
An Explicit Method for
Compressible Flow

Simulation with Regards to
Fluid-Motion Coupling

Jan Krautter

Born 11th March 1992 in Schorndorf

19th January 2016

Master’s Thesis Mathematics

Prof. Dr. Michael Griebel

Prof. Dr. Marc Alexander Schweitzer

Institute for Numerical Simulation

Mathematisch-Naturwissenschaftliche Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Contents

1 Introduction 3

2 An explicit compressible flow solver 7
2.1 The compressible Navier-Stokes equations 7
2.2 A short review of existing methods 9
2.3 The MacCormack scheme in fluid dynamics 11
2.4 Boundary conditions . 13
2.5 Stability . 17
2.6 Parallelization . 18
2.7 An overview of the full algorithm 19

3 Geometry representation 23
3.1 The level set method . 23
3.2 Geometry import via the stl file format 25
3.3 Comparison to the flag-field 26

4 Simulation of moving objects 29
4.1 Adjusting the boundary conditions 29
4.2 Moving geometries with a prescribed velocity 31
4.3 Translation vs. rotation . 33
4.4 Bidirectional coupling . 34

5 Example results 37
5.1 First Tests . 37
5.2 A benchmark problem . 42
5.3 A physical problem . 52
5.4 Unidirectional fluid-motion coupling 56
5.5 Bidirectional coupling . 65

6 Outlook 73

Literature 79

1

2 CONTENTS

Chapter 1

Introduction

The physical understanding of processes involving flowing gases and/or liquids,
so-called fluids is a field of vast theoretical interest, as well as many practical
applications. The corresponding differential equations however, still pose a
huge challenge, as of today. Even in the most favourable conditions, they resist
any attempt at proving global solutions and for complex problems, explicit
solutions in closed form are out of the question, anyway. On the other hand,
physical experiments, often conducted in huge wind or water channels, are
very expensive and lack the kind of visualization and evaluation possibilities
of mathematical solutions. Designing robust and accurate numerical methods
to approximate solutions, and cover the middle ground between these two
extremes, preferably establishing a positive feedback loop with either of them,
thus, becomes all the more important. On the numerical side, flows around
static geometries are by now comparatively well understood in both the
incompressible, as well as the compressible case, at least in the laminar flow
regime. For higher Reynolds numbers, turbulent phenomena still cause a lot
of headache. The advent of ever faster computer hardware and techniques
such as the large-eddy simulation, however, push the boundaries very fast
in this respect, so it seems like it might only be a matter of time, until
even very complex simulations of today’s standard might be handled rather
easily. There is a whole different class of fluid problems, though, that still
has many theoretical, as well as practical challenges ahead, despite many
interesting applications and the ever increasing interest in it. In the most
general sense, we are talking about flows, involving geometries, that evolve
over time, either by having some parts of the geometry that are moving
and/or rotating, like with a turbine or an engine, or even more complex, by
having flexible or otherwise deforming objects, whose shape is dependant on
the flow surrounding them. The most prominent example, that showcases the
importance of these sorts of problems, until today, remains the collapse of
the Tacoma Narrows Bridge in 1940, due to unforeseen oscillations caused by
such fluid-structure interaction (FSI). Another take on the difficulty of such

3

4 CHAPTER 1. INTRODUCTION

problems, is the slightly ironic fact, that a paper air plane is, at least in some
regards, actually much more difficult to understand and simulate, than a real
aircraft. One huge area of applications, that we will come back to, in the
course of this thesis, is the biological world, most prominently represented by
the flight of birds and/or insects. Quite obviously, a simulation solely based
on static obstacle geometry can only describe such a complex process, in a
very limited way.

For the course of this thesis, keeping these complex problems as a motivation
in the back of our mind, we want to first look at more basic examples of this
class, restricting ourselves to the first case of purely moving geometries, rather
than a full fluid-structure interaction. Breaking such processes further down,
we distinguish between a so-called unidirectional fluid-motion coupling, where
only influences in one of the directions are considered, and a bidirectional
coupling, were both are considered at the same time. In the first case, we
are interested in the influences, an obstacle, with a prescribed trajectory, has
on the surrounding flow, neglecting the forces exerted by the fluid on said
obstacle. One can immediately think of many applications, like stirring a
pot of water, where such a premise would make sense. The other case, were
objects are passively transported and/or transformed by a flow also has some
legitimate applications, but will not be discussed, here. Instead, we want to
go ahead and tackle at least some simple cases of a bidirectional coupling,
which captures either of the two effects. Many CFD (computational fluid
dynamics) codes, that build on an incompressible fluid description, suffer
from numerical stiffness leading to a badly conditioned system matrix, as well
as a very sensitive dependence on initial conditions, when they are extended
by such features. Instantaneous movement, as an example, sometimes leads
to severe stability issues, and much care has to be taken to design experiments
accordingly. The basic idea of this thesis, is hence, to consider (weakly-)
compressible flows as the underlying basis for such an endeavour, and see if
the mentioned problems can be addressed in this way, or if their handling
can at least be improved, in this setting. We hope that the intrinsic damping
effects, of this additional compressibility, might help our cause. Another way
of looking at it, is that the finite propagation speed of pressure disturbances,
that comes with a compressible fluid description, should improve the numerical
stiffness encountered otherwise.

The pursuit of very dynamic cases of coupled problems, where a lot of
movement goes on in the scene, is also an area, where a regular Cartesian
grid can still play it’s strength, compared to the very complicated mesh-based
methods, that most proprietary CFD tools use. While such a mesh can
be deformed to some degree, if the changes are too severe, eventually, an
expensive re-meshing of the geometry is often required, and the earlier state

5

has to be mapped onto this new mesh. In our case, however, the obstacles just
move in front of a fixed background grid. This also facilitates the potential for
independent movement of multiple objects. Another benefit, which is closely
tied to this, is the much easier handling of parallelization, and a better scaling
behaviour, when utilizing many CPUs at the same time. The parallelization
of the implemented algorithms shall be realized in the MPI (Message Passing
Interface) framework, to enable the use of big compute clusters. Another goal
of this work, is to allow for the trouble-free use of very complex geometries. A
streamlined procedure, were one of the prevalent file formats for 3D geometry
can be directly imported by the program is planned. This way, an external
CAD software can be used to generate arbitrarily sophisticated models.

Accomplished contributions

The independent contributions to this work can be categorized in three areas
and briefly summarized as follows:

Theory Selection of a suitable method to solve the compressible Navier-
Stokes equations and subsequent combination with the level-set approach to
represent geometry. Adaptation of the level set transport to the situation at
hand.

Implementation Extension of the existing NaSt3DGP software by an ex-
plicit, compressible fluid solver, adaptation of corresponding output routines,
import of stl-files and implementation of a point-in-polygon test to generate
a level set function, routines to calculate fluid forces on a level set geometry
and parallelization of the new modules with existing MPI routines.

Numerical simulation Simulation of various basic test cases, replication
of a benchmark result, and presentation of experiments showcasing practical
applicability and the capabilities in fluid-motion coupling.

6 CHAPTER 1. INTRODUCTION

Structure

The present thesis is divided into four main parts, followed by the conclusion.
Before starting off, we want to give a short overview of the contents of each
individual Chapter.

Chapter 2 In Chapter 2 we first give a description of the physical model,
on which our numerical enquiries are based, before providing a detailed ex-
planation of the utilized algorithms to approximate solutions of the governing
equations.

Chapter 3 Chapter 3 is dedicated to the implementation of complex geo-
metries in our code, which, in this case, are represented by a so-called level
set function, and can be imported via the stl file format.

Chapter 4 Having static geometry in place, we look at the possibility
of moving obstacles through our scene and different ways of coupling their
motion with the fluid dynamics.

Chapter 5 In Chapter 5 we present some benchmark experiments in order
to validate our approach, and demonstrate the potential of the presented
algorithms, by showing some examples of both unidirectional, as well as
bidirectional fluid-motion coupling.

Chapter 6 Finally, we conclude with a summary of the presented results
and a subsequent outlook at further opportunities.

Chapter 2

An explicit compressible flow
solver

The goal of this work is to implement an efficient, numerical fluid solver,
which is well-adapted to solve problems with some kind of evolving geometry,
in the simplest case, by moving a fixed, solid object at a given velocity
throughout the domain. Due to the beneficial nature of damping effects,
which are introduced by a certain compressibility of our medium, we opt for
a weakly-compressible description of fluid flows, certainly in the subsonic flow
regime. This is expected to help with the numerical stiffness encountered in
some otherwise comparable, but incompressible methods. In order to put
this into practice, we start out with a continuous description of the involved
processes, which is given by partial differential equations. In a second step
we try to discretise these equations on a given grid to approximate solutions.

2.1 The compressible Navier-Stokes equations

In this section, we want to describe our mathematical model for these com-
pressible fluid flows. The equations we want to discuss are therefore the
compressible Navier-Stokes equations. They were first stated in the mid-
nineteenth century and can be derived solely from conservation principles,
namely the conservation of momentum, mass and energy. In their most
general form, they describe all sorts of viscous fluids, here we want to restrict
ourselves to the following Newtonian form of the equations:

Let Ω ⊂ R3 be a domain and t ∈ (0,∞) the time. Then our flow can be
described by the velocity field u = (u, v, w) : Ω× (0,∞)→ R3 together with
the scalar density ρ : Ω× (0,∞)→ R and pressure p : Ω× (0,∞)→ R. In
three dimensions, neglecting external body forces for the sake of clarity, the

7

8 CHAPTER 2. AN EXPLICIT COMPRESSIBLE FLOW SOLVER

compressible, isentropic Navier-Stokes equations can be stated as

∂

∂t
(ρu) + div(ρu⊗ u)− µ∆u− (λ+ µ)∇ divu +∇p = 0, (2.1)

∂

∂t
ρ+ div(ρu) = 0, (2.2)

where the fluid properties µ and λ are called the dynamic and bulk viscosity,
respectively, and are assumed to be constant in this frame work. We refer to
(2.1) as the momentum equation and call (2.2) the continuity equation. To
close the problem, an additional equation is required, which describes the
connection between the pressure p and the density ρ, a so-called equation of
state. In general, this relation is surely dependent on the temperature of the
fluid, most notably if we are dealing with a gas. If there’s no external heat
entering, however, this effect is dependant on the Mach number, describing
the ratio between the velocity of our fluid and the speed of sound, at which
waves propagate through our fluid. In the low subsonic Mach number regime
(M << 1), we can assume that the internal heat generation by friction is
negligible and, we can thus postulate isothermal conditions. As a result we
only consider a rather simple equation of state of the form

p = c2ρ, (2.3)

where the proportionality constant c represents the speed of sound in the
given medium and will hence be denoted vsound throughout the rest of this
work. For gases, this follows easily from the ideal gas law, if we set the
Temperature T to a constant.

In the coordinates (u, v, w), this translates to the following set of equations:

∂(ρu)

∂t
+
∂(ρu2)

∂x
+
∂(ρvu)

∂y
+
∂(ρwu)

∂z

− µ∆u− (λ+ µ)
∂

∂x
(
∂u

∂x
+
∂v

∂y
+
∂w

∂z
) +

∂p

∂x
= 0,

(2.4)

∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρv2)

∂y
+
∂(ρwv)

∂z

− µ∆v − (λ+ µ)
∂

∂y
(
∂u

∂x
+
∂v

∂y
+
∂w

∂z
) +

∂p

∂y
= 0,

(2.5)

∂(ρw)

∂t
+
∂(ρuw)

∂x
+
∂(ρvw

∂y
+
∂(ρw2)

∂z

− µ∆w − (λ+ µ)
∂

∂z
(
∂u

∂x
+
∂v

∂y
+
∂w

∂z
) +

∂p

∂y
= 0,

(2.6)

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0. (2.7)

2.2. A SHORT REVIEW OF EXISTING METHODS 9

Throughout the rest of this work, in addition to the constant dynamic
viscosity, we restrict ourselves to a fixed value of λ = −2

3µ, which is a
common assumption (see [Bat00]) and has the nice side-effect of giving us
a traceless tensor for the shear-stress. For a full derivation of the depicted
equations, we refer to the book of Gurtin [Gur81], but any proper textbook
on continuum mechanics serves the purpose.

2.2 A short review of existing methods

Having our physical model fixed, we now want to discretise the involved
equations to eventually solve them on a compute cluster. Before stating our
final approach, we first want to give a very coarse overview of some existing
methods, to allow for a better understanding of the reasons for the inevitable
choices, involved.

Today, numerical methods for solving the compressible Navier-Stokes
equations divide into finite difference, finite volume and finite element methods.
Among these, finite differencing methods were the first to show up. Starting
in the 60’s the first explicit time integration methods were developed, leading
among others to the large class of Lax-Wendroff type methods [LW60]. In the
beginning of the 70’s their implicit counterparts soon followed, most notably
by Briley and McDonald [BM77], as well as Beam and Warming [BW78],
whose method MacCormack in his A Perspective of a Quarter Century of CFD
Research [Mac93] termed the "work horse method for viscous compressible
flow". While explicit methods simply work by an update rule, these implicit
methods solve a system of linear equations. In general implicit methods
have advantages regarding broad applicability, due to their inherent stability
characteristics, which often can be made independent of time steps. Explicit
methods on the other hand, almost always have a tight restriction on the
possible time step, but within their working domain, such methods can make
for a very efficient tool, since the lack of assembling and solving a huge system
matrix gives them a decent head start in performance. Finally, during the
80’s, with the surfacing of van Leer’s second order MUSCL scheme [Lee79] and
other developments, finite volume methods became very popular. Derivatives
of this method, like the Kurganov and Tadmor (KT) central scheme [KT00]
are still among the most popular techniques used in today’s CFD codes.
Although finite element methods have taken the field in many other areas,
and the attention to FEM seems to grow in recent times (see i.e. [Wen08]), in
computational fluid dynamics, methods based on finite differences and finite
volumes are still the most widespread approach for general solvers, because
they typically pose less requirements on memory and computing time and
admit less complex implementations [Wes01].

10 CHAPTER 2. AN EXPLICIT COMPRESSIBLE FLOW SOLVER

A major role in differentiating techniques further, plays the character of
the underlying grid, on which the discretisation takes place. Non-uniform
grids have many advantages in representing complex geometries and are best
suited to finite volume approaches, due to their inherent integral formulation.
Differencing schemes, on the other hand face more problems, when generalized
to such complex grids. On a rectangular grid, however, the two methods
perform pretty comparable. Such a simple grid has the advantage of easier and
more efficient parallelization techniques, as well as the much better handling
of changing geometry, since no re-meshing is required. The grid just stays as
a permanent background, on which you draw your objects. To overcome the
huge number of cells needed to represent thin and/or complicated geometries,
often so-called adaptive grids are used, which are only refined in a certain
predefined region in space. Since this can only have the purpose of giving a
rough overview, and is in no way able to cope with the multitude of different
tools, that have been developed during the past decades, we refer to the
book of Ferziger and Perić [FP08] for a more in-depth overview of the general
principles and different methods of computational fluid dynamics, as well
as the review papers [Mac85] and [Mac93] by MacCormack for a historical
perspective on said developments.

