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Introduction

Motivation

In many engineering applications a defining aspect of the design process is iterating upon pro-
posed solutions until they satisfy the requirements of the problem. Traditionally this is done
through prototyping and experimentation, which is both time consuming and expensive. As a
classical example, consider the construction of an airfoil. Barring computation, an engineer has
to make educated guesses as to the airfoils shape. Then he will order the construction of a,
probably scaled, prototype and analyze it in a costly wind tunnel to gather information about
the relevant properties (i.e. drag, lift, etc.) which can be taken into account when preparing the
next draft.

Today, advances in computing hardware and simulation techniques have made it possible to
replace physical experiments by virtual prototyping. In the context of the airfoil example this
could mean the design is entered into a simulation software that allows computation of the flow
around the airfoil and the derived quantities of interest without having to conduct any physical
experiments.

The next step is to automate the design process itself, i.e. let a computer make the modifications
and evaluate the results with minimal supervision. Ideally it would only be necessary to describe
the desired properties and construction dependent constraints to automatically search for a
design that satisfies both, based on a model that describes the application. Shape optimization
techniques are used for the automation of problems that can be framed in terms of varying an
object geometry that can be appraised in a quantifiable sense, i.e. the wing profile with the least
drag or the column section that bears the most load.

Shape Optimization for Incompressible Fluids

The problem considered in this thesis are geometries immersed in incompressible and transient
fluid flows, the applications of which include the design of structures such as bridge piers and
mooring areas in rivers, the submerged parts of deep sea structures, water pipes or ship compo-
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nents. Those geometries are optimized in regard to their effect on the surrounding fluid, the aim
being to minimize the dissipation of energy into heat caused by disturbances in the flow.

An essential question in tackling these problems is the way in which the fluid flow model is taken
into consideration while searching for an optimal geometry. Modern approaches to shape opti-
mization from the mathematical literature mostly propose an explicit treatment using analytical
methods, but this has to be done on a case by case basis depending on the requirements and
additional constraints. While this is fine when considering a specific example, in the context of
an actual application that means it is impossible to add e.g. additional equations describing the
heat transfer in the fluid without re-deriving the optimization procedure as well.

Black-Box Solution

The approach that is followed here is a black-box treatment of the application model, making no
assumptions beyond the fact that there is an opaque implementation available that maps trial
geometries to the desired measurements. After parameterizing the geometry through a finite
number of parameters, the problem is then pliable to classical optimization methods as long as
they are limited to using function evaluations. While this can negatively impact the performance
of the optimization, it allows to add to the model in the way described above without touching
the other parts of the setup, even making it possible to switch the simulation software with
minimal effort.

The resulting optimization problem is typically of a high dimension, making it an imperative to
take special care when choosing a method for solving it. Particularly considering the restrictions
mentioned above. For this reason a sparse-grid based approach from Novak and Ritter (1996)
was adapted for the constraints arising during the parameterization and applied to the shape
optimization problem.

Contributions

The contributions of this thesis are the following:

• It gives an overview over current methods for approaching shape optimization problems
and justifies the one chosen herein.

• A parallelized hyperbolic cross point method was implemented, adapted to linear con-
strained problems using a projection-penalty approach and supplemented by a subsequent
local search. It was tested using several benchmark problems and compared with various
non-adaptive methods and the original reference implementation.
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• A mesh generator using the distmesh algorithm was implemented and combined with a
pre-existing fast marching method to allow the automatic triangulation of flow geometries.

• A FEniCS based finite element discretization of the Navier-Stokes equations was used in
conjunction with the automatic mesh generation to solve the parameterized flow problems.

• Together with a B-Spline parameterization the above components were used to set up a
black-box shape optimization solver.

• The approach was used for several experiments modeled after practical applications.

Overview

In chapter 1 we will give an overview over the different approaches to shape optimization
problems with PDE constraints from the literature. This will serve to contextualize and justify
the approach pursued in this thesis.

Chapters 2-5 explain the theoretical background and implementation of all parts involved in
the setup of the solver. This starts with a discussion of the Navier-Stokes equation, the energy
dissipation and the simulation software in chapter 2. Chapter 3 explains the automatic mesh
generation implemented for use with the Navier-Stokes solver, chapter 4 the parameterization
of the geometries that are to be optimized. In chapter 5 we give a short introduction to the
global optimization problem and elucidate the methods used here.

Numerical experiments for each separate part of the solver and the shape optimization problem
as a whole are discussed in chapter 6, the thesis then concludes with a summary and suggestions
for future work in chapter 7.
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1 Shape Optimization

Shape optimization as a whole stands at the intersection of the disciplines of optimization, com-
putational geometry and partial differential equations. For this reason, every effort towards
solving a shape optimization problem of any kind must decide on solution strategies for the com-
ponents of the problem concerning each of these disciplines. Those decisions are all interrelated
and this chapter aims to give an overview over the different approaches to solving shape opti-
mization problems, as well as their respective advantages and drawbacks. Special emphasis will
be put on the black-box approach chosen in this thesis and its justification. While there seems
to be a lack of general survey articles in this area, a good overview focused on flow problems
can be obtained from the books by Mohammadi and Pironneau (2001) or Thévenin and Janiga
(2008).

1.1 Overview

For the purposes of this discussion we will consider a general shape optimization problem of the
form

minimize F (ω, u) over all (ω, u) s.t. c(ω, u) = 0. (1.1)

Here ω is the controlled geometry that is to be optimized, u is the state variable given by
the solution of the partial differential equation c(ω, u) = 0, also called the state equation, and
the objective function F (ω, u) is the measurement of interest. The main parting point in all
approaches towards solving (1.1) is whether the function and constraint are taken as a simple
procedure mapping geometries to measurements or if one tries to extract further information,
which generally means computing sensitivities of the objective with respect to the controlled
variables. For ease of presentation we will rewrite the problem (1.1) into a minimization problem
without explicit constraints. Consider an operator G, that maps each geometry ω to the solution
u of the PDE constraint c(ω, u) = 0, assuming there is such a unique solution. Then (1.1) is
essentially the same as minimizing the reduced functional

J(ω) := F (ω,G(ω)). (1.2)
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1 Shape Optimization

Shape Calculus

The prevalent way to extract sensitivity information from the fully continuous shape optimization
problem is through the use of shape calculus, as is described in detail in Schmidt and Schulz (2010)
for problems involving the stationary Navier-Stokes equation. The principal idea is to consider
shape derivatives of the objective function: If we consider a parameter dependent deformation
ωt = {x0 + tv(x0) : x0 ∈ ω} of ω along an appropriately smooth vector field v, the derivative of
J at ω applied to v is defined by

dJ(ω)[v] = lim
t↘0

J(ωt)− J(ω)

t
. (1.3)

The fundamental result used for implementing gradient descent algorithms using shape deriva-
tives is the Hadamard formula. The volume integral form of this formula says that for objective
functions of the form

J(ω) =

ˆ
ω
f dx, (1.4)

without PDE constraint, the shape derivative is given by

dJ(ω)[v] =

ˆ
∂ω

(v · n)f dσ(x). (1.5)

The nature of this gradient as a normal product, allows to apply it directly to the set to be
optimized as a descent direction. When PDE constraints are added though, the derivative will
incorporate a linearized adjoint form of the PDE. These have to be derived from the model
equation in a non-trivial fashion on a case by case basis. Accordingly there is need for software
solving the adjoint problem and that software, too, has to be updated every time the model is
changed. In addition, the adjoint linearized Navier-Stokes equation is a final value problem that
evolves backwards in time and involves the solution to the full Navier-Stokes equation at the
linearization point as data (c.f. Hinze and Kunisch (2001), which is concerned with parameter
based optimal control of the Navier-Stokes equation). In particular this means that the whole
solution of the Navier-Stokes equation for the geometry in question has to be held in memory at
once, which leads to huge space requirements especially for explicit methods.

Sensitivites from the (semi-)Discretized Problem

Another possibility is to first discretize some or all parts of the optimization problem and only
then calculate derivatives. Consider a discretization of ω(p) of the shape depending on a finite
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1.1 Overview

set of parameters pT = (p1, . . . , pn) and a corresponding reduced functional

J(p) = F (p,G(p)), (1.6)

where we have absorbed the extra step over ω into F and G for the moment.

It is, in principle, possible to calculate partial derivatives for J in the usual way. Taking the
derivative by pi and applying the chain rule leads to

d

dpi
J(p) = Fpi(p,G(p)) + Fu(p,G(p)) ·Gpi(p). (1.7)

Regardless if G is the continuous solution operator or the state equation has been discretized,
the dependence of the solution on the geometry still has to be taken into account when trying
to calculate analytical derivatives.

There are multiple approaches to approximate sensitivities without explicitly treating the geom-
etry dependence. One is to simply use finite difference based gradient approximations

∇J(p)T =

(
J(p+ εe1)− J(p)

ε
, . . . ,

J(p+ εen)− J(p)

ε

)
. (1.8)

In many cases these approximations can be accurate enough for use even in quasi-Newton meth-
ods, but especially for simulation based optimization they also have drawbacks. Since the func-
tion whose gradient is to be approximated is itself the result of a discretization, it doesn’t
necessarily resemble the actual function at the scales necessary for good finite difference approxi-
mations. Furthermore, adaptivity and parallelism may add a some amount of (non-deterministic)
noise. The feasibility of finite difference based gradients for flow control problems was analyzed
by Burkardt et al. (2002) in the context of a two-dimensional channel-flow model problem.

Another possibility is automatic differentiation. The premise of this method is that every actual
implementation of a simulation is composed of very basic operations such as +,−,×,÷, elemen-
tary functions and programming directives such as loops and if-clauses. In principle this enables
one to differentiate the function resulting from the implementation by stepping through the
source code, differentiating each of those operations and applying the chain- and product-rules.
Using this it is not only possible to take partial derivatives as above, but the approach can also
be used to compute the adjoint equation mentioned in the previous paragraph. Anderson et al.
(2001) compared all three approaches in an aerodynamics application. By design this method
needs access to all source code used in the simulation of the state constraint which precludes
the use of commercial software and closed source libraries. Problems also arise when combining
software in multiple different programming languages, which is a common feature in large scale
simulations that require the combination of several distinct programs.
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1 Shape Optimization

1.2 Parameterized Black-Box Shape Optimization

The approach pursued by this thesis is to parameterize the geometry and interpret the PDE
constraint as a fully opaque process mapping geometries to solutions, hence the name black-box.
Therein the PDE constraint is treated as part of the functional, similar to the definition of the
reduced functional above, and no attempt is made to extract any information exceeding simple
function evaluations. After parameterizing the geometry space the problem is then pliable to clas-
sical optimization techniques insofar as they are restricted to using function evaluations.

We will explain the particulars of the procedure in terms of the problem considered in this
thesis: Recall that the aim is to optimize a geometry ω in a fluid flow u described by the Navier-
Stokes equations c(u, ω) = 0. The objective function used to assess the geometry is the energy
dissipation into heat F (ω, u)

• First, the suitable geometries are parameterized using cubic splines. Expanding those
splines into a basis expansion gives the parameters c1, . . . , cn describing the possible ge-
ometries and thus a map

c1, . . . , cn 7→ ω(c1, . . . , cn). (1.9)

Additional constraints on ω are reformulated as linear constraints on the parameters
c1, . . . , cn.

• Next we choose a simulation software NaSt, that approximates the solution u to the flow
constraint c(u, ω) = 0. Combining this with the geometry parameterization gives a map

c1, . . . , cn 7→ NaSt(ω(c1, . . . , cn)) (1.10)

that assigns each set of geometry parameters an approximation to the flow generated by
this geometry.

• Computing the energy dissipation of this approximation defines the black-box objective
function

c1, . . . , cn 7→ F (NaSt(ω(c1, . . . , cn))), (1.11)

composed of the subsequent steps of geometry generation, simulation and post processing.

• This objective is minimized using a modified hyperbolic cross point method, adapted to
handle the linear constraints arising from the parameterization.

Using this approach is is possible to exchange any of the components above with minimal effort,
i.e. exchange the simulation software for a different one, try different objectives or extend the
model itself.
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1.2 Parameterized Black-Box Shape Optimization

The optimization method is to be chosen with some care. The problem resulting from this
approach is characterized by the fact that function evaluations are extremely expensive, each
requiring a full Navier-Stokes simulation of the problem. Further, the number of unknowns in
the optimization is dictated by the number of unknowns in the parameterization, which results
in a high dimensional problem for any non-trivial geometries.

As mentioned before the that fact the objective function is the result of a discretization itself
has to be taken into account. If the state equation is discretized with a mesh resolution h it is to
be assumed that variations in the geometry of scales smaller than h are not reflected accurately
in the objective function, making sub h step lengths in local searches unfeasible.
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2 Navier-Stokes Equation

2.1 Overview

The physics of transient incompressible fluid flow in d dimensions are, from an Eulerian point of
view, described by a system of d + 1 partial differential equations known as the incompressible
Navier-Stokes equations. If Ω ⊂ Rd is the domain of flow and [0, T ] the time interval of interest
they are given by

ut + (u · ∇)u = ν∆u−∇p+ f in Ω× [0, T ], (2.1)

div u = 0 in Ω× [0, T ]. (2.2)

The functions u : Ω × [0, T ] → Rd and p : Ω × [0, T ] → R are the velocity and pressure of
the fluid at each point and time. The parameter ν, called kinematic viscosity, is specific to the
fluid in question and describes its behavior under the assumption of constant density. Equation
(2.1) is called momentum equation and has the form of a nonlinear transport equation, where
ν∆u describes the viscous forces exerted by the fluid, f : Ω× [0, T ]→ R are known body forces
(for instance gravity) and ∇p are the pressure gradient forces caused by the incompressibility
condition (2.2). The pressure p can in that sense be interpreted as a Lagrange multiplier enforcing
equation (2.2).

