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Abstract

In this paper we deal with the construction of lower-dimensional manifolds from high-dimensional

data which is an important task in data mining, machine learning and statistics. Here, we consider

principal manifolds as the minimum of a regularized, non-linear empirical quantization error functional.

For the discretization we use a sparse grid method in latent parameter space. This approach avoids, to

some extent, the curse of dimension of conventional grids like in the GTM approach. The arising non-

linear problem is solved by a descent method which resembles the expectation maximization algorithm.

We present our sparse grid principal manifold approach, discuss its properties and report on the results

of numerical experiments for one-, two- and three-dimensional model problems.

AMS Subject Classification: 65N30, 65F10, 65N22, 41A29, 41A63, 65D15, 65D10.
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1 Introduction

The reconstruction of lower-dimensional manifolds from high-dimensional data is an important task in data
mining, machine learning and statistical learning theory. It offers a powerful framework for nonparametric
dimension reduction and has many practical applications in e.g. speech and image processing, sonification,
or process monitoring. The key idea is to find the most succinct low dimensional structure that is embed-
ded in a higher dimensional space. With its help, algorithms can work directly in the lower dimensional
latent space of the manifold instead of the high-dimensional data space and thus get computationally fea-
sible. Applications range from clustering over feature extraction to recognition tasks. Here, besides the
classical principal component analysis (PCA) [45], various non-linear local and non-local methods have been
developed in the recent decade. Popular approaches are, among others, multidimensional scaling (MDS),
Kohonen’s SOM, generative topological mapping (GTM), locally linear embedding (LLE), Isomap, Laplacian
eigenmaps, Hessian eigenmaps, local tangent space alignment (LTSA), curvilinear distance analysis (CDA),
diffusion wavelets, auto-associative neural networks, Kernel PCA, nonlinear principal component analysis
and regularized principal manifolds. For a survey on these techniques and potential applications, see [21, 43]
and the references cited therein, as well as the web pages [1, 2] and the links therein.1

To this end, the lower-dimensional manifold has to be modeled properly, either explicitly or implicitly.
Here, often radial basis approaches are used where kernel functions are attached to the data points. Then,
the corresponding algorithms scale in general cubically with the number of data points. This allows to deal
with sets of high dimensionality but limits the applications to a moderate amount of data. Alternatively,
if an approximation of the manifold is explicitly represented by some sort of parametrization, grids are
employed. This way, principal curves and surfaces can be constructed by polygonal line algorithms. Also
Kohonen’s SOM and the generative topographic mapping use a grid in latent space. Then, quite large data
sets can be dealt with. But, due to the curse of dimensionality, the dimension of the manifold is restricted
to at most three (or four) which limits the applicability of these methods to some extent. In general, just
two-dimensional grids are presently used in practice.

In this paper, we propose to represent the manifold parametrically and to approximate the component
functions of the parametric mapping using a so-called sparse grid instead of a conventional grid. Sparse
grids are based on tensor products of one-dimensional multiscale functions. The coefficients in the resulting

1Note that such dimensionality reduction algorithms can often be formulated in terms of what they preserve about the
original data. Some, like PCA preserve variance, others, like MDS or Isomap large distances (metric, non-metric or geodesic),
others like SOM or LLE preserve nearby neighbours.
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multivariate series representation of a sufficiently smooth mapping function then exhibit a specific decay with
the number of levels involved. For certain function classes, i.e. for d-dimensional functions with dominating
r-th mixed derivatives, truncation of the associated series expansion results in sparse grid spaces which
need only O(m log(m)d−1) degrees of freedom instead of O(md) degrees of freedom for the case of uniform
full grids, see [18] and the references cited therein. Here, m denotes the number of grid points in one
coordinate direction. With h ∼ 1/m, the achieved accuracy is however only slightly reduced from O(hr)
to O(hr(log h−1)d−1) in the L2-norm if piecewise polynomials of degree r − 1 are used in the underlying
one-dimensional multilevel basis. With respect to the energy norm even the same order O(hr−1) of accuracy
can be obtained for both cases. For a general survey on the sparse grid method and its various variants and
applications, see [18].

These properties make the sparse grid technique a good candidate for manifold reconstruction problems.
To this end, a vector-valued version of the sparse grid approach is employed for the finite-dimensional ap-
proximation of the component functions of the parametric representation of a manifold. This representation
is determined as the sparse grid solution of a non-linear minimization problem which involves an empirical
quantization error measuring the distance of the manifold from the given data points and a regularization
term incorporating the smoothness assumption on the manifold. This approach is closely related to regu-
larization networks, see [28] and compare especially [60]. The solution of the resulting discrete non-linear
problem is computed by a descent method. It turns out that sparse grids allow to reconstruct manifolds
in a more cost effective way than the conventional full grids that are commonly employed in, e.g., the
GTM approach. Furthermore, they open a way to deal with higher-dimensional manifolds than just two- or
three-dimensional ones.

The remainder of this paper is organized as follows. In section 2 we state the manifold reconstruction
task as the minimization of a regularized empirical error functional. In section 3 we present the discretization
of the problem in a general finite dimensional space and discuss a descent method similar to the expectation
maximization algorithm (EM) as a way to locally solve the resulting nonlinear system. Then, in section
4 we introduce sparse grids for the approximate representation of general manifolds and use them in the
discretization of the regularized empirical error functional. It turns out that the sparse grid approach and
the corresponding algorithm scales favorably with respect to both the number of data points given and the
number of degrees of freedom involved in the discretization. In section 5, we present the results of numerical
experiments using our sparse grid manifold reconstruction approach. Here, besides principal curves, we deal
with principal surfaces and more general principal manifolds. We compare the sparse grid approach to the
conventional full grid method and discuss its properties for typical model problems. Finally, we give some
conclusions in section 6.

2 The problem

Given are N data points {x1, . . . , xN} ⊂ X = R
n which we assume to be drawn iid from an unknown

underlying probability distribution P (x), x ∈ X . We define an index set T , e.g. R
d, and consider the maps

f : T → X , and a class F of such maps with e.g. additional properties to be fixed later on. The aim is now
to find a map f ∈ F such that the quantization error

R(f) =

∫

X

min
t∈T

c(x, f(t)) dP (x)

is minimized in F . Here, c denotes a loss function which is typically chosen as c(x, f(t)) = ‖x − f(t)‖2
2.

Of course, this problem is unsolvable since the probability distribution P (x) is not known. Therefore, we
replace P (x) by the empirical density

PN (x) =
1

N

N∑

i=1

δ(x− xi)

and minimize the empirical quantization error

∫

X

min
t∈T

‖x− f(t)‖2
2 dP (x) ≈ 1

N

N∑

i=1

min
t∈T

‖xi − f(t)‖2
2 =: Remp(f) (2.1)
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in F .
Note that various situations with finite and infinite sets T can be described in this framework, compare

also [58]. In case of a finite T , this involves codes with discrete quantization. For example, if T = {1},
f(1) ∈ X and F the set of constant functions, we obtain the sample mean as result of the minimization
problem. If T = {1, . . . , k}, f : i→ fi, fi ∈ X and F the set of associated functions, we obtain the distortion
error of a vector quantizer for which a local minimum can be found by the well-known k-means algorithm.

Moreover, for infinite T interesting applications may be modelled as well: Then, instead of discrete
quantization, a mapping onto a manifold of dimensionality lower than the input space can be considered.
For example, if T = R, f : t → f0 + tf1, f0, f1 ∈ X , ‖f1‖ = 1 and F the space of all such line segments,
we obtain from the minimization of (2.1) over F the line parallel to the direction of the largest variance in
P which just resembles the well-known principal component analysis (PCA), see [45] for further details. An
example is given in Figure 2.1 (left).

Figure 2.1: Linear and nonlinear principal component analysis. First component of linear PCA (left) and of
nonlinear PCA, i.e. principal curve (right).