The NaSt3DGP fluid solver The numerical implementation of the
presented work is based on the existing NaSt3DGP fluid solver. NaSt3DGP
was developed by the research group in the Division of Scientific Computing
and Numerical Simulation at the University of Bonn [GDN98]. It is a par-
allel three-dimensional fluid solver using finite differences to discretise the
incompressible Navier-Stokes equations on a staggered grid. The solver is
formally based on Chorin’s projection method [Cho68]. The representation
of obstacles is realized via a so-called flag-field, which provides the possibility
to enable different properties of cells by binary shifts. Parallelization is
handled with the MPI library and allows the deployment of the code on huge
compute clusters. For more detailed information about the implementation
and underlying numerics, we refer to [GDN98] and [Cro02].

The chosen method With the existing infrastructure of the NaSt3DGP
package, as well as the limited time frame of this thesis in mind, we decided to
go for maximum flexibility on the one hand, combined with a relatively simple
approach to begin with, and see how far we can get, later on. Therefore, we
initially opted for a fully explicit finite difference discretisation on the back of
a uniform grid, with the option of adding some kind of adaptivity, eventually.
Especially the advantages in parallelization, when running on ever growing
compute clusters, paired with the versatility in representing obstacles, due to
the lack of needing complicated meshing algorithms, played a major role in
this decision. We started off with the simple flag-field implementation and

2.3. THE MACCORMACK SCHEME IN FLUID DYNAMICS 11

then extended it with the level set method, to have a better approximation
of surface normals. In total this gives us a very solid and robust way of
handling complex geometry, especially when foreseeing the possibility of
looking at fluid-structure interaction (FSI) in the future. Compared to the
incompressible NaSt solver, we reverted back to a collocated grid, since the
staggered setup loses it’s key benefits, in combination with compressible
schemes and introduces a lot of otherwise unnecessary interpolation into
the code. For the parallelization we try to reuse as much as possible of the
existing routines, which should give us a solid basis on this front.

2.3 The MacCormack scheme in fluid dynamics

We want to discretise equations (2.4)− (2.7) now on a rectangular grid using
finite differences. For this purpose we employ a predictor/corrector scheme
suggested in [PH06], albeit generalized to three dimensions. Perrin and
Hou apply the scheme to the simulation of particulate flows. In our case,
we want to explore the applicability of this method to more complicated
objects, and thus restrict ourselves to the simulation of a single moving part
of the geometry, although in theory, the employed approach could easily
be adapted to multiple objects, as well. The scheme was first published in
1969 by MacCormack in his seminal paper [Mac03]. Later, in 1982, further
developed the scheme in [Mac82] into a mixed implicit/explicit method,
trying to combine advantages of both techniques. For the purpose of this
thesis, however, we want to stay with his original, fully explicit approach from
1969 and see what we can achieve with it, when combined with a modern
approach to represent geometry and on the basis of present-day hardware.
For equations of the form

∂U

∂t
+
∂E(U)

∂x
+
∂F(U)

∂y
+
∂G(U)

∂z
= 0, (2.8)

the MacCormack scheme consists of the predictor step:

U?
i,j = Un

i,j −
∆t

∆x
(Eni+1,j,k −Eni,j,k)

− ∆t

∆y
(Fni,j+1,k − Fni,j,k)−

∆t

∆z
(Gn

i,j,k+1 −Gn
i,j,k),

(2.9)

and the corrector step:

Un+1
i,j =

1

2
(Un

i,j + U?i,j −
∆t

∆x
(Eni,j,k −Eni−1,j,k)

− ∆t

∆y
(Fni,j,k − Fni,j−1,k)

− ∆t

∆z
(Gn

i,j,k −Gn
i,j,k−1)),

(2.10)

12 CHAPTER 2. AN EXPLICIT COMPRESSIBLE FLOW SOLVER

where U = (ρ, ρu, ρv, ρw) in our case. This method is fully explicit, no
system of equations needs to be solved. Note that we used forward differences
throughout the predicting step and backward differences in the corrector
phase. In principal this scheme is accurate up to second-order in both time
and space. Applying this to our equations and inserting the equation of state,
we deduce the following update rule:

(ρ)?i,j,k = (ρ)ni,j,k − c1∂
+
i (ρu))ni,j,k − c2∂

+
j (ρv))ni,j,k − c3∂

+
k (ρw))ni,j,k (2.11)

(ρu)?i,j,k = (ρu)ni,j,k − c1∂
+
i (ρu2 + c2ρ)ni,j,k − c2∂

+
j (ρvu)ni,j,k

− c3∂
+
k (ρwu)ni,j,k + (2µ+ λ)c4∂

+
i ∂
−
i (u)ni,j,k

+ µc5∂
+
j ∂
−
j (u)ni,j,k + µc6∂

+
k ∂
−
k (u)ni,j,k

+ (µ+ λ)c7(∂oi (∂oj v
n
i,j,k)

+ (µ+ λ)c8(∂oi (∂okw
n
i,j,k),

(2.12)

(ρv)?i,j,k = (ρv)ni,j,k − c1∂
+
i (ρuv)ni,j,k − c2∂

+
j (ρv2 + c2ρ)ni,j,k

− c3∂
+
k (ρwv)ni,j,k + µc4∂

+
i ∂
−
i (v)ni,j,k

+ (2µ+ λ)c5∂
+
j ∂
−
j (v)ni,j,k + µc6∂

+
k ∂
−
k (v)ni,j,k

+ (µ+ λ)c7(∂oj (∂oi u
n
i,j,k)

+ (µ+ λ)c9(∂oj (∂okw
n
i,j,k),

(2.13)

(ρw)?i,j,k = (ρw)ni,j,k − c1∂
+
i (ρuw)ni,j,k − c2∂

+
j (ρvw)ni,j,k

− c3∂
+
k (ρw2 + c2ρ)ni,j,k + µc4∂

+
i ∂
−
i (w)ni,j,k

+ µc5∂
+
j ∂
−
j (w)ni,j,k + (2µ+ λ)c6∂

+
k ∂
−
k (w)ni,j,k

+ (µ+ λ)c8(∂ok(∂oi u
n
i,j,k)

+ (µ+ λ)c9(∂ok(∂oj v
n
i,j,k)

(2.14)

and for the corrector step we get

2(ρ)n+1
i,j,k = (ρ)ni,j,k + (ρ)?i,j,k − c1∂

−
i (ρu))?i,j,k

− c2∂
−
j (ρv))?i,j,k − c3∂

−
k (ρw))?i,j,k

(2.15)

2(ρu)n+1
i,j,k = (ρu)ni,j,k + (ρu)?i,j,k − c1∂

−
i (ρu2 + c2ρ)?i,j,k − c2∂

−
j (ρvu)?i,j,k

− c3∂
−
k (ρwu)?i,j,k + (2µ+ λ)c4∂

+
i ∂
−
i (u)?i,j,k

+ µc5∂
+
j ∂
−
j (u)?i,j,k + µc6∂

+
k ∂
−
k (u)?i,j,k

+ (µ+ λ)c7(∂oi (∂oj v
?
i,j,k)

+ (µ+ λ)c8(∂oi (∂okw
?
i,j,k),

(2.16)

2.4. BOUNDARY CONDITIONS 13

2(ρv)n+1
i,j,k = (ρv)ni,j,k + (ρv)?i,j,k − c1∂

−
i (ρuv)?i,j,k − c2∂

−
j (ρv2 + c2ρ)?i,j,k

− c3∂
−
k (ρwv)?i,j,k + µc4∂

+
i ∂
−
i (v)?i,j,k

+ (2µ+ λ)c5∂
+
j ∂
−
j (v)?i,j,k + µc6∂

+
k ∂
−
k (v)?i,j,k

+ (µ+ λ)c7(∂oj (∂oi u
?
i,j,k)

+ (µ+ λ)c9(∂oj (∂okw
?
i,j,k),

(2.17)

2(ρw)n+1
i,j,k = (ρw)ni,j,k + (ρw)?i,j,k − c1∂

−
i (ρuw)?i,j,k − c2∂

−
j (ρvw)?i,j,k

− c3∂
−
k (ρw2 + c2ρ)?i,j,k + µc4∂

+
i ∂
−
i (w)?i,j,k

+ µc5∂
+
j ∂
−
j (w)?i,j,k + (2µ+ λ)c6∂

+
k ∂
−
k (w)?i,j,k

+ (µ+ λ)c8(∂ok(∂oi u
?
i,j,k)

+ (µ+ λ)c9(∂ok(∂oj v
?
i,j,k),

(2.18)

where the coefficients c1 up to c9 are defined as follows

c1 =
∆t

∆x
, c2 =

∆t

∆y
, c3 =

∆t

∆z
,

c4 =
∆t

(∆x)2
, c5 =

∆t

(∆y)2
, c6 =

∆t

(∆z)2
,

c7 =
∆t

4∆x∆y
, c8 =

∆t

4∆x∆z
and c9 =

∆t

4∆y∆z
.

(2.19)

As mentioned by Tannehill et al. in [THR76] the deployment of forward/-
backward differences in the predictor/corrector steps, respectively, can be
interchanged. This can be done independently in each of the three spatial
directions, so in total we end up with eight different possibilities. Tannehill
et. al suggest to cycle them among consecutive time steps to eliminate
asymmetries in the algorithm. We adopted this practice to our case. The
detailed arrangement of the schemes is shown in table 2.1 below, which is
adopted from [THR76]. Another advantage of this cyclic approach is, that
these variants all have different Eigenvalues in a given Fourier component,
which are the basis of deducing the stability condition, which we will discuss
in Section 2.5. By cycling among them, we expect a smaller amplification of
any one of these Eigenvalues, and therefore an improved behaviour in terms
of stability.

2.4 Boundary conditions

With the update routines for the inner grid points being established, we now
want to take a closer look at some possible boundary conditions. To do this,
we first want to recall the situation we have at the boundary: We chose
to discretise our equations on a collocated grid, meaning that all relevant

14 CHAPTER 2. AN EXPLICIT COMPRESSIBLE FLOW SOLVER

Table 2.1: Applied differencing sequence for the MacCormack scheme; mod-
elled on the corresponding table in [THR76]

step pred. ∆x/∆y/∆z corr. ∆x/∆y/∆z

1 F/F/F B/B/B
2 B/B/F F/F/B
3 F/F/B B/B/F
4 B/F/B F/B/F
5 F/B/F B/F/B
6 B/F/F F/B/B
7 F/B/B B/F/F
8 B/B/B F/F/F

F forward difference, B backward difference.

quantities (u, v, w, ρ) are located on the same points of a fixed grid. The
physical boundary will be placed exactly at the location of our boundary
points, so basically no interpolation between different points is needed.

Velocity boundary conditions

As a result of the choices mentioned above, implementing Dirichlet boundary
conditions is easy, as long as the geometry coincides with the grid. We just
set the components of u to the desired values. Most commonly we will have

ui,j,k = vi,j,k = wi,j,k = 0, (2.20)

representing a wall with no-slip conditions located at grid point (i, j, k).

Since in the case of a curved object, our real geometry will deviate from
these boundary points, we can apply a Taylor expansion to approximate the
velocity usur at the actual boundary point (x̃, ỹ), which is closest to the given
grid point, if we have access to the outer normal n of the geometry. Using
the abbrevations ∆x̃ = |x̃− x| and ∆ỹ = |ỹ − y| we have

usur ≈ ui,j,k + ∆x̃(ux)i,j,k + ∆ỹ(uy)i,j,k + ∆z̃(uz)i,j,k. (2.21)

2.4. BOUNDARY CONDITIONS 15

Reorganizing the terms and substituting the appropriate one-sided finite
differences, i.e.

(ux)ijk =
1

2∆x
(−ui+2,j,k + 4ui+1,j,k − 3ui,j,k) +O(∆x2),

(uy)ijk =
1

2∆y
(−ui,j+2,k + 4ui,j+1,k − 3ui,j,k) +O(∆y2),

(uz)ijk =
1

2∆z
(−ui,j,k+2 + 4ui,j,k+1 − 3ui,j,k) +O(∆z2),

(2.22)

we get the update rule, exemplary to the first octant of the boundary:

ui,j,k =
1

c

[
−∆x̂∆y∆z(−ui+2,j,k + 4ui+1,j,k)

−∆x∆ŷ∆z(−ui,j+2,k + 4ui,j+1,k)

−∆x∆y∆ẑ(−ui,j,k+2 + 4ui,j,k+1) + 2∆x∆y∆z(usur)
]
,

(2.23)

with c = 2∆x∆y∆z − 3 [∆x̂∆y∆z + ∆x∆ŷ∆z + ∆x∆y∆ẑ].

All other cases work analogously, by switching the appropriate signs and
will only be shown once, here: Let (nx, ny, nz) be the outer normal to our
obstacle and (σx, σy, σz) = (σ(nx), σ(ny), σ(nz)), accordingly, the signum of
it. Denote with ∆s a signed version of the cell dimensions, i.e.

∆sx = σx∆x, ∆sy = σy∆y, ∆sz = σz∆z, (2.24)

then our update rule in the general case can be written as

ui,j,k =
1

c

[
−∆x̂∆sy∆sz(−ui+2σx,j,k + 4ui+σx,j,k)

−∆sx∆ŷ∆sz(−ui,j+2σy ,k + 4ui,j+σy ,k)

−∆sx∆sy∆ẑ(−ui,j,k+2σz + 4ui,j,k+σz)

+2∆sx∆sy∆sz(usur)
]
,

(2.25)

with now c = 2∆sx∆sy∆sz − 3 [∆x̂∆sy∆sz + ∆sx∆ŷ∆sz + ∆sx∆sy∆ẑ].

For the sake of clarity, the general case will be omitted throughout this
chapter and we will only look at the special case above. The components
v and w work exactly the same, by replacing u with the according symbol
and will be omitted, too, when this is evident. We expect to get a smoother
velocity near the boundary, using this boundary condition in the case of
curved and/or more complex geometries. For a direct comparison of the two
methods in the 2D case see [PH06].

16 CHAPTER 2. AN EXPLICIT COMPRESSIBLE FLOW SOLVER

Prescribed inflow/outflow with a fixed velocity. Additionally, we also
want to have the possibility to simulate boundaries, with a prescribed inflow
value, as well as free inflow/outflow type boundary conditions. These can be
implemented as follows: Inflow is just another variant of the above, where
now the values are different from zero. An open inflow/outflow condition is
represented by the equation

∂(ρu)

∂x
=
∂(ρv)

∂y
=
∂(ρw)

∂z
= 0. (2.26)

Finally we implemented symmetry boundary conditions.

Density boundary conditions

Deducing suitable boundary conditions for the density is more difficult.
If we propose a fixed velocity at the boundary, a corresponding density
should in theory be given by the equation. [PH06] suggest two different
possibilities: one given by the continuity equation and another one based on
the momentum equation. Since the one coming from the momentum equation
seems favourable, we will adopt it to our case, in the following.

