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Abstract

In this paper, we describe several methods for the valuation of performance-depen-
dent options. Thereby, we use a multidimensional Black-Scholes model for the
temporal development of the asset prices. The martingale approach then yields
the fair price as a multidimensional integral whose dimension is the number of
stochastic processes in the model. The integrand is typically discontinuous, though,
which makes accurate solutions difficult to achieve by numerical approaches. How-
ever, using tools from computational geometry we are able to derive a pricing
formula which only involves the evaluation of smooth multivariate normal distri-
butions. This way, performance-dependent options can efficiently be priced even
for high-dimensional problems as it is shown by numerical results.
Keywords: option pricing, multivariate integration, hyperplane arrangements

1 Introduction

Performance-dependent options are financial derivatives whose payoff depends on
the performance of one asset in comparison to a set of benchmark assets. Here, we
assume that the performance of an asset is determined by the relative increase of
the asset price over the considered period of time. The performance of the asset is
then compared to the performances of a set of benchmark assets. For each possible
outcome of this comparison, a different payoff of the derivative can be realized.

We use a multidimensional Black-Scholes model, see, e.g., Karatzas [1] for the
temporal development of all asset prices required for the performance ranking. The
martingale approach then yields a fair option price as a multidimensional integral
whose dimension is the number of stochastic processes used in the model. In the
so-called full model, the number of processes equals the number of assets. In the
reduced model, the number of processes can be smaller. Unfortunately, in either



case there is no direct closed-form solution for these integrals. Moreover, the inte-
grands are typically discontinuous which makes accurate numerical solutions dif-
ficult to achieve.

The main contribution of this paper is the derivation of closed-form solutions
to these integration problems. For the reduced model, two novel tools from com-
putational geometry are used. These tools are a fast enumeration method for the
cells of a hyperplane arrangement and an algorithm for its orthant decomposition.
The resulting closed-form solutions only involve the evaluation of smooth mul-
tivariate normal distributions which can be efficiently computed using numerical
integration schemes which we illustrate in various numerical results.

2 Performance-dependent options

We assume that there aren assets involved in total. The considered asset gets
assigned label1 and then − 1 benchmark assets are labeled from2 to n. The
price of thei-th asset varying with timet is denoted bySi(t), 1 ≤ i ≤ n.
All stock prices at the end of the time periodT are collected in the vectorS =
(S1(T ), . . . , Sn(T )).

2.1 Payoff profile

First, we need to define the payoff of a performance-dependent option at timeT . To
this end, we denote the relative price increase of stocki over the time interval[0, T ]
by ∆Si := Si(T )/Si(0). We save the performance of the first asset in comparison
to a given strike priceK (oftenK = S1(0)) and in comparison to the benchmark
assets at timeT in a ranking vectorRank(S) ∈ {+,−}n defined by

Rank1(S) =

{
+ if S1 ≥ K,

− else
and Ranki(S) =

{
+ if ∆S1 ≥ ∆Si,

− else

for i = 2, . . . , n. In order to define the the payoff of the performance-dependent
option we require bonus factorsaR which determine the bonus for each possible
rankingR ∈ {+,−}n, see Section 5 for example profiles. In all cases we set
aR = 0 if R1 = − which corresponds to the option characteristic that a non-zero
payoff only occurs if the stock price if above the strike.

The payoff of the performance-dependent option at timeT is then defined by

V (S1, T ) = aRank(S) (S1(T )−K). (1)

In the following, we aim to determine the fair priceV (S1, 0) of such an option at
the current timet = 0.



2.2 Multivariate Black-Scholes model

We assume that the stock prices are driven byd ≤ n stochastic processes modeled
by the system of stochastic partial differential equations

dSi(t) = Si(t)

µidt +
d∑

j=1

σijdWj(t)

 (2)

for i = 1, . . . , n, whereµi denotes the drift of thei-th stock,σ then× d volatility
matrix of the stock price movements andWj(t), 1 ≤ j ≤ d, the corresponding
Wiener processes. The matrixσσT is assumed to be positive definite. Ifd = n, we
call the corresponding model full, ifd < n, the model is called reduced.

By Itô’s formula we get the explicit solution of (2) by

Si(T ) = Si(X) = Si(0) exp

µiT − σ̄i +
√

T
d∑

j=1

σijXj

 (3)

for i = 1, . . . , n with σ̄i := 1
2 (σ2

i1 + . . . + σ2
id) T andX = (X1, . . . , Xd) being a

N(0, I)-normally distributed random vector.

3 Pricing formula in the full model

We now derive the price of a performance-dependent option as a multivariate inte-
gral in the case that the number of stochastic processesd equals the number of
assetsn.

