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Abstract. In this paper we present a parallel three-dimensional Navier–Stokes solver for in-
compressible two-phase flow problems with surface tension. It employs a standard finite difference
discretization on uniform Cartesian staggered grids and uses Chorin’s projection approach. The
free surface between the two fluid phases is tracked with a level-set approach. Here, the interface
conditions are implicitly incorporated into the momentum equations by the continuum surface force
method. Surface tension is evaluated using a smoothed delta function and third order interpolation.
The problem of mass conservation for the two phases is treated by a reinitialization of the level-set
function employing a mollified signum function. All convective terms are discretized by a WENO
scheme of fifth order. Altogether, our approach exhibits a second order convergence away from the
free surface. For the discretization of surface tension we need to apply a smoothing scheme near the
free surface which leads to a first order convergence in the smoothing region. The parallelization of
the code is based on conventional domain decomposition using MPI.

We discuss the details of the method and present the results of several numerical experiments
concerning mass conservation, convergence of curvature and convergence of the complete two-phase
flow scheme. Furthermore, we give a comparison of our simulated results to physical data for the
collapsing water column problem. Finally, we present the results of a direct numerical simulation of
the dynamic contact angle behavior for a drop which moves down an inclined solid wall.
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1. Introduction. Many problems in fluid flow applications require the consider-
ation of two incompressible immiscible fluids and, consequently, the treatment of the
free surface between these two phases. Examples are the formation of droplets, differ-
ent coating processes (roll, dip or curtain coating) or various microfluidic applications.
The main challenge for numerical methods for time-dependent free surface flow prob-
lems in three dimensions is to provide an accurate representation of the interface which
separates the two different fluid phases. This involves the tracking of a discontinuity
in the material properties like density and viscosity. Furthermore, surface tension on
the moving interface must be taken into account to be able to deal with capillary
effects and other curvature dependent phenomena. This is especially important if the
length scales and the velocities of the fluids are small so that sufficiently large surface
tension and curvature dependent forces result. A successful approach to deal with
free surfaces, especially in the presence of topological changes, is the level-set method
(LSM) due to Osher and Sethian [40]. But so far, most multi-phase flow solvers which
employ the LSM only deal with two-dimensional problems. Furthermore, the original
LSM does not ensure mass conservation for the two fluid phases due to the necessary
reinitialization in every time step. To treat surface tension effects, the continuum
surface force (CSF) method [5] is widely used.

In this paper we present a fully three-dimensional incompressible Navier–Stokes
solver for two-phase flow problems including surface tension. It employs a standard
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discretization on uniform Cartesian staggered grids and uses Chorin’s projection ap-
proach. The free surface between the two fluid phases is tracked with the level-set
approach. Here, the interface conditions are implicitly incorporated into the momen-
tum equations by the CSF method. Surface tension is evaluated using a smoothed
delta function and third order interpolation. Furthermore, we use a sophisticated
reinitialization scheme which improves mass conservation significantly. All convective
terms are discretized by a weighted essentially non-oscillatory (WENO) scheme of
fifth order. Altogether, our approach exhibits a second order convergence away from
the free surface and a first order convergence in the smoothing region, i.e., in the
support of the smoothed delta functional, near the free surface. The parallelization of
the code is based on conventional domain decomposition techniques using MPI. This
allows to deal with reasonably fine mesh resolutions in three dimensions.

The remainder of this paper is organized as follows: In section 2 we give a short re-
view on numerical schemes for free surface representation and discuss their properties.
The mathematical model is presented in section 3. Here, we implement the coupling of
the Navier–Stokes equations for two flow phases by classical interface conditions which
incorporate surface tension. To this end, we discuss the CSF method in the context of
the level-set approach. The discretization of the coupled model is presented in detail
in section 4. The Navier–Stokes equations as well as the transport equation for the
level-set function are discretized in time using an Adams–Bashford method of second
order, whereas the reinitalization of the level-set function is discretized in time using
an explicit third order Runge–Kutta scheme. The discretization in space employs a
standard finite difference approach on a staggered uniform grid. Furthermore, we use
a signed distance function in the level-set representation of the free surface, a fifth
order WENO scheme for all convective terms, a higher order interpolation scheme
for the level-set function and an improved reinitialization scheme. Then we shortly
review the parallelization of our solver by domain decomposition techniques in section
4.8. In section 5 we present the results of several numerical experiments concerning
mass conservation, convergence of curvature and convergence of the complete two-
phase flow scheme. Furthermore, we give a comparison of our simulated results to
physical data for the collapsing water column problem. In our last example we show
the results of a direct numerical simulation of the dynamic contact angle behavior for
a drop moving down an inclined solid wall. Finally, we conclude with some remarks
in section 6.

2. Numerical Techniques for Free Surface Representation. The earliest
attempts to compute solutions of fluid-dynamics problems with free boundaries were
made in the middle of the 1960s. Harlow and Welch [25] developed the popular
Marker and Cell method (MAC) which uses massless marker particles to explicitly
represent the flow domain and thus its free surface, see Figure 2.1. Daly [11] extended
this method to two-phase flows. Note, however, that an explicit reconstruction of the
interface requires some additional work in the MAC scheme. Various modifications of
the original MAC scheme were developed over the years and have further improved this
approach, see Daly [12], Amsdon and Harlow [2], Griebel et al. [21, 22], Neunhoeffer
[37] and Tryggvason et al. [50, 51]. Experiments with only a small layer of particles
near the free surface were carried out in [7].

In the 1970s the Volume of Fluid method (VOF) was developed. The VOF em-
ploys a piecewise constant scalar field F instead of marker particles to locate the
position of both fluid phases. Here, F describes the volume fraction of one fluid for
each discretization cell. One fluid phase corresponds to the function value F = 1, and
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Figure 2.1. MAC particle surface tracking (left) and volume tracking (right).
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Figure 2.2. Exact surface (left), SLIC (center) and PLIC (right) reconstruction.

the second fluid phase to F = 0. Cells which are cut by the interface are assigned
values 0 < F < 1 according to the volume fraction of the first fluid. This function F
is transported over time with the flow. Note that this implicit approach also allows
for a simple handling of topological changes but — unlike in MAC schemes — an
explicit reconstruction of the free surface does not involve any additional considera-
tion. Furthermore, it can easily be implemented for the three-dimensional case. The
VOF was first introduced by DeBar [13], and got subsequently improved by Noh and
Woodward [38], Hirt and Nichols [26], Lafaurie et al. [31], and Zaleski et al. [24].

The main difficulty in VOF schemes is to obtain a reconstruction with sufficient
accuracy and smoothness, compare Figure 2.2. This is especially important when the
computation of curvature is needed, i.e., for surface tension. Here, two well-known
schemes are the Simple Line Interface Calculation (SLIC) [38] technique and the
Piecewise Linear Interface Calculation (PLIC) [26] method. But for any meaningful
curvature calculation higher order spline interpolations must be used, see Wittum et
al. [19, 20].

At the end of the 1980s the level-set (LS) technique was introduced by Osher and
Sethian [40]. Here, the basic idea is to describe an interface Γ as the zero level-set of a
continuous higher-dimensional scalar field φ(x, t); i.e., for points ~x on the free surface
Γ at time t we have φ(~x, t) = 0. Hence, the two fluid phases can easily be identified by
looking at the sign of φ. Similar to the VOF method, the level-set technique greatly
reduces the complexity of a description of the interface, especially when topological
changes such as pinching and merging occur, compare Figure 2.3. Yet, in contrast to
VOF, the approximation with the level-set function is globally continuous. Thus, the
solution is less affected by numerical diffusion during the transport process and the
stability of the numerical scheme is increased. First applications of level-set-methods
in the area of fluid-dynamics were described by Mulder, Osher and Sethian [36] and
Sussman, Smereka, and Osher [47]. Further developments are found in the books of
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Figure 2.3. Area bounded by zero level-set before (left) and after merging (right).

Sethian [43] and Osher and Fedkiw [39].

For the treatment of surface tension on the free surface Brackbill et. al [5] and
Unverdi et. al [51] independently developed the Continuum Surface Force (CSF) dis-
cretization technique. Here, the interfacial tension condition is transformed into a
body force for cells which contain the interface. A variant is the continuous surface
stress scheme [31]. These approaches were first presented in the context of VOF
and MAC methods but are nowadays also used in level-set methods, see Sussman
et. al [47]. They have proven to be quite robust. However, to our knowledge, the
convergence behavior of surface tension terms approximated by the level-set method
within a full two-phase flow solver is not completely understood. Other approaches
[3, 15, 16, 27, 28] to the numerical treatment of surface tension employ a variational
approach using the Laplace–Beltrami operator on the free surface. Via integration by
parts, one derivative can be shifted to the test space and a discretization with linear
finite elements then leads to a first order convergence for curvature in the appropriate
energy-norm.

Another important issue – especially for level-set methods – is mass conservation.
In many applications the level-set function may become distorted; i.e., its gradient
may become very large or very small near the interface. To avoid these situations a
so-called reinitialization step must be performed. Here, the current level-set function
is replaced by a smoother, less distorted function which has the same zero level-set.
Reinitialization with a signed distance function has been used in various applica-
tions, see for example Chopp et al. [9] (minimal surfaces), Sussman et al. [47] (free
boundary problems in two-phase flow), Chen et al. [8] (crystal growth), Merriman et
al. [34] (motion of multiple junctions), and Adelsteinsson and Sethian [1] (fast march-
ing method). However, these simple reinitialization techniques introduce numerical
diffusion to the solution which leads to difficulties with volume conservation. To this
end, several modified reinitalization methods have been developed to improve mass
conservation, see Sussman and Fatemi [45], Sussman and Puckett [46], Russo and
Smereka [42], Enright et al. [17] and Peng et al. [41]. But again, the relation between
these techniques and the convergence behavior of surface tension terms within a full
two-phase flow solver is not completely understood.