Let n be the outer normal to the geometry surface, then using (2.4) - (2.6)
we can express the normal derivative of the density by:

∂nρ =
nx
c2

[
µ(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
) + (µ+ λ)(

∂2u

∂x2
+

∂2v

∂x∂y
+

∂2w

∂x∂z
)

]
+
ny
c2

[
µ(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2
) + (µ+ λ)(

∂2u

∂y∂x
+
∂2v

∂y2
+

∂2w

∂y∂z
)

]
+
nz
c2

[
µ(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2
) + (µ+ λ)(

∂2u

∂z∂x
+

∂2v

∂z∂y
+
∂2w

∂z2
)

]
− ρnx

c2

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

]
− ρny

c2

[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

]
− ρnz

c2

[
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

]
,

(2.27)

or using A and B accordingly:

∂nρ =
1

c2
A− ρB. (2.28)

2.5. STABILITY 17

Using one-sided second order finite differences, for the normal derivative, we
obtain in the first octant:

nx
2∆x

(−ρi+2,j,k + 4ρi+1,j,k − 3ρi,j,k)

+
ny

2∆y
(−ρi,j+2,k + 4ρi,j+1,k − 3ρi,j,k)

+
nz

2∆z
(−ρi,j,k+2 + 4ρi,j,k+1 − 3ρi,j,k) + ρi,j,kBi,j,k =

1

c2
Ai,j,k

(2.29)

If we rearrange this, to solve for ρ we have our desired update rule for ρ:

ρi,j,k =
2∆x∆y∆z

c2div
Ai,j,k −

nx∆y∆z

div
(−ρi+2,j,k + 4ρi+1,j,k)

− ny∆x∆z

div
(−ρi,j+2,k + 4ρi,j+1,k)

− nz∆x∆y

div
(−ρi,j,k+2 + 4ρi,j,k+1).

(2.30)

with div = −3nx∆y∆z − 3ny∆x∆z − 3nz∆x∆y + 2∆x∆y∆zBi,j,k. The
quantities A and B can be calculated beforehand, since the inner fluid points
have already been updated.

Evidently, this also imposes some restrictions on the feasible geometry:
We need to ensure that every fluid domain is at least three cells wide, and
no obstacle cells, with fluid on opposite sides, exist. In practice, we can
achieve this by refining the underlying grid, but due the cubic scaling of the
corresponding number of cells and the grids uniform nature, this can increase
computing time by a critical margin.

2.5 Stability

As usual with explicit methods, there is some sort of mandatory Courant-
Friedrichs-Levy condition (CFL), that needs to be fulfilled to get any form
of stability for our scheme. In the compressible setting, it is important to
remember the fact, that we not only need to look at the flow speeds itself, but
also have to consider the speed of sound, which is the rate at which pressure
waves propagate through our domain. So the very thing, that allows us to
use an explicit method in the first place, i.e. a finite propagation speed, also
sets the limits in how far we can go within a single time step. So despite
our demand to stay below a certain Mach number, we face the problem, that
very low number makes our code inefficient, due to the faced restriction on
time steps.

Because of the complexity of the underlying equations, we cannot hope to
get a rigorous stability requirement in closed-form for our technique, but the

18 CHAPTER 2. AN EXPLICIT COMPRESSIBLE FLOW SOLVER

following semi-empirical criterion given by Tannehill [THR76] seems to be
relatively reliable in giving us a good estimate

∆t ≤ τ

1 + 2/Re∆

[
|u|
∆x

+
|v|
∆y

+
|w|
∆z

+ vsound

√
1

∆x2
+

1

∆y2
+

1

∆z2

]−1

,

(2.31)

where Re∆ = min(ρ|u|∆x/µ, ρ|v|∆y/µ, ρ|w|∆z/µ) and τ ≈ 0.8 is a safety
factor. This criterion gives us a local restriction for each cell, so we have
to minimize this quantity over our mesh, subsequently, to get a globally
admissible time step.

The term on the right-hand side

(∆t)CFL ≤
[
|u|
∆x

+
|v|
∆y

+
|w|
∆z

+ vsound

√
1

∆x2
+

1

∆y2
+

1

∆z2

]−1

, (2.32)

was identified by MacCormack (see [Mac71]) as the inviscid CFL condition. He
obtained this criterium, by studying the amplification of Fourier components
of the linearised equation.
For a cubic grid and M small enough this reduces to the well-known, much
simpler condition

∆t ≤ 1

2

∆x

vsound
. (2.33)

Remember though, that these can be necessary conditions, at best, which are
mostly derived from linearised equations and don’t take difficult boundary
regions into account. Hence, in practice, finding a suitable time step still
comes with some difficulties and we will see, that either way, this imposes
some restrictions on the problems we can solve. We will discuss this later in
detail for some of the examples in Chapter 5.

2.6 Parallelization

Even with the most modern CPUs, clocking in the multiple GHz region,
tackling interesting fluid problems is only possible, if we employ many of
them at the same time. In our case, we want to use a big cluster of CPUs later
on. In order to do this, it is necessary to split our problem up and give each
processor a piece of the computation, that can, for the most part, be solved
independently. As most CFD codes, we arrange this, by dividing our domain
spatially into chunks of roughly the same computational complexity and then
assigning each of these sub-domains to its own processor. In this process,
a big advantage of having a rectangular grid comes into play: Dividing
the computational cost evenly among the processors is easy, since the grid

2.7. AN OVERVIEW OF THE FULL ALGORITHM 19

points of our mesh are distributed evenly among our domain, so we can
assume that dividing our domain spatially into blocks of the same size is
also computationally efficient. Since cubes posses the best ratio of volume to
surface, depending on the shape of our domain we try to avoid large aspect
ratios in our sub-domains. In this manner, the boundaries between adjacent
processors are split into six distinct directions and communication between
the processors can be handled relatively easy: Our update scheme requires
the values of fluid variables on neighbouring points. If we are close to the
border of our sub-domain, these points might belong to another processor
and must therefore be communicated in some way, since each processor is
fitted with its own chunk of memory. Even on shared memory machines,
arrangements have to be made, in order to prevent simultaneous access to
the same memory blocks. In practice, we exchange these border values after
each time step and store them in so-called ghost cells, that surround our
actual domain and serve just this purpose of having a local copy of the values
on neighbouring cells. This way we can handle all interfacing between the
processors in one go, and afterwards, each processor can run the update
scheme for its own variables independently of the rest.

In the actual code, this communication is handled with the Message Passing
Interface (MPI). For the present work, we rely on parallelization routines
already existing in the NaSt3DGP fluid solver. For further details on the
exact routines, we refer to [GDN98]. If we take a look back at our update
scheme, we notice that we used up to three cell neighbours in a given direction
in our density boundary condition, so we will also need a minimum of three
layers of ghost cells to lose no information. Additionally, at some point, we
access one neighbouring point in diagonal directions, so we have to take care,
that one layer of corner ghost cells is exchanged, as well. Figure 2.1 shows
a schematic overview of the required communication in 2D. Despite this
seeming bulk of information that needs to be transferred between processors,
we expect a pretty decent efficiency in our parallelization. The results of
some practical measurements on this question can be found in Section 5.1.

2.7 An overview of the full algorithm

In this section, we want to give a short overview of the implemented algorithm.
Again, the algorithm proceeds in a totally linear update routine, in the course
of which no system of equations has to be solved. For the momentum variables,
as well as the density, we need two separate fields for the full time step and the
predicted values, respectively, since the information of either values is needed
to update the other. In this context, all variables representing predicted
values, will be indicated by a ∗. Since we don’t use the velocity components
for updating the inner grid cells, we can store both predicted and corrected

20 CHAPTER 2. AN EXPLICIT COMPRESSIBLE FLOW SOLVER

I III

II IV

Figure 2.1: Schematic overview of the required communication between four
neighbouring processors in 2D, using tree layers of ghost cells and one corner
cell

2.7. AN OVERVIEW OF THE FULL ALGORITHM 21

values in the same variables, in this case. In Algorithm 2.1 a schematic
overview of the full algorithm is presented.

Algorithm 2.1 Schematic overview of the main loop of our program
repeat

n++; . Augment time step
Timestep(); . Calculate new time step
mode = n mod 8 . Calculate cyclic scheme

PredictorStep(mode); . Predictor step
CalculateUVWStar();
BCPredictorStep();

Par->CommMatrix(RhoStar); . Communication for * variables
Par->CommMatrix(RhoUStar);
Par->CommMatrix(RhoVStar);
Par->CommMatrix(RhoWStar);
Par->CommMatrix(U);
Par->CommMatrix(V);
Par->CommMatrix(W);

CorrectorStep(mode); . Corrector step
CalculateUVW();
BCCorrectorStep();

Par->CommMatrix(Rho); . Comunication for n+1 variables.
Par->CommMatrix(RhoU);
Par->CommMatrix(RhoV);
Par->CommMatrix(RhoW);
Par->CommMatrix(U);
Par->CommMatrix(V);
Par->CommMatrix(W);

Output(); . Output data
until n == nMax || t >= tMax

The main part of our program is structured by a do-while loop, representing
consecutive time steps of our algorithm. We begin each given step, by
augmenting the respective count n by one and calculating the new time step
∆t for the upcoming update, according to (2.31). Next, we set the mode
for the current differencing scheme according to Table 2.1, cycling through
possibilities 1 to 8. The rest of the algorithm is divided into two blocks,
that resemble each other, except for the slightly different update routines

22 CHAPTER 2. AN EXPLICIT COMPRESSIBLE FLOW SOLVER

discussed in Section 2.3: First we update the inner fluid points in the main
predictor/corrector step, subsequently, we calculate our velocities by a simple
division. Finally, we use the gathered information, to provide boundary values
for the next iteration and communicate the needed values to the neighbouring
ghost cells. At the end of each time step we output our data, if so desired.
Since the existing NaSt3DGP output routines are designed for the staggered
grid setup, we adopted our own version of them, giving us straight outputs of
our fluid variables in appropriate VTK (Visualization Toolkit) file formats.

Chapter 3

Geometry representation

What we have seen thus far, is basically a full solver of the compressible
Navier-Stokes equations in a channel, with different boundary conditions for
the walls, the only restriction being the demand of staying in the low Mach
number regime. But besides being able to solve some simple benchmarks, we
want to have a method to represent more complex geometries, that allow us to
tackle more interesting problems, that are related to real-world applications.
In order to do this, some different methods can be considered. A simple
flag-field is easy to implement, but also lacks the kind of flexibility, we seek in
the long run. Another problem with this approach is the bad approximation
of the surface normal of our geometry. Another approach is the so-called
level set method (LSM) which we want to explore in the upcoming section of
this work.

3.1 The level set method

The level set method was first outlined by Osher and Sethian in their 1988
paper [OS88]. It is a so-called front tracking method, that very generally
allows one to capture the interface between two distinct regions of a domain.
Today it is used in many areas such as image processing, computer graphics
or, likewise, computational fluid dynamics (for a more extensive overview see
for example [OF03]). The basic idea is to have a function ϕ, which is defined
on the higher dimensional surrounding space, that encodes the movement of
the evolving surface. What seems at first to be a not very effective way of
dealing with the involved information, turns out to give a very high versatility,
when it comes to topological changes of the geometry. In contrast to some
other methods, the surface never has to be parametrized and is only modified
implicitly, by adjusting the function ϕ. Things like an object splitting apart
or the merging of objects, are handled naturally by this framework, which
makes it very robust. Let us see how this works in a bit more detail.

23

24 CHAPTER 3. GEOMETRY REPRESENTATION

We keep our notation close to Losasso, Fedkiw and Osher ([LFO06]), who
give a neat introduction to level set methods. If we call the enclosed region of
space Ω− and the interface between Ω− and it’s complement Γ, we demand
our level set function ϕ to be a Lipschitz continuos function with the following
characterizing properties:

ϕ(x, t) ≤ 0 for x ∈ Ω− (3.1)

ϕ(x, t) > 0 for x /∈ Ω− (3.2)

Then clearly, we have

Γ(t) = {x|ϕ(x, t) = 0}. (3.3)

We can now implement an evolution of this interface, by a very general
velocity field a(x, t), that transports the interface. We call this field a to
distinguish it from the velocity u, of our flow, since the two need not coincide,
here. For this purpose, the velocity needs only to be given in a neighbourhood
of the interface. The equation that describes the advection of the level set is
then given by

∂tϕ+ a · ∇ϕ = 0. (3.4)

It was already introduced in the initial paper by Osher and Sethian ([OS88])
and is just called the level set equation. So far, we still have a lot of freedom of
extending ϕ ouside the zero level set. Since, for numerical accuracy, we want
the function to be as smooth as possible, we prefer it to be a signed distance
function, at least in a certain band around the interface. Unfortunately this
property is not preserved by the solutions to the above transport equation.
While small deviations don’t cause much harm, over time we need a method
to restore this property, given our current state of the interface. There are
some different algorithms around to achieve this reinitialization, the details
of which we don’t want to mention here (see for example [OF01]).

One of the key benefits of the technique, which we want to exploit especially,
is the very natural and yet very accurate access to geometric information like
the normal and curvature of our geometry. The normal to our interface Γ is
simply given by

n(x, t) =
∇ϕ(x, t)

|∇ϕ(x, t)|
, (3.5)

whereas the mean curvature κ can subsequently be determined as the diver-
gence of the former

κ(x, t) = ∇ ·
(
∇ϕ(x, t)

|∇ϕ(x, t)|

)
. (3.6)

3.2. GEOMETRY IMPORT VIA THE STL FILE FORMAT 25

The most often mentioned problem with the level set method is that the
discretisation of the level set equation can lead to dissipation, sometimes
resulting in a severe mass loss. Many improvements have been proposed
on this front, the most promising of which is perhaps a combination with
Lagrangian particle tracking [Enr+02].

Level set in NaSt In the NaSt3DGP code, the level set method is already
in use, among other applications, to handle the interface in two-phase flow
problems and simulate free surface flows. The transport equation (3.4) is
discretised with a fifth order WENO scheme, which prevents edges and other
geometric discontinuities, that can arise at the merging or splitting of two
objects, from leading to numerical instabilities, which in turn ensures the
unproblematic handling of such topological singularities. The reinitialization
is handled by a method first appearing in [SSO94]. The idea is to compute
the steady-state solution to the following PDE of Hamilton-Jacobi type

dt + sign(ϕ) (|∇d| − 1) = 0, (3.7)

where sign is the standard signum function and d is initialized to our current
level set function ϕ. Afterwards we replace ϕ with d. The steady-state
solution of this equation, is the wanted distance function, while the zero
level set is left untouched. The spatial discretisation of the equation, is once
again handled by the fifth order WENO scheme, leading to much better
results in terms of mass conservation, than comparable schemes of lower
order, while the time discretisation is done via a third order Runge-Kutta
treatment. Additionally, the appearing signum function is smoothed out,
leading to further improvements. Since conservation of mass can still be
problematic in certain circumstances an optional Picard fixed point iteration
is in place to retouch the resulting level set function afterwards. For the more
involved details concerning these procedures, we refer to the dissertation of
Croce [Cro10].

3.2 Geometry import via the stl file format

In this section, we want to briefly explain how we set up our level set function
in the first place, starting for example from a given CAD model. The stl
file format originally stems from the software Stereolithography. Nowadays
it is a very common format for exchanging geometry in a tessellated form
and can be considered an industry standard, especially in the growing field
of rapid prototyping. Despite some shortcomings, it’s widespread use was
the primary reason, we chose stl as a way to transfer our geometry, but we
also considered it for its simplicity. The idea of stl, is basically to have a list
of triangles, that represent the surface of your geometry. The outside normal
of the object is determined by the right-hand rule. There is both an ASCII

26 CHAPTER 3. GEOMETRY REPRESENTATION

and a binary version of the stl file format. Due to the much improved file
sizes and even simpler structure, we only considered the binary version for
our code.

