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1 Introduction

Numerical integration is a branch of numerical analysis which is concerned with the calcu-

lation of the numerical value of a definite integral. Often, this cannot be done analytically

since the anti-derivative is either not known or simply no closed form exists. It may also

be the case that only specific function values of the integrand are accessible, obtained e.g.

by a sampling method. For this reason, cubature formulas are popular numerical integra-

tion schemes, because they only use function values to approximate an integral. For a given

integration domain Ω ⊂ Rd a cubature formula has the form

AN (f) =

N∑
i=1

λif(xi) ≈
∫

Ω
f(x)dx , (1.1)

where λ1, . . . , λN ∈ R are called weights and x1, . . . , xN ∈ Ω are called integration points or

nodes. The integration error for a specific function f is then given by

e(AN ; f) =

∣∣∣∣AN (f)−
∫

Ω
f(x)dx

∣∣∣∣ (1.2)

and one is usually interested in quantifying the decay for increasing N . More precisely, for a

given function class F, one tries to describe the worst case error

E(AN ; F) = sup
f∈F

e(AN ; f) (1.3)

of a given cubature formula AN and, ideally, determine the convergence rate with respect to

N . A cubature formula AN is called optimal with respect to F if it has the same asymptotic

behavior as the optimal error bound given by

EN (F) = inf
AN

E(AN ; F) (1.4)

which describes the inherent difficulty of estimating an integral in F with cubature formulas

using N integration points and weights. The optimal error bound is usually obtained by first

finding a lower bound on EN (F) using “fooling functions”, i.e. functions which belong to

F but have small values near integration points (see for instance [5, Section 8]). Then, a

cubature formula is constructed which has the same convergence rate as this lower bound.

This cubature formula is then of course optimal with respect to F. While the univariate

case is understood really well, finding optimal cubature formulas for high dimensions is an

ongoing research topic to this day.

Of particular interest in this thesis are function spaces of dominating mixed smoothness

such as the Sobolev spaces of dominating mixed smoothness Hr
mix, or the more general Besov

spaces of dominating mixed smoothness Srp,θB (the definitions can be found in Section 6).
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Lower bounds for these classes are known for 1 ≤ p, θ ≤ ∞, r > 1/p (r > 1/2 in the Hr
mix

case) and given by

EN (Hr
mix) & N−r log

d−1
2 (N) (1.5)

EN (Srp,θB) & N−r log(d−1)(1−1/θ)(N) (1.6)

and can be found e.g in [5, Theorem 8.3].

Popular methods for numerical integration are digital nets [2, 8] and Smolyak’s algorithm,

also known as the sparse grids method [19, 1]. Digital nets belong to the quasi-Monte Carlo

methods, which means that they have equal weights λi = 1/N . While it is known that the

sparse grids method SGN has convergence rates [6]

E(SGN ;Hr
mix) � N−r log(d−1)(r+1/2)(N) (1.7)

E(SGN ;Srp,θB) � N−r log(d−1)(r+1−1/θ)(N) (1.8)

which is worse than the lower bounds (1.5) and (1.6), it is still being used frequently, because

the difference is slim for low dimensions and an explicit construction of the integration points

and weights is possible. Digital nets achieve the optimal convergence rates (1.5) and (1.6) for

the range 1/p < r < 2, which was recently shown in [10]. However, the construction is more

involved and connected to number theory.

We will focus on the Frolov cubature formula introduced by K. K. Frolov in [7], which

dates back to 1976 and recently returned to academic focus due to its optimal convergence

rate for various function classes including (1.5) for Hr
mix and (1.6) for Srp,θB for the whole

range 1/p < r <∞. For a given lattice Γ ⊂ Rd, it is defined as

ΦΓ(f) = det(Γ)
∑

x∈Γ∩Ω

f(x) . (1.9)

This cubature formula has integration points {xi}Ni=1 which are an arbitrary enumeration of

Γ∩Ω, and uniform weights λi = det(Γ), where det(Γ) is the determinant of the lattice Γ and

describes the density of its lattice points. However, it is not a quasi-Monte Carlo method

because the weights do not sum up to one in general, i.e. det(Γ) 6= 1/N . The theory behind

this formula recently has been further developed in [23, 4, 3], but numerical simulations are

still rare, because there are two major obstacles to overcome if one wants to put this method

into practice. First, the lattice Γ used in the Frolov cubature formula needs to have the

admissibility property [18]

inf
γ∈Γ\{0}

∣∣∣ d∏
i=1

γi

∣∣∣ > 0 (1.10)

to guarantee optimal convergence behavior. Finding proper admissible lattices is a problem

on its own and requires deep considerations in number theory. Second, this formula is not
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explicit, in the sense that there is no general procedure available to enumerate the set of

nodes Γ∩Ω. Additionally, the difficulty of these problems rises with increasing dimension d.

The main effort of this master’s thesis was to implement the Frolov cubature formula and

discuss its numerical performance as well as its practicability. In order to do this, we will begin

with the construction of the Frolov cubature formula, and therefore the next three sections are

dedicated to the study of lattices. Starting with general facts about lattices in Section 2, we

gradually get more specific, introducing Vandermonde-type lattices in Section 3. This will be

done using basic algebra and number theory. Section 4 is about Chebyshev lattices. My search

for a decent lattice representation of these lattices led me a new result which is also a main

result of this thesis, namely that Chebyshev lattices are orthogonal. This result was already

published as a preprint on the arxiv [11] as a joint work with Dipl.-Mat. Jens Oettershagen

(Bonn) and Dr. Tino Ullrich (Bonn). Chebyshev lattices are admissible if the dimension d

is a power of 2, i.e. d = 2m,m ∈ N, and we will also call these lattices Chebyshev-Frolov

lattices. The Frolov cubature formula based on these admissible lattices achieves optimal

convergence rates for Besov spaces of dominating mixed smoothness. In Section 5 we discuss

an efficient enumeration algorithm which assembles the integration points needed for the

Frolov cubature formula. The orthogonality property of the Chebyshev lattices can be used

to significantly reduce the complexity of this algorithm, which in turn lets us put the Frolov

cubature formula to practice for the dimensions d ∈ {2, 4, 8, 16}. To our knowledge, this has

not been done prior to this work. In Section 6 we recall the definition of Sobolev and Besov

spaces of dominating mixed smoothness, state convergence results of the Frolov cubature

formula on these function classes, and give a heuristic regarding the effect of the chosen

lattice in question on the convergence rate. It turns out that the Chebyshev-Frolov lattices

behave well in this context. Section 7 contains numerical experiments done with the Frolov

cubature formula, based on Chebyshev-Frolov lattices in dimensions d ∈ {2, 4, 8, 16}. Various

test functions with different regularities are used to verify the theoretical results concerning

the Frolov cubature formula, as well as compare it with the sparse grids method. In the end,

we give a short outlook on open questions and future goals.

Notation. We denote by N the natural numbers and N0 = N ∪ {0}, Z denotes the

integers, R the real numbers, and C the complex numbers. For a real positive number b, we

denote by bbc the largest integer less or equal to b. The letter d is always reserved for the

underlying dimension in R,Z etc. We denote with (x, y) the usual Euclidean inner product

in Rd. With | · |p and ‖ · ‖p we denote the (d-dimensional) discrete `p-norm of an element

of Rd and the continuous Lp-norm of a real-valued function on Rd respectively. With F
we denote the Fourier transform given by Ff(ξ) := (2π)−d/2

∫
Rd f(x) exp(−i(x, ξ)) dx for a

function f ∈ L1(Rd) and ξ ∈ Rd. For two functions f and g which may both be univariate

or multivariate, we denote by f ∗ g(·) the convolution of f and g. For two sequences of real

numbers an and bn we will write an . bn if there exists a constant c > 0 such that an ≤ c bn
for all n. We will write an � bn if an . bn and bn . an. With GLd(R) we denote the group

of invertible d× d matrices over R, and with SLd(Z) we denote the group of invertible d× d
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matrices over Z with unit determinant. The notation A = (a1| · · · |ad), where a1, . . . , ad ∈ Rd,
stands for the d×d matrix which has ai as its i-th column. The notation D := diag(x1, ..., xd)

with x = (x1, ..., xd) ∈ Rd refers to the diagonal matrix D ∈ Rd×d with x on the diagonal.

