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Abstract

In this work we use least squares regression to approximate the high-dimensional
Born-Oppenheimer potential energy surface. Therefore we will combine the
well-known many-body expansion approach with an adaptive sparse grid ap-
proach to optimally reduce the regression search set. Besides finding a good
search space for the predictor we also will explore how to choose a good
dataset to train the predictor, using active learning and the D-Optimality prin-
ciple.

By first deriving principles of how to reach the stated goals in theory we then
know what to look for in the practical numerical experiments. We will show
that a more careful choice of the training data and search space is a promising
approach to greatly reduce the cost of an approximation. We will evaluate
the methods on the W-14 data set containing diverse atomic environments of
elemental tungsten and the MD-17 molecule dynamics data set.
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Chapter 1

Introduction

In the area of material science we study the characteristics of materials. This
includes finding stationary states and understanding chemical reactions. A
primary goal is the design and discovery of new materials. As physical sys-
tems tend towards states that minimize their energies, calculating energy as
function of that state is an important step. The macroscopic behavior of these
materials are dictated by their nanoscale dynamics which are described by
quantum dynamics.

In 1926, Schrödinger laid the foundation for quantum mechanical develop- Schrödinger
Equationment with the publication of the Schrödinger equation (SE). Where Newtonian

theory deals with classical mechanics, Schrödinger’s describes changes over
time of quantum mechanical systems, including systems containing nuclei and
electrons. The Schrödinger equation is only analytically solvable for the hydro-
gen and hydrogen-like atoms. Taking just a single particle, the Schrödinger
equation is already a complex second order differential equation in three di-
mensions. One can simplify things by treating the nuclear system with clas-
sical mechanics. But even in this case, simple systems containing only three
particles can have no closed form solution.

A first simplification of the Schrödinger equation was the Born Oppenheimer Born
Oppenheimer
Approximation

approximation. In 1927, Born and Oppenheimer decoupled the behaviour of
electrons and nuclei to simplify the approach of Schrödinger. Due to the enor-
mous difference in mass and movement of electrons and nuclei, the nuclei are
regarded motionless compared to the fast electrons. For a fixed configura-
tion of slow nuclei, the Schrödinger equation is solely solved for the electrons.
Although of lower dimension, the so-called electronic Schrödinger equation
(eSE) is still in general not solvable. If one only treats the time-independent
case, both the SE and the eSE are eigenvalue problems. Each eigenvalue en-
codes the energy of a physical state uniquely described by its eigenfunction -
the corresponding wave function. As a further simplification, we are only in-
terested in the physical state with the lowest energy, the ground state. Assign-
ing each fixed set of nuclear positions to its corresponding electronic ground
state energy forms the so-called Born Oppenheimer potential energy surface (BO-
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2 CHAPTER 1. INTRODUCTION

PES). The Born Oppenheimer PES is defined on a high-dimensional domain
and a closed form method to evaluate one point at the BO-PES does not exist,
thus a wealth of approximation methods have evolved.

The technical advances of the last decades unleashed a new wave of possibil-QM/MM
Methods ities and research. As a consequence, a plurality of approximate simulation

methods evolved. Computational quantum chemistry was born. In molecular
dynamics (MD), one roughly distinguishes between two classes of interatomic
interaction models; the more accurate, but slow quantum mechanical (QM)
methods, and the less accurate but fast molecular mechanical (MM) meth-
ods. QM methods are derived from exact quantum mechanical equations. Al-
though in practice they offer only an approximation of the exact solution of
the Schrödinger equation, they often operate as benchmarks for further con-
siderations. Moreover, the errors are largely systematic and well documented.
Examples for QM methods are electronic structure methods (ESM) such as as
Density Functional Theory (DFT) and Hartree-Fock (HF). ESM methods re-
quire the calculation of integrals, which in Empirical Quantum Mechanical
Methods (EQM) are replaced by an empirical term. MM methods, however,
operate in a simplified setting. They use classical mechanics instead of quan-
tum mechanical equations to model molecular systems. Thus, atoms are sim-
ply treated as particles interconnected with springs. The idea of combining
QM computations and MM simulations to form an seamless coupling of both,
is called a hybrid approach or multiscale methods (QM/MM). In multiscale
methods, one aims to split the problem and use QM methods where neces-
sary and MM methods elsewhere. This groundbreaking idea was introduced
in 1976, and resulted in the awarding of the Nobel price in Chemistry in 2013
to M. Karplus, M.Levitt and A. Warshel for their “development of multiscale
models for complex chemical systems” [3].

Describing molecules has a much longer history than the material models, andLocality
Assumptions in fact there are a number of critical requirements that differentiate material

models from molecules. A potential describing materials needs to describe
the forming and breaking of ionic and covalent bonds. Comprehensive mod-
els also cover multiple phases of the material, e.g. solid and liquid, and even
phase transitions under changes of temperature and pressure. To model ma-
terials we often have to effectively breaking the system in smaller subsystems,
which typically will still consist of tens to hundreds of atoms. A commonly
used approach is the so-called (atomic decomposition). Here, we assume two
particles to interact if and only if its distance is smaller than a prescribed
threshold rcut > 0. This way, the energy decomposes into energy contribu-
tions of rcut-balls centered at each particle. I.e. for a system X = (X1, . . . , XM)
containing M particles, we assume the potential function to decompose in the
following way

V(X) ≈
M

∑
i=1

Vatomic(Brcut(Xi)) (1.0.1)

A common approach to further reduce the dimension are approaches based
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on additivity models. Similar to the Analysis of Variance approach (ANOVA),
these subdivide the subsystems dimension-wise. The energy is represented as
a finite sum of contributions which depend on the positions of single nuclei,
of pairs of nuclei, of triples of nuclei, and so on,

Vatomic(Brcut(Xi)) = ∑
A⊂Brcut (Xi)
|A|=1

V1(A)+ ∑
B⊂Brcut (Xi)
|B|=2

V2(B)

+ ∑
C⊂Brcut (Xi)
|C|=3

V3(C) + . . . .
(1.0.2)

This is called many-body expansion and there are many well-known methods
building up on this, see [41] and references therein. The prevalent k-body po-
tentials only consider sets of atoms up to size k. These approaches assume
locality of electronic wave functions by assuming that the interaction ener-
gies between distinct, separate bodies decreases as the number of bodies be-
ing taken into account increases. The principal hope is that a high-dimensional
system depends strongly only on few input variables. In general this assump-
tion is not true, but it suffices in most cases in which relatively weaker inter-
action energies are considered. Commonly known examples of pair potentials
are the Lennard-Jones 6-12 or the Morse potential. Though those potentials
can be quickly and easily calculated for arbitrarily systems, they are only good
approximations for the simplest closed shell systems. For more complex sit-
uations, such as strongly covalent systems like semiconductors, they appear
completely inapplicable [64]. A many-body approach for greater body orders
is rarely seen due to the rapid increase of the underlying dimension and there-
fore computational effort.

1.1 Using Machine Learning to Approximate the PES

Due to the technical evolution of the past decades, the ability to store an pro- Machine Learn-
ingcess data has increased rapidly. The name Machine Learning (ML) was coined

in 1959 by Arthur Samuel [53], who used a search tree of board positions to
teach a computer play the game of checkers. Since then, an increase of avail-
able computer memory and speed extended the application possibilities and
Machine Learning became a very active research area. Machine learning tasks
are typically classified into several broad categories ranging from strict super-
vised regimes to uncontrolled unsupervised methods. In supervised learning
approaches, the problem is learning an input-output mapping from empirical
data. Given a data set containing n values and targets
Dn = {(xi, yi) : i = 1, . . . , n}, one tries to predict the output for a new value x∗

as precisely as possible. Introducing a set of possible mappings, the problem
of regression is reformulated as an optimization problem based on the given
data set. A fitting of the function then describes the process of finding the
best parameters/coefficients in a prescribed regime. In contrast unsupervised
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learning methods are only given input data and attempt to model an underly-
ing regularity. Usual approaches include clustering of the data, or reduction of
the dimension of the problem while retaining as much information as possible.

The earliest efforts to introduce Machine Learning techniques to the approxi-MLIP
mation of the high-dimensional PES date back to 1995 with the usage of neural
networks to describe molecules and small molecule clusters [12]. Another ap-
proach to this approximation is the use of is kernel-based methods [54]. The
key to its success is the choice of a kernel function, and through it the basis
functions employed. In 2010, Bartók et al. introduced the Gaussian Approxi-
mation Potential (GAP) [5] under the assumption of the atomic decomposition
ansatz (1.0.1). They used Gaussian Process Regression (GPR) [50] to approxi-
mate the PES. Here, one constructs a Gaussian process uniquely characterized
by its covariance function, called the kernel function, onto the space of func-
tions mapping an atomistic system to the real numbers. The GAP is then cho-
sen as the expected function given a set of training data.

Nevertheless, machine learning approximations do not only depend on the al-Active
Learning lowed algebraic form, i.e. on the underlying approximating function space,

but also on the training data used to fit them. Usually, machine learning
methods improve their accuracy through increasing the number of fitting pa-
rameters, making the allowed algebraic form of the estimation more flexible.
But during the fitting process, the method is usually not able to influence the
choice of the training data; rather learns from what it gets. Unfortunately,
those passive learning algorithms tend to be interpolative, i.e. they fail to give
reasonable results in areas outside their training domain. One attempt is a
proper choice of the training domain in a way that minimizes those uncertain
areas and ensures interpolation over relevant areas. This makes the choice of
an optimal training set to a problem of transferability. Thus, if the method
would be able to detect extrapolatory areas and add those to the training set,
we would be able to improve the approximative power not only by allowing a
more flexible algebraic form, but also by allowing a more flexible choice of the
training set. Since the method is actively influencing the selection of the train-
ing set, this approach is called active learning. An active learner may pose query
strategies, which describes how to decide which data point to query next to add
to the training data. Perhaps the simplest and most commonly used query
framework is uncertainty sampling [46]. In this framework, an active learner
queries the instances which it is least certain how to label. Another, more
theoretically-motivated query selection framework is the query- by-committee
(QBC) algorithm [59]. Another decision-theoretic approach aims to measure
how much the model’s generalization error is likely to be reduced and query
the instance with minimal expected future error [51, 73]. Minimizing the ex-
pected future directly is expensive and in general not possible in a closed form.
However, the variance reduction approach still minimizes the expected future
error indirectly. The minimization of the model’s variance is well studied in
the case of linear regression models, which is in statistical literature known
as optimal experimental design (OED) [26]. Here, variance minimization is
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equivalent to the maximization of the incorporated Fisher information in the
data. There are different approaches which aim to maximize the Fisher in-
formation, the most commonly used are the A-optimal, D-optimal [17] or E-
optimal [27] approaches.

1.2 An adaptive Sparse Grid Approach for Many Body
Systems

Usually, machine learning interatomic potentials (MLIPs) are based on a par-
titioning of the interatomic interaction energy into individual contributions of
small groups of atoms. A fitting of the potential then describes the process
of finding the best parameters/ coefficients describing the potential function
based on a previously chosen set of data. In summary, each MLIP has three
major components:

(1) A way to map the physical system to a set of numbers used as the input
for the MLIP, coming in the form of a descriptor,

(2) The search set of possible candidates, and

(3) Training data helping us to choose the right candidate.

In this thesis, we aim to construct a MLIP based on a penalized least squares
regression method using a search set based on orthogonal polynomials. Based
on that, we will study two approaches to reduce the complexity while preserv-
ing the approximation accuracy. First, we will present an optimization algo-
rithm of the search set using an adaptive sparse grid approach. Afterwards,
we will perform an optimizing of the training data using the D-optimality ap-
proach of the sparse grid literature.

The starting point of our investigation will be the many- body expansion (1.0.2). Many Body
DecompositionAssuming that two particles in a system interact only if they are closer than a

prescribed threshold, the whole system decomposes in areas which are closed
under interaction. The many-body expansion describes a further decomposi-
tion of those areas in lower dimensional parts, i.e. into single atoms, pairs of
atoms and so on. We could of course let this sum continue up to the full system,
but in general we will only consider the first K sums with K � M, describing
the incorporation of all sets of atoms up to size K. As a first step we will use a
descriptor which describes each set of particles by all pairwise distances which
is invariant under translation and rotation of the three-dimensional space.

We have to constrain the search space of possible candidates to a finite dimen- Search Set
sional space. This space will be spanned by modified orthonormal polynomials.
In our considerations we include Legendre, Chebyshev and Laguerre polyno-
mials. Each of these classes is an L2-orthonormal base for a specific measure.
In order to obtain a physically reasonable search space, we will modify these
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polynomials. For example, they should be continuous under particles entering
and leaving an area which is closed under interaction. Additionally, the energy
potential should assign the same energy to nuclear systems which can be con-
verted into each other by a rotation or translation in space. Nevertheless, the
dimension-wise decomposition of the system in (1.0.2) needs to be reflected in
the search space as well. To deal with the different dimensional terms of the
system, we use tensors of the above one-dimensional basis functions. Linear re-
gression using yet another class of basis functions was introduced by Shapeev
in 2016 with his Moment Tensor Potentials (MTP) [60]. Connections exist also
to the Gaussian approximation potential (GAP) [5] which is equivalent to an
linear regression over an infinite dimensional search set. Nevertheless, our
approach is based on a more simplified setting, since we use a further decom-
position by (1.0.2).

Beside being a simplification, the many-body expansion also opens up the pos-Sparse
Tensor
Product
Construction

sibility to treat smaller subsystems in more depth than larger ones. Instead of
approximating all terms V2, . . . , VK by the same search set, we are able to vary
the accuracy. Following the idea of [34], we will present an adaptive sparse
tensor product construction to choose a search space in an optimal way. We
start with the coarsest approximation, or equivalently smallest search set pos-
sible by only approximating pairs of particles by constants. Progressively, we
will enlarge the search space in an optimal way, and retrain the penalized least
squares regression model to decide in which direction to refine next. This way,
we will be able to greatly reduce the involved degrees of freedom while ob-
taining the same error as on a full grid. Instead of using a machine learning
approach, in [34] the energy is exactly calculated by ESM methods.

As a third step, we use an active learning approach to choose the trainingActive Learning
data in an optimal way. Based on a chosen search set and a penalized least
squares regression, we are able to define a information measure which measures
the information one data point carries. This way, we are in the position to
sort the available data points by their worth and eventually formulate queries
which data point to incorporate next. In a D-optimal approach this is done by
choosing the data points in such a way, that the variance of the model is min-
imized, i.e. such that we are the most certain which approximation to choose.
In the case of linear regression, minimizing the model’s variance is equivalent
to maximizing its Fisher information. Thus, we formulate a query strategy
which step by step retrains the model and decides which data point to incor-
porate next. A similar approach is presented in [49]. Here, the D-optimality
approach is formulated in connection with moment tensor potentials (MTP).

The main contributions of this thesis are:

• Modifying orthonormal polynomials to be suitable candidates for poten-
tial functions

• Combining the many body decomposition with an Tikhonov regularized
least squares regression to find optimal potential function candidates.
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• In combination with the least squares methos, using an adaptive sparse
grid like approach to find an optimal sparser search space.

• Using an Active Learning approach to choose a suitable training set which
maximizes its incorporated Information.

This thesis is structured as follows. In chapter 2 we will introduce the concept
of a penalized least squares regression on a finite dimensional search space.
Therefore, we will first formulate the problem in a theoretical manner based on
a probability measure and then turn to the case where we are only given a finite
number of samples. Afterwards, we will introduce the concept of Tikhonov
regularization. We will explain the impact of a regularization onto the search
set, which leads to a shrinking of the search set to a bounded ball therein. Also
we will explain the one-to-one correspondence of a chosen regularization and
the choice of a prior distribution of the weights in a Bayesian setting. We con-
clude this chapter with a stability result in the general unstable unpenalized
case, and perform an error analysis.

In chapter 3 we explain the construction of a sparse tensor product in general
terms. We explain how a sparsification of a method can be achieved by intro-
ducing a benefit and cost function.

In chapter 4 we introduce the general concept of active learning. We explain
the idea behind the variance reduction approach and relate it to other ap-
proaches. We explain the D-optimality criterion and its relation to the Fisher
information. Moreover, we analyze the approach in depth for the linear re-
gression model.

In chapter 5 we introduce the Born-Oppenheimer potential energy surface in
more detail and explain its complexity. We introduce two simplifying assump-
tions on which the further considerations will be based on, the atomic decom-
position and the many-body expansion.

In chapter 6, we apply the mathematical theory of chapters 3 to 4 to the PES.
Given a set of data, we explain how to use these concepts to construct a MLIP.

In chapter 7 we present the data sets used in our numerical investigation, in-
cluding a data set of tungsten and small molecules, and discuss pecularities
we faced in the implementation phase.

The presentation of the numerical results is done in chapter 8.
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Chapter 2

Penalized Least Squares
Regression

In supervised machine learning, regression is used for estimating the relation-
Historyship among variables. The roots of regression date back to the beginning of

the 19th century. To determine the orbits of bodies around the sun using as-
tronomical observations, Legendre (1805) [45] and Gauss (1809) [30] published
the earliest form of regression, the method of least squares. The term ’regres-
sion’ was first coined by Francis Galton in 1886 [29] to describe a biological
phenomenon, namely that the heights of descendants of tall ancestors tend to
regress down towards a normal average, which is also known as regression
toward the mean. Although the term regression for Galton initially only had
this biological meaning, it became used as a general term for the study of the
relationships between variables. Initial conceptualizations of regression date
back to the 19th century, but it was really the technological revolution in the
20th century that started a wave of vast research. On the primal basis of re-
gression laid 200 years ago, many areas have emerged to date, such as support
vector machines [54] or artificial neural networks [9].

In this section we focus on least-squares regression on a finite dimensional
Topicsearch set with Tikhonov regularization. Given a finite number of samples

driven by a generally unknown probability measure, we aim to approximate
the so-called regression function describing its relationship. The problem of
finding the optimal approximation translates to a quadratic functional mini-
mization problem over a fixed search set. An application of the Chernoff in-
equalities for random matrices gives us conditions for the well-posedness of
the problem. Under these conditions, we perform an error analysis for the un-
regularized case.

The section is structured as follows. In subsection 2.1 we derive the optimiza-
Structuretion problem. First, in 2.1.1 we will generally introduce the least squares re-

gression problem in a theoretical manner with respect to an underlying prob-
ability measure. In 2.1.2 we generalize the regression problem to the practical
case, where only samples of the probability measure are given in form of a data

9
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set. These first two subsections follow the structure of [23]. In subsection 2.1.3
we will turn to the special case of least squares regression over a finite dimen-
sional search set, and introduce Tikhonov regularization in 2.1.4. In section
2.2 we analyze the one-to-one correspondence between regularization and the
choice of the prior distribution in a Bayesian setting. In section 2.3 we repre-
sent a probabilistic bound on the unique solvability of the regression problem
on a finite dimensional search space in the unregularized case. The stated
well-posedness result excerpts from [21, 22], in which the case of orthonormal
basis functions is treated and [13, 14], which is a generalization of the prior to
general basis sets. We will give an overview of related results in subsection 2.4.

For a comprehensive introduction to the field of regression we refer to [37].

2.1 Derivation of the Optimization Problem

In the area of functional regression, we are interested in approximating a
d-dimensional function

fρ : X → Y,

where X ⊂ Rd and Y is a suitable measure space. In the following, the first step
will be the definition of those measure spaces. Afterwards, fρ will be defined
based on a probability measure ρ on the product space X×Y.

2.1.1 Least Squares Regression with given Measure

Let (X, ΣLeb,X) be the measure space with a domain X ⊂ Rd and Lebesgue
Measure
Spaces

algebra ΣLeb,X. The Lebesgue algebra contains all sets in X which are measur-
able with respect to the Lebesgue measure. The second measure space is given
by an Hilbert space (Y, 〈·, ·〉Y) and the induced Borel σ-algebra ΣBorel,Y.

To introduce a certain connection between those spaces, let ρ be a probability
Regression
Function

measure on the product space X×Y along with its product σ-algebra
ΣLeb,X ⊗ ΣBorel,Y. Denote by

ρX(·) := ρ(·, Y)

the corresponding marginal measure on X. For a random variable z = (x, y)
with law ρ, we aim to approximate the corresponding d-dimensional regression
function,

fρ : (X, ΣLeb,X) −→ (Y, ΣBorel,Y)

x 7−→ Eρ(y|x).
(2.1.1)

For each x ∈ X, fρ(x) is the average of the y coordinate of {x} ×Y. From now
on we assume the regression function fρ of ρ to be bounded, i.e. it exists a
L < ∞ such that

| fρ(x)| < L (2.1.2)

for ρ almost every x ∈ X. Note that in general we do not know the underlying
probability measure ρ, nevertheless we will assume the knowledge for now
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and generalize the approach in the following subsection. The goal is to ’learn’,
i.e. to find the best approximation f of the regression function fρ.

To quantify the prediction quality of an estimation f , we need to introduce a
The
Error
Functional

notion of an estimation error. Thus we define the error functional by

E( f ) :=
∫

X×Y

‖ f (x)− y‖2
Y dρ(x, y). (2.1.3)

It measures the mean squared error in the prediction of y. One can show that fρ

is a minimizer of E which reassures us that we are picking the right functional
to minimize. Formally the following proposition states that the conditional
expectation fρ(x) is the L2-projection of the random variable Y(x, y) = y to the
subspace of random variables which are measurable w.r.t. their first variable
and consequently has to be a function only of x.

Proposition 2.1: (Proposition 1.8, [23])

For every f ∈ L2
ρX
(X; Y) it holds that

E( f ) = E( fρ) + ‖ f − fρ‖2
L2

ρX
(X;Y), (2.1.4)

and E( fρ) is a notion of the variance of the noise

E( fρ) = Varρ( fρ(x)− y|x), (2.1.5)

which is finite by (2.1.2)

This proposition shows that fρ is the unique minimizer of the the error func-
tional in L2

ρX
as for each g 6= fρ the RHS in (2.1.4) is strictly greater than E( fρ).

By definition fρ(x) is the mean of y|x. Being a random variable, y|x can fluctu-
ate around that mean and this fluctuation can be measured as the variance of
the random variable. Equation (2.1.5) states that the mean variance is exactly
given by E( fρ) and thus E( fρ) quantifies how good the values of y|x will actu-
ally be predicted on average by fρ(x).

It is important to note that minimizing the L2 norm is a choice. Generally one
Other
Error
Functionals

could also try to minimize ∫
X×Y

‖ f (x)− y‖p
Ydρ(x, y). (2.1.6)

for other p. If p = 1 this minimization would result in the conditional median
instead of the conditional mean as for p = 2. For p → 0 the optimizer would
converge to the conditional mode. This is due to ‖ f (x) − y‖p

Y converging to
unity if f (x) 6= y regardless of how big the actual error f (x)− y is. So the best
solution would be to set f (x) to the most probable value of y - the mode of y|x.
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In this thesis we will restrict ourselves the case p = 2.

In practice there are two problems with the minimization problem (2.1.3):

(A) The actual distribution of our data ρ is unknown.

(B) The space L2(X, Y; ρX) which we want to optimize over is infinite dimen-
sional.

We deal with these two problems in the following two sections. (A) is treated
in section 2.1.2 and section 2.1.3 considers (B).

2.1.2 Least Squares Regression with given Samples

As previously mentioned, in practice we may not have access to either ρ or
Empirical
Error
Functional

any information about fρ. But we are given a data set, which can be regarded
as independent samples of ρ,

Dn := {zi = (xi, yi), i = 1, . . . , n} ⊂ (X×Y)n.

Using this, we can define an approximation ρempirical =
1
n ∑n

i=1 δ(xi ,yi). Under
some mild assumptions one can show that if one would have access to an
infinite amount of data, ρempirical would converge to ρ in some sense. Replacing
ρ by the empirical measure ρempirical in (2.1.3), we obtain the empirical error
functional

EDn( f ) :=
1
n

n

∑
i=1
‖ f (xi)− yi‖2

Y. (2.1.7)

Analogously to the convergence of ρempirical to ρ, under mild assumptions and
an infinite amount of data EDn would converge to E . When taking (xi, yi) as
independent samples from ρ, (2.1.7) takes the form of a Monte Carlo approx-
imation of (2.1.3). Thus, bounds for the accuracy of this estimation will come
in terms of lower bounds on the number of samples n.

Our problem is now to solve the empirical regression problem:
Empirical
Regression
Problem

Find fDn := argmin
f∈L2

ρX
(X;Y)

EDn( f ). (2.1.8)

An important difference between minimzing (2.1.3) and (2.1.7) is that (2.1.7)
depends on point evaluations of d-dimensional functions in L2

ρX
(X; Y). How-

ever, point evaluation is not well-defined for all of these functions. To ensure
well-definedness we need some additional smoothness properties which can
for example be obtained by requiring the function to be in a Sobolev space. By
Sobolev’s embedding theorem, the Sobolev spaces Hβ for β ≥ d

2 are continu-
ously embedded in the continuous functions C0(Rd), for which point evalua-
tions are well-defined (note that β grows with the dimension of the space). In
the next section we will restrict the search set to a space which only contains
continuous functions.
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2.1.3 Least Squares Regression on a finite dimensional Search Set

To overcome the problem of well-defined point evaluations and the existence
Search
Set

of an unique solution of the empirical regression problem (2.1.8), we restricted
ourselves to a finite dimensional search set. Let Vk ⊂ L2

ρX
(X; Y) be a Nk dimen-

sional function space with a given basis set {φ1, . . . , φNk},

Vk := span{φ1, . . . , φNk}.