The Laplace operator in equation (2.1) is understood to be applied component wise and thus
(2.1) are, in fact, three equations. The convective term is read as

(u · ∇)u =

 d∑
j=1

uj∂j

u =

 d∑
j=1

uj(∂jui)


i=1,...,d

. (2.3)

To constitute a well posed problem, the equations (2.1) and (2.2) have to be complemented by
initial values v0 : Ω → Rd and p0 : Ω → R, the velocity and pressure at time t = 0. The
velocity also needs to be prescribed at the boundary for all times. Common boundary conditions
include:
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2 Navier-Stokes Equation

• Dirichlet boundary conditions for in- or outflow

u(x, y) = g(x, y). (2.4)

• No-slip condition
u(x, y) = 0, (2.5)

which is special case of a Dirichlet condition and commonly assumed to hold at solid walls
in flow regimes where the cohesive forces of the fluid do not dominate its behavior.

• Slip condition
∂nu(x, y) = 0, (2.6)

which is a homogeneous Neumann boundary condition.

• Do-nothing condition
ν∂nu− pν = 0, (2.7)

which is the natural boundary condition derived from the variational form of the Navier-
Stokes equation.

In all cases (x, y) is a point on the boundary ∂Ω, n is the outer normal to ∂Ω and ∂nu = ∇u · n
is the normal derivative of u.

Weak Solutions

In anticipation of the discussion of finite element methods in section 2.4.2, this paragraph gives
a short motivation of the notion of weak solvability of the Navier-Stokes equation.

Consider a classical solution (u, p) to the Navier-Stokes equation on Ω× [0, T ], i.e. u and p are
at least of the class C2 and C1 respectively and satisfy the equations (2.1) and (2.2) at every
point (x, t) ∈ Ω × [0, T ] and assume that ∂Ω is sufficiently smooth. Multiply the momentum
equations (2.1) by a smooth, compactly supported function v : Ω× [0, T ]→ Rd in the sense of a
scalar product and integrate over Ω× [0, T ]. This leads to the relation

ˆ T

0

ˆ
Ω
ut · v + (u · ∇)u · v − ν∆u · v +∇p · v dxdt =

ˆ T

0

ˆ
Ω
v · f dxdt. (2.8)

Applying Greens identity to the terms involving the Laplacian and the pressure as well as using
the fact that v is zero on the boundary leads to the equality

ˆ T

0

ˆ
Ω
ut · v + (u · ∇)u · v + ν∇u : ∇v + p div v dxdt =

ˆ T

0

ˆ
Ω
v · f dxdt, (2.9)
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2.2 Energy Dissipation

where A : B =
∑

i,j AijBij denotes the Frobenius inner product of matrices. Taking a smooth
and compactly supported function q : Ω×[0, T ]→ R one can do the same to the incompressibility
condition (2.2), which gives ˆ

Ω
div u q dx = 0. (2.10)

In summary: Every classical solution to the Navier-Stokes equation satisfies the variational
equations (2.9) and (2.10) for all smooth and compactly supported functions v and q. On the
other hand, a sufficiently smooth pair of functions u, p satisfying equations (2.9) and (2.10) for
all v, q solves the classical equations by the fundamental lemma of the calculus of variations.
This motivates the following definition:
Definition 2.1 (Weak Solutions). Let the function space V be defined as follows:

V = {v ∈ L2([0, T ];H1
0 (Ω)d) : ∂tv ∈ L2([0, T ];H1

0 (Ω)d)}. (2.11)

Functions u ∈ V and p ∈ L2([0, T ], L2(Ω)) are said to weakly solve the Navier-Stokes equation,
if ˆ T

0

ˆ
Ω
ut · v + (u · ∇)u · v + ν∇u : ∇v + pdiv v dxdt =

ˆ T

0

ˆ
Ω
v · f dxdt

ˆ T

0

ˆ
Ω

div u q dxdt = 0

(2.12)

for all v ∈ V and q ∈ L2([0, T ], L2(Ω)).

Here H1
0(Ω)d denotes the Sobolev space of square integrable and one-time weakly differentiable

functions from Ω to Rd with zero-trace, for details see Adams (1975) or Alt (2002). Note that
the variational form of the Navier-Stokes equation is more commonly derived by taking the space
V to only include functions with vanishing spatial divergence, eliminating the incompressibility
condition as an equation as well as the pressure from the problem. Since the construction of
finite-element spaces is more complicated in that case we have stuck to the saddle point form
above. In two space dimensions the Navier-Stokes equation is known to have a unique weak
solution–c.f. Temam (1977).

2.2 Energy Dissipation

The central quantity that makes up the objective functions used in the numerical experiments
is the energy dissipation. For a sufficiently smooth velocity field v : Ω× [0, T ]→ Rd it is defined
by the H1 semi-norm

D(v, t) =

ˆ
Ω
|∇v(x, t)|2 dx = |v(·, t)|2H1(Ω.Rd) (2.13)

13



2 Navier-Stokes Equation

at every time t. The choice of this functional is motivated by its close relation to the kinetic
energy of the flow

Ekin(v, t) =

ˆ
Ω
|v(t)|dx, (2.14)

as shall be shown in the rest of the paragraph. Let v ∈ C1([0, T ], C2(Ω,Rd)) satisfy the homo-
geneous Navier-Stokes equation with Dirichlet zero boundary conditions on a bounded domain
with sufficiently smooth border ∂Ω:

vt + (v · ∇)v − ν∆v +∇p = 0 in Ω, (2.15)

div v = 0 in Ω, (2.16)

v|∂Ω = 0 on Ω. (2.17)

Multiplying the momentum equation (2.15) by v and integrating over Ω, we find that

1

2

d

dt

ˆ
Ω
|v|2 dx =

ˆ
Ω
vt · v dx

= ν

ˆ
Ω

∆v · v dx−
ˆ

Ω
∇p · v dx−

ˆ
Ω

(v · ∇)v · v dx.

(2.18)

Integrating by parts and using the fact that v|∂Ω ≡ 0 allows the resulting boundary terms to be
disregarded, the three summands of the last term can be computed as

ˆ
Ω
∇p · v dx = −

ˆ
Ω
pdiv v dx = 0, (2.19)

ν

ˆ
Ω

∆v · v dx = −ν
ˆ

Ω
|∇v|dx, (2.20)

and ˆ
Ω

(v · ∇)v · v dx =

d∑
k=1

d∑
l=1

ˆ
Ω
vk(∂kvl)vl dx

=
d∑

k=1

d∑
l=1

1

2

ˆ
Ω
vk∂kv

2
l dx

=
d∑

k=1

d∑
l=1

−1

2

ˆ
Ω

(∂kvk)v
2
l dx

=
d∑
l=1

−1

2

ˆ
Ω
v2
l div v dx

= 0.

(2.21)
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2.3 Continuous Shape Optimization Problem

Combining these shows that

d

dt

ˆ
Ω
|v|2 dx = −2ν

ˆ
Ω
|∇v|dx

or
d

dt
Ekin(v, t) = −2νD(v, t). (2.22)

This means that the rate of change of the kinetic energy of the flow is inversely proportional to
the energy dissipation, i.e. a small dissipation means a small loss in kinetic energy over time.
Minimizing, for example, the average dissipation

 T

0

ˆ
Ω
|∇v|dxdt =

1

T

ˆ T

0

ˆ
Ω
|∇v|dxdt (2.23)

is thus taken to be morally equivalent to minimizing the average loss in kinetic energy over
time.

In cases where the boundary conditions are more complicated the partial integrations above
generate multiple boundary terms. Since the common (no-)slip conditions are nothing else than
Dirichlet or Neumann zero conditions, what is left over are the regions on the boundary where
fluid enters or leaves the domain and a energy exchange takes place. In this respect the actual
energy dissipation describes the losses inside of the domain.

2.3 Continuous Shape Optimization Problem

In this section, the obstacle flow also used as a numerical test case in chapter 6 is considered
in a continuous setting. This is done to illustrate some of the challenges that arise when pos-
ing optimization problems that aim to modify the geometry underlying a partial differential
equation.

Γ0

Γout

Γ0

Γin ω Ω

Figure 2.1: Sketch of the problem discussed in section 2.3. Fluid flows through the domain Ω from left
to right, no-slip conditions hold on the boundaries Γ0 and the surface of the obstacle ∂ω.
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2 Navier-Stokes Equation

The setting is that of an obstacle in a channel with an incompressible fluid flow from one end to
the other as well as walls on either side of the obstacle. This is illustrated in figure 2.1: A fluid
flows enters the domain with velocity uin from the left side Γin and travels to the right, where it
leaves the domain through the border marked Γout. A do-nothing boundary condition holds on
that end. The obstacle is modeled by cutting a hole ω into the flow domain, i.e. the the flow is
computed on Ω\ω, with no-slip boundary conditions on ∂ω. These also hold on the remaining
walls Γ0. The flow around ω up until time T can be described by the equations

ut + (u · ∇)u =
1

Re
∆u−∇p in [0, T ]× Ω\ω

div u = 0 in [0, T ]× Ω\ω,
u = uin on Γin,

1

Re
∂νu− pν = 0 on Γout,

u = 0 on Γ0,

u = 0 on ∂ω.

(2.24)

The premise of the shape optimization problem will be the following: Find an obstacle geometry
ω, such that the flow given by the system (2.24) minimizes the energy dissipation among all flows
belonging to some geometry ω.

We will now formulate this problem in a more concise and approachable manner. For the moment
assume the map ω 7→ u(ω), that assigns any obstacle ω ⊂ Ω the solution u of (2.24), to be well
defined. Concatenating this with taking the average dissipation u 7→

ffl T
0 D(t, u)dt, we arrive at

the function
J : P(Ω)→ R,

J(ω) =

 
[0,T ]

ˆ
Ω\ω
|∇u(ω)|dxdt

(2.25)

that assigns each conceivable geometry the energy dissipation of its resulting flow profile. Note
that P(Ω) denotes the power set of Ω.

The shape optimization problem of finding an obstacle geometry that minimizes the dissipation
may now be posed as follows: Find ω∗ ⊂ Ω such that

ω∗ = argmin
ω∈P(Ω)

J(ω). (2.26)

This approach has several deficiencies. For one, depending on the form of ω, the set Ω\ω may be
too pathological to solve the Navier-Stokes equations. Consider, for example, ω = Ω\(Ω ∩ Qd).
Then it follows that Ω\ω = Ω∩Qd and thus ∂(Ω\ω) = Ω, which is obviously nonsensical. Less
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2.4 Black Box Solvers and Discretization

severe but equally undesirable choices of ω may be sets which divide the domain or ω = Ω, which
is actually a solution of problem (2.26)–no flow means no dissipation. It is clear that additional
constraints on ω have to be imposed. For example that it be simply connected with smooth
boundary, to avoid problems with the Navier-Stokes equations. To avoid trivial solutions similar
to ω = Ω one could also impose a volume constraint of the form |ω| = C or limit the region
where ω may be to a further subset of Ω.

Next, P(Ω) is an unsuitable space to attempt any minimization problems. It lacks structure and
compactness results compared to common function spaces, let alone Euclidean space.

Obviously there are many subtleties to be considered when analyzing shape optimization prob-
lems. The approach taken in this thesis sidesteps these problems by parameterizing the object
geometry through a finite set of coefficients. This restricts the amount of possible shapes to a
comparatively small set and would be unsatisfactory from an analytical point of view, but in
(industrial) applications one generally has a general idea of the geometry. For example when the
goal is to improve upon an existing design, or additional constraints of the application, maybe
predicated by physical realities of construction, give a priori constraints on the shape.

Another property of note is that, even though the dissipation is quadratic as a function in u, this
does not even necessarily imply convexity in u, since the Navier-Stokes equation is non-linear, let
alone in ω. This makes descent type algorithms unsuitable when searching for globally optimal
solutions.

2.4 Black Box Solvers and Discretization

This section contains a description of the Navier-Stokes discretization chosen for the numerical
examples and the reasoning behind this choice.

2.4.1 NaSt3DGPF (Finite Differences)

NaSt3DGPF is a three-dimensional, parallel, finite difference based Navier-Stokes solver devel-
oped by the group of Prof. Griebel at the Institute for Numerical Simulation in Bonn. It was
used for initial experiments during this thesis.

It supports explicit second order schemes for time discretization, a choice of second or first
order upwind schemes or central differences on a staggered grid for spatial discretization and a
Chorin projection scheme for decoupling of the incompressibility equation. The details of the
implementation can be found in Croce (2002) or, for the same principle method but in two
dimensions, in Griebel et al. (1998).
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2 Navier-Stokes Equation

More complex geometries than rectangles are handled using a flag field approach, storing geom-
etry information about each cell of the finite difference grid. This approach is binary: Every cell
is either part of the fluid domain, or an obstacle cell. This means that shapes on scales larger
than the mesh width can easily be approximated by flagging all cells inside the shape as obstacle
cells. This gives a good approximation of the general shape as well as the volume, but since
every cell is either completely part of the fluid domain or completely an obstacle cell, this leads
to a very rugged approximation of the surface of the obstacle. An illustration of this is given in
figure 2.2, left image. Approximations of this kind show well known pathologies. For example,

Figure 2.2: On the left is a approximation to a circular geometry through a flagfield approach, the
shaded area is the obstacle and the resulting boundary is red. On the left is a similar object
approximated through a triangulation.

when taking smaller mesh widths in figure 2.2 the length of the border outlined in red will not
converge to the length of the black bounding curve, even though the borders itself will converge
in a point wise sense. For this reason, the solver was switched to another one based on finite
elements.

2.4.2 FEniCS (Finite Elements)

The second fluid solver considered was a FEniCS based finite element solver. This section gives
a short introduction into the nature of FEniCS and the discretization used for the Navier-Stokes
equation.