For a matrix A ∈ Rd×d and a set X ⊂ Rd we denote by AX or A(X) the set {Ax : x ∈ X}.
The matrix A> is the transpose of A, A−1 is the inverse of A, and A−> denotes the inverse

transpose of A. By Z[x] and Q[x] we denote the ring of polynomials with integer coefficients

and with rational coefficients respectively, and with Zb[x] for b ∈ N we refer to the ring of

polynomials over the cyclic group Zb = {0, . . . , b− 1}. For an algebraic number α ∈ C and a

subring R of C, we denote by R[α] the corresponding ring extension. If K is a subfield of C
we denote by K(α) the corresponding field extension, and for two fields K ⊂ L we also use

the notation L/K.
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2 General facts about lattices

In this section we will briefly recall the precise notions of a lattice, its dual lattice, orthogonal

and admissible lattices.

Definition 2.1 (Lattice). A (full-rank) lattice Γ ⊂ Rd is a subgroup of Rd which is isomorphic

to Zd and spans the real vector space Rd. A set {a1, ..., ad} ⊂ Γ such that spanZ{a1, ..., ad} =

{∑d
i=1 kiai : k ∈ Zd} = Γ is called a generating set of Γ. The matrix A = (a1| · · · |ad) ∈

GLd(R) is called a lattice representation for Γ, i.e. we can write

Γ := {Ak : k ∈ Zd} = A(Zd) . (2.1)

A lattice has many different representations, as shown in the next theorem.

Theorem 2.2. Let A,B ∈ GLd(R) and ΓA = A(Zd),ΓB = B(Zd) be the corresponding

lattices. We have ΓA = ΓB if and only if there exists a matrix U with integer entries that

satisfies

detU = ±1, A = BU. (2.2)

Proof. Assume that ΓA = ΓB. Since A(Zd) = B(Zd) we also have Zd = B−1A(Zd) =

A−1B(Zd), and this implies that U = B−1A and U−1 have integer entries. Then, necessarily,

detU = ±1. Now assume that U = B−1A has integer entries and detU = ±1. It is clear

that we have U(Zd) = Zd and subsequently

ΓA = A(Zd) = BU(Zd) = B(Zd) = ΓB.

This means that two lattice representation matrices of a lattice Γ differ only by a unimod-

ular matrix U , giving rise to the question which lattice representation is favorable from the

numerical point of view, cf. Figure 1. In the special case of orthogonal lattices, an orthogonal

representation stands out obviously.

Definition 2.3 (Orthogonal lattice). A lattice Γ is called orthogonal if there exists a gener-

ating matrix A ∈ GLd(R) which has orthogonal column vectors.

In general, the computation of an orthogonal representation for an orthogonal lattice is

performed by a discrete variant of the Gram-Schmidt method, e.g. the Lenstra-Lenstra-

Lovász–lattice basis reduction algorithm (LLL) [13] or its modifications. However, in the case

of Chebyshev-lattices an orthogonal basis can be determined a priori without any additional

computational effort, as we will show in Section 4.

A direct consequence of Theorem 2.2 is the invariance of |detA| for any lattice represen-

tation A corresponding to Γ. This leads us to the following definition.
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Figure 1: Equivalent lattice representations within the unit cube Ω = [−1/2, 1/2]2. The

highlighted lattice elements are the columns of the corresponding lattice representation.

Definition 2.4 (Determinant). For a lattice Γ and a corresponding lattice representation A,

the determinant of Γ is defined as

det(Γ) = |detA| . (2.3)

Let us further introduce the dual lattice.

Definition 2.5 (Dual lattice). Given the lattice Γ we define the dual lattice Γ⊥ as

Γ⊥ = {x ∈ Rd : (x, y) ∈ Z for all y ∈ Γ} . (2.4)

The following lemma states properties of the dual lattice which immediately follow from

the definition.

Lemma 2.6. We consider a lattice Γ and its dual lattice Γ⊥. Then we have

• Γ⊥ is a lattice,

• (Γ⊥)⊥ = Γ,

• det(Γ⊥) = det(Γ)−1,

• If A is a lattice representation for Γ then A−> is a lattice representation for Γ⊥.
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Figure 2: Admissible lattice and hyperbolic cross.

Crucial for the performance of the Frolov cubature formula (1.9) will be the notion of

“admissibility” which is settled in the following definition.

Definition 2.7 (Admissible lattice). A lattice Γ is called admissible if

Nm(Γ) := inf
γ∈Γ\{0}

∣∣∣ d∏
i=1

γi

∣∣∣ > 0 (2.5)

holds true.

Figure 2 illustrates this property. In fact, lattice points different from 0 lie outside of a

hyperbolic cross with “radius” Nm(Γ). The following lemma is essentially [18, Lem. 3.1/2].

Lemma 2.8. If a lattice Γ ⊂ Rd is admissible then Γ⊥ ⊂ Rd is also admissible.

The proof in [18] of this result uses the theory of geometry of numbers and is not con-

structive, i.e. we do not know the value of Nm(Γ⊥). In the next section, we consider a more

precise statement for Vandermonde-type lattices and therefore omit the proof here.
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3 Construction of Vandermonde-type lattices

There is a generic way to construct an admissible lattice, for example described by Temlyakov

[21, IV.4]. We will now introduce this construction using number field theory following the

presentations in [15] and [9].

A number field is a subfield of C having finite degree as a field extension over Q. Every

such field can be expressed by Q(α) for a suitable algebraic number α ∈ C. Let

p(x) = xd + ad−1x
d−1 + . . .+ a1x+ a0 ∈ Q[x] (3.1)

be the unique monic polynomial of minimal order d satisfying p(α) = 0. Then d is the degree

of Q(α)/Q, and we also call it the degree of α. We are interested in algebraic integers, which

are algebraic numbers satisfying that the associated minimal polynomial has coefficients in Z.

All algebraic integers in C form a ring; to show this, we discuss an alternative characterization

of algebraic integers.

Lemma 3.1. An algebraic number α ∈ C is an algebraic integer if and only if α ∈ R for

some subring of R ⊂ C having a finitely generated additive group.

Proof. Suppose α is an algebraic integer of order d. Then Z[α] is a subring of C which is

generated by 1, α, . . . , αd−1. Now we assume that α ∈ R for some finitely generated subring

R ∈ C. We denote by r1, . . . , rn the generators of R, and express the numbers αri as a linear

combination of the generators. This leads to the linear system

α

r1
...

rn

 = M

r1
...

rn

 ,

where M is a n×n-matrix with entries in Z. We have that r = (r1, . . . , rn)> is an eigenvector

of M with eigenvalue α, and therefore the determinant of (αI −M) is zero. If we expand

det(αI −M) = αn + lower degree terms = 0

we can see that α is a root of some monic polynomial q(x) ∈ Z[x]. This implies that α is an

algebraic number, with associated minimal polynomial p(x) ∈ Q[x].

It remains to show that p(x) has integer coefficients. To this end, we write q(x) = p(x)s(x),

with a monic polynomial s(x) ∈ Q[x]. Additionally define k, l ∈ N as the smallest integers

such that kp(x), ls(x) ∈ Z[x]. It follows that the coefficients of kp(x) have no common divisor,

same for ls(x). If we assume that kl > 1, there exists a prime divisor m of kl, and in turn

we have

0 = klq(x) = kp(x)ls(x) ∈ Zm[x].

9



Since Zm[x] is an integral domain, either kp(x) or ls(x) vanish in Zm[x]. Therefore, either

all coefficients of kp(x) or ls(x) are divisible by m, which is a contradiction. We conclude

kl = 1, and subsequently p(x) ∈ Z[x].

Corollary 3.2. For a number field K, the set of algebraic integers in K form a ring.

Proof. Let α, β ∈ K be algebraic integers. Then

α+ β ∈ Z[α, β] ,

αβ ∈ Z[α, β] .

Since Z[α] and Z[β] are finitely generated, so is Z[α, β].

We now turn our attention to the different embeddings of a number field K of degree d into

C. For K = Q(α) for some α and p its minimal polynomial, we have that p is irreducible over

Q and therefore has d different roots α = α1, . . . , αd, which are called conjugates. Every field

homomorphism f : K −→ C necessarily satisfies p(f(α)) = 0, which implies that f(α) = β for

a conjugate β ∈ {α1, . . . , αd}, and consequently f(g(α)) = g(β) for all g ∈ Q[x]. This means

that there are exactly d different embeddings K ↪→ C. The following theorem describes the

core property of algebraic numbers in the context of admissible lattices.

