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Abstract

Many machine learning problems deal with the estimation of con-
ditional probabilities p(y | x) from data (x1, yi), . . . , (xn, yn). This in-
cludes classification, regression and density estimation. Given a prior
for p(y | x) the maximum a-posteriori method estimates p(y | x) as the
most likely probability given the data. This principle can be formu-
lated rigorously using the Cameron–Martin theory of stochastic pro-
cesses and allows a variational characterisation of the estimator. The
resulting nonlinear Galerkin equations are solved numerically. Con-
vexity and total positivity lead to existence, uniqueness and error
bounds. For machine learning problems dealing with large numbers
of features we suggest the use of sparse grid approximations.

Contents

1 Introduction 2

2 The maximum a-posteriori method with exponential families 3

3 The variational problem and the Ritz method 4

4 Examples and numerical approach 6

5 Concluding remarks 10

∗Statistical Machine Learning Program, NICTA and Centre for Mathematics and its
Applications, ANU, Canberra, Australia mailto:markus.hegland@anu.edu.au

†Institut für Numerische Simulation, University of Bonn, Germany mailto:griebel@

ins.uni-bonn.de

1



1 Introduction

Density estimation is one of the most versatile tools for data exploration of
large and complex data sets. From the density one can determine charac-
terising features like moments, modes or clusters. Conditional distributions
are used for classification and regression but they are more general as they
allow for multiple classes or regressors. This is useful when information
is missing which is typical for data mining. There are three main classes of
density estimators [6]: Histograms, kernel density estimators and (penalised)
maximum likelihood estimators. Histograms are widely used for simple, low-
dimensional explorations. Kernel density estimators are more precise and
are a smoothed version of the empirical distribution. Using a kernel func-
tion ρ they take the form p(y) = 1

nh

∑n

i=1 ρ
(

y−yi

h

)

where yi are the observed
data of the variable y and h is the bandwidth of the estimator. The compu-
tational effort is concentrated in the evaluation of the kernel estimator and
may require O(n) operations per evaluation of one value p(y). The third fam-
ily of estimators is based on finding a density p(y) for which the likelihood
L(p|y1, . . . , yn) =

∏n

i=1 p(yi) of the data is large. In most cases this leads to
an ill-posed problem and thus an additional regularising penalty functional
is used. The maximum aposteriori estimators considered in this article are
an example of a penalised maximum likelihood estimator. By penalising the
logarithm of p one can avoid negative values of p(y) which otherwise may
occur for this method. The approach developed here is closely related to
kernel methods used for classification and regression [5]. It generalises that
approach in two important aspects: First, it estimates conditional densities
and second, it considers infinite-dimensional function spaces.

The remainder of this article is organized as follows: In the next section,
we discuss the maximum a-posteriori method and exponential function fam-
ilies. The main challenge for this approach is to overcome the difficulty that
the prior of an infinite dimensional function class does not possess a density.
In the third section we derive approximate solutions to the resulting varia-
tional problem using a Ritz method. We also show that these problems have
a unique solution and we provide error bounds. In the fourth section we illus-
trate the approach by some applications from the area of density estimation.
We discuss the numerical solution approach via Newtons method, a discreti-
sation by finite elements for continuous problems and, for a two-dimensional
continuous problem, an application of the sparse grid combination method.
Finally we close with some concluding remarks.
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2 The maximum a-posteriori method with ex-

ponential families

The maximum a-posteriori method (MAP) introduces a prior probability over
the set of all models and interprets the likelihood as the conditional proba-
bility of the data given the model. From this, the “posterior” probability of
models is defined as the conditional probability of the model given the data.
The estimated model is then the maximal mode or the “most likely” model
of the posterior. A difficulty occurs with this approach when the model space
is infinite dimensional. In the following, we adopt the approach suggested
in [4] to address this difficulty. In our particular case the model is defined
by a set X, a set Y with finite measure and a function u ∈ R