Constructing the level set function

Once the stl-file is loaded, a point in polygon test is used to implement a
routine IsInside, which decides if a given grid point, is inside the object
spanned by the stl surface or outside. This is done via a so-called ray casting
algorithm. First, a direction is determined, in which an outgoing ray strikes no
vertex or edge of the triangles, that make up our model. Then, for each of the
triangles, we decide if the ray passes through it. Therefore, we initially check,
if it intersects the plane spanned by that triangle, and if so determine if the
intersection is inside the triangle. Counting up the number of triangles, that
our ray hits on its way, we get the result: If the number is odd, we are located
in the region enclosed by the polygon surface, otherwise we are outside. With
the use of this function, a characteristic function of the geometry is created,
and the corresponding flag field can already be put in place. The level set
function, finally, is created from this characteristic function by applying the
reinitialization procedure, described earlier, to it. By this procedure a full
level set distance function is generated on the grid, and can be kept until
the end of the simulation, since at the current stage of our code, we don’t
manipulate the function itself, but only translate and/or rotate it.

3.3 Comparison to the flag-field

To demonstrate the advantage of the level set method over the pure flag-field,
we want to exemplarily show the three different stages of an imported model
in our code. The chosen example is the model of a motorcycle helmet attached
to a very simple torso. The original stl file consists of ca. 3.500 triangles and
was modelled with the CAD-software Pro/ENGINEER. It is positioned in a
cubic block of side length 0.6m, which is discretised with a grid consisting of
60 cells in each direction, which corresponds to 216.000 cells in total. The
three variants, visualized with ParaView, are shown in Figures 3.1 to 3.3,
according to their order of appearance during a run of the algorithm. As
one can clearly see, at such a resolution,the general shape of the model is
represented relatively accurate by the flag-field, but the surface normal being
restricted to 6 different directions, makes the approximation still look very
clunky. In comparison, the level set contour looks very smooth, one can easily
see the much improved behaviour, regarding normal directions, which we
extensively use in our boundary conditions, as well as in the computation of
forces on our obstacles, as we will see in the next chapter. The only drawback
being, that sharp edges also get smoothed out in the process and have a small
radius applied to them.

3.3. COMPARISON TO THE FLAG-FIELD 27

Figure 3.1: Step 1: Stl model of a motorcycle helmet, left half visualized with
edges

Figure 3.2: Step 2: Flag field threshold of a motorcycle helmet, left half
visualized with edges

28 CHAPTER 3. GEOMETRY REPRESENTATION

Figure 3.3: Step 3: Level set contour of a motorcycle helmet, left half
visualized with edges

Chapter 4

Simulation of moving objects

Now, that we have static geometries implemented, we want to look at the
possibility of simulating geometries, evolving over time. The easiest class of
such problems is clearly a constant object moving through the scene. We
want to tackle this problem in this section, with the help of the already
implemented level set method. In order to go ahead, we need to make sure,
that our boundary conditions still work on a moving boundary.

4.1 Adjusting the boundary conditions

First of all, we assume that all the boundary points on the object are only of
no-slip type. Although a generalization to allow inflow/outflow boundaries
could easily be implemented, we don’t want to consider this case here and
most applications don’t require it, anyway. Let us remember the equation
for such no-slip boundaries, again only accounting for the first octant:

ui,j,k =
1

c

[
−∆x̂∆y∆z(−ui+2,j,k + 4ui+1,j,k)

−∆x∆ŷ∆z(−ui,j+2,k + 4ui,j+1,k)

−∆x∆y∆ẑ(−ui,j,k+2 + 4ui,j,k+1) + 2∆x∆y∆z(usur)
]
,

(4.1)

with c = 2∆x∆y∆z − 3 [∆x̂∆y∆z + ∆x∆ŷ∆z + ∆x∆y∆ẑ].

The only thing we need to do now, is to feed the velocity of the objects
movement (represented by its centre of mass) into this equation as the value
for usur, vsur or wsur, accordingly. The equation itself works right out of the
box.

29

30 CHAPTER 4. SIMULATION OF MOVING OBJECTS

Velocity prediction for leaking boundary points

Looking closer, there is one other small thing we need to consider, though.
Our object will be moved after the boundary values for the corrector step are
set, and right before we advance to the next time step, starting with the usual
predictor step. So there usually will be points that were inside the obstacle
before, and now become the new boundary. Both, velocity and density values
at these points will be accessed in the following predictor step, when updating
their neighbours, that in turn were part of the boundary and now changed
to be regular fluid cells. In other words, points "leaking" from the geometry
need to be addressed. We need to find a way to predict a sensible velocity and
density for them. This will, once again, be done by applying the one-sided
second order differences from (2.22) to a taylor expansion. Assuming we are
in the first octant, we have

ui,j,k ≈ ui+1,j,k −∆x(ux)i+1,j,k. (4.2)

Inserting our differencing scheme from (2.22), we get

ui,j,k ≈
1

2
(5ui+1,j,k − 4ui+2,j,k + ui+3,j,k). (4.3)

Since we can do the analogous approximation in directions y and z, we average
them with the normal n as a weight, to get our final update rule:

ui,j,k =
n2
x

2
(5ui+1,j,k − 4ui+2,j,k + ui+3,j,k)

+
n2
y

2
(5ui,j+1,k − 4ui,j+2,k + ui,j+3,k)

+
n2
z

2
(5ui,j,k+1 − 4ui,j,k+2 + ui,j,k+3)

(4.4)

Exactly the same reasoning can be used for the density, as well. As a final
note, we remember, that we already use three layers of ghost cells in the
parallelization, so no adaptations have to be carried out on this front.

Tracking the boundary

In the last section we have discussed the changes to our boundary conditions,
that need to be implemented if we want to simulate moving obstacles. In
our code, boundary points are saved in lists, gathering points of the same
boundary type, which are established on the basis of our flag field. In the
end, moving our geometry is realized by moving the level set function, by
which it is defined. Hence, in order to keep track of our boundary points, we

4.2. MOVING GEOMETRIES WITH A PRESCRIBED VELOCITY 31

need to update our flag field, as well as the corresponding lists, accordingly.
In Practice, after each time step, we go through our level set field and check
for sign changes among neighbouring points. If we detect a changing sign we
set the appropriate flag. If a given cell, was marked as an obstacle cell before,
and is now on the boundary, we additionally mark it as leaking. This way, we
mark it to receive the special care discussed in the last subsection. After this
procedure, we rebuild our lists and update our leaking points, as described.

4.2 Moving geometries with a prescribed velocity

Fundamentally, we are interested in having both, objects with a prescribed
velocity, as well as geometries driven by the flow. In Chapter 3 we described,
how to generally transport a level set function by a general velocity field a.
While this setting gives us a very high flexibility, in terms of modifying our
object, in the course of this thesis, we want to restrict ourselves to the special
case of globally transporting the level set, i.e. moving our object as a whole,
rather than locally moving its boundaries, and therefore possibly altering its
shape, while the latter still remains as a future option. Let uCoM (t) be the
velocity we want to assign to our object, which is represented by its centre
of mass (CoM). Then, in the general setting from above, our case can be
described as

a(x, t) = uCoM (t). (4.5)

Let s = (sx, sy, sz) bet the distance our obstacle moves in a given time step.
Then we evidently have

sx(tn) = uCoM (tn) ∆t

sy(tn) = vCoM (tn) ∆t

sz(tn) = wCoM (tn) ∆t

(4.6)

We use a Semi-Lagrangian ansatz to implement this movement, which
means, that we calculate new values at our grid points, by going backwards
in time to deduce their initial position before the movement occurred. Let us
look at the situation for the grid point (i,j,k). Before the translation it was
located at coordinates x

y
z

 =

 i∆x− sx(tn)
j∆y − sy(tn)
k∆z − sz(tn)

 (4.7)

32 CHAPTER 4. SIMULATION OF MOVING OBJECTS

Figure 4.1: Basic idea of the Semi-Lagrangian ansatz

Let p1 = (i1, j1, k1) and p2 = (i2, j2, k2) be the two unique grid points with
coordinates (x1, y1, z1) and (x2, y2, z2) such that

x1 < x < x2 = x1 + ∆x

y1 < y < y2 = y1 + ∆y

z1 < z < z2 = z1 + ∆z

(4.8)

We interpolate the new value for the level set function L at (i,j,k) between
the eight grid points surrounding its original position:

Li,j,k(tn+1) =
1

∆x∆y∆z

[
(x2 − x)(y2 − y)(z2 − z)Li1,j1,k1(tn)

+(x− x1)(y2 − y)(z2 − z)Li2,j1,k1(tn)

+(x2 − x)(y − y1)(z2 − z)Li1,j2,k1(tn)

+(x− x1)(y − y1)(z2 − z)Li2,j2,k1(tn)

+(x2 − x)(y2 − y)(z − z1)Li1,j1,k2(tn)

+(x− x1)(y2 − y)(z − z1)Li2,j1,k2(tn)

+(x2 − x)(y − y1)(z − z1)Li1,j2,k2(tn)

+(x− x1)(y − y1)(z − z1)Li2,j2,k2(tn)
]

(4.9)

Obviously, we need to make sure, that our object moves less than one cell
length per time step with this scheme, but this is automatically secured by
our stability condition including the speed of sound, since we don’t want to
simulate objects anywhere close to the speed of sound.

4.3. TRANSLATION VS. ROTATION 33

4.3 Translation vs. rotation

Up until this point, we have only talked about translational movement, but in
principle, the above method could be easily extended to rotational movement,
as well. The only thing that needed to be done is to incorporate the rotation
into the Semi-Lagrangian ansatz, where we compute the original position of
our point. There is another problem with this method altogether, though,
which we want to explain in this Section, and which finally led to the decision,
to only consider translations for the present thesis.

When trying the above method in practice, we soon encountered terrible
problems with the stability of our level set function. Even after very short
times, we could see a severe mass loss and some deformations of the object, as
well. Apparently, interpolating the level set function in such a manner doesn’t
work very well, if you do it many times over. This effect is especially grave
in our case, due to the small time steps mandated by the CFL-condition,
resulting in a huge number of successive interpolations. Our first idea to
overcome this problem, was to not interpolate successively, for each time step,
but to always start from the original level set function, that was generated
by the reinitialization procedure. For this to work, we only have to add
up the distances from Equation 4.6 as we go. This way, there’s never more
than one interpolation, since we always start fresh with the original level-set
field. In turn, however, the position of our point of interest and its original
location, were we interpolate the new value, drift apart, in the same manner
as we move our object. This is no problem in a serial environment, where
only one processor is involved, and consequently has access to the complete
level set field. If we want to run our algorithm in a parallel fashion on many
processors, though, we face the issue of only having a local piece of the field
in the memory of each processor. Both, having to communicate all values
where cells of a given processor emerged from, which is a very elaborate
and tedious procedure, as well as having a global level set function for each
processor of its own, which is blatantly inefficient memory-wise and defeats
the purpose of the parallelization in the first place, are no practically useful
solutions to this.

For translations, at least, there is a more elegant solution: We can do
the above, i.e. interpolating from the initial level set function, until our
object has moved by a whole grid cell in any given direction. When this
happens, we move our original level set, which we use as a source for the
interpolation, by one grid cell in this direction. This process doesn’t require
any interpolation, since the grid is mapped to itself. This way, the origin of
each grid pont always keeps track with the movement of the obstacle, and
therefore no communication is needed, yet still, there is never more than
a single interpolation required to deduce the value for a given position, so

34 CHAPTER 4. SIMULATION OF MOVING OBJECTS

we don’t run into the problems discussed before. The only downside to this
method is, that there is no obvious generalization to rotations, since there is
no natural analogue of moving by one grid cell. The first angle at which a
rotation of a (quadratic) grid aligns with its initial origin is at 90°, which is
way too coarse to help with the problem at hand. Since no other solution was
found in the time-frame of this work, we restrict ourselves to translational
movement for the point being, although the rest of the theory could easily
be adapted, to the general case. In the end everything comes down to a
parallelization issue, which seems difficult to solve, but there is no point
running in serial, whatsoever.

4.4 Bidirectional coupling

In the following Section, we want to see how we can generalize the above
to allow for bidirectional coupling, too. Again, we restrict ourselves to
translational movements, although the coupling would work exactly the same
for rotations. In some way, this bidirectional coupling has to be based on
computing the forces our fluid exercises on the obstacle at hand. Once we
have done this, we just feed these forces back into the loop by adjusting our
Centre-of-Mass velocity uCoM via Newton’s law. In the end our problem
basically comes down to computing drag/lift forces on a body, as well as
its mass or rather its volume. The calculation of both of these quantities
relies on integration. Most generally, we can express the force on an obstacle
immersed into our fluid, by integrating the stress among its surface, in other
words

F =

∫
S

σ · ndS, (4.10)

where n is of course the outer normal to the surface S. Now, to be consistent
with the equations presented in Chapter 2, our total stress σ is given by

σ = −p I + µ(∇u+ (∇u)T)− λ(∇ · u) I, (4.11)

where we discretise all appearing derivatives with central differences. Inserting
this above, all that’s left to do, is to approximate the integral in our discrete
setting. There are many different ways of doing this for a fixed mesh, some
using very elaborate interpolation techniques. In 2012 Haeri and Shrimpton
published a review paper on a few of these methods ([HS12]). Here, we
want to keep things a little simpler, though. Again, we make use of the
normal, which is readily provided by our level-set function. To discretise the
integral itself, first, we want to bring it to a slightly different form. Since
S = {x|ϕ(x) = 0} and |∇ϕ| = 1, using a change of variables, we can rewrite

4.4. BIDIRECTIONAL COUPLING 35

(4.10) as follows

F =

∫
S

σ · ndS =

∫
Ω

σ · n δ(ϕ(x)) dx, (4.12)

where δ is the Dirac delta distribution. Rigorously, this follows easily from the
coarea formula. Using a smooth standard approximation δh of finite width h
to the delta distribution, we can now approximate our integral discretely

F ≈
∑
i,j,k

(σ(i, j, k) · n) δh(L(i, j, k)) dx(i)dy(j)dz(k) (4.13)

In practice, a thickness of 1.75 cell diameters was used. Since this process
smears out the delta function in both directions, we have to make sure, that
we don’t use any points inside our obstacle, where no information about
velocity and pressure exists. Therefore, we make one final change to our
actual approach:

F ≈
∑
i,j,k

(σ(i, j, k) · n) δh(L(i, j, k)− 0.5h) dx(i)dy(j)dz(k) (4.14)

Figuratively, we push out our integration surface by half of this width, which
doesn’t alter the value of the corresponding integral. In fact, due to the
conservation of momentum, any closed surface containing our obstacle should
theoretically give the correct value. Finally, for the calculation of the volume,
all we have to do is basically count the cells inside our obstacle, the details
of which will be omitted, here.