Theorem 3.3. Let K be a number field of degree d and θ1, . . . , θd be its distinct embeddings

into C. For any algebraic integer β ∈ K \ {0} one has

n∏
k=1

θk(β) ∈ Z \ {0}. (3.2)

Proof. Since for every β ∈ Q(α) the field extension can be split into Q(β)/Q and Q(α)/Q(β),

the dimension formula immediately implies that the degree of β is a divisor of d. The degree

of β will be called b ∈ N, and let c ∈ N satisfy bc = d. Let ψ1, . . . , ψb be the distinct

embeddings of Q(β) into C. We know that the minimal polynomial q of β has coefficients in

Z, and therefore
b∏
i=1

ψi(β) =

b∏
i=1

βi ∈ Z \ {0} ,

where β1, . . . , βb are the roots of q. Moreover, every embedding ψi extends naturally to c

distinct embeddings ψi1, . . . , ψic from K into C. The collection {ψij}b,ci,j=1 equals {θk}dk=1 and

we finally obtain

d∏
k=1

θi(β) =
c∏
j=1

b∏
i=1

ψij(β) =

(
b∏
i=1

ψi(β)

)c
∈ Z \ {0} .
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We now present the standard construction of admissible lattices using the introduced

theory, in the form of a corollary.

Corollary 3.4. Let p(x) be a polynomial of degree d satisfying

• p has integer coefficients,

• p has leading coefficient 1,

• p is irreducible over Q,

• p has d different real roots ξ1, . . . , ξd .

The Vandermonde matrix

A =


1 ξ1 · · · ξd−1

1

1 ξ2 · · · ξd−1
2

...
...

. . .
...

1 ξd · · · ξd−1
d

 ∈ GLd(R) (3.3)

generates an admissible lattice Γ = A(Zd) with Nm(Γ) = 1 and determinant

det(Γ) =
∏
k<l

|ξk − ξl| . (3.4)

Proof. Let m ∈ Zd, and pm(x) = m1 +m2x+ . . .+mdx
d−1 be the corresponding polynomial.

Since ξ1 is an algebraic integer in Q(ξ1), so is pm(ξ1), which follows from the ring structure

of algebraic integers. Defining the field homomorphisms θ1, . . . , θd via

θi(ξ1) = ξi , i = 1, . . . , d ,

(which are the d distinct embeddings from Q(ξ1) into C) one has

d∏
i=1

(Am)i =

d∏
i=1

pm(ξi) =

d∏
i=1

θi(pm(ξ1)) ∈ Z \ {0} ,

as shown in Theorem 3.3. This implies Nm(Γ) ≥ 1; equality is attained for m = (1, 0, . . . , 0)>.

Finally, the formula for the determinant of Γ follows directly from the Vandermonde structure

of A.

It is important to note that a small determinant (3.4) will be favorable for the convergence

behavior of the Frolov cubature formula (1.9) (see Section 6). We end this section with a

property of Vandermonde-type lattices regarding the norm of the dual lattice.
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Theorem 3.5. Let A and Γ = A(Zd) be as in Corollary 3.4. Then the equation

Nm(Γ)

det(Γ)
=

Nm(Γ⊥)

det(Γ⊥)
, (3.5)

holds.

Proof. The lattice Γ⊥ is generated by A−>. Using the Hankel-decomposition for Van-

dermonde matrices [14] of A−> = DAH with a diagonal matrix D satisfying det(D) =

det(A)−2 = det(Γ)−2 and H unimodular, we obtain

Nm(Γ⊥) = Nm(DAH(Zd)) =
Nm(A(Zd))

det(Γ)2
=

Nm(Γ)

det(Γ)2
,

which gives the result since det(Γ)−1 = det(Γ⊥).

This theorem shows that for Vandermonde-type lattices, the norm form Nm(·) behaves

well under the duality operation.

Remark 3.6. One can ask if (3.5) holds true for general lattices Γ. We could not find

any results in the literature concerning this question. Sadly, the proof in [18] showing the

admissibility of the dual lattice is not constructive.
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4 The Chebyshev lattice

In this section we deal with scaled Chebyshev polynomials and the corresponding lattices

obtained from Corollary 3.4.

The usual Chebyshev polynomials (of the first kind) Td(x) are defined via the recurrence

relation

T0(x) = 1 , (4.1)

T1(x) = x , (4.2)

Td(x) = 2xTd−1(x)− Td−2(x) . (4.3)

It is easy to see that the d-th Chebyshev polynomial has order d and its coefficients are

integers. However, it cannot be used for Corollary 3.4 since the leading coefficient is not 1

for d > 1. In fact, writing

Td(x) = adx
d + ad−1x

d−1 + . . .+ a1x+ a0 (4.4)

for d > 0 it is easy to see that ai is divisible by 2i−1. Therefore, the scaled Chebyshev

polynomials

Qd(x) = 2Td(x/2) , d ∈ N , (4.5)

still have integer coefficients, and in addition the leading coefficient is 1. Concerning the

roots of Qd(x), consider the equivalent definition of the Chebyshev polynomials

Td(x) = cos(d arccos(x)) (4.6)

which is explicit. The roots of Td(x) are then given by

τk = cos

(
π

2k − 1

2d

)
, k = 1, . . . , d , (4.7)

and this implies that the roots of Qd(x) are

ξk = 2τk = 2 cos

(
π

2k − 1

2d

)
, k = 1, . . . , d . (4.8)

These roots are real-valued and pairwise different. Therefore Corollary 3.4 (ignoring the

irreducibility condition for now) can be used to obtain the Vandermonde matrix T with

Tkl =

{
1 l = 1 ,(
2 cos

(
π 2k−1

2d

))l−1
l = 2, . . . , d .

(4.9)

The corresponding lattice T (Zd) we call Chebyshev lattice. The main result of this section

reads as follows.
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Theorem 4.1. The Chebyshev lattice ΓT = T (Zd) is an orthogonal lattice.

To show this, a lattice representation T̃ = TS, S ∈ SLd(Z) will be introduced, and

subsequently will be proven to have orthogonal column vectors.

Lemma 4.2. For ω ∈ R and l ∈ N define ηl = 2 cos(lωπ). Then

ηl1 − ηl ∈ Z[η1, . . . , ηl−1] , l ∈ N.

More precisely, there exist integers m
(l)
j ∈ Z independent of ω such that for any l ∈ N

ηl1 − ηl = m0 +
l−1∑
j=1

m
(l)
j ηj .

Proof. The proof is a straightforward calculation using Euler’s formula by putting

ηl1 − ηl =
(
eωπi + e−ωπi

)l − (eωπil + e−ωπil
)

=

l∑
j=0

(
l

j

)
eωπi(l−2j) −

(
eωπil + e−ωπil

)

=

l−1∑
j=1

(
l

j

)
eωπi(l−2j)

=



l−1
2∑
j=1

(
l

j

)(
eωπi(l−2j) + e−ωπi(l−2j)

)
l odd ,

b l−1
2
c∑

j=1

(
l

j

)(
eωπi(l−2j) + e−ωπi(l−2j)

)
+

(
l
l
2

)
eωπi(l−l) l even

=



l−1
2∑
j=1

(
l

j

)
2 cos(ωπ(l − 2j)) l odd ,

b l−1
2
c∑

j=1

(
l

j

)
2 cos(ωπ(l − 2j)) +

(
l
l
2

)
l even .

The values m
(l)
j can be obtained from this representation.

This lemma leads to the desired lattice representation, since multiplying with a matrix

S ∈ SLd(Z) from the right is a composition of column operations.

14



Corollary 4.3. The matrix T̃ = TS given by

T̃kl =

{
1 l = 1 ,

2 cos
(
π(l − 1)2k−1

2d

)
l = 2, . . . , d ,

(4.10)

where S ∈ SLd(Z) is a suitable column operation matrix, generates the lattice ΓT = T (Zd).

Proof. The case d = 2 is trivial, so let d > 2. For l = 3, . . . , d we define S(l) ∈ SLd(Z) to be

a column operation matrix changing the l-th column:

S(l) =



1 −m(l)
0

. . .
...

. . . −m(l)
l−2

1
. . .

1


. (4.11)

Then the product matrix S = S(3) · · ·S(d) consecutively transforms the entries of T which

have the form ξl−1
k = 2 cos(π 2k−1

2d )l−1 according to Lemma 3.2.

We remark that this formula is applicable in general to any Vandermonde-type lattice

with generating factors ranging from −2 to 2, which in this case are the Chebyshev roots

ξ1, . . . , ξd. Furthermore, T̃ is given explicitly. This bypasses stability issues appearing in

the context of Vandermonde matrices, and solves the problem of finding a proper lattice

representation for the Chebyshev lattices. The following lemma will complete the proof of

Theorem 4.1.

Lemma 4.4. The matrix T̃ is orthogonal. Moreover, it holds that T̃>T̃ = diag(d, 2d, ..., 2d) .