3. Model. We now discuss the mathematical model for three-dimensional flow
of two immiscible incompressible fluids. The behavior of the fluids is governed by the
incompressible Navier–Stokes equations defined on an open set Ω = Ω1∪Ω2∪Γf ⊂ R3

with Lipschitz boundary Γ := ∂Ω. Here Ω1 and Ω2 denote the subdomains of fluid one
and fluid two, respectively. The free interface between the two fluid phases is denoted
by Γf := ∂Ω1 ∩ ∂Ω2. The two fluid domains Ω1 and Ω2, and the free interface Γf
depend on time. The temporal evolution of each of the fluids is described by the
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Figure 3.1. Curvature for surface tension computation.

Navier–Stokes equations in its respective subdomain Ωi for t ∈ [0, T ]; i.e., we have

ρi
D~ui
Dt

= −∇pi +∇ · (µiSi) + ρi~g in Ωi,

∇ · ~ui = 0 in Ωi,
~ui|Γ = 0 in [0,T] ,

~ui|t=0 = u0i in Ωi,

(3.1)

where i ∈ {1, 2} indicates the considered fluid phase. Furthermore, ~ui denotes the
velocity-field, pi the pressure, µi the dynamic viscosity, ρi the density, and ~g the

volume force. The viscous stress tensor is given by Si := ∇~ui + {∇~ui}T and D(~ui)
Dt :=

∂t(~ui) + (~ui · ∇)~ui is the material derivative. The values of µi and ρi in each phase
are assumed to be constant. However, the system (3.1) is not complete without some
additional conditions imposed on the free interface Γf . The basic assumption in
continuum mechanics for the free boundary Γf is that it can be regarded as a sharp
interface; i.e., the interface is a two-dimensional surface which separates the two flow
regions. For immiscible fluids this can be justified by dimension analysis. Hence, our
two-phase flow model contains a jump in density and a jump in viscosity across the
free surface.

A consequence of this assumption is that the interface possesses no mass. Conse-
quently, the net stress vanishes along the interface. Furthermore, the velocity must be
continuous across the free surface, i.e., ~u1 = ~u2 on Γf . For a more detailed discussion
see [32]. The surface tension boundary conditions at the interface Γf between the two
fluid phases are given by

(T1 −T2) · ~n = σκ~n, (T1 −T2) · ~t =
∂σ

∂~t
, and (T1 −T2) · ~s =

∂σ

∂~s
,

where Ti := −pI + µiSi denotes the stress tensor, σ is the surface tension coefficient
determined by the physical properties of the considered fluids, and ~n := ~n1 = −~n2

denotes the surface normal on Γf , i.e., the outer normal on ∂Ω1. The local curvature
κ is given by

κ =
1

Rt
+

1

Rs
(3.2)

with the radii Rt and Rs of curvature along coordinates t and s as shown in Figure
3.1. Since we assume that the material properties like µi and ρi are constant in
each Ωi, the surface tension coefficient σ is constant throughout the whole domain Ω.
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Therefore, the conditions on the interface Γf reduce to

~u1 = ~u2, (3.3)

(T1 −T2) · ~n = σκ~n, (3.4)

(T1 −T2) · ~t = 0, (3.5)

(T1 −T2) · ~s = 0. (3.6)

Throughout this paper, we only consider surface tension forces in normal direc-
tion. Hence, we complete the Navier–Stokes equations (3.1) in each of the subdomains
Ωi with the interface conditions (3.3) and (3.4) only, the tangential conditions (3.5)
and (3.6) are not explicitly enforced. Altogether, the complete model for two-phase
flow problems including surface tension considered in this paper is given by

ρi
D~ui
Dt

= −∇pi +∇ · (µiSi) + ρi~g in Ωi,

∇ · ~ui = 0 in Ωi,
~ui|Γ = 0 in [0,T] ,

~ui|t=0 = u0i in Ωi
~u1 = ~u2 on Γf ,

(T1 −T2) · ~n = σκ~n on Γf ,

(3.7)

for i ∈ {1, 2}.
3.1. Formulation of surface tension within the momentum equations.

To couple the two-phase-flow Navier–Stokes equations (3.1) with the free surface
boundary conditions (3.4), we start from the integral form of (3.1)

∫

Ωi

ρi
D(~ui)

Dt
d~x =

∫

∂Ωi

Ti · ~n dF +

∫

Ωi

ρi~g d~x (3.8)

for i ∈ {1, 2}. Summation of both momentum equations (3.8) yields

ρ1

∫

Ω1

D~u

Dt
d~x+ ρ2

∫

Ω2

D~u

Dt
d~x =

∫

∂Ω

T · ~n dF −
∫

Γf

[T] · ~n dF + ρ1

∫

Ω1

~g d~x+ ρ2

∫

Ω2

~g d~x
(3.9)

where T := T1χΩ1
+ T2χΩ2

and [T] denotes the jump in the stress tensor T , i.e.,
[T] = T1 −T2, at the interface Γf . With (3.4) and the Gauß Theorem, we obtain

∫

∂Ω

T · ~n dF =

∫

Ω

∇ ·T d~x. (3.10)

Since T is discontinuous at the free surface due to the jump in the viscosity, relation
(3.10) is to be understood in the sense of distributions.

With (3.3), the velocity-field ~u = ~u1χΩ1
+ ~u2χΩ2

for viscous fluids is continuous
on Ω and we can write

ρ1

∫

Ω1

D~u

Dt
d~x+ ρ2

∫

Ω2

D~u

Dt
d~x =

∫

Ω

ρ
D~u

Dt
d~x. (3.11)

Now we substitute (3.10) and (3.11) into (3.9) and obtain the integral formulation of
incompressible two-phase flow with surface tension

∫

Ω

ρ
D~u

Dt
d~x =

∫

Ω

∇ ·T d~x−
∫

Γf

σκ~n dF +

∫

Ω

ρ~g d~x. (3.12)
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The advantage of (3.12) is that the boundary condition for surface tension is implicitly
contained in the momentum equation. However, it is formulated as a free boundary
integral. For the further discretization, we will convert this free boundary integral to
a volume integral via the CSF approach. Then, we can easily couple the momentum
equation with a level-set formulation which does not require an explicit reconstruction
of the free surface. Note that this is in contrast to VOF methods where a reconstruc-
tion of Γf is required even with a CSF formulation. Note further that since there is
no need for an explicit reconstruction, the computation of surface tension can easily
be parallelized.

3.2. The CSF-approach for surface tension. The CSF model was first pro-
posed by Brackbill et al. [5] for VOF methods and by Unverdi et al. [51] for MAC
methods. We now give a short description of the CSF approach in the framework of
the level-set method.

The aim is to provide a coupled formulation of (3.7), i.e., we will couple the
Navier–Stokes equations (3.1), the boundary conditions for surface tension (3.4) and
the continuity condition (3.3). We start from the two-phase flow equations in integral
form (3.12). There, surface tension is included in the right-hand side as a source-
term. Since our discretization will be based on the differential expression of the
Navier–Stokes equations, this free boundary integral needs to be converted into a
volume integral and, by passing to the limit of infinitesimally small volumes, we then
obtain the associated differential expression of the Navier–Stokes equations.

To this end, we construct a function φ such that the interface between two different
fluids is the zero level-set of φ. The interface is then given by

Γf (t) = {~x : φ(~x, t) = 0}

for all times t ∈ [0, T ]. Note that there are arbitrarily many ways to define the level-
set function φ away from the free surface. Here, we choose φ as a signed-distance
function such that

φ(~x, t)





< 0 if ~x ∈ Ω1

= 0 if ~x ∈ Γf
> 0 if ~x ∈ Ω2

(3.13)

hold and the Eikonal equation |∇φ| = 1 is fulfilled. With the help of this level-set
function φ we can now easily define the density ρ and the viscosity µ on the whole
domain, i.e., of both fluid-phases. To this end, we set

ρ(φ) := ρ2 + (ρ1 − ρ2)H(φ) and µ(φ) := µ2 + (µ1 − µ2)H(φ)

where H(φ) denotes the Heavyside function which is defined as

H(φ) :=





0 if φ < 0
1
2 if φ = 0
1 if φ > 0.

Now, with these φ-dependent formulations, equation (3.12) can be expressed as

∫

Ω

ρ(φ)
D~u

Dt
d~x =

∫

Ω

∇ ·T d~x−
∫

Γf

σκ~n dF +

∫

Ω

ρ(φ)~g d~x. (3.14)
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Chang et al. [6] showed that in the context of level-set methods the free boundary
integral can be converted into a volume integral using a Dirac δ-functional. Since
~n = ∇φ

|∇φ| and |∇φ| = 1, this results in the identity

∫

Γf

σκ~n dF =

∫

Ω

σκ(φ(~x))δ(φ(~x))∇φ(~x) d~x (3.15)

where δ denotes the one-dimensional Dirac δ-functional, i.e.
∫
R f(x)δ(x) dx = f(0)

for f : R → R, such that
∫
R3 δ(φ(~x)) d~x =

∫
Γf

1 ds. We substitute (3.15) into (3.14)

and obtain
∫

Ω

(
ρ(φ)

D~u

Dt
−∇ ·T + σκ(φ)δ(φ)∇φ− ρ(φ)~g

)
d~x = 0

which now only involves a volume integral. Since this relation holds for any arbitrary
volume Ω, we can pass to the limit of infinitesimally small volumes and obtain the
associated differential equation

ρ(φ)
D~u

Dt
−∇ ·T + σκ(φ)δ(φ)∇φ− ρ(φ)~g = 0.

