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Abstract

In this thesis we describe and evaluate a kernel-based learning method for an
efficient approximation of the high-dimensional Born-Oppenheimer potential
energy hypersurface. To this end, the Coulomb matrix introduced by Rupp et
al. in [45] is adjusted to represent local atomic environments and is used as
input to the localised Gaussian process regression proposed by Bartók et al. in
[4].

We show that this combination offers a promising approach for the generation
of accurate and widely applicable potentials, by evaluating on small organic
molecules as well as on silicon supercells. On the latter we obtain root mean
squared errors in the total energy of the order of 1meV per atom on small refer-
ence data sets of less than 500 configurations. We achieve mean absolute errors
in atomisation energies on the biomolecular data set coming close to the desired
chemical accuracy of 1 kcal/mol using only a fraction of the computational time
needed for electronic structure calculations.

Additionally, we document the versatility of the generated potentials by demon-
strating their transferability from small to larger molecules and their successful
application to both finite and periodic chemical configurations. We test the
significance of the localisation ansatz by systematically enlarging the atomic
neighbourhood considered as input to the regression. Furthermore, we demon-
strate their usefulness for molecular dynamics simulations by providing forces
in addition to the energy.
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Zusammenfassung

Das Ziel dieser Masterarbeit besteht in der Beschreibung und Evaluation eines
kern-basierten Lernverfahrens zur effizienten Approximation der hochdimen-
sionalen Born-Oppenheimer Energiehyperfläche. Dazu werden die von Rupp et
al. in [45] eingeführten Coulomb Matrizen auf die Repräsentation von lokalen
Atomumgebungen erweitert und als Eingabedaten für die lokalisierte Gauss-
prozessregression benutzt, die von Bartók et al. in [4] vorgestellt wurde.

Wir zeigen, dass dies ein vielversprechendes Verfahren darstellt, um genaue und
vielseitig anwendbare Potentiale zu erzeugen, indem wir sowohl auf biomoleku-
laren als auch auf Siliziumkristalldatensätzen auswerten. Auf letzteren erhal-
ten wir mittlere Quadratfehler in der totalen Energie in der Größenordnung
von 1meV pro Atom für weniger als 500 Referenzdaten. Auf den Biomolekülen
berechnen wir mittlere Absolutfehler der Atomisierungsenergie, die bereits nah
an der angestrebten chemischen Genauigkeit von 1 kcal/mol liegen. Diese Ergeb-
nisse erreichen wir in einem Bruchteil der Zeit, die man für Elektronenstruk-
turberechnungen benötigen würde.

Des Weiteren dokumentieren wir die Vielseitigkeit der erzeugten Potentiale, in-
dem wir ihre Übertragbarkeit von kleinen auf größere Moleküle, sowie ihre er-
folgreiche Anwendung auf endliche und periodische chemische Konfigurationen
demonstrieren. Wir prüfen die Gültigkeit des Lokalisierungsansatzes, indem
wir systematisch das Volumen der betrachteten Atomumgebungen vergrößern.
Außerdem ergänzen wir die Vorhersage von Energiewerten durch die zugehöri-
gen Kräfte, was eine wichtige Erweiterung für den Einsatz im Rahmen von
Molekulardynamiksimulationen darstellt.
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1. Introduction

The advancement of the computing power of modern hardware has opened the
door to a new scale of simulation in terms of what is possible. Although in
engineering and physics, the design and testing of new products with the help
of theoretical modelling has already largely preceded costly trial-and-error ex-
perimentation, applications with processes on smaller scales have yet to profit
from extensive simulation, as the problem posed by a large number of degrees
of freedom coupled with suitable time resolution remains computationally chal-
lenging. Nevertheless, fields with such demands are situated at the forefront
of scientific research, ranging from the understanding of biochemical processes
(e.g. protein docking, protein folding, membrane diffusion) to the investigation
of possible properties of future materials and the design of new drugs. Many of
the important properties occur at scales described by quantum mechanical pro-
cesses, which is why in chemistry, quantum physics and the material sciences,
the efficient modelling of n-body systems and their dynamics has become a sig-
nificant part of the scientific progress. The importance of this is underlined by
the Nobel prize in Chemistry of 2013, which was awarded to M. Karplus, M.
Levitt and A. Warshel for their “development of multiscale models for complex
chemical systems” [35].