Here, the subscript k ∈ N is a notion for the approximational power or ’fine-
ness’ of the function space. One can think of a finite element approximation,
where k would denote the grade of fineness of the underlying grid and Nk
would denote the number of corresponding grid points or basis functions. To
ensure the existence of point evaluations, we further assume that the function
space Vk can be continuously embedded in the continuous functions C(X; Y).
The regression problem constrained to the search set Vk reads

Empirical
Regression
Problem
on Vk

Find fDn,Vk := argmin
f∈Vk

EDn( f ). (2.1.9)

Due to the finite dimensionality of the search set, we are now able to present
the problem by a system of equations. Since fDn,Vk ∈ Vk, there exist coefficients
c ∈ RNk such that fDn,Vk = ∑Nk

j=1 cjφj. Thus, we formulate an equivalent prob-
lem, which searches the optimal coefficients instead of the optimal function,

cDn,Vk : = argmin
c∈RNk

1
n

n

∑
i=1

∥∥∥∥∥ Nk

∑
j=1

cjφj(xi)− yi

∥∥∥∥∥
2

Y

= argmin
c∈RNk

1
n
‖A · c− y‖2

Yn

(2.1.10)

where
A =

(
φj(xi)

)
i=1,...,n

j=1,...,Nk

∈ Rn×Nk (2.1.11)

and y = (y1, . . . , yn)T.

2.1.4 Penalized Least Squares Regression

To ensure the existence of an unique solution which, we introduce a regular-
Penalized
Regression
Problem

ization term. For a norm ‖·‖Γ on the search space Vk, we formulate the corre-
sponding penalized regression problem by

fDn,Vk ,Γ := argmin
f∈Vk

EDn( f ) + ‖ f ‖Γ. (2.1.12)

If there exists a matrix Γ ∈ RNk×Nk such that the prescribed norm can be writ-
Tikhonov
Matrix

ten in terms of the L2 norm, the matrix is called a Tikhonov matrix and the
corresponding regularization is termed Tikhonov regularization. Assume the
existence of such a matrix for the prescribed norm. For all f ∈ Vk let

‖ f ‖Γ= ‖Γ · c‖L2(X;Y), (2.1.13)
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where f = Φc for a coefficient vector c ∈ RNk and Φ = (φ1, . . . , φNk). This way
we are only considering situations where the norm of a function is equivalent
to the L2 norm of the function after changing the basis with respect to Γ.

Example 2.1 (Tikhonov Matrix of a Sobolev Norm Regularization). Let
φ1, . . . , φk ∈ L2

ρX
(X; Y) be linearly independent basis functions and

Vk := span{φ1, . . . , φk}

the considered search space which we assume to be closed under differenti-
ation, i.e. for Φ := (φ1, . . . , φk), there exists a matrix D ∈ Rk×k such that
∇Φ = D ·Φ. Take a function f = ∑k

i=1 ciφi = Φc ∈ Vk and s ∈ N. Then, the
Hs Sobolev norm of f can be written as

‖ f ‖2
Hs
=

s

∑
k=0
‖∇k f ‖2

2=
s

∑
k=0
‖∇kΦc‖2

2=
s

∑
k=0
‖DkΦc‖2

2

=cT(M + DT MD + · · ·+ DT MsD)c,

where M := (〈φi, φj〉L2(X))i,j denotes the mass matrix based on the basis set of
Vk. This norm is equivalent to the expression

‖ f ‖2
Hs
= cT(M + DMDT)sc.

Thus, we can write
‖ f ‖2

Hs
= ‖Γc‖2

2 (2.1.14)

with the matrix
Γ = (M + DT MD)s/2,

which is called the corresponding Tikhonov matrix of the Sobolev norm. Γ is
well-defined, since (M + DT MD) is positive semi-definite. Therefore, we are
also able to define Sobolev norms with real valued order s ∈ R by (2.1.14).

Example 2.2 (Sobolev Norm Regularization and a Fourier basis). Let
X = [0, 2π] and Y = C. Consider the basis functions φt(x) := eitx spanning
the search space Vk by

Vk := span{φ0, φ1, . . . , φk, φ−1, . . . , φ−k}.

The basis functions are pairwise orthonormal with respect to the scalar prod-
uct 〈·, ·〉L2(X) and thus M = I. Moreover it holds that D = diag(1, . . . , k). If
f ∈ Vk, then f can be written as linear combination with respect to the basis
functions, f = Φc ∈ Vk. Analogously to the above example s ∈ R, the Hs

Sobolev norm can be written as

‖ f ‖2
Hs= ‖Γc‖2

2,

where Γ = diag((1 + 12)s/2, . . . , (1 + k2)s/2).
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Let Γ be a Tikhonov matrix in the sense of (2.1.13). The penalized least squares
regression problem (2.1.12) can equivalently be written as

Find cDn,Vk ,Γ := argmin
c∈RNk

1
n
‖Ac− y‖2

Yn + ‖Γc‖2
2. (2.1.15)

Obviously, for Γ equal to the zero matrix we are back in the unpenalized case.
The solution of the least squares problem with Tikhonov regularization can be
computed by solving a Nk × Nk linear system:

Normal
EquationsLemma 2.1: Normal Equations

Let (φ1, . . . , φNk) be an arbitrary basis of Vk and ‖·‖Y= ‖·‖2. Then the nor-
mal equations for the least squares problem with Tikhonov regularization
with respect to a matrix Γ in (2.1.15) can be written as

(AT A + ΓTΓ)ĉ = ATy, (2.1.16)

where A is given as in (2.1.11) and y = (y1, . . . , yn)T ∈ Rn.

Proof. The objective is to minimize

S(c) : = ‖Ac− y‖2
2+‖Γc‖2

2

= (Ac− y)T(Ac− y) + (Γc)T(Γc)

= cT AT Ac− yT Ac− cT ATy + yTy + cTΓTΓc

= cT AT Ac− 2yT Ac + yTy + cTΓTΓc.

The last equality holds, since yT Ac ∈ R and in one dimension the transpose of
a value is the value itself. Differentiating S(c) with respect to c gives

∂S(c)
∂c

= 2cT AT A− 2yT A + 2cTΓTΓ.

Equating to zero to satisfy the first-order conditions results in the normal equa-
tions

(AT A + ΓTΓ)ĉ = ATy.

The additive Tikhonov penalization is a usual way to obtain existence and
Tikhonov
Penalization
and a Ball in Vk

uniqueness of the minimizer, since an invertible Tikhonov matrix can make
the matrix on the LHS of (2.1.16) invertible. Another way to understand the
Tikhonov regularization is that we are shrinking the search set of (2.1.9) to a
bounded ball in Vk with respect to a norm ‖·‖Γ instead of minimizing over
the whole space Vk. Denote by ‖ f ‖Γ:= ‖Γc‖2 the induced norm with respect
to the Tikhonov matrix Γ, where c are the coefficients of f with respect to the
basis set φ1, . . . , φNk . When minimizing over a closed ball of Vk, we obtain exis-
tence of a minimizer by an application of the generalized Weierstrass theorem,
see e.g. [70]. Here, we use the fact that the ball is convex and closed and that
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the minimization problem is convex and sequentially lower semicontinuous.
Nevertheless we may get several solutions of the problem. But there exists
an unique solution with the least ‖·‖Γ norm. When considering the Lagrange
formulation of the constrained regression problem over a bounded ball and
least norm, we end up with (2.1.15). Thus, the larger the entries of the pe-
nalization matrix Γ become, the more rigorous the induced norm gets and the
fewer functions of Vk we will allow. When Γ = 0, the problem is equivalent to
the unpenalized regression problem and hence to the minimization over the
whole space Vk. For the unpenalized case, the existence and uniqueness of the
problem is not assured. In the next subsection we investigate under which as-
sumption, we can assume existence and uniqueness of a solution, even in the
unpenalized case.

Let us recap our progress so far. In subsection 2.1.1 we defined the regression
Review function fρ : X → Y by fρ(x) := Eρ[y|x] with respect to a given probability

measure ρ on X × Y. To approximate the regression function, we defined the
general regression problem by

f̂ := argmin
f∈L

ρ2
X (X;Y)

∫
X×Y

‖ f (x)− y‖2
Ydρ(x, y).

Since we do not have more information about ρ other than a finite number
of samples Dn = {(xi, yi), i = 1, . . . , n} we defined in subsection 2.1.2 the
empirical regression problem given by the empirical measure instead of ρ,

fDn := argmin
f∈L

ρ2
X
(X;Y)

1
n

n

∑
i=1
‖ f (xi)− yi‖2

Y.

To ensure well-posedness and well-definedness of the empirical regression
problem, we restrict ourself in subsection 2.1.3 to a finite dimensional search
set Vk := span{φ1, . . . , φNk} ⊂ L2

ρX
(X; Y). We assumed the search set to be

continuously embedded in the continuous functions in order to ensure the ex-
istence of point evaluations. The empirical regression problem on Vk reads

fDn,Vk := argmin
f∈Vk

1
n

n

∑
i=1
‖ f (xi)− yi‖2

Y.

Since fDn,Vk =
Nk

∑
i=1

ĉiφi we can rewrite the above as

ĉ = argmin
c∈RNk

‖Ac− y‖2
Yn ,

with A as in (2.1.11). In subsection 2.1.4 we introduced a Tikhonov regulariza-
tion to ensure the solvability of the empirical regression problem. We did this
by adding a penalization term ‖Γc‖2

2. Furthermore we proved that the solu-
tion of the minimization problem is now given by the solution of the normal
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equations 2.1.

We also saw one interpretation of how Tikhonov regularization works. There
Outlook is another way to interpret such a regularization, which we will treat in the

following section.

2.2 Bayesian Interpretation

In the previous section, we introduced least squares regression with an regu-
Bayesian
Statistics

larization term. As the choice of the norm of the error functional has a further
statistical meaning, so has the regularization term. In the following, we will
give a short introduction to Bayesian statistics so that we can interpret the
Tikhonov regularization in that setting. A very short summary of how to treat
an inference problem in the Bayesian way is as follows:

1. First, we make some assumptions on a parametrized model which un-
derlies the generation of samples. We assume that x is deterministic, so
what we need to model is y|x, w. That is, given a parameter w for our
model and an ”input” x, how will y be distributed?

2. We model wRm as a random variable and assume an underlying distri-
bution. For example, we could assume that w ∼ N (0, C) with a covari-
ance matrix C.

3. We need to assemble independent samples (xi, yi). Here, we ignore the
distribution of x for simplicity.

4. Since an exact model of y|x is given, we can calculate how probable the
outcome (xi, yi) was. This probability distribution is called the likelihood
p(y|w, x).

5. Using Bayes’ formula, one calculates the posterior probability p(w|y, x) of
w.

We will now walk through the above steps in the special case of Bayesian linear
Bayesian
Linear
Regression

regression in one dimension. We assume that y is distributed as

y = fw(x) + ε ∼ N ( fw(x), σ2),

where ε ∼ N (0, σ2). We assume fw to be given by

fw(x) = wTx.

Thus, we assume that when we know x, then y is given as a linear function of
x with an added random term ε. This concludes step 1. For step 2 we assume
that w ∼ N (0, C) for some covariance matrix C. The choice of this prior distri-
bution is a crucial one and should reflect our assumptions on w.

In the following, given samples from our distribution, we want to calculate the
Likelihood
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likelihood distribution. We assume that, given the matrix A, where Ai,j = (xi)j
is the jth entry of the ith training example. We also assume that yi are condi-
tionally independent given A, w. Therefore we can write the probability of
all the samples occurring as the product of the probabilities of all the samples
(xi, yi):

p(y|A, w) =
n

∏
i=1

p(yi|xi, w)

=
n

∏
i=1

1√
2πσ

exp
(
− (yi − wTxi)

2

2σ2

)
=N (ATw, σ2 I).

One way, other than the Bayesian way, to proceed from here would be to max-
Maximum
Likelihood
Estimator

imize this likelihood. This corresponds to the idea that we want to choose the
parameter w which fits our data the best, and consequently choose w to max-
imize the probability of our data appearing. In this case, the estimator would
be called the maximum likelihood estimator (MLE):

wMLE = max
w

p(y|A, w)

= min
w
− log(p(y|A, w))

= min
w

n

∑
i=1

(wTxi − yi)
2.

Therefore, maximizing the likelihood corresponds to minimizing the mean
squared error without any regularization. When picking the parameter that
fits the data the best, this estimator often overfits. Overfitting means that the
parameter is influenced by the noise in the data one used to calculate it. In-
stead of being good at generally predicting y|x it is good at predicting yi given
xi for our few training examples. This is not very surprising as we obtained
the estimator by optimizing its ability to predict the training data (xi, yi).

Therefore, we can interpret what it means to solve the unregularized regres-
Bayesian
Interpretation of
an Unpenalized
Regime

sion problem, assuming that it is solvable. Likewise, we assume a additive
white noise and pick the parameter c that makes the observed data as likely as
possible.

Let us return to the Bayesian setting and remember that we are now at step 5.
Bayes’
Theorem

Instead of only maximizing the likelihood of step 4, we combine it to get the
posterior distribution using Bayes’ theorem,

p(w|y, x) =
p(y|w, x)p(w)

p(y|x) .

Here, we omit the treatment of x on the RHS to simplify things. Since we know
everything on the right hand side, we can exactly calculate the left hand side
and get that the posterior distribution of the weight vector again has Gaussian
distribution,

w|y, x ∼ N (µ, Σ)
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with expectation
µ = (AT A + σ2C−1)−1(ATy)

and covariance matrix

Σ = (
1
σ2 AT A + C−1)−1,

see for example [9], section 2.3.3. This posterior distribution expresses our be-
lief of w, after we incorporated the data into our prior beliefs which were given
through the prior distribution. This is again a distribution over different val-
ues of w. One way to make a prediction would be to take the mean µ of this
distribution.

Taking a closer look at µ, we see that if we set ΓTΓ = σ2C−1, µ will exactly be
Bayesian
Interpretation of
a Tikhonov
Regularization

the solution of our normal equation. So, we can interpret what the Tikhonov
regularization is doing in this framework. Instead of just maximizing the like-
lihood as before, we now assumed that the prior distribution of c is given by
N (0, 1

σ2 (ΓTΓ)−1) and then use the mean of the posterior distribution µ as an
estimator. The covariance matrix gives us a description of the assumptions
we are making: In which directions do we have a big or small prior vari-
ance (translating to not so much and much prior certainty about the param-
eter value)? What are the covariances between the different components of
the vector (how much do we think these are coupled to each other)? Knowing
that using a Tikhonov regularization with Tikhonov matrix Γ is the same as as-
suming a prior distribution with covariance 1

σ2 (ΓTΓ)−1 gives us a new way to
think about which assumptions we are making. Also, one can use it to analyze
which assumptions will make your posterior broader or narrower. This tells
us how well we think µ will actually work as an estimator ’most of the time’ as
the covariance matrix tells us how much w will typically deviate from its mean.

We with a few general remarks about Bayesian statistics. We chose both the
Remarksprior and the likelihood as Gaussian distributions and developed a correspond-

ing posterior which was also Gaussian distributed. In this case, we were even
in the position to write down the mean and covariance of the posterior in a
closed form. Given a likelihood, a prior is said to be a conjugate prior if the pos-
terior will belong to the same class as the prior distribution. In that case, the
posterior is often given in a closed form. In general, the posterior could be very
complicated, and more involved methods such as Markov Chain Monte Carlo
are necessary to sample the posterior measure and obtain its mean. Some-
times, one can also use the maximum a posteriori (MAP) estimator which corre-
sponds to a maximization of the posterior distribution. This gives a different
result than directly maximizing the likelihood which leads to the form of the
MLE. In the presented Gaussian case, µ is not only the mean of the distribution
but also the maximum a posteriori estimate, since the mode and the mean of
a Gaussian random variable coincide. It is also interesting to note that if we
wanted to model L1 regularization in a Bayesian setting we would take the
same likelihood as here, but take a Laplace prior. The MAP estimator would
then correspond to an L1 regularization. For a comprehensive overview of the
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Bayesian approach, we refer to [50].

2.3 Stability Analysis in the Unpenalized Case

We saw previously, that the solution of the least squares regression problem
with a Tikhonov regularization on a finite dimensional search set

Vk := span({φ1, . . . , φNk})

is given by the solution of the corresponding normal equations,

G · ĉ = ATy, (2.3.1)

where G := (AT A + ΓTΓ) with respect to a given Tikhonov matrix Γ. The re-
gression problem is therefore uniquely solvable if the matrix G is invertible. In
the penalized case, this is already ensured if the matrix Γ is invertible. In the
unpenalized case, Γ = 0, the solvability of the normal equations is more inter-
esting. But, it can be shown that if the number of samples are strictly greater
than a lower bound which depends on the search set Vk, the normal equations
are solvable with an high probability. Although we consider the existence of a
penalization term in our setting, we will sketch the idea of the proof.

In the following we assume the unpenalized case, i.e. G = AT A. Since the
Chernoff
Inequality

matrix A and thus the solvability of (2.3.1) depends on the specific choice of
the samples xi ∼ ρX, we are receiving a probabilistic bound with respect to
ρX on the solvability. Therefore, we will have to make sure that the number of
samples and the characteristic of the search set are in a certain relationship to
each other. In [21,22] solely the case of ρX-orthonormal basis sets are treated. In
this case the knowledge of the dimension of Vk was sufficient to check the well-
posedness condition. For arbitrary basis sets we have to define a more general
characteristic. While [21, 22] characterizes Vk with a notion K(Nk), following
[14] we define in the general case,

K(φ1, . . . , φNk) := sup
x∈X

Nk

∑
i=1
|φi(x)|2.

Additionally, we denote in the following by

M :=
(
〈φi, φj〉ρX

)
i,j=1,...,Nk

the mass matrix with respect to the prescribed basis functions with respect to
the scalar product induced by ρX. Note that for an ρX- orthonormal basis set,
the mass matrix would be equal to the identity matrix. The following theorem
will tell us that given a θ > 0 and sufficient samples, then the unpenalized
least squares regression problem is uniquely solvable.
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Theorem 2.1: Well-Posedness

Let n ≥ Nk and for some θ > 0 let

K(φ1, . . . , φNk) ≤ c · n
log(n)

· λmin(M)

1 + θ
, (2.3.2)

where c =
∣∣log

( e0.5

(1.5)1.5

)∣∣ > 0. Then, with probability at least 1− 2n−θ the
solution of the unpenalized regression problem exists and is unique. More
specific, we get

P

(
1
2
· µmin < λmin(

1
n

G) ≤ λmax(
1
n

G) <
3
2
· µmax

)
≥ 1− 2n−θ ,

with µmin = λmin(M) and µmax = λmax(M).

Under the additional assumption that the basis is orthonormal, i.e. M = I, we
are in the special case of [21]. The key idea of the proof is to interpret the left
hand side, the matrix G, of the normal equation (2.3.1) as the sum of random
matrices rather than as evaluations of random samples. With that, the proof
is based on an application of the Chernoff inequalities. Given a sequence of
independent, equally distributed random matrices, the Chernoff inequalities
give us an upper bound for the probability that the sum of the sequence devi-
ates from its mean. In the following, we denote by λmin(R) the minimal and
by λmax(R) the maximal eigenvalue for a matrix R ∈ Rm×m.

Theorem 2.2: ( [67], p.417.) Chernoff Inequality for Random Matrizes

Consider a finite sequence {Ri} of independent, random, self-adjoint, pos-
itive semidefinite, m×m matrices satisfying

λmax(Ri) ≤ L.

Define

µmin := λmin

(
n

∑
i=1

E(Ri)

)
and µmax := λmax

(
n

∑
i=1

E(Ri)

)
.

almost surely. Then

P

{
λmin

(
n

∑
i=1

Ri

)
≤ (1− δ)µmin

}
≤
[

e−δ

(1− δ)1−δ

]µmin/L

for δ ∈ [0, 1]

and

P

{
λmax

(
n

∑
i=1

Ri

)
≤ (1− δ)µmax

}
≤
[

eδ

(1 + δ)1+δ

]µmax/L

for δ ≥ 0.

Therefore, if we are able to write G as a sum of a finite sequence of random
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matrices fulfilling the assumptions of the Chernoff inequality, we are able to
bound the probability of G to be smaller than (1− δ)µmin or (1− δ)µmax. The
proof of theorem 2.1 works along this lines.

Theorem 2.3: Stability of the Solution

Assume the requirements of the previous Theorem 2.1 hold true. Then,
the solution fDn,Vk ,Γ = ∑Nk

j=1 ĉjφj of (2.3.1) fulfills

‖ fDn,Vk ,Γ‖L2
ρX

(X;Y)<
1√
n
·
√

6λmax(M)

λmin(M)
· ‖y‖l2

with probability at least 1− 2n−θ .

This theorem has a very short proof by basically writing everything out and
using theorem 2.1. The following theorem gives an upper probabilistic error
bound on the overall error. Let ω > 0. We define the truncation operator
τω : L∞

ρX
(X; Y)→ L∞

ρX
(X; Y) by τω = Pω ◦ f , where Pω : Y → Y is given by

Pω(x) :=

{
x , if ‖x‖Y< ω

sign(x) ·ω , otherwise.
(2.3.3)

Theorem 2.4: Expected regression error

Take Γ = 0. Let n ≥ Nk and let the assumption of Theorem 2.1 hold, i.e.

K(φ1, . . . , φNk) ≤ c · n
log(n)

· λmin(M)

1 + θ
(2.3.4)

where c =
∣∣log

( e0.5

(1.5)1.5

)∣∣ ≈ 0.04696 > 0 and some θ > 0. Then

Eρn
X
[E(τr ◦ fDn,Vk)− E( f̂ )] ≤ (1 + ε(n)) inf

f∈Vk
‖ f − f̂ ‖L2

ρX
(X;Y)+8r2n−θ ,

(2.3.5)
where ε(n) := 4|log(c)|

1+θ · λmax(M)
λmin(M)

· 1
log(n) which tends to zero for n → +∞,

if the condition number of the mass matrix κ(M) = λmax(M)
λmin(M)

is bounded.
Here, the expectation is taken with respect to the product measure ρn =
ρ× · · · × ρ.

Example 2.3. • Trigonometric polynomials and uniform measure. Take
X = [−π, π] and consider for odd m = 2p + 1 the space Vm spanned
by trigonometric polynomials of degree p

Lk(x) := eikx, for k = −p, . . . , p.
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Assuming ρX to be the uniform measure, this is an orthonormal basis
with respect to L2(X, ρX). In this example,

K(L−p(x), . . . , Lp(x)) = sup
x∈[−π,π]

p

∑
k=−p

|φi(x)|2 =
p

∑
k=−p

1 = 2p + 1 = m.

Therefore, the expected regression error of an unpenalized least squares
regression based on n randomly drawn sample points can be bounded
in the sense of theorem 2.4, if

m ∼ n
log(n)

.

• Legendre polynomials and uniform measure. Let X = [−1, 1] and con-
sider Vm = Pm−1, the space of algebraic polynomials of degree m − 1.
Let be ρX the uniform measure. Then the Legendre polynomials (Lk)k is
an orthogonal basis with respect to L2(X, ρX) and

‖Lk‖L∞([−1,1])= |Lk(1)| =
√

2k− 1,

and thus

K(L0, . . . , Lm−1) = sup
x∈[−1,1]

m−1

∑
k=0
|φi(x)|2 =

m−1

∑
k=0

(2k− 1) = m2.

Therefore, the expected regression error of an unpenalized least squares
regression based on n randomly drawn samples can be bounded in the
sense of theorem 2.4, if

m ∼
√

n
log(n)

.

2.4 Related Work

The ideas described in this section can be developed for a more general class
of learning algorithms known as empirical risk minimization (ERM) or struc-
tural risk minimization algorithms [61]. Here, the least squares error functional
we introduced in (2.1.3) is replaced by an error functional dependend on a
loss function ψ : Y × Y → [0, ∞), which is a notion of distance in the ’image
space’ Y and therefore must fulfill that ψ(y, y) = 0 for every y ∈ Y. Given a
loss function, the general error functional is defined by

Eψ( f ) :=
∫

X×Y

ψ( f (x), y)dρ(x, y).