With the definition of the stress tensor T, this yields the equation

ρ(φ)
D~u

Dt
+∇p = ∇ · (µ(φ)S)− σκ(φ)δ(φ)∇φ+ ρ(φ)~g. (3.16)

Furthermore, we need to take into account the time-dependence of the free-surface
Γf . In essence, the free-surface is advected with the flow-field. Hence, we can model
the time-evolution of Γf via a simple transport of the level-set function φ due to the
underlying fluid velocity-field ~u, i.e., via the pure transport equation

φt + ~u · ∇φ = 0 (3.17)

with initial value φ0(~x) = φ(~x, 0).

4. Numerical method. In this section we present our overall numerical scheme
for the treatment of the two-phase flow equations with surface tension in three space
dimensions as given in (3.16) and (3.17). The scheme is based on the well-known
projection method employs an explicit time-stepping scheme and a finite difference
discretization in space on a staggered grid which is also used for the level-set function.
We begin with a short review of the classical projection method before we cover the
details of the incorporation of the level-set method into the projection scheme. Here,
we need to be concerned with three major issues: the movement of the interface and
the conservation properties of the overall scheme, the discontinuity of the material
properties at the interface, and the accurate approximation of the surface tension.

The movement of the free interface is modeled via the additional transport equa-
tion (3.17) for the level-set function φ. Here, we have to deal with the problem of
volume and mass conservation of the two different fluid phases. To this end, we im-
plement an appropriate reinitialization scheme where we enforce the signed-distance
property of φ. Moreover, we employ a higher order WENO scheme for the treatment
of the convective terms in the transport equation (3.17), the Navier–Stokes equations
with surface tension (3.16) and in the reinitalization phase to improve the overall con-
servation properties of the numerical scheme. Furthermore, the discontinuity of the
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density and viscosity at the interface may lead to spurious oscillations and instabilities,
therefore we need to be concerned with the development of an appropriate smoothing
scheme for the material properties. Finally, it is essential to employ a higher order
interpolation scheme for the level-set function to obtain an accurate approximation
of the surface tension. In the following we cover these issues in detail.

4.1. Projection Method. A widely used and very successful scheme for the
solution of the incompressible Navier–Stokes equations is the so-called projection
method due to Chorin [10]. Here, the starting point is the consideration of the time-
discrete Navier–Stokes equations using a forward Euler scheme; i.e., we will compute
the solution ~un+1 at time tn+1 from the solution ~un of the previous time step. To
obtain the solution of (3.16) in a single Euler-step, we employ a two step approach.
First, we compute an intermediate velocity field ~u∗ which may not be divergence free
via an explicit transport. Then, in a second step, we compute a correction ∇pn+1

of the intermediate velocity field via the pressure Poisson equation which leads to a
divergence free velocity field ~un+1; i.e., we treat the pressure implicitly.

The intermediate velocity field ~u∗ is given by

~u∗ − ~un
δt

= −(~un · ∇)~un + ~g +
1

ρ(φn)

(
∇ · (µ(φn)Sn)− σκ(φn)δ(φn)∇φn

)
(4.1)

where the superscript n indicates the respective time step. With this definition, we
can rewrite the time-discrete Navier–Stokes equations as

~un+1 − ~u∗
δt

+
∇pn+1

ρ(φn+1)
= 0, (4.2)

∇ · ~un+1 = 0. (4.3)

Now, we apply the divergence operator to equation (4.2), multiply by −1, and with
(4.3), we arrive at the pressure Poisson equation with the density field as diffusion
coefficient

−∇ ·
( 1

ρ(φn+1)
∇p̂n+1

)
= −∇ · ~u∗ (4.4)

with p̂n+1 := δtpn+1. We obtain appropriate boundary conditions for the pressure
Poisson equation by projecting the vector equation (4.2) onto the outer unit normal
of the domain boundary

∂pn+1

∂~n

∣∣∣∣
Γ

=
ρ

δt
(~u∗Γ − ~un+1

Γ ) · ~n.

Thus, if we require ~un+1
Γ = ~u∗Γ, we obtain homogeneous Neumann boundary conditions

for the pressure

∂p̂n+1

∂~n

∣∣∣∣
Γ

= 0.

To ensure the existence of a solution, we also need to fulfill the compatibility condition

0 =

∫

Ω

∇ · ~u d~x =

∫

Γ

~u · ~n ds
9
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Figure 4.1. Numerical smoothing region.

which expresses the fact that the velocity on the boundary Γ must have a vanish-
ing total flux. Note that the employed space discretization must comply with this
requirement. Now, we can solve the system (4.4) for p̂n+1 = δtpn+1, at least up to
a constant. We fix this remaining degree of freedom in the pressure pn+1 via the
additional condition ∫

Ω

pn+1 d~x = 0

to ensure the comparability of the pressure results at different times tn. Finally, we
obtain a correction of the intermediate velocity field ~u∗ such that the velocities at
time tn+1

~un+1 = ~u∗ − 1

ρ(φn+1)
∇p̂n+1 (4.5)

are now divergence free.
The extension of Chorin’s projection method to higher order multi-step time-

discretizations is straightforward. Throughout this paper we use a second order
Adams–Bashford scheme for the integration of the momentum equation (4.1), i.e.

~u∗ − ~un
δtn

=
1

2

(δtn + 2δtn−1

δtn−1
Ln − δtn

δtn−1
Ln−1

)
(4.6)

where δtn = tn − tn−1 denotes the length of the nth time step and Ln the right-hand
side of (4.1) evaluated at time tn.

4.2. Smoothing. So far we have neglected the discontinuity of the density at
the interface. Yet, a jump in the diffusion coefficient in (4.4) can have a substantial
adverse effect on the stability and accuracy of our numerical scheme. Hence, we need
to develop an appropriate smoothing scheme for the material properties, so that the
density and the viscosity are at least continuous across the interface. This smoothing
scheme, however, should not affect the approximation properties globally. Another
issue here is of course the discretization of the Dirac delta functional.

To this end, let us consider the interface as having a fixed thickness ε which is
proportional to the spatial meshsize h, see Figure 4.1. Then, we replace the density
ρ(φ) and the viscosity µ(φ) by

ρε(φ) = ρ2 + (ρ1 − ρ2)Hε(φ) and µε(φ) = µ2 + (µ1 − µ2)Hε(φ) (4.7)

where Hε denotes a smoothed Heavyside function

Hε(φ) :=





0 if φ < −ε
1
2 (1 + φ

ε + 1
π sin(πφε )) if |φ| ≤ ε

1 if φ > ε.
(4.8)
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v

w

p, φ

Figure 4.2. Location of variables in a staggered grid cell.

The associated smoothed delta functional is given by

δε(φ) := ∂φH
ε =

{
1
2ε (1 + cos(πφε )) for |φ| < ε
0 elsewhere.

(4.9)

Let us now consider a level-set function φ in this context. The smoothing employed
in (4.8) and (4.9) requires that the values of φ are symmetric to the zero level-set.
Hence, a level-set function with a constant gradient in the ε-neighborhood of the
interface should be employed. Due to our choice of a signed-distance function (3.13)
with |∇φ| = 1, the smoothing scheme given in (4.8) and (4.9) is directly applicable.

The use of the smoothed delta functional (4.9) reduces the quality of the approx-
imation locally within the smoothing region by one order. Consider a function g and
its approximation gh with a pointwise approximation error g − gh of order O(hp).
Then, the smoothed error (g − gh)δε is of the order O(hp)O(ε−1) ≈ O(hp−1) since
ε ≈ h.

4.3. Momentum Equation. Let us now consider the numerical treatment of
the momentum equation. To this end, we need to specify the space discretization
scheme. Here, we employ a widely used finite difference scheme on a staggered grid
to discretize the velocity field ~u := (u, v, w)T and the pressure p; i.e., the cell centers
correspond to the pressure nodes pi,j,k whereas the cell-face centers give the velocity
nodes ui+ 1

2 ,j,k
, vi,j+ 1

2 ,k
and wi,j,k+ 1

2
, respectively. Furthermore, we discretize the

level-set function on the same grid, i.e., in cell centers, see Figure 4.2.

