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Abstract Machine learning techniques paired with the availability of massive
datasets dramatically enhance our ability to explore the chemical compound space by
providing fast and accurate predictions of molecular properties. However, learning
on large datasets is strongly limited by the availability of computational resources
and can be infeasible in some scenarios. Moreover, the instances in the datasets may
not yet be labelled and generating the labels can be costly, as in the case of quan-
tum chemistry computations. Thus, there is a need to select small training subsets
from large pools of unlabeled data points and to develop reliable ML methods that
can effectively learn from small training sets. This work focuses on predicting the
molecules’ atomization energy in the QM9 dataset. We investigate the advantages of
employing domain knowledge-based data sampling methods for an efficient training
set selection combined with informed ML techniques. In particular, we show how
maximizing molecular diversity in the training set selection process increases the
robustness of linear and nonlinear regression techniques such as kernel methods and
graph neural networks. We also check the reliability of the predictions made by the
graph neural network with a model-agnostic explainer based on the rate-distortion
explanation framework.

1 Introduction

Modelling the relationship between molecules and their properties is of great interest
in several research areas, such as computational drug design [37], material discov-
ery [43] and battery development [3]. The field of computational chemistry offers
powerful ab initio methods to compute physical and chemical properties of atomic
systems.
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Unfortunately, these approaches are often limited by their high computational
complexity, which restricts their practical applicability to only small sets of
molecules. Therefore, machine learning (ML) methods for molecular property pre-
diction have recently gained increased attention in molecular and material science
because of their computational efficiency and accuracy on par with established first
principle methods [4,5, 11]. However, to effectively employ ML in real-world prob-
lems, there is a need for labelled datasets that can effectively represent the chemical
space of interest, i.e., sets of molecules for which the target properties have already
been computed using ab initio methods. Thus, on the one hand, accurately choosing
which data points to label in the analyzed chemical space is crucial to avoid creating
a dataset with redundant information and limiting the required amount of ab initio
calculations. On the other hand, it is critical to develop data-efficient ML methods
that perform accurate predictions.

Integrating domain knowledge of physical and chemical principles into the dataset
selection process and the development of ML techniques is a primary goal of the
chemical and material science ML community [31]. Physical and chemical prin-
ciples, such as spatial invariances, symmetries, algebraic equations and chemical
properties, can increase the robustness, reliability and effectiveness of ML methods
while reducing the required training data [6, 58].

This work focuses on predicting the atomization energies of molecules in the
QM9 dataset [47,49] and shows how to exploit domain knowledge to select training
sets according to specific criteria and how different ML methods may benefit from
training on sets selected through such criteria. Specifically, by using Mordred [42],
a publicly available library, we generate knowledge-based vector representations of
molecules based on their SMILES representation [59] without requiring any ab initio
computations. Further, based on such a molecular vector-based representation, we
define a training set selection process and can observe that a diversity in the selected
subset can increase the reliability of ML methods, indicated by the reduction of
the maximum absolute error of the prediction. The maximum absolute error can
be interpreted as a measure of robustness, and it is a helpful metric to evaluate
ML methods in chemical and material science [65] since the average error alone
gives an incomplete impression [19, 55]. Furthermore, this work shows how diver-
sity reduces the gap between the predictive robustness of linear regression-based
approaches relying only on the molecular topological information, such as kernel
ridge regression (KRR) [32], and non-linear approaches relying on molecular geo-
metric representations obtained through ab initio computations, such as graph neural
networks (GNN) [17, 24, 26]. We compare the effectiveness of a diversity-based se-
lection with that of random sampling and of an alternative selection approach based
on domain knowledge that focuses on representativeness, i.e., the distribution of cho-
sen properties of the dataset should be present with the same amount in the selected
training sets.

Finally, we note that our GNNs are inherently opaque (i.e. the logic flow to the
decision-making process of the neural network is obscured). This inherently opaque
nature of common deep neural network architectures has led to a rise in demand for
trustworthy explanation techniques, which vary in their meaning and validity [48].
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Unlike other modalities in computer vision and natural language processing, the
non-Euclidean nature of graph-structured data poses a significant challenge to trust-
worthy and interpretable explanation generation. To this end, there exist a variety of
explanation techniques and explanation types [12,21,36,46,51,60,62,64], the most
popular of which are subgraph explanation techniques.

We probe the domain knowledge learned/retained by our GNNs for different
sampling strategies through the application of a novel post-hoc model-agnostic ex-
planation technique, graph rate-distortion explainer (GRDE). GRDE builds on the
existing rate-distortion explanation (RDE) framework [27, 38] to generate instance-
level subgraph explanations on the input graphs, which highlight the substructures
and features in the graph that are most relevant towards the GNNs’ predictions.

After describing related work, we give in the following first an overview on
three ML models that are designed for the prediction of molecular properties but
are based on different underlying working principles. In this way, we hope that our
results yield insights for a variety of methods that are used in practical applications.
Following that, we discuss two ways of sampling subsets from a larger dataset, one
aiming to maximize the diversity of the selected samples and the other seeking
to choose a collection of points representative of the set from which we sample.
Afterwards, we test the introduced methods, namely the SchNet, KRR and the
spatial 3-hop convolution network which is proposed in this work, by performing
numerical experiments on the QM9 dataset while putting special emphasis on the
effects of the sampling strategies. After a discussion of the numerical results and a
comparison between the different ML models, we seek explanations of the model
predictions by applying GRDE to one of the employed graph neural networks.

2 Related Work

In recent years, there has been growing interest in incorporating domain-specific
knowledge into the selection of training data and the development of learning algo-
rithms, which is referred to as informed machine learning [58]. Ideally, the training
data selection process should be based purely on the data’s features, as labels may
be expensive to compute, and should be model-independent so that the selected
training data is beneficial for multiple learning models rather than just one. This
allows for greater flexibility in model selection and avoids the need for repeating the
dataset selection process for each model. Considering these practical aspects, it is
clear that a feature-based and model-independent selection process is desirable for
efficient and effective machine learning. This section reviews some of the relevant
work in this area. Coreset approaches [14] are among the most popular strategies for
feature-based and model-independent selection of training datasets. Several of these
approaches involve incorporating domain-knowledge into the selection of training
data by selecting data points that are representative of the distribution of the target
points for which we want to predict the new labels. The simplest and yet one of
the most common coreset approaches is uniform sampling, which involves selecting
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a random subset of data points from the larger dataset. Uniform sampling is also
considered a benchmark for every other selection approach. Unfortunately, uniform
sampling does not exploit domain knowledge and can lead to biased results if the
dataset is imbalanced or if certain data points are more important than others. To
address this issue, importance sampling [7] is an approach that exploits domain
knowledge to assign weights to each data point based on its importance or relevance
to the problem at hand. The weights are then used for a nonuniform selection of the
training set that privileges more important data points. Another class of methods
are the grid-based approaches [2], which involve dividing the feature space into
a grid and selecting one or more representative points from each grid’s cell. This
can be useful for problems with a high-dimensional feature space or when there
is a need for a more structured selection of data points. Greedy constructions are
coreset approaches that iteratively select the most informative data points based
on a pre-defined criterion. For instance, well-known greedy selection methods are
submodular function maximization algorithms [30]. Greedy approaches can be ef-
fective for selecting a small subset of highly informative data points, but they may be
computationally expensive for large datasets. Overall, the choice of coreset approach
depends on the specific problem and dataset characteristics, as well as computational
constraints. See [14] for a more detailed review of coreset approaches. Finally, the
field of experimental design [61] offers additional sampling strategies to perform a
feature-based selection of the training set that can benefit specific regression model
classes, e.g., linear models.