3.1 Martingale approach

Using the usual Black-Scholes assumptions, the option priceV (S1, 0) is given by
the discounted expectation

V (S1, 0) = e−rT E[V (S1, T )] (4)

of the payoff under the unique equivalent martingale measure. To this end, the drift
µi in (3) is replaced by the riskless interest rater for each stocki. Plugging in the
density functionϕ(x) := ϕ0,I(x) of the random vectorX (note thatS = S(X)),
we get that the fair price of a performance-dependent option with payoff (1) is
given by thed-dimensional integral

V (S1, 0) = e−rT

∫
Rd

∑
R∈{+,−}n

aR(S1(T )−K) χR(S)ϕ(x) dx (5)

where the characteristic functionχR(S) is defined to be equal to one ifRank(S) =
R and zero else.



3.2 Pricing formula

Now, we aim to derive an analytical expression for the computation of (5) in terms
of smooth functions. To proof our main theorem we need the following two lem-
mas. For the first Lemma, we denote byϕµ,C(x) the Gauss kernel with mean
µ and covariance matrixC and byΦ(C,b) the multivariate normal distribution
corresponding toϕ0,C with limits b = (b1, . . . , bd).

Lemma 3.1 Letb,q ∈ IRd andA ∈ IRd×d with full rank, then∫
Ax≥b

eqT xϕ(x)dx = e
1
2qT qΦ(AAT ,Aq− b).

Proof: A simple computation shows thateqT xϕ(x) = e
1
2qT qϕq,I(x) for all x ∈

IRd. Using the substitutionx = A−1y + q we obtain∫
Ax≥b

eqT xϕ(x)dx = e
1
2qT q

∫
y≥b−Aq

ϕ0,AAT(y) dy

and thus the assertion. 2

For the second Lemma, we define a comparison relation for two vectorsx,y ∈
IRn with respect to the rankingR by x ≥R y :⇔ Ri(xi−yi) ≥ 0 for 1 ≤ i ≤ n.

Lemma 3.2 We haveRank(S) = R exactly ifAX ≥R b with

A :=
√

T



σ11 . . . σ1d

σ11 − σ21 . . . σ1d − σ2d

...
...

σ11 − σn1 . . . σ1d − σnd


, b :=



ln K
S1(0)

− rT + σ̄1

σ̄1 − σ̄2

...

σ̄1 − σ̄n


.

Proof: Using (3) we see that Rank1 = + is equivalent to

S1(T ) ≥ K ⇐⇒
√

T
d∑

j=1

σ1jXj ≥ ln
K

S1(0)
− rT + σ̄1

which yields the first row of the systemAX ≥R b. Moreover, fori = 2, . . . , n,
the outperformance criterion Ranki = + can be written as

S1(T )/S1(0) ≥ Si(T )/Si(0) ⇐⇒
√

T
d∑

j=1

(σ1j − σij)Xj ≥ σ̄1 − σ̄i

which yields rows2 to n of the system. 2

Now we can state the following pricing formula which, in a slightly more special
setting, is originally due to Korn [2].



Theorem 3.3 The price of a performance-dependent option with payoff (1) is for
the model (2) in the cased = n given by

V (S1, T ) =
∑

R∈{+,−}n

aR

(
S1(0)Φ(ARAT

R,−dR)− e−rT KΦ(ARAT
R,−bR)

)
where(bR)i := Ribi, (dR)i := Ridi and (AR)ij := RiAij with A and b
defined as in Lemma 3.2. Furthermore,d := b−

√
TAσ1 with σT

1 being the first
row of the volatility matrixσ.

Proof: The characteristic functionχR(S) in the integral (5) can be eliminated using
Lemma 3.2 and we get

V (S1, 0) = e−rT
∑

R∈{+,−}n

aR

∫
Ax≥Rb

(S1(T )−K)ϕ(x)dx. (6)

By (3), the integral term can be written as

S1(0)erT−σ̄1

∫
Ax≥Rb

e
√

TσT
1 x ϕ(x)dx−K

∫
Ax≥Rb

ϕ(x)dx.

Application of Lemma 3.1 withq =
√

Tσ1 shows that the first integral equals

e
1
2qT q

∫
y≥Rb−Aq

ϕ0,AAT(y) dy = eσ̄1

∫
y≥dR

ϕ0,ARAT
R
(y) dy = eσ̄1Φ(ARAT

R,−dR).

By a further application of Lemma 3.1 withq = 0 we obtain that the second
integral equalsKΦ(ARAT

R,−bR) and thus the assertion holds. 2

4 Pricing formula in the reduced model

The pricing formula of Theorem 3.3 allows a stable and efficient valuation of
performance-dependent options in the case of moderate-sized benchmarks. If the
numbern of benchmark assets is large, the high number2n of terms and the high
dimension of the required normal distributions prevents an efficient application
of the pricing formula, however. In this Section, we will derive a similar pricing
formula for the reduced model which incorporates less processes than companies
(d < n). This way, substantially fewer rankings have to be considered and much
lower-dimensional integrals have to be computed.