A simple example for ψ would be a metric; however many commonly used
loss functions are not metrics, for example the triangle inequality does not
hold [54, 68]. With ψ equal to the squared Euclidean distance, we are back in
the previously introduced case. In subsection 2.1.3 we restricted ourself to a
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finite dimensional search set, nevertheless in [23] a general setting for infinite
dimensional Banach spaces is treated. Considering a Banach space (H, ‖·‖H)
which is continuously embedded in the continuous functions and restricting
ourself only to functions which satisfy a upper norm bound, then existence
of a solution can be proven for stricly convex loss functions with the help of
the generalized Weierstrass theorem. Moreover, there exists a unique solution
of the problem with the least norm in H. Assuming a boundedness for the
loss function (M-boundedness), error bounds for the corresponding overall er-
ror, bias and sampling error are derived. If H an Hilbert space, then it follows
by the continuous embedding into the continuous functions, that it is also a
reproducing kernel Hilbert space (RKHS). In this case we can represent the solu-
tion according to the representer theorem with the help of the kernel function
evaluated at the sample points. This allows us to break the problem down to
finite dimensions [54, 69]. Unregularized least squares regression on finite di-
mensional search spaces with orthogonal basis functions in the noise-free and
noisy case are extensively observed in [21] and lead to inherently better rates
than the general analysis for Banach spaces. Here, the M-boundedness of the
loss function is substituted by considering the truncated least squares regression,
as we considered in the previous subsection. In [22] the approach is general-
ized to weighted least squares regression in the noisy and noise-free case. A gen-
eralization of the statements to general basis functions can be found in [13,14].



Chapter 3

Sparse Tensor Product
Construction

In a variety of applications, such as interpolation, solving of PDEs or machine Curse of
Dimensionslearning, one aims to find a best approximation of an unknown function within

the possibilities. In the previous chapter we thematized the case of a least
squares regression. Therefore, we established that the approximation accu-
racy crucially depends on the relation of the number of data points and the
dimension of the search space. As the dimension of the unknown function
grows, the complexity of the problem usually increases exponentially, some-
times even making problems in three dimensions already infeasible. This phe-
nomenon is associated with the term curse of dimensions, which is first named
in 1961 [8]. Since then, circumventing the curse of dimensions has been a much
studied field and usually requires additional information about the function to
be approximated. In this section we will describe a method using a tensor-based
subset splitting, which can break the curse of dimensionality in certain situa-
tions. First, the high-dimensional problem is split into lower-dimensional sub-
problems. If the function meets certain smoothness assumptions, it is enough
to take only a portion of the sub-problems into account. This way, a greatly re-
duced complexity of the problem can be achieved with only a slightly reduced
accuracy of the approximation. For a short introduction in the theory of Sparse
Grids we refer to [32], for a comprehensive treatment of the topic see [16].

This chapter is structured as follows. In section 3.1 we will present the general Structure
idea of the sparse tensor product construction. In section 3.2 we thematize the
optimal way to sparsen the function space, in order to maximize the benefit-
cost ratio under a given workload. In section 3.3 we give an overview over
already developed optimal sparse function spaces under specific smoothness
assumptions.

3.1 A Tensor Product Construction of the Function Space

To open up the possibility to sparsen the function space, we have to ensure that
the underlying function space is constructed by a tensor product. In subsec-

25
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Figure 3.1: The first three elements of a nested sequence of linear subspaces
(Vn)n∈N0 , V0 ⊂ V1 ⊂ V2 and its corresponding sequence of
operators On : V → Vn.

tion 3.1.1 we thematize the case of one dimensional functions and generalize in
subsection 3.1.2 to the multi dimensional case. For a prescribed approximation
operator, which maps a function onto its approximation in the so-constructed
function space, we will introduce in subsection 3.1.3 a so-called general approx-
imation operator. This operator will be able to approximate a function in only
a fraction of the function space. We discuss in the next section, which fraction
to be chosen in order to get the ’optimal’ approximation.

3.1.1 Construction in One Dimension

Let I ⊆ R be a finite or infinite subspace of the real numbers and let be VDiscretization
of the Function
Space

an infinite dimensional Hilbert space containing functions I → R of interest.
Consider a sequence of linearly independent functions φn ∈ V for every n ∈
N0. To discretize the function space V, we define finite dimensional linear
subspaces with respect to the basis set

Bn := {φi : i = 0, . . . , gn}

by
Vn := span{Bn}, (3.1.1)

for n ∈ N0 and an arbitrary strictly increasing sequence (gn)n∈N0 of natural
numbers. By construction these function spaces are stricly nested,

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V.

Moreover we assume that
⋃

n∈N0
Vn is dense in V.

The next step is to define an unique approximation operator, which maps anyApproximation
Operator function f ∈ V onto its unique approximation in Vn,

On : V → Vn : f 7→ On f . (3.1.2)

Since we do not know the function f , we need a certain amount of additional
information to define a unique operator. This information comes in the form
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of evaluations of the function at specified values. The larger the dimension of
the underlying function space Vn, the more function evaluations are usually
involved to ensure uniqueness. The choice of this operator characterizes the
problem one wants to solve. If one aims to interpolate the function f , then
this operator would be an interpolation operator, uniquely defined by a suf-
ficiently chosen set of interpolation points. If the goal is to approximate the
integral of f , then this operator would be defined as a quadrature operator
uniquely defined by a number of quadrature points. In the case of a linear
regression operator mapping onto the search space, the uniqueness is ensured
by a sufficient amount of data points and the introduction of a regularization
term. Characterizing this operator really handles the problem. In this section
we will only consider an unspecified uniquely defined operator to illustrate
the main idea of the tensor-based subset splitting. Later on, we will focus ex-
clusively on a least squares regression problem.

Let’s briefly repeat what we have done up to this point. First, we started with Review
a Hilbert space V consisting of one-dimensional functions over I ⊆ R. We
discretized this function space using a nested sequence of finite-dimensional
function spaces (Vn)n∈N0 lying dense in V. Moreover we assumed the exis-
tence of an unique approximation operator On : V → Vn which we did not
characterize further. In the following we construct the case of a multi dimen-
sional function space.

3.1.2 Construction in Multiple Dimensions

The d-dimensional case comes natural due a product construction. This con- Multi
Dimensional
Function
Space

struction will allow us an independent view of each dimension and enables
the sparse tensor product construction. From now on, we will denote with
bold letters multi indices or elements in multiple dimensions. Let

Vd := V ⊗ · · · ⊗V

be an infinite dimensional Hilbert space of d-dimensional functions. For a
multi index k ∈ Nd

0, define the multivariate version of linearly independent
functions φk : Id → R as the tensor product of one dimensional functions
chosen in (3.1.1) by

φk :=

(
d⊗

i=1

φki

)
(xi) =

d

∏
i=1

φki(xki).

Again, these functions span strictly nested linear subspaces of Vd like in one
dimension with the basis sets

Bk := {φl : l ∈ Gk}

by
Vk := span(Bk), (3.1.3)
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where the multivariate version of the index set reads

Gk := {0, . . . , gk1} × · · · × {0, . . . , gkd},

for a strictly increasing sequence (gn)n∈N0 of natural numbers as in the one
dimensional case. Equivalently to (3.1.3) one can write

Vk = Vk1 ⊗ · · · ⊗Vkd ,

where Vki constructed as in the previous subsection.

The approximation operator in multiple dimensions is given byMulti
Dimensional
Approximation
Operator Ok : Vd → Vk, f 7→ Ok f :=

d⊗
i=1

Oki fi. (3.1.4)

In this subsection, we generalized the one dimensional previous situation into
the multidimensional case. We considered the tensor product function space
Vd = V × · · · × V and defined a multi-dimensional approximation operator
Ok : Vd → Vk by Ok f := Ok1 f1 · . . . · Okd fd for f ∈ Vd for a full grid space
Vk. Our goal is to replace the full grid space Vk with an optimally chosen
function space, which is more sparse. For this we need to introduce a more
flexible approximation operator which is able to operate on such sparse spaces.
Therefore we define in the following the general approximation operator.

3.1.3 General Approximation Operator

The cost of constructing the approximation operator usually grows exponen-Hierarchical
Representation
of Ok

tially in the dimension and is defined on a product space or so-called full grid
space. The idea of the tensor-based subset splitting approach is to define the ap-
proximation operator on a more flexible space instead of on the product space
as we did in this subsection. First, we derive a hierarchical representation for
the approximation operator Ok. This is only possible due to the specific con-
struction by tensor products in multi dimensions. The hierarchical represen-
tation opens the possibility of an optimal truncation, which correspondingly
leads to a truncation of the function space it is defined on. By a truncation, if
it is possible, we are turning from a full grid function space to a more sparse
one. Here we call a truncation ’optimal’, if the resulting general approxima-
tion operator achieves maximum accuracy at a given cost. We start with the
hierarchical representation of the approximation operator Ok. Therefore we
write the operator in terms of an hierarchical sum of so-called difference oper-
ators. We will first consider the one dimensional case and then generalize to
higher dimensions.
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Defintion 3.1: Difference Operator

In the one dimensional case, let (On)n∈N0 be a given sequence of opera-
tors, where each On : V → Vn as defined in (3.1.2). Then we call

4n := On −On−1 : V → Vn,

the difference operator sequence with respect to (On)n∈N0 .

In the d-dimensional case, let be (Ok)k∈Nd
0

a given sequence of operators,

where each Ok : Vd → Vk as defined in (3.1.4). For a multi index k ∈ Nd

the corresponding difference operator reads

4k := 4k1 ⊗ · · · ⊗4kn : Vd → Vk.

An application of the telescopic sum now gives the hierarchical representation of
the approximation operator,

Ok = Ok1 ⊗ · · · ⊗ Okd

=
k1

∑
i1=0
4i1 ⊗ · · · ⊗

kd

∑
id=0
4id

= ∑
0≤i≤k

4i.

(3.1.5)

Now, a truncation of this sum would also lead to an underlying sparser func-
tion space than Vk.

Let us in the following define a more general approximation operator, which Truncating
the Hierarchical
Representation
of Ok

can be only defined by a subset of the above summands.

Defintion 3.2: Generalized Approximation Operator

Consider an arbitrary index set I ⊆ Nd
0. Define the generalized approxi-

mation operator OI by
OI := ∑

i∈I
4i. (3.1.6)

Note that If I = {i ∈ Nn
0 : i ≤ k}, then OI = Ok. With this definition we

are able to take only a fraction of the difference operators into account, which
would be needed for an approximation on a full grid.

Thus, the previously introduced operator splitting (3.1.5) induces a splitting Image Space of
the Truncationof the entire function space Vk. Let us for a second assume, we have cho-

sen a arbitrary subset of difference operators of characterized by an index set
I ⊆ {i ∈ Nn

0 : i ≤ k}. The choice of this index set will later be chosen in an
optimal way and will be the most significant choice we have to make in the
following. Then, the generalized approximation operator now operates on a
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more sparse function space OI : V → VI ⊆ Vk. The next important step will
be the specification of the function space VI . Incidentally there are two ways
to do so. The first one is to define a set of hierarchical basis functions which cor-
relates in a way with the difference operators. Once an hierarchical basis is
found, it is easy to define the function space VI . Nevertheless, in some cases
the choice of an hierarchical basis is far away from trivial or it is not mean-
ingful to define one for other reasons. Therefore, there is a second proceeding,
called the combination technique [36], where the function space VI is constructed
by an inclusion-exclusion-type combination of full grid spaces. Therefore, no
basis set has to be chosen, but usually the numerical effort is greater. In the
following we will concentrate on the first case.

Define the linear subspace of Vk characterized by the difference operator byHierarchical
Representation
of Vk

Wk := Im(4k) ⊂ Vk.

By (3.1.5) this gives us a hierarchical representation also of the linear function
space Vk for some k ∈Nn

0 ,

Vk = ∑
0≤i≤k

Vi =
⊕

0≤i≤k

Wi. (3.1.7)

For a visualization of the interrelations of operators and functional spaces see
Figure 3.2. To characterize a function space VI which only depends on a frac-
tion of the above summands, we introduce hierarchical basis sets. By [38], we
call a basis set of Vk an hierarchical basis set if it satisfies the following defini-
tion.

Defintion 3.3: System of Hierarchical Basis Sets

We call a sequence of basis sets B̂k for k ∈ Nd
0 a system of hierarchical basis

sets with respect to the operators (Ok)k∈Nd
0
, if it satisfies the following

properties:

1. The sequence is nested, i.e. B̂k−ej ⊂ B̂k for all k ∈Nd
0 and

j ∈ {1, . . . , d}.

2. B̂k forms a basis set of Vk for all k ∈ (N0 ∪ {−1})d.

3. B̂k \ B̂k−1 forms a basis set of Wk for k ∈Nd
0, where

B̂k \ B̂k−1 =B̂k \
d⋃

j=1

B̂k−ej

1.
=B̂k \

⋃
i≤k

B̂i

The question of interest is now, how to choose the index set I in to obtain theAdmissible
Index Set I optimal approximation of f on VI . Gerstner and Griebel introduced in [31]

the concept of general Sparse Grids, by concentrating on index sets, which are
admissible or downward closed.
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Figure 3.2: Visualization of the relationship of the introduced operatorsOk,4k
(upper two grids) and function spaces Vk, Wk (lower two grids) in two dimen-
sions (d = 2).

Defintion 3.4: admissible index set

An index set I is called admissible if for all k ∈ I ,

k− ej ∈ I , (3.1.8)

for 1 ≤ j ≤ d, k j > 1.

From now on we will consider only index sets which are assumed to have the Truncating the
Hierarchical
Representation
of Vk

admissibility property. Consider an admissible index set I ⊂ Nd
0, then the

image space of the generalized approximation operator OI : Xd → VI can be
written as

VI := ∑
l∈I

Vl.

Moreover a generalized version of (3.1.7) holds:

VI =
⊕
i∈I

Wi.

Hence, any function f ∈ VI and can be uniquely split into its contributions of
the hierarchical function spaces

f (x) = ∑
l∈I

fl(x), where fl ∈Wl.

Let us shortly recap what we have done so far. To reduce the complexity of an
Review
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Figure 3.3: Index sets in two dimensions. The leftmost picture shows one ad-
missible index sets with some relation between the dimensions, the middle
one totally without. The rightmost picture shows a non-admissible index set.

approximation of a multidimensional function, we reduced from an approx-
imation on a Full Grid space Vk = ⊕i≤kWi to an approximation on a freely
chosen Space VI = ⊕i∈IWi ⊆ Vk, depending on an admissible index set I .
The optimal choice of this index set is the crucial point of the Sparse Grid Ap-
proach. Given an effort that we are willing to pay for the approximation, we
want to find the index set leading to the best possible approximation. In the
next chapter we tackle the problem on how to choose an optimal index set, by
specifying the vague notion ’optimality’.

There is already a broad theory on how to specificly choose the index set whenVarious
Smoothness
Assumptions

certain smoothness assumptions are met. For example, if we assume the un-
known function to be an element of the Sobolev Space of mixed smoothness,
then the Fourier coefficients of this function decreases with a certain rate. Con-
structing the subspaces Wn based on a Fourier basis we consequently observe
a certain decay rate of contributions and are able to state the specific ’opti-
mal’ index set for such functions f . In general, unfortunately, we do not have
sufficient knowledge about the smoothness of the function we want to approx-
imate. In this cases, we have to rely on adaptive algorithms. Thus, there are
two approaches to find an ’optimal’ index set. On the one hand, we assume
the unknown function to be an element of a certain function class. Therefore,
we are able to define an index set which solves an optimization problem for
the general function class. On the other hand, we have no knowledge about
the smoothness of the function. In this case, we rely on function evaluations.
Here, we adaptively choose the indices for which the approximation error for
the given data is minimized. Thus, adaptive methods are particularly taylored
to the specific function, while theoretic results apply for a whole function class.

In the following section, we will formulate the problem of finding the optimal
index set as an optimization problem.
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3.2 Choice of an Index Set

We are searching for an optimal index set I (opt) ⊂ Nd
0, such that the corre- Optimization

Problemsponding approximation operator OI (opt) : V → VI (opt) leads to the optimal
approximation under a given work cost. The aim is to profit from a given
work count as much as possible. This problem can be written as the following
optimization problem. Let be w the cost we are willing to pay for the approxi-
mation, then

max
f∈Vd

| f |=1

‖ f −OI (opt) f ‖= min
I⊂Nd

0
|VI |=w

max
f∈Vd

| f |=1

‖ f −OI f ‖, (3.2.1)

for, yet unspecified, norm ‖·‖ and semi norm | · |. Note that the choice of an
optimal index set following (3.2.1) highly depends on the choice of these norm
and semi norm and may differ for diverse choices. It is also possible to put the
problem in the opposite direction. For a given error ε one wants to achieve we
would like to find the index set with the minimum cost.

To formulate the optimization problem, we have to characterize a notion of Cost Function
cost and benefit coming along with each index set I ⊂Nd

0.

Defintion 3.5: Cost Function

Let be everything defined as in the previous chapter. Define the cost func-
tion C : Nd

0 → N as the function mapping each index set I ⊂ Nd
0 onto its

related cost,
C(I) := dim(VI ).

The cost function maps an index set I ⊂ Nd
0 onto the degrees of freedom

involved, when approximating a function f ∈ Vd by OI f . Doing so, the best
approximation is searched in

Im(OI )
(3.1.6)
=

⊕
i∈I

Im(4i) =
⊕
i∈I

Wi = VI ,

for that we need to adjust one parameter per basis function of VI . So it makes
sense to define the local cost of this index as the dimension, i.e. the number of
basis functions, of VI . Benefit

Function
Defintion 3.6: Benefit Function

Define the benefit function B : Nd
0 → R as the function mapping each index

set I ⊂Nd
0 onto its related benefit when approximating a function f ∈ V,

B(I) := ‖OI f ‖,

for some suitable norm on VI .
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Now we are able to assign to each index set I ⊂ Nn
0 , its benefit and the cost

associated with its calculation. For a given workload w, the optimization prob-
lem (3.2.1) can be rewritten as

max
I⊂Nd

0

B(I) with C(I) = w. (3.2.2)

For linear applications it is possible to decompose the cost and benefit func-
tion in local parts measuring the cost and benefit of each single index of the
index set seperately. With a combinatorical argument, see for example [16],
the global optimization problem (3.2.1) or (3.2.2), respectively, can then be re-
duced to the discussion of the local cost–benefit ratios b(l)/c(l) of the under-
lying subspaces Wl.

Later on, in chapter 6, we will construct a machine learning interatomic poten-Outlook
tial based on an adaptive sparse grid approach. In this case the approximation
operator will be based on a penalized least squares regression. As we can not
specify the smoothness class of the potential energy surface, we rely on further
information in order to construct a well defined approximation operator. Thus,
given a data set Dn = {(xi, yi) : i = 1, . . . , n, } the generalized approximation
operator will take the form

OI : V −→ VI ,

mapping a function f ∈ V onto its approximation

OI f := argmin
f∈VI

1
n

n

∑
i=1
‖ f (xi)− yi‖2

2+‖ f ‖Γ,

for some penalizing norm ‖·‖Γ on VI . In our application, the function space
VI will take a rather complex form. Not only physical assumptions will be
encoded in it, but it will also reflect the decomposition of the physical system
in lower dimensional subsystems. Thus, the function space will have a highly
non-linear behavior regarding its index set. In our case, we won’t be able to
break the global benefit function into local contributions, since they connect in
a non-linear way.

3.3 Related Work

The standard way of representing multidimensional functions are tensor orCurse of
Dimensions full grids. Thus a conventional discretization on a uniform grid in d dimen-

sions and O(2n) points in each direction involves O(2dn) degrees of freedom.
This phenomenon is associated with the term curse of dimensions, which is
first named in 1961 [8]. Since then, circumventing the curse of dimensions has
been a much studied field and usually requires additional information about
the function to be approximated. If we can assume certain smoothness prop-
erties of the function, we are able to significantly decrease the complexity of
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the problem.

The idea of a sparse tensor product construction first came up in 1963 with Fourier
Transformthe work of [62], who mainly focused on the use of Fourier transforms, i.e. on

function spaces Vn, which are spanned by Fourier basis functions wk(x) = eikx.
The name ’Sparse grid’ first came up in [38] who also focused on Fourier trans-
forms and is associated with a specific dyadic choice of function spaces Vn.

Let be f an element of the Sobolev space with bounded mixed smoothness Sobolev
Space with
bounded
mixed
Smoothness

Ht
mix(Ω), ie it is assumed that the t-th mixed derivatives of the function f are

bounded, and Ω represents a product space. This means that the oscillations of
the function can be isolated well in the direction of individual coordinates. Un-
der this smoothness assumption an approximation using a sparse grid func-
tion space should be preferred to the full grid function space. If one measures
the benefit-cost ratio in the L2 or L∞ norm, this leads to the regular sparse grid
spaces involving O(2ndn−1) degrees of freedom, based on the index set,

ISG
n =

{
k : |k|1 ≤ n + d− 1

}
.

Measuring the benefit-cost ratio in the energy norm, leads to an even sparser
grid involving O(2n) degrees of freedom, the so-called energy-norm based sparse
grids [16] constructed by the index set,

IESG
n =

{
k : |k|1 − C1(k) ≤ n + d− 1− C2(n, d)

}
,

for suitable chosen C1 and C2. The notion of sparse grid arose for the first time
in 1991 by Zenger , treating the trigonometric interpolation of a multidimen-
sional periodic function inHT

mix(T
n) living on the d dimensional torus.

Considering a Sobolev space of generalized mixed smoothnessHt,r
mix(Ω) leads Sobolev Space

with
generalized
mixed
Smoothness

Figure 3.4: A visualization of the mentioned index sets in two dimensions.
On the left hand the index set of a regular Sparse Grid ISG

50 compared to the
index set of the Full Grid, IFG

50 , in the background. On the right hand side the
comparison of the index set of an energy-based Sparse Grid IESG

50 and regular
Sparse Grid of the same level in the background.
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Figure 3.5: The index set of the dyadic chosen basis functions, when considering
a regular Sparse Grid ISG

10 , forms an hyberbolic cross. The associated function
space VISG

10
is by construction spanned by all basis functions φ(i,j) for which

i ∈ {1− 2k1−1, . . . , 2k1−1} and j ∈ {1− 2k2−1, . . . , 2k2−1} for some (k1, k2) ∈ ISG
10 .

to the generalized Sparse Grids [43] based on the index set

IT
n =

{
k :

d

∏
i=1

(1 + kd) · (1 + |k|∞) ≤ n(1−T)}.

Here, the parameter T ∈ [−∞, 1) controls the mixture of isotropic and mixed
smoothness. The choice of this index sets is a generalization of the upper cases,
for T = 0 we are back in the case of the conventional hyperbolic cross or reg-
ular sparse grids, for T = −∞ it describes the full grid. T → 1 converges to
a latin hypercube and the case 0 < T < 1 resembles energy standard based
sparse grids. For a visualization of the mentioned index sets, see Figure 3.4.

Usually, the support points are chosen dyadically, so each interval is halved inHyperbolic
Cross
Approximation

each refinement step. This procedure not only leads to a nesting of the support
points, but also to a nesting of any considered function spaces. In addition, the
dimension of the underlying function spaces Vn is doubled in each refinement
step, ie |Vn+1| = 2 · |Vn|. This special construction is used in the associated
proven complexity and convergence rates. By their specific dyadic construc-
tion, the indices of basis functions of VISG

n
form the shape of a hyperbolic cross,

for a visualization see Figure 3.5. This is why Sparse Grid methods are also
known under the name hyperbolic cross approximation.



Chapter 4

Active Learning

Up to this point, we have assumed the training data Dn to be fixed and in-
Supervise
the
Training Set

creased the benefits of an approximation solely by adjusting the underlying
search space, with the aim of adapting the algebraic form of the function. Usu-
ally, machine learning methods improve their accuracy through increasing the
number of fitting parameters, making the allowed algebraic form of the poten-
tial function more flexible. However, the estimation does not only depend on
the algebraic form, but also on the training data which is used to fit them. Dur-
ing the fitting process, the method is usually unconcerned with the informa-
tion content of a data point, but learns from what it gets. Since such methods
do not question what they are learning from, they are called passive learning ap-
proaches. Although passive learning approaches are a powerful tool, the are
in general necessarily interpolative, which means they fail to give reasonable
results in areas outside their training domain. One idea to address inaccuracy
in extrapolatory cases would be a proper choice of the training domain, in a
way that minimizes those areas of uncertainty and ensures interpolation over
relevant regions. This makes the choice of an optimal training set a problem
of transferability. Thus, if the method were able to detect extrapolative config-
urations and add those to the training set, we would be able to improve the
approximative power not only by allowing a more flexible algebraic form but
also by allowing a more flexible choice of the training data. In such cases, the
method actively influences the selection of the training set and is thus called
an active learning or query learning approach. For an overview of the field of
active learning, we refer to [58].

In the following section, we will present a pool-based active learning approach
Structureby choosing the training set such that the expected future error is minimized.

To this end, we will aim to maximize the Fisher information contained in the
data. The Fisher information is the curvature of the log likelihood function
and will soon be introduced more formally. We will show, that this approach
coincides with the D-optimality term of the optimal experimental design (OED) in
the statistical literature [26]. Afterwards, in subsection 4.4 we will apply the
D-optimality criterion to the penalized least squares regression.