4.3.1. Discretization of viscous terms. The computation of the intermediate
velocity ~u∗ requires the discretization of the viscous terms∇·(µ(φn)Sn) in the velocity
nodes. Hence, the x-component of the viscous term

2(µ(φ)ux)x + (µ(φ)(uy + vx))y + (µ(φ)(uz + wx))z (4.10)

is discretized in the nodes (i± 1
2 , j, k), whereas the y-component

(µ(φ)(uy + vx))x + 2(µ(φ)uy)y + (µ(φ)(vz + wy))z (4.11)

is discretized at (i, j ± 1
2 , k) and the z-component

(µ(φ)(uz + wx))x + (µ(φ)(vz + wy))y + 2(µ(φ)wz)z (4.12)

at (i, j, k ± 1
2 ). Note that for the ease of notation we omit the superscript n.
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Since the velocities are continuous for viscous fluids, the first derivatives can be
computed with central differences. For example, the first derivatives of the velocity u
in the x-direction are approximated by

[ux]i,j,k = (δx)−1(ui+ 1
2 ,j,k
− ui− 1

2 ,j,k
),

[uy]i+ 1
2 ,j+

1
2 ,k

= (δy)−1(ui+ 1
2 ,j+1,k − ui+ 1

2 ,j,k
),

[uz]i+ 1
2 ,j,k+ 1

2
= (δz)−1(ui+ 1

2 ,j,k+1 − ui+ 1
2 ,j,k

).

The first derivatives of the other velocities v and w are discretized in a similar fashion.
Furthermore, the second order derivatives in (4.10), (4.11) and (4.12) can also be
approximated using central differences, since the jump in the viscosity across the
interface has been regularized by the smoothed Heavyside function H ε, see (4.7).

In summary, the terms in (4.10) at position (i+ 1
2 , j, k) are approximated by

[(2µ(φ)ux)x]i+ 1
2 ,j,k

= 2(δx)−1
(
µ(φi,j,k) [ux]i,j,k − µ(φi+1,j,k) [ux]i+1,j,k

)

[(µ(φ)(uy + vx))y]i+ 1
2 ,j,k

= (δy)−1
(
µ(φi+ 1

2 ,j+
1
2 ,k

) [uy + vx]i+ 1
2 ,j+

1
2 ,k

)
−

(δy)−1
(
µ(φi+ 1

2 ,j− 1
2 ,k

)[uy + vx]i+ 1
2 ,j− 1

2 ,k

)
,

[(µ(φ)(uz + wx))z]i+ 1
2 ,j,k

= (δz)−1
(
µ(φi+ 1

2 ,j,k+ 1
2
) [uz + wx]i+ 1

2 ,j,k+ 1
2

)
−

(δz)−1
(
µ(φi+ 1

2 ,j,k− 1
2
)[uz + wx]i+ 1

2 ,j,k− 1
2

)
.

Since the level-set function φ is discretized in the cell-centers (i, j, k), the values
in the cell-face centers are not directly available. Therefore, we need to employ an
appropriate interpolation scheme to compute the required values e.g. φi+ 1

2 ,j,k+ 1
2

in the
cell-face centers. To this end, we use a higher order Lagrange interpolation scheme,
see (4.13).

4.3.2. Discretization of convective terms. To be able to treat convection
dominated flow problems, it is essential to employ a higher order discretization for
the convective terms. Here, we use a fifth order WENO scheme [29, 30] for the
treatment of all convective terms. Note that the use of a higher order scheme also
improves the conservation properties of the overall numerical method.

The main advantage of a WENO scheme is that it can handle large gradients and
even shocks very accurately since the approximation takes local smoothness into ac-
count. The weighted combination of multiple stencils then gives a higher order approx-
imation. The weighting scheme used in a WENO method is based on the smoothness
of the local stencils such that the largest weight is assigned to the smoothest sten-
cil. Hence, the most significant contribution to the approximation comes from the
smoothest region. Note that in contrast to ENO methods the employed weighting
scheme is continuous which is very beneficial to the accurate approximation of the
curvature.

In summary, we employ the following fifth order WENO scheme for the treatment
of the convective terms in the momentum equations (3.16), in the transport equation
(3.17) for the level-set function φ, and in the reinitialization of φ. In the following,
we present the scheme for the approximation of the x-component of the convective
term ~un · ∇φn in the transport equation in the cell centers (i, j, k). To this end, let
us consider the φnx-term, i.e., [φnx ]i,j,k. Again, we drop the superscript n for the ease
of notation.

12



We obtain [φx]i,j,k via the upwind procedure

[φx]i,j,k =





[φ−x ]i,j,k if ui,j,k > 0

[φ+
x ]i,j,k if ui,j,k < 0

0 otherwise

where [φ−x ] denotes the left-biased stencil and [φ+
x ] refers to the right-biased stencil.

These biased stencils in our fifth order WENO scheme are defined as

[
φ±x
]
i,j,k

:= ω±1

(q±1
3
− 7q±2

6
+

11q±3
6

)
+ω±2

(−q±2
6

+
5q±3

6
+
q±4
3

)
+ω±3

(q±3
3

+
5q±4

6
− q
±
5

6

)

where the q±-terms are given by the following stencils

q−1 =
φi−2,j,k − φi−3,j,k

δx
, q−2 =

φi−1,j,k − φi−2,j,k

δx
, q−3 =

φi,j,k − φi−1,j,k

δx
,

q−4 =
φi+1,j,k − φi,j,k

δx
, q−5 =

φi+2,j,k − φi+1,j,k

δx

and

q+
1 =

φi+3,j,k − φi+2,j,k

δx
, q+

2 =
φi+2,j,k − φi+1,j,k

δx
, q+

3 =
φi+1,j,k − φi,j,k

δx
,

q+
4 =

φi,j,k − φi−1,j,k

δx
, q+

5 =
φi−1,j,k − φi−2,j,k

δx
.

The respective weights ω± are defined as

ω±1 =
α±1

α±1 + α±2 + α±3
, ω±2 =

α±2
α±1 + α±2 + α±3

, ω±3 =
α±3

α±1 + α±2 + α±3

with

α±1 =
1

10

1

(ε̃+ IS±1 )2
, α±2 =

6

10

1

(ε̃+ IS±2 )2
, α±3 =

3

10

1

(ε̃+ IS±3 )2
.

Here, ε̃ > 0 is a regularization parameter (we use ε̃ = 10−6 throughout this paper)
and IS± denotes the WENO smoothness indicators

IS±1 =
13

12
(q1 − 2q2 + q3)2 +

1

4
(q1 − 4q2 + 3q3)2,

IS±2 =
13

12
(q2 − 2q3 + q4)2 +

1

4
(q2 − q4)2,

IS±3 =
13

12
(q3 − 2q4 + q5)2 +

1

4
(3q3 − 4q4 + q5)2.

The other derivatives of φ are approximated in a similar fashion. Note that close to
the boundary, where we do not have enough neighbors to compute all the stencils for
the q±-terms, we switch to a third order ENO scheme.

Now we need to approximate the velocity field ~u in the cell-centers (i, j, k). To
this end, we employ a third order Lagrange interpolation scheme, see Figure 4.3. For
the approximation of the velocity u in x-direction, this scheme gives

ui,j,k =
1

16

(
−ui− 3

2 ,j,k
+ 9ui− 1

2 ,j,k
+ 9ui+ 1

2 ,j,k
− ui+ 3

2 ,j,k

)
. (4.13)
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−1/16−1/16 9/16 9/16

Figure 4.3. Left-weighted (left) and centered (right) Lagrange interpolation scheme.

−1/32−1/32

−1/32 −1/32

9/32 9/32

9/329/32

Figure 4.4. Two-dimensional Lagrange interpolation.

At the boundary of the computational domain we use a right- or left-weighted La-
grange interpolation

left-weighted : ui,j,k =
1

16

(
5ui− 1

2 ,j,k
+ 15ui+ 1

2 ,j,k
− 5ui+ 3

2 ,j,k
+ ui+ 5

2 ,j,k

)
,

right-weighted : ui,j,k =
1

16

(
ui− 5

2 ,j,k
− 5ui− 3

2 ,j,k
+ 15ui− 1

2 ,j,k
+ 5ui+ 1

2 ,j,k

)
.

Note that for the evaluation of these stencils some velocity values need to be inter-
polated in the cell-face centers, for example the value of the y-component v of the
velocity field ~u at the position (i + 1

2 , j, k). To this end, we use a two-dimensional
Lagrange interpolation, see Figure 4.4. The velocity value v at (i+ 1

2 , j, k) is given by

vi+ 1
2 ,j,k

=
1

32
(−vi−1,j+ 3

2 ,k
− vi−1,j− 3

2 ,k
− vi+2,j+ 3

2 ,k
− vi+2,j− 3

2 ,k
+

9 vi,j+ 1
2 ,k

+ 9 vi,j− 1
2 ,k

+ 9 vi+1,j+ 1
2 ,k

+ 9 vi+1,j− 1
2 ,k

).

Close to the boundary of the domain, we switch to bilinear interpolation.

4.3.3. Surface tension, surface normals and curvature. Finally, we must
consider the approximation of the surface tension for the overall discretization of the
momentum equation (3.16). Recall that the surface tension force enters as a singular
source term which we converted to a volume integral using a delta functional and
the CSF-approach. Hence, the main ingredient in the approximation of the surface
tension is the use of the approximate delta functional δε given in (4.9). This leads
to a volumetric approximation of the surface tension force with support in an ε-
neighborhood of the free surface, i.e.,

σκδ(φ)~n ≈ σκδε(φ)~n.
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Recall that the unit normal ~n on the interface is given by ∇φ
|∇φ| and the curvature in

three dimensions is defined as κ = ∇ · ~n. Note that even though we employ a signed-
distance function, i.e., |∇φ| = 1 in an ε-neighborhood of the free surface, we discretize
∇φ
|∇φ| rather than ∇φ. Similarly, we discretize ∇ · ~n rather than ∆φ (compare section

4.5). This procedure allows for a more stable discretization of the surface normals as
well as the curvature at cusps and edges. The approximate unit normals are computed
as

~ni,j,k :=
([φx]i,j,k, [φy]i,j,k, [φz]i,j,k)T√
([φx]2i,j,k + [φy]2i,j,k + [φz]2i,j,k)

using central differences. For the discretization of ∇ · ~n we employ central differences
for the first order terms as well as the second order derivatives.