In this work, incorporating domain knowledge in the learning of algorithms refers
to methods which are known as informed graph neural networks. While graph neural
networks recently gained increasing attention by the works from Gori et al. [18] and
Scarselli et al. [50], the question of how to use domain knowledge to improve the
performance of learning methods dates back to the last century (e.g. see [23] or [29]).
More recently, physics informed neural networks, which address supervised learning
tasks complying with the known laws from physics, are a hot topic in several appli-
cations, e.g. to find surface breaking cracks in a metal plate [53] or to solve inverse
heat transfer problems [8]. For graph neural networks, based on the message passing
principle, i.e. the process of updating so called states or representations attached to
each node of a graph using the node’s neighbourhood, many different models were
proposed (e.g. Graph Attention Networks [57], ChebNet [10], Gated Graph Neural
Networks [34]), the most popular being the graph convolutional model by Kipf and
Welling [26] which is motivated by an approximation of spectral graph convolutions.
Combining incorporating domain knowledge with graph neural networks leads to the
very recent informed graph neural networks. In [20] the authors combine theory from
thermodynamics with graph neural networks to predict the behaviour of dynamical
systems and in [25] combine physical properties of molecules are combined with
graph neural networks to predict the cetane number of possible alternative fuels.
For more detailed overviews on GNNs or informed neural networks we refer to the
book [35] and a recent review [9].

We further build upon the interpretability of graph neural networks in this work
by introducing a method akin to perturbation techniques on image data to graph-
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structured data. The main goal of interpretability is to invoke transparency in the
otherwise opaque prediction process of neural networks, and is further applicable in
the detection of bias as well as to explain incorrect classifications in the predictive
model. Previous work in interpretability for other modalities such as audio and
images [27,38] has shown great success in identifying a neural network’s sensitivity
to specific subsets of the input data. More specifically, among the variety of local
and global interpretability techniques, perturbation [27,28] and gradient-based [54]
techniques have been shown to accurately capture a predictive model’s sensitivity
to some concepts in the input data. These techniques generally seek to optimize a
heatmap over the input data such that high-intensity zones are the most relevant to
the model’s prediction for the given data point. We further discuss this in detail with
respect to graphs in section 3.4.

Inspired by the exhaustive work on interpretability for other modalities, several
methods [36,46,51,60] have also been proposed for graph-structured data, with per-
turbation techniques such as GNNExplainer [60] being the baseline for comparison.
For a detailed overview of GNN interpretability, we refer to [63]. These techniques,
however, have been shown to suffer from unfaithfulness on large graphs since they
optimise masks only for small graphs as well as manually threshold their relevance
scores. See [1] for a detailed review on the current issues with graph interpretability.

3 Methods and Sampling Strategies

This section introduces the approaches we use for predicting the atomization energy,
explaining the GNN output and sampling the training data. Subsection 3.1 introduces
the benchmark regression model SchNet, a GNN that uses 3-dimensional positional
information to predict chemical properties. Next, subsections 3.2 and 3.3 describe
KRR and the spatial 3-hop convolution network, respectively. Both these approaches
only exploit topological information encoded in the SMILES to perform the energy
prediction task. Subsection 3.4 presents the rate-distortion explanation framework
for graph data that we use to showcase the domain knowledge learned by the 3-hop
convolution network. Finally, subsection 3.5 introduces the approaches we use for
the selection of training sets.

3.1 SchNet

SchNet is a symmetry-informed neural network model, designed for the prediction
of chemical properties by Schütt et al. [52]. In contrast to the methods presented in
sections 3.2 and 3.3, it is trained and evaluated on 3-dimensional structural informa-
tion describing the atomic systems of interest. Usually, the positional information is
obtained from computational methods such as density functional theory (DFT).
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More formally, for an atomic system with N atoms, SchNet can be used to predict
scalar properties as a function 𝑓 of 3𝑁 atomic coordinates (nuclear positions) and
on 𝑁 atomic numbers of the corresponding atoms:

𝑓 : R3𝑁 × N𝑁 −→ R. (1)

Internally, SchNet operates on a distance-based neighborhood graph, defined by a
cutoff radius 𝑟cut, in which nodes correspond to the atoms in the atomic system. In this
scenario, edges do not necessarily correspond to chemical bonds but merely indicate
whether two atoms are closer than the chosen cutoff radius. Hence, the chosen
cutoff radius has a direct influence on the graph shown to the model. Similar to
other GNNs [17,26], SchNet operates in a layer-wise fashion by iteratively updating
feature representations. At the 𝑙-th layer each atom, indexed by 𝑖 ∈ {1, 2, ..., 𝑁}, is
represented by a feature vector 𝑥𝑥𝑥𝑙

𝑖
∈ R𝐹 where 𝐹 is a hyperparameter. The main layer

introduced by Schütt et al. is the continuous-filter convolutional layer: Denoting the
atomic positions by 𝑟𝑟𝑟 𝑖 ∈ R3, this layer updates the atomic features as follows:

𝑥𝑥𝑥𝑙+1
𝑖 =

∑︁
𝑗∈N(𝑖)

𝑥𝑥𝑥𝑙𝑗 ◦𝑊 𝑙
(
𝑟𝑟𝑟 𝑖 − 𝑟𝑟𝑟 𝑗

)
, (2)

where𝑊 𝑙 : R3 −→ R𝐹 is a trainable filter-generating function and ◦ denotes element-
wise multiplication. In detail, 𝑊 𝑙 is given as the composition 𝑊 𝑙 = �̃� 𝑙 ◦ 𝜑 of a
distance-based radial basis expansion

𝜑 : 𝑟𝑟𝑟 𝑖 − 𝑟𝑟𝑟 𝑗 ↦→
𝑁radial⊕
𝑘=1

exp
(
−𝛾

(
‖𝑟𝑟𝑟 𝑖 − 𝑟𝑟𝑟 𝑗 ‖2 − `𝑘

)2) (3)

and a trainable neural network �̃� 𝑙 where 0 �A ≤ `𝑘 ≤ 30 �A are equidistributed
centers and 𝛾 = 10 �A. Here,

⊕
denotes the direct sum that concatenates the scalar

outputs of the radial basis functions to a feature vector in R𝑁radial which is then
passed into �̃� 𝑙 . Note that 𝜑 is invariant with respect to actions of the orthogonal
group 𝑂 (3) which assures that the predictions of SchNet are invariant with respect
to translations, rotations and reflections of the input structure as well. Depending
on the atomic species, initial embeddings 𝑥𝑥𝑥0

𝑖
are sampled from an 𝐹-dimensional

standard normal distribution and optimized during the training process. In addition,
non-linear layers such as dense feed-forward neural networks can be applied to the
node features in order to increase the expressiveness of the model.