Proof. For l = 2, . . . , d one has

((T̃ )>T̃ )1l =

d∑
k=1

2 cos

(
π(l − 1)

2k − 1

2d

)

=

d∑
k=1

(
eiπ(l−1) 2k−1

2d + e−iπ(l−1) 2k−1
2d

)
=

2d∑
k=1

eiπ(l−1) 2k−1
2d .

15



Furthermore, one finds

2d∑
k=1

e2πi(l−1) 2k−1
4d =

(
2d∑
k=1

e2πi(l−1) k
2d

)
e
−2πi(l−1)

4d =
1− e2πi(l−1)

1− e2πi
(l−1)
2d

e
−2πi(l−1)

4d = 0 .

The case of l = 2, . . . , d and j = 2, . . . , d is treated similarly:

((T̃ )>T̃ )jl =

d∑
k=1

2 cos

(
π(j − 1)

2k − 1

2d

)
2 cos

(
π(l − 1)

2k − 1

2d

)

=
d∑

k=1

(
eπi(j−1) 2k−1

2d + e−πi(j−1) 2k−1
2d

)(
eπi(l−1) 2k−1

2d + e−πi(l−1) 2k−1
2d

)
=

d∑
k=1

eπi(j+l−2) 2k−1
2d + eπi(j−l) 2k−1

2d + eπi(l−j) 2k−1
2d + e−πi(j+l−2) 2k−1

2d

=
2d∑
k=1

e2πi(j+l−2) 2k−1
4d +

2d∑
k=1

e2πi(j−l) 2k−1
4d =

{
2d j = l ,

0 otherwise .

We now return to the issue concerning the irreducibility of Qd(x) over Q.

Lemma 4.5. The polynomial Qd(x) is irreducible over Q if and only if d = 2m for some

m ∈ N0.

Proof. It has been shown in for instance [21, p. 242] that Qd(x) is irreducible for d = 2m.

This is done in the following way: First we see that

Q2m(x) = Q2m−1(x)2 − 2

holds for m ∈ N, using (4.6) and the formula cos(2x) = 2 cos(x)2 − 1. This implies that

the coefficients an of Q2m(x) =
∑2m

n=0 anx
n are even if n < 2m. Assuming that Q2m(x) is

reducible, we can write it as a product of two monic polynomials

Q2m(x) = p(x)q(x) =

(
s∑

u=0

pux
u

)(
t∑

v=0

qvx
v

)
which have integer coefficients (cf. the proof of Lemma 3.1). It is easy to see that |a0| =

|p0q0| = 2, thus w.l.o.g p0 is even and q0 is odd. Using the formulas

an =
∑

u+v=n
u≤s
v≤t

puqv , n ≤ d ,

one can show inductively that pu is even for all u = 0, . . . , s. This is a contradiction, since

p(x) is a monic polynomial.
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Now let d ∈ N have a divisor not equal to 2. We decompose d = d′p such that p is not

divisible by 2, and define qi = (2i− 1)p, i = 1, . . . , d′. Since qi is an odd number smaller than

2d, ki = mi+1
2 is a natural number smaller than d. The polynomial

d′∏
i=1

(x− ξki) =
d′∏
i=1

[
x− 2 cos

(
π

2ki − 1

2d

)]

=
d′∏
i=1

[
x− 2 cos

(
π
qi
2d

) ]

=

d′∏
i=1

[
x− 2 cos

(
π

(2i− 1)p

2d

)]

=

d′∏
i=1

[
x− 2 cos

(
π

(2i− 1)

2d′

)]
= Qd′(x)

is an element of Z[x] and a divisor of Qd(x).

This means that we can use Qd(x) to construct an admissible lattice if and only if d = 2m

for some m ∈ N0. In this case, we call the resulting lattice Γ Chebyshev-Frolov lattice.
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5 Enumeration of the Frolov points

In this section we deal with the problem of enumerating the set X = Γ∩Ω for a d-dimensional

lattice Γ and the integration domain Ω = [−1/2, 1/2]d. This is a necessary preprocessing

step for the implementation of the Frolov cubature formula (1.9). To make Γ accessible

to a computer, we need to specify a lattice representation matrix A ∈ GLd(R) such that

Γ = A(Zd). It is an equivalent problem to determine the set Y = Zd ∩ (A−1Ω), and the

complexity of this task will strongly depend on the choice of A.

Bounding set strategy. The main idea of the following algorithms is simple: We define

a larger set Y ⊂ Y ⊂ Zd which allows for an easy enumeration. More precisely, the set

Y = Y(d, p) ⊂ Zd should satisfy an axis-aligned recursive representation formula

Y(j, p) =
⋃

kj∈Kj−1(p)

Y(j − 1, fj−1(p, kj))× {kj} , j = 1, . . . , d (5.1)

where Y(0, f0(p, k1)) := k1, p stands for a set of parameters describing the size of Y and the

functions f1, . . . , fd−1 determine the local dependence on the components kj and p. Kj(p) ⊂ Z
is a bounded set of the form {k ∈ Z : aj(p) ≤ k ≤ bj(p)}. For simplicity, we will assume

that these sets always contain 0, which will also be the case for all subsequent examples. We

can define a recursive algorithm which iterates over the elements y ∈ Y and checks if y ∈ Y ,

outlined in Algorithm 1. The complexity of this algorithm will always be linearly dependent

on the cardinality of the corresponding bounding set, and therefore we will identify the

complexity of Algorithm 1 with the cardinality of the bounding set in use. In the following,

we present two suitable bounding sets: the bounding box and the bounding ellipsoid.

Bounding box. We consider the axis-parallel cuboid with corresponding widths r1, . . . , rd >

0

Cr = {x ∈ Rd : |xi| ≤ ri, i = 1, . . . , d} (5.2)

and ask whether A−1Ω ⊂ Cr holds. A simple calculation shows that

A−1Ω ⊂ Cr

⇔ A−1[−1/2, 1/2]d ⊂ Cr

⇔ 1

2
|A−>ei|1 ≤ ri, i = 1, . . . , d ,

where e1, . . . , ed form the standard basis of Rd. This allows us to set ri = 1
2 |A−>ei|1 and

define the bounding box with parameters p = {ri}di=1

Y = YBox(d, p) = {k ∈ Zd : |ki| ≤ ri, i = 1, . . . , d} = Cr ∩ Zd , (5.3)

which obviously satisfies (5.1) for the functions fj−1(p, kj) = p and the sets Kj−1(p) = {k ∈
Z : |k| ≤ rj} (cf. Figure 5). The number of points in YBox is given by

|YBox| =
d∏
i=1

(2bric+ 1) =

d∏
i=1

(
2

⌊
1

2
|A−>ei|1

⌋
+ 1

)
. (5.4)

18



Algorithm 1: Assemblation of the set Y = Zd ∩ (A−1Ω).

Input:

Integration domain Ω,

Lattice representation A,

Covering set Y with recursive structure (5.1),

initial parameters pinit

set Y = ∅
run assemble (Y, d, pinit, 0)

Function assemble (Y, j, p, (mi)
d
i=1)

if j ≥ 2 then

forall kj ∈ Kj−1(p) do
set mj = kj
assemble (Y , j − 1, fj−1(p, kj),m)

if j = 1 then

forall k1 ∈ K0(p) do
set m1 = k1

if Am ∈ Ω then
set Y = Y ∪ {m}

Output: Set of lattice points Y

The choice of A is crucial here; Figure 3 shows the sets ACr for different lattice representa-

tions.

Bounding ellipsoid. Now, we assume that the lattice Γ = A(Zd) is orthogonal, i.e.

A has orthogonal column vectors. We further decompose A = QD into an orthonormal

matrix Q with Q>Q = I and a diagonal matrix D = diag(λ1, . . . , λd). Using the fact that an

orthonormal matrix is a rotation, we can compute

Y = Zd ∩ (A−1Ω) = Zd ∩ (D−1Q>Ω)

⊂ Zd ∩ (D−1Q>B2
r (0)) = Zd ∩ (D−1B2

r (0))

=

{
k ∈ Zd :

d∑
i=1

(λiki)
2 ≤ r2

}
=: YEll(d, r, {λi}di=1) ,

where B2
r (0) is the Euclidean ball centered at 0 with radius r =

√
d/2, chosen such that

Ω ⊂ B2
r (0), see also Figure 4. The sets YEll = YEll(j, r, p) are axis-aligned ellipsoids and

therefore satisfy the recursion formula (5.1)(see Figure 5). Algorithm 1 is applicable by

choosing p = {λi}di=1, the functions fj−1(r, p, kj) =
(√

r2 − (λjkj)2, p
)

, and Kj−1(r, p) =
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x2

x1

A1Cr

x2

x1

A2Cr

Figure 3: The sets ACr for different lattice representations A1 and A2.

k2

k1

x2

x1

Figure 4: The ellipsoid (left) that is the pre-image under A of the bounding ball B2
r (0) of

Ω = [−1/2, 1/2]2 (right).
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x2

x1

k2

k1

Figure 5: Recursive grouping of the sets YBox (left) and YEll (right) in two dimensions.