In the quantum mechanical theory, the state of such a system is described by
the Schroedinger equation (SE). Unfortunately, it is not analytically solvable for
systems with more than few atoms. In order to treat application-dictated prob-
lems with hundreds or thousands of particles, approximations must be made. In
the last 50 years, extensive research has been conducted and a number of differ-
ent approaches have been devised. These range from slow but accurate ab ini-
tio methods based on quantum mechanics, through not-so-slow semi-empirical
methods where experimental data is combined with quantum mechanical cal-
culations, to fast molecular mechanics, which model molecules as a collection of
balls held together with springs. Whereas ab initio and semi-empirical methods
approximate the wavefunction, the theoretical solution to the SE from which
the electronic distribution can be calculated, another approach called density
functional theory (DFT) aims to derive an electron density directly. Of course,
the method of choice depends on the accuracy required, as well as on time and
resources that can be invested to solve the problem at hand.

In the field of molecular dynamics (MD) the most fundamental simplification
applied to the SE is the Born-Oppenheimer-Approximation. It postulates that
due to their huge difference in mass, the time scales of the dynamics of electrons
and nucleus become decoupled; hence the electrons “see” the nuclei as static.
The nuclei in turn can be modelled as point particles, moving on the electronic
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Chapter 1. Introduction

potential energy surface (PES) according to the laws of Newtonian physics. As
a further simplification only the ground state is studied. In this context, the
main problem becomes the construction of the electronic potential. Solving
the electronic SE or even evaluating DFT methods for every single timestep
remains intractable, so over the years many different empirical potentials have
been tailored for specific applications. Starting with simple pair potentials that
only consider the interactions between two particles, e.g. the Coulomb potential,
which models the interactions of point charges, or the Lennard-Jones potential
used to model van der Waals interactions, current state-of-the-art potentials are
many-body potentials taking into account also the interactions between three
and more particles [37]. All of these potentials provide excellent results for their
intended purposes; however, they are not transferable between applications.

Hence, the search for general, accurate and efficient potentials remains an active
problem. Its resolution would have a huge impact on both material science and
computational chemistry, and is therefore tackled from many different angles.
Besides the experimental approach leading to the above mentioned empirical
potentials, classical theory to solve inverse problems in the framework of re-
producing kernel Hilbert spaces has been applied to interpolate the PES as a
high-dimensional function (cf. [22] and the references therein), as have been
more sophisticated techniques as the modified Shepard’s interpolation [7].

In recent years, like many other fields, computational chemistry has profited
from the introduction of Machine Learning (ML) techniques. Those have two
primary objectives: pattern recognition and prediction, both of which have
been successfully applied. The first is used for so-called “high-throughput”
computational materials design. Large combinatorial databases are constructed
comprising a wealth of different materials, too many to analyse by hand so
instead data mining is used to methodically extract information and find desired
materials [12]. The second purpose, prediction, is closely related to the field of
interpolation. It is used to infer structure-property relations from historic data
and then apply them to new systems. This approach is highly promising for the
generation of potentials. Its advantages include that while the calculation of
the training data using DFT or even ab initio methods and the training of the
potential might be costly, evaluation can be expected to be comparatively cheap
and fast. The task of solving the SE is completely circumvented. Nevertheless,
the accuracy of such a potential is only limited by the accuracy of the underlying
method and the number of training examples. Hence, they can be expected to
come near to the accuracy of DFT methods for a fraction of their computational
cost.

Furthermore, many ML predictive methods possess the means to evaluate their
own quality. This can be used to construct feedback algorithms that automati-
cally learn carefully chosen data points to improve their performance, ensuring
a maximum benefit for a given number of costly DFT calculations. This is im-
portant not only to save computational resources, but also since the predictive
power of a learned potential depends strongly on the new system not being qual-
itatively distinct from the training data. In theory, the validity of a potential
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1.1. Using Machine Learning for PES Interpolation

is independent of the knowledge of the underlying physics and can be gener-
alised indefinitely as long as enough training data can be provided. In practice,
of course, resources are limited, requiring individually-learned instances of the
same potential for different structures.