By summing over the images of a trainable readout function 𝑅 : R𝐹 −→ R, the
final node features in the last layer 𝐿 are transformed into a prediction of the target
property �̂�:

�̂� =

𝑁∑︁
𝑗=1

𝑅

(
𝑥𝑥𝑥𝐿𝑗

)
(4)
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Involving only permutation-invariant operations such as the summation over adja-
cent atoms, the output is invariant with respect to mutual permutations of the atomic
positions and atomic species. For more details on the model architecture see [52].

3.2 Kernel Ridge Regression

In kernel ridge regression, a vector-based representation of the molecules is mapped
into a high-dimensional space using a non-linear map that is implicitly determined
by defining a kernel function, which provides a measure of similarity between the
molecular representations. The structure-energy relationship is learned in the high-
dimensional space. In this work, we use the so-called Gaussian kernel

𝑘 (𝑥𝑥𝑥𝑖 , 𝑥𝑥𝑥 𝑗 ) := 𝑒−
‖𝑥𝑥𝑥𝑖−𝑥𝑥𝑥 𝑗 ‖22

2a2 , (5)

where ‖ · ‖2 is the 𝐿2-norm and a ∈ R a kernel hyperparameter to be selected through
an optimization process. The kernel ridge regression model is constructed using the
selected training set {𝑥𝑥𝑥𝑖 , 𝑦(𝑥𝑥𝑥𝑖)}𝑝𝑖=1, where {𝑥𝑥𝑥𝑖}𝑝𝑖=1 are the Mordred [42] based vector
representations of the molecules and {𝑦(𝑥𝑥𝑥𝑖)}𝑝𝑖=1 the associated atomization energies.
Once the regression model has been constructed, the predicted energies are given by
the scalar values �̃�(𝑥𝑥𝑥) defined as follows

�̃�(𝑥𝑥𝑥) :=
𝑝∑︁
𝑖=1

𝛼𝑖𝑘 (𝑥𝑥𝑥, 𝑥𝑥𝑥𝑖), (6)

where the vector 𝛼𝛼𝛼 = [𝛼1, 𝛼2, . . . , 𝛼𝑝]𝑇 ∈ R𝑝 is the solution of the following
minimization problem

𝛼𝛼𝛼 = argmin
�̄�𝛼𝛼

𝑝∑︁
𝑖=1

( �̃�(𝑥𝑥𝑥𝑖) − 𝑦(𝑥𝑥𝑥𝑖))2 + _�̄�𝛼𝛼𝑇𝐾𝐾𝐾�̄�𝛼𝛼. (7)

Here, 𝐾𝐾𝐾 is the kernel matrix, i.e., 𝐾𝐾𝐾 𝑖, 𝑗 = 𝑘 (𝑥𝑥𝑥𝑖 , 𝑥𝑥𝑥 𝑗 ), and the parameter _ ∈ R is
the so-called regularization parameter that penalizes larger weights. The analytic
solution to the minimization problem in (7) is given by

𝛼𝛼𝛼 = (𝐾𝐾𝐾 + _𝐼𝐼𝐼)−1�̃�𝑦𝑦 (8)

where �̃�𝑦𝑦 = [ �̃�(𝑥𝑥𝑥1), �̃�(𝑥𝑥𝑥2), . . . , �̃�(𝑥𝑥𝑥𝑝)]𝑇 . Once the training process has been concluded
and the regression parameters {𝛼𝑖}𝑝𝑖=1 have been learned, the energy predictions for
molecules not included in the training set can be computed using Equation (6).
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3.3 Spatial 3-Hop Convolution Network

In addition to the two previous approaches, we propose a third approach which builds
on a newly developed spatial graph convolution structure. We call this approach
spatial 3-hop convolution network. This approach exploits the graph structure, the
node features and optionally edge features for regression or classification but does
not need 3-dimensional structural information as is the case for SchNet.

A commonly used graph convolutional network by Kipf & Welling [26] is moti-
vated by an approximation of a spectral convolution. Thereby, they consider spectral
convolutions as

𝑤𝑤𝑤 ★𝑥𝑥𝑥 =𝑈𝑈𝑈𝑤𝑤𝑤𝑈𝑈𝑈>𝑥𝑥𝑥, (9)

where 𝑤𝑤𝑤 = 𝑑𝑖𝑎𝑔(\) ∈ R𝑛×𝑛 is a filter, 𝑥𝑥𝑥 ∈ R𝑛 is a graph signal on a graph with
𝑛 nodes, ★ denotes the spectral graph convolution operator and 𝑈𝑈𝑈 is the matrix
of eigenvectors from the eigendecomposition of the normalized graph Laplacian
𝐼𝐼𝐼𝑛 −𝐷𝐷𝐷− 1

2 𝐴𝐴𝐴𝐷𝐷𝐷− 1
2 . Moreover, 𝐴𝐴𝐴 is the adjacency matrix of the underlying graph, D is

the corresponding degree matrix and 𝐼𝐼𝐼𝑛 is the 𝑛×𝑛 identity matrix. This convolution
is approximated and generalized to matrix-valued graph signals which leads to the
update of the graph convolutional network

𝐻𝐻𝐻 (𝑙+1) = 𝜎(𝐻𝐻𝐻 (𝑙)𝑊𝑊𝑊0 +𝐷𝐷𝐷− 1
2 𝐴𝐴𝐴𝐷𝐷𝐷− 1

2𝐻𝐻𝐻 (𝑙)𝑊𝑊𝑊1), (10)

where 𝐻𝐻𝐻 (𝑙) is the matrix of hidden representations of the 𝑙-th layer, 𝑊𝑊𝑊0 and 𝑊𝑊𝑊1
are learnable parameters and 𝜎 denotes the elementwise ReLU function. For the
spatial 3-hop convolution layer we do not consider spectral graph convolutions but
an intuitive spatial convolution using powers of the graphs adjacency matrix to
calculate so called path matrices. Within these, for each node the number of paths of
a certain length to every other node is stored. By defining a spatial convolution with
path matrices and building a layer of the graph neural network using the convolution,
we consider the number of paths of a given length from node 𝑣 to node 𝑢 as a measure
for the impact of node 𝑣 on node 𝑢. Thus, nodes with more paths to the considered
node will be taken into account more during the update.