{k ∈ Z : |k| ≤ r/λj}. The cardinality of YEll can only be estimated; we will discuss it later

in this section.

Further reduction. Algorithm 1 can be accelerated if certain conditions are satisfied.

We will heavily rely on the special geometry of Ω = [−1/2, 1/2]d, especially on the fact that

it is convex. We start with a covering set Y satisfying a recursive formula (5.1). Let j < d

be a positive integer, and (kj+1, . . . , kd)
> ∈ Zd−j be an integer vector such that

X = Y(j, p)× {(kj+1, . . . , kd)
>} ⊂ Y (5.5)

for some parameters p, i.e. Algorithm 1 iterates over X at some point. Then it may be

the case that X ∩ A−1Ω = ∅. Knowing this beforehand, one could of course accelerate the

algorithm by leaving X out. We will use this idea, capitalizing on the special geometry of

Ω = [−1/2, 1/2]d and on a property all lattices Γ coming from Corollary 3.4 (and scaled

versions) have:

v = c · (1, . . . , 1)> ∈ Γ (5.6)

for some c > 0, and we choose it to be c = min{c > 0 : v ∈ Γ}. A useful function in this

context is

h(x) = max
i=1,...,d

xi − min
i=1,...,d

xi (5.7)

because it satisfies h(x + av) = h(x) for any a ∈ R. Additionally, h(x) ≤ 1 for all x ∈ Ω. If

we impose on the lattice representation A that its first column vector is v, it is now easy to
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see that

h(A(0, k2, . . . , kd)
>) > 1 (5.8)

⇒ Y(1, p)× {(k2, . . . , kd)} ∩A−1Ω = ∅ .

This can be generalized, because h(x + y) ≥ h(x) − h(y) holds for all x, y ∈ Rd. Let A =

(v|a2| . . . |ad), then

h(A(0, . . . , 0, kj+1, . . . , kd)
>)−

j∑
i=2

bih(ai) > 1 (5.9)

⇒ X = Y(j, p)× {(kj+1, . . . , kd)} ∩A−1Ω = ∅ ,

where the parameters bi have to be determined accordingly, using the specific recursive struc-

ture Y has. For the bounding box approach one can take bi = bric, for the bounding ellipsoid

sets YEll(j, r, {λ1, . . . , λj}) it is appropriate to take bi = br/λic. Implementing this as a break

condition in Algorithm 1 leads to a significant reduction of the complexity. We model the

complexity of this reduction applied to the bounding ellipsoid approach, defining the function

Hl(YEll(j, p)× {(kj+1, . . . , kd)}) =

{
(0, . . . , 0, kj+1, . . . , kd) j ≤ l and (5.9) ,

YEll(j, p)× {(kj+1, . . . , kd)} else ,
(5.10)

and then we obtain the new l-level bounding set Yl
Ell(d, p) via

Yl
Ell(j, p) =

⋃
kj∈Kj−1(p)

Hl

(
Yl

Ell(j − 1, fj−1(p, kj))× {kj}
)
, j = 1, . . . , d . (5.11)

We set Hl(YEll(j, p)×{(kj+1, . . . , kd)}) to its base point (0, . . . , 0, kj+1, . . . , kd) to stay consis-

tent with our complexity concept. The choice of l does matter, since the estimation used to

derive (5.9) is far from strict for large j, which results in unnecessary additional computation

time if one chooses l = d. We will use l = m for d = 2m, which proved to be effective in our

simulations. We can optimize the algorithm even further, using the fact that h(x) is convex.

This is clear since the maximum function is convex and the minimum function is concave. Ω

is convex too, which implies that the set

K ′j−1(p) = {k ∈ Kj−1(p) : j > l or (5.9) is false for k = kj} (5.12)

is also of the form K ′j−1(p) = {k ∈ Z : a′j−1(p) ≤ k ≤ b′j−1(p)}. If this set contains 0,

we can program our algorithm to iterate over K ′j−1(p), starting at 0 and going in positive

and negative direction. If it does not contain 0, one can check the slopes h(x) − h(y) for

x = A(0, . . . , 0, kj+1, . . . , kd)
> and y = A(0, . . . , 0,±1, kj+1, . . . , kd)

>. With this information,

we can take the y for which h(x) − h(y) is negative (if both slopes are positive, we return)

and sharpen the estimate (5.9) by replacing bjh(aj) with bj(h(x)− h(y)). If the iteration is

still valid, we go into the direction of descent until we brush over K ′j−1(p) or we reach one
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Algorithm 2: Assemblation of the set Y = Zd ∩ (A−1Ω).

Input:

Integration domain Ω = [−1/2, 1/2]d,

Lattice representation A with first column vector v as in (5.6),

Covering set Y∗,lEll with structure (5.14),

initial parameters pinit = (rinit, {λi}di=1),

initial radius rinit =
√
d/2,

fj−1(p, kj) =
(√

r2 − (λjkj)2, p
)

,

Kj−1(p) = {k ∈ Z : |k| ≤ r/λj},
bj = br/λjc

Y ← ∅
run assemble (Y, d, pinit, 0)

Function assemble (Y, j, p, (mi)
d
i=1)

if j = 1 then
oneDimensionalAssemble(Y , m)

if 1 < j ≤ l then
reducedAssemble(Y , j, fj−1(p, kj),m)

if j > l then
trivialAssemble(Y , j, fj−1(p, kj),m)

Output: Set of lattice points Y

end of the set Kj−1(p). Finally, we note that K ′0(p) is easy to determine since (5.6) implies

that for x = (0, k2, . . . , kd), h(x) < 1 the point z = x+ sv ∈ Γ,

s = −
[

1

2c

(
max
i=1,...,d

xi + min
i=1,...,d

xi

)]
, (5.13)

(where the brackets [·] denote the rounding operation in this case) has the lowest `∞-norm

and therefore can serve as a starting point for the iteration over K ′0(p) if ‖z‖∞ < 0.5. The

reduced iteration set we denote with K∗j−1(p), and we get the further improved bounding set

Y∗,lEll via

Y∗,lEll(j, p) =
⋃

kj∈K∗j−1(p)

Hl

(
Y∗,lEll(j − 1, fj−1(p, kj))× {kj}

)
, j = 1, . . . , d . (5.14)

The precise iteration over this set is summarized in Algorithm 2.

Complexity. We demonstrate the complexities of the respective methods using scaled

versions of the Chebyshev-Frolov lattice Γ for dimensions d ∈ {2, 4, 8, 16}, together with the
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Procedure oneDimensionalAssemble
Input:

integration point container Y ,

base point (mi)
d
i=1

if h(Am) > 1 then return

m1 ← s via (5.13) /* x+ sv has the lowest `∞-norm */

while ‖Am‖∞ < 0.5 do
Y ← Y ∪ {m}
m1 ← m1 + 1 /* look for adjacent nodes in positive direction */

m1 ← s− 1 via (5.13)

while ‖Am‖∞ < 0.5 do
Y ← Y ∪ {m}
m1 ← m1 − 1 /* look for adjacent nodes in negative direction */

Output: updated Y

Procedure reducedAssemble
Input:

integration point container Y ,

level j,

parameters p,

base point (mi)
d
i=1

t← h(Am)−∑j−1
i=2 bih(ai)

y1 ← (0, . . . , 0,+1,mj+1, . . . ,md)

y2 ← (0, . . . , 0,−1,mj+1, . . . ,md)

u← min{h(Ay1), h(Ay2)}
if u = h(Ay1) then

q ← 1

else
q ← −1 /* slope and descent direction */

if t− (h(Am)− u)bj > 1 ∧ (h(Am)− u) > 0 then return /* modified (5.9) */

if t > 1 then

if h(Am)− u < 0 then return /* positive slope */

told ← t

while ¬(told < 1 ∧ t > 1) ∧mj ≤ bj do /* brush over the valid set */

mj ← mj + q

told ← t

t← h(Am)−∑j−1
i=2 bih(ai)

if t < 1 then assemble (Y ,j − 1,fj−1(p,mj), (mi)
d
i=1)

Output: updated Y
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Procedure trivialAssemble
Input:

integration point container Y ,

level j,

parameters p,

base point (mi)
d
i=1

forall kj ∈ Kj−1(p) do /* assemble as in Algorithm 1 */

mj ← kj
assemble (Y , j − 1, fj−1(p, kj),m)

Output: updated Y

orthogonal lattice representation obtained in Section 4. They are defined as

Γn = (det(Γ)n)−1/dΓ , (5.15)

where Γ = T̃ (Zd) with T̃ as is Corollary 4.3, and n is the scaling parameter (Γn now has

determinant 1/n). The corresponding lattice representation is T̃n = (det(Γ)n)−1/dT̃ . We

denote with YBox(n) and YEll(n) the complexity of the bounding box approach and the

bounding ellipsoid approach respectively, applied to the lattice Γn and the representation

T̃n. Y∗,lEll(n) denotes the l-level reduced ellipsoid complexity, using ray search. Figure 6 and

Figure 7 show the behavior of these quantities for increasing n.