37
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4.1 From Passive Learning to Active Learning

Given a measure space X ⊂ Rd and an Hilbert space (Y, 〈·, ·〉Y), we are inter-
Passive
Learning

ested in approximating a map

f : X −→ Y, (4.1.1)

based on a given a set of n evaluations Dn := {(xi, yi) : i = 1, . . . , n}. In
chapter 2 we introduced the approximation f̂ of (4.1.1) as the solution of a
penalized least squares regression problem. Given a randomly chosen set of
training data and a prescribed finite dimensional function space Vk, we defined
f̂ as the unique function minimizing the empirical error functional. Here, the
parameter k is a notion of the approximation fineness of the search space Vk.
For example, Vk could contain nodal functions defined on an underlying grid,
which gets finer as k increases. Choosing the function f̂ is equivalent to the
problem of choosing the coefficients ŵ of the basis in the search space. As we
explained in 2.2, there are two ways to interpret the solution f̂ of a penalized
least squares regression problem. On the one hand it is the function, which
minimizes the empirical regression error functional over the search space Vk.
On the other hand it is the function which maximizes the mean of the posterior
distribution, which coincides in the Gaussian case with the mode of the poste-
rior. Until here, we solely improved accuracy through increasing the number
of fitting parameters by expanding the search space, i.e. increasing k. Enlarg-
ing the search space makes the allowed algebraic form of the estimate more
flexible. Nevertheless, an approximation does not only depend on the alge-
braic form, but also on the training data which is used to fit it. If the data is
limited to a small area, then we will not be able to adjust the function outside
of this range, even if we allow arbitrarily complex functions. During the fitting
process, the method is usually not able to influence the choice of training data
in any way.

We are now tackling the following question: how can we pick the training
Active
Learning

data in a suitable way, such that it is as easy as possible to choose the optimal
approximation? Or, how can we pick the training data to faster converge to
the optimal approximation, using less data points? If the likelihood function
p(y|Dn, ŵ) is sharply peaked with respect to changes in ŵ, it is easy to indi-
cate the ’correct’ value of ŵ from the data, or equivalently, that the data Dn
provides a lot of information about the parameter ŵ. If p(y|Dn, ŵ) is flat and
spread-out, then it would take many, many samples like Dn to estimate the
actual ’true’ value of ŵ. This suggests studying some kind of variance with
respect to ŵ or equivalently information of ŵ incorporated in the training data.

The key idea behind active learning is that a machine learning algorithm can
Pool-Based
Sampling

achieve greater accuracy with fewer training labels if it is allowed to choose
the data from which it learns. Let T be the total set of all data. So far, we
would have chosen a training data set randomly Dn ⊂ T, then label and learn
from it. Unlabeled data may be abundant or easily obtained, but labels are
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difficult, time-consuming, or otherwise expensive to obtain. An active learner
may pose queries, usually in the form of unlabeled data instances to request
its label, which is usually computationally expensive or time-consuming. In
each iteration i, T is broken up into three disjoint subsets T = TK,i ∪ TU,i ∪ TC,i.
Here, we denote by

Dataset
Splitting• TK,i the subset which contains the data, with known labels,

• TU,i the subset which contains the data with unknown label and

• TC,i containing the data which is chosen to be labeled.

at iterate i. Thus, in a pool-based sampling approach, we are assuming the exis-
tence of a large pool of unlabeled data from which we want to select a certain
number of data points containing a maximum of information. Those selected
instances would be labeled and used to learn from.
In each step, the data point in TU,i which contains the maximal information is
added to TC,i and its label is requested. Once the label is computed, which is
usually computationally expensive, the data point is added to TK,i.

ψchoose x∗ ∈ TU,i

if ψ(x
∗ ) ≥ 1 + γ

add (x∗, y∗)

compute
label y∗

by an
oracle

All active learning scenarios involve evaluating the informativeness of unla-
Information
Measure

beled instances with respect to an information measure ψ. Based on this mea-
sure, instances are added to the training set if the incorporated information
exceeds a prescribed threshold 1 + γ for some γ > 0. The training set of a ma-
chine learning model is then chosen as a subset of the labeled data D ⊆ TK,i.
There are certain query strategies which operate on a training set Dm of fixed
size m, i.e. in order to retain the training size an incorporation of the data
point (x∗, y∗) would require removing another data point from the training
set. This assumption can simplify the computations by keeping an involved
matrix quadratic, as will be observed in subsection 4.4.3. A variety of such
so-called query strategies have been developed and an overview can be found
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in [58].

In the following subsection, we will describe one well-known query strat-
Variance
Reduction

egy, variance reduction or, in statisticans literature, the D-optimality approach.
Therefore, we first address the mathematical intuition behind that and will
point out relationships with the Fisher information.

4.2 Variance Reduction

The variance reduction approach is basically a simplification of the reduction
Expected
Error
Reduction

of the expected future error. There, the idea is to estimate the expected fu-
ture error of a model trained using D ∪ (x∗, y∗) on the remaining instances
T \ {D ∪ (x∗, y∗)}, and query the instance (x∗, y∗) with minimimal expected
future error. There are a variety of approaches to compute the instance which
minimizes the expected future error, for example by minimizing the expected
0/1-loss, minimizing the expected log-loss or maximizing the expected infor-
mation gain of the query to name a few. But, unfortunately, they all have one
thing in common: in most cases a direct minimization of the expected future
error is the most computationally expensive query framework, as they require
estimating the expected future error over T \ {D ∪ (x∗, y∗)} for each query.
This means a new model must be incrementally re-trained for each possible
query labeling, which in turn iterates over the entire pool. Additionally, often
it is not possible to generate a solution in a closed form at all.

Since a direct expected error reduction is computational demanding, we resort
Bias-Variance
Tradeoff

on an implicit reduction by reducing the variance. It turns out that whichever
function f̂ we select as an approximation, we can decompose its expected error
on an unseen sample x as follows:

E
[
(y− f̂ (x))2∣∣x, ŵ] =E

[(
y−E[y|x]

)2]
+ (E

[
y− f̂ (x)

∣∣x, ŵ])2

+ E
[
( f̂ (x)−E[ f̂ (x)|x, ŵ])2∣∣x, ŵ

]
=Var(y|x) + Bias( f̂ (x)|x, ŵ)2 + Var( f̂ (x)|x, ŵ).

(4.2.1)

Here, we used a zero addition with ±E[y|x] and ±E[ f̂ (x)|x, ŵ] and short cal-
culations showing that the mixed terms vanish. In (4.2.1) the first summand
on the right hand side denotes the variation of the “true“ label and thus en-
codes the noise incorporated in the data. The noise term does not depend on
the choice of x in our case and thus can be neglected. The second and the third
term are the bias and the variance. Often we have a trade-off between these
two terms and we have to choose which one to optimize. But the expected er-
ror benefits from improvements in both. We will optimize the third term as we
will see that this is possible without much computational overhead and even
without fitting the model.



4.3. THE MEANING OF THE FISHER INFORMATION 41

A variance reduction query strategy is called in statistical literature the prob-
Variance Reduc-
tion

lem of an optimal experimental design (OED) [26]. Especially advanced and
mathematically sophisticated is the variance reduction for linear models, in
particular linear regression models. The basic idea is to choose the training
data in such a way, that the incorporated Fisher information is maximal. In
the following, we will generally introduce the Fisher information and state
some of its properties. Afterwards we will concentrate on the case of a pe-
nalized least squares regression model. In this case, the one-to-one correspon-
dence of variance reduction and the maximization of Fisher information will
become clear and we will obtain a closed form solution for the variance reduc-
tion query strategy.

4.3 The Meaning of the Fisher Information

In this section, we will assume that the x = {xi}1≤i≤n are not random as
Notationwe actively choose them ourself. That means that one should keep in mind

that all expectations only integrate over y ∈ Yn. We denote by p(y; ŵ, x) a
parametrized family of distributions of y on Yn. Let w be the true parameter
governing the distribution of y. Note that by assuming that such a ’true’ w
exists we are in the realm of frequentists statistics. If not explicitly stated oth-
erwise we always integrate with respect to p(y; x, w), i.e. the true distribution
of y. We denote by ŵ an estimate of w.

Choosing the training set with the maximal incorporated Fisher information is
Fisher
Information

the means of choice in the statistical theories of optimal experimental design
(OED). The Fisher Information is a way of measuring the amount of informa-
tion that an observable random variable carries about an unknown parameter
ŵ. Since we are dealing with a multi-dimensional parameter vector in the ap-
plication, we will always describe the multi-dimensional version below.

Defintion 4.1: Fisher Information

Consider a n−dimensional parameter vector, ŵ = (ŵ1, . . . , ŵm) ∈ Rm. Let
be p(y; x, ŵ) the likelihood distribution for a given value x and parameter
ŵ. Then the Fisher information I(ŵ) ∈ Rm×m takes the form of a symmet-
ric matrix and is given by

Ii,j(x, ŵ) = E

[(
∂

∂ŵi
log p(y; x, ŵ)

)
·
(

∂

∂ŵj
log p(y; x, ŵ)

)]
. (4.3.1)

Thus it can be seen as the curvature of the log-likelihood function. Near the
maximum likelihood estimate, low Fisher information therefore indicates that
the maximum appears ”blunt”, that is, the maximum is shallow and there are
many nearby values with a similar log-likelihood. Conversely, high Fisher in-
formation indicates that the maximum is sharp.
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The Fisher information is the variance of the so-called score function. The
Score Function score function measures the sensitivity of the likelihood probability distribu-

tion p(y; ŵ, x) with respect to its parameter ŵ and is defined as the normalized
partial derivative with respect to the parameter, i.e.

S(y; x, ŵ) : =
1

p(y; x, ŵ)
· ∂

∂ŵ
p(y; x, ŵ)

=
∂

∂ŵ
log(p(y; x, ŵ)).

(4.3.2)

Thus, the score function takes the form of the partial derivative of the log-
likelihood function. A short calculation shows that

E[S(y; x, ŵ)] = 0, (4.3.3)

where we used an interchange of integral and partial derivative justified by
the second regularity condition. The conditional variance is given by

Var(S(y; x, ŵ)) = E[S(y; x, ŵ)2]−
(
E[S(y; x, ŵ)]

)2

= E[S(y; x, ŵ)2]

= I(x, ŵ),

(4.3.4)

which takes the form of the Fisher Information.

An estimator t : Yn → Rm is a map t(y; x) = ŵ. We view it as a guess of w after
Cramér-Rao In-
equality

we have seen some data y. Define

ξ(w̃; x) := Ew̃[t(y; x)].

Here, ξ depends on w̃ and x since we take the expectation with respect to the
measure p(y; x, w̃). Generally we would like that t estimates the true param-
eter w as well as possible. One important property of an estimator is if it is
biased or unbiased. We call t an unbiased estimator, if

ξ(w̃; x) = w̃. (4.3.5)

This would mean that the average of all guesses of t is the true w. But since y is
a random variable, so is t(y; x) and it will vary around its mean. To know how
much it will vary around the true parameter, the quantification of the variance
is of great interest.
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Theorem 4.1: Cramér-Rao inequality, unbiased case

Let w ∈ Rm be the m-dimensional parameter vector governing the distri-
bution of y ∈ Yn. Let t : Y → Rm be an unbiased estimator of w, i.e. for all
w̃ we have ξ(w̃; x) = w̃. Then the covariance matrix satisfies

Var(t(y; x)) ≥ I(w; x)−1

where I(w; x) ∈ Rm×m denotes the Fisher information matrix evaluated
at the true parameter w. The matrix inequality A ≥ B means that A− B is
positive semidefinite.

This tells us that given some samples x and a true model governing the cre-
ation of the y, we have a lower bound on the variance of any unbiased esti-
mator of w. An upper bound is not possible in thhis generality as it heavily
depends on the form of the estimator t. But this gives a criterion for an optimal
estimator that we can try to attain. In the next section, we will specify to the
case of linear regression. As we have seen, unpenalized least squares coincides
with the maximum likelihood estimator. These are unbiased estimators. But
using a Tikhonov regularization biases ŵ towards a small ‖Γŵ‖2. Also, in the
Bayesian setting, we saw that using regularization corresponds to choosing a
prior. These prior assumptions make ŵ a biased estimator. This means we also
need the Cramér-Rao inequality for biased estimators:

Theorem 4.2: Cramér-Rao inequality, biased case

Let w ∈ Rm be the m-dimensional parameter vector governing the distri-
bution of y ∈ Yn, t : Y → Rm. Then the covariance matrix satisfies

Var(t(y; x)) ≥ ∂ξ(w; x)
∂w

I(w; x)−1 ∂ξ(w; x)
∂w

T

(4.3.6)

where I(w; x) ∈ Rm×m denotes the Fisher information matrix evaluated
at the true parameter w. ∂ξ(w;x)

∂w denotes the Jacobian matrix of ξ(w; x) as
map Rm → Rm evaluated at w.

In the unbiased case, ξ is the identity when viewing it only as a map from w.
This means that the Jacobian will also be the identity and the statement is the
same as of the theorem before. In the following we will denote the right hand
side of 4.3.6 by Cramér-Rao bound.

In this section, we summarized important properties of the Fisher information
in the general case. In the following, we will turn to the special case of a penal-
ized least squares regression. In this special case, we will obtain that penalized
linear regression actually achieves the Cramér-Rao bound. Thus a maximiza-
tion of the Fisher information directly minimizes the variance. We will be able
to find a closed form for the variance reduction query in the linear regression
case.
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4.4 Application to the Linear Regression Model

4.4.1 Cramér-Rao for Linear Regression

In a linear regression model, we assume that y is distributed according to

y = Aw + ε where ε ∼ N (0, σ2 I) (4.4.1)

for a matrix

A =

φ1(x1) . . . φm(x1)
...

. . .
...

φ1(xn) . . . φm(xn)

 ∈ Rn×m.

with a feature map Φ = (φ1, . . . , φm), vector of weights w ∈ Rm and n data
points xi. The estimate ŵ is given by the solution to the penalized least squares
regression problem.
Let us have a closer look at the specific form of the Fisher information matrix

Fisher
Information

in the case of linear regression. Therefore, note that the likelihood function is
given by

p(y; A, w̃) ∼ N (Aw̃, σ2 I). (4.4.2)

Taking the logarithm of the density of (4.4.2) results in the log-likelihood func-
tion, given by

l(y; w̃, A) = log p(y; A, w̃)

= −1
2

log(2πσ2)− 1
2σ2 |y− Aw̃|2.

(4.4.3)

Since the log-likelihood function is twice differentiable, we are able to compute
its Hessian matrix

H(y; w̃, A) =
∂2

∂w2 l(y; w̃, A)

= − 1
2σ2

∂2

∂w2 (y
Ty− 2yT Aw̃ + w̃T AT Aw̃)

= − 1
2σ2

∂

∂w
(−2yT A + 2w̃T AT A)

= − 1
2σ2 2AT A

= −AT A
σ2 .

(4.4.4)

Since the Hessian is independent of y, the Fisher information is given by

I(w̃; x) = −Ew[H(y; w̃, A)] =
AT A

σ2 ∈ Rn×n. (4.4.5)

Before we proceed and explain how we want to minimize such a matrix quan-
Prediction Vari-
ance
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tity let us see how our actual variance compares to the Cramér Rao-bound.
Recalling that by the normal equations 2.1.16 it holds

ŵ(y) = (AT A + ΓTΓ)−1ATy

Now we calculate ξ:

ξ(w̃) = Ew̃[ŵ(y)]
= Eε[ŵ(Aw̃ + ε)]

= (AT A + ΓTΓ)−1AT(Aw̃) + (AT A + ΓTΓ)−1AT Eε[ε]

= (AT A + ΓTΓ)−1AT Aw̃

(4.4.6)

In the second step we used (4.4.2 ). In the third step we used linearity of the
integral twice. In the last step we use that ε has a zero mean. Here again one
sees that if Γ = 0 we would obtain an unbiased estimator as everything would
cancel out. In the case of Γ 6= 0 the estimator is biased as the average of its
predictions is not equal to w̃ when the data is sampled from p(y; A, w̃). To
calculate the lower bound in the theorem we need to take the derivative of ξ.
This is easy as ξ is linear:

∂ξ(w̃)

∂w̃
= (AT A + ΓTΓ)−1(AT A)

By (4.4.5) we know that I(w̃; x) = AT A
σ2 . We conclude that the Cramér-Rao

bound is
∂ξ(w; x)

∂w
I(w; x)−1 ∂ξ(w; x)

∂w

T

= σ2GGT

with G = (AT A + ΓTΓ)−1AT. We want to compare this to the actual variance
of the estimator:

Varw[ŵ(y)] = Varε[ŵ(Aw + ε)]

= Varε[ŵ(Aw) + ŵ(ε)]

= Varε[ŵ(ε)]

= (AT A + ΓTΓ)−1ATEε[εεT]A(AT A + ΓTΓ)−1T

= σ2GGT

(4.4.7)

where in the last step we used that ε ∼ N (0, σ2 I). We actually attain the
lower bound which means that we in some sense have an optimal estimator.
Minimizing the lower bound is equivalent to minimizing the actual variance
of our predictor. Since ŷ = Aŵ and the prediction is a linear map of ŵ the
covariance of our actual predictions ŷ is directly related to the covariance of ŵ:

Varw[ŷ] = AVarw[ŵ]AT

From this we conclude that in our case minimizing the lower bound of the
Cramér-Rao inequality is equivalent to minimizing the variance of the pre-
dictor and minimizing the variance in our actual predictions. This means we
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can actually directly minimize the variance in (4.2.1).For the case that Γ = 0 we
have the least squares or maximum likelihood estimator. The fact that these are
ideal estimators and attain the Cramér-Rao bound is known under the name
Gauss-Markov theorem. We see that it even holds for a a general regularized
least square regression problem. In the following we will minimize the deter-
minant of a matrix which goes under the name of D-optimality. Minimizing
the determinant of G is quite costly as it involves calculating matrix products
and inverses. We will thus treat the unpenalized case in which G = A−1 and
we will assume G to be a square matrix. This will lead to a very cost-efficient
way to minimizing the determinant of A−1 and should also influence the de-
terminant of G in a similar way. In the numerical experiments we will compare
mini

4.4.2 Minimizing the Cramér-Rao bound

To minimize the Cramér-Rao bound on the variance in the data, we will try
Three Optimal
Design Types

to choose A s.t. the Fisher information is maximized. When there is only
one parameter in the model, the Fisher Information takes the form of a one-
dimensional continuous function and the maximization is straight forward. In
the multi-dimensional case, however, we need to further characterize how to
maximize the information. Having a model dependent on Nk parameters, the
Fisher information takes the form of a n × n covariance matrix. In the OED
literature, there are three common types of optimal design in such cases:

• A-optimality minimizes the trace of the inverse information matrix and
thus minimizes the averaged variance of ŵ,

• D-optimality, which minimizes the determinant of the inverse matrix and
thus maximizes the volume of the confidence ellipsoid of ŵ,

• E-optimality, which minimizes the maximal eigenvalue of the inverse ma-
trix and thus minimizes the maximal possible value for the variance of
the one-dimensional components of ŵ.

In the following, we will concentrate on the concept of D-optimality. So far,
D-Optimality we explained the link between covariance and Fisher information matrix, but

did not explore how one should choose the training data in order to obtain
maximal Fisher information. To this end, we will obtain a closed form solution
for a D-optimality ansatz in the linear regression case. For a large data set T,
we aim to choosen the optimal training data D̂ ⊆ T in the way that minimizes
the determinant of the inverse fisher information. Thus

D̂ : = argmin
D⊆T

det(I(w)−1)

= argmax
D⊆T

det(I(w))

= argmax
D⊆T

det
(

AT A
σ2

)
= argmax

D⊆T
det(AT A)

(4.4.8)
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Hence, we are interested in choosing the training set which maximizes the ab-
solute value of the determinant of the matrix AAT. In the following, we will
define a query strategy, which gradually chooses the optimal data point in
each step. To define the query strategy, we follow the maxvol algorihm.

The maxvol algorithm is based on an application of the Cramer’s rule. Cramer’s
Cramer’s Rulerule observes how the determinant of a quadratic matrix changes, when re-

placing one row. This directly applies to our problem, since the addition of
one data point comes in by changing singular rows of the matrix A.

Theorem 4.3: Cramer’s Rule

Consider a system of n linear equations and n unknowns, represented in
matrix multiplication by

Ax = b, (4.4.9)

where A ∈ Rn×n and det(A) 6= 0, known values b ∈ Rn and unknown
coefficients x ∈ Rn. Then (4.4.9) has a unique solution and the coefficients
are given by

xi =
det(Ai)

det(A)
, i = 1, . . . , n (4.4.10)

where Ai ∈ Rn×n is the matrix formed by replacing the ith coloumn with
b, i.e.

Ai =

a1,1 . . . a1,i−1 b1 a1,i+1 . . . a1,n
...

...
...

...
...

an,1 . . . an,i−1 bn an,i+1 . . . an,n

 (4.4.11)

4.4.3 Query Strategy with fixed Training Size

In the following, we assume the number of data points in the training set to
Fixed Training
Size

be fixed. But we do not fix the number in an arbitrary way, but we make
sure that we include exactly as many data points, such that the matrix A is
quadratic. Thus, we are interested in choosing m data points in order to obtain
A ∈ Rm×m. We are also interested in searching the training set Dm ⊂ T which
is D-optimal. This way, the form of the optimal data set (4.4.8) can be further
simplified

D̂m = argmax
D⊆T,|D|=m

det(AT A)

= argmax
D⊆T,|D|=m

det(A)2

= argmax
D⊆T,|D|=m

|det(A)|.

(4.4.12)

Maximizing the determinant of AAT reduces to a maximization of the deter-
minant of A. This opens up the possibility to define a query strategy directly
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based on Cramer’s rule in Theorem 4.3 in order to avoid very expensive deter-
minant calculations.

Following the maxvol algorithm we form the row vector
Information
Measure C := (φ1(x∗), . . . , φm(x∗)) · A−1, (4.4.13)

for a data point x∗ ∈ T. If we replace the kth row of the matrix A by the vec-
tor Φ(x∗) = (φ1(x∗), . . . , φm(x∗)) then, using Cramer’s rule, |det(A)| changes
with a factor |Ck|,

|det(Ak)| = |Ck| · |det(A)|. (4.4.14)

Where Ak is A with the k-th row replaced by Φ(x∗). Thus, if |Ck| > 1 holds the
absolute determinant increases when replacing the k−th row by Φ(x∗). Based
on that, we define

ψ(x∗) := max
1≤k≤m

|Ck|, (4.4.15)

which describes the maximal possible increase of the absolute determinant,
when replacing a row of A with Φ(x∗). Or equivalently, it is a measure for the
maximal information we gain, when incorporating x∗ in the training set.

The resulting query strategy is as follows. Let γ > 0 be a prescribed value,
Query Strategy which encodes the allowed extrapolation grade of our model. We start with a

randomly chosen training set containing m data points. Based on the under-
lying least squares regression problem, we set up the matrix A according to
the training set. Iteratively, we run through all the data points x∗ which are
not yet included in the training set and compute their information measures
ψ(x∗). We add each instance x∗ to the training set if it improves the determi-
nant in a way such that

ψ(x∗) > 1 + γ. (4.4.16)

When adding a data point to the training set another data point has to be re-
moved in order to preserve the training size. Therefore, we remove xk̂, where
k̂ = argmaxk|Ck|. Otherwise, the training set set remains unchanged. This is
repeated, until the absolute determinant of the matrix A can not be improved
any further.

Data: γ > 0
Result: Matrix A
Assemble quadratic initial matrix A samples ;
while ∃ x∗ with ψ(x∗) > 1 + γ do

let k̂ = argmaxk|Ck| with Ck as in 4.4.14 ;
replace k̂th row of A by Φ(x∗) ;

end
Algorithm 1: Active Learning

Φ(x∗) can be seen as a grade of dissimilarity to the other data points. Hence
in [49], is called the extrapolation grade and γ is called the maximal allowed ex-
trapolation grade.



Chapter 5

The Born-Oppenheimer
Potential Energy Surface

The Born Oppenheimer-Potential Energy Surface (BO-PES) is a concept based
on the simplifying approach of Born and Oppenheimer who decomposed the
Schrödinger’s equation into separate parts describing the slow large nuclei
and the fast small electrons. A Potential Energy Surface aims to describe the
energy of a quantum mechanical system solely by knowing the positions of its
nuclei. Since an exact approximation of the PES by exact QM methods is com-
putationally demanding, one is especially interested in further simplifying the
setting and limiting exact calculations to a minimum.

This chapter is structured as follows. In section 5.1 we will introduce the con-
cept of the Born-Oppenheimer Potential Energy Surface in more detail. In sec-
tion 5.2 we will state the well known atomic decomposition ansatz. To open up
the possibility to describe infinite crystal structures and reduce the dimension,
we will decompose the energy of the whole system into energy contributions
of smaller subsystems. In section 5.3 we state physical and computational as-
sumptions on a suitable PES. A further decomposition of the smaller subsys-
tems is described by the many body decomposition in section 5.4. In section
5.5 we broach the issue on how to decipher a quantum mechanical system
containing nuclei and electrons in numbers which can serve as an input for an
algorithm.