As opposed to NaSt3D, FEniCS is not a single purpose fluid dynamics solver. Rather, it is a
collection of tools that allow for the automatized finite element based solution of, in principle,
arbitrary partial differential equations. Its main components are the DOLFIN Python interface
(see Logg and Wells (2010) and Logg et al. (2012c)), the Unified Form Language (UFL, Alnæs
(2012)), and the FEniCS Form Compiler (FFC, Kirby and Logg (2006), Logg et al. (2012b), and
Ølgaard and Wells (2010)). A thorough introduction to the complete package and its application
to a variety of problems is given in Logg et al. (2012a), the scripts used for the computations in
this thesis are based on the demo applications distributed together with the software.
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2.4 Black Box Solvers and Discretization

The UFL is a domain specific language to describe variational forms and functionals in a way
that closely follows the mathematical notation. For example, the bilinear form

b(u, v) =

ˆ
Ω
∇u · ∇v dx, (2.27)

in the weak formulation of the Laplace equation is, in Python, defined by the UFL expres-
sion b = inner(grad(u), grad(v))∗dx. This makes it possible to transfer the mathematical
description of the problem directly into code.

Having described the problem in such a way, the generation of finite element approximations can
be as simple as loading a triangulation, specifying the kind of finite element spaces the functions
used in the description are defined in and asking for a solution. The form compiler then generates
C++ code to assemble the linear system resulting from the description and calls a linear solver.
calls PETSc routines (see Balay et al. (2013b), Balay et al. (2013a)) for their solution.

In case of the Navier-Stokes equation the time variable has to be taken into account separately,
since FEniCS doesn’t explicitly support any time discretization. What it does though, is expose
the underlying linear structure of the abstract functions and spaces to some extent. This makes
it possible to pre-assemble all matrices outside of the time loop and directly interact with the
PETSc interface, which exposes a variety of linear solvers (e.g. PCG, BiCGStab, GMRES, . . . )
and preconditioners (e.g. Jacobi, Gauß-Seidel, Algebraic Multigrid, . . . .). For more details on
PETSc see Balay et al. (2013b), Balay et al. (2013a).

The discretization used is a method of lines ansatz which in turn uses a Chorin projection
(c.f. Chorin (1968)) for time stepping as well as decoupling of the continuity equation and
a FEM discretization for the spatial part of the functions. It is described in the following
paragraphs.

Time Discretization and Decoupling

For the time discretization partition the interval [0, T ] into a grid 0 = t0, . . . , tN = T with
step size ∆t and consider un, pn the approximations of u, p at time tn. The Chorin projection
method is similar to an explicit Euler method in that the time derivative is replaced by a forward
difference quotient

∂tu(x, tn) ≈ un+1 − un
∆t

. (2.28)

Additionally, to decouple the momentum equation from the incompressibility condition, the
pressure is simply dropped from the equation to compute a intermediary velocity field ũ instead
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2 Navier-Stokes Equation

of un+1 via the explicit relation

ũ− un
∆t

+ (un · ∇)un − 1

Re
∆un = fn. (2.29)

To compute the pressure and recover the actual divergence free velocity at the next time step,
(2.29) is subtracted from the momentum equation with forward difference quotient. Together
with the continuity condition at time tn+1 this results in the system

un+1 − ũ
∆t

+∇pn+1 = 0,

div un+1 = 0.

(2.30)

Taking the divergence of the first equation and rearranging gives

−∆pn+1 =
1

∆t
div ũ, (2.31)

which can be solved for pn+1 and then enables un+1 to be computed through

un+1 = ũ+ ∆t∇pn. (2.32)

Equations (2.29), (2.31) and (2.32) now allow un+1 to be determined from un through straight-
forward explicit computations and solving a single Poisson equation.

Spatial Discretrization

For the spatial discretization recall the discussion in section 2. The same way we arrived at
the variational form of the full Navier-Stokes equation then, we can derive weak forms of the
equations derived in the previous paragraph by integrating over Ω and applying Greens theorem
where appropriate. This results in the variational relation of the intermediary velocity step
(2.29),

ˆ
Ω

ũ− un
∆t

· v + (un · ∇)un · v − 1

Re
∆un · v dx =

ˆ
Ω
fn · v dx for all v ∈ H1

0 (Ω,Rd), (2.33)

the pressure computation (2.31)
ˆ

Ω
∇pn+1 · ∇q dx =

ˆ
Ω

1

∆t
div ũ q dx for all q ∈ H1(Ω,Rd), (2.34)
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and the velocity correction (2.32)
ˆ

Ω
un+1 · v dx =

ˆ
Ω

(ũ+ ∆t∇pn) · v dx for all v ∈ H1
0 (Ω,Rd). (2.35)

The Galerkin ansatz proposes to replace the function spaces of the weak formulation by finite
dimensional subspaces Vh ⊂ H1

0 (Ω,Rd) and Qh ⊂ H1(Ω,Rd), where we already use h to signify
the future dependence on some mesh parameter. I.e. instead of looking for pn+1 ∈ H1(Ω,Rd)
such that (2.34) holds for all q ∈ H1(Ω,Rd), we look for ph ∈ Qh such that (2.34) holds for all
qh ∈ Qh. Doing this, the variational problems above reduce to finite dimensional linear equations:
If φ1, . . . , φM is some basis of Qh, we can write pn+1

h and every qh as

pn+1
h (x) =

N∑
i=1

pn+1
h,i φi(x), qh(x) =

N∑
i=1

qh,iφi(x). (2.36)

Inserting these representations allows us to rewrite the left hand side of (2.34) as

ˆ
Ω
∇
(

N∑
i=1

pn+1
h,i φi(x)

)
· ∇

 N∑
j=1

qh,jφj(x)

 dx =
N∑
i=1

N∑
j=1

pn+1
h,i qh,j

ˆ
Ω
∇φi · ∇φj dx (2.37)

and the right hand side as
N∑
i=1

qh,i

ˆ
Ω

1

∆t
div ũ φi(x) dx. (2.38)

Writing Mh,ij =
´

Ω∇φi · ∇φj dx for the stiffness matrix and bh,i =
´

Ω
1

∆tdiv ũ φi(x) dx we see
that (2.34) (in the finite dimensional case) is equivalent to qThMpn+1

h = qTh b for all qh ∈ Qh or
simply

Mhp
n+1
h = bh. (2.39)

In this way, each of the three steps in the Chorin pressure splitting can be reduced to a system
of linear equations.

What is left is to choose suitable spaces Vh and Qh that lead to a stable and accurate method.
Let Th be a triangulation of Ω, i.e. Th is a collection of triangles T , such that ∪T∈ThT is an
approximation of Ω and satisfies the usual constraints asked of such a triangulation (no hanging
nodes, no degenerate triangles, etc.). The spaces are then chosen to be

Vh = {v ∈ C1(Ω,Rd) : v|T is a quadratic polynomial for all T ∈ Th} (2.40)

and
Qh = {q ∈ C(Ω,R) : v|T is linear for all T ∈ Th}. (2.41)
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2 Navier-Stokes Equation

This choice corresponds to a so-called Taylor-Hood finite element approach, which prescribes
that the pressure discretization be of one order less than the velocity discretization. If both
were taken to be quadratic, or both linear, the resulting discretization would be unstable as per
the inf-sup condition. For a more detailed discussion of finite element spaces for saddle point
problems see Braess (2007), p. 157.

The spatial accuracy is controlled via a mesh-width parameter h. A common constraining relation
between the triangles in Th and the mesh-width parameter is that the diameter of every triangle
in Th satisfies diam(T ) ≤ 2h and that the triangulation as a whole is uniform. That means that
there is some constant c > 0 such that every triangle contains a circle of diameter cd > 2h.

Computing derived quantities

The finite element method also allows for the easy computation of some derived quantities. Let
ψh,1, . . . , ψh,M be a basis of Vh and vh =

∑M
i=1 vh,iψh,i ∈ Vh, then the energy dissipation of vh is

given by ˆ
Ω
|∇u|2 dx =

M∑
i=1

M∑
j=1

vh,ivh,j

ˆ
Ω
∇ψh,i : ∇ψh,j dx. (2.42)

This way, the energy dissipation of the solution of the discretized Navier-Stokes equation can be
computed exactly at any given time.
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3 Mesh Generation using Distmesh

An important aspect of the finite element simulation is a high quality mesh of the domain. In this
case there is the added complexity of having to generate meshes for parameterized geometries
in an automated and unsupervised environment. While very good meshing software is freely
available–cf. Triangle, by Shewchuk (1996)–none of the packages that the author found satisfied
all needs of the application. The meshing environment should deliver high quality meshes, easily
run automated and be quickly adaptable to changes in the geometry input. To this end the
distmesh algorithm by Persson (2004), see also Persson and Strang (2004), was implemented in
Python using the NumPy package and combined with a level set generator using a fast marching
algorithm.

The distmesh algorithm can be seen as an iterative procedure to improve an existing mesh with
respect to element quality and desired mesh width, initialized using a Delaunaty triangulation
of an initial node set. Consider a distribution of points p1 = (p1

x, p
1
y), . . . , p

N = (pNx , p
N
y ) sorted

into a matrix

P =


p1
x p2

y
...

...
pNx pNy

 ∈ R2×N (3.1)

together with a Delaunay triangulation T on those points. Now think of each edge in the
triangulation as a linear spring that exerts a force on its endpoints that is proportional to
the deviation of the length of the edge to the desired mesh width. That means if an edge is
shorter than the desired mesh width its endpoints are pushed apart. For performance reasons
contraction of an edge is not considered. A mesh is then assumed to be of high quality if it
achieves an equilibrium of the spring forces

F (P ) = 0, (3.2)

where F : R2×N → R2×N denotes the accumulated forces acting on each vertex. Since the
forces are determined using the Delaunay triangulation of the point set, this function is neither
continuous nor necessarily well defined, since not all point distributions allow a unique Delaunay
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3 Mesh Generation using Distmesh

triangulation. This is of no consequence to the algorithm but should be kept in mind, since it
will not be reflected in the notation.

The exact formula used to compute the forces is

[F (P )]i =
∑

q∈E(pi)

(h− ‖pi − q‖)+ pi − q
‖pi − q‖ , (3.3)

where h is the desired edge length in the mesh, a+ := max(a, 0) and E(pi) is the neighborhood
of all points connected to pi by an edge in T . As was mentioned above, forces are only positive
for edges that are too short. This achieves an expansion of the mesh structure as the iteration
process goes on and allows the points to fill out the specified geometry.

To confine this expanding mesh structure to the geometry, the distmesh ansatz uses a description
of the desired geometry by a signed distance function. If Ω is the region to be meshed, its signed
distance function φ is defined by

φ(x) =

−dist(x, ∂Ω) if x ∈ Ω

dist(x, ∂Ω) if x 6∈ Ω
(3.4)

with
dist(x, ∂Ω) = inf

y∈∂Ω
‖x− y‖2. (3.5)

This function can be utilized to test whether a point x is in Ω via

x ∈ Ω ⇐⇒ φ(x) < 0 (3.6)

and to move points outside Ω back onto it via the projection

x 7→ x− φ(x)∇φ(x). (3.7)

The latter works since the negative gradient points in the direction of steepest descent, which in
this case means the direction to the near-most point of ∂Ω. Since φ(x) is the distance to ∂Ω it is
also the exact step length needed to arrive at ∂Ω when moving along ∇φ(x), if ∇φ(x) is of unit
length. The latter is a well known fact that is also used as a characterization of signed distance
functions, namely that they satisfy the eikonal equation

‖∇φ‖2 = 1 in Ω

φ = 0 on ∂Ω.
(3.8)
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Using the geometry information supplied by the signed distance function, the force equilibrium
(3.2) is now solved in the spirit of a constrained minimization problem. This is done using a
projected Richardson-like iteration with artificial time stepping:

Pnew = Pold + δtF (Pold). (3.9)

After each iteration, points that have left the geometry (i.e. φ(pi) > 0) are projected back as
described in equation (3.7). To account for the fact that the movement of points may cause the
initial triangulation T to have the Delaunay property, a new triangulation is calculated after the
total movement of the points in relation to the positions at the time of the last triangulation
exceeds a prescribed tolerance. The complete procedure is summarized in algorithm 1.

Algorithm 1 Distmesh
Input: Signed distance function φ, initial point distribution p, desired mesh width h0, iteration

parameters δt, εT , εF .
Output: Triangulation T of the region described by φ.
1 Let pold = p
2 Compute Delaunay triangulation T of p
3 while δtF (p) > εF do
4 Update p = p+ δtF (p)
5 for p ∈ P with p > φ(p) do
6 Project p = p− φ(p)∇φ(p)
7 end for
8 if ‖p− pold‖2 > εT then
9 Recompute Delaunay triangulation T of p
10 Let pold = p
11 end if
12 end while

For all computations in this thesis, the initial points were supplied by a quasi-random Halton
sequence (cf. section 5.1) in [0, lx]× [0, ly] with N = blx · ly · h−2c, where [0, lx]× [0, ly] is a box
containing Ω. N is the amount of points in a uniform grid on [0, lx] × [0, ly] of mesh width h

and thus a logical choice for the amount of points needed for a unstructured mesh of the same
fineness. Superfluous points inside the bounding box but outside Ω are deleted once before the
start of the iteration.

Figure 3.1 shows an exemplary quasi-random distribution of vertices and their Delaunay triangu-
lation as well as the converged result of the distmesh algorithm for a perforated circle geometry
using an exact level set function. Figure 3.2 shows the same for an actual problem geometry as
described later in this thesis. Both plots are colored by a heuristic measure for element quality
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3 Mesh Generation using Distmesh

given by

Quality(T) :=
|T |

max(l0, l1, l2)2
, (3.10)

where l0, l1 and l2 denote the side lengths of the triangle T .

Figure 3.1: Mesh of a perforated circular geometry. Right: Initial triangulation of quasi-random points,
left: Result of the algorithm.