The scaling parameter n and the number of integration points N = N(n) = Γn ∩ Ω are

related approximately by (see [18])

N = n+O(logd−1 n) , (5.16)

which explains the large difference of actual cubature points N and the scaling factor n for

high dimensions and small n. The bounding box approach clearly has the highest complexity.

In [11, Section 5] the complexity of the bounding ellipsoid approach was bounded from above

and below:

Theorem 5.1. Let Γn, YEll(n) and N be as above.

(i) If n > 23d/2 then the cardinality |YEll(n)| is bounded from below and above by

n
(

1− 23/2

n1/d

)d (dπ)d/2

2dΓ(d/2 + 1)
≤ |YEll(n)| ≤ n

(
1 +

23/2

n1/d

)d (dπ)d/2

2dΓ(d/2 + 1)
. (5.17)

(ii) As a consequence, we obtain the limit statements

lim
n→∞

|YEll(n)|/n = lim
n→∞

|YEll(n)|/N = vol((
√
d/2)Bd

2) ≤
(πe

2

)d/2
≈ 2.07d . (5.18)
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This shows that the complexity of the bounding ellipsoid approach is linear in n, with

a constant depending exponentially on d. The results of our simulation suggest that the

specialized Algorithm 2 performs strictly better than Algorithm 1 using the bounding ellipsoid

approach, which seems to converge to N for increasing n (cf. Figure 7). This would of course

be the optimal behavior.
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Dimension d = 2

scaling factor n integration points N YBox(n) YEll(n) Y∗,lEll(n)

64 65 165 101 83

256 257 609 409 295

1,024 1,027 2,337 1,599 1,105

4,096 4,095 9,315 6,427 4,249

16,384 16,383 36,869 25,735 16,689

65,536 65,539 1.5 · 105 1 · 105 66,149

262,144 262,145 5.9 · 105 4.1 · 105 2.6 · 105

1,048,576 1,048,579 2.4 · 106 1.6 · 106 1.1 · 106

Dimension d = 4

scaling factor n integration points N YBox(n) YEll(n) Y∗,lEll(n)

64 71 1,225 347 204

256 261 3,969 1,205 604

1,024 1,025 16,731 5,061 1,998

4,096 4,099 70,395 20,287 6,784

16,384 16,385 2.5 · 105 81,105 23,756

65,536 65,533 1.1 · 106 3.2 · 105 86,122

262,144 262,143 4.1 · 106 1.3 · 106 3.2 · 105

1,048,576 1,048,609 1.7 · 107 5.2 · 106 1.2 · 106

Dimension d = 8

scaling factor n integration points N YBox(n) YEll(n) Y∗,lEll(n)

64 79 2.3 · 105 4,459 2,359

256 271 5.5 · 105 15,395 6,883

1,024 1,067 4.1 · 106 63,299 18,799

4,096 4,113 1.6 · 107 2.7 · 105 54,411

16,384 16,413 4.1 · 107 1.1 · 106 1.6 · 105

65,536 65,645 2.1 · 108 4.2 · 106 5 · 105

262,144 262,263 9.2 · 108 1.7 · 107 1.6 · 106

1,048,576 1,048,779 3.7 · 109 6.8 · 107 5 · 106

Dimension d = 16

scaling factor n integration points N YBox(n) YEll(n) Y∗,lEll(n)

64 423 9.2 · 1010 7.5 · 105 7.5 · 105

256 967 1.5 · 1011 4.3 · 106 2.3 · 106

1,024 2,043 3 · 1011 1.8 · 107 7.4 · 106

4,096 5,835 1.7 · 1012 5.9 · 107 2.1 · 107

16,384 18,901 2.4 · 1012 2.3 · 108 6.5 · 107

65,536 69,353 3.1 · 1012 9.7 · 108 2.2 · 108

262,144 267,257 6.8 · 1012 4.1 · 109 6.9 · 108

1,048,576 1,054,837 1.4 · 1013 1.7 · 1010 2.1 · 109

Figure 6: Cardinalities of the sets of Frolov-cubature points N , the bounding box YBox(n)

and the bounding ellipsoid YEll(n), using the Chebyshev-Frolov lattice.
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6 Besov spaces of dominating mixed smoothness

In this section, we introduce the Besov spaces of dominating mixed smoothness and state the

convergence properties of the Frolov cubature formula (1.9) for these function classes.

To this end, we will use a tensorized decomposition of unity (ϕm)m∈Nd0 in the sense of [24,

Section 1].

Definition 6.1. Let (ϕk)k∈N ⊂ S(R) be a system satisfying{
suppϕ0 ⊂ {y ∈ R : |t| ≤ 2} ,
suppϕj ⊂ {t ∈ R : 2j−1 ≤ |t| ≤ 2j+1} j ∈ N ,

(6.1)

such that for every l ∈ N0 there exists a constant cl with

‖2jlDlϕj(t)‖∞ ≤ cl , j ∈ N0 , (6.2)

and ∑
j∈N0

ϕj ≡ 1 . (6.3)

The tensorized decomposition of unity (ϕm)m∈Nd0 is then given by

ϕm(ξ) =
d∏
i=1

ϕmi(ξi) , ξ ∈ Rd . (6.4)

Definition 6.2 (Besov space of dominating mixed smoothness). Let 1 ≤ p, θ ≤ ∞, r > 0,

and (ϕm)m∈Nd0 be a tensorized decomposition of unity. The Besov space of dominating mixed

smoothness Srp,θB = Srp,θB(Rd) is the set of all f ∈ L1(Rd) such that

‖f‖Srp,θB :=
( ∑
m∈Nd0

2r|m|1θ ‖F−1[ϕmFf ]‖θp
)1/θ

< ∞ (6.5)

with the usual modification for θ =∞.

With the introduced norm, Srp,θB is a Banach space, which embeds into the space of contin-

uous functions for 1/p < r. Different choices of (ϕm)m∈Nd0 lead to equivalent norms; for more

details we refer to [24, Theorem 1.23] and [23, Definition 2.5]. In the special case p = θ = 2

we put Hr
mix(Rd) := Sr2,2B which denote the Sobolev spaces of dominating mixed smoothness

r. It is well-known that for r ∈ N0, Hr
mix can equivalently be defined via

Hr
mix(Rd) = {f ∈ L2(Rd) : Dαf ∈ L2(Rd), α ∈ Nd0, |α|∞ ≤ r} , (6.6)
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which gives an idea of the properties Besov spaces exhibit. For an integration domain Ω ⊂ Rd
and 1/p < r, we further define

Srp,θB(Ω) = {f ∈ Srp,θB : supp(f) ⊂ Ω} (6.7)

to be the Besov space restricted to Ω, with homogeneous boundary conditions. For p, θ <∞
it can also be regarded as the closure of C∞c (Ω) with respect to the Besov norm ‖ · ‖Srp,θB, cf.

[17, Section 2.2.4].

The following convergence result can be found in [4, 5, 23]. Also, note the behavior of

admissible lattices regarding axis-parallel boxes shown in [18].

Theorem 6.3. Let Ω = [−1/2, 1/2]d be the integration domain, 1/p < r and B = {f ∈
Srp,θB(Ω) : ‖f‖Srp,θB ≤ 1} be the function class under consideration. Furthermore, let Γ be an

admissible lattice and Γn = (det(Γ)n)−1/d Γ be scaled versions thereof. Then the asymptotic

relations

E(ΦΓn ,B) � n−r log(d−1)(1−1/θ)(n) (6.8)

and

E(ΦΓn ,B) � N−r log(d−1)(1−1/θ)(N) (6.9)

hold, where N = |Γn ∩ Ω| = n+O(logd−1 n) is the number of integration points.