For a comprehensive introduction to quantum mechanics, we refer to [71] and
[57].

5.1 The Potential Energy Surface

The Born-Oppenheimer potential energy surface is a concept of quantum me- Schrödinger’s
Equationchanics (QM). The field of quantum mechanics goes back to the 20th cen-

tury and deals with the description of the smallest particles, atoms and even
smaller ones. In 1926 Schroedinger laid the foundation for modern quan-
tum mechanical development with the publication of the Schrödinger’s equa-

49
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tion (SE), for which he received the Nobel Prize in Physics in 1933 [55]. Where
Newtonian mechanics dealt with classical mechanics, Schrödinger’s equation
was now able to describe changes over time of a quantum mechanical sys-
tem consisting for example of nuclei and electrons. Given a QM system, the
time-independent Schrödinger equation comes in the form of an eigenvalue
problem,

Hφ = Eφ, (5.1.1)

where H is a suitable Hamiltonian, a wave function φ which uniquely de-
scribes one state of the QM system, and E describing its corresponding energy.
Let us consider an atomic configuration consisting of M nuclei, given by its
atomic numbers and spatial coordinates

(Z, R) = (Zi, Ri)
M
i=1 ∈ (Z×R3)M

and N electrons given by their coordinates r = (ri)
N
i=1 ∈ (R3)N . Here the

atomic number, or proton number, ZA of a nucleus A is the number of pro-
tons found in the nucleus and describes its charge. In this situation, the time-
independent Schrödinger equation depends on 3 · (M + N) + M dimensions
and the associated Hamilton operator reads

H(Z, R, r) =−
N

∑
i=1

1
2
∇2

i −
M

∑
A=1

1
2MA

∇2
A

−
N

∑
i+1

M

∑
A=1

ZA

diA

+
N

∑
i=1

N

∑
j>i

1
dij

+
M

∑
A=1

M

∑
B>A

ZAZB

dAB
.

(5.1.2)

In the above equation, MA is the ratio of the mass of nucleus A to the mass
of an electron and diA := ||ri − RA||2 denotes the distance of electron i and
nucleus A, dij and dAB describe the distance between two electrons and nu-
clei respectively. The Laplacian operators ∇2

i and ∇2
A involve differentiation

with respect to the coordinates of the i-th electron and the A-th nucleus. The
first summand in equation (5.1.2) is the operator for the kinetic energy of the
electrons, the second term is the operator for the kinetic energy of the nu-
clei. The kinetic energy of an object is the energy that it possesses due to its
motion. The third term represents the Coulomb attraction between electrons
and nuclei. Electrons and nuclei are charged particles. The electrostatic po-
tential (Coulomb potential) at any position in space ri is the energy required
to bring a single positive charge from infinity to that point. Assuming only
one single nucleus A to be present, the Coulomb potential is given by ZA/diA
in atomic units. An electron moving in this potential possesses the potential
energy −ZA/diA. The fourth and fifth terms represent the repulsion between
electrons and between nuclei, respectively.
Unfortunately the time-independent Schrödinger equation is only analytically
solvable for, besides systems containing just a few atoms, hydrogen or hydrogen-
like atoms. Taking just a single particle, the Schrödinger equation is already
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a complex second order differential equation in three dimensions and even in
the classical mechanics there is no general solution for the three body problem.
A first simplification has been made by the Born Oppenheimer approximation.

Still in beginnings of the early period of quantum mechanics, Born and Op- Born-
Oppenheimer
Approximation

penheimer came up with the idea to decouple the behaviour of electrons and
nuclei to simplify the approach of Schrödinger. Due to the enormous differ-
ence in mass and movement of electrons and nuclei, the nuclei are regarded to
be motionless compaired to the fast electrons. Fixing a configuration of slow
nuclear positions, one still has to solve the Schrödinger equation for the fast
electrons. This equation is called the electronic Schrödinger’s equation,

Heφe = Eeφe. (5.1.3)

Here the electronic Hamiltonian He describes the motion of N electrons in the
field of M point charges

He(Z, R, r) = Hee(Z, R, r) +
M

∑
A=1

M

∑
B>A

ZAZB

dAB
,

Hee(Z, R, r) = −
N

∑
i=1

1
2
∇2

i +
N

∑
i=1

N

∑
j>i

1
dij
−

N

∑
i=1

M

∑
A=1

ZA

diA
.

(5.1.4)

This approximation allows us to focus on the electronic energy first and adding
the repulsion term of nuclei later.

The time-independent Schrödinger equation and its electronic counterpart Ground
Energycomes in the form of an eigenvalue problem. Since the Hamiltonian is an Her-

mitian operator, the eigenvalues are real and the corresponding eigenfunctions
can be chosen orthonormal. The ground state of a quantum mechanical system
is its lowest energy state and hence, regarding the spectrum of the Hamilto-
nian operator, the eigenvalue at the bottom of the spectrum. On the contrary,

Figure 5.1: Energy levels.

an excited state is any state with energy greater than the ground state energy.
An excited state is generally unstable and decays into a less excited state even-
tually, where the time span can range from a split of a second to many years.
Hence, a closed physical system typically seeks the state of minimal energy.
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Thus, we are especially interested in the ground state for a fixed atomic con-
figuration, which forms the Born Oppenheimer potential surface.

We define the Born Oppenheimer Potential Energy Surface (BO-PES) as the min-Born-
Oppenheimer
Potential
Energy
Surface
(BO-PES)

imal eigenvalue of the eigenvalue problem (5.1.3) fixing one specific atomic
configuration (Z, R),

VBO(Z, R) := inf
||φ||=1

{∫
φ∗(r)He(Z, R, r)φ(r)dr

}
(5.1.5)

A solution for the ground state exists by Zhislin’s theorem and its correspond-
ing eigenspace is finite dimensional if the charged system is neutral or posi-
tively charged, i.e. ∑M

A=1 ZA > N − 1 [28, 72]. Since the Hamiltonian is a self-
adjoint operator and the wave functions φ are elements of an Hilbert space, we
can therefore conclude that there are finitely many eigenfunctions correspond-
ing to the minimal eigenvalue. In the following work, we will concentrate on
the approximation of (5.1.5) given a fixed atomic configuration (Z, R). Note,
that we have to handle a very high dimensional function

VBO : (R3 ×Z)M → R,

which moreover depends on the number of nuclei M, thus taking an arbitrary
physical situation containing nuclei and electrons, we are ending up with dif-
ferent dimensions of the PES. Note furthermore, that we can not assume dif-
ferentiability of the PES due to its specific construction as the minimal eigen-
value of an eigenvalue problem. It could happen, that the least and the second
smallest eigenvalue approach each other and eventually switch positions. This
situation is called an eigenvalue crossing and the reason why we can’t assume
differentiability for VBO.

Atomic Con guration

Energy

R*
R*
R

*R*

Figure 5.2: Eigenvalue Crossing. No differentiability of VBO at R∗. R∗ is called
a bifurcation point.

Moreover, having a look at the construction of the electronic Hamiltonian
(5.1.4), we note that an eigenvalue ofHe is also an eigenvalue ofHee. Unfortu-
nately∇Hee may be unbounded due to singularities of the Coulomb potential.

Intuitively, we think of a PES as a function mapping spacial coordinates andMinima and
Saddle Points
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charges of nuclei onto its corresponding energy. In general, the nuclei are as-
sumed to be stationary. Thus, we neglect that an atom can occupy different
levels of vibrational energy due to the surrounding temperature. Especially,
one is interested in local minima and saddle points of a PES. Is a atomic con-
figuration located in a minimum, or physically speaking in a metastable state,
the smallest random perturbation of its coordinates would lead to an higher
energy. Is a configuration located at a saddle point of the PES, a random per-
turbation of the coordinates in each direction but one would lead to a smaller
energy except in one direction. This state is called a transition state and each
perturbation leading to a smaller energy leads to a different metastable state.
Thus, one can observe the metastable states of a PES and its paths between
them forming a trajectory over the potential energy hyper surface.

In summary, we keep in mind, that the problem is extremely high dimensional
and irregular due to its dimensional dependence on the specific physical situ-
ation, and we can not assume differentiability. Moreover it is only analytically
solvable for very few simple situations, which is why we have to resort on
numerical approximation. For a comprehensive introduction to quantum me-
chanics, we refer to [71] and [57].

5.2 The Atomic Decomposition Ansatz
Local
Atomic
Environment

Motivated by the concept of nearsightedness of electronic matter introduced
by Kohn [44], a usually taken assumption is that if two nuclei are far apart
from each other, the interaction potential between them can be neglected. This
ansatz allows us to decompose the energy of a system into energies of frac-
tional subsystems, which are in a sense closed under interaction. For a thresh-
old rcut > 0, one only assumes an interaction between nuclei located at dis-
tance rcut or closer. The choice of the maximal interaction distance crucially
depends on the precise nuclei considered. Two hydrogen atoms are for ex-
ample typically at a distance of 0.74Å, whereas two fluorine atoms are usually
1.42Å apart [1]. It is therefore not surprising that a change in the cut-off radius
brings huge differences not only in the dimension of the approximation prob-
lem, but also in the approximation power. Lets fix a configuration containing
M nuclei described by X = (X1, . . . , XM), where

Xi := (Zi, Ri),

with atom number Zi ∈N and spatial coordinates Ri ∈ R3. Denote by Ni, the
local atomic environment or the local neighborhood of the i-th nuclei given by

Ni := (Xj) j=1,...,M
||Ri−Rj||2≤rcut

.

For a visualization see Figure 5.3. The local atomic environment contains all
nuclei of the system, which affects the i-th nuclei in any way by being closer
than rcut. The local atomic environment is obviously not necessary of the same
dimension for every nuclei of an arbitrary system. There could be a nucleus
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which is so far apart from the others, that there is no interaction with another
nucleus. The atomic environment of this nucleus would contain only itself.
The other extreme is a nucleus affecting every other nucleus in the the system,
such that the atomic environment is again the whole system.

The aim of this thesis is to find a suitable potential functionThe
Atomic
Decomposition
Ansatz

V : (N×R3)M −→ R,

given the effort, we are willing or able to spend. The potential function V spans
a corresponding potential energy surface (PES) approximating the very high-
dimensional Born Oppenheimer Potential Energy Surface (BO-PES) spanned
by VBO. From now on, we make the simplifying assumption that we can repre-
sent the global potential function V as the sum over local atomic potential func-
tions Vatomic, which describes only a part of the system. We assume that the
potential function can be written as a sum of atomic functions depending only
on local atomic environments of single nuclei.

Defintion 5.1: Atomic Decomposition

Let be X = (X1, . . . , XM) an atomic configuration containing M nuclei and
rcut > 0 the maximal interaction distance. Then, we call the decomposition

V(X) = V(X1, . . . , XM) =
M

∑
i=1

Vatomic(Ni) (5.2.1)

the atomic decomposition. Here, Ni is given by

Ni = (Xj) j=1,...,M
||Ri−Rj||2≤rcut

and is called the local atomic environment or neighborhood of the i-th nuclei.

Here, the atomic potential function Vatomic is of varying dimensionality, due to
the varying dimensionality of the input. Although physically motivated, this

R1

rcut

R2

R3

R4

R5

R6

R7

R8

Figure 5.3: The local atomic environment of the first nuclei with respect to the
cut-off radius includes all atoms which are closer than rcut,
N1 = (X1, X2, X3, X4, X5)
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approach leads to a numerical feasibility by a drastic reduction of the func-
tional dimension, from the information of the whole system to the information
of local atomic environments. This locality assumption (5.2.1) is true in most
systems with short-range interactions (as opposed to, e.g., Coulomb interac-
tion in charged or polarized systems). For rigorous proofs of this statement for
simple QM models we refer to recent works [18, 48].

5.3 Physical and Computational Assumptions on the Po-
tential Function

We saw previously that we can assume VBO (5.1.5) to be continuous but not
differentiable, due to the definition as the minimal eigenvalue of an eigenvalue
problem. Nevertheless, we can limit the potential functions in question by
taking meaningful physical requirements into account. Therefore, we will state
physical assumptions on a suitable atomic potential function

Vatomic : (N×R3)n → R,

for an arbitrary dimension n ≤ M. As an input we think of a neighborhood
of one nucleus containing n − 1 atoms which are closer than a threshold rcut
and the centering nucleus itself. By the atomic decomposition ansatz (5.2.1),
those assumptions will also apply to the resulting potential function V. Take
n arbitrary nuclei of the system X1, . . . , Xn ∈ X. First, we should assume that
a QM system has the same energy after simply renaming the nuclei, thus the
potential function should be permutational invariant. I.e., for any σ ∈ Sn, Permutational

Invariance
Vatomic(X1, . . . , Xn) = Vatomic(Xσ(1), . . . , Vσ(n)). (5.3.1)

Also, the energy should be invariant under rotation, reflection or translation
of the whole system in space. I.e., for any Q ∈ O(3), where O(3) denotes the
orthogonal group in R3, Transformational

Invariance
Vatomic(X1, . . . , Xn) = Vatomic(QX1, . . . , QXn). (5.3.2)

Here, the operation is applied to the position in space QXi := (Zi, QRi) for
i ∈ {1, . . . , n}. To deal with the varying dimensionality of the atomic poten-
tial function Vatomic, we have to integrate the nearsightedness in the atomic
potential function. Introducing a nucleus Xn+1 which is farther apart than
rcut from all the other nuclei should not have any effect to the energy. If
||Rn+1 − Ri||2 ≥ rcut for all i ∈ {1, . . . , n}, then continuity for nuclei entering
and leaving the interaction radius is ensured by assuming Continuity

w.r.t. Cut-Off
RadiusVatomic(X1, . . . , Xn) = Vatomic(X1, . . . , Xn, Xn+1). (5.3.3)

5.4 The Many-Body Expansion

Fragment-based methods represent a promising path toward reducing the com-
putational scaling with respect to the number of nuclei M. In such methods,
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Ri

rcut

(a)

Ri

rcut

(b)

Ri

rcut

(c)

Figure 5.4: Fractional parts of a local atomic environment Ni, where (a) de-
scribes the whole environment, (b) one two-body and (c) one three-body of
it.

the energy of a local atomic environment, Vatomic(Ni), is further decomposed in
lower-dimensional terms. The so-called dimension wise decomposition or many-
body expansion is comparable to the well-known analysis of variance (ANOVA)
decomposition.

Let us Visualize the decomposition by a concrete example. Consider an atomicExample
environment containing four atoms (n = 4). Then, the atomic energy decom-
poses in energy contributions of all possible environmental fractions, which
are all sets of one to four nuclei.

Vatomic( ) = w0( )

+w1( ) + w1( ) + w1( ) + w1( )

+w2( ) + w2( ) + w2( )

+w3( ) + w3( ) + w3( )

+w4( ). (5.4.1)

A set of k nuclei will be in the following referred to as a k-body, which explains
the designation ’many-body expansion’. In the above expansion, the one, two,
three and four-body terms are separated in rows. The first summand describes
the energy of a completely empty configuration, containing no atom at all. In
the following, we will neglect the so-called zero-point energy (first row) since
it won’t affect the model in any way. Similarly, there is no influence between
atoms in the one atom case (second row), these summands represent the en-
ergy due an external force field such as gravitational or electrostatic, which the
system is immersed into. The first term which describes interactions of parti-
cles are the two-body terms (third row).
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In general, the input dimension of Vatomic can differ, but can not be larger than Many-Body
Expansionthe total number M of nuclei contained in the whole system X. Therefore, a

univeral dimension wise decomposition like in (5.4.1) would involve all possi-
ble fractional functions w0, . . . , wM. In the previous example the evaluation of
the functions w5, . . . , wM would just be zero, since there simply are no bodies
of order greater than four in (5.4.1). For the general case, we obtain

Vatomic(Ni) =
M

∑
k=1

∑
U⊆Ni
|U|=k

wk(U). (5.4.2)

Here, the first sum runs over all possible orders of bodies k and the second sum
runs over all k-bodies in the given local atomic environment. Combining the
locality assumption we introduced in subsection 5.2 with the decomposition
in lower-dimensional terms (5.4.2), we get

V(X) =
M

∑
i=1

Vatomic(Ni)

(5.4.2)
=

M

∑
i=1

 M

∑
k=1

∑
U⊆Ni
|U|=k

wk(U)

 .

(5.4.3)

Rearranging the summands, we obtain the equivalent form

V(X) =
M

∑
i1

w1
(
X{i1}

)
+

M

∑
i1<i2

w2
(
X{i1,i2}

)
+ . . . + wM (X)

= ∑
u⊆{1,...,M}

0<|u|

w|u|(Xu),
(5.4.4)

where Xu = (Xi)i∈u. Here, we directly sum up over all possible pairs, triples
and so on of the whole system instead of summing first over each single nu-
cleus and split up its atomic environment. Note that those expressions are
indeed equivalent. In (5.4.3) we initially considered only local atom environ-
ments, where each nucleus lies within an interaction radius around one cen-
tral atom, thus pairs of nuclei with a larger distance do not occur. In (5.4.4) we
included all possible pairs and sets, which raises the question weather those
expressions are equal. In fact, we assume the functions wk to satisfy the same
physical assumptions which we made for an atomic potential function. Conse-
quently, the assumption of continuity for nuclei entering and leaving the cut-
off radius, concludes to a vanishing of all additional terms we were concerned
of.
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Defintion 5.2: Many-Body Expansion

Let be X = (X1, . . . , XM) an atomic configuration containing M nuclei and
rcut > 0 the maximal interaction distance. Then we call the decomposition

V(X) = ∑
u⊆{1,...,M}

0<|u|

wk(Xu)

a many-body expansion, under the assumption that the functions wu are
permutational invariant, tranformational invariant and invariant under
nuclei entering and leaving the cut-off radius with respect to rcut. To sim-
plify notation, we will in the following use the shortcut

V(X) = G(w1, . . . , wM)(X).

Note, that the many-body expansion suggests that the fractional functions wkGroup
Structure properly describe all k-bodies. In application, those functions will again de-

compose in groups for which the corresponding sets Xu are physically equiva-
lent. For example, if Xu can be obtained by a rotation in space of Xu′ , wu and wu′

are assumed to be equal. It is also interesting, that those sets u ⊆ {1, . . . , M},
which are physically equivalent are forming a group. Assuming the equiv-
alence under the physical assumptions presented in section 5.3, associativity
follows since if Xu is equivalent to Xu′ and Xu′ is equivalent to Xu′′ , Xu is equiv-
alent to Xu′′ as well. Also, inverse elements are included and the identity exists.
Based on the application in the next chapter, we will explain this group struc-
ture in more detail.

Neglecting all bodies of order greater than some threshold k forms a generalK-Body
Potential k-body potential or interatomic potential of order k,

Vk(X) := ∑
u⊆{1,...,M}

0<|u|≤k

wk(Xu).

Equivalently,
Vk(X) = G(w1, . . . , wk)(X).

As seen by this expansion, the pair potential, V2, is the simplest possible model
to valuate atomic interactions. Though those potentials, such as the Lennard-
Jones 6-12 or Morse potential can be fast and easily calculated for arbitrarily
large atomic configurations, they are only rather good approximations for the
simplest closed shell systems. For more complex situations, such as strongly
covalent systems like semiconductors they appear completely inapplicable [64].
In practice, the zero-point energy term and the external force terms are usually
ignored, while considering the sum up to pair-potentials or maximally three-
body interaction [15, 24, 35, 65]. A Many-body approach for k ≥ 3 is rarely
seen. An implementation of higher body terms is an intractable task and leads
to a great increase of degrees of freedom. However, the general three-body
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potentials, have been criticized for their inhability to describe the energetics of
all possible bonding geometries [10, 11, 64].

One may ask what we gained by this decomposition and the worth depends Truncating the
Expansionon the physical situation. Of course one aims to reduce the computational cost

by assuming a decrease of energy contributions for increasing order and treat-
ing low dimensional terms with more effort, while treating higher dimensional
terms with less. If we are able to neglect high order terms without losing to
much information, we can break the curse of dimensions. If we are able to
truncate the sum at all is also dependent on the situation. Nevertheless, a
decay of the energy contributions for raising order is seen for most cases in
which relatively weaker interaction energies are considered, and for most or-
ganic molecules [34].

5.5 Descriptors of Local Atomic Environments

How a physical situation of atoms and electrons can be deciphered in numbers Choice of the
Inputis a much discussed topic. By choosing a descriptor, we choose how to describe

a physical situation with numbers that can ultimately act as input to an algo-
rithm. Until here, we explicitly assumed the main describing factors of a phys-
ical situation given by the involved atomic number and position in space. We
made this choice, because the Schroedinger equation solely depends on these
values. However, other parameters can be chosen. Regardless of this, there is
a wealth of descriptors based on coordinates in space and atomic numbers, for
a comprehensive overview see [66]. The choice of a well chosen descriptor has
some advantages. On the one hand we are able to mostly overcome the phys-
ical assumptions on Vatomic by transforming the input variables into a format
which has already some invariance properties. On the other hand, by filtering
out excess information, we are able to reduce the input dimension.

Further investigations are based on the assumption of atomic decomposition Descriptor
Based On Our
Assumptions

and many body expansion, i.e.

V(X) = ∑
u⊆{1,...,M}

0<|u|

w|u|(Xu),

for suitable functions wu. Thus, we turn to descriptors, which describe those
sets Xu. The descriptor takes the form of a linear coordinate transformation,
which maps the input parameters onto a meaningful description of an atomic
environment

D : (R3 ×N)|u| → Rd(|u|)

which takes a set of |u| nuclei and maps it to a description of dimension d(|u|),
which is usually a reduction. For a chosen descriptor the problem we end up
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with
V(X) = ∑

u⊆{1,...,M}
0<|u|

ŵu(Xu),

for ŵ = w ◦ D. To simplify notation, we will in the following still write w
instead of ŵ.

Example 5.1. 1) If each atom in one configuration has the same atomic num-
ber, i.e. Zi = Zj for all i, j ∈ {1, . . . , M} the atomic numbers lose their
meaning as a distinctive factor and a possible descriptor could filter out
this information. Lets fix the i-th atom and consider n atoms with indices
(t1, . . . , tn) lying in its cut off neighborhood given by rcut > 0. Define the
descriptor

D(Ni) = D(Zt1 , . . . , Ztn , Rt1 , . . . , Rtn)

:= (|Ri − Rtk |)k=1,...,n,
(5.5.1)

which maps the information onto the pairwise distances. The dimension
reduces from (1 + 3)n to d(n) = n.

2) Assume Zi 6= Zj for some i, j ∈ {1, . . . , M}, then one possible descriptor
is given by the Coulomb potentials of each pair of atoms, i.e.

D(Ni) = D(Zt1 , . . . , Ztn , Rt1 , . . . , Rtn)

:=
(

ZiZtk

|Ri − Rtk |

)
k=1,...,n

,
(5.5.2)

again reducing the dimension to d(n) = n.

Lets recap what we’ve done so far. In this subsection we introduced the Born-Revision
Oppenheimer potential energy surface (BO-PES) as the minimal eigenvalue of
an eigenvalue problem given by the electronic Schrödinger equation. Given
a fixed system of nuclei, a PES describes the corresponding energy. We ex-
plained the complexity of the problem due to its high-dimensionality and non-
differentiability. Afterwards, we made two simplifying assumptions. The first
simplification we made was the atomic decomposition ansatz,

V(X) = ∑
nuclei∈X

Vatomic(Brcut(nucleus)).

This assumes that the energy of the whole system can be broken up into an en-
ergy of subsystems which are closed under interaction with respect to a max-
imal interaction radius rcut. Additionally, we decomposed the local atomic
environments dimension wise into parts containing only one nucleus, pairs of
nuclei, triples of nuclei and so on,

Vatomic(Brcut(nucleus)) = ∑
pairs

w2(pair) + ∑
triples

w3(triple) + . . . .

We stated physical meaningful assumptions on the potential function, such
as rotational invariance, permutation invariance and a maximal interaction
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radius with respect to rcut. We briefly mentioned the usage of a suitable de-
scriptor of an atomic environment which can be used to filter out redundant
information and reduce the dimension of the problem.
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Chapter 6

Approximating the PES

Unfortunately, it is not generally possible to solve the Schrödinger equation Many
Body
Expansion

and consequently the PES analytically; thus we rely on numerical approxima-
tions and simulations. In the following chapter, we will make the approxi-
mation of the Born-Oppenheimer PES a subject of discussion using the least
squares regression. All following considerations will be based on the many-
body expansion. Likewise, we will need to capture a dimension-wise decom-
position in the search set. Aside from the local energy contributions, the molec-
ular dynamics applications also need to compute the forces acting on each par-
ticle. Thus, we will also incorporate the negative gradient of the potential with
respect to the coordinates of the particles.

For a configuration X = (X1, . . . , XM) containing M atoms, the many body Simplification
decomposition takes the form,

V(X) = ∑
u⊆{1,...,M}

0<|u|

wu(Xu).