To generate the level set function for the parameterized geometries a fast marching method was
used to solve the corresponding eikonal equation on a high resolution regular grid of a region
containing the geometry. Projections were computed using this approximation and bilinear
interpolation.
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Figure 3.2: Mesh of a obstacle flow geometry. Top: Initial triangulation of quasi-random points, bottom:
Result of the algorithm.
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4 Parameterization

The shape space is discretized by parameterizing a range of (pre-defined) possible geometries,
making the problem accessible to classical optimization techniques. This section explains the
tools used for the parameterization and how they are used in the computational examples.

4.1 Basis Splines

The parameterization is conducted using B-splines, which shall be defined in this section. The
notation and presentation of the subject is based on Deuflhard and Hohmann (2002), further
information about spline curves and fast algorithms can be found in Piegl and Tiller (1995).

A spline of degree k on [a, b] with respect to a partition a = t0 < t1 < . . . < tl+1 = b is a
function φ ∈ Ck−1([a, b],R) such that φ restricted to [ti−1, ti] is a polynomial of degree k for
every i = 1, . . . , l + 1. These splines form a vector space and a common choice of basis of this
vector space are B-splines.
Definition 4.1 (B-Splines). Let τ1 ≤ . . . ≤ τn be some sequence of knots, the B-Splines Ni,k of
order k and i = 1, . . . , n− k are recursively defined by

Ni,1(t) = χ[τi,τi+1)(t),

Ni,k(t) =
t− τi

τi+k−1 − τi
Ni,k−1(t) +

τi+k − t
τi+k − τi+1

Ni+1,k−1(t).
(4.1)

If the knots in definition 4.1 are chosen according to

τ1 = . . . = τk = t0

τj+k = tj for j = 1, . . . , l

τl+k+1 = . . . = τl+2k = tl+1,

(4.2)
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the B-splines Ni,k, i = 1, . . . , l + 1 form a basis of the space of splines of degree k with respect
to the partition t0, . . . , tl+1. That is, every spline in that space is of the form

φ(s) =
l+k∑
j=1

cjNjk(s) (4.3)

for some c ∈ Rl+k.

4.2 Parameterization of the Geometry

As an example we will describe the parameterization of the geometry in the obstacle flow prob-
lem from sections 2.3 and 6.3.1. The other examples from chapter 6 require only minor adjust-
ments.

Since the surrounding geometry and the boundary conditions are symmetric around the obstacle
(c.f. figure 6.6), we will assume that the minimizing object will also be symmetric. This stands
to reason since reflecting around the center line of the object drawn in figure 6.6 does not change
the problem.

For this discussion we assume that the obstacle is situated in such a way that its leftmost part
touches the y-axis and its axis of symmetry coincides with the x-axis, this can be achieved by
simple translation. If it is further assumed that the border has a sufficiently smooth and simple
shape, the upper part of the boundary (above the x-axis) is simply the graph y = γ(x) of some
function γ over the interval [0, L]. This situation is illustrated in figure 4.1.

The parameterized geometries with n degrees of freedom are now taken to be all shapes of this
form, where the bounding function γ is given by a cubic spline with n degrees of freedom:

γn(x) =
n∑
j=1

cjNj3(x). (4.4)

The search space is now given by the finite dimensional coefficients c ∈ Rn of the B-spline
expansion, which generate the obstacles

ω(c) = {(x, y) ∈ R2 : |y| ≤ γn(x)}. (4.5)
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L

x

y
∂ω
γn

Figure 4.1: Parameterization γn of the upper part of the obstacle boundary ∂ω. The geometry is trans-
lated, such that the left side of the obstacle touches the x2-axis and the axis of symmetry of
the object lies on the x1-axis. Drawn in gray are the scaled basis functions of the B-spline
expansion of γn.

Constraints

The B-spline parameterization allows for certain kinds of shape constraints on ω to be rephrased
as linear inequality constraints. In the parameterization in figure 4.1 for example, it is easy to see
that the volume of the parameterized obstacle is two times the area between γn and the x-axis.
In other words:

|ω| = 2

ˆ L

0
γn(x) dx. (4.6)

Inserting the basis expansion of γn this is equivalent to

|ω|
2

=

ˆ L

0

n∑
i=1

ciNik(x)dx =

n∑
i=1

ci

ˆ L

0
Nik(x)dx = IT c (4.7)

where IT = (
´ L

0 N1k(x)dx, . . . ,
´ L

0 Nnk(x)dx). Using this, a volume constraint of the form
Vmin ≤ |ω| ≤ Vmax on the obstacle can be rewritten as a linear inequality constraint on the
parameters

Vmin ≤ IT c ≤ Vmax. (4.8)

Restricting the size of the obstacle in a point wise sense can also be formulated as a linear
constraint. Forcing ω to lie in the box [0, L] × [ymin, ymax] is done by taking control points
x1, . . . , xN ∈ [0, L] corresponding to the maxima of the basis functions Nj3 and demanding that
ymin ≤ γn(xi) ≤ ymax for each i ∈ {1, . . . , N}. Using, again, the basis expansion of γn this is
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rewritten as
ymin ≤ γn(xi) ≤ ymax for all i ∈ {1, . . . , N}

⇐⇒ ymin ≤
n∑
j=1

cjNjk(xi) ≤ ymax for all i ∈ {1, . . . , N}

⇐⇒ ymin ≤ Ac ≤ ymax (component wise)

(4.9)

where

A =


N1,3(x1) N2,3(x1) . . . Nn,3(x1)

N1,3(x2) N2,3(x2) . . . Nn,3(x2)
...

...
. . .

...
N1,3(xm) N2,3(xm) . . . Nn,3(xm)

 (4.10)

and ymin and ymax are identified with the constant vectors of the same value.
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5 Optimization

Optimization algorithms aim to solve problems of the form: Find x ∈ U such that

x = argmin
y∈U

f(y) (5.1)

for some objective function f : U → R and the feasible set U ⊂ Rn. An important distinction has
to be made between two fundamentally different approaches to minimization problems:

• Local search methods iteratively generate a succession of points by performing e.g. line
search along the gradient at the iterates. These methods are mostly guaranteed to converge
to a stationary point of f (i.e. a point x with ∇f(x) = 0) and are called globally convergent
if they do so from every starting point.

• Global search methods, which try to find the actual minimal point across the whole of U .
To work in any generality these methods have to disregard gathered information at least
to some degree for enough coverage.

Depending on the function f and the feasible set this problem may be very easy or very hard to
solve. For example, if f and U are a convex function and set respectively, even the global search
problem is easily solved by local search methods such as gradient descent or the compass search
explained later in this section. On the other hand, if f is a function with many local minima at
different scales, we have to apply global optimization methods using a high number of function
evaluations to have any chance at a good approximation.

Following Novak (1988), consider an abstract optimization method x = Φ(N, f) with the property
that it evaluates any function to be minimized first on a fixed point x1, then at successively
chosen points x2(x1, f(x1)), x3(x1, x2, f(x1), f(x2)), . . ., xN (x1, . . . , xN−1, f(x1), . . . , f(xN−1))

and returns the point with the smallest function value. This captures derivative free minimization
methods that use no a-priori information about the function f , such as Lipschitz-constants or
similar, and up toN function evaluations. For such an optimization method and a set of functions
F we consider

sup
f∈F

f(Φ(N, f))−min
x∈U

f(x), (5.2)

33



5 Optimization

the maximal error that occurs when applying the minimization method Φ with N evaluations
to any function in F . Taking the infimum over all optimization methods Φ that can be de-
scribed in the way outlined above, we can determine the worst case error of the optimization
method with the best worst case behavior over the whole of the functions in F using N function
evaluations:

E(F,N) = inf
Φ as described

sup
f∈F

f(Φ(N, f))−min
x∈U

f(x). (5.3)

0 1
0

1

Uniform grid

0 1
0

1

Sparse grid

0 1
0

1

Uniformly random

0 1
0

1

Halton sequence

Figure 5.1: Different non-adaptive global search approaches.

If we consider the function class

F = {f ∈ Ck,α : ‖f‖Ck,α ≤ 1} (5.4)
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of k-times differentiable, α-Hölder continuous functions with norm at most one, Novak (1988)
has shown the sharp estimate

E(F,N) ∼ N− k+αn . (5.5)

This means that there is no deterministic global optimization method on operating on those
functions that has a better worst case behavior than the one above. In fact, it is also shown
that this bound is already achieved the algorithm that simply evaluates f on the points of an
appropriately fine regular grid, as illustrated in figure 5.1.

Of special note is the fact that the convergence rate deteriorates with growing dimension n.
This is a well known fact in many applications and known as the curse of dimensionality. If,
for example, the dimension of the problem is n = 6 (which is the case in some of the problems
considered later), we would have to assume that the objective function is Lipschitz-continuous
and five times continuously differentiable to guarantee a worst case error rate of at least N−1

using the result above.

One way to alleviate the effect of the curse of dimensionality is to introduce (quasi-) random-
ized methods. Monte Carlo and quasi-Monte Carlo methods are widely known as numerical
quadrature methods, where they achieve convergence rates of N−1/2 and N−1 respectively. Both
approaches are discussed more comprehensively later in this section, but it is necessary to em-
phasize that both methods suffer from the fact that while the rate is dimension independent,
they are also independent of smoothness. Thus even if the objective is of some smoothness,
we cannot expect to gain any advantage using these methods. In figure 5.1 both methods are
illustrated.

Another approach are sparse grid based methods. Going back to the work of Smolyak (1963),
they have in recent time been used not only for quadrature methods but also for e.g. partial
differential equations, spectral approximation or wavelet methods. Introductions are given in
Gerstner and Griebel (1998) or Garcke (2013). For a basic idea (anticipating the discussion of
section 5.3) consider a normal uniform grid of mesh width 2L. All points on it are given by the
formula (

l1∑
i1=1

a1,i12−i1 , . . . ,
ln∑

in=1

an,in2−in
)

(5.6)

where the multi index l ∈ Nn ranges over all l with ‖l‖∞ ≤ L. To construct a sparse grid we
restrict the range of the multi indices to those that satisfy ‖l‖1 ≤ L, which suffices to retain
most of the approximative properties of a full grid in many applications. The cost of this is a
moderate increase in smoothness requirements. While the amount of points in the full grid of
level L is of the order O(2nL), the sparse grid only uses O(2L log(2L)n−1) points (Garcke, 2013).
Figure 5.2 illustrates the magnitude of this difference for six dimensional problems.
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Figure 5.2: Comparison of the number of evaluations used in the full and sparse grid methods of the
same level.

Novak and Ritter (1996) note that a non-adaptive method simply evaluating the objective func-
tion at sparse grid points (of ascending level) gives a bound on the worst case error ESparse(N)

of the first N points of
ESparse ∼ N−1(logN)2(n−1) (5.7)

over all functions in in the mixed first order Sobolev space W 1,∞
mix with norm ‖f‖

W 1,∞
mix
≤ 1.

The mixed Sobolev space differs from the normal one in that all differentials of total degree 1

have to be bounded as opposed to the partial degree. I.e. ∂1∂2f has to exist and be bounded
for a function to lie in W 1,∞

mix but not in W 1,∞. In essence, one trades the ∞-norm for the
1-norm in the index space of the derivatives to trade the 1-norm for the ∞-norm in the index
space of the grid points. While this result gives essentially the same rate as the quasi-Monte
Carlo method would give, it stands to reason that the sparse grid approaches error bounds
improve with increasing smoothness (as is the case in other applications), leading to bounds of
the form E ∼ N−s log(N)n−1. This means sparse grid based methods improve with increasing
smoothness of the involved function while retaining their error rate with increasing dimension,
modulo a logarithmic factor.

The hyperbolic cross method explained in section 5.3 aims to take advantage of these worst case
estimates while introducing some degree of adaptivity and locality to improve pre-asymptotic
behavior.
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5.1 Quasi-Monte Carlo Method

5.1 Quasi-Monte Carlo Method

The quasi-Monte Carlo optimization method is basically a deterministic variant of the Monte
Carlo method, so the latter will be given a short introduction. A detailed discussion of both
approaches can be found in Niederreiter (1992).

In its most basic form, as exemplified by optimization of a function f on [0, 1]n using N samples,
the Monte-Carlo method draws uniformly random samples x1, x2, . . . xN ∈ [0, 1]n and computes
an approximation to the global optimum of f on [0, 1]n via

xmin ≈ argmin
1≤i≤N

f(xi). (5.8)

The quasi-Monte Carlo method replaces the random samples by a deterministic sequence of
points P = (x1, x2, . . .) ⊂ U and computes the approximation to the global minimum using N
samples as

x∗N = argmin
xi∈P, 1≤i≤N

f(xi). (5.9)

The point of this is to gain finer control over the distribution of points, which helps to avoid
clustering inherent to truly random methods and leads to better error estimates. Obviously, the
sequence P has to satisfy some condition to make the method converge. In case of the better
known quasi-Monte Carlo quadrature, the sequences that ensure convergence are the so called
low discrepancy series. They are chosen in such a way that their distribution approximates the
measure that is to be integrated. In case of the Lebesgue measure that means

sup
B box in U

∣∣∣∣#{i : xi ∈ B}
N

− |B|
∣∣∣∣→ 0 as N →∞. (5.10)

For optimization problems the dispersion of the sequence, which is defined by

dN (P ;U) = sup
x∈U

min
1≤i≤N

‖x− xi‖2. (5.11)

has to approach zero to achieve convergence. This is shown in the following result:
Theorem 5.1 (Niederreiter, 1992, p. 149). Let U ∈ Rn be bounded. For P = (x1, x2, . . . , xN ) ⊂
U with dispersion dN = dN (P ;U) it holds that

inf
x∈U

f(x)− f∗N ≤ ω(f ; dN ) (5.12)
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where ω is the modulus of continuity

ω(f ; dN ) = sup
x,y∈U s.t. ‖x−y‖2≤dN

|f(x)− f(y)| (5.13)

This implies if f is, for example, Lipschitz continuous with constant Lf , the approximation
satisfies

inf
x∈U

f(x)− f∗N ≤ LfdN → 0 (5.14)

and the dissipation dictates the rate of convergence. Niederreiter (1992) notes that every low
discrepancy series is also a low dispersion series.