4.4. Discretization of transport equation for the level-set function. The
discretization of the transport equation (3.17) for the level-set function is based on
a second order Adams–Bashford scheme (4.6) for time discretization and the fifth
order WENO scheme given above, compare section 4.3.2, for the discretization of
the convective term ~un · ∇φn. Again, we use the third order Lagrange interpolation
scheme (4.13) for the evaluation of the velocities at the cell-centers.

Note that in general the transport of the level-set function will destroy the signed-
distance property. Hence, a transported level-set function should not be used for the
approximation of curvature or the surface tension. Instead, we refer to the transported
level-set function as an intermediate level-set function φ∗; i.e., the time-stepping
scheme gives φ∗ and not φn+1. To obtain a valid signed-distance function φn+1

from φ∗ a reinitialization must be employed. This reinitialization process will now be
discussed in the following section.

4.5. Reinitalization of level-set function. The reinitialization of the trans-
ported level-set function φ∗ is necessary, since φ∗ does not have the signed-distance
property. This, however, is crucial for the approximation of the surface tension.
Therefore, a post-processing of the intermediate level-set function φ∗ is necessary.
There exist a number of variants for the reinitialization of the level-set function, the
one we employ in our implementation is due to Sussman et al. [47]. Here, we give a
short review of this scheme for the sake of completeness.

Consider a given function φ∗(~x) whose zero level-set is the fluid interface. To
generate the appropriate signed-distance function φn+1(~x) with the same zero level-
set as φ∗(~x), we evolve the following pseudo-transient Hamilton–Jacobi problem to
steady state

dτ + sign(φ∗)(|∇d| − 1) = 0 (4.14)

with initial value d(~x, 0) = φ∗(~x). Note that the term sign(φ∗)|∇d| can be interpreted
as motion along the normal direction away from the zero level-set. Since our numerical
approach relies on the signed-distance property only in the ε-neighborhood of the free
surface it is sufficient to compute the solution of (4.14) up to τ ≈ ε. Furthermore, the
largest deviation from the exact signed-distance due to the transport of the level-set
function is in the ε-neighborhood. Throughout this paper, we solve the Hamilton–
Jacobi system (4.14) up to τ = 2 ε for the reinitalization of the level-set function.

For the numerical treatment of (4.14) it is advisable to employ a smoothed signum
function S, since this leads to better conservation properties as well as a more stable
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approximation. In our implementation we employ two different variants of a mollified
signum function, one due to Sussman et al. [47]

S(φ∗) =
φ∗√

(φ∗)2 + δx2
(4.15)

and another one due to Peng et al. [41]

S(φ∗) =
φ∗√

(φ∗)2 + |∇φ∗|2(δx2)
. (4.16)

Note that (4.16) takes the gradient of φ∗ into account which leads to the conservation
of the sign of the level-set function, i.e.,

sign(φn+1) = sign(φ∗)

in the entire domain. The Hamilton-Jacobi reinitialization (4.14) is discretized using
a third order TVD Runge–Kutta [44] method in time and a fifth order WENO scheme
(compare section 4.3.2) in space. The employed third order TVD Runge-Kutta scheme
applied to the model problem ∂tψ = Lψ can be written as

ψ(1) = ψn + δtL(ψn)

ψ(2) = ψn +
δt

4

[
L(ψn) + L(ψ(1))

]

ψn+1 = ψn +
δt

6

[
L(ψn) + 4L(ψ(2)) + L(ψ1)

]
.

(4.17)

Note, that the mollified signum function (4.16) needs to be updated before each Euler-
substep in the Runge–Kutta scheme.

4.6. Poisson solver with non-constant coefficients. Now that the momen-
tum equations are discretized, it remains to discretize the pressure Poisson equation
(4.4). Hence, let us consider the numerical treatment of

−∇ · 1

ρε(φn+1)
∇p̂n+1 = −∇ · ~u∗ (4.18)

where the density field ρε(φn+1) denotes the smoothed density field according to
section 4.2. Since the velocities in viscous fluid flow are sufficiently smooth, we can
compute the right-hand side of (4.18) with central differences

[∇ · ~u∗]i,j,k =
u∗
i+ 1

2 ,j,k
− u∗

i− 1
2 ,j,k

δx
+
v∗
i,j+ 1

2 ,k
− v∗

i,j− 1
2 ,k

δy
+
w∗
i,j,k+ 1

2

− w∗
i,j,k− 1

2

δz
.

The left-hand side of (4.18) is discretized with a standard seven-point-stencil where
the smoothed density field is evaluated via an interpolated level-set function, compare
(4.13). Thus, the discrete scheme reads as follows

[
∇ · 1

ρε(φ)
∇p̂n+1

]

i,j,k

=
1

(δx)2

(
p̂n+1
i+1,j,k − p̂n+1

i,j,k

ρε(φi+ 1
2 ,j,k

)
−
p̂n+1
i,j,k − p̂n+1

i−1,j,k

ρε(φi− 1
2 ,j,k

)

)

+
1

(δy)2

(
p̂n+1
i,j+1,k − p̂n+1

i,j,k

ρε(φi,j+ 1
2 ,k

)
−
p̂n+1
i,j,k − p̂n+1

i,j−1,k

ρε(φi,j− 1
2 ,k

)

)

+
1

(δz)2

(
p̂n+1
i,j,k+1 − p̂n+1

i,j,k

ρε(φi,j,k+ 1
2
)
−
p̂n+1
i,j,k − p̂n+1

i,j,k−1

ρε(φi,j,k− 1
2
)

)
.
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According to section 4.1, we complement the pressure equation with homogeneous
Neumann boundary conditions and enforce a vanishing mean for the pressure pn+1 =
(δt)−1p̂n+1. For the iterative solution of the resulting semi-definite diffusion equa-
tion we employ a parallel Jacobi-preconditioned BiCGSTAB method. Note that this
solver is not optimal in the sense that the number of iterations grows as we increase
the number of grid cells. More importantly, this solver is not robust with respect
to the variation in the density field. The development of optimal and robust solvers
is, however, very involved. One possible approach is the use of the so-called black-
box multigrid scheme due to Dendy [14] which employs operator or matrix-dependent
transfer operators [52]. This approach was further generalized in the so-called alge-
braic multigrid (AMG) methods [49]. The parallelization of AMG, however, is not
straightforward. In our implementation we have included an interface to a parallel
AMG solver [35]. In problems with large variations in the density and complicated ge-
ometry of the free surface, this solver clearly outperformed the Jacobi-preconditioned
BiCGSTAB method. Note, however, that AMG based solvers require the assembly of
the system matrix which is not necessary for the Jacobi-preconditioned BiCGSTAB
method.

4.7. Adaptive time step control. In summary, we employ an explicit scheme
for the velocities and an implicit approach for the pressure. Hence, we have to deal
with a time step restriction due to the CFL-condition for explicit schemes. The CFL-
condition takes convection, viscosity, surface tension and gravity into account and
enforces that the discrete information can evolve no further than one grid cell since
the discrete difference equations consider only fluxes between adjacent cells.

Here, the convective time step restriction is given by

δtc ≤ min
( δx

umax
,
δy

vmax
,
δz

wmax

)
, (4.19)

where umax, vmax, and wmax refer to the maximal absolute values of the velocities ~u
on the grid e.g. umax := maxi,j,k |ui+ 1

2 ,j,k
|. The viscous time step restriction is given

by

δtv ≤
(

max

{
µ1

ρ1
,
µ2

ρ2

}( 2

(δx)2
+

2

(δy)2
+

2

(δz)2

))−1

. (4.20)

Volume forces g = (g1, g2, g3)T can be included in the convection estimate (4.19)
since e.g. umax + |g1|δt is an upper bound for the overall horizontal component of the
velocity at the end of a time step. Thus, we extend equation (4.19) by the volume
force g and obtain a composite time step restriction

δtugc ≤
(umax + |g1|δtugc

δx

)−1

with respect to the velocity u in x-direction. Solving for δtugc, this leads to

δtugc ≤ 2

(
umax

δx
+

√(umax

δx

)2

+
4|g1|
δx

)−1

. (4.21)

The time step estimates for the components v and w of the velocity including the
volume force components g2 and g3, respectively, are analogous to (4.21).
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However, the combined force due to convective and diffusive forces must also be
considered. To this end, we insert the viscous time step restriction (4.20) into equation

(4.21). Altogether with V := max
{
µ1

ρ1
, µ2

ρ2

}(
2

(δx)2 + 2
(δy)2 + 2

(δz)2

)
this yields the time

step restriction δtugcv via

δtugcv ≤ 2

((umax

δx
+ V

)
+

√(umax

δx
+ V

)2

+
4|g1|
δx

)−1

(4.22)

for the x-component u of the velocity ~u.
Finally, it remains to consider the amount of acceleration due to surface tension,

which is included as a volume force, compare section 4.3.3. Recall that the smoothed
volume force due to surface tension is given by 1

ρ (σδεκ). Here, the maximal value

of δε is 1
ε , where ε = αδx describes the amount of smoothing in (4.9). The value of

the regularized density at the free surface is 1
2 (ρ2 + ρ1). With the definition κmax :=

maxi,j,k |κi,j,k|, we obtain 2 κmaxσ
αδx(ρ2+ρ1) as an approximation of the velocity induced by

surface tension. Since this velocity is included as a volume force in the right-hand side
of the momentum equations, it can be handled in a similar fashion as g1 in (4.22).
This leads to the overall time step restriction for the u component of the velocity field

δtugcvs ≤ 2 Cu

where

Cu :=

((umax

δx
+ V

)
+

√(umax

δx
+ V

)2

+
4|g1|
δx

+
8 κmaxσ

α(ρ2 + ρ1)(δx)2

)−1

.