As we mentioned earlier many of those functions wu will coincide with respect
to a group structure dependent on the specific physical situation. Neverthe-
less, for the sake of notational simplicity of this chapter, we will assume all
functions wu and wu′ to be equal if and only if |u| = |u′|. Thus, we will assume
the simplified form

V(X) = ∑
u⊆{1,...,M}

0<|u|

w|u|(Xu)

= : 〈w1, . . . , wM〉(X).
(6.0.1)

This assumption is solely meant to simplify the following notation and is in
general inaccurate, since it would assign two configuration fragments the same
energy, even though they are not physical equivalent. For example in our im-
plementation we have two different functions w1

4 and w2
4. One is evaluated

on 4-bodies that form a star-like constellation where one middle particle has
three neighbours. The other one is used for 4-bodies that are more like a snake
where the start and end of the snake only have one neighbour and the two

63
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other particles both have two neighbours. Particles are considered neighbours
when their distance is smaller than rcut > 0. This is necessary as depending on
which kind of constellation the particles build we have to allow for different
types of symmetry: For a star like constellation we can rotate the three outer
particles around the middle one and still have a physically equivalent constel-
lation. For the snake-like constellation there is only one symmetry which is
reversing the order of the snake and start counting from the other side. With
more than 4 bodies the number of different constellations and especially the
number of symmetries allowed per constellation will of course grow rapidly.
Nevertheless, the approximation theory presented below can be easily trans-
ferred to the general case which we will do in the following chapters.

6.1 Constructing a Regression MLIP V̂Dn,Vp

In the following section, we’ll introduce a machine learning potential based onThe Problem
the simplified many-body expansion. Thus, we are searching for an approxi-
mation of the form

V̂K = 〈ŵ1, . . . , ŵK〉 ≈ 〈w1, . . . , wM〉 = V, (6.1.1)

for some K ≤ M. Here, V̂K forms a K−body potential.

This section is structured as follows. First, in subsection 6.1.1, we choose aStructure
suitable descriptor to in advance reduce the dimension of the problem and
filter out access information, i.e. we decide how a chemical construction of
a k-body enters the function wk. Due to the dimension wise decomposition
of the potential function, we will in subsection 6.1.2 also introduce a search
space which decomposes dimension wise. Thus we will define a search space
Wk,≤p associated to the fractional potential wk of order k and an approximation
accuracy p. In subsection 6.1.3 we introduce a least squares regression problem
on the prescribed search space. With that, the least squares regression will take
the form:

ĉ := argmin
c

∥∥∥∥(A1

∣∣∣∣ . . .
∣∣∣∣AM

)
· c− y

∥∥∥∥
2

. (6.1.2)

Here, the sub matrices A1 will correspond to the one-nuclei part, the sub ma-
trix A2 to the pair-nuclei part and so on. From now on, we will denote a multi
index or multidimensional elements by bold letters.

6.1.1 Choosing a Descriptor

The fractional energy function wk requires sufficient information of a set of kPairwise
Distances particles in order to describe its energy. This information is based on its spatial

coordinates and atomic numbers, thus on k · (3+ 1) parameters. The reduction
of this dimension is a matter of choosing a suitable descriptor, i.e. a map taking
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those information and going to a lower dimensional space, without loosing to
much information. We will describe a k-body by all pairwise distances

dij := ‖Ri − Rj‖2

between its ith and jth nuclei. We do not lose information about the position-
ing since the potential is required to be invariant under rotation and transla-
tion of the positions anyway. In case all nuclei in the data also have the same
atomic number we also do not lose any information at all by using the above
descriptor. An association of k nuclei is thus uniquely defined by nk distances,
where

nk :=


1 , if k = 1
k−1
∑

i=1
i = k·(k−1)

2 , otherwise.
(6.1.3)

This forms an unique description under the assumption of identical atom num-
bers. The descriptor of a k−body using pairwise distances is given by

D : (R3, N)k −→ Rnk , Xu 7−→ (di,j)i,j∈u (6.1.4)

for a k-body Xu described by the index set u ⊆ {1, . . . , M} with |u| = k. A
further common way to describe a k-body uses a mixture of pairwise distances
and adjacent angles. Nevertheless, both descriptions are equivalent and can be
easily transformed into each other. If the atom number of the nuclei differ, one
may take a Coulomb potential, a scaled distance, instead of just the pairwise
distances.

6.1.2 Choosing the Search Set

In the previous subsection we’ve chosen a descriptor. Now we are interested Many-Body
Expansionin finding a suitable feature map. With that, one maps the description of an

atomic configuration into an high dimensional feature space and searches for
the best linear representation of the target function there. This makes the opti-
mization problem we solve at the end a linear one but gives as a solution that
is non-linear as a map from distances to energy. Taking the previously defined
descriptor into account, the problem of interest of (6.1.1) transforms to

V̂K = 〈w̃1 ◦ D, . . . , w̃K ◦ D〉 ≈ 〈w1, . . . , wM〉 = V, (6.1.5)

where ŵk = w̃k ◦ D. Once fixed a descriptor, we aim to find the optimal func-
tions w̃k. Using the pairwise distance descriptor introduced in (6.1.4) the po-
tential function takes the form

V̂K(X) =
M

∑
i1

w̃1(1) +
M

∑
i1<i2

w̃2(di1i2) + · · ·+
M

∑
i1<···<iK

w̃K((dm,n)m,n∈{i1,...,iK}).

(6.1.6)
Note that the function w̃k is nk-dimensional. Due to the dimension wise de-
composition of the potential function, we will also need the construction of a
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search space which decomposes dimension wise.

Lets fix an arbitrary approximation accuracy p = (p1, . . . , pK) ∈NK
0 . Here, we Dimension-wise

decomposition
of the Search Set

think of pk as the approximation accuracy of w̃k. In the next section, we will
introduce an adaptive procedure, how to chose this notion in an optimal way.
But for now, we assume the choice to be arbitrary. The form of p suggests that
just like the function itself, the search space also decomposes dimension wise.
In fact, the search space will take the form

Vp =
p1⊕

q=1

W1,q ⊕ · · · ⊕
pk⊕

q=1

WK,q, (6.1.7)

With that, we are searching the optimal estimate w̃k ∈
⊕pk

q=1 Wk,q for each
k = 1, . . . , K. To this end, we will modify orthogonal polynomials such that
they meet the required physical assumptions of section 5.3.This way, we en-
code all assumptions we would like the potential function to satisfy already
in the function space and do not have to worry about the suitability of the
estimate later on. The

⊕pk
q=1 Wk,q consist of non-linear polynomials of the de-

scriptor but by searching the best linear combination of these our optimization
problem will become linear in the end.

The foundation of the basis functions is a sequence of orthogonal polynomi-Orthogonal
Polynomials als. We start with a definition of one-dimensional orthogonal polynomials and

construct a multi-dimensional generalization later on.

Defintion 6.1: Sequence of µ-orthogonal Polynomials

Let µ be a Borel measure on I ⊆ R and denote by L2(X, dµ) the associated
Hilbert space of all square integrable functions with respect to µ with the
inner product 〈 f , g〉 =

∫
I f (x)g(x)dµ(x). Then the sequence (Pn)n∈N0 is

called sequence of µ-orthogonal polynomials, if for all m, n ∈N0

deg Pn = n (6.1.8)

and
〈Pn, Pm〉µ = 0 for m 6= n. (6.1.9)

If 〈Pn, Pn〉µ = 1, the sequence is called µ-orthonormal.

In more detail, we will consider Legendre, Chebyshev and Laguerre polyno-
mials

Example 6.1. 1) Legendre Polynomials: Let be X = [−1, 1] and the Borel
measure µw characterized by the easiest weight function

w ≡ 1.

The so corresponding orthogonal polynomials (Pn)n∈N0 are orthogonal
to the standard inner product of square integrable functions. Legendre
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polynomials can be constructed with a Three-Term recurrence,

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

and starting values P0 = 1, P1 = x.

2) Chebyshev Polynomials: Let again be X = [−1, 1] and µw the Borel
measure characterized by

w(x) =
1√

(1− x)2
.

Then the µw-orthogonal Chebyshev polynomials (Tn)n∈N0 can be con-
structed by the Three-Term recursion

Tn+1(x) = 2xTn(x)− Tn−1(x)

and starting values T0(x) = 1, T1(x) = x.

3) Laguerre Polynomials: For X = [0, ∞) the polynomials (Ln)n∈N0 are or-
thogonal with respect to the Borel measure µw constructed by the weight
function

w(x) = e−x.

The Three-Term recursion reads

(n + 1)Ln+1(x) = ((2n + 1)− x)Ln(x)− nLn−1(x)

with starting values L0(x) = 1, L1(x) = −x + 1.

To construct nk-dimensional orthogonal polynomials, we use a tensor product
of the one dimensional functions,

Pq(x) :=
nk

∏
i=1

Pqi(xi),

for q = (q1, . . . , qnK) ∈ N
nk
0 and x = (x1, . . . , xnk) ∈ Rnk . The so constructed

multi dimensional polynomials are again orthogonal with respect to µnk =
µ⊗ · · · ⊗ µ. Moreover, if the one dimensional sequence of polynomials is or-
thonormal, the multi dimensional polynomials are again orthonormal. The
degree of this multi dimensional polynomial is given by

deg(Pq) = |(q1, . . . , qnk)|1 =
nk

∑
i=1

qi.

Those polynomials span the space of square integrabe functions over Rnk ,
which lies dense in the space of all continuous functions. But in fact we do
not want to take all those functions into account, but only those who meet the
physical assumptions of a potential function.

A general sequence of orthogonal polynomials a priori does not meet the con- Modifying the
Orthogonal
Polynomials
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Figure 6.1: One- and two-dimensional Chebyshev polynomials constructed by
a tensor product up to degree three.

sidered requirements. As already noted we will ignore particles that have a
distance greater than rcut. Equivalently, the search spaces should only consist
of functions with domain in rcut. Since we also want the potential to be contin-
uous it has to go to 0 smoothly when approaching rcut. Thus we require this
property from our basis of wk:

lim
|x|∞→+rcut

wk(x) = 0. (6.1.10)

In practice, one forces the functions to have this property by multiplying a
suitable cut off function that approaches 0 smoothly. In our implementation we
use for x ∈ R

fcut(x) =


1 for r ∈ (0, rcut − d]
1
2 cos

(
π x−rcut+d

d + 1
)

for r ∈ (rcut − d, rcut]

0 for r ∈ [rcut, ∞)

, (6.1.11)

where d ∈ [0, rcut] determines the width of the cut off region. Using that, we
are forcing the multi-dimensional polynomial to have the property (6.1.10) by

nk

∏
i=1

Pqi(xi) · fcut(xi).

Another restriction we have on our potential is reflection and rotation invari-
ance. As already noted earlier, the allowed reflections and rotations that map
a configuration to an equivalent one form a group S. A simple way to make
a function φ invariant under the group action of a group S is just to take
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Figure 6.2: One- and two-dimensional basis functions based on Chebyshev
polynomials up to degree three. The Chebyshev polynomials are multiplicated
with the cut-off function (6.1.11) with rcut = 5 and rl = 2.

φ̃ = ∑g∈S φ(g(x)). It is easy to see that due to the group property if y = g(x)
for some g ∈ S, then φ̃(y) = φ̃(x). In our case all allowed symmetries corre-
spond exactly to permutations of the inputs of the function. So we can treat S
as a subgroup of the symmetric group and get:

φq(x) :=
1
|S| ∑

σ∈S

nk

∏
i=1

Pqi(xσ(i)) · fcut(xσ(i)) =
1
|S| ∑

σ∈S

nk

∏
i=1

Pqσ(i)(xi) · fcut(xi)

(6.1.12)
for all q ∈ N

nk
0 . Note that we did not further specify the specific form of S. In

subsection 7.1 we will analyze its structure in detail.

We define Search
SpaceGk,p := {q ∈N

nk
0 such that |q|1 = p}.

which are the indexes of all basis functions approximating k-bodies s.t. their
degrees add up to p. Note that this Using this we can define our search spaces
with precision p:

Wk,p := span{φq : q ∈ Gk,p}, (6.1.13)

and we write down the basis into a vector:

Φk,p := (φq)q∈Gk,p . (6.1.14)

Additionally define,

Wk,≤p :=
p⊕

q=1

Wk,q.

and
Gk,≤p := {q ∈N

nk
0 such that |q|1 ≤ p}.
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Here, Wk,≤p incorporates all nk-dimensional basis function as constructed in
(6.1.12), based on orthogonal polynomials up to degree p and serves as a search
space of the fractional function w̃k. Note that this index set corresponds to the
a classical sparse grid construction. For a multi index p = (p1, . . . , pK) ∈ NK

0 ,
we define the general search space by

Vp :=W1,≤p1 ⊕ · · · ⊕WK,≤pK

=
K⊕

k=1

Wk,≤pk .
(6.1.15)

i.e. we are back to (6.1.7) with the desired format. One should note that by the
choice of the finite dimensional search space we also already are doing some
regularization. For example due to all Wk,q consisting only of C∞ functions our
approximation will also be a C∞ function.

In the following section, we will define the optimal approximation with the
help of a given search set as a least squares regression solution. For a given
approximation accuracy p = (p1, . . . , pK) and training data we choose the
optimal approximation V̂K = 〈ŵ1, . . . , ŵK〉 ∈ Vp of the regression function
V = 〈w1, . . . , wM〉.

6.1.3 K-Body Regression Potential

In the following, we construct a MLIP based on nuclei interactions up to orderMLIP of
Order K K, i.e. up to K nuclei at once. Based on the training set Dn, we aim to choose a

suitable estimation 〈ŵ1, . . . , ŵK〉 such that

V̂Dn,Vp = 〈ŵ1,p1 , . . . , ŵK,pK〉 ≈ V, (6.1.16)

where ŵ = w̃ ◦ D.

Let be given a database of atomic configurations together with their referenceThe Data Set
energies and forces,

Dn = {(Xi, fi, ei) : i = 1, . . . , n}.

One data point represents the information of one whole atomic system con-
taining Mi nuclei, Xi = (X1, . . . , XMi). The forces and energies are computed
with a costly but relatively accurate quantum mechanical ESM method,

V(ESM)(Xi) = ei,

−∇V(ESM)(Xi) = fi.
(6.1.17)

Here, ei denotes the ground energy of the system Xi and fi ∈ RMi×3 its forces.
By incorporating the forces of a system in the learning process, we gain a
wealth of additional information, because we do not only have information
about the function evaluation but also about the gradient. Nevertheless, to
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use this further knowledge, we need to calculate the derivatives of the very
high dimensional estimation.

Having defined the search space, we are able to formulate the empirical regres- Energy-Based
Empirical
Regression
Problem

sion problem. To do so, we will first focus on the energy based information of
the training data and incorporate the forces later on. The energy-based empir-
ical error functional with respect to the data set Dn is given by

EE
Dn
(g) :=

1
n

n

∑
i=1
‖g(Xi)− ei‖2

2. (6.1.18)

Using that, the energy-based regression problem on the finite dimensional
function space Vp is then given by

V̂E
Dn,Vp

=〈ŵ1,p1 , . . . , ŵK,pK〉

:= argmin
〈g1,...,gK〉∈Vp

EE
Dn
(〈g1, . . . , gK〉) (6.1.19)

As in the previous section, this problem can be equivalently expressed as an
optimization problem of the coefficients in the search space,

ĉE
Dn,Vp

:= argmin
c

1
n
‖nAE

K · c− e‖2
2, (6.1.20)

where e := (e1, . . . , en) denotes the vector with energies of the atomistic con-
figurations in the training set Dn. Since the search space has an extraordinary
form in this application, so has the matrix AE

K. Therefore, we will go into more
detail about the construction of this matrix.

To understand the form of the matrix AE
K lets have a closer look at the functions Construction of

the Matrix AE
Kcontained in the search space Vp. For one configuration X =

(
X1, . . . , XM

)
containing M nuclei, we recall the definition of the many-body expansion of a
K-body potential,

〈g1, . . . , gK〉(X) := ∑
|u|=1

g1(Xu) + · · ·+ ∑
|u|=K

gK(Xu)

=
K

∑
k=1

∑
|u|=k

gk(Xu).
(6.1.21)

Here, the sums run over all possible index sets u ⊆ {1, . . . , M} and as before,
we denote by Xu := {Xi}i∈u the subset of nuclei with an index contained in the
index set u. First, we are summing over all single nuclei in the atomic system,
then over all pairs of nuclei and so on. Since gk ∈ Wk,≤pk by construction
of the search space, we can write this function as linear combination of the
corresponding basis functions, i.e.

gk = ck,≤pk · Ek,≤pk(X)
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where

Ek,≤pk(X) :=

(
∑
|u|=k

φl(Xu)

)
l∈Gk,≤pk

(6.1.22)

is the vector of basis functions of Wk,≤pk summed over all subsets of size k.
The jth entry of the vector Ek,pk(X) simply denotes a summation of the jth
basis function of Wk,≤pk evaluated at all possible k-bodies. Now putting it all
together

〈g1, . . . , gK〉(X) =
K

∑
k=1

ck,≤pk · Ek,≤pk(X),

We titled this array with an large E to remind us, that we until here only incor-
porated the energy information. Define the matrix

AE
K :=

1
n

E1,p1(X1) . . . EK,pK(X1)
...

. . .
...

E1,p1(Xn) . . . EK,pK(Xn)

 . (6.1.23)

Here, each Ek,pk stands for all basis functions used to approximate ŵk with
prescribed accuracy pk. In the previous section, the matrix A took the form
Ai,j = φi(xj)/n for basis functions φi of the search space and data points xi.
Here, instead of describing one single basis function, Ek,pk describes all the
basis functions needed to approximate wk. This unusual form is due to the
dimension wise decomposition of the search space in (6.1.7).

The energy of the system is not the only information we have, we also assumeIncorporating
The Forces the knowledge about the incorporated forces. To this end, we need the intro-

duction of the derivatives of the basis functions. Therefore, we have a look at
the force-based empirical error functional based on the data set Dn, which is
given by

E F
Dn
(g) :=

1
n

n

∑
i=1
‖−∇g(Xi)− fi‖2

2. (6.1.24)

Based on that, the force-based empirical regression problem using the search
space Vp can be written as

V̂F
Dn,Vp

:= argmin
〈g1,...,gK〉∈Vp

E F
Dn
(〈g1, . . . , gK〉). (6.1.25)

Again, we can write equivalently

ĉF
Dn,Vp

:= argmin
c

1
n
‖−∇nAE

K · c− f ‖2
2, (6.1.26)

for the matrix AE
K as defined in (6.1.23) and f := (f1, . . . , fn). Moreover, an

empirical regression problem using the whole dataset at once can be obtained
by defining the empirical error functional

EDn := EE
Dn

+ E F
Dn

. (6.1.27)
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The empirical regression problem becomes

ĉDn,Vp := argmin
c

1
n
‖AK · c− y‖2

2, (6.1.28)

where AK := (AE
K| − ∇AE

K) and y := (e1, . . . , en, f1, . . . , fn).

One has to keep in mind that every of these E consists of a rather big sum of
evaluations of φ on each subset of a given cardinality of X. Finding the sub-
sets {Xi}i∈u such that the neighbourhood relations are all smaller than rcut is
a task that grows fast with the number of k-bodies one wants to treat. The
φ themselves then again are sums over all allowed symmetries for a given k-
body. The number of these symmetries also grows. These are the reasons that
the cost to assemble the matrix AK grow fast with the number of k-bodies one
wants to treat.

Lets recall what we did in this section. We assumed the potential energy sur- Review
face (PES) introduced in chapter 5 to fulfill the atomic decomposition ansatz
and the many body expansion ansatz. Assuming this format, we defined a
descriptor, which describes each set of k nuclei by its pairwise distances. To
formulate a regression problem, we defined a search space, which just like the
function we want to approximate itself decomposes dimension wise. There-
fore, we fixed a maximal order of bodies K and an approximation accuracy
vector p = (p1, . . . , pK) encoding with how much effort we wan each body to
treat. Then we formulated the least squares regression problem. We explained
the explicit form of the matrix involved, which again decomposes dimension
wise. Also, we pointed out, that we do not only have data points in the training
set regarding function evaluations due to the energy, but also over the deriva-
tion due to the forces.

In the following subsection, we will specify how one can optimally choose Outlook
the maximal involved body order K and the approximation accuracy p =
(p1, . . . , pK), which we until here assumed to be arbitrary. Therefore, we will
use an application of a sparse tensor product construction. Since we can’t spec-
ify the smoothness characteristica of the PES, we rely on an adaptive choice of
the index set. Nevertheless, we will see in the results that a decay of the con-
tributions can be recorded.

6.2 Choosing an Optimal Search Set Vopt

In the previous section, we constructed a machine learning interatomic poten- The Problem
tial given a maximal body order K and accuracy p = (p1, . . . , pK) by

V̂Dn,Vp := argmin
〈g1,...,gK〉∈Vp

EDn(〈g1, . . . , gK〉) ≈ V.

In this section, we present an adaptive method to choose the search set in an
efficient way under a prescribed workload.
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Therefore, define the generalized search space based on an index set I ⊆
{1, . . . , M} ⊗NM

0 by
VI :=

⊕
(k,q)∈I

Wk,q.

Starting at the smallest index set possible, we will gradually include indices
which maximizes a benefit-cost-ratio. We start with the coarsest approxima-
tion possible, which is approximating the PES only with one-nuclei parts (K =
1) using constants (p1 = 0), i.e. I = {(1, 0)}. We strive the index set to be
admissible. The starting index set I = {(1, 0)} fulfills this condition and we
will only add indices that preserve this property. Therefore, we define the set
of indices which are allowed to be added next to an index set I by

N (I) := {(k, q) ∈ {1, . . . , M} ⊗NM
0 : I ∪ (k, q) is admissible }.

To decide which index to incorporate next, we need to measure its worth. ToCost-function
this end, we define the cost of an index (k, q) ∈ {1, . . . , M} ⊗NM

0 by

c(k, q) := |Wk,q|.

Thus, we define the cost of an index set as the incorporated degrees of free-
doms involved, when adding it to the index set. Since the cost-function de-
pends on one single index, we name it with a small c to mark its locality. WeBenefit-function
define the benefit-function by

B(I , (k, q)) := EDn

(
V̂Dn,VI

)
− EDn

(
V̂Dn,VI∪(k,q)

)
for an index set I ⊂ {1, . . . , M} ⊗NM

0 and an index (k, q). The benefit thus is
not solely dependent on one index, but describes its worth given an already
chosen index set. We marked its non-local character by a capital B. Thus, the
benefit of an index given a prescribed index set is the change of the empirical
error functional based on the used least squares regression. Note, that this
definition does make the problem a non-linear one. This means, the refinement
in one dimension is not independent of the refinements in other dimensions
of the index set. This makes the choice of the next index set non-unique, if
there is more than one index set with exactly the same benefit-cost ratio the
algorithm would take just one arbitrary, which may lead to a different behavior
afterwards. Nevertheless, in application this case is very unlikely.

Figure 6.3: Visualization of the used index set. The tuple (k, q) encodes the
approximation of of k-bodies with the help of basis functions based on poly-
nomials of degree q.



6.2. CHOOSING AN OPTIMAL SEARCH SET VOPT 75

1: Input: Cmax
2: Output: Iopt
3: Initialize: I := ∅, cost = 0, N (I) = {(0, 1)}
4: while cost < Cmax do
5: Compute the values η(I , (q, k)) := B(I , (q, k))/c(q, k) for all

(q, k) ∈ N (I) and set cost:=cost + c(q, k)
6: Select the next index (q∗, k∗) := argmax(q,k)∈N (I)η(I , (q, k)) and

move it to I
7: Generate new allowed index set N (I)

end
Algorithm 2: Adaptive algorithm to construct quasi-optimal index set Iopt
under a given maximal cost Cmax.
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Chapter 7

Assessment and Validation

In this chapter, we will present the approximation procedure in detail. In sec-
tion 7.1, we will explain the group structure under which the basis functions
are invariant in more detail. In section 7.2 we will compare the different basis
sets. In section 7.3 we make several remarks to the implementation phase and
in section 7.4 we present the data sets we evaluate our methods on.

7.1 Group Structure for used Physical Applications

We remember, the general formulation of the many body expansion under an
application of descriptor D reads

V(X) = ∑
u⊆{1,...,M}

0<|u|

w|u| ◦ D(Xu).

As we mentioned previously, many of the functions wu of the many body ex-
pansion can be assumed to coincide if the corresponding sets Xu are physically
equivalent.