36 CHAPTER 4. SIMULATION OF MOVING OBJECTS

Chapter 5

Example results

In this chapter we want to show a selection of results, we could achieve on
the basis of the previously presented theory. Each computation is performed
to show a specific feature of the code and is only exemplary. A multitude of
different possibilities exist beyond the presented scenarios. In general, the
chapter is divided roughly into two areas: The first two sections are devoted
to validate our code in different ways. Subsequently, we want to explore the
possibilities that can be realized with the algorithms at hand, showing some
nice examples, in the progress. All visualizations throughout the chapter have
been carried out using ParaView and the Visualization Toolkit (VTK). The
label vectors Magnitude in the corresponding figures refers to the magnitude
of the velocity field u, always expressed in m/s. Allthough our theory, as
well as our code is formulated to operate with density, rather than pressure,
for the output and analysis of the flow, we decided to opt for a zero-centred
pressure, which is simply given by

p = v2
sound(ρ− ρ0), (5.1)

where ρ0 is the resting density of the fluid. The two convey the same
information, yet the visualization in terms of pressure is easier to present and
more familiar, coming from the incompressible case. All appearing plots were
done with the aid of Gnuplot.

5.1 First Tests

Having implemented the preceding methods, we want to test them with
some simple cases, as a preliminary point, before going over to more complex
problems. Therefore, in this section, we try to replicate some standard driven
cavity results, look at the progression of L2 errors on different grid resolutions
and finally examine the parallel scaling of our code on a CPU cluster, to get
an idea how it performs in the most general setting.

37

38 CHAPTER 5. EXAMPLE RESULTS

Driven cavity

As a first test, we try to replicate the results from Perrin and Hou ([PH06])
for a driven cavity scenario in 2D. To recreate their setting, we use the
symmetric boundary conditions presented in Section 2.4 to create a pseudo
2D form of the algorithm. Physically, the two experiments are equivalent,
but a confirmation of the results still gives us a first hint at the correctness
of our code, as well as the underlying equations.

Figure 5.1: Velocity field of a driven cavity on a 256x256 grid at Re = 100
(left) and Re = 400 (right) and U = 1m/s; stopped after simulated time of
24 s. The purple crosses mark the vortex centres found by [Hou+95].

The calculations are performed on a uniform grid of 256x256 cells, represent-
ing the domain Ω = [0, 1]× [0, 1], and 32 cells in the (symmetric) z-direction.
The flow is driven by the upper border of the domain moving at a speed of
1m/s to the right. No-slip conditions are enforced on all other walls of the
cavity. To remain in the nearly incompressible region the speed of sound is
set to 10m/s, resulting in a Mach number M = 0.1. The experiment is then
conducted at a Reynolds number of 100 and 400, each, and run until steady
state is reached.The resulting velocity fields and corresponding streamlines
are shown in Figure 5.1. In both cases a large primary eddy vortex can be
found spanning most of the cavity, withsome smaller vortices emerging in the
bottom corners of the domain. In accordance with our expectations, in the

5.1. FIRST TESTS 39

course of the higher Reynolds number, the primary vortex moves closer to
the middle of the cavity and the secondary vortices become more distinct,
due to the lower viscosity. The centres of the primary vortices are in good
accordance with the results found by Ghia et al. ([GGS82]) and Hou et
al. ([Hou+95]), who give coordinates of (0.6196, 0.7373) at Re = 100 and
(0.5608, 0.6078) at Re = 400 using a Lattice-Boltzmann method. Eventually,
with higher Reynolds numbers, the vortices will become unstable as reported
by Ghia et al. All in all we can securely replicate the results found in the
literature and at first glance computing times seem to be competitive, as
well.

Progression of L2-Errors

Next, we want to perform further tests on the accuracy of our solutions,
especially when increasing grid resolutions. Due to the lack of exact solutions
for the compressible Navier-Stokes equations, showing any form of convergence
proves very difficult. What we can do instead, to estimate convergence order,
is to compute a solution on a very fine mesh and examine the behaviour of
the algorithm when approximating it with coarser variants from below. We
want to use the experiment above, and calculate the L2 error for different
resolutions compared to a reference grid of 800x800 cells. Grid sizes of the
related coarse meshes varied from 25x25 cells up to 400x400 cells, with a
two-fold margin left over to our reference solution, in order for the assumed
negligible error on the fine grid not to distort the picture. To capture possible
time-dependant effects, the simulation wasn’t run until steady-state, but
was stopped after a fixed time of 4.0 s. Throughout the study, the Reynolds
number was set to 100. For the comparison, the result on the coarser grid
was then interpolated to the finer reference grid, and an approximation to
the L2 norm was calculated in the following way:

‖U‖L2 =

∫
Ω

|U(x, y, z)|2 dL3(x, y, z)

1/2

≈

∑
i,j,k

|U(i, j, k)|2dx(i)dy(j)dz(k)

1/2
(5.2)

Having established the norm, the absolute error ε and relative error η are
then defined as follows:

εU,L2 = ‖Ufine − Ucoarse‖L2 (5.3)

ηU,L2 =
‖Ufine − Ucoarse‖L2

‖Ufine‖L2

(5.4)

40 CHAPTER 5. EXAMPLE RESULTS

In practice, the filters ResampleWithDataset, IntegrateVariables and Calcu-
lator, provided by the ParaView Software, were used to perform the required
computations. In the same manner we can calculate the related errors for
the pressure. The results of the study are listed in Table 5.1 alongside a
logarithmic plot, comparing the data with an appropriate fit in Figure 5.2,
to estimate the order of convergence. In conclusion, the results are pretty
encouraging: The order of convergence, for both the velocity and the pressure
increases, the higher our resolution goes. In general, the behaviour for the
velocity, going from 1.53 in the beginning, to a value of 2.33 in the final step,
seems to be slightly better than for the pressure. The last two values, even
going above the proposed second order, are probably due to the fact, that our
assumption of a negligible error on the reference grid, becomes less accurate,
the closer we get to it. Therefore, especially the last entry, for a resolution
of 400 points, is probably overshooting the actual value. The corresponding
fit, which estimates an order of 1.79 for the velocity and around 1.46 for the
pressure, should give us a more accurate picture of our study. Still, the result
is only slightly below the theoretically proposed second order convergence,
and therefore very gratifying, indeed.

Table 5.1: Relative L2 errors for different resolutions compared to a 800x800
reference grid

grid size ηU,L2 orderU ηp,L2 orderp

25× 25 9.73e-02 - 1.42e+00 -
50× 50 3.36e-02 1.53 5.72e-01 1.31

100× 100 1.09e-02 1.62 2.26e-01 1.34
200× 200 2.98e-03 1.88 8.30e-02 1.45
300× 300 1.30e-03 2.03 4.20e-02 1.68
400× 400 6.67e-04 2.33 2.36e-02 2.00

Strong scaling

Since the parallelization of CFD codes is indispensable in order to tackle
interesting problems, we want to take a look at the performance of our code
on a big CPU cluster, next. We want to see what kind of efficiency we can
expect with our code in this regard. The subsequent study was performed
on a parallel CPU cluster of the University of Bonn. In total, the deployed
cluster Atacama consists of 1248 Intel Xeon CPU E5-2560 2.60 GHz cores,
supplied by 78 PowerEdge M620 compute nodes. Each of these nodes comes
with 16 CPU cores. The system is equipped with 4992 GB of memory, in

5.1. FIRST TESTS 41

0.0001

0.001

0.01

0.1

1

10 100 1000
No. of grid points

ηU,L2

ηp,L2

c/x1.79

c̃/x1.46

Figure 5.2: Progression of L2 errors for the velocity U and the pressure p
compared to the respective convergence order on a logarithmic scale

total, and the MPI communication routines are conducted by 56 GB/sec
Infiniband connections. The cluster is operated by the Institute for Numerical
Simulation and the Sonderforschungsbereich 1060 at University of Bonn and
displays a Linpack performance of 20630 GFlop/s at a parallel efficiency of
80%.

For the following comparison, running times of the complete program
execution were measured. To avoid static costs distorting the picture for
higher numbers of processors, data outputs were disabled and the problem
was chosen to be reasonably solvable for the total range of a single core up
to the maximum of 512 cores we used. The conducted calculation is a now
fully three dimensional driven cavity on a cubic grid with 256 cells in each
direction, which amounts to ca. 16.8 Mio. cells in total. The simulation was
run until a fixed time of 0.5s was reached. A clip through the corresponding
velocity field is shown in Figure 5.1. The results of our study, concerning
speedup, as well as the corresponding efficiency, can be seen in Table 5.2 and
Figure 5.4. At a first glance, the observed efficiency is distinctly above 50 %
up to a number of 256 cores and is thus already very reasonable. Looking
more closely, especially the scaling above a number of 16 cores seems to be
very good. Indeed, we can attest an efficiency of 80.2 %, when increasing

42 CHAPTER 5. EXAMPLE RESULTS

from 16 to 256 cores, a 16-fold increase, in relation to the 67.2 % we inherit
from the comparison to a sequential run. We have to take into account here,
that a full node of the employed cluster consists of exactly those 16 processor
cores. In the end, only a comparison of a different number of such full nodes
is a fair matter. Additionally, the interest in such a study is focused on the
scaling for a large number of processors, anyway. On this front we can report
very pleasing results. For the final run with 512 cores, the scaling seems
to be a bit weaker than the very strong speedup before, but then also the
running time of our experiment at this stage is already below three minutes,
so we might be in a region, were the posed experiment is too small to make
any definite statements. In conclusion, we can report a very sound scaling
behaviour up to a number of 512 cores, with an efficiency of more than 80%,
when increasing from 16 to 256 cores and a total speedup factor of 241.6. A
further speedup, on even higher numbers of cores, with only slightly reduced
efficiency, can hence be expected with very good confidence.

Figure 5.3: Clip through the velocity field of the conducted driven cavity
experiment for strong scaling on a cluster.

5.2 A benchmark problem

We have already stated, that proving convergence of a CFD code of this
complexity is currently out of reach. This becomes all the more true, when

5.2. A BENCHMARK PROBLEM 43

1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64 128 256 512

Sp
ee
du

p

No. of cores

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 128 256 512

E
ffi
ci
en
cy

No. of cores

Figure 5.4: Speedup (top) and efficiency (bottom) plot for up to 512 cores
on a CPU-cluster

44 CHAPTER 5. EXAMPLE RESULTS

Table 5.2: Speedup and efficiency of a three dimensional driven cavity simu-
lation on up to 512 cores

no. of cores absolute time [s] speedup efficiency

1 40981 1.0 100.0 %
4 11778 3.5 87.0 %
8 6273 6.5 81.7 %
16 3811 10.8 67.2 %
32 1977 20.7 64.8 %
64 1073 38.2 59.7 %
128 556 73.8 57.6 %
256 297 138.2 54.0 %
512 170 241.6 47.2 %

we consider more complicated experiments, like the external flow around
an obstacle. Comparing the results of our algorithm to exact solutions is
difficult, as well. Although some analytic solutions can be found in the
literature (see i.e. [Whi91]), they are mostly restricted to the one dimensional
case or don’t solve the full Navier-Stokes equations, but some simplified
version. Another approach for the verification of CFD codes is the Method
of manufactured solutions (MMS) [OT02] which aims at manufacturing
experiments specifically, such that a given solution emerges. The AIAA Code
Verification Project [Ghi+10] lists examples of this method, but none of them
seems applicable to our special situation. Yet, there are some tightly defined
benchmark cases around, which allow the direct comparison to solutions of
other CFD codes or physical experiments, that are conducted in wind or
water channels. We want to see, if we can find something that suits our
situation. Most compressible forms, like [LL87], focus on shock waves or
other high Mach number phenomena, which are not in our interest or reach.
What stays as an option, is to see if we can replicate results of incompressible
benchmarks, if we resort to a small enough Mach number, by adjusting the
speed of sound accordingly. This is what we want to try in the upcoming
section.

Cylinder benchmark by Turek and Schäfer

We try to adopt a benchmark proposed by Turek and Schäfer for incom-
pressible CFD codes. The test was first established in 1996 in [TS96], but
the most recent results were published in [BMT12] in 2012. The proposed

5.2. A BENCHMARK PROBLEM 45

task is to examine the flow around a cylinder of diameter D, positioned in a
prescribed channel, at a Reynolds number of Re = UD/ν = 20, where U is a
characteristic velocity of the flow. As a means of evaluation, drag and lift
forces, exerted on the body, ought to be calculated. A display of the exact
setting, including the dimensions of the channel, as well as the position of
the cylinder is given in Figure 5.5, which is adopted from Turek and Schäfer.

Figure 5.5: Setup and main dimensions of the 3D-1Z cylinder benchmark
with circular cross-section according to Turek and Schäfer; taken from [TS96]

In the benchmark, a parabolic inflow profile according to the following
equation is specified on the inflow plane:

u(0, y, z) = 16Umyz(H − y)(H − z)/H4,

v(0, y, z) = w(0, y, z) = 0,
(5.5)

where H = 0.41m and Um = 0.45m/s denotes the maximal inflow velocity
at the center of the channel. The characteristic velocity U is then

U =
4

9
u(0, H/2, H/2) = 0.2m/s, (5.6)

which gives us the desired Reynolds number of 20. On the back of the
channel a free in-/outflow condition is used, and on all other walls standard
no-slip conditions are prescribed. Drag and lift forces, denoted by FD and
FL, accordingly, are defined as follows

FD =

∫
S

(µ
∂vt
∂n

ny − pnx) dS (5.7)

FL = −
∫
S

(µ
∂vt
∂n

nx + pny) dS, (5.8)

46 CHAPTER 5. EXAMPLE RESULTS

where n is the outer normal of the cylinder with components nx, ny and nz.
Since this is a special case of the components of equation (4.11), except for
the extra term concerning the bulk viscosity, we use the same routines as for
the bidirectional coupling. The corresponding dimensionless coefficients cD
and cL, for completion, are then

cD =
2FD

ρU2DH
(5.9)

cL =
2FL

ρU2DH
. (5.10)

The integration in the expressions for the lift and drag forces are performed
as described in Section 4.4. In addition we calculated the volume of the
actual cylinder in our scene, to compare it to the magnitude of our deviations
in lift and drag coefficients.

We performed calculations at different resolutions, as well as different
values for the speed of sound. The exact setup is listed in Table 5.3. Since
both resolution, as well as a higher speed of sound considerably increase
computational cost, we cannot have both at an astronomically high level at
the same time, but rather have to take compromises. To see what influence
each of the parameters have, we tried both variants and want to compare
the results. For all runs, we resorted to standard no-slip conditions on the
cylinder, as the boundary condition presented in section 2.4 led to problems
with stability.

Table 5.3: Grid size and speed of sound of the different simulation runs; ×
marks performed runs

grid size \ vSound 10 40 80 160

250× 41× 41 × × × ×
500× 82× 82 ×

750× 123× 123 ×
1.000× 164× 164 ×

Having declared the setup, we can now go forth and perform the calculations.
First, we want to look at how good we can even approximate the cylinder
with our current method. Therefore, we calculate the volume enclosed by
the obstacle cells, that make up our cylinder. A comparison of these volumes
with the correct volume of the cylinder is shown in Table 5.4.