Furthermore, for T = [0, 1]d, f : t → f(t) = (f(1)(t), . . . , f(n)(t)), f ∈ F where F is the class of n-tuples

of continuous R
d-valued functions, we obtain with d = 1 the so-called principal curve problem [42] which

is a nonlinear generalization of PCA. An example is given in Figure 2.1 (right). A further discussion and
results on various versions of principal curves can be found in [19, 22, 47, 48, 56, 63]. Finally, in the case
d > 1, general principal surfaces and principal manifolds [10, 41, 60, 58] are modelled which are an instance
of nonlinear principal component analysis, compare also [25, 27, 51] for related approaches. An example is
shown in Figure 2.2.

Figure 2.2: Nonlinear principal manifold, d = 2, n = 3.

Note that we encounter here a nonlinear problem due to the general choice of f . Note furthermore that
the minimization of the associated functional (2.1) on F is now an ill-posed problem. To nevertheless obtain
a well-posed (nonlinear) problem one usually employs some sort of regularization. To this end, we consider

Rreg(f) = Remp + λS(f) (2.2)

where Remp again denotes the empirical error functional (2.1), S(f) is a smoothing functional which enforces
a certain regularity on f and λ ∈ R

+ denotes the regularization parameter which balances the two terms.
Depending on the problem under consideration, there are many ways to choose the smoothing term S(f)

in practical applications. First of all, S should be a convex, non-negative functional of f . For example, for
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the construction of principal curves, i.e. for the case d = 1, S can be geometrically chosen and interpreted
as a length constraint2 on the curve f :

S(f) = ‖Gf‖2
L2(T,X) = (Gf,Gf) =

n∑

i=1

(Gf(i), Gf(i)) with e.g. G = ∇ = ∂t. (2.3)

A similar relation between derivatives of f and geometrical interpretations exists for surfaces, i.e. for the
case d = 2. A standard result from differential geometry states that

surf(f) =

∫

T

√
( ∂

∂t1
f
)2( ∂

∂t2
f
)2

−
[( ∂

∂t1
f
)T ( ∂

∂t2
f
)]2

dt (2.4)

is the surface area of a (sufficiently smooth) parameterized surface, compare with [46]. A geometric/ arith-
metic mean argument shows that

S(f) =
1

2

∫

T

( ∂

∂t1
f
)2

+
( ∂

∂t2
f
)2

dt =
1

2

n∑

i=1

(Gf(i), Gf(i)) again with G = ∇ (2.5)

is an upper bound for surf(f). The use of constraints on area and volume, curvature and higher order
derivatives make sense and is subject of actual research. To this end, we use a sum of length constraints
like (2.3) for the manifold edges and surface constraints like (2.5) for surface elements. The associated choice
of squared gradients leads to a (squared) weighted generalized3 version of the variation of Hardy and Krause.
For a definition of the variation of Hardy and Krause and further details on it, see e.g. [54]. We set

S(f) =

n∑

i=1

V
(U,V,W )
HK (f(i)) (2.6)

with

V
(U,V,W )
HK (f(i)) =

∑

u∈U

v∈V (u)

wu,v






∫

[0ū,1ū]

(

∂v f(i)(t;0
u)

)2

dtū +

∫

[0ū,1ū]

(

∂v f(i)(t;1
u)

)2

dtū




 (2.7)

where, for a vector t ∈ R
d, non-empty4 u and u ⊂ {1, . . . , d}, the expression tu denotes the components u of

t, i.e. all components {1, . . . , d} \ u are eliminated. Here, 0 = (0, . . . , 0)T , 1 = (1, . . . , 1)T ∈ R
d, denote the

two diagonal corners of T , respectively. Furthermore, f(i)(·;bu) means that f(i) is only evaluated at points
t where tj = bj for j ∈ u, and

∂vf(i)(t) :=
∂|v|

∏

j∈v ∂tj
f(i)(t)

is the partial derivative of f(i) taken once with respect to each tj for j ∈ v. Finally, ū := {1, . . . , d} \ u.
Here, the sets U , V and the weights W are given. U determines a set of fixed directions (which define slices
0

u and 1
u with u ⊂ U). The sets V (u) define derivative directions. Since any derivatives in directions i ∈ u

vanish identically5, each v ∈ V (u) should be a subset of ū.
Formula (2.7) becomes clearer if we consider two examples: For U = {∅}, V (∅) = {v : |v| = 1},

W = {wu,v = 1} we just obtain (2.3). For d = 2, if we set U =
{
∅
}
∪

{
|u| = 1

}
=

{
∅, {1}, {2}

}
,

2To be precise, ‖∂tf‖2
L2(T,X)

=
R

ḟ2
(1)

+ ḟ2
(2)

+ . . .+ ḟ2
(n)
dt is an integral over the squared speed of the curve f . Then, since

a re-parametrization of f to constant speed does not change Rreg but minimizes the regularization term, ‖∂tf‖2
L2(T,X)

equals

the squared length of the curve at the optimal solution [60].
3Note that the classical variation in the sense of Hardy and Krause integrates absolute values, uses just V (u) = {ū} and

only employs 0 in its construction. It also does not employ weights wuv .
4Note that for u = ∅ both integral terms would be equal. Then we retain just one of them.
5Note that a definition with V formally independent of u would lead to the same result – the additional terms would vanish

due to this property.
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V (u) =
{
v ⊂ ū, |v| = 1

}
and W = {wu,v = 1}, we obtain

1∫

0

1∫

0

(∂t1f(i)(t1, t2))
2 dt1 dt2

︸ ︷︷ ︸

u=∅, v={1}

+

1∫

0

1∫

0

(∂t2f(i)(t1, t2))
2 dt1 dt2

︸ ︷︷ ︸

u=∅, v={2}

+

1∫

0

(∂t1f(i)(t1, 0))2 dt1

︸ ︷︷ ︸

u={2}, v={1}

+

1∫

0

(∂t1f(i)(t1, 1))2 dt1

︸ ︷︷ ︸

u={2}, v={1}

+

1∫

0

(∂t2f(i)(0, t2))
2 dt2

︸ ︷︷ ︸

u={1}, v={2}

+

1∫

0

(∂t2f(i)(1, t2))
2 dt2

︸ ︷︷ ︸

u={1}, v={2}

. (2.8)

In the general case, we may choose S as a prior assumption on the function class of the reconstructed
manifold. To be more precise, we assume f to live in a certain function space F = {f ∈ L2(T,X) : ‖f‖ ≤
c <∞} with associated norm ‖·‖. This space might be a subspace of H which is a reproducing kernel Hilbert
space [4, 64]. Then, S(f) just corresponds to ‖f‖2

H. In other words, we minimize the empirical quantization
error (2.1) under the side constraint ‖f‖H = c. The Lagrange approach then results (up to a constant term)
in (2.2) with λ being the Lagrange multiplier. In the simple case of Sobolev spaces and related function
spaces, we have S(f) = ‖Gf‖2

L2(T,X) with G a specifically chosen differential operator which expresses the
additional regularity of f . In the general case of a reproducing kernel Hilbert space with associated kernel
k(·, ·), the corresponding G is no longer a differential operator but merely a pseudo-differential operator. For
example, for the widely used kernel k(x, y) = exp(−‖x− y‖2

2/(2σ
2)), we have by means of Fourier analysis

‖Gf‖2
L2(T,X) =

∫ ∞∑

j=0

σ2j

j!2j
(Djf(x))2dx

with D2j = ∆j and D2j+1 = ∇∆j . Note that the relation between a representation with (2.3) and a
representation with the associated reproducing kernel is often given via some sort of representer theorem,
see e.g. [49, 59]. There is a wide range of possible kernels, a further discussion on kernels and their relation
to smoothing operators can be found in [58] and the references cited therein.

3 Discretization and solution

Now we choose a countable basis {φj(t)}, j = 1, . . . ,∞, φj : t → R of F , and expand f as infinite series in
this basis, i.e.

f(t) =
∞∑

j=1

αj · φj(t)

with coefficient vector αj = (αj,1, . . . , αj,n)T ∈ R
n. Note that the multiplication αj · φj(t) has to be

understood component-wise, i.e.

αj · φj(t) = (αj,1φj(t), . . . , αj,nφj(t))
T and f(i)(t) =

∞∑

j=1

αj,iφj(t), i = 1, . . . , n.