The bounds for δtvgcvs and δtwgcvs with respect to the v and w velocities involving Cv
and Cw are defined in an analogous way. Applying this scheme to all three velocity

components, we obtain the appropriate time step restriction δt
u/v/w
gcvs ≤ 2 Cu/v/w for

each component separately. The final time step restriction can then be computed
easily as the minimum of these three scalar bounds. This yields the overall time step
restriction

δt ≤ 2 ξ min
Ω

(Cu, Cv, Cw)

with ξ ∈ (0, 1] as a safety factor. Throughout this paper, we employ this adaptive
time step control using a safety factor of ξ = 0.3 in our computations.

4.8. Parallelization. For the understanding of physical phenomena in the area
of multi-phase flows, the investigation of fluid-fluid interactions on very small scales is
essential. However, a direct numerical simulation (DNS) on such small scales requires
extremely high resolutions. Hence, an enormous amount of computer memory and
computing time is necessary to obtain a valid approximation. These issues make the
use of massively parallel high-performance computers a must for multi-phase flow
problems in three space dimensions.

To this end, we parallelized our two-phase flow solver with surface tension and
the level-set reinitialization procedure by means of a classical domain decomposition
method using the Message Passage Interface (MPI) [23]. Here, the main issue is of
course the exchange of all relevant information during the computation between the
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Figure 4.5. Exchange of pressure, level-set and velocity values for one ghost cell slice. White
bricks denote ghost cell values and black bricks refer to subdomain values.

different processors. Since we consider uniform grids only, the decomposition of the
computational domain and the resulting communication pattern is straightforward
and requires no special attention, see [21]. The communication volume, however, is
dependent on the employed finite difference stencil.

The width of the finite difference stencils we employ in our implementation ranges
from three to seven grid cells. Therefore, we need to attach up to three slices of
boundary ghost cells to each neighboring subdomain. These boundary values are –
unless they fall outside the computational domain Ω – computed by the processes
assigned to the neighboring subdomains and hence are not directly available. They
must rather be sent by the neighboring processes in a communication phase inside
the time-stepping loop. The schematic depicted in Figure 4.5 shows the exchange of
the relevant values within one ghost cell slice. Note that in contrast to parallel single-
phase flow solvers we also need to exchange the ghost cell values located at corners
and edges of each subdomain for the computation of the two-dimensional Lagrange
interpolation and the accurate approximation of curvature. Hence, the values for all
ghost cells which have at least one node in common with the respective subdomain
must be communicated in our two-phase level-set flow solver with surface tension
which can be written in the following algorithmic form.

Algorithm 1 (Parallel level-set two-phase flow solver).

1. Initialize δx, δy, δz, T , α, φ0 and Ω.
2. Set local domain Ωq.
3. Set t := 0, n := 0, h := max(δx, δy, δz), and ε := αh.
4. Enforce φ0 to be a global signed-distance function, e.g. solve (4.14) with τ = 1.
5. Set initial values ~un := ~u0, pn := p0, and φn := φ0 on local domain Ωq.
6. Set boundary values for ~un on local boundary ∂Ωq ∩ ∂Ω.
7. Time-loop: While t ≤ T :

(a) time step restriction:
Compute local time step δtq according to section 4.7.
Compute global time step δt := minq̂ δt

q̂.
(b) Momentum equation I:

Exchange ghost cell values for un and φn.
Compute intermediate velocity field ~u∗(~un, pn, φn) on local domain

Ωq according to section 4.1.
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Set boundary values for ~u∗ on local boundary ∂Ωq ∩ ∂Ω.
(c) Pressure Poisson equation I:

Exchange ghost cell values for u∗.
Set right-hand side b := ∇ · ~u∗ on local domain Ωq for pressure

Poisson equation.
(d) Transport equation:

Compute intermediate level-set function φ∗(~un, φn) according to sec-
tion 4.4.

(e) Set ψn := φ∗.
(f) Reinitalization-loop: While τ < 2 ε:

i. Exchange ghost cell values for ψn, ψ(1), and ψ(2).
ii. Set ψ(1), ψ(2), and ψn+1 according to (4.17) on local domain Ωq.

(g) Set φn+1 = ψn+1 and p̂it := pnδt.
(h) Pressure Poisson equation II:

Solve for p̂n+1(~u∗, φn+1) by preconditioned Krylov-method.
Exchange ghost cell values for p̂it per iteration it as required.

(i) Set pn+1 := (δt)−1p̂it.
(j) Momentum equation II:

Set ~un+1 according to section 4.1 on local domain Ωq.
Set boundary values for ~un+1 on local boundary ∂Ωq ∩ ∂Ω.

(k) Set t = t+ δt and n = n+ 1.

5. Numerical Results. In this section we present the results of our numerical
experiments. Here, we consider three-dimensional problems only. First we investi-
gate the mass conservation due to reinitialization, where we compare the influence
of different higher order schemes and the smoothing of the signum function. In our
second example we investigate the order of convergence obtained for the curvature by
means of a diagonally transported unit sphere. Here we also compare the results ob-
tained with and without the use of a smoothed delta functional. Then we examine the
global order of convergence of our overall numerical scheme for two-phase flow prob-
lems including surface tension on the basis of a rising bubble test problem. Finally,
regarding real world applications we compare our numerical scheme with experimen-
tal data given for the collapsing water column benchmark and study the qualitative
behavior of the dynamic contact angle in dependence of the surface tension.

5.1. Investigation of mass conservation due to reinitialization. In the
following we investigate different higher order ENO and WENO discretization schemes
employed in the Hamilton–Jacobi reinitialization procedure given in section 4.5. In
particular, we are interested in the influence of these schemes with respect to mass
conservation; i.e. conservation of the sign of the level-set function. To this end,
we consider a cube in three dimensions located inside the domain Ω = [0, 1]3. This
domain is discretized with a uniform 403 grid and as initial condition we use φi,j,k = 1
for the gridpoints i, j, k ∈ {7, . . . , 34} and φi,j,k = −1 elsewhere. Since the initial
condition for φ is not a signed distance function we iterate the reinitialization equation
(4.14) until τ = 1. Then the characteristic information has evolved up from the zero
level-set through the complete domain and we obtain an approximate global signed
distance function. On the basis of this cube test problem, we can observe the influence
of numerical diffusion and thus the loss in mass introduced by the reinitialization
procedure with different higher order schemes and different smoothing for the signum
function.

Figure 5.1 shows the zero level-set for τ = 1, where at the top line the reinitializa-

20



Figure 5.1. Reinitialization with a first (left), a second (center), and a third order (right) ENO-
scheme (top row) and with a fifth order WENO-scheme using (4.15) as mollified signum function
(left bottom row) and (4.16) as mollified signum (center bottom row), initial condition (right bottom
row).

Table 5.1
Mass after the reinitialization in percent of the initial mass

ENO-1 ENO-2 ENO-3 WENO-5 WENO-5
with (4.15) with (4.15) with (4.15) with (4.15) with (4.16)

84.80% 95.66% 96.41% 98.39% 100.0%

tion function is discretized in space using a first (left), second (center), and third order
ENO-scheme (right) including the smoothed signum function (4.15). The left picture
from the bottom line of Figure 5.1 shows the corresponding zero level-set obtained
using a fifth order WENO scheme together with (4.15). The center picture of the
bottom line shows the level-set solution using a fifth order WENO together with the
smoothed signum function (4.16). The zero level-set of the initial condition is shown
on the lower right of Figure 5.1. From these pictures, we can clearly observe that
the WENO schemes outperform the ENO schemes. Furthermore, the combination
of the fifth order WENO scheme with the smoothed signum function (4.16) shows a
substantially superior performance than its combination with (4.15). In fact, we find
perfect conservation of the sign of the level-set function.

In Table 5.1 we give the measured values for the discrete mass which was computed
by

∫

Ω

ρ(φ(~x)) d~x ≈ (∆x)3
∑

i,j,k

ρ(φi,j,k,),

without smoothing the density function ρ. These results underline the observed in-
fluence of the discretization schemes with respect to the reinitialization procedure.
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Table 5.2
Convergence study for approximation of curvature. Given are the L1

h-, the L2
h- and L∞h -norms

of the errors ∆κh and ∆κεh and the respective convergence rates γh.