For a graph 𝐺 with 𝑛 nodes a path is defined as a sequence of nodes (1, . . . , 𝑘)
with 𝑘 < 𝑛 such that for any 𝑖, 𝑗 ∈ (1, . . . , 𝑘) it is 𝑖 ≠ 𝑗 , i.e. no node appears twice.

With that, we define a spatial 𝑘-hop graph convolution of a graph signal 𝑥𝑥𝑥 ∈ R𝑛
with a filter 𝑤𝑤𝑤 ∈ R𝑘 on an undirected graph 𝐺 with 𝑛 nodes as

𝑤𝑤𝑤 ★𝑘 𝑥𝑥𝑥 :=
𝑘∑︁
𝑖=0
𝑤𝑤𝑤𝑖𝑇𝑇𝑇

(𝑖)𝑥,

where 𝑇𝑇𝑇 (𝑖) is a path matrix such that 𝑇𝑇𝑇 (𝑖)
𝑣𝑢 is the number of paths of length 𝑖 from

node 𝑣 to node 𝑢.
An approach to computing the needed path matrices is a recursion that starts with

the adjacency matrix. Since the adjacency matrix equals the path matrix for paths
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of length one it is 𝑇𝑇𝑇 (1) = 𝐴𝐴𝐴. For every node 𝑖 and 𝑢 a neighbor of it, the number of
paths of length two from node 𝑖 to node 𝑗 equals the number of paths of length one
from 𝑢 to 𝑗 in which 𝑖 is not a part of. More generally, the number of paths of length
𝑘 from a node 𝑖 to a different node 𝑗 equals the sum of all paths from node 𝑢 to 𝑗

of length 𝑘 − 1 over all 𝑢 ∈ N (𝑖) in which 𝑖 does not appear. Using this, it can be
shown that 𝑇𝑇𝑇 (2) = 𝐴𝐴𝐴2 − 𝐷𝐷𝐷 and 𝑇𝑇𝑇 (3) = 𝐴𝐴𝐴3 −ΣΣΣ ◦ 𝐴𝐴𝐴, where 𝐴𝐴𝐴 and 𝐷𝐷𝐷 are as above and
ΣΣΣ is an 𝑛 × 𝑛 matrix with ΣΣΣ𝑖 𝑗 = 𝐷𝐷𝐷𝑖𝑖 + 𝐷𝐷𝐷 𝑗 𝑗 . This shows that the 3-hop spatial graph
convolution is given by

𝑤𝑤𝑤 ★3 𝑥𝑥𝑥 = (𝑤𝑤𝑤0𝐼𝐼𝐼𝑛 +𝑤𝑤𝑤1𝐴𝐴𝐴 + 𝑤𝑤𝑤2 (𝐴𝐴𝐴2 −𝐷𝐷𝐷) + 𝑤𝑤𝑤3 (𝐴𝐴𝐴3 −ΣΣΣ ◦ 𝐴𝐴𝐴))𝑥𝑥𝑥.

Note that the 𝑤𝑤𝑤𝑘 ’s can be seen as weights for the 𝑘-hop neighborhoods. A general-
ization of the former discussion to a signal 𝑋𝑋𝑋 ∈ R𝑛×𝑑 with 𝑐 node features for each
node (analogously to Kipf & Welling [26]) leads to

𝐻𝐻𝐻 = 𝑋𝑋𝑋𝑊𝑊𝑊0 + 𝐴𝐴𝐴𝑋𝑋𝑋𝑊𝑊𝑊1 + (𝐴𝐴𝐴2 −𝐷𝐷𝐷)𝑋𝑋𝑋𝑊𝑊𝑊2 + (𝐴𝐴𝐴3 −ΣΣΣ ◦ 𝐴𝐴𝐴)𝑋𝑋𝑋𝑊𝑊𝑊3,

which results in the spatial 3-hop convolution layer, the message passing layer of the
spatial 3-hop convolution network,

𝐻𝐻𝐻 (𝑙+1) = 𝜎(𝐻𝐻𝐻 (𝑙)𝑊𝑊𝑊0 + 𝐴𝐴𝐴𝐻𝐻𝐻 (𝑙)𝑊𝑊𝑊1 + (𝐴𝐴𝐴2 −𝐷𝐷𝐷)𝐻𝐻𝐻 (𝑙)𝑊𝑊𝑊2 + (𝐴𝐴𝐴3 −ΣΣΣ ◦ 𝐴𝐴𝐴)𝐻𝐻𝐻 (𝑙)𝑊𝑊𝑊3),

where 𝜎 is, again, the element-wise ReLU function.

3.4 Graph Rate-Distortion Explanations

We now present a formulation for the rate-distortion explanation framework [27,38]
for graph data. Given a pre-trained GNN model, Φ : R𝑛×𝑐 −→ R𝑚 and a set of
attributed graphs 𝐺 = {𝐺1, 𝐺2, ..., 𝐺 𝑝} such that 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝑋𝑖) for all 𝑖 ∈ [1, 𝑝],
our task is to explain the model decision over the set 𝐺, or more locally, Φ(𝐺𝑖).
This leads us to the two general branches of explanation techniques: global and
local explanations. Global explanation techniques focus on explaining the underly-
ing function learned by the model, Φ. This can be done in a multitude of ways,
such as testing the model’s sensitivity to a concept [40] or reconstructing graphs
from the embedding space learned by the model to reveal important motifs [62]. In
general, global explanation techniques, while useful, are hard to construct and are
unable to detect finer details on local data points. On the other hand, local expla-
nation techniques, which are the more popular alternative, focus on explaining Φ

for local instances, i.e. Φ(𝐺𝑖). Similar to global explanations, there exist a variety
of approaches, such as perturbation-based methods [36, 51, 60], surrogate meth-
ods [21], gradient-based methods [46], and additive methods [12, 64], each with
their benefits and limitations. These techniques aim to extract information from 𝐺𝑖

that is most relevant to the local prediction Φ(𝐺𝑖). More concretely, given a graph
𝐺𝑖 = (𝐴𝑖 , 𝑋𝑖), local explanation techniques commonly attempt to extract a subgraph
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�̂�𝑖 = ( �̂�𝑖 , �̂�𝑖) ⊆ 𝐺𝑖 that is most relevant to the model for its prediction Φ(𝐺𝑖). The
rate-distortion framework for explaining graphs is a local, post-hoc, model-agnostic
explanation technique that comes under the umbrella of perturbation-based graph
explainers. Given the pre-trained model Φ and graph 𝐺𝑖 , GRDE optimizes a binary
deletion mask 𝑆 = (𝑆𝐴, 𝑆𝑋 ) over 𝐺𝑖 to obtain a subgraph �̂�𝑖 such that Φ(�̂�𝑖) ap-
proximates Φ(𝐺𝑖). Mask 𝑆 thus retains only the edges and features that are most
relevant to the model’s prediction on 𝐺𝑖 . Given 𝐴𝑖 ∈ R𝑛×𝑛 and 𝑋𝑖 ∈ R𝑛× 𝑓 , where 𝑛
is the number of nodes and 𝑓 is the number of node features, our goal is to optimize
masks 𝑆𝐴 ∈ [0, 1]𝑛×𝑛 and 𝑆𝑋 ∈ [0, 1]𝑛× 𝑓 . Let V𝑆 = (V𝑆𝐴

