resulting Hilbert curve is
not injective. This can be demonstrated easily by looking at the point (1/2,1/2) € @Q,
which is contained in the image of all four quadrants. Hence several points on I are
mapped to this point of (). In three dimensions, there are 1536 versions of Hilbert curves
for the unit cube [1].

How can space-filling curves contribute to the efficient parallelization of the introduced
applications? The basic idea is to map the nodes or entities in space to points on one
iterate of a space-filling curve. The points can be mapped to the unit interval by the
inverse mapping of the space-filling. The points, which now lay on the unit interval,
can be sorted. The points can be partitioned and the sets of points can be mapped to
processors, which defines a partition of the original problem in space. The partition of the
volume R? induced by the space-filling curve still gives perfect load-balance. However,
the separators usually are larger than the optimal separators. As a technical detail, we
consider the partition and mapping of nodes of the grid and we choose a space-filling curve
which is aligned to the grids. Hence a sufficiently fine, finite representation of the space-
filling curve contains all nodes and covers a larger domain than the domain of interest
Q. Partitioning by space-filling curves has been employed for finite element computations
in [21, 20] and has been compared to other heuristics in [23]. The main advantage of
space-filling curves in this context is their simplicity.



Figure 2: Mapping a 2D adapted grid to a space-filling curve (left) and mapping points
on a space filling curve to a parallel processor (right).

We have to compute the separators such that the partitions contains the same number
of nodes. This can be accomplished on a list of nodes sorted by their position on the space-
filling curve f~!(z;). The list is cut into equal-sized pieces and each piece is mapped to one
processor. Hence the partition of nodes can be done with an ordinary sorting algorithm.
Given a set of nodes z; with their keys f~'(z;), we first create a sorted list of keys.
However, we need to perform the partition algorithm on a parallel computer. Given a set
of nodes with their keys, which are distributed over the processors, we look for a parallel
sort algorithm, which results in a partition where each partition resides on the appropriate
processor. There is no need to gather all keys on a master processor, but a pure scalable
parallel algorithm performs better with respect to communication volume, memory usage
and scalability. Currently we employ single step radix sort, where the previous separators
serve as an initial guess for the sorting. For uniform grid refinement f.e., two steps of local
neighbor communication are required only.

KEY-BASED ADDRESSING

Instead of linked lists or trees, we propose to use hash storage techniques. First we
describe a key based addressing scheme. The entity (a node) is stored in an abstract vector,
where it can be retrieved by its key. Furthermore it is possible to decide, whether a given
key is stored in the table or not, and it is possible to loop over all keys stored in the vector.
In order to reduce the amount of storage of the grid, we omit any pointers and use keys
instead. For a (hyper-) cube shaped domain © = [0, 1]¢, we can use the coordinates of a



node for addressing purposes. The coordinates (and the keys) of hierarchical son nodes
and father nodes can be computed from the node’s coordinates easily. The computation
of neighbor nodes requires special care, because it 1s not immediately clear, where to look
for the node. Given a one-irregular grid with hanging nodes, for example, a neighbor
node can be located in the distance of i or 2h from the node with a local step-size h.
In the worst case this results in two vector lookup operations, one in distance h along a
coordinate direction and, if it was unsuccessful, one lookup in distance 2h, see [12]. Similar
key based addressing schemes can be obtained for other grid refinement procedures and
for different domains, see [28, 25].

Key based addressing does simplify the implementation of a sequential, adaptive code.
Now, we generalize the concept of key addressing and hash tables to the parallel case.
The idea is to store the data in a hash table located on the local processor. However,
we use global keys, so a ghost copy of the node may also reside in the hash table of a
neighbor processor. Furthermore we base the code on space-filling curve partitions of the
previous section. The position of a node on the space-filling curve, along with the known
partition, defines the home processor of a node. Given a node on a processor, it is easy
to determine to which processor the node belongs to. If a node occurs, which does not
belong to the processor, it must be a ghost copy, and it is computable where to find its
original.

The next idea is to combine the position on the space-filling curve with the hash key
[29, 30, 22]. The computation of the position on the curve can be computed for any
given coordinate tuple. It is a unique mapping [0, 1]¢ — [0, 1] similar to mapping required
for hash keys. The position can be used as a key. Furthermore, for the construction of
the hash table, we need a hash function. This can be any mapping [0,1] — [0, m] with
a large integer number m, preferably prime. Many cheap functions related to pseudo-
random numbers will do here. Modifications of the hash function can improve the cash
performance of the code: Space-filling curves introduce locality in the key addressing
scheme, which is used for the parallelization of the code. Exploiting the data locality
once again on the local processor, one can optimize the usage of secondary disk storage
and of the memory hierarchy of cashes, which is difficult otherwise [11].

This framework for the parallelization of adaptive codes originally has been invented
for particle methods [29] and has been generalized to programming environments for some
grand challenge PDE projects [22]. Multigrid methods have been considered in [12, 13].

NUMERICAL EXPERIMENTS

As test cases for our approach, we consider the Poisson equation and a problem of
linear elasticity, the Lamé equation in the displacement approach. We use a finite differ-
ence discretization, where the degrees of freedom are associated with the nodes, and the
differential operator is defined o the edges connecting the nodes. In a similar fashion the
additive multigrid can be defined.

All numbers reported are scaled CPU times measured on a Cray T3E parallel computer
with 600MHz Alpha processors. We use the portable message passing MPI programming
interface and its intrinsic timing routines.