L1
h-error L2

h-error L∞h -error

N3 ∆κh γh ∆κδh γδh ∆κh γh ∆κδh γδh ∆κh γh ∆κδh γδh
253 3.35−1 — 6.47−1 — 7.24−2 — 1.59−1 — 5.922 — 1.24−1 —
503 4.08−2 3.03 1.64−1 1.98 8.85−3 3.03 4.29−2 1.89 7.10−3 3.05 3.51−2 1.82
1003 7.88−3 2.37 6.53−2 1.33 1.78−3 2.31 1.80−2 1.25 1.01−3 2.81 1.21−2 1.53
2003 1.93−3 2.03 3.22−2 1.02 4.39−4 2.01 8.95−3 1.01 2.20−4 2.19 6.10−3 0.99

Figure 5.1 as well as Table 5.1 point out a significant improvement in mass conser-
vation, when the fifth order WENO scheme is applied together with the modified
signum function (4.16). We can clearly observe the expected conservation of the sign
of the level-set function during the reinitalization. Hence, in our further experiments
we always employ (4.16) together with a fifth order WENO scheme during the reini-
tialization.

5.2. Convergence study for the curvature for a transport problem. In
this section we investigate the convergence behavior of our numerical scheme with
respect to curvature considering the simple test-case of an advected unit sphere. Since
the curvature of the unit sphere is known analytically, we can directly compare the
approximated curvature with the exact solution.

To this end we consider the domain Ω = [0, 4]3 using a sequence of uniformly
refined equidistant grids. Furthermore, we use periodic boundary conditions on ∂Ω
and a stationary velocity field

u(x, y, z) = 1, v(x, y, z) = 1, w(x, y, z) = 0.

As initial condition for the level-set function we use the exact distance function

φ(x, y, z) = 1−
√

(x− 2)2 + (y − 2)2 + (z − 2)2

for a sphere with radius r = 1 centered at (2, 2, 2). The order of convergence γh is
given by

γh :=
log
(
‖κ2h−κ‖
‖κh−κ‖

)

log 2
, (5.1)

where κ is the exact curvature and κh and κ2h are the discrete curvatures computed
on two successive grids; i.e., the grids with meshsize h and 2h. We consider the time
interval [0, T ] with T = 4, so that the unit sphere passes through the whole domain
along the x-y-diagonal, i.e., we simulate exactly one period. The time step size in this
experiment was δt = h2. The curvature is computed in all grid cells with |φh| < ε
where ε = α h with α = 1.5. Here, we also computed the following differences

∆κh := κh(φh)− κ(φ) and ∆κδh := ∆κhδ
ε(φh),

where the superscript δ denotes if the approximation error ∆κh was weighted by the
approximate delta functional δε. Recall that we need to employ a smoothed delta
functional when we take surface tension effects into account. On the basis of these
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Figure 5.2. Rising bubble at time t=0.075s for N = 363, N = 723 and N = 1443.

Table 5.3
Parameter for rising bubble problem. Fluid1 denotes the bubble and fluid2 the surrounding fluid.

fluid1: µ1 = 2.5−4kg/ms, ρ1 = 1.00kg/m3 surface tension: σ = 5.0−3N/m
fluid2: µ2 = 5.0−4kg/ms, ρ2 = 1.01kg/m3 surface thickness: ε = 1.6h
forces: (g1, g2, g3) = (0,−9.81, 0)m/s2 boundary conditions: slip

values, we finally approximated the norms ‖∆κ(δ)
h ‖L1 , ‖∆κ(δ)

h ‖L2 and ‖∆κ(δ)
h ‖L∞ by

‖∆κ(δ)
h ‖L1

h
:=

∑
|φh|<ε |∆κ

(δ)
h |h2

‖∆κ(δ)
h ‖L2

h
:=

√∑
|φh|<ε(∆κ

(δ)
h )2h2

‖∆κ(δ)
h ‖L∞h := max|φh|<ε |∆κ

(δ)
h |.

The measured values for this test problem are given in Table 5.2. From these
numbers we can clearly observe the anticipated second order convergence for the
approximation of the curvature when we do not employ a smoothed delta functional.
The rates obtained with the smoothed delta functional show essentially a first order
convergence as expected since the smoothing of the delta functional is of order ε = α h,
i.e., we obtain an approximation of order O(h) since ∆κδh = ∆κhδ

ε ≈ O(h2)O(ε−1) ≈
O(h). Note that a higher order approximation of the delta functional might increase
the order of convergence, but on the other hand may lead to stability problems for
the numerical scheme.

5.3. Convergence study of a rising bubble. To determine the convergence
behavior of the complete two-phase flow solver including surface tension, we now
consider the rising bubble problem. We anticipate to find first order convergence
near the free surface due to the smoothing of the delta functional whereas away
from the free surface we expect to obtain second order approximation since there,
the approximate delta functional is not active. Hence, we anticipate to find a global
approximation order close to two.

In this experiment we use a sequence of three refined equidistant grids on the
computational domain Ω = [0, 0.15m]3, namely we use the grids with meshwidth
h = 1/145, 2h = 1/73 and 4h = 1/37 together with the equidistant time steps
δth = 6.25−5, δt2h = 2.50−4, and δt4h = 1.00−3 respectively. The initial con-
dition for the level-set function φ corresponds to a spherical bubble with center
(0.075m, 0.05m, 0.075m) and radius r = 0.025m. All further physical properties are
listed in Table 5.3.

We consider the absolute errors [48]

EL1
h

=
1

N

∑
|Ih2h,4hψ2h,4h − ψh| and EL∞h = max |Ih2h,4hψ2h,4h − ψh| (5.2)
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Figure 5.3. Contour plot of the error in
the velocity in x-direction between uh and u4h

(top row) and uh and u2h (bottom row) on the
cut-plane (i, j, N/2). Depicted is the free surface
with respect to the finest mesh (bold line), the
contour lines for the values -0.06, -0.04, -0.02,
-0.015, -0.01, -0.0015, -0.001, -0.0005, 0.0005,
0.001, 0.0015, 0.01, 0.015, 0.02, 0.04, 0.06. On
the right-hand side the smoothing region on the
coarse mesh, i.e. |φ4h| < 1.6 ·4h, is indicated by
the gray shaded area.

Figure 5.4. Contour plot of the error in
the velocity in y-direction between vh and v4h

(top row) and vh and v2h (bottom row) on the
cut-plane (i, j, N/2). Depicted is the free surface
with respect to the finest mesh (bold line), the
contour lines for the values -0.06, -0.04, -0.02,
-0.015, -0.01, -0.0015, -0.001, -0.0005, 0.0005,
0.001, 0.0015, 0.01, 0.015, 0.02, 0.04, 0.06. On
the right-hand side the smoothing region on the
coarse mesh, i.e. |φ4h| < 1.6 ·4h, is indicated by
the gray shaded area.

Table 5.4
Convergence study for rising bubble problem at time t = 0.075s.

EL∞
h

-error EL1
h

-error

373/1453 733/1453 γh 373/1453 733/1453 γh
u 1.43−1 4.95−2 1.54 1.23−3 3.50−4 1.81
v 1.42−1 4.64−2 1.61 2.01−3 6.08−4 1.72
w 1.43−1 4.95−2 1.54 1.23−3 3.50−4 1.81
φ 3.19−3 1.11−3 1.51 8.00−4 2.25−4 1.82

where we used a third order spline interpolation Ih2h,4h to interpolate the coarse grid
values ψ2h,4h to the finest grid before computing the difference of two solutions. Here,
N is the total number of gridpoints on the finest grid. We determine the numerical
order of convergence γh analogously to (5.1). In Figures 5.3 and 5.4 several contour
plots on the cut-plane (i, j,N/2) of the error ψ2h,4h − ψh are given for the velocity
in x-direction, i.e. ψ = u, and the velocity in y-direction, i.e. ψ = v. Depicted are
the free-surface on the finest mesh, the contour-lines of the error and the smoothing
region with respect to the coarse mesh with spacing 4h. From these plots we can
clearly observe the expected fast convergence away from the free surface (outside
the smoothing region) and the larger error gradients near the interface (inside the
smoothing region). The measured errors and convergence rates at time t = 0.075s
are given in Table 5.4, see also Figure 5.2. These numbers show that we obtain the
anticipated convergence behavior of the overall scheme including surface tension. The
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t = 0.0s t ≈ 0.05s t ≈ 0.075s

t = 0.1s t ≈ 0.125s t ≈ 0.15s

Figure 5.5. Rising bubble on finest grid with meshwidth h = 1/145.

Table 5.5
Study for mass conservation at time t = 0.075s

Conserved mass in percent of initial mass
4h 2h h

present mass 96.06% 98.95% 99.81%
mean mass 98.91% 99.55% 99.88%

rates obtained for the L1
h-norm are between 1.7 and 1.8 and slightly larger than the

rates obtain for the L∞h -norm. This is of course due to the fact that the largest error
occurs close the free surface. Figure 5.5 shows the temporal evolution of the rising
bubble on the finest grid, where the free surface is depicted slightly transparent.

We also investigated the overall mass conservation of our scheme for this model
problem. Here, we approximated the mass conservation in the nth time step, i.e. at
time tn, by

Mn
h =

∑
i,j,k

ρε(φni,j,k)h3

∑
i,j,k

ρε(φ0
i,j,k)h3

which describes the relationship of the current mass at time tn to the initial mass.
Furthermore, we also approximated the temporal mean by

∆Mn
h =

1

tn

n∑

q=0

Mq
hδtq

where δtq refers to the time step size in the qth time step. The computed values with
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Figure 5.6. Diagram of a typical apparatus from J.C. Martin and W.J. Moyce.