X×Y such that
∫

Y
exp(u(x, y)) dy < ∞. The conditional probability distribution is

p(y | x) =
exp(u(x, y))

∫

Y
exp(u(x, y)) dy

. (1)

Let µ denote a probability measure over the set R
X×Y . We assume here that

the set of functions u for which exp(u(x, ·)) is in L1(Y ) is a µ-measurable
set. One defines for an appropriate function h the translated measure as
µh(A) = µ(h + A) where h + A is the set of all functions u + h where u ∈ A.
If µh is absolutely continuous with respect to µ one can introduce the Radon-
Nikodym derivative

rh =
dµh

dµ

which is an element of L1(µ). Using the composition properties of shifts and
the Radon-Nikodym derivative one can then introduce a function ρ such that
rh(u) = ρ(u+h)/ρ(u) and where ρ(0) = 1. It turns out that for finite dimen-
sional function spaces this coincides with the density up to a normalisation
factor. A mode of a distribution is then characterised as a maximum of ρ.
Note, however, that ρ is in general only defined on a subset of the set of all
functions so that we can only really consider modes in that subset. But it
turns out that this subset is flexible enough for our applications. Note that
while ρ generalises the concept of a density it is different from the concept of
an “improper probability density” as sometimes used in Bayesian statistics.
There the improper density is typically a density of a non-finite measure
whereas in our case ρ is not a density at all but describes a finite measure.

The prior we consider here is a Gaussian prior with zero expectation. This
can be characterised by the covariance operator and leads to the Cameron-
Martin space [1] which is a (reproducing kernel) Hilbert space H with norm
‖ · ‖H . One can show that the function ρ in this case is ρ(u) = exp(−‖u‖2

H).
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One can also determine the function ρ for the a-posteriori distribution using
the conditional likelihood and the exponential family from equation (1). One
gets in this case

ρ(u) = exp

(

−‖u‖2
H +

n
∑

i=1

u(xi, yi) −
n
∑

i=1

log

(
∫

Y

exp (u (xi, y)) dy

)

)

.

More details on the derivation can be found in a recent paper of the first
author [4]. The MAP estimator u is then the maximum of this function or,
equivalently, u = argminv∈H J(v) where

J(v) = ‖v‖2
H +

n
∑

i=1

log(

∫

Y

exp(v(xi, y)) dy)−
n
∑

i=1

v(xi, yi).

3 The variational problem and the Ritz method

The maximum a-posteriori method leads to a variational characterisation of
the function u. In particular, let the log partition function at point x ∈ X
be defined as

φ(v, x) = log

(
∫

Y

exp(v(x, y)) dy

)

,

and let a nonlinear functional F and a linear functional b be defined by

F (v) = ‖v‖2
H +

n
∑

i=1

φ(v, xi) and 〈b, v〉 =

n
∑

i=1

v(xi, yi).

It follows then that J(v) = F (v)−〈b, v〉. If F ′ denotes the Gateaux derivative
of F then the minimizer u of J satisfies F ′(u) = b, or 〈F ′(u), v〉 = 〈b, v〉 for
all v ∈ H .

For the numerical solution of this variational problem we consider the
Ritz method. Let Vn ⊂ H for n = 0, 1, 2, . . . be a sequence of linear finite-
dimensional spaces. The (Rayleigh–)Ritz approximant in space Vn is then

un = argminv∈Vn
J(v) (2)

and it satisfies the Ritz–Galerkin equations

〈F ′(un), v〉 = 〈b, v〉, v ∈ Vn. (3)

In order to show well-posedness of the occurring problems and the con-
vergence of un to the exact solution u we first establish some properties of F .
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Recall that p(y | x) = exp(u(x, y))/
∫

Y
exp(u(x, z)) dz. One can easily show

that the Gateaux derivative φu(u, x) is then

〈φu(u, x), v〉 =

∫

Y

p(y | x)v(x, y) dy

and from this one sees that the Gateaux derivative F ′ satisfies:

〈F ′(u), v〉 = 2(u, v)H +
n
∑

i=1

∫

Y

p(y | xi)v(xi, y) dy, v ∈ H.