The whole concept of constructing a transferable potential only works assuming
a suitable descriptor of the structure underneath has been found capturing all
relevant information. The choice of such a descriptor is highly non-trivial and
has to fulfill several requirements concerning physical aspects like rotation and
translation invariance, but also computational ones, e.g. it should not be more
costly to calculate than the potential evaluation itself. Basing such a descriptor
only on ab initio information of the system, i.e. including no structural or bond-
ing information, carries the promise of generating potentials valid for all types
of compounds and even chemical reactions. Beyond that, one needs to define
a notion of chemical similarity or rather dissimilarity to allow the potential to
relate the features of a new structure to those of the training data it was built
with.

Hence, in addition to the choice of ML methods, such as Neural Networks (NN),
Kernel Ridge Regression (KRR), or Bayesian inference (BI), there are many
decisions to be made when designing a mathematical potential. The next section
gives an overview over the different approaches used to construct potential
energy hypersurfaces found in the literature. We refer also to the review article
by Handley and Behler, [17], focusing on the application of condensed systems
that summarises past and recent techniques.

Of course, the application of ML methods to material science is not limited to
the prediction of energy values. There have been numerous examples of promis-
ing approaches, such as the prediction of crystal structures in bulk materials
[13], [15], the approximation of density functionals [50], or the optimisation of
transition states [39].

1.1. Using Machine Learning for PES Interpolation

The earliest efforts to introduce Machine Learning techniques for the construc-
tion of the high-dimensional PES were based on neural networks. Multilayer
neural networks allow for the representation of highly complex functional rela-
tionships with great accuracy. As they have the downside of being very difficult
to train, successful learning depends strongly on the initial configuration of the
weights and on the description of the data. Nevertheless, they have been em-
ployed successfully since the mid-1990s (see [18] for a elaborate overview) and
are still being investigated by several groups for the use for surface reactions,
[28], or water clusters [34]. One of the most promising attempts with respect
to the transferability of the potential is the work of Behler and Parinello [6].

A different approach to constructing an automatically generated interatomic
potential from quantum mechanical data was proposed by Bartók et al. in
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Chapter 1. Introduction

2010 [4]. They employed Gaussian process (GP) regression based on a decom-
position into individual atomic energies to interpolate the PES, using a modified
bispectrum of the atomic density as a descriptor of local atomic environments
within a specific cutoff. Gaussian Process regression is a Bayesian inference
method that combines prior knowledge with the likelihood of the observed data
to obtain a posterior probability distribution used for prediction. Testing of
this Gaussian Approximation Potential (GAP) was done on the bulk phases of
semiconductors, such as carbon, silicon and germanium, leading to root mean
squared errors in the energy of less than 1meV/atom from the reference DFT
calculations. The localisation ansatz present in the construction of the GAP
limits its predictive power for processes where long-range interactions play an
important role. Bartók et al. circumvent this by explicitly adding Coulomb and
dispersion terms to the total energy expression. Similarly, the GAP framework
can be applied to learn only correction terms to the total energy in order to
improve accuracy of DFT methods [2]. As an improvement to their framework,
Bartók et al. studied the problem of deriving continuous invariant represen-
tations of atomic neighborhoods more carefully and generalised the concept
to an improved similarity measure called Smooth Overlap of Atomic Positions
(SOAP) [3], in which the descriptor is implicitely embedded. This similarity
measure was used to construct a GAP for tungsten viable for a large range of
properties [53].

Recently, Thompson et al. have submitted a paper [54], in which they propose a
quantum-accurate potential called SNAP similar to the GAP. While also using
the bispectrum, they perform a linear least squares fit against ab initio data to
predict the energy values.

In 2012, Rupp et al. published an ML ansatz to predict molecular atomisation
energies using KRR [45], a versatile method equivalent to Gaussian Process
regression but lacking the Bayesian framework. Their goal was to provide a
general learning scheme valid for ground-state energies of molecules distributed
over a vaste region of the chemical compound space (CCS), rather than to ac-
curately interpolate the PES for just one structure as done by those mentioned
before. As global descriptor, they introduced the so-called Coulomb matrix
based only on the nuclear charges and cartesian coordinates of a molecule.
They were able to achieve a MAE of about 10 kcal/mol using cross validation
over more than 7000 small organic molecules. They refined their descriptor to
account for permutation invariance [32] and used it to train a multitask NN
to predict several electronic properties simultaneously [33]. In [20], Hansen et
al. conducted an extensive comparison between different ML methods includ-
ing NN and KRR to predict atomisation energies using different variants of
the Coulomb matrix as descriptor, leading to MAEs between 3 and 9 kcal/mol,
already approaching the required chemical accuracy of 1 kcal/mol for in silico
rational molecular design. They were able to improve the results to 1.5 kcal/mol
with the Bag-of-Bonds model [19], which represents the molecule as a concate-
nated vector of Coulomb matrix-like entries for each pair, when using KRR
with a Laplacian kernel.
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1.2. Combining the GAP with the Localised Coulomb Matrix