We thus employ the same basis function set for each component of f . We can then reformulate our problem
(2.2) as follows: Find the minimum of

argmin
t1,...,tN ∈T

α1,...,α∞

1

N

N∑

i=1

‖xi − f(ti; ~α∞)‖2
2 + λ‖Gf(·; ~α∞)‖2

L2(T,X). (3.1)

The infinite parameter vector ~α∞ = (αT
1 , . . . , α

T
∞)T collects here all the component vectors αj , j = 1, . . . ,∞.

It enters the notation of the function f in a parametric way to indicate its dependence on the coefficients
αj , j = 1, . . . ,∞. Note that the interior minimization mint∈T ‖xi − f(t)‖2

2 from (2.1) is now translated into
N independent minimizations (one for each xi) and can thus be written in front of the sum.
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So far, (3.1) is a non-linear minimization problem with an infinite dimensional search space (in ~α∞)
which is not computationally feasible yet. To allow for a numerical solution we have to resort to some sort
of discretization. To this end, we restrict ourselves to a finite dimensional subset FM ⊂ F with finite basis,
i.e. span{φ1, . . . , φM} = FM . This leads to a finite-dimensional approximation fM of f , i.e.

f(t) ≈ fM (t; ~αM ) =

M∑

j=1

αj · φj(t) (3.2)

with associated coefficient vector ~αM = (αT
1 , . . . , α

T
M )T ∈ (Rn)M and to the following finite-dimensional

problem: Find the minimum of

argmin
t1,...,tN ∈T

α1,...,αM

1

N

N∑

i=1

‖xi − fM (ti; ~αM )‖2
2 + λ‖GfM (·; ~αM )‖2

L2(T,X). (3.3)

Here, to obtain fast convergence of fM towards f the choice of a proper sequence of bases for the sequence
of function spaces {FM}M and a certain smoothness of f is important. A solution of the discrete nonlinear
minimization problem (3.3) can then be gained by a conventional descent method which is closely related to
the well-known expectation maximization algorithm [24]:

1. Choose some initial values, for example as the result of a PCA of the given data {xi}.

2. Projection step: Keep {αj, j = 1, . . . ,M} fixed and minimize with respect to {ti, i = 1, . . . , N}:

argmin
ti

‖xi − fM (ti; ~αM )‖2
2, i = 1, . . . , N. (3.4)

To this end, N different, decoupled non-linear minimization problems of size d must be solved.6

3. Adaption step: Keep {ti, i = 1, . . . , N} fixed and minimize with respect to {αj, j = 1, . . . ,M} :

argmin
α1,...,αM

1

N

N∑

i=1

‖xi − fM (ti; ~αM )‖2
2 + λ‖Gf(·; ~αM )‖2

L2(T,X). (3.5)

Note that this is just a vector-valued regression problem with the data (ti, xi), i = 1, . . . , N . Now,
since we assumed that G acts componentwise on f , differentiation with respect to αj , j = 1, . . . ,M
results in n linear systems of equations

(BTB +Nλ · C)~α
(k)
M = BT~x(k), k = 1, . . . n, (3.6)

where B denotes the N × M matrix with entries Bij = φj(ti) and C denotes the M × M matrix
with entries Cij =

∫
Gφi(t)Gφj(t)dt. Here, the data vector ~x(k) consists of the k-th coordinates of

the data points xi, i.e. ~x(k) = (x1,k, . . . , xN,k)T as does the unknown vector ~α
(k)
M ∈ R

M , i.e. ~α
(k)
M =

(α1,k, . . . , αM,k)T , k = 1, . . . , n. We thus have to solve the same system with n different right hand
sides.

In analogy to the expectation maximization algorithm, one iteration of the steps 2 and 3 does not
increase the value of the target function and successive iteration will eventually converge to a local minimum
of (3.3). Although also other optimization methods like Newton’s approach may need less iterations, our
problem-adapted decomposition into projection and adaption reduces the overall computational complexity
significantly.

So far, we were not specific about the choice of the smoothing operator S nor on the choice of the basis
functions φj . In the case d = 1, i.e. for principal curves, a natural choice for the regularization operator

6 In principle, this can be achieved by any standard nonlinear minimization method which allows for jumps in the derivative,
like e.g. the downhill simplex approach or the Max-Powell method [53]. In the following, we employ the piecewise linear
structure of our basis functions and use a domain decomposition approach to identify smooth parts of ‖xi −fM (t; ~αM )‖2

2 where
we then use a (local) Newton type method to find the minimum with a few iterations.

6



is the constraint of a fixed curve length. This translates to S(f) = ‖∇f‖2
L2(T,X) =

∑n
i=1 ‖ḟ(i)‖2

L2
, see [48].

Furthermore, f is approximated by a polygonal line fM which is spanned by M points. In the case d = 2
and d = 3, a natural extension would be a smoothing operator S like (2.6) which relates to the area and
volume of the manifold, respectively.

Furthermore, a 2- or 3-dimensional mesh of points may be used to span the approximand fM . But in
case of a general d, the degrees of freedom involved in a uniform mesh behave as M = O(md) where m
denotes the number of points in one coordinate direction of the mesh. Here, the curse of dimension shows
up, i.e. the number of degrees of freedom scale exponentially with the dimension d. Thus, for d > 4 such an
approach gets impossible due to the huge number of degrees of freedom involved.

Another approach is to rely on the theory of reproducing kernel Hilbert spaces (RKHS). To this end,
the function to be found is assumed to belong to a RKHS H. Then, the smoothing operator is chosen as
S(f) = ‖f‖2

H where ‖.‖H denotes the norm associated to the RKHS H, for details see [4, 64]. Here, an
associated kernel function k(x, x′) uniquely determines the RKHS H. In the kernel approach, M points
qj ∈ T, j = 1, . . . ,M are chosen and to each point the kernel function is attached accordingly. We thus have
φj(t) = k(qj , t) and the associated finite expansion reads

fM (t) =

M∑

j=1

αj · k(qj , t). (3.7)

A solution of the corresponding discrete nonlinear minimization problem (3.3) can be gained by the above-
mentioned descent algorithm. The resulting linear system in the projection step 2 again reads as (3.6), where
now the matrix B contains the values Bij = k(qj , ti) and the matrix C is just Cij = k(qj , qi).

The overall costs of the kernel approach are then as follows: The projection step involves O(NM)
operations7 which is due to the globality of the kernel. The setup of the matrices in the adaption step needs
O(M2N) operations, and the solution of the linear system (3.6) involves O(M3) operations since the matrix
is usually full due to the globality of the kernel k. Altogether we see that this approach scales linear in
the number of data but it scales cubic in the number of parameters αj . Thus only a moderate number M
of parameters can be employed in such a model. Note furthermore that a good choice of the points qj is
not straightforward and, moreover, associated to this question, neither the convergence of fM to f nor its
convergence rate is completely clear.

Interestingly, the so-called generative topographic mapping (GTM) method can be reinterpreted as a
variant of the kernel based discretization involving a grid based approach. It was introduced in [10] as a
probabilistic reformulation of the self-organizing map (SOM) and got further developed in [11] and [19, 20].
The GTM is a probability density model which describes the distribution of data in high-dimensional space
in terms of a smaller number of latent variables using a uniform grid of points qj in latent space T . Here,
the mesh points are equipped with non-linear basis functions φj(t) which might be Gaussians or sigmoidal
functions and fM is again spanned as linear combination (3.2) so that each point t in latent space T is
mapped to a corresponding point x in the n-dimensional data space X . We may again write fM (t) as (3.7).
Now, if we denote the node locations in T by tj′ , j

′ = 1, . . . ,M , then (3.7) defines a corresponding set of
vectors

zj′ = fM (tj′ ). (3.8)

Each of these vectors forms the center of an isotropic Gaussian distribution in data space, whose inverse
variance we denote by β, such that

p(x|j′) =

(
β

2π

)n/2

exp(−β
2
‖zj′ − x‖2

2). (3.9)

The probability density function for the GTM model is then obtained by summing over all of the Gaussian
components, i.e.

p(x|~αM , β) =
M∑

j′=1

P (j′)p(x|j′) =
M∑

j′=1

1

M

(
β

2π

)n/2

exp(−β
2
‖zj′ − x‖2

2)

7Here we assume a constant number of iteration steps to achieve a local minimum.
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where we have taken the prior probabilities P (j′) of each of the components j′ to be constant and equal to
1/M . Note that due to (3.8), zj′ = zj′(~αM ) which has been omitted to simplify the notation. Altogether,
the GTM model is just a constraint mixture of Gaussians with adaptive parameters αj and β where the
Gaussian distribution (3.9) represents a noise model.