, V𝑆𝑋 ) be probability
distributions that can either be chosen manually or learned from the graph dataset.
Then the obfuscation on 𝐺𝑖 , i.e. the subgraph �̂�𝑖 , can be defined as

�̂�𝑖 = ( �̂�𝑖 , �̂�𝑖) = (𝐴𝑖 � 𝑆𝐴 + (1 − 𝑆𝐴) � 𝑣𝑆𝐴
, 𝑋𝑖 � 𝑆𝑋 + (1 − 𝑆𝑋 ) � 𝑣𝑆𝑋 ), (11)

where 𝑣𝑆𝐴
∈ V𝑆𝐴

, 𝑣𝑆𝑋 ∈ V𝑆𝑋 , and � denotes element-wise multiplication. Intu-
itively, this implies that the masks 𝑆 keep some of the elements in 𝐺𝑖 while the
elements that are not selected by 𝑆 are replaced with values from the probability
distribution V𝑆 as ’noise’. In general, the choice of V𝑆 should be such that the result-
ing subgraph �̂�𝑖 remains within the data manifold, provided that the data manifold
is known. Depending on the information in 𝐺𝑖 , we can use a variety of probability
distributions for (V𝑆𝐴

, V𝑆𝑋 ). For example, in the case of a binary adjacency matrix,
V𝑆𝐴

can be the Gumbel-Softmax distribution, whereas for real-valued adjacency
matrices and node feature matrices, V𝑆 can be Gaussian distributions. We can also
learn the probability distributions V𝑆 from the data manifold itself, as previous at-
tempts have shown success with inpainting GANs [27] for this strategy on other data
modalities.

Furthermore, we define the expected distortion on 𝐺𝑖 with respect to the masks
𝑆 and perturbation distributions V𝑆 as

D(𝐺𝑖 , 𝑆,V𝑆 ,Φ) = E
𝑣𝑆𝐴 ∈V𝑆𝐴

,𝑣𝑆𝑋 ∈V𝑆𝑋

[
𝑑 (Φ(𝐺𝑖),Φ(�̂�𝑖))

]
, (12)

where 𝑑 : R𝑚 × R𝑚 −→ R+ is the measure of distortion between the two model
outputs. Commonly, we can set 𝑑 as the L2 distance or the KL-divergence between
the two model outputs. Thus, we can define the rate-distortion explanation on 𝐺𝑖 as
the optimal subgraph �̂�𝑖 that solves the minimization problem

𝑚𝑖𝑛
𝑆=(𝑆𝐴,𝑆𝑋 )

D(𝐺𝑖 , 𝑆,V𝑆 ,Φ) s.t | |𝑆𝐴 | |0 ≤ 𝑗 , | |𝑆𝑋 | |0 ≤ 𝑘, (13)

where 𝑗 , 𝑘 are the desired levels of sparsity for 𝑆𝐴, 𝑆𝑋 respectively.
Note that solving equation (13) is NP-hard [38]. Thus, we use an 𝑙1 relaxation

on equation (13) to get the relaxed optimization problem given by

𝑚𝑖𝑛
𝑆=(𝑆𝐴,𝑆𝑋 )

D(𝐺𝑖 , 𝑆,V𝑆 ,Φ) + _𝐴 | |𝑆𝐴 | |1 + _𝑋 | |𝑆𝑋 | |1, (14)
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where _𝐴, _𝑋 > 0 are hyperparameters to control the sparsity level of the masks. We
can further relax the binary masks 𝑆 by sampling them from the concrete distribution
[39] or Gumbel Softmax distribution [22]. This allows us to solve the optimization
problem in equation (14) with differentiable techniques such as stochastic gradient
descent.

3.5 Sampling Strategies

We now introduce two approaches for sampling a set of points from a large dataset.
The first method focuses on maximising the diversity of the selected set, while the
second aims to select a set that is representative of the whole dataset.

Diversity

In short, diverse subsets are iteratively selected from Ω ⊂ R𝑑 using the farthest
point sampling (FPS) algorithm [13], where the resulting subset is a sub-optimal
minimizer of the fill distance. We denote this approach by FPS.

To maximize diversity of the selection we consider the concept of fill distance.
Given a dataset Ω ⊂ R𝑑 consisting of a finite amount of unique points, and 𝑋 =

{𝑥𝑥𝑥1, 𝑥𝑥𝑥2, . . . , 𝑥𝑥𝑥𝑝} ⊂ Ω a subset of cardinality 𝑝 = |𝑋 | ∈ N we define the fill distance
of 𝑋 in Ω as

ℎ𝑋,Ω := max
𝑥𝑥𝑥∈Ω

min
𝑥𝑥𝑥 𝑗 ∈𝑋

‖𝑥𝑥𝑥 − 𝑥𝑥𝑥 𝑗 ‖2. (15)

Put differently, we have that any point 𝑥𝑥𝑥 ∈ Ω has a point 𝑥𝑥𝑥 𝑗 ∈ 𝑋 not farther away
than ℎ𝑋,Ω. Notice that, if 𝑋, �̄� ⊂ Ω with 𝑝 = |𝑋 | = | �̄� | and ℎ𝑋,Ω < ℎ�̄� ,Ω then 𝑋
consists of data points that are more widely distributed in Ω, thus more diverse, than
those in �̄� .