Table 5.6
Parameter for collapsing water column. Fluid1 denotes the water column and fluid2 the sur-

rounding air.

fluid1: µ1 = 1.002−3kg/ms, ρ1 = 9.9822kg/m3 surface tension: σ = 5.0−3N/m
fluid2: µ2 = 1.810−5kg/ms, ρ2 = 1.2050kg/m3 surface thickness: ε = 1.6h
forces: (g1, g2, g3) = (0,−9.81, 0)m/s2 CFL-number: 0.3

tn = 0.075s are given in Table 5.5. From these numbers we can observe the good
conservation properties of our scheme as well as the convergence as the grid is refined.

5.4. Collapsing Water Column. To validate our numerical scheme we also
compared our simulations to experimental data. To this end, we computed the well-
known collapsing water column benchmark problem and compared our results with
the experimental data from Martin and Moyce [33]. A sketch of the experimental
setup is given in Figure 5.6.

In our numerical simulation we rebuild the experimental setup in the computer.
We consider the computational domain 0.2286m×0.085725m×0.05715m and employ
a uniform grid of size 80 × 30 × 20 for the discretization. The initial water column
has a height of 0.05715m and a width of 0.05715m and is located on the right-hand
side of the reservoir. As boundary conditions we used outflow boundaries for the
wall on the top and on the left hand side, on all other walls we used classical slip
boundary conditions. See Table 5.6 for further parameters used in the simulation of
this example.

The result of our numerical simulation are given in Figure 5.7 and Figure 5.8.
From the snapshots of the free surface depicted in Figure 5.7 we can observe the time
evolution of the collapsing column, which is in good agreement with the experimental
data. This is also clear from the graphs depicted in Figure 5.8, where we plotted the
position of the leading edge of the collapsing column (left) as well as the height of
the column at the right-hand boundary (right) over time. For comparison the graphs
also give the experimental data obtained by Martin and Moyce [33]. Here, we can
observe that our numerical scheme is in very good agreement with the experiment.
However, the simulation seems to be ahead of the physical data with respect to the
position of the leading edge. We believe that this shift is due to the unsynchronized
start of the simulation and the physical experiment. The removal of the dam in the
real world experiment cannot be instantaneous, whereas in the numerical simulation
it is. This accounts for the time-gap between the simulation and the experiment. This
conjecture is supported by the fact, that a positive shift of the measured numerical
data by 0.007s brings the numerical data in perfect alignment with the experimental
data.
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Figure 5.7. Transient free surfaces of the collapsing water column problem.
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Figure 5.8. Numerical results compared with experimental results of J.C. Martin and W.J.
Moyce.

5.5. Influence of surface tension and gravity on the dynamic contact
angle. In our last numerical experiment we consider the evolution of the dynamic
contact angle for a semi-spherical drop moving down an inclined surface with in-
clination of 45◦. Note that the inclination is encoded via a rotated gravitational
force. The computational domain in this experiment is set to be of length= 15mm,
height= 2mm and width= 5mm. Here, we completed four different simulations. Two
simulations without surface tension (σ = 0.0N/m) and two with surface tension using
σ = 0.007275N/m. Furthermore, we employed two different values for the gravi-
tational force, namely g = −6.93m/s2 and g = −9.81m/s2, see Table 5.7 for the
complete list of parameters.

Since the moving contact line causes a singularity in the stress tensor, it is widely
believed that slip occurs in the neighborhood of the contact line. Therefore, one
usually employs a specialized slip condition, globally or near the contact line. The
simplest relation used to model this slip condition is the so-called Navier slip condition
which has the form

u = β
∂u

∂y
. (5.3)

Here, the slip coefficient β has the dimension of length, and can be interpreted as
the distance from the boundary where an extrapolated velocity profile will vanish.
In most applications, this slip length is much smaller than any realistic meshsize for
numerical simulation. Numerically, we can impose a slip length on the order of the

Table 5.7
Parameter for sliding drop. Fluid1 denotes the drop and fluid2 the surrounding air.

fluid1: µ1 = 1.002−3kg/ms, ρ1 = 9.9822kg/m3 surface tension: σ = 5.0−3N/m
fluid2: µ2 = 1.810−5kg/ms, ρ2 = 1.2050kg/m3 surface thickness: ε = 1.6h
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Figure 5.9. Sliding drop for g=6.93 without surface tension. The color-contour shows the
velocity in x-direction.

Figure 5.10. Sliding drop for g=9.81 without surface tension. The color-contour shows the
velocity in x-direction.

meshsize only. In our experiment we simply choose β = δy
2 and enforce (5.3) globally.

The results of our experiments without surface tension are given in Figure 5.9 and
Figure 5.10, where several snapshots of the free surface are depicted at different time
steps. Since the surface tension force is not considered, the drop collapses rapidly and
the viscous terms get dominant over time causing a slow-down in the movement.

The results of our experiments including surface tension are given in Figure 5.11
and Figure 5.12, where several snapshots of the free surface are depicted at different
time steps. Furthermore, we measured the contact angles and the x-velocities along
the solid wall at the upper leading edge of the drop and at the lower leading edge.
The respective graphs are also given in Figure 5.11 and Figure 5.12. Note that the
small oscillations visible in the graphs are due to the fact that we cannot measure
the contact angle directly on the free surface since the zero level-set usually does
not pass through the grid points. Therefore, we approximate the position of the
free surface by choosing the center point between two adjacent grid points where the
level-set function changes sign. More precisely, we focus on the level-set values located
at the vertical center cut-plane (i, j, k = N/2) directly above the substrate. If two
neighboring level-set values φi,1,N/2 and φi+1,1,N/2 have different sign, we compute

the contact-angle at the location (i+ 1
2 , 1, N/2) using central differences in tangential

direction and weighted one-sided differences in normal direction. Hence, we expect to
find small oscillations on the scale of the meshsize. The graphs given in Figure 5.11
and Figure 5.12 clearly show that the contact angle increases with increasing velocity
of the moving contact line. This qualitative behavior is also observed in physical
experiments [4, 18].

6. Concluding remarks. In this paper we presented a parallel incompressible
Navier–Stokes solver for two-phase flow problems with surface tension in three dimen-
sions. Our scheme employs a standard staggered grid finite difference discretization
and a projection method with a fifth order WENO scheme.
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Figure 5.11. Sliding drop for g=6.93 with surface tension (upper row). The color-contour
shows the velocity in x-direction. The dynamic contact angle (center row) at the upper and lower
edge of the drop and the respective velocities in x-direction (lower row).

The free surface between the two fluid phases is tracked with a level-set approach.
Here, the interface conditions are implicitly incorporated into the momentum equa-
tions by the CSF method and surface tension is evaluated using a smoothed delta
functional and an appropriate third order interpolation scheme. Altogether, our ap-
proach exhibits a second order convergence for the approximation of the curvature
when no smoothing is applied (or away from the smoothing region) and a first order
convergence near the free surface when smoothing is employed. The results of our nu-
merical experiments clearly show the anticipated convergence behavior. Furthermore,
we compared our results to experimental data and observed a very good agreement.

Finally, we have considered the dynamic contact angle problem for the test case
of a sliding drop on an inclined surface. Here, we clearly observed the expected qual-
itative and physical behavior of the moving contact line. In fact, the angle increases
with increasing velocity of the moving contact line. Hence, a direct numerical simu-
lation of the dynamic contact angle problem seems feasible if surface tension effects
are taken into account.
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Flüssigkeiten unter Berücksichtigung von Dichteunterschieden, Dissertation, Fakultät für
Informatik der Technischen Universität München, 1997.

[38] W. Noh and P. Woodward, SLIC–Simple line interface calculation, in Fifth International
Conference on Fluid Dynamics, Lecture Notes in Physics, A. V. Vooren and P. Zandbergen,
eds., vol. 59, Springer, 1976, p. 330.

[39] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, no. 153 in
Applied Mathematical Sciences, Springer, New York/Berlin/Heidelberg, 2003.

[40] S. Osher and J. Sethian, Fronts propagating with curvature–dependent speed: Algorithms
based on Hamilton–Jacobi formulations, J. Comput. Phys., 79 (1988), pp. 12–49.

[41] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, A PDE-based fast local level set
method, J. Comput. Phys., 155 (1999), pp. 410–438.

31



[42] G. Russo and P. Smereka, A remark on computing distance functions, J. Comput. Phys.,
163 (2003), pp. 51–67.

[43] J. A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press,
1999.

[44] C. Shu and S. Osher, Efficient implementation of essentially non–oscillatory shock–capturing
schemes, J. Comput. Phys., 77 (1988), pp. 439–471.

[45] M. Sussman and E. Fatemi, An efficient, interface preserving level set re-distancing algorithm
and its application to interfacial incompressible fluid flow, SIAM J. Sci. Comput., 20
(1999), p. 1165.

[46] M. Sussman and G. Puckett, A coupled level set and volume-of-fluid method for computing 3d
and axisymmetric incompressible two-phase flows, J. Comput. Phys., 162 (2000), pp. 301–
337.

[47] M. Sussman, P. Smereka, and S. Osher, A level set approach for computing solutions to
incompressible two–phase flow, J. Comput. Phys., 114 (1994), pp. 146–159.

[48] M. Sussman and M. Y.Hussaini, A discontinuous spectral element method for the level set
equation, J. Sci. Comput., 19 (2003), pp. 479–500.

[49] U. Trottenberg, C. W. Osterlee, and A. Schüller, Multigrid, Academic Press, San Diego,
2001, Appendix A: An Introduction to Algebraic Multigrid by K. Stüben, pp. 413–532.
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