Furthermore, for further regularization, a prior over the class of mappings f is needed. In [10] a Gaussian

prior over the parameters αj was employed, i.e. P (~αM ) =
∏M

j

(
β
2π

)n/2

exp(−β
2 ‖αj‖2

2). This approach

depends strongly on the number of basis functions φj(t) = k(qj , t) and easily results in overfitting. To
overcome this problem a Gaussian process prior

P (~αM ) = (2π)−n/2|k|1/2 exp



−
∑

j,j′

αj · αj′k(qj , qj′)





was introduced in [11]. Then, since a parametric probability density model p(x|~αM , β) can be fitted to a
data set {x1, . . . , xN} by maximum likelihood, we obtain the log likelihood function

L(~αM , β) =

N∑

i=1

ln p(xi|~αM , β) + lnP (~αM ) + C

after taking the log posterior probability and exploiting the i.i.d. assumption on the data set. With (3.7)
and (3.8), maximization with respect to ~αM just results in the discretization (3.3) of (2.2) with the choice
S(f) = ‖f‖2

H(k) where ‖.‖H(k) denotes the norm associated to the RKHS H(k) associated to the kernel k(·, ·)
and k is the Gaussian. Here, the parameter β/2 can be absorbed into the regularization parameter λ and
the forefactors (β/(2π))n/2 and (2π)−n/2|k|1/2 enter the constant C which plays no role after maximization
of L(~αM , β) anyway. For further details, see [11] and the discussion in [58], sections 17.4.1. and 17.4.2.

The latent space of the GTM is generally chosen to have a low dimensionality (typically d=2). Although
it is straightforward to formulate the GTM for latent spaces of any dimension, the model becomes computa-
tionally intractable if d gets large. The reason is the curse of dimensionality, i.e. the number of nodes in the
grid grows exponentially with d (as does the number of basis functions). Note that the same problem arises
with the SOM. While there are attempts to use random sampling in latent space or to apply semi-linear
models to face that problem [11], such methods do not really cure it.

4 Sparse grids

To avoid the above-mentioned problems with the curse of dimension on one hand and with the cubic scaling
in the number of parameters on the other hand, we suggest to employ the so-called sparse grid approach for
the discretization of f .

4.1 Construction and properties

Sparse grid spaces were originally developed for the efficient discretization of d-dimensional elliptic problems
of second order. They are based on tensor products of one-dimensional multiscale functions. The coefficients
of a sufficiently smooth solution in the resulting multivariate series representation then exhibit a specific
decay with the number of levels involved. For certain function classes, i.e. for functions with dominating
r-th mixed derivatives, truncation of the associated series expansion results in sparse grid spaces which
need only O(m log(m)d−1) degrees of freedom instead of O(md) degrees of freedom for the case of uniform
full grids, see [18] and the references cited therein. Here, m denotes the number of grid points in one
coordinate direction. With, h ∼ 1/m, the achieved accuracy, however, is only slightly reduced from O(hr)
to O(hr(log h−1)d−1) in the L2-norm if piecewise polynomials of degree r − 1 are used in the basic one-
dimensional multilevel basis. With respect to the energy norm even the same order of accuracy can be
obtained for both cases. Furthermore there are so-called energy-norm based sparse grids which only need
O(m) degrees of freedom but result in O(hr−1) accuracy with respect to the energy norm. This approach
completely eliminates the dependence of the dimension d in the complexities at least for the m-asymptotics,
the order constants however still depend exponentially on d. The sparse grid method has successfully

8



been applied to problems from quantum mechanics [30], to stochastic differential equations [57], to high-
dimensional integration problems from physics and finance [12, 32, 55] and to the solution of moderately
higher-dimensional partial differential equations, mainly of elliptic type [6, 7, 16]. For a survey, see [18].

These properties make the sparse grid technique a good candidate for manifold reconstruction problems.
To this end, a vector-valued version of the sparse grid approach is employed for the finite-dimensional
approximation of f in (3.2), where each coordinate function is represented in the same sparse grid basis. In
this subsection, we first present the construction principle of sparse grids and their properties for the case
of scalar functions for reasons of simplicity, i.e. for the case n = 1. We will carry the sparse grid approach
over to vector-valued functions and manifolds with n > 1 in the following subsection.

First, we restrict ourselves to the case of piecewise d-linear functions in the sparse grid construction. We
proceed as follows: In a piecewise linear setting, the simplest choice of a 1D basis function is the standard
hat function φ(x),

φ(x) :=

{
1 − |x|, if x ∈ [−1, 1] ,

0, else.
(4.1)

This function can be used to generate an arbitrary φlj ,ij
(xj) with associated support [xlj ,ij

−hlj , xlj ,ij
+hlj ] =

[(ij − 1)hlj , (ij + 1)hlj ] by dilation and translation, that is

φlj ,ij
(xj) := φ

(
xj − ij · hlj

hlj

)

. (4.2)

The resulting 1 D basis functions are the input of the tensor product construction which provides a suitable
piecewise d-linear basis function in each grid point xl,i := i · hl, 0 ≤ i ≤ 2l, see Figure 4.1:

φl,i(x) :=
d∏

j=1

φlj ,ij
(xj) . (4.3)

Here, l = (l1, . . . , ld) ∈ N
d denotes a multi-index which indicates the multivariate level of refinement,

i = (i1, . . . , id) ∈ N
d denotes a multi-index which indicates the multivariate position, 0 := (0, . . . , 0), and the

inequalities in 0 ≤ i ≤ 2l are to be understood componentwise. We thus consider the family of d-dimensional
standard rectangular grids

{
Tl, l ∈ N

d
}

(4.4)

on T = [0, 1]d with multivariate mesh size hl := (hl1 , . . . , hld) := 2−l. That is, the grid Tl is equidistant
with respect to each individual coordinate direction, but, in general, may have different mesh sizes in the
different coordinate directions. The grid points xl,i of grid Tl are just the points

xl,i := (xl1,i1 , . . . , xld,id
) := i · hl , 0 ≤ i ≤ 2l . (4.5)

W

2

1

X

x

y 21

W
W

Figure 4.1: Tensor product approach for piecewise bilinear basis functions.

Clearly, the functions φl,i (with obvious modification at the boundary of T ) span the space Vl of piecewise
d-linear functions on T on grid Tl, i.e.

Vl := span
{
φl,i : 0 ≤ i ≤ 2l

}
, (4.6)

and form a basis of Vl.
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Additionally, we introduce the hierarchical increments Wl,

Wl := span

{

φl,i :
1 ≤ ij ≤ 2lj − 1, ij odd, if lj > 0,
0 ≤ ij ≤ 1, if lj = 0,

1 ≤ j ≤ d

}

, (4.7)

for which the relation
Vl =

⊕

t≤l

Wt (4.8)

can be seen easily. Note that the supports of all basis functions φl,i spanning Wl are mutually disjoint for
l > 0. Thus, with the index set

Il :=

{

i ∈ N
d :

1 ≤ ij ≤ 2lj − 1, ij odd, if lj > 0,
0 ≤ ij ≤ 1, if lj = 0,

1 ≤ j ≤ d

}

, (4.9)

we get another basis of Vl, the hierarchical basis

{φk,i : i ∈ Ik,k ≤ l} (4.10)

which generalizes the well-known 1 D basis shown in Figure 4.2 to the d-dimensional case by means of a
tensor product approach.

Figure 4.2: Piecewise linear hierarchical basis, l = 4.

With these hierarchical difference spaces Wl, we can define

V (d) :=

∞∑

l1=0

. . .