Halton Sequence

For the comparative results in chapter 6 and the initialisation of the distmesh procedure a low
dispersion Halton sequence was used. It was first published in Halton (1964) and is based on
prime reciprocals, the full procedure is given in algorithm 2.

Algorithm 2 Halton Sequence

Input: Required dimension n and amount of samples N , n prime numbers p1, . . . , pn and ε > 0.
Output: First N members of the n-dimensional Halton sequence.
1 x0 = 0.
2 for k = 1, . . . , N − 1 do
3 for i = 1, . . . , n do
4 z = 1− xk−1

i

5 v = p−1
i

6 while z < v + ε do
7 v = v

pi
8 end while
9 xki = xk−1

i + (pi + 1)v − 1
10 end for
11 end for

5.2 Asynchronous Parallel Pattern Search

The asynchronous parallel pattern search (APPS) is a derivative free and globally convergent
local search method, that combines several properties desirable in black-box simulation based
optimization. It supports linear constraints while maintaining full feasibility of all trial points
and can maintain its convergence properties even if a (moderate) number of evaluations in each
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iteration fail to give a result. The method is an asynchronously parallel variant of pattern search
(which is also known as generalized set search or GSS) first published for linear constraints in
Griffin et al. (2008) and was implemented as part of the HOPSPACK software (hybrid optimiza-
tion software package, see Plantenga (2009)).

GSS is an advancement of what is sometimes called compass search, which we will discuss in
detail in the following paragraph based on the exposition in Lewis et al. (1998). After that, the
extensions to general search directions and the general ideas underlying the generalization to
linear constraints and parallelization will be presented following the descriptions in the survey
article Kolda et al. (2003).

Compass Search

Compass search is the most basic pattern search for optimization problems without constraints.
For the time being assume that the optimization problem to be solved is of the following form:
Find x∗ ∈ Rn such that

x∗ = argmin
x∈Rn

f(x). (5.15)

The algorithm starts with an initial point x0 and step size h0. In each iteration, the function is
sampled around the current iterate xk along each of the coordinate axes in both negative and
positive direction with a step length of hk, i.e. the new samples are xk ± hkei for i = 1, . . . , n,
where ei = (δij)

n
j=1 is the i-th unit vector. The first sample with a lower function value is taken

as the new iterate. If none of the points improves upon the function value at the current point
it remains the same and the step width is halved. This corresponds to the generating set search
given in algorithm 3, where the set of search directions is

Dk = {e1, . . . , en,−e1, . . . ,−en} (5.16)

for every iteration k. Figure 5.3 illustrates the procedure: For a given step length hk the algorithm
moves from point to point on grid of mesh-width hk centered on the first point that step length
occurred on until no improvement can be made. At that point the resolution is halved and the
process begins anew.

We will now show that even this simple method converges to a stationary point for fairly general
functions. The convergence analysis of standard line search methods depends heavily on the
approximation properties of the gradient of f . Consider a point x ∈ Rn, a search direction
d ∈ Rn and small step lengths h > 0. Then, assuming f is continuously differentiable, one
has

f(x+ hd) = f(x) + h∇f(x) · d+O(h2). (5.17)
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xk + hke1

xkhk

xk+1

hk+1

xk+2

hk+1/2

Figure 5.3: Illustration of the pattern search.

Algorithm 3 Example of a Generating Set Search
Input: Function f : Rn → R to minimize, starting step size h0 and point x0, minimal step size

hmin.
1 while h > hmin do
2 Let Dk be some generating set for Rn
3 for d ∈ Dk do
4 if f(xk + hkd) < f(xk) then
5 xk+1 = xk + hkd
6 hk+1 = hk
7 break
8 end if
9 end for
10 if no improvement was found then
11 xk+1 = xk
12 hk+1 = hk/2
13 end if
14 Set k = k + 1
15 end while

Recall that the negative gradient of f points in the direction of steepest descent. If the angle
between −∇f(x) and d is less than 90◦, inserting

0 < cos∠(−∇f(x), d) = − ∇f(x) · d
‖∇f(x)‖ ‖d‖ (5.18)

into equation (5.17) gives

f(x+ hd) = f(x)− h cos∠(−∇f(x), d) ‖∇f(x)‖ ‖d‖+O(h2). (5.19)

Since the cosine is positive and the quadratic remainder approaches zero faster than h times a
constant, it follows that

f(x+ hd) < f(x) (5.20)
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for sufficiently small h. This shows that if d points in roughly the same direction as −∇f(x),
a decrease in the function value can be forced by taking a small enough step. For this reason
directions d which fulfill the condition that their angle with −∇f(x) is less than 90 degrees
are called descent directions. Key to the convergence of all pattern search methods is that it is
possible to find a descent direction in every iteration without knowing the gradient.
Theorem 5.2. (Descent directions) Let x ∈ Rn with ∇f(x) 6= 0. For some i ∈ {1, . . . , n} and
σ ∈ {−1,+1} the vector σei is a descent direction of f with

cos∠(σei,−∇f(x)) >
1√
n
. (5.21)

Proof. For any direction ±ej note

cos∠(±ej ,−∇f(x)) =
∓ej · ∇f(x)

‖∇f(x)‖ =
∓∂jf(x)(∑n

l=1 |∂lf(x)|2
) 1

2

(5.22)

and take i such that |∂if(x)| = max1≤j≤n |∂jf(x)|, σ such that −σ∂if(x) = |∂if(x)|. Inserting
this into (5.22) shows that

cos∠(σei,−∇f(x)) >
|∂jf(x)|(∑n

l=1 |∂jf(x)|2
) 1

2

=
1√
n
. (5.23)

This can be used to derive bounds on the gradient at all failed iterations of the compass search,
i.e. iterations in which none of the sample points xk ± hkei have a lower function value than xk.
Assume the k-th iteration to be such an iteration and further assume that the objective function
is continuously differentiable with Lipschitz continuous gradient.

The theorem above guarantees the existence of a descent direction σkei. Since the iteration
failed, applying the mean value theorem along the line t 7→ xk + thkσkei gives

0 ≤ f(xk + hkσkei)− f(xk) = σkhk∂if(xk + ξσkhkei) (5.24)

for some ξ ∈ [0, hk] and

−σkhk∂if(xk)︸ ︷︷ ︸
=σkhk(−∇f(xk))·ei

≤ σkhk (∂if(xk + ξσkhkei)− ∂if(xk)) (5.25)

41



5 Optimization

after subtracting σkhk∂if(xk) from both sides. Using equation (5.21) and the Lipschitz continuity
of ∇f it follows that

‖∇f(xk)‖√
n

≤ ‖∇f‖Lipξhk (5.26)

or
‖∇f(xk)‖ ≤

√
n‖∇f‖Liphk (5.27)

if hk ≤ 1.

Since the only variable the bound depends on is the current step width, it is now obvious that
the method reaches a stationary point (i.e. converges) if the steps satisfy

lim
k→∞

hk = 0. (5.28)

This can be guaranteed by different assumptions on f , one of which is that the function satis-
fies

|{x ∈ Rn : f(x) ≤ f(y)}| <∞ for all y ∈ Rn. (5.29)

To see this, consider any step length hk and iterate xk. All points that can be reached by the
algorithm while maintaining the same step length lie on a regular lattice of step width hk centered
on xk as noted above. Further, any new iterate must have a smaller function value than f(xk).
This limits all possible iterates using the current step size to the intersection{

xk +
n∑
i=1

aihkei : a ∈ Z

}
∩ {x ∈ Rn : f(x) ≤ f(xk)} . (5.30)

Since the left set is discrete and the right set is bounded the intersection must be finite, which
means that the algorithm cannot continue using hk in perpetuity. Altogether we have shown the
following theorem.
Theorem 5.3. Let f : Rn → R be Lipschitz continuous and satisfy (5.29), then for any x0 ∈ Rn

the iterates xk generated by the compass search fulfill

lim
k→∞

‖∇f(xk)‖2 = 0. (5.31)

Generating Set Search

Instead of using the search directions e1, . . . , en,−e1, . . . ,−en as is the case in compass search,
the generating set search allows the use of more general search directions that may vary from
iteration to iteration. The name of method originates from the basic condition that the set of
directions in every iteration must be large enough in the sense of the following definition.
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Definition 5.4. (Generating Set) The set D = {v1, . . . , vl(D)} with l(D) ≥ n+ 1 is a generating
set for Rn, if for any vector x ∈ Rn there exist coefficients λ1, . . . , λl(D) ≥ 0 such that

x =

l(D)∑
i=1

λivi. (5.32)

In other words: D is a spanning set of Rn using only positive coefficients.

Each generating set D for itself satisfies a property similar to (5.21) in that for each x ∈ Rn

there exists a d ∈ D such that
x · d > c(D)‖x‖2‖d‖2 > 0. (5.33)

Using this one can do the same analysis for the generating set search as for the pattern search
to arrive at the bound

‖∇f(xk)‖ ≤ c(Dk)‖∇f‖Liphk (5.34)

similar to (5.27), where the constant c(Dk) was c(D) > n−
1
2 for the case where Dk are the

coordinate directions. As opposed to the compass search, this gives no control over the gradient,
since the constant can vary with each iteration and may well tend to zero if k tends to infinity.
As an example of this behavior Kolda et al. (2003) mention the generating sets

Dk =

{(
1

0

)
,

(
− 1
k

−1

)
,

(
− 1
k

1

)}
, (5.35)

where c(Dk) = 1/
√

1 + k2.

The constant can be computed via

c(D) = min
x∈Rn

max
d∈D

x · d
‖x‖2‖d‖2

(5.36)

and is called cosine measure of the set D in the pattern search literature. The gradient bound
can be recovered by restricting the choice of generating sets Dk in the algorithm, such that

c(Dk) ≥ cmin (5.37)

for some cmin > 0 and all k > 0 using the formula for c(Dk).

While the bound on the gradient carries over easily, proving

lim
k→∞

hk = 0 (5.38)
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cannot be done the same way as above, since the GSS allows that the set of the directions changes
even if the step length hk stays the same. This means that the set of all iterates reachable while
stepping with hk does not form a simple lattice anymore. Two alternatives described in Kolda
et al. (2006) include adding additional constraints on the generating set to recover a lattice
structure for the possible iterates, or adding a sufficient decrease condition in step 4 of the
algorithm. The latter shall be explained in more detail.

The sufficient decrease condition provides that an iterate xk + hkdk if f(xk + hkdk) < f(xk), is
only accepted if

f(xk + hkdk) < f(xk)− ρ(hk), (5.39)

where ρ is continuous, monotonically increasing and satisfies ρ(t) = o(t) for t ↘ 0. This forces
the function values of new iterates to decrease by a minimum amount for each fixed hk
Theorem 5.5. (Kolda et al., 2006, p. 411) If f is bounded from below, the iterates from the
GSS using the sufficient decrease condition (5.39) satisfy

lim
k→∞

hk = 0. (5.40)

Proof. Suppose this is not the case and note that in the variant of GSS considered here, the
hk form a non-increasing sequence. Since this is the case it can be concluded that if (5.40) is
not valid, it follows that hk ≥ ε > 0 for all sufficiently large k > k0. Since ρ is taken to be
monotonically increasing, hk ≥ ε implies ρ(hk) ≥ ρ(ε) > 0 and the sufficient decrease condition
(5.39) ensures that

f(xk+1) ≤ f(xk)− ρ(hk) ≤ f(xk)− ρ(ε) (5.41)

at every iteration k that finds a smaller function value. This means that at every iteration
past the k0-th iteration, either no decrease is achieved and the step width is halved or the
decrease achieved is at least ρ(ε). Since the first case can only happen a finite number of times
(otherwise hk would tend to zero) the latter must occur an infinite number of times, but that
means f(xk) → −∞ as k → ∞ in contradiction to the assumption that f be bounded from
below.

Linear Constraints

The extension of the pattern search method to full linear constraints was first published in Lewis
and Torczon (2000) and analyzed in Kolda et al. (2006). A very detailed discussion of the
technical details for an implementation was given in Lewis et al. (2007).
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From now on assume the problem to be finding x∗ ∈ Rn such that

x∗ = argmin
x∈Rn, Ax≤b

f(x), (5.42)

where A ∈ Rl×n, b ∈ Rl. Let aTi be the i-th row of A and U = {x ∈ Rn : Ax ≤ b} the feasible
set.

To turn the generating set search described in algorithm 3 into a method applicable to this
problem while achieving the desired full feasibility, the following points will have to be ad-
dressed:

• Ensure that the initial point x0 is feasible with respect to the constraints.

• Choose the search directions Dk and step lengths hk restrictive enough that xk + hkd is
feasible for each d ∈ Dk.

• Choose them permissive enough to maintain convergence.

While the first point is straightforward, it is not obvious how to choose the search directions. It
can easily be seen though, that the requirement that they generate the whole of Rn has to be
relaxed. If an iterate xk lies on the boundary of the feasible set, the search directions generating
Rn give infeasible iterates by their very definition. For this reason the search directions have
to conform to the geometry of U near xk in every iterate. To explain how this can be done,
we first discuss the geometry of U and introduce some notation from the generating set search
literature.

The condition Ax ≤ b defines what is called a convex polytope in Rn given by the intersection of
half spaces

U =
l⋂

i=1

{
y ∈ Rn : aTi y ≤ bi

}
. (5.43)

From this representation it is obvious that U is bounded by plane segments and from now on
we will assume that the description Ax ≤ b is non-degenerate in the sense that every single
inequality defines a facet of U , i.e.