4.1 Geometrical view

Lemma 3.2 and thus representation (6) remains also valid in the reduced model.
Note, however, thatA is now an(n × d)-matrix which prevents the direct appli-
cation of Lemma 3.1. At this point, a geometrical point of view is advantageous to
illustrate the effect of performance comparisons in the reduced model.
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Figure 1: Illustration of the mapping between intersection points{v1, . . . ,v7} and
polyhedral cellsPj := Pvj for a hyperplane arrangementA3,2 (left) and
corresponding reflection signssv,w as well as the orthantOv4 (right).

The matrixA and the vectorb define a set ofn hyperplanes in the spaceIRd.
Its dissection into different cells is called a hyperplane arrangement and denoted
byAn,d. Each cell inAn,d is a (possibly open) polyhedronP which can uniquely
be represented by a ranking vectorR ∈ {+,−}n. Each element of the ranking
vector indicates on which side of the corresponding hyperplane the polyhedral cell
is located. Each polyhedron has the representationP = {x ∈ IRd : Ax ≥R b}.

As the number of cells in the hyperplane arrangementAn,d is much smaller
than2n if d < n (see Edelsbrunner [3]), we can significantly reduce the number
of integrals which have to be computed by identifying all cells in the hyperplane
arrangement. This way, (6) can be rewritten as

V (S1, 0) = e−rT
∑
P∈A

aR

∫
P

(S1(T )−K)ϕ(x)dx. (7)

4.2 Tools from computational geometry

Looking at (7), two problems remain: first, it is not easy to identify which ranking
vectors appear in the hyperplane arrangement; second, the integration region is
now a general polyhedron which requires involved integration rules. To resolve
these difficulties, we need some more utilities from computational geometry.

First, we choose a set of linearly independent directionse1, . . . , ed ∈ IRd to
impose an order on all points inIRd. Thereby, we assume that no hyperplane is par-
allel to any of the directions. Moreover, we suppose that the hyperplane arrange-
ment is non-degenerate which means that exactlyd hyperplanes intersect in each
vertex. Using the directionsei, an artificial bounding box which encompasses all
vertices can be defined (see Figure 1, left). This bounding box is only needed for
the localization of the polyhedral cells in the following Lemma and does not impli-
cate any approximation.

Lemma 4.1 Let the setV consist of all interior vertices, of the largest intersection
points of the hyperplanes with the bounding box and of the largest corner point of



the bounding box. Furthermore, letPv ∈ An,d be the polyhedron which is adjacent
to the vertexv ∈ V and which contains no other vertex which is larger thanv with
respect to the direction vectors. Then the mappingv 7→ Pv is one-to-one and onto.

Such a mapping is illustrated in Figure 1 (left). The proof of Lemma 4.1 can
be found in our paper [4]. Using Lemma 4.1, an easy to implement optimal order
algorithm can be constructed to enumerate all cells in a hyperplane arrangement.

Note that by Lemma 4.1 each vertexv ∈ V corresponds to a unique cellPv ∈
An,d and thus to a ranking vectorR. We can, therefore, also assign bonus factors
to vertices by settingav := aR. Next, we assign to each vertexv an associated
orthantOv. An orthant is defined as an open region inIRd which is bounded by
k ≤ d hyperplanes. To find the orthant associated with the vertexv, we look at
k backward (with respect to the directionsei) points by movingv backwards on
each of thek intersecting hyperplanes. The unique orthant which containsv and all
backward points is denoted byOv. By definition, there exists a(k× d)-submatrix
Av of A and ak-subvectorbv of b such that the orthantOv can be characterised
as the set

Ov =
{
x ∈ IRd : Avx ≥R bv

}
, (8)

whereR is the ranking vector which corresponds tov. Furthermore, given two
verticesv,w ∈ V, we define the reflection signsv,w := (−1)rv,w whererv,w is
the number of reflections on hyperplanes needed to mapOw ontoPv (see Figure
1, right). Finally, letVv denote the set of all vertices of the polyhedronPv.

Lemma 4.2 It is possible to algebraically decompose any cell of a hyperplane
arrangement into a signed sum of orthant cells by

χ(Pv) =
∑

w∈Vv

sv,wχ(Ow),

whereχ is the characteristic function of a set. Moreover, all cells of a hyperplane
arrangement can be decomposed into a signed sum of orthants using exactly one
orthant per cell.

The first part of Lemma 4.2 is originally due to Lawrence [5], the second part
can be found in [4].