∞∑

ld=0

W(l1,...,ld) =
⊕

l∈Nd
0

Wl (4.11)

with its natural hierarchical basis
{
φl,i : i ∈ Il, l ∈ N

d
0

}
. (4.12)

Now it is easy to see that any function f ∈ V (d) can be uniquely split by

f(x) =
∑

l

fl(x), fl(x) =
∑

i∈Il

vl,i · φl,i(x) ∈ Wl , (4.13)

where the vl,i ∈ R are the coefficient values of the hierarchical product basis representation of f .
The main observation is now as follows: The coefficients vl,i with respect to the hierarchical basis possess

a specific decay with the level l if f possesses bounded second mixed derivatives, i.e. if

f : T → R : Dαu ∈ Lq(T ), |α|∞ ≤ r,

10



with r = 2, where

Dαf :=
∂|α|1f

∂xα1
1 · · ·∂xαd

d

. (4.14)

Here, α ∈ N
d
0 with the norms |α|1 :=

∑d
j=1 αj and |α|∞ := max1≤j≤d αj .

A straightforward calculation using partial integration twice and the product structure, see [18] for details,
gives the integral representation8

vl,i =

∫

Ω

ψl,i(x) ·D2f(x) dx (4.15)

for any coefficient value vl,i of the hierarchical representation (4.13) of f with l > 0. Here ψlj ,ij
(xj) :=

−2−(lj+1) · φlj ,ij
(xj), and furthermore ψl,i(x) :=

∏d
j=1 ψlj ,ij

(xj). We then can derive the estimate

|vl,i| ≤ 2−d · 2−2·|l|1 · |u|2,∞ = O(2−2·|l|1), l > 0, (4.16)

with respect to the semi-norm |f |α,∞ := ‖Dαf‖∞ . In other words, if f belongs to the space of functions
with second bounded mixed derivatives, then its hierarchical coefficients possess a decay like 2−2·|l|1 . For
the detailed proof see e.g. [18].

Depending on the norm of the error we are interested in, this justifies various truncation schemes of the
series expansion of f . For a given k ∈ N, the regular sparse grid space is defined as

V
(1)
k :=

⊕

q(l)≤k

Wl (4.17)

with
q(l) := 1 +

∑

m=1,..,d

lm 6=0

(lm − 1) and q(0) = 0,

see also [18, 66]. The associated truncated series, i.e. the interpolant of f in V
(1)
k reads

f
(1)
k :=

∑

q(l)≤k

∑

i

vl,iφl,i.

Note that this is the finite element analogon of the well-known hyperbolic cross or Korobov spaces which
are based on the Fourier series expansion instead of the hierarchical Faber basis. An example of a regular
sparse grid is given for the two- and three-dimensional case in Figure 4.3. The basic concept can be traced
back to [5, 61], see also [23, 26, 34].

The dimension of the space V
(1)
k fulfills

|V (1)
k | = O(h−1

k · | log2 hk|d−1) (4.18)

with hk = 2−k, whereas for the interpolation error of a function f in the sparse grid space V
(1)
k there holds

||f − f
(1)
k ||Lp

= O(h2
k · kd−1), (4.19)

for the Lp-norms, and

||f − f
(1)
k ||E = O(hk), (4.20)

8For coefficients associated to the boundary, i.e. for lj = 0, partial integration is not applied for the respective j-th coordinate
directions but the respective coordinate xj is just set to zero or one, depending on the value of ij . This leads to the general
formula

vl,i =

2

6

6

4

Z

. . .

Z d
Y

j=1
lj 6=0

ψlj ,ij
(xj)

0

B

B

@

d
Y

j=1
lj 6=0

∂2

∂xj

1

C

C

A

f(x) d

0

B

B

@

d
Y

j=1
lj 6=0

xj

1

C

C

A

3

7

7

5

x|(l=0):=xl,i|(l=0)

where x|(l=0) denotes the tuple of coordinates from x with lj = 0. In this case, estimate (4.15) involves |f |α,∞ with αj = 2 if

lj > 0 and αj = 0 if lj = 0. Furthermore, the term 2−d gets replaced by 2−|sgn(l)|1 but the term 2−2|l|1 stays the same.
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Figure 4.3: Regular sparse grids: Two-dimensional example (left) and three-dimensional example (right).

for the energy (semi-)norm ‖f‖E = (∇f,∇f)1/2 induced by the Laplacian, see for example [18] for detailed
proofs. Note that the conventional full grid space

V
(∞)
k :=

⊕

|l|∞≤k

Wl

results in an error in the Lp-norm of the order O(h2
k) and an error in the energy-norm of the order O(hk)

(albeit for functions with just bounded conventional second derivative). It however possesses a dimension

|V (∞)
k | = O(h−d

k ) and thus exhibits the curse of dimensionality with respect to hk. In comparison to that we

now see a crucial improvement for V
(1)
k : The number of degrees of freedom is significantly reduced, whereas

the accuracy deteriorates only slightly for the Lp-norm and stays of the same order for the energy-norm.
The curse of dimensionality is now present in the log(hk)-term only. Note that this result is optimal for
function with second bounded mixed derivative with respect to the Lp-norms.

This basic concept of sparse grids has been generalized in various ways: First, there are special sparse
grids which are optimized with respect to the energy semi-norm [17]. These energy-based sparse grids are
further sparsified and thus possess a cost complexity of order O(h−1

k ) and result in an accuracy of order
O(hk). Thus, the exponential dependence of the logarithmic terms on d is completely removed (but is still
present in the constants). A thorough discussion of the constants can be found in [35]. A generalization to
sparse grids which are optimal with respect to other Sobolev norms can be found in [37]. Then, there are
generalized sparse grids [32], dimension-adaptive sparse grids [33] and locally adaptive sparse grids [36], all
with favorable properties and specific applications. Note finally that also basis functions of higher order, or
prewavelets and wavelets can be used straightforwardly in the sparse grid construction process instead of
the common hat function φ from (4.1). For further details, see [18].

4.2 Sparse grids and full grids for manifolds

The sparse grid construction for the approximation of scalar functions can now easily be carried over to the
case of a vector of functions, i.e. to functions f : T → X , f = (f(1)(t), . . . , f(n)(t)) which represent manifolds
in a parametric way. To this end, each coordinate function f(i) of f is represented in the same multivariate
hierarchical basis and is approximated on the same sparse grid. Then all properties of sparse grids for scalar
functions carry over to the vector valued case in a straightforward way. The representation of a manifold f

in the sparse grid space (V
(1)
k )n reads

f
(1)
k (t) :=

∑

q(l)≤ k

∑

i

vl,iφl,i(t) (4.21)
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now with just vector-valued hierarchical coefficients vl,i ∈ R
n. Analogously, the representation of a manifold

f in the full grid space (V
(∞)
k )n reads

f
(∞)
k (t) :=

∑

|l|∞≤ k

∑

i

vl,iφl,i(t). (4.22)

Now if we plug these expansions into the minimization problem (3.1) we obtain the associated discrete
minimization problems (3.3). In the gradient descent algorithm we obtain then corresponding minimization
problems (3.4) in the projection step and linear systems (3.5) in the adaption step. The switch in notation

from index j, value αj and number M of (3.2) to the multi-index (l, i), the value vl,i and numbers |V (1)
k |

and |V (∞)
k | in (4.21) and (4.22) is obvious: All we need is an enumeration of the multi-indices (l, i) involved

in the respective sums, i.e. a unique mapping (l, i) → j. We leave this to the reader and refrain here from
explicitly giving (3.3), (3.4) and (3.5) in (l, i)-notation for the ease of presentation.

For the regularization term we employ S(f) = ‖Gf‖2
L2(T,X) with G = ∇ or more general vector-valued

differential operators.9 Then, the matrix C in (3.6) resembles the discrete Laplacian or the associated
corresponding discrete differential operators. Alternatively, we may use the squared generalized variation of

Hardy and Krause S(f) =
∑d

i=1 V
(U,V,W )
HK (f(i)). Depending on the specific choice of U and V , this relates

to a fixed (squared) length of the boundary curves, a fixed area of the surface of the boundary sides, a fixed
volume, etc. of the manifold.