The Frolov cubature formula achieves the lower bounds (1.5) and (1.6), hence it has

the optimal convergence rate for Besov spaces of dominating mixed smoothness. A striking

advantage is the universality of this method: it does not depend on the function space.

Therefore, for a given function f , it will always realize the best convergence rate possible,

i.e. it “sees” the regularity of the function f . This property actually extends to many

other function classes, for instance a wide range of Triebel-Lizorkin spaces [23], which makes

the Frolov cubature formula (1.9) a powerful black box method (e.g. the regularity of f

may be unknown). It is also important to note that the Frolov cubature formula (1.9) can be

customized to achieve the same optimal convergence rate for periodic Besov functions defined

on the torus and Besov functions defined on the whole space Rd, cf. [5].

In the following we will be concerned with the preasymptotic behavior of the Frolov cuba-

ture formula; if the constant hidden in (6.9) is too large, it may render the integration method

useless. We start our analysis with Corollary 3.4, which leaves us with an explicit construction

of admissible lattices for arbitrary dimension d, provided we can find a suitable polynomial

p(x) ∈ Z[x]. Let B be as in Theorem 6.3, and assume the lattice Γ to be constructed as in

Corollary 3.4, with the corresponding polynomial p(x) and its roots ξ1, . . . , ξd. For a function

f ∈ B, the generalized Poisson summation formula (see for instance [23, Section 3]) yields

ΦΓ(f) = det(Γ)
∑

x∈Γ∩Ω

f(x) = det(Γ)
∑
x∈Γ

f(x) =
∑
y∈Γ⊥

Ff(y) . (6.10)
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Using the observation ∫
Ω
f(x)dx =

∫
Rd
f(x)dx = Ff(0) , (6.11)

we see that the integration error is given by

e(ΦΓ, f) =
∣∣∣ ∑
y∈Γ⊥\{0}

Ff(y)
∣∣∣ . (6.12)

The Frolov cubature formula seems to be tailored for the class B: On one hand, the integration

error e(ΦΓ, f) consists of function evaluations of the Fourier transform of f at dual lattice

points y ∈ Γ⊥ \ {0}, which satisfy the admissibility property (2.5). On the other hand, the

Besov norm ‖ · ‖Srp,θB penalizes high frequencies Ff w.r.t. the hyperbolic cross. This core

idea leads to the optimal convergence rates stated in Theorem 6.3, and also for many other

function classes with similar behavior.

It is evident that the integration error decreases the higher Nm(Γ⊥) is. We now investigate

the effect the scaling of Γ has on Nm(Γ⊥). As in Theorem 6.3, define Γn = (det(Γ)n)−1/d Γ

and consider

Nm(Γ⊥n ) = Nm((det(Γ)n)1/d Γ⊥) = det(Γ)nNm(Γ⊥) . (6.13)

Using (3.5) we arrive at

Nm(Γ⊥n ) =
n

det(Γ)
. (6.14)

Theorem 3.5 implies that it is (a priori) equivalent whether one uses ΦΓn or ΦΓ⊥n as cubature

formulas. Moreover, we observe that the construction given by Corollary 3.4 works better if

det(Γ) is small. It is given by (3.4)

det(Γ) =
∏
k<l

|ξk − ξl| ,

and we obtain another criterion for p(x) to produce a “decent” lattice, namely that the

roots ξ1, . . . , ξd of p(x) are close to each other. Finding optimal polynomials in this sense is

another difficult problem; the Chebyshev-Frolov lattice is a good choice in that regard since

the corresponding roots lie in (−2, 2). It has determinant dd/22(d−1)/2 (see Lemma 4.4), which

is exponential in d, and here we see how the curse of dimensionality enters the picture. We

will observe this effect in the next section which discusses the numerical simulations done

with the Frolov cubature formula.
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7 Numerical experiments

In the previous sections we have seen that the Chebyshev-Frolov lattice is admissible for

dimensions d = 2, 4, 8, 16, . . . and can be used for the Frolov cubature formula (1.9). Further-

more, its orthogonality can be exploited to assemble the integration points in Ω = [−1/2, 1/2]d

up to dimension 16, applying the bounding ellipsoid approach discussed in Section 5. In this

section, we will put this method to practice, using test functions belonging to different Besov

spaces. A comparison with the sparse grids method will give us the opportunity to highlight

the pros and cons of the Frolov cubature formula (1.9).

Sparse grids. We briefly discuss the sparse grids method for numerical integration used

in our numerical experiments. For the following explanation and a general approach to sparse

grids and its applications we refer to [1].

The sparse grids method can be stated recursively as

Q(d)
n f =

n∑
i=0

(
Q

(1)
i −Q

(1)
i−1

)
⊗Q(d−1)

n−i f , (7.1)

where Q
(1)
n is a one-dimensional rule, usually a compound formula of some simple rule Qi,p,n

applied to pn subintervals {[i/pn, (i + 1)/pn] : i = 0, . . . , pn − 1} of [0, 1] respectively. As a

convention one sets Q
(1)
0 f = f(1

2) and Q
(1)
−1f = 0. We choose p = 2 and set

Qi,p,nf =


1

2pn (f(i/pn) + f((i+ 1)/pn)) i ∈ {1, . . . , pn − 2} ,
1

2pn f(1/pn) i = 0 ,
1

2pn f(1− 1/pn) i = pn − 1 .

(7.2)

This essentially is the trapezoid rule model with homogeneous boundary modification. Figure

8 shows an example of our construction for d = 2. For our experiments, we shift Q
(d)
n to the

unit cube [−1/2, 1/2]d.

Test functions. We introduce three test functions, constructed via tensorization. This

allows us to easily control the regularity of a multivariate function G and normalize it to

satisfy I(G) =
∫

ΩG(x)dx = 1. This also implies that the integration error e(AN ;G) and the

relative integration error e(AN ;G)/|I(G)| coincide. Consider the function

g1 : R −→ R, g1(t) =
3√
2

√
max{0, 1− |2t|} , (7.3)

which is depicted in Figure 9. It is clear that g1 has Sobolev regularity Hr(R) with r < 1,

but it can be shown that it also belongs to Sr1,∞B(R) for all r ≤ 3/2 [10]. This behavior

is often observed when dealing with kink functions, i.e. functions which are continuous and

piecewise smooth. The multivariate function

G1(x) =

d∏
i=1

g1(xi) (7.4)
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Figure 8: Trapezoid rule sparse grid for d = 2 with p = 2, n = 5 and number of integration

points N = 321.

exhibits the same regularities as its univariate counterpart, i.e. G1 ∈ Hr
mix(Rd) with r < 1

and G1 ∈ Sr1,∞B(Rd) with r ≤ 3/2. With the convergence result (6.9) in mind, we will focus

our attention on the function space Sr1,∞B(Rd). We expect the integration error to show the

behavior

e(ΦΓn , G1) . N−3/2 logd−1(N) . (7.5)

In Figure 12 we computed the relative error of the Frolov cubature formula (1.9) and the

sparse grids method using G1 as input for the dimensions d ∈ {2, 4, 8, 16}. For all dimensions,

we see that the Frolov cubature formula achieves the predicted convergence rate. Concerning

preasymptotic, the sparse grids method has the upper hand, but in the long run the Frolov

cubature formula clearly outclasses the sparse grids method. This can be explained by the

extra logarithmic term appearing in the convergence rate of the sparse grids method (1.8),

which is depending on the smoothness r. The main rate N−r is strongly influenced by

this logarithmic term because the smoothness r = 3/2 is small for G1(x). For increasing

dimension d, both methods need an increasing amount of integration points N to achieve a

decent integration error. In dimension d = 16, the displayed sparse grids behavior is clearly

governed by preasymptotics, whereas the Frolov cubature formula only achieves an integration

error of 10−2. We can see that the curse of dimensionality significantly affects the constant

involved in the convergence rate (6.9). In Section 6 we saw that the constant is affected by

the initial determinant of the Chebyshev-Frolov lattice, which depends exponentially on d.

Another reason may be our choice of normalization. We chose our test function to satisfy

I(G1) = 1, but the Besov-norm ‖G1‖Sr1,∞B may be large because it is depending exponentially
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Figure 9: The univariate function g1(x) (left) and the tensorized function G1(x) for d = 2

(right).

on d due to our tensorization technique. On the other hand, normalizing with respect to a

specific Besov-norm (6.5) is difficult because it is not easy to evaluate such an expression.