The second Gateaux derivative is a linear map φu,u(u, x) : H → H∗ and one
gets

〈φuu(u, x)v, w〉 =

∫

Y

p(y | x)v(x, y)w(x, y) dy

−

∫

Y

p(y | x)v(x, y)dy

∫

Y

p(y | x)w(x, y) dy.

It follows that φu is the expectation operator and φuu thus gives the covari-
ance of random variables v, w ∈ H , or, with E(v | x) = 〈φu(u, x), v〉 one
has 〈φuu(u, x)v, w〉 = E((v − E(v | x))(w − E(w | x)) | x). For the second
derivative F ′′ one gets

〈F ′′(u)v, w〉 = 2(v, w)H +

n
∑

i=1

E((v − E(v | xi))(w − E(w | xi)) | xi).

From this, the following Lemma immediately follows:

Lemma 1. F ′′(u) is positive definite and F is strictly convex.

Furthermore, one also has the following lemma:

Lemma 2. Let Y have finite measure and let H ⊂ C[X×Y ] be continuously

embedded. Then F (u) is coercive, i.e., F (u)/‖u‖H → ∞ as ‖u‖H → ∞.

Proof. One has |φ(u, x)| ≤ ‖u‖∞|Y | ≤ C‖u‖H|Y | and so the second term in
F is at most of O(‖u‖H) and is thus dominated by the first term which is
‖u‖2

H . The coercivity follows directly from this observation.

Furthermore, one sees that

〈φv(v, x) − φw(w, x), v − w〉 =

∫ 1

0

〈φuu((1 − t)w + tv)(v − w), v − w〉 dt ≥ 0

as φuu is positive semidefinite. From this it follows that 〈F ′(v) − F ′(w), v −
w〉 ≥ 2‖v−w‖2

H and, consequently, F ′ is uniformly monotone. One can then
apply Theorem 42A from a book by Zeidler [7] and gets:
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Theorem 1. Let V1 ⊂ V2 ⊂ · · · ⊂ H be a sequence of subspaces such that

for every v ∈ H the projections Piv ∈ Vi converge to v. Then the variational

problems in H and Vi have unique solutions u and ui respectively and ui → u.

Furthermore, there exists a constant C > 0 independent of u and ui such that

‖u − ui‖
2
H ≤ min

v∈Vi

J(v) − min
v∈H

J(v) ≤ C‖u − ui‖
2
H .

Now, the remaining problem is to solve the unconstrained optimisation
problems (2) for the ui. This can be done with Newton’s method. Using three
examples, the associated numerical approach is explained in more detail in
the next section.

4 Examples and numerical approach

Three simple examples shall illustrate the numerical approach for the case of
density estimation, i.e., where X has only one value. In the first example Y
has two discrete values whereas in the second and third example we consider
a continuous one- and two-dimensional interval, respectively. Here, as an
application, we choose the distribution of the observations of the eruption
lengths and the intervals between observations for the Old Faithful geyser
in the US Yellowstone park, see Silverman’s book on density estimation [6]
for more information about the data which we obtained from the R package.
The code was implemented in Python.

Example 1

First we consider simulated data with Y = {0, 1}. Then u is a vector u =
(u0, u1)

T and the log partition function is φ(u) = log(eu0 + eu1). As a prior
we assume that the ui are i.i.d. and normally distributed with expectation
zero and variance σ2. The scalar product of the Cameron-Martin space is
then (u, v)H = α(u0v0 + u1v1) where, to simplify notation, we introduce
α = 1/(2σ2). The reproducing kernel ky (defined by u(y) = (ky, u)H) is then
ky = α−1(1, 0) and α−1(0, 1) for y = 0 and 1, respectively.