Schuett et al. suggested possible expansions to the Coulomb matrix approach
to periodic structures [48]. Due to the lacking predictive power of these Crystal
Coulomb Matrices, they opted for a different ansatz using partial radial dis-
tribution functions considering the distribution of pair-wise distances between
atom types, which gave promising results in combination with KRR.

Atomic radial distribution functions were also used as arguments of a Fourier
series to build a first principles-like descriptor dubbed FGR satisfying all crucial
properties such as uniqueness, invariance and differentiability [56]. Its predictive
power, when used in KRR, was shown to be on par with that of the Coulomb
matrix.

1.2. Combining the GAP with the Localised Coulomb
Matrix

The goal of this thesis is to propose an interpolation ansatz combining the
powerful concept of GAPs with the simple yet efficient Coulomb matrix. Due
to the localisation ansatz inherent to the GAP, it is applicable to both periodic
and non-periodic structures, implying the biggest generality across chemical
compound space possible. Nevertheless, it can only benefit from this when
using a powerful descriptor capturing all necessary information of an atomic
neighbourhood. While the bispectrum and the SOAP distance measure pro-
posed by Bartók et al. exhibit all crucial features, they are overly complicated
in construction, in contrast to the Coulomb matrix proposed by Rupp et al. As
has been shown, it has a strong predictive power inspite of its simple definition.

However, the Coulomb matrix is a global descriptor of molecules. In order to ap-
ply it to atomic environments independently of the type of chemical compound,
it has to be localised in a suitable way. To this end, we introduce different vari-
ants of a localised version and test their performance in the GAP framework
both on the GDB-7 data set used by Rupp et al. [45], and on bulk configu-
rations of silicon as done by Bartók et al. [4]. To the best of our knowledge,
this is the first time that a matrix based descriptor of atomic environments
is successfully used for predicting the energies of both organic and crystalline
structures.

We are able to show that the resulting potential, which we call Localised Coulomb
matrix based Gaussian Approximation Potential (LC-GAP), fulfills all the ne-
cessary requirements for being efficiently employed in large scale molecular dy-
namics simulations. Not only is it accurate, general and transferable, it is also
of linear complexity in the number of particles when predicting the energy and
forces for a given system. This is a substantial challenge for the computer sim-
ulation of large particle systems composed of thousands of atoms, which is an
important problem in computational biochemistry and material science.

We obtain a predictive power in atomisation energy of organic molecules that
surpasses the reference values stated by Hansen et al. in [20] not only by a factor
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of two in absolute value, but also by a factor of ten in training set sizes. More-
over, the localisation ansatz allows for the accurate prediction of molecules fea-
turing up to seven heavy atoms using a potential trained on molecules composed
only of up to five. The LC-GAP is thus a promising means for the so-called
“learning across compound space” that aims to attribute physical properties to
any chemical stoichiometry.

The main contributions of this thesis can be summarised as follows:

Summary of the relations between Gaussian process regression and regu-
larisation in the context of inverse problems
Detailed presentation of the underlying localised GP regression of the
GAP framework proposed by Bartók-Pártay in [4] based on unobservable
atomic energy contributions
Design and implementation of a new descriptor of atomic neighbourhoods
called localised Coulomb matrix, based on the global Coulomb matrix
introduced by Rupp et al. in [45]
Validation of the predictive power of the GAP when combined with the
localised Coulomb matrix on two different data sets as to their perfor-
mance concerning different parameters such as kernel, cut-off radius and
degree of localisation

This thesis is structured as follows. In Chapter 2 we start by summarising
the mathematical basis of the Gaussian process regression as a Bayesian in-
ference method and relate it to the classical approach to multivariate function
approximation in the context of inverse problems.

We then apply it to the interpolation of the potential energy hypersurface via an
atomistic decomposition of the total energy in Chapter 3. The representation
of the atomic energy as a linear combination of kernel functions is derived in
detail. Additionally, we describe the extension to the prediction of gradients
and their incorporation into the training data, as well as to the learning of
energy differences arising as the corrections to empirical potentials.