4.3 Pricing formula

Now, we are finally able to give a pricing formula for performance-dependent
options also for the reduced model.

Theorem 4.3 The price of a performance-dependent option with payoff (1) is for
the model (2) in the cased ≤ n given by

V (S1, 0) =
∑
v∈V

cv
(
S1(0)Φ(AvAT

v ,−dv)− e−rT KΦ(AvAT
v ,−bv)

)



with Av,bv as in (8) and withdv being the corresponding subvector ofd. The
weightscv are given by

cv :=
∑

w∈V: v∈Pw

sv,waw.

Proof: By Lemma 4.1 we see that the integral representation (7) is equivalent to a
summation over all verticesv ∈ V, i.e.

V (S1, 0) = e−rT
∑
v∈V

av

∫
Pv

(S1(T )−K)ϕ(x)dx.

By Lemma 4.2 we can decompose the polyhedronPv into a signed sum of orthants
and obtain

V (S1, 0) = e−rT
∑
v∈V

av

∑
w∈Vv

sv,w

∫
Ow

(S1(T )−K)ϕ(x)dx.

By the second part of Lemma 4.2 we know that onlycn,d different integrals appear
in the above sum. Rearranging the terms leads to

V (S1, 0) = e−rT
∑
v∈V

cv

∫
Ov

(S1(T )−K)ϕ(x)dx.

Since now the integration domainsOv are orthants, Lemma 3.1 can be applied
exactly as in the proof of Theorem 3.3 which finally implies the Theorem. 2

5 Numerical Results

In this Section, we present numerical examples to illustrate the use of the pricing
formula from Theorem 4.3. In particular, we compare the efficiency of our algo-
rithm to the standard pricing approach (denoted by STD) of quasi-Monte Carlo
simulation of the expected payoff (4) based on Sobol point sets, see, e.g., Glasser-
man [6]. We systematically compare the numerical methods

• Quasi-Monte Carlo integration based on Sobol point sets (QMC),

• Product integration based on the Clenshew Curtis rule (P), and

• Sparse Grid integration based on the Clenshew Curtis rule (SG)

for the evaluation of the multivariate cumulative normal distributions (see Genz
[7]). The Sparse Grid approach is based on [8]. All computations were performed
on an Intel(R) Xeon(TM) CPU 3.06GHz processor. We consider a reduced Black-
Scholes market withn = 30 assets andd = 5 processes. Thereby, we investigate
two different choices for the bonus factorsaR in the payoff function (1):
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Figure 2: Errors and timings of the different numerical approaches to price the
performance-dependent options of Examples 5.1 (top) and 5.2 (bottom).

Example 5.1 Ranking-dependent option:

aR =

{
m/(n− 1) if R1 = +
0 else,

wherem denotes the number of outperformed benchmark assets. If the company
ranks first there is a full payoff(S1(T )−K)+. If it ranks last the payoff is zero.

Example 5.2 Outperformance option:

aR =

{
1 if R = (+, . . . ,+)
0 else.

A payoff only occurs ifS1(T ) ≥ K and if all benchmark assets are outperformed.



In both cases, we use the following model parameters:K = 100, S1(0) = 100,
T = 1, r = 5%; σ is a 30 × 5 volatility matrix whose entries are uniformly
distributed in[−1/d, 1/d].

Depending on the specific choice of bonus factors, it turns out that often many
weightscv are zero in the formula of Theorem 4.3 which reduces the number of
required normal distributions. Furthermore, all verticesv located on the boundary
of the bounding box correspond to orthants which are defined byk < d intersect-
ing hyperplanes. For these vertices, only ak-dimensional normal distribution has
to be computed. In Example 5.1, we have 41 integrals with maximum dimension
2 while in Example 5.2, 31 integrals with maximum dimension 5 arise.

The convergence behaviour of the four different approaches (STD, QMC, P, SG)
to price the options from the Examples 5.1 and 5.2 is shown in Figure 2. There, the
time is displayed which is needed to obtain a given accuracy. One can see that the
standard approach (STD) quickly achieves low accuracies. The convergence rate
is slow and clearly lower than one, though. The integration scheme suffers under
the irregularity of the integrand which is highly discontinuous and not of bounded
variation. The QMC scheme clearly outperforms the STD approach in all exam-
ples. It exhibits a convergence rate of about one and leads to significantly smaller
errors. As expected, the product integration approach (P) performs only really well
in the Example 5.1 which is of low intrinsic dimension. The combination of Sparse
Grid integration with our pricing formula (SG) leads to the best convergence rates.
However, for higher dimensional problems as Example 5.2, this advantage is only
visible if very accurate solutions are required. In the pre-asymptotic regime, the
QMC scheme leads to smaller errors.
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