7.1.1 Solids with Periodic Boundary

Lets first consider the case where each atomic number in the data set is equal
as in the W-14 data set. Therefore the atomic number loses its describing char-
acter and we can filter out this information by a suitable descriptor. Let be D
in this case the pairwise distance descriptor introduced in subsection 6.1.1. D
maps each fraction of an atomic environment Xu = (Xi)i∈u onto its pairwise
distances. Since we describe each k-body uniquely by an array containing all
pairwise distances, a rotation or translation in space can be expressed by a cor-
responding permutation of this distance array, see Figure 7.1. This way, the
group structure of subsets u ⊆ {1, . . . , M} for |u| = k equivalently induces
a group structure on the symmetric group of permutations Snk . Here nk is
the number of all pairwise distances needed to uniquely describe one k-body.
Nevertheless, not every set of k atoms induces the same group structure, but
the choice also depends on a grade of connection incorporated in the body. In

77
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Figure 7.1 , we list all permutational groups for all possible bodies up to order
five.

d̃4 d̃5

d̃6

d1
d2 d3

W1 W2

W3

W4

D(Xu) = (d1, d2, d3, d̃4, d̃5, d̃6)

d̃4d̃5

d̃6

d1
d2d3

W1W2

W3

W4

D(R ◦ Xu) = (d3, d2, d1, d̃5, d̃4, d̃6)

Figure 7.1: The one-to-one correspondence of an physical transformation and
the permutation of the description. A 4-body containing solely tungsten (W)
atoms is reflected through the middle axis. Equivalently, the pairwise dis-
tances are permuted with the permutation σ = (3, 2, 1, 5, 4, 6). Here, di are
describing distances spanning the body |di| < rcut and d̃i are introduced to
additional describing the body uniquely, they might be larger than rcut.

For the case of identical atom numbers, we not only write the potential func-
tion as the sum of functions w|u| which assigns each |u|-body to its energy, but
decompose those functions again to distinguish between different interaction
grades. For example, we decompose the function w4 in the sum of w41 and
w42. Here, we used the notation of 7.1 describing with 41 a 4-body which has
a snake-like form and with 42 a star-like 4-body. For example, the potential
function incorporating up to bodies of order five can be written by

V5 = 〈w1, w2, w3, w41, w42, w51, w52, w53〉.

This decomposition is also reflected in the search space which is used to ap-
proximate V5 with the help of a penalized least squares regression. Given a
prescribed approximation accuracy pk ∈ N for the function wk, the search
space used to approximate wk reads,

Wk,≤pk = span{φl : l ∈ Gk,≤pk}

for basis functions which are invariant under the group action defined by Sk
(see 7.1, ’permutation invariance’), i.e.

φl(σ ◦ D(Xu)) = φl(D(Xu)), for all σ ∈ Sk.

This is achieved by simply summing over all permutations and normalizing,

φl :=
1
|Sk| ∑

σ∈Sk

φl ◦ σ.

Note, that we already defined the basis functions in exactly this way. Never-
theless, we did not mention how the group action Sk looks like but only made
reference that it should have a suitable form to reflect the physical assump-
tions.
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Body Notation Format Permutation Invariance

2 Body 2 S2 =
(
1
)

3 Body 3 S3 =

(
1 2 3
2 1 3

)

4 Body 41 S41 =

(
1 2 3 4 5 6
3 2 1 5 4 6

)

42 S42 =



1 2 3 4 5 6
1 3 2 5 4 6
2 1 3 4 6 5
2 3 1 6 4 5
3 1 2 5 6 4
3 2 1 6 5 4



5 Body 51 S51 =

(
1 2 3 4 5 6 7 8 9 10
2 1 4 3 6 5 7 9 8 10

)

52 S52 =

(
1 2 3 4 5 6 7 8 9 10
1 2 4 3 5 7 6 8 10 9

)

53 S53 =



1 2 3 4 5 6 7 8 9 10
1 4 3 2 7 6 5 10 9 8
2 1 4 3 5 9 8 7 6 10
2 3 4 1 7 9 10 5 6 8
3 2 1 4 8 6 10 5 9 7
3 4 1 2 10 6 8 7 9 5
4 1 2 3 8 9 5 10 6 7
4 3 2 1 10 9 7 8 6 5


Table 7.1: All possible bodies of order two to five with a varying grade of
connection and invariant permutations of the distances. The permutations Sk
form a group of the corresponding symmetric group Snk . The four body with
the least interaction grad is marked by 41, the larger the grade gets the larger
gets the second number. Solid lines are marking direct neighbors, the more
dashed a line is, the more particles are located in between. Moreover, the enu-
meration of the distances are stored from close neighbors to far ones and are
in a way sorted, such that they can be uniquely connected to a certain rotation
or reflection in space.
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7.1.2 Molecules

Different than before, one configuration X = (X1, . . . , XM) does not only con-
tain nuclei of the same atom number, but varying ones, i.e. there exists at
least one pair i, j ∈ {1, . . . , M} such that Zi 6= Zj. Since the interaction en-
ergy between two nuclei highly depends on the atom number of both, simply
taking the pairwise distance between all nuclei is not a suitable description
anymore and we need to specify a suitable way describing a molecule. Of
course, there is a wealth of ways to do so. For example, molecules can be rep-
resented as Coulomb matrices [40, 47, 52], scattering transforms [42], bags of
bonds [39], smooth overlap of atomic positions [4, 5] or generalized symme-
try functions [6, 7]. We present two approaches to include information about
different atomic numbers in our previous model. On the one hand, we could
adjust the description of an local atomic environment. Other than describing
an interaction between environment solely by its incorporated pairwise dis-
tances di,j = ||Ri − Rj||2, we need the additional information about the atom
numbers, (Zi, Zj, di,j). Thus, the form of the model in this case would be given
by

V(X) =
M

∑
i1=1

w1(Zi1) +
M

∑
i1<i2=1

w2(Zi1 , Zi2 , di1,i2) + . . .

+ wM

(
(Zi1 , Zij , di1,i2)i1,i2∈{1,...,M}

)
.

(7.1.1)

On the other hand, one can learn an energy potential for each specific interac-
tion separately,

V(X) =
M

∑
i1=1

w(Zi)(1) +
M

∑
i1,i2=1

w(Zi1 ,Zi2 )
(di1,i2) + . . .

+ w(Z1,...,ZM)

(
(di1,i2)i1,i2∈{1,...,M}

)
.

(7.1.2)

While in the first approach one function is trained describing all bodies of the
same order, in the second approach, we aim to describe each type of body
separately. To illustrate the second approach, lets have a look at an example.

Example 7.1 (Ethanol). Lets consider an Ethanol molecule C2H5OH, given by
the atom numbers and positions in space of each nuclei,

X =
(
(ZC, R1), (ZC, R2),

(ZH, R3), (ZH, R4), (ZH, R5), (ZH, R6), (ZH, R7),

(ZO, R8), (ZH, R9)
)
.

In this case, there are six possible pair interactions C-C, C-H, C-O, O-H, O-O
and H-H.
Thus, in this case we would train functions wC,C, wC,H, wC,O, wO,H, wO,O and
wH,H describing each possible pair interaction. We proceed analogously for
bodies of higher order.
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7.2 Compairing the different Basis Functions

During our thesis, we tested four different basis function sets, all based on dif-
ferent orthogonal polynomials. One sequence of orthogonal polynomials we
tested but excluded from our observations very early was the set of Hermite
polynomials given by

Hn(x) = (−1)nex2/2 dn

dxn e−x2
,

which are defined on R and symmetric around zero. Nevertheless, they seemed
to be impractical for our purpose due to their enormous increase of amplitude
when increasing the degree. Although, we transformed the polynomials and
its degree by multiplying a cut off function, the large absolute function evalua-
tions lead to great round-off errors and badly conditioned regression matrizes.
A different type of orthogonal polynomials we considered are the Chebyshev
polynomials and the Legendre polynomials. Both are special cases of the more
general Jacobi polynomials. Those are defined on the interval [−1, 1]. With
a linear transformation, we defined the polynomials on the interval [0, rcut]
along with a further transformation due a multiplication with the cut-off func-
tion. Basis functions based on Chebyshev and Legendre polynomials behave
well to a certain degree. Since the polynomials are only defined on the in-
terval [0, rcut], the resulting basis functions have still a degree no more less
than the original polynomials. Logically, those basis functions are not suit-
able for a degree higher than 10, since the basis functions would oscillate too
much. One way around would be to define the polynomials not on [0, rcut]
but on a larger interval, including polynomials with a varying upper inter-
val bound or searching the optimal bound in an expanded regression model.
Nevertheless, we only considered Chebyshev and Legendre polynomials on
the interval [0, rcut] which behave well up to a underlying degree of ten. The
fourth set of basis functions are defined on a sequence of Laguerre polynomi-
als on [0, ∞]. Since Laguerre polynomials are defined on the whole positive
real line, the basis function resulting after multiplying with a cut-off function
are of much smaller degree than its ancestor polynomial. Additionally, having
a look at the resulting basis functions in Figure 7.2, the minima and maxima
of the polynomial seems to seamlessly explore the definition area, while the
extreme points of the basis functions based on the Chebyshev or Legendre
polynomials are more distributed. This makes the set of basis functions based
on Laguerre polynomials seem much more stable and easier to use than the
other considered basis functions. This assumption will be confirmed in the
numerical results.
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(a) Laguerre polynomials (b) Legendre polynomials

(c) Chebyshev polynomials (d) Hermite polynomials

Figure 7.2: The first ten basis functions of basis sets based on Laguerre, Legen-
dre, Chebyshev and Hermite polynomials and transformed by a multiplication
with an cut-off function with respect to rcut = 5Å.

7.3 Remarks on the Implementation

Since our methods is based on the atomic decomposition ansatz and the many-A
Graph-
Representation

body expansion ansatz, the assembling of all pairs, triples and even bodies of
an higher order in a system is neccesary. Therefore, we use the structure of
the underlying problem, which connects two atoms if they are close enough.
This opens up the possibility to save the atoms or the molecules as an undi-
rected graph. A graph G = (V, E) is given by a set of vertices V and a set of
edges E. For a configuration X = (X1, . . . , XM) incorporating M atoms, the
corresponding graph is given by

GX = (VX, EX),

where the vertices are given by the incorporated atoms VX = {X1, . . . , XM}
and a set of edges E = {e1, . . . , e|E|}. Here, two vertices are connected with
an edge e = {Xi, Xj} if the atoms are ’close enough’. I.e. for a given maximal
interaction distance rcut > 0, two vertices are connected if their pairwise dis-
tance is smaller than rcut. In this setting, the problem of finding all subsets of
k-atoms, which are interacting can be reformulated to the problem of finding
all connected components of size k of the graph GX. This way, we incorporate
easily even rings and To compute such properties of graphs, so-called depth-
first search (DFS) and breadth-first search (BFS) methods are used which typ-
ically involve O(|V|) cost as they step over each vertex exactly once, see [25].
This approach of a graph representation in combination with the many-body
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expansion is treated in more detail in [33].

In our methods, we need to solve a least squares regression with a Tikhonov Performing a
Tikhonov
Regularization

regularization. Therefore, we used the sklearn.linear model.Ridge model to
use its efficient solving methods. However, the Ridge model solely solves the
linear least squares regression with Tikhonov regularization Γ = αI. For a
α > 0, it minimizes the objective function

‖A · c− y‖2
2+α‖c‖2

2, (7.3.1)

for a matrix A ∈ Rn×m, weight vector c ∈ Rm and target vector y ∈ Rn. To use
it for various Tikhonov matrices Γ ∈ Rm×m, we note that

‖Ã · c− ỹ‖2
2= ‖A · c− y‖2

2+‖Γ · c‖2
2

for the matrix

Ã :=
(

A
Γ

)
∈ R(n+m)×m

and the vector

ỹ :=
(

y
0

)
∈ Rn+m

To optimize the most costly part of the code, which is the assembling of deriva- Numba
tives of the basis functions to incorporate the forces, we tried to use Numba.
Numba translates Python functions to optimized machine code at runtime us-
ing the industry-standard LLVM compiler library. Nevertheless, in order to
compile it with Numba we needed to change various data structures, for ex-
ample it does not allow the usage of lists containing lists. Using the Numba
compilation leaded to a speed up of 30 percent of the costly function, but
marginal slowed down other parts due to the change to allowed data types.
We stopped this investigation because the changes were very error prone.

7.4 Data Sets

In order to demonstrate the flexibility of the applications, we will test our
methods on data sets of different characteristics. Therefore, we will examine
periodic atomic environments of solids as well as trajectories of molecules.

7.4.1 The Tungsten Data Set

Tungsten is a white shiny, malleable metal of medium hardness, high density Tungsten
and strength. The density is almost the same as that of gold. Tungsten has the
highest melting point (3695 K) and the highest boiling point (5828 K) among
all metals and its alloys are utilized in numerous technological applications,
for example as filament in incandescent lamps. The details of the atomistic
processes behind the plastic behavior of tungsten have been investigated for a
long time and many interatomic potentials exist in the literature reflecting an
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evolution over the past three decades.

The W-14 data set used in [63] incorporates 9693 configurations of diverse Data Set
atomic environments of elemental tungsten and is provided freely accessible
in xyz format [2]. Here, each configuration is given by a periodic unit cell and
1− 135 atoms in the contained in it. Of the different configurations, 25 percent
contains only one particle, the vast amount of 65 percent contains 12 parti-
cles, 8 percent incorporating 50 and 2 percent 125 particles. The energies are
computed using DFT/PBE and given in eV/Å. Also included are forces and
stresses, including bcc primitive cell, 128-atom bcc cell, vacancies, low index
surfaces, gamma-surfaces and dislocation cores.

1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75
0

1

2

3

·105

Distance between two nuclei (in Å)

Figure 7.3: The histogram in blue shows the pairwise distances distribution in
the data set W-14. The red histogram shows the normalized quantity of pair-
wise distances. Here, the value is divided by the area of possible occurrence.
Favorable distances are at 2.75Å, 3.18Åand 4.47Å.

0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
0
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Angles enclosed between three nuclei which are closer than 3.5 Åapart

Figure 7.4: The histogram shows the angle distribution in the data set W-14.
Here, we measured all occurring angles enclosed between particles which are
closer than 3.5Å.
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We will compare our results on the tungsten data set W-14 with the perfor- Comparative
Resultsmance of similar approaches. Amongst other things we will consult potentials

which are also based on the many-body decomposition up to a specific order.
The Morse and Tersoff potential are pair potentials, i.e. they incorporate only
pair interactions and are therefore not able to detect angle or dehidral angles.
A more advanced potential is the Stillinger-Weber Potential (StiWe), which ad-
ditionally incorporates interactions between three atoms and is thus receptive
for angles. Moreover, we will compare our results to the Gaussian Approx-
imation Potential (GAP) and the Moment Tensor Potential (MTP) [60]. Here,
the GAP is also constructed based on the atomic decomposition ansatz, but not
neccesarily assumes a further decomposition into many bodies as we did. As a
reminder, the atomic decomposition ansatz is the assumption, that two atoms
do not interact if they are farther apart than a threshold rcut > 0. With that, the
energy of one atomic configuration decomposes in energies of connected com-
ponents, which are closed under interaction. Those connected components,
or local atomic environments, are further decomposed in a ANOVA-like form
into its contributions of pairs, triples and on. In the GAP, one assumes that
the energy function has a linear representation in some search space character-
ized by a basis set Φ, f = w ·Φ. Additionally, we assume the coefficients, or
weights, w to be Gaussian distributed. We shortly introduced this approach
in section 2.2 . Equivalently, f forms Gaussian process over the function space
spanned by Φ, since each evaluation of f has by construction Gaussian dis-
tribution. As in section 2.2 the GAP is given by mean of the predictive dis-
tribution, which in practice breaks down to the calculation of a matrix vector
product. For a further introduction in the GAP, we refer to [5]. As the GAP
and all the other potentials, the MTP is also based on the atomic decomposi-
tion ansatz. Instead of further dividing those connected components in pairs,
triples and so on, Bartók constructed a certain kind of basis functions span-
ning the search set, which take an nondecomposed local atomic environment
as an input. Moreover, he proved that the so constructed search space covers
all possible energy potentials possible. Onto this search set, he performed a
regression with a penalization with respect to the L2 and the L0 norm.

7.4.2 The Molecular Dynamics (MD) Data Set

The molecular dynamics (MD) MD-17 data sets used in [19, 20, 52] contains Data Set
a wealth of trajectories of eight small molecules represented in Figure 7.5. A
trajectory of a molecule is given by a number of frames, descritizing its pys-
ical movement. The atoms and molecules are allowed to interact for a fixed
period of time, giving a view of the dynamic evolution of the system. The
number of frames in the data set MS-17 range in size from 150k to nearly 1M
conformational geometries. All trajectories are calculated at a rather high tem-
perature of 500 K to achieve exhaustive exploration of the potential-energy
surface of such small molecules. The molecules have different sizes, from the
smallest one, Ethanol with 9 atoms, to the largest incorporated, Aspirin with
21 atoms, and the molecular PESs exhibit different levels of complexity. The
energy range across all data points within a set spans from 20 to 48 kcal/mol.
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Force components range from 266 to 570 kcal/mol/A. The total energy and
force labels for each dataset were computed using the PBE+vdW-TS electronic
structure method. All geometries are in Angstrom, energies and forces are
given in kcal/mol and kcal/mol/A respectively. The data is provided in xyz
format with one file per conformation and is freely available [2]. The energy
and force labels for each geometry are included in the comment line. Positions
are given in Angstroms, energies are given in kcal/mol. Due to perfomance
reasons, we will only restrict to a manageable subset of the data. Therefore, we
randomly chose 2500 frames per molecule and test our methods on this subset
to get a feeling for the applicability.

In [56] there are Comparative deep tensor neural networks (DTNN) used re-Comparative
Results ceiving the molecular structures Results through a vector of nuclear charges

and a pairwise atomic distances expanded in a Gaussian basis. Similar ap-
proaches have been applied to the entries of the Coulomb matrix for the pre-
diction of molecular properties in [47]. The authors of [20] developed a gradient-
domain machine learning (GDML) approach to construct molecular force fields.
Instead of computing the derivative of the PES, the interatomic forces are di-
rectly learned by a functional relationship using a generalization of a kernel
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(a) Aspirin (C9H8O4)

(b) Benzene (C6H6)

OH

(c) Ethanol (C2H5OH)
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(d) Malonaldehyde (C3H4O2)
(e) Naphthalene (C10H8)
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(f) Salicylic Acid (C7H6O3)
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(g) Toluene (C7H8)
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(h) Uracil (C4H4N2O2)

Figure 7.5: Incorporated molecules in the MD-17 dataset in sceletal formula.
In a sceletal formula, carbon atoms are represented by the unlabeled vertices
(intersections or termini) of line segments. Hydrogen atoms attached to carbon
are implied. An unlabeled vertex is understood to represent a carbon attached
to the number of hydrogens required to satisfy the octet rule.
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ridge regression. To obtain the PES, the force field is integrated. In [20], the
GDML method is expanded by additionally incorporating spatial and tempo-
ral physical symmetries (sGDML).
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Chapter 8

Numerical Results

In the following we test our mathematical approaches to different data sets,
we presented in section. To show the different applications, we consider solids
embedded in a periodic environment as well as MD trajectories of small molecules.
During the results on tungsten, we present the errors in the format mean ±
standard variation. Errors on energy terms will be in eV/Åand on forces in
eV.

8.1 Results on Tungsten Data

In this section, we present our results on the W-14 data set. Considering the
highest order to be two, i.e. only considering pairs of atoms in our problem,
we are able to achieve an root mean squared error of 0.22eV on the energy
terms and 0.25 eVÅ−1 on the forces over the whole data set using a 9-fold
cross validation and a L2-regularization. In comparison, the Morse potential
and the Tersoff potential which are both pair potentials as well achieve an error
of 1.32eV (0.49 eVÅ−1) and 0.53eV (0.37 eVÅ−1)respectively. When raising the
order of incorporated bodies to three, the error reduces to 0.12eV on the energy
and 0.14eVÅ−1 on the forces. In comparison to another three-body potential,
the Stillinger-Weber potential which achieves an error of 1.73eV (0.39eVÅ−1).
In both terms we are able to reduce the error by more than 50 percent. Note
that we are able to especially increase the accuracy on the energy terms. Two
other potential is the Moment Tensor potential (MTP) and the Gaussian Ap-
proximation potential (GAP). The GAP is able to achieve an error of 0.06eVÅ−1

and the GAP an error of 0.04eVÅ−1 on the force terms. But this is no surprise
since they do not truncate the incorporated sets of particles as we do, but incor-
porate all lying inside an cut-off radius. Additionally, all of those comparative
potentials are also incorporating stress terms coming in as the second deriva-
tive of the potential function, while we only involved energy and force terms.

8.1.1 Varying the Penalization Norm

As we mentioned earlier, the choice of the penalizing norm in a least squares The
Penalization
Norm89
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regression problem is crucial. In the regression formulation this norm defines
the search set as a bounded ball in a prescribed function space. In the Bayesian
formulation this norm specifies a prior distribution on the weights. In practice,
we are able to encode a certain grade of additional knowledge with the help
of the penalization norm. In the following, we will investigate the impact of
three different penalizations.

As the first case, we consider the basic L2 regularization characterized by aL2 Norm
Tikhonov matrix Γ = α/2 · I. This case corresponds to a gaussian prior dis-
tribution with covariance matrix α−1 I and a L2-bounded ball in the function
space, which gets larger as α decreases. Nevertheless, we will observe an os-
cillating behavior of the approximation in regions which are underrepresented
by the data. Since the W-14 data set does not include distances smaller than
2Å, the fitted functional oscillates in the interval [0, 2Å] in order to better cap-
ture the behavior in represented regions of larger distances. For an overview
over the error distribution with an L2 regularization, see table 8.19.
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Figure 8.1: A typical error evolution under a varying regularization term.
Here, the root mean squared error (RMSE) on the energy is plottet against
the regularization parameter α of the L2 regularization. The decreasing part
describes a phase of overfitting. Here, a lack of regularization leads to a too
strong orientation on the training data. Otherwise, the increasing part de-
scribes a phase where the regularization is too high to capture the model.

To confine those oscillations, we also observed the behavior under an Hs-likeSobolev-like
Norm norm regularization. As we introduced in section this norm forms a Tikhonov

regularization with Γ = (M+DMDT)s/2 with mass matrix M and total deriva-
tive of the basis functions D. Even though we do not consider Fourier basis
functions in our numerical application, we will define a Sobolev-like norm by
considering the Tikhonov matrix Γ = (diag((1+ 12)s/2, ..., (1+ p2)s/2)), where
p encodes the degree of the underlying orthogonal polynomials. Thus, we
choose a stricter penalization for higher oscillations of the basis functions to
limit oscillating behavior in uncertain regions. Penalizing with respect to this
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Figure 8.2: The two body part of the learned potential, mapping the distance
between two particles onto its associated energy contribution. The potential
fitted with a cut-off radius of 5Å, based on Laguerre polynomials up to degree
20. The blue solid line shows the outcome using a L2 regularization with α =
0.0007. On the left hand side, we plotted the potential function starting from
zero Å. Since the data does not include particles which are closer than two Å,
we notice an oscillation behaviour of the function in those regions. On the
right hand side we plotted the same potential function on the area which is
presented in the data. We notice that in fact the potential function captures
the characteristics of the data. The three additionally marked points in the
right plot are the favourable distances incorporated in the data set and are
in fact local minima of the learned function. In comparison, the red dashed
function is fittet using a H1/2-like regularization. While the outcome is way
more shallow in the unrepresented data, the favourable distances are not as
well captured.

norm is equivalent to assuming a gaussian prior on the weights with covari-
ance matrix 2Γ−1/2. Here, the entries decrease along the diagonal. Since the
weights are also centered, this describes that the entries are becoming more
unlikely to differ from zero as the index increases. In the regression view
point, this penalization describes a bounded ellipse in the underlying func-
tion space, getting narrower in the direction of higher oscillation. In figure
, we see the impact of a H1/2 regularization (dashed) in comparison to a L2

regularization. Here, one sees the learned energy potential based on Laguerre
polynomials, describing pairs of atoms by mapping its pairwise distance onto
its corresponding energy constribution. The function is not only flatter in the
unrepresented area, but also in the presented one, which is not desired and
leads to an higher error.