The overall costs for the sparse grid approach are then as follows: The number of degrees of freedom is
M = O(2kkd−1). The projection step involves in a naive implementation O(NM) operations whereas a more
sophisticated piecewise newton method allows to employ the compactly supported basis functions and needs
O(Nkd−1) operations with exponential d-dependent order constant. For the adaption step we now do not
assemble the matrices but merely program the action of the matrix-vector multiplication which is needed
in an iterative solver like the preconditioned CG method. The matrix-vector multiplication10 then costs
O(M +Nkd−1) operations. The cost for the solution of the linear systems involves the number of iterations
needed to reach a prescribed accuracy which depends on the condition number of the system matrix. In the
best case, a multigrid or multilevel method may be envisioned here, for which the number of iterations is
independent of M . Then, assuming a constant number of EM iterations, the overall solution costs behave
like O(M+Nkd−1). Here, we presently employ a multilevel preconditioned conjugate gradient method which
is based on prewavelets, see [29, 39]. Alternative multigrid-like solvers may be designed along the lines of
[38, 40]. Altogether we see that the sparse grid approach scales linear in the amount M of data and, up
to logarithmic factors, also linear in the number of grid points employed. This has to be compared to the
kernel-based approach which scales cubic in M due to the globality of the kernel. Furthermore, the number
of degrees of freedom is now M = O(2kkd−1) for level k and thus depends exponentially on d only with
respect to the logarithmic term k (albeit the constants in the order notation still may scale exponentially
with d).

The costs for the full grid approach are as follows: The number of degrees of freedom is now M = O(2kd).
The projection step in its update version involves now O(N) operations, the adaption step involves in the
matrix-vector multiplication O(M +N) operations and, in the best case of a multigrid method, the overall
solution costs behave like O(M +N).

Altogether, we see that the sparse grid approach is with M = O(2kkd−1) substantially more cost effective
and thus allows to deal with problems involving large set of data points and dimensions larger than three.
This is in contrast to the full grid approach where M = O(2kd) and in contrast to the kernel-based method
with global kernel where the cost scales cubic in its M .11

9 Note that for an appropriate wavelet basis we also can make use of norm-equivalences of the type ‖f‖2
Hs ≈

P

l
22s|l|∞

P

i
f2
l,i
‖φl,i‖

2
L2

to replace a Sobolev-type norm based on a differential operator of degree s by a diagonally weighted

sum of wavelet coefficients. Then, the matrix C in (3.6) resembles just a diagonal matrix with the weights 22s|l|∞‖φl,i‖
2
L2

.
This gives the possibility to implement more involved Sobolev-type regularization terms in an easy way.

10The implementation via the matrix-vector multiplication avoids the assembly of the matrix. Therefore we have a storage
complexity of only O(N+M) which allows to deal with much larger problems than for the kernel approach where the associated
full matrix (global kernel) is usually assembled explicitly.

11If the kernel functions k(qj , t) are chosen data centered, i.e. qj = xj , then M = N here.
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5 Numerical experiments

We now consider the results of numerical experiments.

5.1 Principal curves, d = 1

First, we consider the behavior of our approach for the most simple case of curves f , i.e. f : T → X , with
T = [0, 1]1 and X = R

n, where n = 2. Here, a sparse grid is not invoked yet, only a simple one-dimensional
grid on T is used. We employ data points sampled from a circle with noise, compare [3]. Figure 5.1 (left)
shows the result obtained on a coarse grid with the PCA as initial value. Using this solution as initial value
for a refined grid, we get Figure 5.1 (second picture) and a further grid refinement of this solution yields
Figure 5.1 (third picture). The circle structure is learned with increasing accuracy. Note that the result of
the EM algorithm depends sensitively on the respective start value: Figure 5.1 (right) shows a substantially
worse result obtained by a directly solution on level 4 with PCA as initial value.

Figure 5.1: Coarse solution of a circle-like problem (left) and successive grid refinements with starting values
as solution from corresponding next coarser levels (second and third) and finally a direct solution on level 4
with 1st eigenvector of PCA as starting value (right).

0 0.5 1
0.1

0.15

0.2

0 0.5 1
−0.2

0

0.2

0 0.5 1
0

1

2

0 0.5 1
−1

0

1

0 0.5 1
−1

0

1

0 0.5 1
0

2

4

Figure 5.2: Starting situation with third eigenvector of the PCA and reconstructed helix after 32 iterations
on level 9 (top) and their corresponding three component functions (bottom).

We now consider a principal curve problem in three-dimensional space. To this end, we randomly sample
160 points of the helix

f(t) =
(
sin t, cos t, 2t/(5π)

)T
, t ∈ T = [0, 5π] (5.1)

with white noise of variance 0.03, i.e. the points may be off the helix. Figure 5.2 shows the resulting curve
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together with the three component functions f(1)(t), f(2)(t), f(3)(t). We see that the reconstruction was
perfectly successful, the structure of the helix was indeed learned.

Before we return to the helix example to analyse the approximation properties of our approach at the
end of this section, we treat a principal curve problem with two clearly separated point clusters shown in
Figure 5.3 (left). If we use a conventional principal component analysis, we obtain a quite bad reconstruction
for such a data set. The first and the second eigenvector of the PCA of the data is shown in Figure 5.3 (middle)
and (right), respectively. We clearly see that such data leads to bad linear reconstructions with an error
proportional to the respective diameter of the data. Here, the first eigenvector is the optimal solution with
respect to the empirical quantization error (2.1), but a projection onto it destroys the previously existing data
separation. A projection onto the second eigenvector maintains the separation, but its empirical quantization
error is substantially larger.
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Figure 5.3: Data points (left), data points and first eigenvector, rescaled x-axis (middle), data points and
second eigenvector, rescaled x-axis (right).

Now, we consider the results obtained with our grid-based manifold reconstruction approach. To this
end, we start the EM algorithm with the 2nd eigenvector of the PCA. Figure 5.4 shows the results obtained
for successively finer levels of discretization, i.e. mesh widths.
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Figure 5.4: Solution of EM algorithm on four successive levels of refinement, second eigenvector of the linear
PCA as starting value, rescaled x-axis.

Again, the result of the EM algorithm depends sensitively on the respective starting value. If we start
the procedure with the first eigenvector a substantially worse solution results. This is depicted in Figure 5.5.
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Figure 5.5: Solution of EM algorithm: first eigenvector of linear PCA as starting value (left) and second
eigenvector of linear PCA (right). Associated latent variables in T -space (bottom left and right).

Here, the result (top) with the first eigenvector as starting value together with the latent variables, i.e.
the data points projected onto T (bottom) is shown on the left side, whereas the result with the second
eigenvector as starting value is shown on the right side. We clearly see that the solution on the left side
is substantially worse than the one on the right side. Further experiments with additional points at the
bottom, between the two clusters, exhibited the same qualitative results.

Finally, we consider the approximation properties of our approach in more detail using the helix (5.1) as
model curve. To this end, we are interested in the convergence rate of the root mean square error

RMSEk :=

√
√
√
√ 1

|X(fK)|

|X(fK)|
∑

i=1

d(xi, fk). (5.2)

For this, we compute the solution fK of the problem (3.3) on a uniform grid with K levels of refinement,
i.e. (2K +1)d points xi in parameters space T , then we sample fK randomly using 50

.
000 points which gives

the test data set X(fK) and compute for each point in X(fK) the squared distance to fk as d(xi, fk) =
inft∈T ‖xi − fk(t)‖2

2 involving orthogonal projection, compare the projection step in the above-mentioned
descent method. We also consider the convergence of the maximum error

maxk := max
xi∈X(fK)

√

d(xi, fk) (5.3)

which is closely related to the Hausdorff distance of two curves.
In Table 5.1 we give the results for 163

.
840 training data points xi which were sampled randomly but

equally distributed, this time without noise, from the helix. We clearly see a convergence order of two for
the RMSE- and the max-error. Note that the number of data points is still larger than the number of grid

k n ·M RMSEk
RMSEk

RMSEk+1

√
maxk

√
maxk√

maxk+1

4 51 3.52−2 3.9 8.17−2 4.0
5 99 8.94−3 4.0 2.06−2 4.0
6 195 2.25−3 4.0 5.20−3 3.8
7 387 5.61−4 4.0 1.37−3 4.0
8 771 1.41−4 4.0 3.45−4 2.8
9 1

.
539 3.55−5 3.9 1.24−4 2.0

10 3
.
075 8.98−6 − 6.08−5 −

Table 5.1: Error and convergence rate for the helix problem measured against the discrete solution on level
K = 17, 163

.
840 training points without noise, λ = 1.95 · 10−6, S = ∇.
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Figure 5.6: Error for the helix problem measured against the discrete solution on level K = 17 versus the
degrees of freedom n ·M for varying training data sets of sizes Ni ∈ {320, 640, 1

.
280, ...}, λ = 1.95 · 10−6,

S = ∇.

points employed. Note furthermore that we consider here convergence towards the reconstructed curve on a
fine level K only and not towards the sampled interpolated true helix yet.