∂U ∩ {y ∈ Rn : aTi y = bi} 6= ∅ (5.44)

for every i ∈ {1, 2, . . . , l}. The vector ai is then also the normal of U on the facet defined by the
intersection above. We also assume that the set U is of full dimension, which means that none
of the constraints are actually equality constraints. This makes the presentation clearer, even
though the linear constrained pattern search does in fact work with equality constraints as well
as degenerate constraints.
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The first step in generating feasible search directions is understanding the geometry surrounding
the current point. For this let ε > 0 be some tolerance parameter, x ∈ U and define the index
set I(x, ε) ⊂ {1, 2, . . . , l} by

i ∈ I(x, ε) ⇐⇒ dist
(
x, {y ∈ Rn : aTi y ≤ bi}

)
≤ ε. (5.45)

This is a generalization of the notion of active constraints, which means those inequalities that
are binding at x. Each of the constraints contained in I(x, ε) represents a facet of U that may
be crossed (or a constraint that will be violated) when taking a step of length at least ε in the
corresponding direction. Using this set we can define the convex cone

K(x, ε) =

 ∑
j∈I(x,ε)

λjaj : λj ∈ R≥0 for all j ∈ I(x, ε)

 (5.46)

which is generated by the normal vectors of all constraints in I(x, ε) and generalizes the nor-
mal cone of directions pointing outside Ω to non-boundary points. The generators of its polar
cone

K◦(x, ε) = {y ∈ Rn : yTx ≤ 0 for all x ∈ K(x, ε)} (5.47)

can now be used as search directions. An example of this is illustrated in figure 5.4, which shows
a linear constrained region and the cones as well as the search directions generated by different
choices of ε.
Theorem 5.6. (Kolda et al., 2006, p 949) Let x ∈ U and ε > 0, then x+ v is feasible for every
v ∈ K◦(x, ε) with ‖v‖2 ≤ ε.

Proof. By definition v satisfies ai · v for all i ∈ I(x, ε), thus ai · (x + v) = ai · x − |ai · v| ≤ bi

since x is feasible and thus all constraints in I(x, ε) are satisfied. All constraints not contained
in I(x, ε) are satisfied since the distance between x and the corresponding hyperplane is larger
than ε by definition of I(x, ε).

The choice of generators cannot be arbitrary and, as was the case in the unconstrained problem,
one condition is that the cosine measure of the search directions be bounded from below. To
ensure this, it is noted that there are in fact only finitely many cones K(x, ε), since there is
only a finite amount of index sets I(x, ε). If we use the same set of generators for a cone
every time it comes up, that condition is trivially satisfied. Depending on the nature of the
linear constraints the actual construction of search directions can be complicated, as mentioned
a detailed description for this case is given in Lewis et al. (2007).
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Figure 5.4: Figures (a)-(c) show the cones generated from the (ε-)active constraints ai ≤ bi and aj ≤ bj .
Figures (d)-(f) show the same situation for a smaller tolerance ε′ with only one active
constraint.

Parallelity

All function evaluations during one iteration, i.e. the trial points in all search directions, can
obviously be performed in parallel. This is considered the synchronous parallel pattern search
approach. During simulation based optimization however (or other problems where the duration
of one function evaluation is hard to predict) it is desirable to continue freed up computing
capacity when some function evaluations terminate earlier than others.

The asynchronous parallel pattern search does this by keeping score of each search direction
independently. If an evaluation finishes early, a new trial point in the same direction with reduced
step length is generated and queued for evaluation in its stead. The details of the convergence
theory and the implementation can be found in Griffin et al. (2008). Special care has to be taken
in the linear constrained case, since a reduced step size may open up more search directions than
were previously available given the surrounding geometry of the feasible set.
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5.3 Hyperbolic Cross Point Optimization

The hyperbolic cross point (HCP) method was first presented by Novak and Ritter (1996), their
aim was to develop an adaptive global optimization method based on the non-adaptive sparse
grid optimization method. As mentioned above, the non-adaptive method has good worst case
estimates that, more importantly, depend on the search space dimension only in a weak way.
Using adaptive ideas the HCP method tries to supplement these estimates with good average
case runtime.

In this section the basic algorithm as described by Novak and Ritter (1996) as well as some mod-
ifications by Hu and Hu (2007) are explained. Then a few possible ways to extend this method
to functions with linear constraints and details of the implementation are discussed.

HCP Algorithm

The basic notion is to evaluate the function at sparse grid points of increasing level as a global
search approach. While doing this, the algorithm deviates in the order of evaluation and locally
increases resolution to introduce an adjustable degree of local search.

For the purpose of this discussion, assume that the objective function is given on the do-
main

U =
n∏
i=1

[−0.5, 0.5]. (5.48)

Consider a dyadic point x ∈ U , viz. x is of the form

xi = ±
ki∑
l=1

al,i2
−l for i ∈ {1, . . . , n} (5.49)

where ai,j ∈ {0, 1} and it is assumed that ki = 1. The latter condition assures that this
representation of xi is unique. The number ki is called the level of the coordinate xi and the
level of the point x is then defined by

level(x) =
n∑
i=1

ki. (5.50)

A second dyadic point y ∈ U is called a neighbor of degree m > 0 of x, if there is j ∈ {1, . . . , n}
such that xi = yi for i 6= j and

yj = xj ± 2− level(xj)−m. (5.51)
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5.3 Hyperbolic Cross Point Optimization

By definition a dyadic point in Ω has at most 2n neighbors of any given degree. Any point also
has at least n neighbors, since 2− level(xj)−m < 2− level(xj) implies

±
level(xj)∑
l=1

aj,l2
−l ∓ 2− level(xj)−m ∈ [−0.5, 0.5] (5.52)

which simply means that between any point x and the point 0 there is a dyadic point with
distance to x as in equation (5.51).

Using these preliminaries, the plain HCP algorithm works as follows: The first evaluation of the
objective function is always at the point 0 ∈ Rn, which is the center of the search domain. Each
further iteration evaluates the function on all neighbors of a certain degree of some previous
evaluation point in such a way, that the algorithm maintains a balance between global and local
search. Consider the algorithm in a advanced state: Let m denote the amount of completed
function evaluations and X = {x1, . . . , xm} the points of evaluation. Let degree(xi) denote the
amount of times that a point was used to generate neighbor points in previous evaluations and
let the rank of a point be defined by

rank(xi) = #{xj ∈ X : f(xj) < f(xi)}, (5.53)

i.e. the degree of a point gets bigger the more the algorithm has searched in it’s vicinity already,
while the rank of a point gets smaller the smaller its function value is in comparison to the other
points.

All points are now ranked according to a quality function g : X 7→ R,

g(xi) = α ln (level(xi) + degree(xi)) + (1− α) ln (rank(xi)) (5.54)

for some α ∈ [0, 1], where a lower value of g corresponds to a better point to base the next
iteration on. Finding the point xi with the lowest value of g now strikes a balance between
finding a point with low function value (or rank) on the one hand and a region with low coverage
(or degree and level) on the other hand. This balance can be adjusted on a continuous scale via
the parameter α, where α = 0 corresponds to a purely local search, while α = 1 is a purely global
sparse grid search. The influence of the parameter α on the distribution of point evaluations for
one of the test-cases considered in chapter 6 is illustrated in figure 5.5.

The form (5.54) of the quality function is due to Hu and Hu (2007). The original form,

g(xi) = (level(xi) + degree(xi))α rank(xi)1−α, (5.55)
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Figure 5.5: Influence of the parameter α on the box constrained HCP method without the subsequent
local stage, illustrated using the function BR from section 6.2.

defines the same order on X, but each evaluation of a power with floating point exponent
ab = eb ln a requires nested power series for the exponential and the logarithm. Using (5.54) only
one series is computed. According to the authors, this saves a significant amount of computing
time when evaluating at a large number of points. For completeness sake this was incorporated
into the implementation for this thesis, even though the effect will be negligible for the actual
shape optimization problems.

Once a point xi is found, the objective function is evaluated at all its neighbors of degree
degree(xi) and the algorithm continues with the next iteration.

To ensure good results, the algorithm has two extra parameters that can be used to enforce more
globality. First: For some k0 > 0 called fineness only points with level(xj) ≤ k0 are considered.
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5.3 Hyperbolic Cross Point Optimization

This places an upper bound on the maximum amount of evaluations and more importantly a
lower bound on the local resolution of the the algorithm. Further, if the objective value at
some point is smaller than the objective at all its neighbors of maximal fineness, that region is
considered exhausted and not only are no new neighbors generated from that point, but also no
new points in an ε box around that point are accepted. That means the base point x̃ of any new
iteration must satisfy

‖x̃− y‖∞ >
ε

2
(5.56)

for each exhausted point y.

Algorithm 4 Hyperbolic cross method
Input: Function f : [−0.5, 0.5]n → R to be minimized, number of evaluations N , parameters

α ∈ [0, 1], fineness k0 > 0, and ε > 0.
Output: Estimate (x∗, f∗) of global minimum and minimal function value.
1 Let X = {0}, k = 1
2 while k < N do
3 Find x = argminx∈X g(x) s.t. ‖x− y‖∞ > ε/2 for all exhausted points y
4 Let x1, . . . , xm the neighbors of degree degree(x) of x
5 Let X = X ∪ {x1, . . . , xm}
6 Set k = k +m.
7 end while
8 x∗ ← argminx∈X f(x)
9 f∗ ← f(x∗)

Applying the HCP method to linear constrained functions

The original formulation of the HCP method admits only functions defined on rectangular sets,
but the functions that arise from the parameterized shape optimization problems considered in
this thesis are defined on sets given by linear constraints.

For the purposes of this discussion consider A ∈ Rl×n, b ∈ Rl and the objective function

f : U → R (5.57)

defined on the convex polytope

U := {x ∈ Rn : Ax ≤ b}. (5.58)

Pintér (1996) (see also Neumaier (2004), p. 24) describes a method which extends linear con-
strained functions from their original domain to the whole of Rn through a combination of a
penalty term and a projection. Assume that we know a feasible point x0 ∈ U , for x ∈ Rn and
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let
x̄ = λx+ (1− λ)x0 (5.59)

with λ ∈ [0, 1] maximal such that x̄ ∈ U . Such a λ always exists, since λ = 0 gives x̄ = x0 ∈ U .
An extension of f can then be defined by

fEX,1 := f(x̄) + ‖x̄− x‖. (5.60)

This extension can easily be computed, since every equation in Ax ≤ b adds one upper bound
on λ that is independent of the others: Either (Ax)i ≤ b, that means x satisfies the constraints
in this coordinate and λ can be taken as 1 as far as this constraint is concerned. Or (Ax)i > b

and thus (Ax0)i ≤ (Ax)i, which leads to

λ(Ax)i + (1− λ)(Ax0)i ≤ b ⇐⇒ λ ≤ b− (Ax0)i
(Ax)i − (Ax0)i

. (5.61)

Using this x̄ can be computed in n steps, adding only a small amount of overhead to the actual
function evaluation. According to Neumaier (2004) this extension is (Lipschitz-) continuous if
the original function f was (Lipschitz-) continuous.

This idea can be taken a step further by considering the Euclidean projection P : Rn → U which
is defined by

P (x) = argmin
y∈U

‖x− y‖. (5.62)

Using this one can define a second extension by

fEX,2 := f(P (x)) + ‖P (x)− x‖. (5.63)

Since the Euclidean projection is known to be Lipschitz-continuous, the same continuity results
as for the extension above hold here too. Rather than the simple procedure for computing (5.60)
though, this requires the computation of the complete projection. Rewriting (5.62) as

P (x) = argmax
y∈U

‖x− y‖ (5.64)

= argmax
y∈U

xTx− 2xT y + yT y (5.65)

= argmax
y∈Rn

yT y − 2xT y s.t. Ay ≤ b (5.66)

this can be seen to be equivalent to solving a quadratic program with linear constraints. In
face of the simulation based function evaluations in this thesis the extra overhead is acceptable,
though significant in the case of simple objective functions.
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5.3 Hyperbolic Cross Point Optimization

To illustrate the nature of the extension consider the function

f(x) =
√

9x2
1 + (3x2 − 5)2 − 5 exp

( −1

(3x1 + 2)2 + (3x2 − 1)2 + 1

)
(5.67)

with constraints
3x1 ≤ 4

−3x2 ≤ 2

3x2 ≤ 5

−3x1 − 3x2 ≤ 2

−3x1 + 3x2 ≤ 5.

(5.68)

This function is taken from Griffin et al. (2008) and also used as a computational model problem
in section 6.2. Figure 5.7 shows both extensions discussed above with the original domain U

outlined in black. The extension proposed by Pintér is anchored on the point x0 = 0 and it can
clearly be seen that the slope of the extension outside of U is skewed towards that point, while
the extension using the Euclidean projection is oriented on the corresponding nearest facet of
the polytope.

Figure 5.6 shows the distribution of point evaluations of the HCP method applied to f extended
by formula 5.63 as well as the influence of α in this case. For higher α a certain amount of
clustering is visible on the slanted sides of the feasible region, stemming from the the evaluation
points are projected from a rectangle. This will be less distinct in the shape optimization
applications, since the amount of evaluation points is smaller while the dimension (and thus the
surface of the polytope) is higher. This can be seen in figure 6.5 of chapter 6, that shows a
similar illustration for a three dimensional problem.

Terminal local search step

The reference implementation supports a concluding local search at the end of the HCP method,
this is done by setting α = 0.0 and removing the restrictions on fineness and neighborhood for
the remaining point evaluations. What results is in effect a compass search, as it was discussed
in the previous section, with the modification that the step length is kept independently for each
axis and halved even during successful iterations. In practice this is not satisfactory as a purely
local search method, since the step size decreases when a new smaller point is found, instead of
being decreased when no smaller point is found (cf. the discussion of the convergence properties
of the APPS method in section 5.2). For this reason the local search step is replaced by the
APPS method, which is discussed further in section 5.2. Of special note is the fact that both
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Figure 5.6: Influence of the parameter α on the linear constrained HCP method without the subsequent
local stage, illustrated using the function (5.67) extended by (5.63). The original feasible
region is shaded in grey.

extensions discussed in the previous section preserve the requirements for convergence posed by
the APPS.