To also penalize the order of the body, we did a Tikhonov regularization with Introducing a
Penalization
for High Body
Orders

Γ = (diag((1 + 12)(s+k)/2, ..., (1 + p2)(s+k)/2)). Here, additionally to the degree
of the underlying polynomials, also the body order is penalized. This will
bias the model towards having smaller weights for bodies of higher order. As
we see in table 8.19 this makes the prediction worse compared to L2 regular-
ization, if we are considering only small bodies. On the other hand for five
bodies it suddendly outperforms L2 and the Sobolev-like regularization.
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Figure 8.3: Comparison of the predicted energy and forces with the ESM calcu-
lated ones. Here, the green marks describes the behaviour of a model trained
on Laguerre polynomials, the orange marks a model trained on Chebyshev
polynomials and the blue marks a model trained on Legendre Polynomials.
All models are trained on Polynomials up to degree ten and with a L2 regular-
ization with α = 0.0007. In this stadium, the polynomials behave very similar
in their predicting accuracy.
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force (eVÅ−1)
α RMSE MSE WCE

Laguerre 0.0007 0.1445 ± 0.023 0.1053 ± 0.014 1.1733 ± 0.132
0.1 0.1809 ± 0.031 0.1220 ± 0.025 1.3486 ± 0.210
1 0.1934 ± 0.035 0.1304 ± 0.028 1.3901 ± 0.259
10 0.2086 ± 0.038 0.1500 ± 0.031 1.2939 ± 0.554

Legendre 0.007 0.1511 ± 0.260 0.1031 ± 0.021 0.9739 ± 0.154
0.1 0.1574 ± 0.028 0.1071 ± 0.023 1.1367 ± 0.208
1 0.1609 ± 0.027 0.1094 ± 0.023 1.1861 ± 0.258
10 0.1640 ± 0.028 0.1117 ± 0.024 1.1463 ± 0.117

Chebyshev 0.007 0.1559 ± 0.028 0.1069 ± 0.022 1.0280 ± 0.157
0.1 0.1554 ± 0.028 0.1077 ± 0.022 1.0405 ± 0.121
1 0.1582 ± 0.028 0.1094 ± 0.023 1.0725 ± 0.099
10 0.1634 ± 0.028 0.1126 ± 0.023 1.1556 ± 0.120

energy (eV)
α RMSE MSE WCE

Laguerre 0.0007 0.1289 ± 0.036 0.0978 ± 0.027 0.5749 ± 0.187
0.1 0.1711 ± 0.033 0.1269 ± 0.031 0.6357 ± 0.084
1 0.1919 ± 0.034 0.1369 ± 0.035 0.7863 ± 0.258
10 0.2370 ± 0.042 0.1678 ± 0.045 0.8643 ± 0.217

Legendre 0.007 0.1511 ± 0.026 0.1031 ± 0.021 0.9739 ± 0.154
0.1 0.1537 ± 0.036 0.1100 ± 0.030 0.5678 ± 0.129
1 0.1684 ± 0.025 0.1197 ± 0.022 0.7535 ± 0.154
10 0.2181 ± 0.052 0.1586 ± 0.049 0.8302 ± 0.186

Chebyshev 0.007 0.2065 ± 0.084 0.1435 ± 0.061 0.6237 ± 0.134
0.1 0.1785 ± 0.037 0.1309 ± 0.032 0.6229 ± 0.207
1 0.1792 ± 0.026 0.1306 ± 0.027 0.5624 ± 0.090
10 0.2088 ± 0.030 0.1441 ± 0.034 0.6732 ± 0.143

Figure 8.4: The error distribution of a least squares regression penalizing with
an L2 norm with Tikhonov matrix Γ = αI. Here, we incorporate bodies up to
order three and approximate on the search set based on Laguerre, Legendre
and Chebyshev polynomials up to degree twenty. Therefore, we operate a
eight-fold cross validation on the entire data set W-14 and train on the energies
and forces, a cut-off radius rcut = 5Åand a set including 1k data points. In the
above tabular one sees the error on the force terms in eVÅand on the bottom
tabular the error on the energy terms in eV. RMSE describing the root mean
squared error, MSE the mean squared error and WCE the wort case error.
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kmax Γ forces (eVÅ−1)
MAE RMSE WCE

2 L2 0.2503± 0.02 0.3676± 0.02 1.7253± 0.14
2 Hd/2 0.3015± 0.04 0.4517± 0.05 3.1087± 0.79
2 H(d+k)/2 0.3469± 0.01 0.5393± 0.02 4.0410± 0.36
3 L2 0.1620± 0.01 0.2426± 0.03 1.0229± 0.13
3 Hd/2 0.1871± 0.01 0.2729± 0.02 1.4044± 0.04
3 H(d+k)/2 0.2688± 0.08 0.4037± 0.13 2.3439± 1.05

41 L2 0.1494± 0.00 0.2169± 0.00 1.1746± 0.12
41 Hd/2 0.1715± 0.01 0.2472± 0.01 1.3288± 0.13
41 H(d+k)/2 0.1678± 0.02 0.2497± 0.03 1.3955± 0.31
42 L2 0.1570± 0.02 0.2335± 0.03 1.3202± 0.28
42 Hd/2 0.1530± 0.02 0.2296± 0.03 1.3793± 0.25
42 H(d+k)/2 0.1367± 0.01 0.2299± 0.00 1.7909± 0.05
51 L2 0.1724± 0.01 0.2460± 0.01 1.3647± 0.11
51 Hd/2 0.1319± 0.00 0.1940± 0.00 1.1356± 0.17
51 H(d+k)/2 0.1310± 0.00 0.1934± 0.00 1.0948± 0.15

kmax Γ energy (eV
MAE RMSE WCE

2 L2 0.1678± 0.04 0.2235± 0.04 0.4336± 0.13
2 Hd/2 0.3882± 0.14 0.5605± 0.19 1.2438± 0.40
2 H(d+k)/2 0.4364± 0.14 0.6984± 0.30 1.3134± 0.24
3 L2 0.1382± 0.02 0.2279± 0.05 0.5290± 0.13
3 Hd/2 0.2384± 0.05 0.3397± 0.06 0.7628± 0.18
3 H(d+k)/2 0.3695± 0.21 0.6013± 0.46 1.2892± 0.48

41 L2 0.1304± 0.03 0.1990± 0.05 0.5289± 0.16
41 Hd/2 0.2359± 0.01 0.3496± 0.03 0.8881± 0.12
41 H(d+k)/2 0.2779± 0.05 0.3939± 0.07 0.9973± 0.29
42 L2 0.2366± 0.07 0.3334± 0.09 0.8143± 0.32
42 Hd/2 0.2595± 0.08 0.3772± 0.11 0.8516± 0.29
42 H(d+k)/2 0.3274± 0.03 0.5737± 0.08 0.8692± 0.15
51 L2 0.4069± 0.06 0.5719± 0.09 1.6639± 0.92
51 Hd/2 0.2693± 0.03 0.4150± 0.07 0.9928± 0.24
51 H(d+k)/2 0.2535± 0.03 0.3970± 0.06 1.0139± 0.19

Figure 8.5: Comparison of the different Tikhonov regularizations. Here, kmax
denotes the maximal incorporated order of bodies. L2 the a regularization
with respect to Γ = αI, Hd/2 the Sobolev-like regularization and H(d+k)/k the
Sobolev-like regularization with an additional penalization of the high body
orders.
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Figure 8.6: The fitted potential function. On the LHS the pair potential map-
ping each distance between two particles onto an energy in eV. On the RHS a
hypersurface of the three-body potential. To visualize the three-dimensional
function, the third distance is fixed to the value 2Å, the other two distances are
marked in the x- and y-axis. The corresponding energy is given in the z-axis.
The two-body potential captures the most occurring distance.

(a) Test error evolution of the adaptive
sparse grid approach.

(b) level sets of (a).

(c) corresponding choice of the regulariza-
tion parameter α in each step.

(d) level set of (c)

Figure 8.7: Regularization parameter λ optimally chosen in each step, with
adaptive SG approach using Laguerre polynomials incorporating bodies up to
order four. With an adaptive regularization an error of 0.12eV/A on the forces
can be achieved. Choosing the optimal overall regularization results into an
error of 0.18eV/A. on the x-axis one sees the size of the search space, one
y-axis the body order.
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Figure 8.8: Both plots show the RMSE of a least-squares predictor. In the left
picture one sees the prediction value for different values of γ. When one aver-
ages over all values of γ one gets a mean of 0.029 and a standard deviation of
0.011. As a comparison in the right plot we also plotted the prediction error of
a penalized least squares regression trained on a random subset of the data. It
has a RMSE of 0.029

8.1.2 Incorporating the Regularization Parameter

A sign of too little data is an overfitting behaviour, this can be cushioned to a
certain degree by a more flexible penalization. So far, we have chosen a gen-
eral regularization parameter λ in an optimal way. Based on this penalization
we then defined a cost function. Nevertheless, the dimensional splitting of the
problem in lower dimensional sub-problems also allows a more diverse regu-
larization. One can incorporate the regularization parameter itself in the adap-
tive method by first discretizing an interval Λ of possible regularization pa-
rameters λ and then expand the cost-function by λ, instead of just previously
fixing one. The expanded adaptive sparse grid approach allows to choose the
optimal regularization parameter in each step, allowing a stricter penaliza-
tion in some regions than in others. This leads to a more flexible algorithm
that is able to cushion overfitting behavior by increasing the regularization in
these regions and consequently improving the approximation power without
requiring more information, see 8.7.

8.1.3 Active Learning

As we derived in section 4.4 we want to choose the training set which mini-
mizes the determinant of GGT where

G = (AT A + ΓTΓ)−1AT,

for the Tikhonov matrix Γ. Let us first consider the unregularized case. To
simplify things, we fix the number of training points such that the matrix A
is quadratic. To do this we only use 136 training examples as this is also the
number of features and thus columns of A. This way, the calculation reduces
to the maximization of |det(A)| and is very cost-efficient. The active learning
algorithm got a pool of 6000 data points to choose the best 136 from. We com-
pare it with 136 randomly chosen ones. As we see in 8.8 the predictor trained
on the output of the active learning algorithm does considerably better. On the
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Figure 8.9: The determinant of the square matrix A while exchanging rows for
other data points to increase the determinant. Since this is the case where the
algorithm is based on a square matrix A the training set size is 136.

x-axis there are different values for the extrapolation grade γ. Even for values
as big as 10 which imply that we only take new rows into the matrix if they
increase determinant eleven-fold. The weak dependence on γ is explained
when one sees the algorithm run. It initially increases the determinant rapidly,
going from a near-zero determinant to determinants in the trillions and then
gets slower. When it comes to the point that γ matters and the algorithm halts
the matrix determinant was already vastly improved. This can also be seen in
figure 8.9.

A further step is to actually maximize the determinant of Fisher information
AT A and thus minimize the Cramér-Rao bound. This also lead to minimiza-
tion of our prediction variance. In figure 8.10 one can see the comparison of
a least squares algorithm trained on a random subset of a given size and a
least squares algorithm trained on the resulting matrix A after optimizing the
determinant of AT A using active learning. Here γ is fixed at 0.01. Table 8.11
gives a more precise view on the data used to generate figure 8.10. Especially
for small training sets the optimized training data results in a much better pre-
diction. When we increase the size of the training data the randomly chosen
subset catches up. The whole data set consisted of 9693 and choosing a ran-
dom subset of over 1000 data points probably already covers most of the area
on which we will later test. Therefore the predictor will not need to extrap-
olate and does well. The optimization of the determinant of AT A which also
seeks to reduce the amount of extrapolation that will be needed later does not
deliver such a big gain anymore. This can also be seen in figure 8.12. Here
the training set size is 800. The determinant still grows but if one compares the
y-axis of 8.12 to 8.9 there is less growth. There are also longer phases where the
algorithm does not find a new data point Φ(x∗) with a sufficient extrapolation
grade ψ(x∗) and hence the determinant stays constant. This also underpins
the interpretation of that the 800 random data points already cover the space
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Figure 8.10: One data point corresponds to fixing a training size and either
choosing a random subset of that size or maximizing the determinant of AT A.
Then we varied the training set size by just adding new random points to
the training set for the blue line. For the orange line we increased the size
of the matrix A hence giving the active learning algorithm a bigger matrix to
optimize.

#TS optimal TS random TS
136 0.02770 0.10240
150 0.02136 0.07937
200 0.01537 0.02525
250 0.01182 0.02195
300 0.01219 0.02081
400 0.01103 0.01224
500 0.01039 0.01230
750 0.01002 0.01055
1000 0.00907 0.00952
1100 0.00909 0.00876
1250 0.00891 0.00859
1500 0.00937 0.00818

Figure 8.11: RMSE evolution on the energy (eVÅ−1) for an optimal chosen
training data set versus a randomly chosen one. More explanation about the
creation of the data is given in the description of figure 8.8. The first column is
the size of the training set.
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Figure 8.12: The figure shows how the determinant of AT A develops when
iterating the active learning algorithm. The training set size is set to 800. The
growth is slower than the growth in figure 8.10 where the training set size is
only 136.

Figure 8.13: In this figure the active learning algorithm minimizes the deter-
minant of GGT through maximizing the determinant of (GGT)−1. On the left
hand side we plot the regression error of a linear regression trained on a ran-
dom subset as comparison. In the right figure we did another experiment
where we also ran an active learning algorithm optimizing AT A.

well enough and it is hard to find exploratory data points to improve A.

In theory the optimal prediction variance should be attained if we minimize
the variance of GGT directly. One does not have to take any matrix invese as
the determinant commutates with the inverse and we can calculate it directly.
The active learning algorithm maximizes the determinant of (GGT)−1. The
result of this can be seen in figure 8.13. Optimizing GGT still outperforms just
random sampling but it seems to be worse than optimizing AT A in practice.
Other experiments we did also indicate that optimizing AT A leads to a smaller
prediction error then optimizing GGT.
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#TS maximized det(AT A) minimized det(GGT) random subset
136 0.02341 0.03508 0.24456
150 0.01834 0.02435 0.35243
200 0.01527 0.04017 0.02682
250 0.01248 0.01853 0.02022
300 0.01296 0.01834 0.01466
400 0.01192 0.01329 0.01278
500 0.01225 0.01076 0.01170
750 0.01029 0.01177 0.01059

Figure 8.14: Data used to generate the right figure in 8.13. The leftmost column
is the size of the training set.

8.2 Results on the Molecular Dynamics (MD) Data Set

In the following section, we will apply our methods to a randomly chosen
subset of the molecular dynamics MD-17 data set. Although we mentioned
existing methods in section 7.4.2, the aim of this section is not to outperform
them, but to optimize the accuracy under a given work load in a simplified
setting. Instead of considering all atoms of a molecule, we will restrict ourself
to simply incorporate subsets up to a specific size. Due to reasons of cost, we
will limit the maximal set of atoms by four, which is a drastic simplification
when describing molecules up to 21 atoms like aspirin. Nevertheless, we will
show that even in this simplified setting, we are able to achieve chemical accu-
racy of less than 1 kcal/mol on most molecules, except on aspirin, see Figure
8.15 . However, an energy prediction when considering even smaller sets, i.e.
sets of pairs or triples, fail to capture the energy properly. Thus, an incorpo-
ration of up to four atoms seems to be the smallest regime which leads to an
appropriate prediction, see Figure 8.16 and Table 8.19.

In the following, we use a cut off radius of 2Å. This choice ensures that all
covalent bonds of the molecules are represented. A covalent bond, also called
a molecular bond, is a chemical bond that involves sharing of electron pairs
between atoms. In the structural formula of a molecule they are represented
by an edge connecting two atoms. The distances between two atoms forming
an covalent bond represented in the data are all smaller than 2Å, but not much
smaller.

Thus, when incorporating all pairs of atoms which are not farther apart than
2Å they are most likely also forming a covalent bond. Moreover, we will most
of the time only considering one specific basis set instead of comparing all
polynomials, since they behave quite similar. This is due to the small size of
one molecule compared to a periodic environment describing a solid and the
consideration of basis functions which oscillate not that much. Additionally,
we solely will train on the energies of the data set.
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Figure 8.15: The accuracy of the regression model in terms of the mean abso-
lute error (MAE) as a function of training set size. Incorporating only inter-
actions of four atoms, we are able to achieve chemical accuracy of less than 1
kcal/mol for all molecules except aspirin, which is with 21 atoms the largest
one, see Table 8.2

8.2.1 A Sparse Tensor Product Approach

We observe, that we are able to achieve a similar accuracy incorporating less
degrees of freedom when considering a more sparse search space. Depend-
ing on the complexity of the molecule, we are in some cases able to notably
increase the approximation accuracy while using a fixed amount of degrees
of freedom. In the following sections we focus on four molecules: Benzene,
Uracil, Salicylic and Aspirin. Note, that even if we are approximating each
molecule with the same search set, the degrees of freedom vary, since it ad-
ditionally depends on the molecule itself. As we mentioned in section 7.1, in
the case of differing atom numbers we fit a separate function for each possible
coalition of atoms. This depends on the number of different atoms incorpo-
rated in one molecule. For example, in the case of Benzene C6H6 there are
only three different types of atomic pairs (C-C, H-H and C-H), while in Uracil
C4H4N2O2 there are already ten. Thus, although we are approximating the
energy of each and every molecule by the same search set, the different func-
tional forms leads to different degrees of freedom.
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Molecule Formula Size Training Set
200 400 600 800 1000

Uracil C4H4N2O2 3.3 1.47 0.93 0.63 0.59
Naphthalene C10H8 1.23 0.98 0.94 0.88 0.81

Ethanol C2H6O 1.34 0.95 0.833 0.78 0.76
Malonaldehyde C3H4O2 1.61 1.33 1.09 1.05 0.94

Salicylic C7H6O3 1.82 1.26 1.01 0.76 0.68
Toluene C7H8 1.94 0.97 0.95 0.91 0.77
Benzene C6H6 0.70 0.56 0.49 0.45 0.41
Aspirin C9H8O4 2.76 1.92 1.76 1.43 1.38

Table 8.1: The accuracy of the regression model in terms of the mean absolute
error (MAE) dependent of the training set size. Incorporating only interactions
of four atoms, we are able to achieve chemical accuracy of less than 1 kcal/mol
for all molecules except aspirin, which is with 21 atoms the largest one.

Aspirin Deg. of Freedom 47 233 716 1784 3860 7628 9397
FG 31.72 30.33 27.73 21.26 6.59 3.49 3.44
SG 29.55 19.58 11.80 8.45 4.98 3.64 3.40

Benzene Deg. of Freedom 21 97 294 735 1604 3200 5927
FG 27.10 22.92 14.67 4.07 0.76 0.45 0.35
SG 24.67 19.74 4.45 0.90 0.53 0.42 0.35

Salicylic Deg. of Freedom 45 229 721 1831 4021 6437 12229
FG 26.70 25.46 21.82 13.60 3.96 2.13 1.20
SG 26.36 23.80 20.17 4.13 2.49 1.74 1.08

Uracil Deg. of Freedom 61 309 693 1361 2487 4277 5487
FG 25.98 20.97 15.66 8.71 3.23 1.09 0.82
SG 20.25 7.18 3.42 1.86 0.91 0.72 0.65

Toluene Deg. of Freedom 15 120 369 927 2025 4038 6134
FG 24.62 23.52 19.51 13.22 2.96 1.66 1.15
SG 23.38 12.74 4.28 2.53 2.18 1.00

Ethanol Deg. of Freedom 35 105 354 909 1573 3286 7716
FG 16.89 16.05 14.02 10.87 7.61 2.79 1.19
SG 15.75 6.46 4.22 2.72 1.97 1.38 1.08

Table 8.2: Comparison of the performance on full and sparse grid in terms of
the mean absolute error (MAE) dependent of the allowed maximal number of
degrees of freedom.
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Figure 8.16: The approximation accuracy when incorporating all sets of max-
imally two, three or four atoms which are closer than rcut = 2Å. On the left
hand side, the root mean squared error (RMSE) on the energy of Benzene is
written as function of k, which describes the search set Vk (based on Legendre
polynomials). On the right hand side, the corresponding predictive accuracy
when incorporating body orders up to two, three or four respectively.



104 CHAPTER 8. NUMERICAL RESULTS

0 0.2 0.4 0.6 0.8 1

·104

100.5

101

101.5

Degree of freedom

R
M

SE
on

en
er

gy

(a) Aspirin

0 2,000 4,000 6,000

100

101

Degree of freedom

R
M

SE
on

en
er

gy

(b) Benzene

0 0.5 1 1.5

·104

100

101

Degree of freedom

R
M

SE
on

en
er

gy

(c) Salicylic

0 2,000 4,000 6,000

100

101

Degree of freedom

R
M

SE
on

en
er

gy

(d) Uracil

0 2,000 4,000 6,000

100

101

Degree of freedom

R
M

SE
on

en
er

gy

(e) Toluene

0 2,000 4,000 6,000 8,000
100

101

Degree of freedom

R
M

SE
on

en
er

gy

(f) Ethanol

0 2,000 4,000 6,000 8,000

100.5

101

Degree of freedom

R
M

SE
on

en
er

gy

(g) Malonaldehyd

0 1,000 2,000 3,000 4,000

101

Degree of freedom

R
M

SE
on

en
er

gy

(h) Naphthalene

Figure 8.17: Comparison of the performance on full grid (red squares) and
sparse grid (blue dots) in terms of the mean absolute error (MAE) depending
on the allowed maximal number of degrees of freedom. See figure 8.18 for
an overview over the corresponding index set. See table 8.2 for details on the
MAE error.
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Figure 8.18: An evolution of the chosen indices during an adaptive sparse grid
algorithm.
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Benzene Uracil Naphthalene Aspirin
Vp kmax RMSE MAE RMSE MAE RMSE MAE RMSE MAE
5 2 21.19 3.70 20.59 3.55 23.67 3.78 28.16 4.12
10 2 14.31 3.04 15.52 3.12 20.18 3.55 24.11 3.93
15 2 13.95 2.98 14.42 2.98 20.26 3.55 23.57 3.85
5 3 8.49 1.42 18.02 3.34 26.24 3.98 33.02 4.61
10 3 2.20 1.08 5.34 1.79 7.33 1.99 16.35 3.17
15 3 2.01 1.08 2.77 1.30 6.27 1.71 6.61 2.01
5 4 2.47 0.79 14.07 2.93 27.35 4.18 30.17 4.37
10 4 0.28 0.35 2.36 1.19 15.52 3.08 18.49 3.40
15 4 0.19 0.31 0.59 0.59 1.86 1.06 4.22 1.54

Ethanol Malonaldehyd Salicylic Toluene
Vp kmax RMSE MAE RMSE MAE RMSE MAE RMSE MAE
5 2 17.69 3.31 13.61 2.94 28.54 4.24 19.27 3.49
10 2 16.48 3.21 12.20 2.80 26.59 4.08 15.61 3.07
15 2 9.28 2.38 7.63 2.16 23.25 3.81 14.92 3.00
5 3 15.42 3.08 13.06 2.94 26.49 4.09 16.75 3.27
10 3 10.91 2.58 8.53 2.30 15.56 3.18 3.89 1.54
15 3 2.61 1.24 3.19 1.37 4.92 1.75 2.65 1.27
5 4 14.54 2.98 13.02 2.87 24.73 3.97 17.68 3.37
10 4 8.73 2.26 7.82 2.15 9.41 2.45 4.34 1.59
15 4 2.45 0.94 1.87 1.05 1.67 0.97 1.04 0.75

Figure 8.19: Overview of the achieved error on the root mean squared error
(RMSE) and the mean absolute error (MAE) on the energy. Here, kmax de-
scribes the maximal order of incorporated bodies. One sees, that a lower max-
imal body order than four is in general not sufficient to describe the energy of
the incorporated molecules in MD-17.



Chapter 9

Conclusion

In this thesis we analysed the penalized least squares regression to approx-
imate the high-dimensional Born-Oppenheimer Potential energy surface. To
examine large physical systems and simplify the problem, we assumed the
PES to decompose in local atomic neighbourhoods which do not interact. We
specified a maximal distance rcut > 0 under which an interaction of two par-
ticles is possible. The many-body decomposition further decomposes those
atomic neighbourhoods in lower dimensional parts, i.e. into single nucleus,
pairs of nuclei and so on. Based on these locality assumptions, we investigated
two approaches in order to optimize the penalized least squared regression.

To cope with the decomposition of the physical space in lower dimensional
parts, we also constructed a search space that is decomposed into lower di-
mensional parts which opens up the possibility of an adaptive sparse grid ap-
proach. Here, we decided step by step which body order to incorporate and
with which accuracy to approximate each body. In chapter 8 we applied the
penalized least squares approach on a data set incorporating tungsten in a pe-
riodic environment and on small molecules. Here, we were able to achieve
a root-mean squared error of 0.12 eVÅ−1 on the energies and of 0.14 eV on
the forces. On the molecular dynamics data set we were able to achieve an
mean-absolute error of chemical accuracy, i.e. of less than 1kcal/mol for all
molecules, except aspirin as the largest one. Moreover, we showed that we in
the MD-17 data set are able to achieve the same error with up to 3000 degrees
of freedom less than in the full grid case.

As a second approach, we considered an optimization regarding the training
data rather than the search set. Following [49] we did that by minimizing the
models variance. This way, we choose the training data in a way which pro-
vides for the most certainty about the approximation. We explained the one
to one correspondence to the Fisher information. Minimizing the variance in
the penalized least squares model broke down to maximizing the determinant
of a matrix. We stated the Cramér-Rao bound and even made it explicit for
the case of regularized linear regression. Furthermore we saw that the linear
regression estimator even achieves the Cramér-Rao bound and we are actu-
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ally directly minimizing our prediction variance when maximizing the Fisher
information. In chapter 8 we demonstrated that maximizing the Fisher infor-
mation is equivalent to choosing the training data set in such a way that it
covers as much of the domain as possible. The bigger the random data set the
smaller the benefit from active learning got, since it is harder to find new data
points exceeding the extrapolation threshold.

What makes active learning especially interesting for the case of approximat-
ing the Born-Oppenheimer potential energy surface is that obtaining labeled
data is very expensive. The active D-optimality approach we chose does not
need labeled data to make the choice of which data points are important for a
good estimate. It solely relies on the unlabeled data and can be used as a tool
to decide which new data points should be labeled next.
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