Fixing the number of points 𝑝 ∈ N we want to select from Ω, we aim to find
𝑋 ⊂ Ω such that

𝑋 = argmin
�̄� ⊂Ω, |�̄� |=𝑝

ℎ�̄� ,Ω. (16)

The naive approach to solve the minimization problem in (16) would first require
computing the fill distance for all possible sets 𝑋 ⊂ Ωwith |𝑋 | = 𝑝 and then choosing
one of those sets where the minimum of the fill distance is attained. Unfortunately,
such an approach is very time consuming and computationally intractable. Therefore,
as an alternative approach we use the FPS algorithm [13]. FPS is a greedy selection
method, which means that the points are progressively selected starting from an initial
a-priori chosen point, i.e., given a set of selected points 𝑋𝑠 = {𝑥𝑥𝑥1, 𝑥𝑥𝑥2, . . . , 𝑥𝑥𝑥𝑠} ⊂ Ω

with cardinality |𝑋𝑠 | = 𝑠 < 𝑝, the next chosen point is

𝑥𝑥𝑥𝑠+1 = arg max
𝑥𝑥𝑥∈Ω

min
𝑥𝑥𝑥 𝑗 ∈𝑋𝑠

‖𝑥𝑥𝑥 − 𝑥𝑥𝑥 𝑗 ‖. (17)
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𝑥𝑥𝑥𝑠+1 is the point which is farthest away from the points in 𝑋𝑠 and it is the point
where the fill distance ℎ𝑋𝑠 ,Ω is attained. In other words, the next selected sample is
the center of the largest empty ball in the dataset.

Representativeness

We say that data points are representatively selected for the entire dataset, when
the distribution of properties in the selected subset are as close as possible to the
corresponding distribution in the whole dataset. To this aim, we divideΩ into clusters
and select data points from them so that the distribution of the clusters in the subset
resembles that of the whole dataset. For example, if we divide Ω into two clusters,
each containing 50% of the data points, we aim to select a subset consisting of
data points which are also equidistributed in the two clusters. The clustering can be
performed by clustering algorithms or be based on properties and criteria stemming
from domain knowledge, i.e., in the sense of [58] the training data is selected based
on scientific knowledge. Furthermore, data points within each cluster are selected
using the farthest point sampling, which ensures that in the various clusters a set
of diverse data points is chosen. We call this approach cluster-based farthest point
sampling (C-FPS).

4 Numerical Experiments

4.1 QM9 Dataset

In this work, we analyze the publicly available QM9 dataset [47, 49] containing a
diverse set of organic molecules. Precisely, the QM9 consists of 133 885 organic
molecules in equilibrium with up to 9 heavy atoms of four different types: C, O, N and
F. The dataset provides the SMILES [59] representation of the relaxed molecules,
their geometric configurations and 19 physical and chemical properties. To guarantee
a consistent dataset, we remove all 3054 molecules that failed the consistency test
proposed by [47]. Moreover, we remove the 612 compounds for which the RDKit
package [33] can not interpret the SMILES. After this preprocessing procedure, we
obtain at a smaller version of the QM9 dataset consisting of 130219 molecules.

4.1.1 Knowledge Based Molecular Representation

The domain knowledge based molecular representation we employ is based on
Mordred [42], a publicly available library that exploits the molecules’ topological
information encoded in the SMILES strings to provide 1826 physical and chemical
features. Such molecular features are defined as the “final result of a logical and
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mathematical procedure, which transforms chemical information encoded within a
symbolic representation of a molecule into a useful number or the result of some
standardized experiment” [56] and encode scientific knowledge reflecting algebraic
equations, logic rules, or invariances [58]. Using the Mordred library, we represent
each molecule in the QM9 dataset with a high-dimensional vector where each vector’s
entry is associated with a distinct feature.

To work with a more compact representation, after generating the Mordred vec-
tors, we use the CUR [41] approach to select a subset of relevant features. The CUR
algorithm takes as input the Mordred vector representation of each of the molecules
in the analyzed dataset and ranks the significance of the features by associating
them with an importance score. We select the first 59 top-ranked features and nor-
malize their values in the range (0,1) using the "MinMaxScaler" function provided
by the scikit-learn python library [44]. Moreover, to ensure the uniqueness of the
representation, we consider an additional set of features representing the atom type
distribution within each molecule. Specifically, for each data point, we add five fea-
tures, each expressing the amount of atoms of a particular type within the molecule,
in percentage. The possible atom types are H, C, O, N and F. In conclusion, the
Mordred based representation we employ to sample the QM9 dataset consists of
64-dimensional vectors.

4.1.2 Diverse and Representative Sets of Molecules

The knowledge related to the molecules in the QM9 enables us to employ the data
sampling strategies introduced in subsection 3.5 to create diverse and representative
sets.

Diverse sets are constructed using the FPS algorithm on the Mordred-based
vector representations of the molecules in the QM9. The Mordred vectors allow the
representation molecules as points in R𝑑 , 𝑑 ∈ N, and the definition of a distance
between the molecules, the Euclidean distance. Thus, we represent the QM9 as a
finite set Ω ⊂ R𝑑 and use the FPS to sample from Ω a sub-optimal minimizer of the
fill distance.

Representative sets are constructed using the procedure introduced in subsection
3.5 consisting of segmenting the QM9 in clusters and then sampling from each cluster
so that the distribution of the chosen molecules resembles that of the whole dataset.
The segmentation procedure is based on the molecules’ topological information
and considers their size, atom types and bond types, which following [58], reflects
scientific knowledge in the selection of training data so that selected molecular
properties are invariant per cluster. Specifically, we define the clusters through a
process consisting of three main steps. In the first step, we split the molecules
according to their sizes. As a result of this first step, we divided the QM9 dataset into
26 sets. After that, we separate each cluster obtained in the first step into subclusters
defined by the different heavy atom types within the molecules. Overall, molecules
in the QM9 consist of 4 heavy atom types. Thus, each molecule could consist of
15 different combinations of such atom types, e.g., a molecule can contain up to



14 Breustedt, Climaco, Garcke, Hamaekers, Kutyniok, Lorenz, Oerder, Shukla

four distinct heavy atoms, and for each amount of distinct heavy atom types, various
combinations are possible. After this second step, each of the initial 26 clusters is
divided into 15 subclusters. The third and final step is further splitting the data points
in each subcluster into different sets according to the various bond types present in
each molecule. We consider four different bond types: single, double, triple and
aromatic bonds. Thus, each of the subclusters is further divided into 15 distinct sets.
As a result of this clustering procedure, we divide the QM9 in 5850 different clusters
that account for molecular size, atom types and bond types. Molecules within the
clusters are selected using the farthest point sampling, which ensures that in the
various clusters, a set of diverse molecules is chosen.

4.1.3 Sampling the QM9 Dataset

For the experiments, we select training sets of different sizes and according to
different strategies from the entire preprocessed QM9 dataset. After that, we test each
trained model’s predictive accuracy on all the molecules that have not been selected
to train it. We construct training sets consisting of 100, 250, 500, 1000 and 5000
samples. Such sets are created following three different selection criteria: random
sampling (RDM), as a benchmark, and the two selection strategies introduced in
section 3.5, namely, diversity sampling (FPS) and representative sampling (C-FPS).
For each sampling strategy and training set size, we run the training set selection
process independently five times. For RDM, at each run the points are independently
and uniformly selected, while in the case of FPS and C-FPS the initial point to
initialize the FPS algorithm is independently selected at random at each run. Thus,
for each selection strategy and training set size, each of the analyzed models is
trained and tested five times, independently. The test results that follow are averaged
over the five runs.