The data consists of n records (y0, y1, . . . , yn) where yi ∈ {0, 1}. Let
n0 and n1 be the number of records with yi = 0 and yi = 1, respectively.
The total number of records is then n = n0 + n1. The functional F is then
F (u) = α(u2

0 + u2
1) + n log(eu0 + eu1) and it follows that the derivative is

F ′(u) = 2α(u0, u1) + n(eu0 , eu1)/g(u) where g(u) = eu0 + eu1 . The ”data
part” b in the nonlinear functional J(u) = F (u) − 〈b, u〉 is b = (n0, n1). The
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minimizer of J satisfies the Euler equations

2αu0 + neu0/g(u) = n0,

2αu1 + neu1/g(u) = n1.

The solution of the Euler equations is obtained using Newton’s method

u(k+1) = u(k) − F ′′(u(k))−1(F ′(u(k)) − b)T

where the Hessian of F is

F ′′(u) = 2α

[

1 0
0 1

]

+ n

[

p0(1 − p0) −p0p1

−p0p1 p1(1 − p1)

]

and (p0, p1) = (eu0 , eu1)/g(u). In our example we have 100 observations
where 80 are in class 0. Furthermore, we choose α = 0.0001. (For a practical
situation, one would determine α from the data using cross validation. See [6]
for further details.)

The Euclidean norms ‖rk‖ of the residuals rk = F ′(u(k)) for iterations
k = 0, . . . , 4 are 42, 0.21, 5.9 · 10−4, 4.6 · 10−9, 1.5 · 10−14 which confirms the
quadratic convergence of the Newton iteration.

Example 2

In the second case we consider the distribution of the eruption lengths (which
are less than 10 Minutes) of the Old Faithful geyser so that Y = [0, 10]. The
prior for u is a Gaussian process with expectation zero. We choose further

(u, v)H = α

∫ 10

0

u′(y)v′(y) dy + β

∫ 10

0

u(y)v(y) dy

and get from this the covariance operator of the prior as the reproducing
kernel. Note that this is just the weak form which is associated to the
differential operator L = −αd2/dx2 + βI. The log partition function is

φ(u) = log
∫ 10

0
exp(u(x))dx and the chosen parameters are α = 0.1 and

β = 0.001. The data set has n = 272 observed values.
We use piecewise linear functions on a regular grid and employ natu-

ral boundary conditions. The log partition function is approximated by
φh(u) = log(h∗(0.5 exp(u(0))+

∑m

i=1 exp(u(ih))+0.5 exp(u(10)))) where h =
1/(m − 1). This corresponds to a Galerkin approximation with quadrature
rule approximation of the integral. For the vector ~u = (u(0), u(h), . . . , u(10))
of values at the grid points one gets

αA~u + βB~u + nhW~p = ~b
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Figure 1: Old Faithful geyser: a) Distribution of eruption times, b) Joint
distribution of eruption times and waiting times.

where A and B are the usual stiffness and mass matrices, pi = exp(u(ih))/g(u),
g(u) = h ∗ (0.5 exp(u(0)) +

∑m

i=1 exp(u(ih)) + 0.5 exp(u(10))), W is the iden-
tity except that the first and the last diagonal elements are replaced by 0.5
and bi =

∑n

j=1 H(y(j)/h − i) where H is the standard hat function. As
in the previous example we use Newton’s method and can again confirm its
quadratic convergence. In order to assess the error of the Ritz approximation
we compare the solution against the solution p4097 for m = 4097. One then
gets ‖pm − p4097‖1 = 1.10267, 0.92190, 0.78281, 0.31284, 0.10981, 0.04327,
0.01925, 0.00720, 0.00282, 0.00107. The convergence appears to be between
linear and quadratic in h. The less than quadratic convergence may relate
to the fact that the solution is not C2 but we will need to investigate this
further. Figure 1 a) shows the density using our technique with m = 257
grid points.