In further experiments we observed that if the number of grid points exceeds the number of data points
then the rates deteriorate somewhat into roughly first order which either may indicate overfitting effects or
may reflect the H3/2-regularity of the solution of the adaption step problems due to the Dirac right hand
sides, compare also [31]. This can be seen in Figure 5.6.
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Figure 5.7: RMSE measured against the true helix versus degrees of freedom for varying λi = 5 · 10−4 · 2−i

(left) and RMSE versus λ for varying levels k (right) for the helix problem, S = ∇, training data set of size
163

.
840.

Now we are interested in the convergence towards the true helix f . To this end we have to successively
use more sample data points, more grid points, i.e. finer levels l, and successively smaller values of λ. To
this end, the test data set X of points in (5.2) and (5.3) is sampled from the true f . Figure 5.7 (left) shows
the resulting RMSE versus the degrees of freedom12 to represent fk for varying values of λ. We clearly see
that the error decays first for a rising number of degrees of freedom but then stays constant depending on
the respective value of λ. We also see that if we use successively smaller values of λ and successively larger
numbers of degrees of freedom we obtain convergence with a rate of the order two, compare the slope of the

12Please note that the term “degrees of freedom” denotes the number of basis coefficients. There are M basis functions with
n components each.
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Figure 5.8: Reconstructed curve (bold) and values sampled from the true helix (points) for λ = 2.0·10−3, 5.0·
10−4, 2.5 · 10−5.

left lower curve in Figure 5.7 (left). In Figure 5.7 (right) we show the RMSE versus λ for varying levels k
for the discretization. An analogous behavior can be observed here.

The error is here substantially influenced by the parameter λ. Recall that the regularization term
‖∇f‖2

L2(T,X) induces a length constraint on the reconstructed curve. This effect can be seen in Figure 5.8

in more detail. The reconstructed curve (bold) converges towards the values sampled from the true helix
(points) for rising values of λ. Due to the imposed length constraint, the computed helix is somewhat
shrinked for larger values of λ (Figure 5.8 (left)). But its diameter soon tends to approach the true helix
diameter for smaller values of λ (Figure 5.8 (middle)). Nevertheless, for still smaller values, its length is still
a bit restricted and the very first and last points of the true helix are thus not reached (Figure 5.8 (right)).

Note finally that in general just two EM iterations were needed to reach the relative discretization error
accuracy when starting with the solution on the next coarser level.

5.2 Principal surfaces, d = 2, n = 3

So far, we only dealt with curves, i.e. one-dimensional manifolds, which were approximated by simple poly-
gons involving just a one-dimensional grid. Now, we turn to two-dimensional manifolds in three-dimensional
space, i.e. principal surfaces, where we may employ regular sparse grids for the three two-dimensional com-
ponent functions f(1)(t1, t2), f(2)(t1, t2), f(3)(t1, t2). This results in a substantial saving compared to the use
of functions which live on a uniform full grid.

As an example, we consider a simple half sphere which we sample randomly using 516
.
961 points (without

noise). For an illustration see Figure 5.9.

Figure 5.9: Half sphere manifold (left) and sample points (right).
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k n ·M RMSEk
RMSEk

RMSEk+1

√
maxk

√
maxk√

maxk+1

3 243 5.54−3 3.83 2.60−2 3.66
4 867 1.45−3 3.88 7.10−3 3.81
5 3

.
267 3.73−4 3.92 1.87−3 3.82

6 12
.
675 9.51−5 3.69 4.89−4 3.06

7 49
.
923 2.58−5 2.96 1.60−4 2.50

8 198
.
147 8.70−6 2.16 6.38−5 2.34

9 789
.
507 4.04−6 2.20 2.73−5 2.55

10 3
.
151

.
875 1.84−6 − 1.07−5 −

Table 5.2: Error and convergence rate for the half sphere problem measured against the discrete solution
on level K = 11, 1

.
034

.
289 training points, full uniform grid, λ = 5 · 10−4, regularization term (5.4).

102 103 104 105 106

10−6

10−5

10−4

10−3

10−2

n · M

R
M

S
E

k

N1

N2

N3

N4

N5

N6

10
2

10
3

10
4

10
5

10
6

10
−5

10
−4

10
−3

10
−2

n · M

√
m

a
x

k

N1

N2

N3

N4

N5

N6

Figure 5.10: Error for the half sphere problem versus the degrees of freedom n ·M and varying training data
sets of sizes Ni = {8.

100, 32
.
041, 128

.
064, 516

.
961, 1

.
034

.
289}, full uniform grid, λ = 5 · 10−4, regularization

term (5.4), measured against the discrete solution on the finest level K = 11.

As regularization term we employ

S(f) =

3∑

i=1

1∫

0

1∫

0

[
∂t1f(i)(t1, t2)

]2
+

[
∂t2f(i)(t1, t2)

]2
dt1 dt2

+
1

5

1∫

0

[
∂t1f(i)(t1, 0)

]2
+

[
∂t1f(i)(t1, 1)

]2
dt1 (5.4)

+
1

5

1∫

0

[
∂t2f(i)(0, t2)

]2
+

[
∂t2f(i)(1, t2)

]2
dt2,

i.e. we use the example (2.8) with different weights wu,v. The first part expresses an area restriction for the
surface while the other four terms can be considered as a length restriction for the four boundary curves.
The weight factors 1/5 are a subjective choice which gave good results in our numerical experiments.

In Table 5.2 we show the results for the case of uniform full grids. As regularization parameter we
employed λ = 5 · 10−4. We see a convergence order of roughly two for the RMSEk-error and the maxk-error
which somewhat declines on higher levels to a rate of about one. Note that the amount of points used in
the discretization scales with 22k which reflects the use of a full two-dimensional grid.

In further experiments we observed that the onset of the decline of the convergence rate is related to
the number of grid points, the number of data points and the choice of λ. This can be seen in Figure 5.10.
The deterioration of the convergence rate especially for the smaller number of data points indicates typical
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Figure 5.11: Reconstructed half spheres, full grid (left) and sparse grid (right), with associated latent
variables, k = 5.

overfitting effects. For a proper choice of the amount of data points, of the amount of grid points and of the
regularization parameter the rate of two can however be maintained.

The reconstructed half spheres for 516
.
961 training points and discretization level k = 5 together with

their grid points are shown in Figure 5.11 for the full grid case (top left) and the sparse grid case (top right).
Figure 5.11 (bottom left and right) provides the corresponding latent variables for a data set with 32

.
041

points.
In Table 5.3 we now give for comparison the error and convergence rate for the case of regular sparse

grids. We use the value λ = 1.95 · 10−6 to compensate for the fewer points in the sparse grid.13 We see a
convergence order of roughly two for the RMSEk-error and the maxk-error at coarser levels (maybe with
an additional log-factor which is typical for sparse grids) which is substantially reduced on the finer levels
due to overfitting. Note that the amount M of points used in the discretization now only scales with k · 2k

which reflects the use of a sparse two-dimensional grid.
Again, the onset of the decline of the convergence rate is related to the number of grid points, the number

of data points and the choice of λ. This can be seen in Figure 5.12. The deterioration of the convergence rate
especially for the smaller number of data points indicates typical overfitting effects. The rate of about two
can however be maintained for a proper choice of the amount of data points, of the amount of grid points
and of the regularization parameter. Note furthermore that a study of the convergence of the numerical

13Note that besides the regularization due to the smoothing term S(f) in general a further regularization by discretization
comes into play.
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k n ·M RMSEk
RMSEk

RMSEk+1

√
maxk

√
maxk√

maxk+1

3 147 5.71−3 3.96 2.64−2 3.64
4 339 1.44−3 3.82 7.25−3 2.72
5 771 3.77−4 3.65 2.66−3 1.40
6 1

.
731 1.03−4 3.37 1.90−3 3.35

7 3
.
843 3.07−5 2.72 5.68−4 1.63

8 8
.
451 1.13−5 1.85 3.49−4 0.96

9 18
.
435 6.09−6 1.31 3.63−4 0.98

10 39
.
939 4.66−6 1.15 3.71−4 1.03

11 86
.
019 4.04−6 1.13 3.59−4 1.04

12 184
.
323 3.56−6 − 3.47−4 −

Table 5.3: Error and convergence rate for the half sphere problem measured against the discrete solution
on level K = 14, 1

.
034

.
289 training points, sparse grid, λ = 1.95 · 10−6, regularization term (5.4).
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Figure 5.12: Error for the half sphere problem versus the degrees of freedom n ·M and varying training
data sets of sizes Ni = {8.