Implementation

Although, as mentioned, Novak and Ritter (1996) provide their own implementation of the al-
gorithm, it is neither parallel nor easily extensible. For this reason a new implementation was
written as an extension to the Hybrid Optimization Parallel Search Package (HOPSPACK), see
Plantenga (2009). HOPSPACK is the C++ software framework which the reference implemen-
tation of the APPS introduced in section 5.2 is based on.
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5.3 Hyperbolic Cross Point Optimization

HCP Citizen Mediator Executor

f

Figure 5.8: Computational model of the HOPSPACK framework. The citizen class implementing the
HCP algorithm requests function evaluations from the mediator, which in turn hands them
to the executor. Only the executor does any function calls and separates the algorithm from
execution details.

It was developed with, possibly simulation based, robust black box optimization in mind and han-
dles function evaluations completely by system calls, while having the capacity to work through
failed calls. Its computational model (cf. figure 5.8) is such that each optimization algorithm is
represented by a Citizen class that exchanges point evaluation requests and evaluation results
with a Mediator class. The Mediator in turn hand all point requests to a Executor class, which
has serial and parallel (MPI, MT) implementations and performs the system calls to the binary
implementing the actual function f . This way the programming details involved with (parallel)
evaluation of the error prone simulations is abstracted away from the actual algorithm.

The result is a parallel (as all evaluations in a single iteration may be performed in parallel) and
easily configurable implementation. It handles failed evaluations by disregarding the point for
future evaluations.

By default, if linear constraints are given the extension (5.63) is used and the Euclidean projection
computed with an active set method. This method has certain requirements on the constraint
matrix, if at any time the projection can not be computed the extension by Pintér is used for
the immediate point and all further iterations for consistency.

The algorithm may be supplied with a bound on the global evaluations. If this is done, an APPS
Citizen is spawned after the global evaluations are used up and run until local convergence or
the overall amount of allowed evaluations (configured in the Mediator) is used up. This is of
particular usefulness for problems with linear constraints, since this method adjusts the local
boundary.
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Figure 5.7: The black outline shows the region defined by the constraints (5.68) with the function (5.67)
depicted inside. Outside the plot shows the extension by full projection (5.63) in the upper
image and by the Pinter method (5.60) in the bottom image.

56



6 Numerical Experiments

6.1 Navier-Stokes Solver

To validate the Naiver-Stokes simulation, it was compared against a known analytical solution to
the two-dimensional Navier-Stokes equations. This solution is the so called Taylor-Green vortex
described in Chorin (1968).

It is given on the domain Ω = [−1, 1]2, the kinematic viscosity is ν = 0.01 and underlies periodic
boundary conditions

v(0, y) = v(1, y)

v(x, 0) = v(x, 1)
(6.1)

for x, y ∈ [0, 1]. Velocity and pressure for t ≥ 0 are given by the functions

v(x, y, t) =

(
cos(πx) sin(πy)e−2νπ2t

cos(πy) sin(πx)e−2νπ2t

)
p(x, y, t) = −1

4
(cos(2πx) + cos(2πy))e−4νπ2t

(6.2)

which also define the initial values for the simulation at t = 0. The time interval under consid-
eration was taken to be [0, 5], though the Taylor-Green vortex is defined for all t ≥ 0. Figure 6.1
shows an illustration of the energy distribution and streamlines at time t = 0. One can a nearly
rectangular vortex centered on (0, 0) that is periodically copied in all directions. From the exact
solution it can be seen that for times t ≥ 0 the shape of the vortex stays but the velocities are
dampened by a factor e−2νπ2t with exponential decay in t.

The finite element approximation for different mesh parameters h was compared to the exact
solution given by the formula above using approximations of the relative errors

‖v − vh‖2L2([0,T ],L2(Ω))

‖v‖2
L2([0,T ],L2(Ω))

=

´ T
0

´
Ω ‖v − vh‖2 dxdt´ T

0

´
Ω ‖v‖2 dxdt

(6.3)
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Figure 6.1: Illustration of the Taylor-Green vortex at time t = 0. The left image shows the magnitude
of the velocity vectors, the right image shows the stream lines. In the center lies a nearly
rectangular vortex that is repeated periodically in all directions. The fluid is fastest at the
long outer edges of each vortex.

and
‖v − vh‖2L2([0,T ],H1

0(Ω))

‖v‖2
L2([0,T ],H1

0(Ω))

=

´ T
0

´
Ω ‖∇v −∇vh‖2 dxdt´ T
0

´
Ω ‖∇v‖2 dxdt

(6.4)

This was done using the interpolation Ihv of v onto the finite element space Vh, i.e. the finite
element function that interpolates the values of v at the mesh nodes and the derivatives of v at
the edge midpoints. This interpolation was entered into the formula above, which allows for the
calculation of the integral over Ω using the mass- and stiffness matrix respectively (c.f. equation
(2.42)). The time integral was approximated using a general purpose numerical quadrature
routine from the QUADPACK library.

The results are shown in figure 6.2. One can see that the accumulated L2-error converges with
roughly first order, while the accumulated H1

0-error converges with N−1/2. This is particularly
important since this is also the objective function in the shape optimization examples.

6.2 Optimization Problems

The HCP implementation was tested on a variety of classical benchmark functions for global
optimization methods also used in the original paper by Novak and Ritter (1996), all of which
are defined on simple box constrained regions. It was also tested with several functions featuring
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Figure 6.2: Measurements from the Taylor-Green vortex computed using the FEniCS bases Navier-

Stokes solver. The error is drawn against the degrees of freedom of the triangulation N .
The accumulated L2 error seems to converge with order one, while the accumulated H1

0-error
converges with order one half.

linear constraints. This made it possible to validate the implementation against known results
as well as evaluate the changes made to the original method.

Box Constrained

All test functions are featured in Törn and Žilinskas (1989) and the presentation follows the
notation therein, the original sources are given below. For comparison the non-adaptive full-
grid, sparse-grid and quasi-Monte Carlo methods as described in section 5 were also applied to
each function. The following functions were used:

• The function BR from Branin and Hoo (1972):

fBR(x) =

(
x2 −

5.1

4π2
x2

1 +
5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10, (6.5)

where
(x1, x2) ∈ [−5, 10]× [0, 15]. (6.6)

Its global minimum 0.398 is attained at the points (−3.142, 12.275), (3.142, 2.275) and
(9.425, 2.425).

• The Shekel functions S5 and S10 from Dixon and Szegö (1978):

fSm(x) = −
m∑
i=1

(
‖x−A(i)‖22 + ci

)−1
. (6.7)
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The parameters A(i) and ci are given in table 6.1, for x ∈ [0, 10]4 it attains the approximate
local minimums − 1

ci
near the points A(i), in particular the global minimum is attained at

(4.0, 4.0, 4.0, 4.0).

Table 6.1: Parameters for the Shekel function.
i A(i) ci
1 (4.04.04.04.0)T 0.1

2 (1.01.01.01.0)T 0.2

2 (8.08.08.08.0)T 0.2

3 (6.06.06.06.0)T 0.4

4 (3.07.03.07.0)T 0.4

5 (2.09.02.09.0)T 0.6

6 (5.05.03.03.0)T 0.3

7 (8.01.08.01.0)T 0.7

8 (6.02.06.02.0)T 0.5

9 (7.03.67.03.6)T 0.5

• The Hartman function H6 from Dixon and Szegö (1978):

fHm(x) = −
4∑
i=1

ci exp

− m∑
j=1

αij(xj − pij)2

 (6.8)

for x ∈ [0, 1]6, with α, p ∈ R4×6 and c ∈ R4 given by

α =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

 , c =


1

1.2

3

3.2

 , (6.9)

p =


0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

 . (6.10)

The minimum −3.32 is attained at the point (0.201, 0.150, 0.477, 0.275, 0.311, 0.657)T .

Figure 6.3 shows the relative error with respect to the minimal function value for all discussed
non-adaptive methods and the global stage of the HCP implementation. For this consider xN
to be the point generated by the minimization method in question after investing N function
evaluations towards solving the global minimization problem for f , then the relative error with
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respect to f is defined by

erel,f (N) =
|fmin − f(xN )|
|fmin|

, (6.11)

where fmin is the minimum of f over the surveyed region.
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Figure 6.3: Deviation of the approximation calculated by each method from the actual minimal function
value. The values for the HCP method shown here are purely from the global step of the
implementation, without any subsequent APPS iterations.

Shown in figure 6.4 is the absolute spatial error of the different non-adaptive methods and the
global stage of the HCP implementation. Considering xN , f as above let X be the set of all
points where f attains its minimum, then the absolute error with respect to x is defined by

eabs,x(N) = min
x∈X
‖x− xN‖. (6.12)
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This means eabs,x(N) denotes the distance between the calculated approximation and nearest
minimal point of f . The reason for using the absolute error in this case is that the nearest
minimal point may change from one data point to the next, which would mean the normalizing
factor would too.
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Figure 6.4: Deviation of the approximation calculated by each method from the corresponding nearest
minimizing point. Since the approximation is determined by function value only, the error
in this sense is not necessarily monotone in N , as is observed in the plots. The values for the
HCP method shown here are purely from the global step of the implementation, without
any subsequent APPS iterations.

One can see in figure 6.3 that all the non-adaptive methods show very similar behavior with
respect to the minimal function value found, at least for the first few thousand evaluations. In
case of the functions BR and H6 a clear convergent behavior is visible which, against expectations,
is the same for all non-adaptive methods even though theory suggests that the full grid method
should struggle for the 6-dimensional Hartman function. Both Shekel functions are designed in
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such a way that the function itself is roughly constant away from the minima at the points A(i),
which is clearly reflected in the behavior seen in the plot. None of the non-adaptive methods show
any significant improvement until about N ≈ 104, where both the full-grid and QMC method
are near a local minimum for the first time. In all cases considered here the HCP method starts
to outperform the non-adaptive method at roughly the 100−1000 evaluation mark but stagnates
on that level for some time.

The error with respect to the location of the minimum depicted in figure 6.4 shows similar results
in case of the function BR. In all other cases the quality of the approximation varies wildly for
the non-adaptive methods, even in case of the Shekel function where all methods stagnated for
a long time when considering function values. The HCP method again outperforms the other
methods from an early stage, with the exception of the Harman function where it is the worst up
until 1000 evaluations. Curiously the HCP method does show a monotonically decreasing error
in these test cases and is not misled by local minima.

Function n f(x∗) x∗

BR 220 0.398 (9.422, 2.473)
S5 121 −8.806 (4.063, 4.063, 4.063, 4.063)
S10 439 −9.190 (4.063, 4.063, 4.063, 4.063)
H6 580 −3.035 (0.125, 0.125, 0.500, 0.250, 0.375, 0.625)

Table 6.2: Results from Novak and Ritter (1996).

Function n f(x∗) x∗

BR 92 0.3979 (9.422, 2.479)
S5 169 −10.15 (4.000, 4.000, 4.000, 4.000)
S10 225 −10.54 (4.000, 4.000, 4.000, 4.000)
H6 485 −3.202 (0.406, 0.885, 0.843, 0.572, 0.140, 0.041)

Table 6.3: About 12 iterations of HCP with subsequent APPS until convergence.

Tables 6.2 and 6.3 show the results given in the paper of Novak and Ritter (1996) and the results
of the HCP method with subsequent APPS iterations. Replacing the HCP local stage with the
APPS method gives improved results in all cases over the reference results with a similar or
lower amount of function evaluations, though it is not made clear in Novak and Ritter (1996)
what their termination criterion was. The number of 12 iterations was chosen as a number that
stands at the lower end of the range where the global HCP stage shows best performance in the
graphs above while allowing for more evaluations in higher dimensions. In all cases the HCP
plus APPS combination attains very nearly the minimum if not the minimal point in a number
of iterations that vastly outperforms the results in figures 6.3 and 6.4. This probably stems from
the fact that the HCP best-point is near an actual minimizers early on in all examples, as seen
in figure 6.4.
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Linear Constrained

The extension to linear constraints described in section 5.3 was tested using three linear con-
strained functions from the literature. In this case the comparison with the non-adaptive methods
was dispensed with and the full HCP implementation was applied using similar parameters as
in the shape optimization problems. The following functions were considered:

• The function fL1 from Griffin et al. (2008). It is defined by

fL1(x) =
√

9x2
1 + (3x2 − 5)2 − 5 exp

( −1

(3x1 + 2)2 + (3x2 − 1)2 + 1

)
(6.13)

with linear constraints
3x1 ≤ 4,

−3x2 ≤ 2,

3x2 ≤ 5,

−3x1 − 3x2 ≤ 2,

−3x1 + 3x2 ≤ 5.

(6.14)

The minimum of about −4.767 is attained at the point (0, 5/4).

• The function fL2 from Ji et al. (2007)

fL2(x) =− 3x1 + 5x2 + 3x3 + 50

3x1 + 4x3 + 5x3 + 50
− 3x1 + 4x2 + 50

4x1 + 3x2 + 2x3 + 50

− 4x1 + 2x2 + 4x3 + 50

5x1 + 4x2 + 3x3 + 50

(6.15)

with linear constraints
6x1 + 4x2 + 4x3 ≤ 10,

10x1 + 3x2 + 8x3 ≤ 10,

x1, x2, x3 ≥ 0.

(6.16)

They give an approximate minimum of −3.000042 at (0, 0.33329, 0).

• The function fL3, also from Ji et al. (2007), defined by

fL3(x) =− 4x1 + 3x2 + 3x3 + 50

3x1 + 3x3 + 5x3 + 50
− 3x1 + 4x3 + 50

4x1 + 5x2 + 5x3 + 50

− x1 + 2x2 + 5x3 + 50

x1 + 5x2 + 5x3 + 50
− x1 + 2x2 + 4x3 + 50

5x2 + 4x3 + 50

(6.17)
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with constraints
2x1 + x2 + 5x3 ≤ 10,

x1 + 6x2 + 3x3 ≤ 10,

5x1 + 9x2 + 2x3 ≤ 10,

9x1 + 7x2 + 3x3 ≤ 10,

x1, x2, x3 ≥ 0.