Example 3

We now consider the case of the joint distribution of waiting times and erup-
tion times of the Old Faithful geyser. There one has Y [1.5, 5.5] × [40, 100].
The solution u is determined by a finite element method as in the previ-
ous example. Here, we focus on two sub-cases: First, a discretization on a
uniform two-dimensional grid and, second, a discretization on a sparse grid
[2] by means of the combination technique [3]. The scalar product of the
Cameron–Martin space is

‖u‖2
H = γ

∫

Y

u2
y1,y2

dy1 dy2 + α

∫

Y

(

u2
y1

+ u2
y2

)

dy1 dy2 + β

∫

Y

u2 dy1 dy2
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which relates to the weak form of a second order differential operator. Again,
we used normal boundary conditions.

Discretization on uniform two-dimensional grid

First, we employed a discretization with (bi-)linear hat functions on a uniform
grid on Y . The resulting contour plot for a 129 × 129 grid with α = 2,
β = 1000 and γ = 0.0001 can be seen in Figure 1 b). As before, we found
that Newton’s method showed quadratic convergence. Comparing the results
with the ones for a 257×257 grid one gets for m = 17, 33, 65, 129: ‖p257×257−
pm×m‖1 = 0.067, 0.033, 0.0142, 0.0054 which is consistent with the results
from the previous example.

Sparse grid discretization and combination technique

Finally, we used the combination technique to obtain a sparse grid approx-
imation to the solution. This way, only O(m log m) degrees of freedom are
involved instead of O(m2) on a uniform grid. Such a sparse grid approach
can cope with the curse of dimensionality, at least to some extent, when it
comes to higher dimensional problems. For a thorough discussion of sparse
grids and the combination technique see the papers by Griebel and collabo-
rators [2, 3]. The basic idea is that the sparse grid solution is put together
from the solutions obtained on certain uniform grids albeit with different
mesh sizes (m1, m2) for different coodinate directions similar in spirit to a
multivariate extrapolation method.

The combination technique approximation uCT is of the form

uCT(y1, y2) =
∑

(m1,m2)∈Ifine

u(m1,m2)(y1, y2) −
∑

(m1,m2)∈I inter

u(m1,m2)(y1, y2).

The sets Ifine and I inter are the sets of grid sizes (m1, m2) of the finest grids
generating the sparse grid and their intersections, respectively, for details see
the paper where the combination technique was introduced [3]. In Table 1
we give the L1 error norms together with the finest regular grids which span
the associated sparse grids.

We clearly see from this result the effectiveness of the sparse grid approx-
imation. The error on a sparse grid nearly behaves like that on a uniform
full grid whereas the degrees of freedom are substantially reduced.
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Table 1: L1 errors of combination technique approximants.

finest grids L1 error
(257,3),(129,5),(65,9),(33,17),(17,33),(9,65),(5,129),(3,257) 0.114

(257,5),(129,9),(65,17),(33,33),(17,65),(9,129),(5,257) 0.058
(257,9),(129,17),(65,33),(33,65),(17,129),(9,257) 0.020
(257,9),(129,17),(65,33),(33,65),(17,129),(9,257) 0.0075

(257,17),(129,33),(65,65),(33,129),(17,257) 0.0029
(257,65),(129,129),(65,257) 0.00104

5 Concluding remarks

In this article we discussed the maximum aposteriori method with exponen-
tial families for machine learning problems and their formulation as vari-
ational problems. The Ritz method then allows for numerical approxima-
tions using finite element subspaces. We have shown uniqueness and error
bounds of the corresponding solutions. For the case of density estimation,
we presented the basic numerical approach to the solution of the associated
non-linear problems.

For the two-dimensional example with continuous Y we applied the com-
bination method, which works on a sparse grid, as well as a discretization
on a uniform grid. This opens the way to an efficient treatment of higher
dimensional problems. Here, however, additional numerical experiments still
have to be carried out.

In addition to the presented examples, further studies for simulated data
were done and the approach was compared with other existing techniques
for density estimation including a histogram method, a kernel density esti-
mator and another maximum likelihood approach. It could be shown that in
all cases the approach discussed here outperformed the traditional methods
especially for multimodal problems.
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