100, 32
.
041, 128

.
064, 516

.
961, 1

.
034

.
289}, sparse grid, λ = 1.95 ·10−6, regularization

term (5.4), measured against the discrete solution on the finest level K = 14.

solution to the true half sphere gave qualitatively similar results as for the helix problem of Figure 5.7.
Altogether, the sparse grid behaves superior to the full grid due to its reduced amount of grid points

when it comes to the question of accuracy versus costs involved. This makes the sparse grid approach a good
candidate for manifold learning problems in moderately higher dimensions.14

5.3 A classification example

Since there is a close relationship of our approach to the GTM we also applied the sparse grid method to
the oil flow data set which is used in [10] as a benchmark problem for the GTM. Here, the problem is to
determine the fraction of oil in a multi-phase pipeline carrying a mixture of oil, water and gas. Each data
point consists of 12 measurements taken from dual-energy gamma densitometers measuring the attenuation
of gamma beams passing through the pipe. Synthetically generated data is used which models accurately the
attenuation processes in the pipe, as well as the presence of noise (arising from photon statistics), for details
see [9]. The three phases in the pipe (oil, water and gas) can belong to one of three different geometrical
configurations, corresponding to laminar, homogeneous, and annular flows. The data set consists of 1

.
000

points drawn with equal probability from the three configurations.

14In practice, problems with up to 12 dimensions can be dealt with the regular sparse grid method. Higher dimensional
problems usually can not be handled due to the log-terms involved. Then one can resort to energy-norm based sparse grids,
generalized sparse grids or dimension-adaptive sparse grids which may work in higher dimensions when other error measures
are considered and/or additional properties of the manifold like weighted, i.e. not equally important dimensions are present.
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Figure 5.13: Oil flow data: Result for the linear PCA (top left), the original result copied from [10] (top
right), the sparse grid approach (lower left) with k = 6, λ = 0.01, regularization term (5.4) and the full grid
approach (lower right) with same parameters, d = 2.

The main goal is now data visualization and cluster detection. As for the original GTM, our algorithm
requires the manifold’s intrinsic dimension d as parameter which has to be fixed a-priori. Several methods
to estimate the intrinsic dimension have been proposed, see [8, 15, 52] and the references therein.

To this end, the latent-variable space is chosen to be two-dimensional, and the data points are mapped
from R

12 via the reconstructed manifold into the latent space T = [0, 1]2. Each point is then labelled
according to its multi-phase configuration. From the distribution of points one may then get information of
the data’s intrinsic structure.

Figure 5.13 gives the results (from top left to bottom right) for the linear PCA, the original GTM15

from [10] and our sparse grid and full grid approaches. Both, sparse grid and full grid approach use the
regularization term (5.4). The learning procedure employed successive grid refinement up to level 6. Here,
the blue crosses, black circles and red plus signs represent stratified, annular and homogeneous multi-phase
configurations, respectively. We see that PCA fails completely, the three classes are not visually separated
at all. For our sparse grid approach however a clear spatial separation of the data points is achieved. There,
even a separation of the class of red plus signs into 3 further subclasses can be observed. Thus, the result

15The original graphics from [10] has been rescaled and mapped into the unit cube for display reasons. Markers have been
chosen consistently with those of [10].
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obtained with our sparse grid approach reveals much more of the data’s intrinsic structure than a simple
search for directions with high variance. These findings are comparable to those obtained with the GTM
approach [10], shown in figure 5.13 (top right) and the kernel based method from [60]. However, the costs
of the computation is now substantially reduced due to the sparse grid method. Our prototype required
about 30 seconds on a 2.5GHz workstation for the sparse grid result (total 32 iterations, successive grid
refinement).

Finally, we choose the latent-variable space to be three-dimensional, i.e. the data points are mapped
from R

12 via the reconstructed manifold into T = [0, 1]3. We used the regularization term (2.6) with
U = {∅} ∪ {u ⊂ {1, 2, 3} : |u| = 1} ∪ {u ⊂ {1, 2, 3} : |u| = 2}, V (u) = {v ⊂ ū : |v| = 1} and weights wu,v with
values 1 if |u| = 0, values 0.3 if |u| = 1, and values 0.1 if |u| = 2. The result is shown in Figure 5.14. Now,
an even better separation of classes is obtained: The black, red and blue points are well separated and the
subclusters for the red plus signs can be seen as well. Furthermore, the black circles also exhibit subclusters.
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Figure 5.14: Oil flow data: Result for the linear PCA (left) and the sparse grid approach (right) with k = 5,
λ = 0.01, regularization term (2.6), d = 3.

6 Concluding remarks

In this paper we presented a sparse grid method for the construction of lower-dimensional principal manifolds
from high-dimensional data. This approach avoids to some extent the curse of dimension that appears
with conventional grids. The arising non-linear problem is solved by a descent method which resembles the
expectation maximization algorithm. We discussed the basic ideas and main ingredients of the approach and
demonstrated its properties for one-, two- and three-dimensional model problems to give a proof of concept.
The method can in principle be applied to problems with manifolds with about 12 intrinsic dimensions,
provided that a better and more efficient implementation than the present prototype one is realized. This
may be done along the lines of [29]. But for higher dimensions the logarithmic terms pose a practical obstacle
here. Then, energy-norm based sparse grids, dimension-adaptive sparse grids or fully adaptive sparse grid
versions of our approach may be envisioned.

Presently, the proper choice of the regularization term S for d > 1 is an open question and needs further
investigation. So far, we made good experiences with a regularization term that is similar in structure to
the variation of Hardy and Krause. Its terms directly relate to geometric constraints on the manifold. But
further investigations are needed here.

Furthermore, a proper choice of the initial value for the optimization turns out to be important. This is
a common problem for most nonlinear learning methods. Here, our successive refinement approach imposes
some kind of successively reduced regularization which improves the EM iteration in comparison to the fine
initial grid. However, the results are still sensitive to initial values. A further problem is the selection of the
final grid level and an appropriate value for λ.
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Up to now, the dimension of the intrinsic space, i.e. the manifold, must be chosen a-priori. It would
be advantageous to have a method where this dimension is determined automatically from the given data.
To this end, there exist certain techniques where dimension is heuristically estimated from local or global
PCAs, compare [8, 15, 52] and the references cited therein. A more theoretically founded approach relies
on Whitney’s famous embedding theorem [65] and its refinement due to Taken’s [62]. Here, Broomhead
and King suggested to calculate the dimension d of the manifold a-posteriori by first taking the embedding
dimension sufficiently high and then determining d from the numerical rank of the covariance matrix of the
embedded data [13]. The resulting numerical strategy can be seen as a combination of Taken’s method
of delays with the principal component analysis of the data in some extended space. Actual methods for
dimension estimation which draw from these ideas are found in [14, 44, 50]. These techniques may be
incorporated into a dimension-adaptive version of our sparse grid method to obtain the necessary dimension
of the manifold in an adaptive way, provided proper error estimators can be developed. However, such an
approach is future work.
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