5.2. A BENCHMARK PROBLEM 47

Table 5.4: Rel. error of the cylinder volume at different grid resolutions

no. points in x volume rel. error

250 0.002184 32.2 %
500 0.002760 14.3 %
750 0.002931 9.0 %

1.000 0.003007 6.6 %
exact 0.003220 0

Figure 5.6: Approximation of the cylinder outline by the flag field and the
level set contour at a resolution of 250x41x41 (left) and 500x82x82 (right)

48 CHAPTER 5. EXAMPLE RESULTS

We can see, that the error is quite big at the beginning at over 30 %. Even for
a very fine resolution of 1.000 grid cells in the flow direction, which amounts
to nearly 27 Mio. cells in total, we have an error in the representation of the
volume, which is not negligible at 6.6 %. We want to see, if we can improve
this behaviour. The way we create our level set function is to take all grid
points, that are inside the object and create a characteristic function, which
is then reinitialized. The problem is, that we underestimate the volume of
our object, if the object is small compared to the resolution of the underlying
grid. Figure 5.6 shows this very plainly, by comparing the resulting object at
a resolution of 250 and 500 grid cells in the flow direction. For calculating
drag and lift forces this is not desirable, since they will be equally small.
What we could do instead, is to take the points closest to the cylinder as
its surface, but tracking these points in 3D is quite tedious, especially for
more complex objects. We will try a more simple approach, which gives quite
similar results, but consists of simply enlarging the geometry by

√
2

2 cells
in each direction, or, in turn subtracting

√
2

2 dx from the level set function
and updating the flag field accordingly. Due to the dependence on the cells
width, the additional term goes to zero when refining the mesh, so we still
have convergence. As portrayed in Table 5.5 though, the error in the volume
is much lower to begin with (10.4 %), and even the progression seems to
be better when increasing the resolution. It looks like we now have second
order convergence in the volume. The difference between the two methods is
depicted in Figure 5.7 for a resolution of 250x41x41, where the improvement
is quite obvious. For our finest mesh, we are left with an error of 0.8 % which
is quite reasonable, considering that we use an underlying uniform mesh.

Table 5.5: Rel. error of the cylinder volume computed with the refined
method, motivated by closest points

no. points in x volume rel. error

250 0.002886 10.4 %
500 0.00312 3.1 %
750 0.003173 1.5 %

1.000 0.003194 0.8 %
exact 0.003220 0

We now want to turn our attention to the results of our simulations. The
flow was simulated for 16 s in all runs, after which no changes were observed

5.2. A BENCHMARK PROBLEM 49

Figure 5.7: Comparison of the cylinder approximation by all inner points
(left) and approximation to closest points (right) at a resolution of 250x41x41.
The relative error in the volume drops from 32.2 % to 10.4 %.

and steady-state could be safely declared. The emerging velocity field for
vsound = 50m/s on a 500x82x82 mesh is depicted in Figure 5.8 and is visually
indistinguishable from the results of Bayraktar et al. Following the discussion
above, we want to examine the influence of the speed of sound and also the
resolution of our grid on the sought figures. We split these experiments in
two series, each of which investigates the influence of one of the parameters.
Each series consists of 4 runs, with one of them being shared among both
series as a starting point.

Let us first consider the speed of sound. The results for drag and lift
coefficients, as defined in Equations (5.7) - (5.10), are listed in Table 5.6.
Allthough run (a) already starts with a Mach number M below 0.1, which
is typically considered to be in the incompressible domain, we can see, that
there is still an influence of vsound on the result. In general, there seems to
be a trend for both cD and cL among the runs.
With increasing speed of sound, except for the starting value of 6.186, drag
coefficients rise steadily, going up to a value of 6.218. While the last value is
slightly overshooting the data given in the literature, we shouldn’t overrate
this effect, since relative errors for all of the values at a maximum of 0.5%
are already far below the rel. error of 3.1% for the flag field volume, which is
very good. Coming to the lift coefficient, the picture presents itself differently.

50 CHAPTER 5. EXAMPLE RESULTS

F
igure

5.8:
V
elocity

field
of

the
flow

around
the

cylinder
after

16
s
w
ith

a
parabolic

inflow
profile

according
to

E
quation

5.5

5.2. A BENCHMARK PROBLEM 51

Again, there is a trend, this time, though, seemingly going in the wrong
direction. Even worse, while the absolute error is still small (around 0.015),
the relative error is quite huge, and we cannot even correctly predict the sign
of the coefficient, indicating downforce instead of lift. However, anticipating
the results of the second series of experiments, we tend to conclude that the
given resolution of 500 points in the main direction of flow, is just not up
to the task for such a sensitive variable, depending on very small influences,
indeed. Even though the number 500 seems rather large, at first glance, we
have to remember, that the cross section of the actual cylinder is only covered
by a square of 20x20 cells as depicted in Figure 5.6. More important is the
general observation, that in both cases, the values seem to stabilize, with
only small changes between the last two runs. Even the run at 40m/s seems
not far off the final result. Therefore, we took this run to see in our second
series if we can improve it’s coefficients by altering the resolution. Finally,
we should keep in mind, that changing the speed of sound, not only, changes
the compressibility of our fluid, but also demands smaller time steps in our
calculations. These time steps, in turn, might introduce dispersive errors at
the typical speeds appearing in our case. While a Mach number of around
0.1 should be totally applicable, the validity of using much lower values, like
in our study, has to be questioned and was mainly done in this experiment,
to spot its effect. At least in this scenario, no obvious harming effect can be
assessed, since the values seem to converge with increasing speed of sound.

Table 5.6: Comparison of drag and lift coefficients at different values for the
speed of sound and 250 grid points in the flow direction

run grid size vsound cD cL

0 Turek & Schäfer - 6.185 0.00941
a 500× 82× 82 10 6.186 0.00049
b 500× 82× 82 40 6.177 -0.00537
c 500× 82× 82 80 6.186 -0.00735
d 500× 82× 82 160 6.218 -0.00773

For the resolution, things are kind of reversed, and the results put the
values of our first series somewhat into perspective. Looking at the drag, we
see that the values decrease with rising resolution. The first run indicates,
that a lower resolution, has a rather large negative effect, but we still stay
inside the 10.4% reference, we gave ourselves. Going, further up, however,
has only small consequences, obviously tied to the already very good values.
The runs (3) and (4) show a slightly lower value than given by Turek and

52 CHAPTER 5. EXAMPLE RESULTS

Schäfer, with the last one indicating, that it will probably stay in this region,
even for higher resolutions. In the end, our error is somewhere close to 1%,
which is totally fine. Remembering, that we expect the values to still slightly
increase for higher speeds of sound and the two effects might potentially
cancel, we are very pleased with the outcome. Going over to the lift, we can
see that the values for higher resolutions are much improved over the ones
seen before. Now, we can correctly predict a lifting force on the cylinder,
albeit a bit smaller than we hoped for. Also, while the drag coefficient seems
to stabilize among the runs and only varies slightly, the lift coefficient still
shows quite high deviations even for the higher resolutions. Considering,
however, the small total error, which is now in the order of 0.005 and the fact,
that this is also the instance, where deviations among the compared codes in
the literature is highest, we can still be very satisfied with our results.

Table 5.7: Comparison of drag and lift coefficients for different grid resolutions
at vSound = 40m/s

run grid size vsound cD cL

0 Turek & Schäfer - 6.185 0.00941
1 250× 41× 41 40 6.609 -0.03401
2 500× 82× 82 40 6.177 -0.005374
3 750× 123× 123 40 6.103 0.001716
4 1.000× 164× 164 40 6.114 0.004191

In total, we can say that our results are pretty satisfying. Even though our
code is at first glance not perfectly suited for the presented drag and lift
calculations, as they heavily depend on correctly resolving the flow at or near
the boundary, which profits vigorously from having some form of adaptivity,
we can still assert a very solid performance in computing both lift and drag
values, if we can cope with the mandated high resolutions. We can not totally
replicate the results of Bayraktar et al. but we are in as close proximity, as
can be expected.

5.3 A physical problem

After successfully solving some benchmark problems, which are mainly con-
structed for CFD code verification purposes, we now want to look into solving
an actual physical problem with realistic constants and parameters, that
also involves more complex geometry. Since we cannot expect to accurately
resolve turbulence at high Reynolds numbers, we looked for an example,

5.3. A PHYSICAL PROBLEM 53

where the Reynolds number is kept below a threshold value of approximately
10.000. One area, where these requirements are met, is the flight of insects.
Due to their small bodies, Reynolds numbers tend to be in a range of 3.000-
5.000. Small insects use active flying techniques with high frequencies of
wing beat, though, but butterflies, in contrast, also show some periods of
gliding. Therefore we decided, to set up a model of a typical butterfly and see
what we can get out of it. The model is considered to be a proof of concept,
only, and was therefore kept relatively simple. To be able to resolve the
wings accurately at a reasonable resolution, the thickness of the wings was
emphasized to 0.3mm. The model at hand has a wingspan of approximately
38mm. The four symmetric wings are attached to a body of 18mm length.
A drawing of the exact model, as well as an isometric view can be seen in
Figure 5.10 and Figure 5.9. The model is positioned in the anterior half of
a fluid channel of length 0.1m and is inclined at an angle of attack of 12°.
It is simulated on a grid consisting of 192 Million cells, which is by far the
biggest and computationally most expensive case in our work, and clearly
shows the backdrop of a uniform mesh without the possibilities of adaptivity.
The exact setup is listed in Table 5.8. The inflow is set to 0.8m/s, which we
imagine to be a typical velocity encountered by such an insect, even though
their maximal air speeds can reach much higher values.

Figure 5.9: Isometric view of the simulated butterfly model; Rendered in
KeyShot 5 Student Edition

54 CHAPTER 5. EXAMPLE RESULTS

0.038

0.04

0.015

0.06

0.08

0.02

0.03

12°

F
igure

5.10:
D
raw

ing
of

the
considered

butterfly
m
odel

and
its

placem
ent

in
the

flow
channel

in
top

front
and

side
view

;
M
odelled

in
P
ro/E

N
G
IN

E
E
R

W
ildfire

5.0
Student

E
dition

5.3. A PHYSICAL PROBLEM 55

Table 5.8: Overview of the most important simulation parameters for the
conducted simulation of a butterfly

parameter x y z

length [m] 0.08 0.04 0.06
no. of points 800 400 600
inflow [m/s] 0.8 - -
vSound [m/s] 10.0
ρ [kg/m3] 1.2
µ [Pa·s] 1.8e-06
∆t [s] 3.4e-06

For our fluid, we try to simulate air, as closely as possible, hence, we
set a viscosity of 1.8e-06Pa·s and a static density of 1.2 kg/m3. Our only
concession concerns the speed of sound, where we chose a value of 10m/s
instead of the theoretical 340m/s, yet, at the comparably small fluid velocities
appearing, this gives us still a Mach number of ca. 0.1. Going even lower
than this should make only a very small difference in terms of compressibility,
but costs us heavily in terms of computational efficiency. Due to the quite
staggering amount of points involved, we already face a tough restriction
concerning the allowed time steps. In practice, we ended up with a value
of approximately ∆t = 3.4e-06s, which means in turn, that something like
the equivalent of 300.000 time steps have to be executed in order to reach a
simulated time of just one second. Although the simulation doesn’t reach
steady-state, at least in the given time-frame, due to the enormous amount of
data arising, we restrict ourselves to the analysis of a single time step in this
case, which is at 0.2 s into the simulation. Also, we had to revert to standard
no-slip conditions, here, since we couldn’t find a stable setup with the more
advanced boundary conditions presented in Section 2.4.

Due to the conducted simplifications, the results of our simulation are
meant to be understood as a proof of concept, rather than a detailed study.
Therefore we don’t want to over-analyse the resulting flow field, but we still
take a brief look at the most basic features. In Figures 5.11 and 5.12 we
present both velocity and pressure distributions around three different slices
of the butterfly. We can see, that there is a nice region of high pressure,
at least under the front half of the butterfly. On top of it, a zone of lower
pressure reaching over the whole length of the insect can be found, which
is even extending to the last part of the lower side. This gives us a first

56 CHAPTER 5. EXAMPLE RESULTS

indication, that the (simplified) wings actually produce some lift. In the
velocity plots, we can also see, that there is a huge separation going on in the
middle half of the butterfly, that probably stems from the narrow connection
to the clumsy body towards the middle. In contrast, the flow around the
outside of the wings is much cleaner, but the leading edge radius of the wing
seems to be too small, for having an attached flow round the upper side of
it. This is no surprise, however, since air is rather viscous at the size of such
animals, and therefore, the main means of movement is by wing beat, anyhow.
Their flight circumstances are probably more comparable to swimming, rather
than the flight of a large bird. Figure 5.13 shows another view from the side
and top of the butterfly. Employing some stream tracers, we can see the
typical tip vortices forming at the end of the wings, compensating for the
pressure difference between upper and lower sides of them. Their inward
rotation, gives us yet another hint at the lift generated by our butterfly. As a
final notice, we are pleased to see, that although at a restricted flight regime,
we are able to actually make relevant experiments, in physically simulated
air.

5.4 Unidirectional fluid-motion coupling

There are many interesting problems and real-world applications, that involve
some kind of moving objects, that can only be solved using a method like the
one at hand. In this section, we want to give examples for some unidirectional
coupling of fluid flow with body movement.

Oscillating ball

First, we want to start off with an example of unidirectional coupling. We
consider a ball oscillating vertically in a horizontal flow field. If we denote the
velocity of the centre of mass of said ball with uM , vM and wM accordingly,
the movement of the ball is determined by the equations

vM (t) = 0.5 cos(2t)

uM (t) = wM (t) = 0,
(5.11)

representing a sinusoidal oscillation with a total movement range of 1m and
a period of π seconds. The ball itself was chosen to have a diameter of 0.4m
and its centre of mass (CoM) is located at coordinates (2.0,1.0,1.0), to begin
with. For the horizontal flow, we used the parabolic inflow described in
Equation (5.5) again, with a maximal velocity of Um = 2.0m/s this time
around. The setup of the surrounding channel, as well as the most important
simulation parameters, is shown in Table 5.9. Given this information, we can

5.4. UNIDIRECTIONAL FLUID-MOTION COUPLING 57

Figure 5.11: Slices of the velocity field at z = 0.03m, z = 0.035m and
z = 0.04m with remaining butterfly (opaque)

58 CHAPTER 5. EXAMPLE RESULTS

Figure 5.12: Slices of the pressure field at z = 0.03m, z = 0.035m and
z = 0.04m with remaining butterfly (opaque)

5.4. UNIDIRECTIONAL FLUID-MOTION COUPLING 59

Figure 5.13: Tip vortices at the wings as seen from the back and bottom of
the butterfly; visualized with stream tracers emerging from vertical lines

60 CHAPTER 5. EXAMPLE RESULTS

calculate the Reynolds number as

Re =
ρ · U · l
µ

≈ 70, (5.12)

where we took the diameter of the ball as our typical length l and the mean
inflow velocity U = 4

9Um ≈ 0.9m/s as the reference in terms of velocity.