We want to point out that sampling the training data non-randomly will lead to
a shift between the training and test distribution, as showcased in Fig. 1, where we
compare FPS with a random selection. It is not obvious how such a bias effects the
different models. Note that for Fig. 1 we performed the selection twice, with different
initialization for FPS and different seeds for the random selection, respectively. We
find that changing the initialization for FPS does not lead to a significant change
in the distribution, for different seeds in the random selection we make the same
observation.

4.1.4 Measuring the Error

We evaluate the performances of the employed machine learning methods using
three different metrics. Specifically, we consider the mean absolute error (MAE), the
root mean squared error (RMSE) and the worst-case error. The mean absolute error
(MAE) computes the arithmetic average of the absolute errors between the predicted
values {�̃�𝑖}𝑁𝑖=1 and the ground truths {𝑦𝑖}𝑁𝑖=1, that is,



On the Interplay of Subset Selection and Informed Graph Neural Networks 15

0 2 4 6 8 10
pairwise distance in Angstrom

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

de
ns

ity

FPS 1
FPS 2
RDM 1
RDM 2

Fig. 1: The distributions of pairwise interatomic distances within a molecule for 5000
molecules sampled with either FPS or randomly (two different splits each) differ.

MAE :=
𝑁∑︁
𝑖=1

|𝑦𝑖 − �̃�𝑖 |, (18)

where 𝑁 ∈ N is the number of data points in the test set used to evaluate the models.
The root mean squared error (RMSE) computes the root of the mean squared error,
which is the arithmetic average of the squared errors. It is a measure of how spread
out the errors are and it is represented by the formula

RMSE :=

√√√
𝑁∑︁
𝑖=1

(𝑦𝑖 − �̃�𝑖)2. (19)

The worst-case error calculates the maximum absolute error between the predicted
values and the ground truths. It is an indicator of the robustness of a model’s
predictions, and it is defined as

worst-case error := max
1≤𝑖≤𝑁

|𝑦𝑖 − �̃�𝑖 |. (20)

4.2 SchNet

In order to get experimental insights on FPS also for a different class of informed
predictive models, we train the publicly available implementation of SchNet from
Pytorch Geometric [15] on the defined subsets. In this work, we choose a cutoff radius
of 4 �A while keeping the other hyperparameters to be the default ones suggested by
the Pytorch Geometric implementation (version 2.0.4). Besides the test set that is
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Fig. 2: Results for SchNet.

used for final evaluation, we use random 20 % from the training set for evaluation
during training and refer to it as validation set. We minimize the 𝐿2-loss function
with respect to the model parameters with the Adam optimizer using mini-batches
of 32 molecules per iteration and a learning rate of 7 · 10−4. The learning rate is
decayed by a factor of 0.8 if the validation error has not improved for 50 epochs.
After each epoch a checkpoint is saved if the model has achieved a smaller validation
loss than the current best model. The training process is stopped after the model
has not improved for 200 epochs (early stopping). The best model is then used for
assessing the model performance on the test set.

The first thing we observe is that SchNet does not seem to profit from FPS-based
sampling strategies when examining the MAE and RMSE (Fig. 2a and 2b) alone.
Random sampling consistently leads to approximately equal or smaller measure-
ments for the MAE and RMSE for all investigated training set sizes. However, for
100, 250 and 500 training samples, the worst case error is reduced by at least 0.5 eV
when employing FPS for the training set selection (Fig. 2b). Considering the compar-
atively small error bars, we expect FPS to be a reliable technique to reduce the worst
case error for small (i.e. ≤ 500 data points) training sets of QM9. For larger training
sets however, this effect vanishes and FPS leads to worse results in the sense of larger
worst-case errors. This is possibly due to the fact that FPS is based on Mordred fea-
tures which yield a rather global description of a molecule. In this sense, FPS selects
samples that are maximally far away with respect to those global features. On the
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contrary, GNNs strongly exploit local information and we believe this discrepancy
to be a possible explanation for the merely small effect induced by FPS. However,
in absolute numbers, SchNet yields the lowest error metrics of all tested methods.
This meets our expectations since it is the only method incorporating geometric
information. In fact, the nuclear positions were obtained through DFT calculations
and hence the coordinates already encode highly relevant information for predicting
the atomization energy. One could argue that SchNet’s input is already part of the
solution to the problem and view the use of features derived by ab initio methods as
some form of information leakage [16], thus making the learning problem easier.

4.3 Kernel Ridge Regression

The kernel and regression hyperparameters were optimized in a grid search for each
of the randomly selected training sets of 1000 points. Specifically, we varied the
kernel parameter ’a’ in the set {10−1, 100, 10, 102, . . . , 107} and the regularization
parameter ’_’ in the set {10−12, 10−10, 10−8, 10−6, . . . , 100}. We selected a = 105 and
_ = 10−12, which is the parameter combination that provides the best performance
in terms of the MAE on a randomly chosen test set consisting of 10000 points not
considered during training.

Of all predictive models that we investigated, Gaussian kernel regression appears
to benefit the most from FPS-based sampling strategies in comparison to random
sampling. In particular, FPS and C-FPS improve the obtained RMSE on the test set
for all training set sizes as seen in Fig. 3b. However, it is noteworthy that random
sampling leads to an increasing RMSE when going from 500 to 1000 or even 5000
training samples. For a possible explanation, we consider the MAE (Fig. 3a) and
the worst case error (Fig. 3c). Even though we observe a decreasing MAE with an
increasing training set size the worst case error becomes larger with more training
samples as well, leading to a stagnating RMSE as it gives a higher weight to outliers
than the MAE. FPS appears to alleviate this problem as becomes apparent when
considering the comparatively small worst case errors.

At this point, we can compare the worst case errors of the SMILES-based Kernel
ridge regression (KRR) with the worst case error of SchNet. From Fig. 3c it is
apparent that FPS significantly reduces the worst-case error of KRR by one order of
magnitude compared to random sampling. In order to contextualize this effect better
we consider Fig. 4 that shows the worst-case errors of SchNet and KRR side by side
for different numbers of training samples. We find KRR to approach the values of
SchNet with an increasing number of training samples. In particular, we observe
the errors to have the same order of magnitude. This is noteworthy as the KRR
only exploits topological information while SchNet requires the atom coordinates
obtained from DFT as input.
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Fig. 3: Results for Gaussian Kernel Regression.