We continue with the univariate function

g2(t) =
15
√

5

4
max

{
1

5
− t2, 0

}
, (7.6)

which belongs to Sr1,∞B(R) with r = 2 and has normalized integral. The tensorized function

G2(x) =
d∏
i=1

g2(xi) (7.7)

again has Besov regularity r = 2 and was also discussed in [10], see also Figure 10. In Figure

13 we computed the relative error of the Frolov cubature formula (1.9) and the sparse grids

method using G2 as input for the dimensions d ∈ {2, 4, 8, 16}. For dimensions d = 2, 4, 8, we

see that the Frolov cubature formula achieves the predicted convergence rate. For d = 16 this

is not the case, this time both the Frolov cubature formula and the sparse grids method show

preasymptotic behavior. For d = 2, 4, 8, after a preasymptotic phase the Frolov cubature

formula performs better than the sparse grid method, but the margin seems to be smaller

if we compare this to Figure 12 and G1(x). This may be due to the higher smoothness

parameter r = 2, resulting in a stronger main rate and a smaller influence of the logarithmic

extra term. We will try to verify this with our next test function

g3(z) = 3X[−1/2,1/2] ∗ X[−1/2,1/2] ∗ X[−1/2,1/2](3z) , (7.8)

where X[−1/2,1/2] is the characteristic function w.r.t. [−1/2, 1/2] ⊂ R. This threefold convo-
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Figure 10: The univariate function g2(x) (left) and the tensorized function G2(x) for d = 2

(right).

lution belongs to Sr1,∞B(R) with r = 3. Therefore the tensorized version

G3(x) =
d∏
i=1

g3(xi) (7.9)

is an element of Sr1,∞B(Rd) (see also Figure 11). In Figure 14 we computed the relative error

of the Frolov cubature formula (1.9) and the sparse grids method using G3 as input for the

dimensions d ∈ {2, 4, 8, 16}. As above, one can see that the Frolov cubature formula achieves

the predicted convergence rate. For d = 16 both the Frolov cubature formula and the sparse

grids method show preasymptotic behavior. For d = 2, 4, 8, after a preasymptotic phase the

Frolov cubature formula performs better than the sparse grid method, however, we see that

this preasymptotic phase is long for dimension d = 8. Overall, these convergence plots seem

to be more similar to those of G2(x), which would indicate that the logarithmic term in the

case r = 3/2 is the reason for the larger difference in convergence rates.

For all functions, we observe that the behavior in dimension d = 16 is similar and inde-

pendent of the regularity. To investigate this further, we briefly introduce another 3 functions

defined on [−1/2, 1/2]d via

G4(x) =

d∏
i=1

2

π
sin

(
π

(
xj +

1

2

))

G5(x) =
d∏
i=1

0.763 sin

(
π

(
xj +

1

2

)) 1
2

G6(x) =

d∏
i=1

0.222 exp

(
1

1− (2(xj + 1
2)− 1)2

)
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Figure 11: The univariate function g3(x) (left) and the tensorized function G3(x) for d = 2

(right).

and extended by 0 to Rd. The constants were computed up to machine precision to satisfy∫
ΩG(x)dx = 1 and appear rounded in the above definitions. G4(x) is smooth up to kinks at

the boundary of Ω and therefore behaves like G2(x), the difference lying in the placement of

the kink. G5(x) has the same structure as G1(x), but without the kink at 0. G6(x) belongs

to C∞c (Rd) and therefore is an element of Sr1,∞B(Rd) for any smoothness parameter r. In

this case we expect the convergence rate to be better than polynomial, however there are no

theoretical results backing this up so far. In Figure 15 we see the relative integration error

of the Frolov cubature formula for the introduced functions, for dimensions d ∈ {2, 4, 8, 16}.
While for low dimensions the convergence behavior is well distinguished and ordered by

smoothness, it is getting harder to differentiate it for higher dimensions. At dimension d = 16,

all functions have essentially the same convergence plot, only with a varying constant. This

indicates that in dimension d = 16, our integration point set is way too small, resulting in a

display of preasymptotic behavior for all considered functions. The constant does not seem

to depend on the regularity of the function, but rather on the distribution of “mass” of a

given function. The functions with a small constant G1 and G5 have relatively high function

values up to the boundary of Ω, and moderately high values around 0. On the other hand, the

function with the highest constant G3 has very small values around the boundary of Ω, and

it is the function which suffers the most from the pinpoint-effect induced by our tensorization

construction. This overall behavior has its reason most likely in the fact that at dimension

d = 16, for small integration point sets almost all points except 0 lie close to the boundary of

Ω, whereas the “mass” of the function is concentrated around 0 for our functions. It would

be interesting to know if one can get a good estimate on the preasymptotic behavior of the

Frolov cubature formula, relying only on the mass distribution of a function.
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Figure 12: relative integration error for the function G1(x)
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Figure 13: relative integration error for the function G2(x)
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Figure 14: relative integration error for the function G3(x)
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formula
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8 Conclusion

Summary. From the theoretical point of view, the Frolov cubature formula (1.9) is an

attractive high dimensional integration scheme, because it achieves optimal convergence rates

for a wide range of function classes, especially those of dominating mixed smoothness type.

The realization of this method however is no easy task, as we demonstrated over the course

of this thesis.

A certain degree of lattice and number theory is necessary to construct lattices with the ad-

missibility property. Corollary 3.4 provides us with a construction method of Vandermonde-

type lattices which are admissible, but it is only partially explicit, in the sense that we need

to find specific polynomials from which the admissible lattice is constructed. For dimen-

sions d = 2m,m ∈ N, scaled Chebyshev polynomials fit the criteria of Corollary 3.4, and the

resulting Chebyshev-Frolov lattice can be used for the Frolov cubature formula. Moreover,

the roots of the scaled Chebyshev polynomials fall into the interval (−2, 2), which not only

induces a small determinant of the lattice, but also allows us to easily compute a good lattice

representation matrix with small entries in a numerically stable way. The most surprising

fact though is that this matrix has orthogonal column vectors, i.e. the Chebyshev-Frolov

lattice is orthogonal.

If the lattice and a suitable representation is chosen, the next step is to assemble the

integration points for the Frolov cubature formula. This necessary preprocessing step is not

an easy task and may result in a long computation time. Using the orthogonality property

of the Chebyshev-Frolov lattice, we revised an algorithm to enumerate the integration points

in an efficient manner, called the bounding ellipsoid approach. We are now able to use the

Frolov cubature formula in dimensions 2, 4, 8 and 16.

The numerical experiments have shown that the Frolov cubature formula demonstrates

its good points in long time behavior, because it achieves optimal convergence rates for

Besov-type functions of arbitrary high smoothness, and in its universality, i.e. detecting the

correct smoothness of a given function. One obvious bad point though is its preasymptotic

behavior. High initial constants and long preasymptotic periods of the integration error

make it questionable whether the Frolov cubature formula is viable for high dimensions.

The generalizations mentioned in [5, 16] will only worsen this effect. For moderately high

dimensions d ≤ 10 the Frolov cubature formula can certainly be practicable, provided one can

find good polynomials to make use of Corollary 3.4 and efficiently assemble the integration

points.

Outlook. The most important future plan regarding the Frolov cubature formula would

be a prolonged experimental phase. The numerical experiments presented in this thesis are

by no means exhaustive, and the successful implementation allows us to investigate conver-

gence behavior on function classes which were not considered in this thesis, or even in the
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theory revolving around the Frolov cubature formula. Especially the function class of smooth

functions with compact support seems to be interesting. In a more general view, the limi-

tation to functions with compact support is rather restricting. The implementation of the

Frolov cubature formula for periodic Besov spaces and Besov spaces with arbitrary boundary

conditions mentioned in [5, 16] would greatly increase the practicability of this method. It

would also allow for a more thorough investigation of convergence behavior.

Another interesting modification of the Frolov cubature formula is given by randomization

[12, 22]. The lattice in use is dilated and shifted randomly, placing this variant closer to

the Monte-Carlo integration schemes. However, putting this method to practice is only

possible if efficient assemblation strategies for general affine lattices are available, because

every realization of the random lattice produces a different set of integration points. In this

case, we cannot rely on the orthogonality of e.g. the Chebyshev-Frolov lattice any more,

because a random dilation would nullify this property. To solve this problem, one could

either find a better bounding set, or somehow generalize the bounding ellipsoid approach.

Finally, for dimensions which are not a power of 2 one needs to find suitable polynomials

which can be used to construct admissible lattices via Corollary 3.4, preferably with roots

that lie close to each other. For dimensions d which satisfy that 2d + 1 or d + 1 is a prime

number, there are decent polynomials available, and this will hopefully make the dimensions

d ∈ {3, 5, 6, 9, 10, 11, 12, 14, 15} available for our experiments. The missing dimensions 7, 13 . . .

seem to be in need of special treatment.
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