Table 5.9: Overview of the most important dimensions and simulation para-
meters for the oscillating ball

parameter x y z

length [m] 8.0 2.0 2.0
no. of points 360 90 90
inflow Um [m/s] 2.0 - -
CoM [m] (t = 0) 2.0 1.0 1.0
vSound [m/s] 20.0
ρ [kg/m3] 1.0
µ [Pa·s] 0.005
∆t [s] ≈ 3.5e-04

With the layout of the simulation in place, we can now look at the resulting
flow field. Figure 5.14 shows a clip through the catholicity field at z = 1.0m
after the simulation reached a periodic or quasiperiodic state. At the back of
the ball a long tail has emerged testifying the sinusoidal movement. The three
different pictures in the figure represent the transition from upward movement
to downward movement at the upper turning point. In turn the tail changes
from a lower arc behind the ball to an upper arc. At this particular Reynolds
number no vortex street can be found in the trail and the overall impression
is very tidy, just the way we expected it. At higher Reynolds numbers the
picture appears more cluttered and the specific features quickly become much
harder to track. We want to take a look at this behaviour in a different
setting, next.

Rotating ball

In this simulation, we want to consider a rotating ball in a cavity. Although
our method doesn’t allow for rotating objects per se, as mentioned in Section
4.3, it is obviously possible to do it in the case of a rotationally symmetric
object by moving it in a circular motion around the rotation centre. There is

5.4. UNIDIRECTIONAL FLUID-MOTION COUPLING 61

Figure 5.14: Velocity field of the oscillating ball in horizontal flow at three
different time steps; before, in close proximity and after the upper turning
point of the motion

62 CHAPTER 5. EXAMPLE RESULTS

no inflow in this case, all the fluid movement is generated by the movement
of the ball. The movement of the ball, which is placed in the same starting
position, is described by the following set of equations:

uM (t) = 2 cos(2t)

vM (t) = 2 sin(2t)

wM (t) = 0

(5.13)

Together they make for a circular motion of diameter D = 2.0m and a period
of π seconds. We want to perform the simulation at two different viscosities
this time around, namely at µ = 0.002Pa·s and µ = 0.0005Pa·s, respectively.
If we use the magnitude of the movement |uM | = 2.0m/s as a reference
velocity and again, the diameter of the ball, i.e. 0.4m, as reference length,
we can calculate the Reynolds number Re as 400 and 1600, correspondingly.
In Table 5.10, once again, the most important simulation parameters are
outlined.

Table 5.10: Overview of the most important simulation parameters for the
rotating ball

parameter x y z

length [m] 4.0 4.0 2.0
no. of points 180 180 90
inflow [m/s] - - -
CoM [m] (t = 0) 2.0 1.0 1.0
vSound [m/s] 10.0
ρ [kg/m3] 1.0
µ [Pa·s] 0.002 / 0.0005
∆t [s] ≈ 6.0e-04

Turning our attention to the results, which are depicted in Figures 5.15
and 5.16, we make the following observations. Compared to the oscillating
ball above, instead of the dead water behind the ball, the trail area now
makes up for most of the activity. This is obviously due to the movement
of the ball now being the only source of fluid flow, compared to the static
background flow in the above experiment. Again, the path of the ball can
be very nicely traced in the shape of its trailing velocity field. Already at a
Reynolds number of 400, we can see vortices forming in this trail area and

5.4. UNIDIRECTIONAL FLUID-MOTION COUPLING 63

Figure 5.15: Velocity field and level set contour of the rotating ball at t = 2.8 s
(top) and t = 3.2 s (bottom) and Reynolds number Re = 2000

64 CHAPTER 5. EXAMPLE RESULTS

Figure 5.16: Velocity field and level set contour of the rotating ball at t = 2.8 s
(top) and t = 3.2 s (bottom) and Reynolds number Re = 8000

5.5. BIDIRECTIONAL COUPLING 65

moving to the border of the cavity in regular intervals. While at Re 400 we
have very distinct vortices forming over a period of time, at Re 1600 the
picture is a bit different. The flow still has the same basic structure, but now
the vortices break apart into many small disturbances as soon as they form.
Overall the picture is very cluttered. It’s difficult to say if the small scale flow
features can still be accurately resolved by our mesh, or if the turbulence is
already high enough to require a much finer grid. Additionally, the maximal
velocity in the trail rises from just below 2.5m/s to nearly 3m/s, although
the general shape and length of the trail seem to be very similar. In principle,
this is the expected behaviour, though, as a smaller viscosity should mean
less fluid is being pulled behind the ball, but at a faster maximum velocity.

5.5 Bidirectional coupling

Having seen two different cases of unidirectional fluid-motion coupling, in
this section, we want to try the possibilities of bidirectional coupling, i.e. of
objects, that not only influence the surrounding fluid, but are now also directly
driven by the flow. We consider these as examples of what possibilities there
are, always keeping in mind the restrictions mentioned in Chapter 4.

Movement against the stream

With our first example of bidirectional coupling, we want to stay in the same
setting as before, considering a ball in a channel. The basic setting is very
similar to the oscillating ball discussed above, the only difference being, that
we now only define an initial velocity of the ball and subsequently letting
the forces, generated by the flow, act freely upon it. One can imagine the
experiment as a ball being thrown against the wind, being slowed down by
it, and eventually changing direction and coming back to its initial position.
With this in mind, we want to take a look at our simulation parameters
(compare Table 5.11), that were chosen in a way to accommodate this whole
process in our given channel. We start of with our ball in the middle of the
channel at coordinates (4.0,1.0,1.0) and a starting velocity of -2.0m/s in x
direction. The fluid is initially at rest and has a relatively high viscosity of
0.01 Pa·s to ensure that no detachments or other assymetries occur behind the
ball, which would push it our of the centre of the channel after the turning
point is reached. For this experiment, we also fall back to the standard
uniform inflow condition at the left boundary of the channel. In addition to
the usual parameters, for the bidirectional coupling, we have to prescribe a
density for the solid object on which our fluid acts. In this case we set the
density to 30 kg/m3, which gives us a reasonable time and distance, until the
eventual change of direction happens.

66 CHAPTER 5. EXAMPLE RESULTS

Figure 5.17: Velocity field and level set contour of a ball moving contrary to
the flow at t = 0.04 s, t = 1.00 s and t = 2.00 s and being slowed down by it
until near rest

5.5. BIDIRECTIONAL COUPLING 67

Figure 5.18: Velocity field and level set contour of the ball at t = 3.00 s,
t = 5.00 s and t = 7.00 s after reaching the turning point and being dragged
back by the flow

68 CHAPTER 5. EXAMPLE RESULTS

Table 5.11: Overview of the most important simulation parameters for the
movement against the stream case

parameter x y z

length [m] 8.0 4.0 2.0
no. of points 360 90 90
inflow [m/s] 2.0 - -
CoM [m] (t = 0) 4.0 1.0 1.0
vSound [m/s] 20.0
ρ [kg/m3] 1.0
ρs [kg/m3] 30.0
µ [Pa·s] 0.01
∆t [s] ≈ 3.6e-04

The chronological order of the events is depicted in Figures 5.17 and 5.18,
showing once again the velocity field on a clip through the centre plane of the
channel. The first picture shows the initial position of the ball right in the
centre of the channel, just after the experiment started. Due to the sudden
initial movement of the ball, as well as the inflow, we see some sound waves
emerging, that are reflected at the boundaries, but dampen out over time.
The second picture is already one second into the experiment. Throughout
the length of the channel the fluid is already moving at close to the inflow
velocity, with the usual increase at the level of the ball, due to it blocking
part of the channel. Behind the ball (to the right in the pictures), the typical
drop-shaped trail for low Reynolds numbers has emerged. Looking closer,
however, we can spot another trail inside the bigger one, stemming from the
motion of the ball itself, that pulls the fluid in its own direction of movement
contrary to the surrounding flow. At two seconds, this inner trail already
begins to vanish, indicating that the ball has slowed down quite significantly.
Glancing at Figure 5.18 we can see that it has nearly reached the maximal
displacement on its trajectory. In contrast, the outer drop is still extending
its reach to the back of the channel. At three seconds, we have reached
the turning point (the exact time is 3.05 s) at coordinates (1.54,1.00,1.00),
corresponding to a distance of 2.46m from its initial position. The two layered
drops have merged into one, and the ball starts its voyage back to its origin.
From here on the drop-shape begins to shrink, as the ball is accelerated in the
opposing direction. At t = 7.00 s it has already gone past the middle of the
channel and is headed towards the outflow with a velocity of 1.07m/s, which
is slowly crawling up to the 2.0m/s of the surrounding flow. The deflection

5.5. BIDIRECTIONAL COUPLING 69

in the cross-section of the channel is still below 1mm in both the y and z
direction. In total, we can attest a first successful test of our bidirectional
coupling as described in Section 4.4. The observed results, all seem to be
very reasonable, at the least.

Flying butterfly

As a final example, we want to put something together showcasing everything
we have seen so far packed up in one simulation. We have already seen
a very complex geometry, with our butterfly model. Once again, we want
to emphasize on the quite ridiculous amount of over 190 Mio. cells being
deployed, here. Being able to still run such an experiment in a reasonable
time frame of around two to three days gives testimony to the quite insane
computing powers enabled by modern hardware, as well as the efficiency of
our code, in dealing with such a grid. Up to this point, we have only seen the
butterfly stationary, now, we want to combine this, with the bidirectional
coupling introduced above, and test, if it produces enough lift to keep itself
up under gravity. In short: let us see if it can fly. We therefore introduce
a constant gravity acceleration of −9.81 m/s2 in y-direction, additional to
the forces generated by the flow. For the density of the butterfly, we chose a
value of 400 kg/m3, resulting in a mass of ≈ 0.1 g for the whole model, which
seems plausible for a butterfly of this size. The rest of the setup stays as
described in Section 4.4 for the stationary case, except for the inflow being
turned up to 2.2m/s this time. Looking at the previous numbers, this should
give us the kind of lifting forces needed to overcome the gravity, or at least
for gliding only slowly to the ground. As a result, of course our Reynolds
number goes up to a value of approximately 5000, which should result in
a much livelier flow field than before. To stay in the same kind of region,
concerning the Mach number we also increased our speed of sound to 20m/s,
dealing with the fact, that this further decreases our time steps to around
1.9e-06 s.

Now, when activating the forces making up our coupling right from the
beginning, the butterfly starts to fall down right away, as there is no time for
the flow to build up any significant forces counteracting it, and there is no
way they will be able to catch it once it reaches a certain velocity. To adjust
to these circumstances, we initially simulate statically for a period of 0.05 s,
and only enable both the gravity, as well as the fluid forces after this initial,
neutralized phase. Having declared the setup of our final experiment, we now
want to answer our initial question: Can the wings actually produce enough
lift to make the butterfly stay in the air?

Looking at the resulting time line depicted in Figures 5.19 and 5.20, we
can answer the question. In the second picture, we can see that the butterfly

70 CHAPTER 5. EXAMPLE RESULTS

Table 5.12: Overview of the most important simulation parameters for the
flying butterfly

parameter x y z

length [m] 0.08 0.04 0.06
no. of points 800 400 600
inflow [m/s] 2.2 - -
vSound [m/s] 20.0
ρ [kg/m3] 1.2
ρs [kg/m3] 400.0
µ [Pa·s] 1.8e-06
∆t [s] 1.9e-06

indeed moved slightly upwards (as well as to the back) from its initial position.
Looking at the output, we see a lifting force of around 110% the force enacted
by gravity. Looking at the following time steps, though, we see, that after
this initial rise, the model comes back down again, slowly sliding closer to
the ground. This behaviour is quite natural in our setting. The longer our
simulation goes on, the faster our butterfly becomes in the flow direction,
therefore decreasing the difference to the velocity of the fluid myself. With
this effective air speed of the butterfly shrinking, obviously, the lift produced
by its wings also drops and our model starts to go back down. Looking a bit
closer at the actual flow around the insect, we can also very clearly detect the
predicted effects of the increase in the Reynolds number. There are a lot of
vortices separating from the body part of the butterfly giving it a far wilder
look compared to before. In total, we are very pleased with the outcome of
this experiment, proving the very good stability, we actually have with our
coupling.

5.5. BIDIRECTIONAL COUPLING 71

Figure 5.19: Velocity field and level set contour of the flying butterfly at
t = 0.05 s (top) and t = 0.10 s (bottom)

72 CHAPTER 5. EXAMPLE RESULTS

Figure 5.20: Velocity field and level set contour of the flying butterfly at
t = 0.15 s (top) and t = 0.20 s (bottom)

Chapter 6

Outlook

Summary

The goal of this work has been to examine the behaviour of the unidirec-
tional, as well as the bidirectional coupling of of a fluid simulation to moving
obstacles, in a compressible setting. Indeed, we can report a very stable
performance of our implemented code, especially concerning initial condi-
tions. Even sudden movements, at the beginning of a simulation, like in
our first example of the bidirectional coupling, only lead to some expected
pressure waves emerging from the object, superimposing our picture, until
they eventually dampen out. In conclusion we have implemented an efficient,
explicit, compressible flow solver, that meets the demanded requirements.
Complex geometry can be directly imported via stl models from external
software, and is translated to our level set approach. In our computational
benchmarks, when approximating a fine reference solution, we could show
an order of convergence of 1.79 and 1.46 for the velocity and pressure fields,
respectively. With a parallel efficiency of 80.4% at a 16-fold increase of the
involved processors, we have a highly parallel software, at hand. Finally, we
showed the applicability of the algorithm to a physically relevant problem,
including the (simplified) geometry of a butterfly, which is especially hard to
resolve. The staggering amount of over 190 Million cells that we could use,
shows the efficiency of our explicit update scheme, concerning the computing
costs per time steps. The results for the computed drag and lift forces where
plausible in all cases.

There are some limitations as well, however, that we don’t want to conceal.
The iterated transport of the level set function lead to severe problems
with mass loss, at first. In the case of translations, we could overcome this
problem by exploiting the structure of our grid, but we couldn’t find a way
to generalize this trick to rotations. Additionally, we saw that a Cartesian
grid, despite its advantages, requires extremely many points to resolve any

73

74 CHAPTER 6. OUTLOOK

really complex geometry, which might harm our accuracy, when calculating
the forces, needed in a bidirectional coupling. All-in-all we can still be very
pleased with our results.

Outlook

Despite the efforts undertaken, there are obviously many ways, in which the
presented methods could be further improved. A fairly simple generalization,
would be, to allow for multiple objects, moving independently of each other.
Since the distance to a collection of objects, is the minimum over the distances
to each individual object, the evaluation of the level-set function would be
easy, even if each object was represented by it’s own version of it. The only
changes required would concern the infrastructure of the code.

Regarding more substantial extensions, there is the obvious generalization
to a full fluid-structure interaction, by coupling the simulation to a structural
FEM solver, which we set as a kind of far-term goal in the beginning of
our project. Besides this, there is another improvement, that would require
equally substantial effort to be realized. An adaptive grid, where regions
around objects could receive a finer resolution, to spare some computational
costs in the rest of the scene, would help us to reduce the needed amount
of cells. Yet, to reap the full potential of this investment, we would also
have to implement local time stepping, because otherwise the smallest cells
in our scene would dictate the admissible time step over the whole domain,
limiting the gain in efficiency. Together with the many times increased
effort in handling the parallelization, there is quite some work to make an
improvement along this path.

75

Acknowledgements

Obviously, the present thesis could not have been finished without the help
and support of many people in the background. At this point I want to thank
them all, for giving me the opportunity to work on this project, which proved
to be very rewarding and teaching at the same time.