We consider adaptively refined grids of the unit square and the unit cube. The grids
are refined towards the corner 6, see Figure 3. Tables 1 and 2 depict times in the adaptive
grid refinement case of the Poisson equation. These times give the wall clock times for
the solution of the equation system, on different levels of adaptive grids and on differ-
ent numbers of processors. We assume a constant number of iterations within a nested
iteration.

time processors

nodes 1 4 16 64 128 256
1089 | 5.08 1.27 0.72 0.64 0.84 1.30
1662 | 5.85 2.01 0.97 0.72 0.86 1.33
2745 | 10.7 3.26 1.37 0.85 0.94 1.38
4834 1 20.3 5.84 2.01 1.08 1.08 1.46
8915 | 39.8 10.9 3.38 1.42 1.26 1.56

16948 | 78.5 39.7 5.68 2.08 1.66 1.78

32788 | 157 77.7 10.7 3.34 2.30 2.14

64251 20.7 5.97 3.62 2.80
126810 10.9 6.14 4.12
251468 11.2 6.64
500135 21.2 11.7
996531 41.0 21.8

1988043 80.6 41.4

Table 1: Adaptive refinement example, two-dimensional Poisson problem, timing, Cray

T3e-1200.

time processors

nodes 1 4 16 64 128 256
35937 | 291 85.6 29.6 11.2 7.61 5.94
50904 | 423 129 41.0 14.8 10.1 7.17
89076 | 405 236 71.2 24.6 14.6 9.98

189581 154 49.7 29.2 17.2
460421 109 61.1 35.6
1201650 142 77.2
3251102 345 188

Table 2: Adaptive refinement example, three-dimensional Poisson problem, timing, Cray

T3e-1200.

We obtain a scaling of about a factor 2 from one level to the next finer level, which
means 2 times more unknowns on the next finer level. Increasing the number of processors
speeds up the computation accordingly. Again we observe scalability of the algorithm.
In order to use all processor efficiently, the grid has to be fine enough, i.e it has to have
more than 10°-10° unknowns.

As a second test case for our approach, we consider the linear elasticity problem. We
consider the Lamé equation [6] in the displacement formulation, as a linear three dimen-



Figure 3: A sequence of adaptively refined grids mapped to 8 processors, partition is color

coded.

sional problem. The body under a different load fis considered such that singularities
occur. Here adaptive refinement is used to resolve the singularities.

time Processors
nodes dof 1 4 16 64 128 256 512 768 1024
35937 107811 | 162 34.1 9.11 2.23 1.23 0.75 0.55 0.56 0.52
109873 329619 | 435 108 29.6 7.20 3.57 1.87 1.13 0.91 0.80

410546 | 1231638 114 28.6 142 7.02 3.51 248 1.94
1857030 | 5571090 133 67.1 333 16.5 11.0
9619175 | 28857525 351

Table 3: Adaptive refinement example, three-dimensional linear Elasticity problem, tim-

ing, Cray T3e-1200.

Also for Lamé’s equation, principally the same behavior of our approach as for the
Poisson problem can be seen. Table 3 show that our method scales well. Note that the
parallel efficiency is even higher than for the Poisson problem. This is due to the higher
amount of work associated with each node, while the expenses associated with the grid
stay the same. In the elasticity case, there are three degrees of freedom located at each
node.

GENERAL DOMAINS

The treatment of general domains can be done in several ways. The unit square or
cube can be mapped to a curved domain by a differentiable mapping function which leads
to a variable coefficient problem, several domains can be joined together in an overlapping
or non-overlapping way which leads in a natural way to domain decomposition solvers, or
the domain can be embedded into the square/ cube with a special type of discretization.



Figure 4: Adaptively refined grid of a 2D and a 3D torus with a Shortley-Weller type of
boundary approximation.

We choose the last version: The domain is enclosed by a cube Q C [0,1]¢ and all nodes
z € [0,1]7\ Q) are considered as boundary nodes. Furthermore, the finite difference
stencils are adapted for nodes in the vicinity of the boundary 912, that is all nodes whose
difference stencil crosses the boundary. The step size h is reduced to the actual distance
to the boundary, see [27, 15]. Furthermore, adaptive grid refinement is employed in the
vicinity of the boundary to increase the resolution of the boundary, as can be seen in
Figure 4. We also present the space-filling curve partitions of such grids in Figures 3 and
5. Some difficulties related to this approach are the symmetry of the discrete operator
and the treatment of certain types of Neumann and Robin boundary conditions in a
matrix-free implementation.

Figure 5: Space-filling curve partitions of grids of a 2D and a 3D torus for eight processors.

CONCLUSION



In this paper we gave a survey of the basic ingredients of an efficient solver for self-
adjoint elliptic PDEs, i.e. multilevel solvers, adaptive grid refinement and parallelization.
We focused on the interplay between the these ingredients and tried to illustrate how the
they can be glued together into an adaptive parallel multilevel method. Here we proposed
the application of hash storage techniques for data management and the use of space-filling
curves for load balancing in the parallel version of the algorithms and presented a version
of a parallel adaptive multilevel method based on these approaches.

Note finally that load balancing for adaptive multilevel solvers with space filling curves
can be obtained (after slight modifications) in an analogous way and with analogous results
also for the case of general unstructured grids. This is actual work in progress.
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