(6.18)

The approximate minimizer given in the source is (1.0715, 0, 0) with a value of -4.087412.

Function n f(x∗) erel,f x∗ eabs,x
L1 96 −4.767 1.22 · 10−5 (1.27 · 10−6, 1.667) 2.03 · 10−5

L2 122 −3.003 - (2.397 · 10−03, 3.325, 7.772 · 10−16) -
L3 122 −4.09 - (1.1, 0, 0) -

Table 6.4: Results for the linear constrained test functions. Functions L2 and L3 have no anlytical
solutions available but the values found agree with those found in Ji et al. (2007).

Solutions for 12 iterations of the HCP method with subsequent APPS iterations are displayed
in table 6.4. For the first test function a small relative error of the order 10−5 is achieved. The
other two functions have no analytical solutions available but the numbers found agree with the
ones given in the source. Figure 6.5 shows the distribution of evaluation points for the function
L3 and different values of α, the feasible polytope is outlined in black.
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Figure 6.5: Evaluation points of the HCP method for the linearly constraind function fL3 after extension
by a full Euclidean projection for different values of α. The black points are the vertices
of the polytope generated by the linear constraints, the edges are drawn with dashed black
lines.
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6.3 Shape Optimization Model Problems

In this section the complete black-box solution approach is applied to several application inspired
shape optimization problems involving fluid flows. Each problem is of the following general
form:

minimize F (c) =

 
[0,T ]

ˆ
Ω\ω(c)

|∇uh|2 dxdt (6.19)

s.t. uh is the finite element approximation to the Navier-Stokes constraint

ut + (u · ∇)u = ν∆u−∇p in [0, T ]× Ω\ω(c)

div u = 0 in [0, T ]× Ω\ω(c),

u = uin on Γin,

1

Re
∂νu− pν = 0 on Γout,

u = 0 on Γ0,

u = 0 on ∂ω(c)

(6.20)

with additional constraints on the parameterization described for each problem separately. Here
c 7→ ω(c) is a parameterization of the geometry as described in section 4.

6.3.1 Flow Past Obstacle

Γ0

Γout

Γ0

Γin ω Ω

Figure 6.6: Sketch of obstacle flow problem. The geometry ω that is modified during the optimization
is shown in blue, fluid flows through Ω from left to right around the obstacle.

Inspired by the flow around objects in rivers such as bridge piers, the first example is essentially
the same as the problem considered in section 2.3. It is illustrated again in figure 6.6 and consists
of a channel flow around an obstacle ω, which is the variable of the minimization. The inflow
is uTin = (1, 0) and the time interval is [0, 5]. Lacking initial values the simulation is instead run
until the flow has had time to pass through the whole domain twice before measurements are
taken. The obstacle ω is considered to be symmetric around the axis y = 4.0 and parameterized

67



6 Numerical Experiments

as a curve above the symmetry axis. The problem aims to emulate computations arising when
considering supporting columns of structures such as bridge pears, mooring places or deep sea
constructions. In such cases it is of interest to minimize the degree to which the flow is disturbed
to reduce the load on the obstacle.

100 101 102

10−0.1

10−0.05

N

Obstacle problem with n = 4

h = 0.25
h = 0.125

100 101 102

10−0.1

100

N

Obstacle problem with n = 6

h = 0.25
h = 0.125

100 101 102

10−0.1

100

N

Obstacle problem with h = 0.25

n = 4
n = 6

100 101 102

10−0.1

100

N

Obstacle problem with h = 0.125

n = 4
n = 6

Figure 6.7: Relative improvement during the course of the optimization where N is the number of
function evaluations invested. The graphs compare the results first for a fixed amount of
degrees of freedom in the parameterization, then for a fixed mesh width. All values are
normalized by the dissipation for a circular geometry on that mesh width.

Figure 6.8 shows a simple circular obstacle compared to the results of optimizations with n = 4

and n = 6 degrees of freedom in the parameterization and h = 0.125. The pictures show the
velocity magnitude and streamlines of the flow at time t = 5. It can be seen that the unoptimized
obstacle causes an unsteady flow shedding vortices in the obstacles wake while the flow around
the optimized obstacles is near stationary with very little separation. Since the result with
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n = 4 is slightly thinner the reattachment of the flow happens a bit earlier than for the obstacle
computed with n = 6.

The progress of the optimization is shown in figure 6.7. All values are normalized by the dissipa-
tion of the circular geometry at that mesh width, i.e. show the improvement upon that geometry
when compared using the same FEM parameters. For both parameterizations the optimization
progress does not vary much with the mesh width and the qualitative behavior is the same across
all four combinations. A moderate decrease during the beginning steps of the optimization, then
a steep descent followed by many small but slowly stagnating improvements during the local
APPS stage.

It is notable that while the general form of the curve is similar, the actual quantitative per-
formance is worse for the higher dimensional parameterization, which suggests that n = 4 is a
better trade off between possible shapes and ease of optimization in this case. Particularly in
the late parts of the optimization the finer parameterization shows a high number of very small
improvements, probably due to on the fact that each coefficient has smaller impact overall on
the shape, while both the HCP method and the APPS vary only one coordinate at a time. The
difference however is not as large as the plot might suggest, the obstacle for n = 4 showing about
a 25% improvement while the result for n = 6 achieves a 22% improvement.
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Circular Obstacle

0

0.5

1

‖v‖2

Optimization Result (n = 4)

0

0.5

1

‖v‖2

Optimization Result (n = 6)
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Figure 6.8: From top to bottom the figure shows a naïve circular obstacle, the optimization result for
n = 4 and h = 0.125 and the result for n = 6 and h = 0.125. The result for n = 4 causes
about 25% less energy dissipation then the circular geometry, the result for n = 6 around
22%. Both optimized geometries result in a near stationary flow with early reattachment
and vortex shedding.
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6.3.2 Nozzle Opening

Γ0

Γ0

Γ0

Γout

Γ0

Γin

ω

ω

Ω

Figure 6.9: Sketch of optimized Nozzle. Fluid flows through the domain from left to right, no-slip
conditions hold on the domain boundaries Γ0 and the surface of the obstacle ∂ω.

The second example is a nozzle formed flow outlet into a widening stream, illustrated in figure 6.9.
Fluid enters the channel through an inlet of width 2 with a velocity of uTin = (1, 0) on the left side
of the domain and leaves through the far right channel wall of width 4. The upper and lower walls
hold no-slip conditions. The geometry models the change between the narrow and wide parts of
the domain, to ensure that the loss of energy during the transition is minimized. This models
applications such as a widening of a river or artificial channel, water pipes or arteries.

The geometry is assumed to be symmetric and is parameterized in such a way that ω connects
to the inlet on the left side and the wider part of the channel on the right side, point wise
constraints ensure that the channel is not closed by ω. The evolution of the energy dissipation

100 101 102
10−0.2

10−0.19

10−0.18

N

Nozzle with n = 3

h = 0.125

Figure 6.10: Relative improvement during the course of the nozzle optimization as compared to the
non-smooth outlet.

of the then-best geometry is shown in figure 6.10. As in the last example there is a sharp decline
shortly after the beginning of the optimization followed by a series of smaller adjustments leveling
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out during the local stage of the optimization. Figure 6.11 shows snapshots of both the outlet
without smooth transition and the optimized geometry in the beginning phases of the flow. The
unoptimized geometry shows a large recirculation region with late reattachment. The contouring
shows that the speed of the recirculating vortex at the far side is just as great as the outer layers
of the main flow. The optimized geometry shows a much more even distribution of energy over
the width of the flow with a much slower and smaller recirculation region. Reattachment starts
after about 1/3 of the length it took in the unoptimized case.

Unsmoothed Opening

0

0.5

1

‖v‖2

Optimization Result (n = 4)

0

0.5

1

‖v‖2

Figure 6.11: Top: Illustration of a flow outlet without any kind of transition, bottom: Flow through the
outlet that resulted from the an optimization with n = 4 and h = 0.125. The optimized
out lowers the energy dissipation by about 37% compared to simple one, reattachment
happens much earlier with a smaller recirculation zone.

6.3.3 Branching Pipe Geometries

Last, two different kinds of pipe branchings were considered, inspired by actual pipelines that have
to redirect their carried substance with minimal loss in flow rate to maximize efficiency.
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Γ0

Γ0

Γ0

Γ0

Γ0

Γout

Γin

Γout

Γ0

Ω

ω

Figure 6.12: Sketch of a Tee-pipe geometry. Flow enters from the top and hits a perturbed wall splitting
the stream in two directions.

Tee-pipe

The first is a Tee-pipe connection that splits a single stream of fluid into two opposing directions.
A sketch is given in figure 6.12. The fluid enters the pipe from the top, hits the opposing wall
that holds a parameterized perturbation and is split into two opposing streams. Figure 6.13
(bottom) shows an illustration of the flow through an unperturbed pipe while 6.13 (top) shows
the same flow through a dented pipe. The optimization procedure found no improvement and
returned the unperturbed tube which was found in a very early evaluation, for this reason we
dispensed with a plot.

Y-connection

The second such example was a branching of one stream into two new streams of the same
direction, illustrated in figure 6.14. Again, fluid enters the domain from the top and is split into
two separate streams at the obstacle geometry, this time into streams that keep the same direction
of flow. The geometry ω is parameterized in such a way that it connects to the supporting wall
at the left and right corner the same way it is illustrated in the diagram. The optimization
was done for two different resolutions of the Navier-Stokes simulation and found an improved
geometry in both cases, the achieved improvements where about 6.5% for the lower resolution
simulation and 7.5% for the higher one.

The development of the optimization is plotted in figure 6.15 and shows some differences to the
other results. Most of the improvement is found very early in the optimization with only small
improvements during the following evaluations. The higher accuracy simulation shows a greater
degree of improvement during the whole simulation.
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Geometry with pertubation
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Figure 6.13: The top shows a perturbed T-pipe geometry, the bottom a normal one. The optimization
did not find any improvement over the normal Tee-pipe shown in the bottom.

Figure 6.16 shows the flow through the unoptimized geometry and the optimization results of
both resolutions. In this example the results show distinct variations: While both geometries
feature curved elongations of the two channel boundaries left and right, the lower resolution
features a dent in the center of the perturbation that creates a dead flow zone. In both cases
though, it can be observed that stream entering the new pipes is less curved with respect to the
channel boundaries. The vortex generated at the inside walls is smaller and the streams reattach
a bit earlier.

That the dent in the perturbation does not exist in the result of the higher resolution simula-
tion, which also gives a higher improvement, suggests that it is an artifact of the optimization.
Inaccuracies in the objective function may have lead the optimization method to a false mini-
mum.

74



6.3 Shape Optimization Model Problems

Γout Γout

Γ0

Γin

Γ0

Ω

ω

Figure 6.14: Sketch of a branching pipe. Fluid enters from above and is split into two flows of the same
size. The geometry is modified where the previous stream hits the space between the two
new pipes.

100 101 102

100

N

Branching geometry, n = 3

h = 0.125
h = 0.0625

Figure 6.15: Relative improvement during the course of the branch optimization as compared to the
unmodified connection.
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7 Summary

In this thesis a black-box approach to shape optimization problems in incompressible and tran-
sient flows was investigated. This approach was chosen for its flexibility and extensibility in a
practical context and, after a discussion of its merits in comparison to other common approaches,
its components where discussed in some detail.

The Navier-Stokes constraints were solved using a FEniCS based Taylor-Hood finite element
discretization combined with an automatic meshing software based on the distmesh algorithm.
Following the spirit of the approach this was treated as an opaque implementation. A parame-
terization of the feasible geometries using basis splines made the problem accessible to classical
optimization techniques by reducing the search space to a finite number of dimensions and ab-
sorbing the fluid constraint into the objective function.

The resulting high-dimensional optimization problem was then treated using a parallel imple-
mentation of the hyperbolic cross point method. To accommodate the linear constraints re-
sulting from the parameterization of the geometry constraints, this method was extended with a
projection-penalty approach that allows the treatment of those constraints while maintaining fea-
sibility of all evaluation points. As a further modification this implementation was supplemented
with the option of a local generating set search to refine the result of the global search.

The finite element solution and the HCP implementation were validated separately using bench-
mark problems. The HCP implementation was also compared against the results given in the
original publication and it was found that the addition of the local search made it possible to
exceed the original performance in several cases.

Last, the complete shape optimization approach was tested using several numerical experiments
inspired by real world applications. This included the geometry of an obstacle surrounded by
flow, a nozzle-like flow widening and two kinds of branchings. In all cases but the Tee-pipe
geometry the optimization procedure yielded geometries that significantly improved upon the
energy dissipation of the simple reference geometry. The most dramatic change is seen in the first
example: While the non-optimized obstacle creates an oscillating flow with detaching vortices,
the optimized flow is near stationary with minimal separation. The nozzle and Y-connection
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7 Summary

geometries feature a significant reduction in the size of the generated vortices and earlier stream
reattachment.

Future perspectives

The wide scope of shape optimization as a field leaves much room for further work, the following
is a short list of possibilities.

• The black-box approach should make it possible to introduce further PDE based con-
straints to test more involved examples. For example, the obstacle flow problem could be
supplemented with an elasticity model that ensures a minimum of static stability during
the optimization.

• Most actual applications cannot easily be reduced to a single quantity that is to be maxi-
mized or minimized. A good wing has not only a high lift but must find a balance between
lift, drag and stability at the same time. This is known as multi-objective optimization
and could possibly be approached by some modification to the HCP method.

• Combining the two points above, one could optimize criteria arising from different PDE
constraints. For example modifying the obstacle problem to find a geometry that minimizes
the flow disturbance while maximizing load bearing capacity.

• It would be interesting to optimize flows with multiple distinct controlled geometries, for
example the upper corners in the Y-connection. This would drastically increase the problem
size but may yield more improvement.

These are just a few suggestions for possible further work, the applied nature of this subject
allows for many exciting ideas.
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