100 250 500 1000 5000
# training samples

0

1

2

3

4

5

6

7

8

W
or

st
-c

as
e 

er
ro

r 
[e

V]

KRR
SchNet

Fig. 4: The worst-case error of KRR can be reduced by FPS such that the order of
magnitude is comparable to SchNet.

4.4 Spatial 3-Hop Convolution Network

In accordance with the previous sections, we train the method presented in Section
3.3 on subsets of QM9. The network consists of several updates by the spatial 3-hop
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Fig. 5: Results for spatial 3-hop convolution network

convolution layer, followed by an aggregation layer to obtain graph features which are
further processed by linear layers. During training we minimize the L1-loss function
with respect to the models parameters with the Adam optimizer, use a learning rate
of 2 · 10−4 and a batch size of 32 molecules per iteration. We train each model for
500 epochs and choose the best model with respect to a validation set (20% of the
training set) for measuring the model performance on a test set.

Apart from the model trained on 250 samples, we do not observe significant
differences among the different sampling strategies when considering only the MAE
(Fig. 5a). When training on 250 samples, the FPS-based methods appear to lead to
an advantage and reduce the MAE in comparison to random sampling. For larger
training sets random sampling seems to catch up and perform on par with FPS-based
sampling. Considering the RMSE (Fig. 5b), our observations are somewhat different.
In particular, we find FPS and C-FPS to outperform random sampling for most sizes
of the training set. In line with the other methods, FPS reduces the worst-case error
in comparison to random sampling (Fig. 5c).

We observe comparatively large values for all metrics, especially for small training
set sizes. For example, the MAE for 100 training samples obtained with FPS amounts
to approximately 5 eV. This is around 4 times larger than what we measure for KRR
and more than 10 times larger than the value of SchNet. This was to be expected,
since both KRR and SchNet are relatively data efficient. We note that the good
performace of SchNet is to be expected as it uses more features than the spatial 3-
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hop convolution network and especially uses the positions of the atoms (a powerful
information which allows to compute the atomization energy explicitely). The KRR
has the advantage of being a kernel method which has empirically shown to be
effective in the realm of small datasets [45]. However, for larger training sets the
relative difference between the methods becomes smaller: For 500 training samples,
KRR yields only a two times smaller and SchNet only a 5 times smaller MAE.
Moreover, the spatial 3-hop convolution network can benefit the most from larger
datasets, i.e. we observe a significant improvement in performance whenever the size
of the dataset is increased.

4.5 Explanation

With GRDE framework from Section 3.4 we now investigate the domain knowledge
learned by the spatial 3-hop convolution network from Section 3.3 using the sampling
strategies from Section 3.5.

Setup of the Experiments

For the experiments, we utilize the spatial 3-hop convolution network from Section
3.3 that has been pre-trained using the sampling strategies from Section 3.5. More
specifically, we compare explanations on the pre-trained model for the cases of
random sampling (RDM) and diversity sampling (FPS) of 5000 samples as the
training dataset. We fix the distortion measure 𝑑 as the 𝐿2 distance for a regression
task, and randomly initialize masks 𝑆. Furthermore, given the sparsity of the data, we
also set a low value on _𝐴, _𝑋 = 20 (which corresponds to choosing 10-15% of the
non-zero elements in the respective masks) and set (𝑣𝑆𝐴

, 𝑣𝑆𝑋 ) to null. Since the QM9
dataset possesses edge features, we optimize 𝑆𝐴 = [𝑆𝐴1 , 𝑆𝐴2 , ..., 𝑆𝐴ℎ

] where 𝐴𝑖 is
the adjacency matrix with respect to the edge feature 𝑖 ∀𝑖 ∈ {1, 2, ..., ℎ}; ℎ being the
number of edge features. The results that follow are obtained as an average over 3
independent runs on 100 graphs randomly sampled from the respective test datasets.
Since the setup produces positive relevance masks, i.e., the masks only obfuscate
features that exist for each node/edge, and do not show the relevance of the lack of a
feature for a node/edge), we aggregate and average the node- and edge-wise scores
to obtain feature-wise scores. Furthermore, we offset the imbalance in the scores by
weighting them with respect to the frequency of their occurrence over the sampled
data. Our explanation query is as follows: For a randomly selected graph unseen
by the pre-trained model, which features does the model consider important for its
prediction?
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(a) Node feature explanations (b) Edge feature explanations

Fig. 6: Results for feature-level GRDE.

Results

From Fig. 6a and Fig. 6b, we see that the model trained using FPS places a stronger
importance in both edge and node features than in the case of RDM, especially in
the case of atomic numbers (Z), double bonds and aromatic rings. In comparison,
single bonds, though the most frequent of the bond types in the sampled data are
not considered as important. Furthermore, Fig. 6a shows that the model requires
certain nodes to be specific atom types and have a certain type of neighborhood for
its predictions, as can be seen from the atomic number (Z) as well as the importance
of carbon (C) and the number of hydrogen atoms (#H) surrounding the node in the
case of FPS. In the case of RDM, we also have a clear indication that edge features
are not as important as the node features, whereas this is significantly more balanced
in the case of FPS. Finally, we find that, though there exist non-zero values for some
node features in the sampled graphs such as in the case of Nitrogen (N) and Oxygen
(O), GRDE does not attribute any importance to them. This implies that the model
treats these features as noise and ignores them regardless of the sampling strategy
used.

5 Conclusion

In this work, we employed three informed ML models to predict the atomization
energy of molecules in the QM9 dataset. We used KRR with a kernel obtained from
molecular topological features, a geometry-based GNN (SchNet) and a topology-
based GNN. We saw that maximizing molecular diversity in the training set selection
process improves the accuracy and robustness of those methods. Our main finding
is that by training topology-based ML models with sets of diverse molecules, we
can significantly reduce their test maximum absolute error, thus increasing their
robustness to distribution shifts. For SchNet, this effect was still observable but
only for small training sets. Moreover, by maximizing diversity in the training sets,
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we could substantially reduce the gap between the maximum absolute errors of a
topology-based regression method as KRR and the SchNet, which is a geometry-
based GNN. This work proposes only an empirical investigation, in the field of
molecular property prediction, on the effects of maximizing molecular diversity in
the training set selection. Ongoing research seeks to provide a theoretical foundation
for the observed empirical results.

We believe that reducing the worst-case error is of great importance for appli-
cations that require a high degree of robustness but have limited budget for data
generation. One example would be the application of Machine Learning Interatomic
Potentials (MLIPs) for molecular dynamics simulations. In this scenario, the pre-
dictions of the model are used to integrate the equations of motion and to compute
particle trajectories. Thus, large errors in the predictions could potentially lead to a
failure of the simulation and techniques to prevent this are needed. Investigating this
scenario in particular, could be a direction of future research.
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