First of all I want to thank Prof. Dr. Griebel for handing me over this
interesting topic and his great support in terms of giving ideas and outlining
interesting directions. I also want to thank Prof. Dr. Schweitzer for taking
over the role of the second assessor. On the same note I have to thank Markus
Burkow, who introduced me to the NaSt3DGP fluid solver, took care of all
of my day-to-day needs, and shared a lot of helpful insights along the way.

For providing me with all the infrastracture, especially the possibility to use
the Atacama compute cluster, I thank the staff of the Institute of Numerical
Simulation at the University of Bonn.

A major thanks goes to all members of the BRS-Motorsport Team at UAS
Sankt Augustin, who played a major part in getting me interested in fluid
problems, to begin with, and with whom I had two very special seasons of
competing in the Formula Student, always paired with a lot of fun.

Additionally, I thank Sren Behr and my father Erwin for proof reading
this thesis and giving valuable feedback on many points.

Finally, I want to thank my family for supporting me relentlessly, through-
out my studies, and enabling all of this in the first place. Without the ongoing
support of all of you nothing of this would be possible.

76 CHAPTER 6. OUTLOOK

List of Figures

2.1 Schematic overview of the required communication between
four neighbouring processors in 2D, using tree layers of ghost
cells and one corner cell . 20

3.1 Step 1: Stl model of a motorcycle helmet, left half visualized
with edges . 27

3.2 Step 2: Flag field threshold of a motorcycle helmet, left half
visualized with edges . 27

3.3 Step 3: Level set contour of a motorcycle helmet, left half
visualized with edges . 28

4.1 Basic idea of the Semi-Lagrangian ansatz 32

5.1 Velocity field of a driven cavity on a 256x256 grid at Re = 100
(left) and Re = 400 (right) and U = 1m/s; stopped after
simulated time of 24 s. The purple crosses mark the vortex
centres found by [Hou+95]. 38

5.2 Progression of L2 errors for the velocity U and the pressure p
compared to the respective convergence order on a logarithmic
scale . 41

5.3 Clip through the velocity field of the conducted driven cavity
experiment for strong scaling on a cluster. 42

5.4 Speedup (top) and efficiency (bottom) plot for up to 512 cores
on a CPU-cluster . 43

5.5 Setup and main dimensions of the 3D-1Z cylinder benchmark
with circular cross-section according to Turek and Schäfer;
taken from [TS96] . 45

5.6 Approximation of the cylinder outline by the flag field and
the level set contour at a resolution of 250x41x41 (left) and
500x82x82 (right) . 47

5.7 Comparison of the cylinder approximation by all inner points
(left) and approximation to closest points (right) at a resolution
of 250x41x41. The relative error in the volume drops from
32.2 % to 10.4 %. 49

77

78 LIST OF FIGURES

5.8 Velocity field of the flow around the cylinder after 16 s with a
parabolic inflow profile according to Equation 5.5 50

5.9 Isometric view of the simulated butterfly model; Rendered in
KeyShot 5 Student Edition 53

5.10 Drawing of the considered butterfly model and its placement
in the flow channel in top front and side view; Modelled in
Pro/ENGINEER Wildfire 5.0 Student Edition 54

5.11 Slices of the velocity field at z = 0.03m, z = 0.035m and
z = 0.04m with remaining butterfly (opaque) 57

5.12 Slices of the pressure field at z = 0.03m, z = 0.035m and
z = 0.04m with remaining butterfly (opaque) 58

5.13 Tip vortices at the wings as seen from the back and bottom
of the butterfly; visualized with stream tracers emerging from
vertical lines . 59

5.14 Velocity field of the oscillating ball in horizontal flow at three
different time steps; before, in close proximity and after the
upper turning point of the motion 61

5.15 Velocity field and level set contour of the rotating ball at
t = 2.8 s (top) and t = 3.2 s (bottom) and Reynolds number
Re = 2000 . 63

5.16 Velocity field and level set contour of the rotating ball at
t = 2.8 s (top) and t = 3.2 s (bottom) and Reynolds number
Re = 8000 . 64

5.17 Velocity field and level set contour of a ball moving contrary
to the flow at t = 0.04 s, t = 1.00 s and t = 2.00 s and being
slowed down by it until near rest 66

5.18 Velocity field and level set contour of the ball at t = 3.00 s,
t = 5.00 s and t = 7.00 s after reaching the turning point and
being dragged back by the flow 67

5.19 Velocity field and level set contour of the flying butterfly at
t = 0.05 s (top) and t = 0.10 s (bottom) 71

5.20 Velocity field and level set contour of the flying butterfly at
t = 0.15 s (top) and t = 0.20 s (bottom) 72

List of Tables

2.1 Applied differencing sequence for the MacCormack scheme;
modelled on the corresponding table in [THR76] 14

5.1 Relative L2 errors for different resolutions compared to a
800x800 reference grid . 40

5.2 Speedup and efficiency of a three dimensional driven cavity
simulation on up to 512 cores 44

5.3 Grid size and speed of sound of the different simulation runs;
× marks performed runs . 46

5.4 Rel. error of the cylinder volume at different grid resolutions 47
5.5 Rel. error of the cylinder volume computed with the refined

method, motivated by closest points 48
5.6 Comparison of drag and lift coefficients at different values for

the speed of sound and 250 grid points in the flow direction . 51
5.7 Comparison of drag and lift coefficients for different grid resol-

utions at vSound = 40m/s . 52
5.8 Overview of the most important simulation parameters for the

conducted simulation of a butterfly 55
5.9 Overview of the most important dimensions and simulation

parameters for the oscillating ball 60
5.10 Overview of the most important simulation parameters for the

rotating ball . 62
5.11 Overview of the most important simulation parameters for the

movement against the stream case 68
5.12 Overview of the most important simulation parameters for the

flying butterfly . 70

79

80 LIST OF TABLES

Literature

[Bat00] G. Batchelor. An Introduction to Fluid Dynamics.
Cambridge Mathematical Library. Cambridge Univer-
sity Press, 2000. isbn: 978-0521663960.

[BM77] W. Briley and H. McDonald. ‘Solution of the multidi-
mensional compressible Navier-Stokes equations by a
generalized implicit method’. In: Journal of Compu-
tational Physics 24.4 (1977), pp. 372–397. doi: http:
//dx.doi.org/10.1016/0021-9991(77)90029-8.

[BMT12] E. Bayraktar, O. Mierka and S. Turek. ‘Benchmark
Computations of 3D Laminar Flow Around a Cylinder
with CFX, OpenFOAM and FeatFlow’. In: Int. J.
Comput. Sci. Eng. 7.3 (July 2012), pp. 253–266. doi:
http://dx.doi.org/10.1504/IJCSE.2012.048245.

[BW78] R. M. Beam and R. F. Warming. ‘An Implicit
Factored Scheme for the Compressible Navier-Stokes
Equations’. In: AIAA Journal 16 (Apr. 1978), pp. 393–
402. doi: http://dx.doi.org/10.2514/3.60901).

[Cho68] A. J. Chorin. ‘Numerical solution of the Navier-Stokes
equations’. In:Mathematics of Computation 22 (1968),
pp. 745–762. doi: http://dx.doi.org/10.1090/
S0025-5718-1968-0242392-2.

[Cro02] R. Croce. ‘Ein paralleler, dreidimensionaler Navier-
Stokes-Löser für inkompressible Zweiphasenströmun-
gen mit Oberflächenspannung, Hindernissen und dy-
namischen Kontaktflächen’. MA thesis. Institut für
Angewandte Mathematik, Universität Bonn, 2002.

[Cro10] R. Croce. ‘Numerische Simulation der Interaktion von
inkompressiblen Zweiphasenströmungen mit Starrkör-
pern in drei Raumdimensionen’. PhD thesis. Institut
für Numerische Simulation, Universität Bonn, 2010.

81

82 LITERATURE

[Enr+02] D. Enright et al. ‘A Hybrid Particle Level Set Method
for Improved Interface Capturing’. In: Journal of
Computational Physics 183.1 (2002), pp. 83–116. doi:
http://dx.doi.org/10.1006/jcph.2002.7166.

[FP08] J. Ferziger and M. Perić. Numerische Strömungsmech-
anik. Springer Berlin Heidelberg, 2008. isbn: 978-
3540675860. doi: http://dx.doi.org/10.1007/978-
3-540-68228-8.

[GDN98] M. Griebel, T. Dornseifer and T. Neunhoeffer. Nu-
merical Simulation in Fluid Dynamics, a Practical
Introduction. SIAM, Philadelphia, 1998. isbn: 978-
3528067618.

[GGS82] U. Ghia, K. Ghia and C. Shin. ‘High-Re solutions for
incompressible flow using the Navier-Stokes equations
and a multigrid method’. In: Journal of Computa-
tional Physics 48.3 (1982), pp. 387–411. doi: http:
//dx.doi.org/10.1016/0021-9991(82)90058-4.

[Ghi+10] U. Ghia et al. ‘The AIAA Code Verification Project -
Test cases for CFD Code Verification’. In: American
Institute of Aeronautics & Astronautics AIAA (2010).
doi: http://dx.doi.org/10.2514/6.2010-125.

[Gur81] M. E. Gurtin. An Introduction to Continuum Mechan-
ics. Mathematics in Science and Engineering. Elsevier,
1981. isbn: 978-0123097507.

[Hou+95] S. Hou et al. ‘Simulation of Cavity Flow by the Lattice
Boltzmann Method’. In: Journal of Computational
Physics 118.2 (1995), pp. 329–347. doi: http://dx.
doi.org/10.1006/jcph.1995.1103.

[HS12] S. Haeri and J. Shrimpton. ‘On the application
of immersed boundary, fictitious domain and body-
conformal mesh methods to many particle multiphase
flows’. In: International Journal of Multiphase Flow
40 (2012), pp. 38–55. doi: http://dx.doi.org/10.
1016/j.ijmultiphaseflow.2011.12.002.

[KT00] A. Kurganov and E. Tadmor. ‘New high-resolution
central schemes for nonlinear conservation laws and
convection-diffusion equations’. In: Journal of Com-
putational Physics 160.1 (2000), pp. 214–282.

LITERATURE 83

[Lee79] B. van Leer. ‘Towards the ultimate conservative differ-
ence scheme. V. A second-order sequel to Godunov’s
method’. In: Journal of Computational Physics 32.1
(1979), pp. 101–136. doi: http://dx.doi.org/10.
1016/0021-9991(79)90145-1.

[LFO06] F. Lossaso, R. Fedkiw and S. Osher. ‘Spatially Ad-
aptive Techniques for Level Set Methods and Incom-
pressible Flow’. In: Computers & Fluids 35.10 (Dec.
2006), pp. 995–1010. doi: http://dx.doi.org/10.
1016/j.compfluid.2005.01.006.

[LL87] L. Landau and E. Lifshitz. Fluid Mechanics (Second
Edition). Second Edition. Vol. 6. Course of Theoretical
Physics. Pergamon, 1987. isbn: 978-0080339337. doi:
http://dx.doi.org/10.1016/B978-0-08-033933-
7.50001-5.

[LW60] P. Lax and B. Wendroff. ‘Systems of conservation
laws’. In: Communications on Pure and Applied Math-
ematics 13 (2 1960), pp. 217–237. doi: http://dx.
doi.org/10.1002/cpa.3160130205.

[Mac03] R. W. MacCormack. ‘The Effect of Viscosity in Hyper-
velocity Impact Cratering’. In: Journal of Spacecraft
and Rockets 40 (2003). Reprinted from AIAA Paper
69-354, 1969, pp. 757–763. doi: http://dx.doi.org/
10.2514/2.6901.

[Mac71] R. W. MacCormack. ‘Numerical Solution of the In-
teraction of a Shock Wave with a Laminar Bound-
ary Layer’. In: vol. 8. Proceedings of the Second
International Conference on Numerical Methods in
Fluid Dynamics. Springer-Verlag, 1971. doi: http:
//dx.doi.org/10.1007/3-540-05407-3_24.

[Mac82] R. W. MacCormack. ‘A Numerical Method for Solving
the Equations of Compressible Viscous Flow’. In:
AIAA Journal 20 (1982), pp. 1275–1281. doi: http:
//dx.doi.org/10.2514/3.51188.

[Mac85] R. W. MacCormack. Current Status of Numerical
Solutions of the Navier-Stokes Equations. AIAA 23rd
Aerodpace Sciences Meeting. Jan. 1985. doi: http:
//dx.doi.org/10.2514/6.1985-32.

84 LITERATURE

[Mac93] R. W. MacCormack. ‘A Perspective on a Quarter
Century of CFD Research’. In: AIAA Journal 3291
(1993), p. 15. doi: http://dx.doi.org/10.2514/6.
1993-3291.

[OF01] S. Osher and R. P. Fedkiw. ‘Level Set Methods: An
Overview and Some Recent Results’. In: Journal of
Computational Physics 169.2 (2001), pp. 463–502. doi:
http://dx.doi.org/10.1006/jcph.2000.6636.

[OF03] S. Osher and R. P. Fedkiw. Level set methods and
dynamic implicit surfaces. Vol. 153. Springer Verlag,
2003. doi: http://dx.doi.org/10.1007/3-540-
05407-3_24.

[OS88] S. Osher and J. A. Sethian. ‘Fronts Propagating
with Curvature-Dependent Speed: Algorithms Based
on Hamilton-Jacobi Formulations’. In: Journal of
Computational Physics 79 (Nov. 1988), pp. 12–49.
doi: http://dx.doi.org/10.1016/0021-9991(88)
90002-2.

[OT02] W. Oberkampf and T. Trucano. Verification and
Validation in Computational Fluid Dynamics. Mar.
2002. doi: http://dx.doi.org/10.1016/S0376-
0421(02)00005-2.

[PH06] A. Perrin and H. H. Hu. ‘An Explicit Finite-difference
Scheme for Simulation of Moving Particles’. In:
Journal of Computational Physics 212.1 (Feb. 2006),
pp. 166–187. doi: http://dx.doi.org/10.1007/1-
4020-4977-3_17.

[SSO94] M. Sussman, P. Smereka and S. Osher. ‘A Level Set
Approach for Computing Solutions to Incompressible
Two-Phase Flow’. In: Journal of Computational Phys-
ics 114.1 (1994), pp. 146–159. doi: http://dx.doi.
org/10.1006/jcph.1994.1155.

[THR76] J. Tannehill, T. L. Holst and J. V. Rakich. ‘Numerical
Computation of Two-Dimensional Viscous Blunt Body
Flows with an Impinging Shock’. In: AIAA Journal
14.2 (1976), pp. 204–211. doi: http://10.1016/j.
jcp.2005.06.021.

[TS96] S. Turek and M. Schäfer. Recent Benchmark Com-
putations of Laminar Flow Around a Cylinder. 1996.
doi: http://dx.doi.org/10.1007/978-3-322-
89849-4_39.

LITERATURE 85

[Wen08] J. Wendt. Computational Fluid Dynamics: An In-
troduction. A von Karman Institute book. Springer
Berlin Heidelberg, 2008. isbn: 978-3540850564.

[Wes01] P. Wesseling. Principles of Computational Fluid Dy-
namics. Lecture Notes in Computer Science. Springer,
2001. isbn: 978-3540678533.

[Whi91] F. White. Viscous Fluid Flow. McGraw-Hill series
in mechanical engineering. McGraw-Hill, 1991. isbn:
978-0070697126.