Chapter 4 is concerned with the issue of numerically representing chemical en-
vironments. The physical and computational requirements of such a descriptor
are analysed and current local descriptors used as input to Machine Learning
methods are presented. We introduce a new descriptor of atomic environments
called localised Coulomb matrix based on the Coulomb Matrix by Rupp et al.
and discuss its properties and possible variants in detail.

The assessment and validation procedure of the proposed framework is de-
scribed in Chapter 5. This includes description of the data sets and their
preparation, implementation details of the localised Coulomb matrix and the
Gaussian Approximation Potentials, as well as the analysis of their computa-
tional cost.

The presentation of the numerical results is done in Chapter 6. First, the
biomolecular data sets derived from the GDB-7 data set are used to assess the
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1.2. Combining the GAP with the Localised Coulomb Matrix

performance of the different variants of the localised Coulomb matrix as well
as their localisation properties and the transferability of the resulting GAPs.
Then, the ability of the localised Coulomb matrix to handle crystalline struc-
tures is tested using the silicon data set, and the prediction is extended to
gradients.

Finally, conclusions are drawn and outlooks given in Chapter 7. We conclude
with a discussion of potential future extensions to the LC-GAP.
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2. Multivariate Function
Approximation

Infering a smooth function from sparse data is an important task in many
mathematical applications. As such, it has a long history of being treated in
the context of inverse problems using regularisation theory [29].

A newer approach is that of statistical learning theory, a subfield of supervised
Machine Learning. Here, it is one of the core problems known under the term
regression, i.e. the prediction of a continuous function f : Rd → R based only
on finitely many noisy data points D = (X,y) = {xn, yn}n=1,...,N with

yn = f(xn) + ε. (2.1)

Numerous different methods have been proposed to tackle it, for an overview
see [31].

Since the 1990s so-called kernel-based methods have become popular as they
allow for a decoupling of learning and data representation in a modular fashion
[47]. The kernel efficiently computes the similarity of the raw input by im-
plicitely projecting them onto a possibly high-dimensional feature space. This
is called the kernel trick. By using different kernels the framework becomes
very flexible.

Interestingly, the classical and the kernel-based learning approach are closely
connected. We analyse this relation using the example of Gaussian Process
Regression, a popular Bayesian kernel-based learning method. We start by pre-
senting the mathematical basis of the Bayesian approach to statistical learning
theory in Section 2.1. Section 2.2 deals with multivariate function approxi-
mation in the context of inverse problems. The connection between the two
approaches is then made clear in Section 2.3.

2.1. Bayesian Inference

For a reference for the Bayesian approach to multivariate function approxima-
tion in the Machine Learning context see [47].

Bayesian inference is an important technique in mathematical statistics. It pro-
duces a prediction as a combination of prior beliefs and information gained by
sampling data by modelling both to be controlled via an underlying probability
distribution.

9



Chapter 2. Multivariate Function Approximation

It thereby provides an intuitive way to include any information one might have
about the function to be reconstructed. It incorporates these assumptions into
a prior distribution over the latent, i.e. the underlying function values. Here,
the term prior indicates that this distribution is specified without having seen
any instances of the data. Once the data is sampled, its likelihood, i.e. the
probability of the observations given the true function f , is specified. The ob-
servations may differ from the latent function values by noise. The prior is then
combined with the likelihood using Bayes’ rule to obtain the posterior distribu-
tion which is used for prediction. The term posterior is used to emphasise that
this distribution includes knowledge about the data. It quantifies how plausible
functions appear after data has been seen.

In detail, inference is performed as follows:

1. Put a joint prior p(f, f?) on latent training and test values f, f?,

2. Specify likelihood p(y|f) of observations given the latent training values,

3. Obtain joint posterior using Bayes’ formula

p(f, f?|y) = p(f, f?)p(y|f)
p(y) , (2.2)

4. Produce desired posterior predictive distribution by marginalisation of
the unwanted training set latent variables

p(f?|y) =
∫
p(f, f?|y)df = 1

p(y)

∫
p(f, f?)p(y|f)df, (2.3)

5. Use its mean as the prediction value for f?.

One of the main advantages of the Bayesian framework is its ability to assess
the accuracy of its own prediction via the variance of the posterior predictive
distribution. This can be used for so-called learn-on-the-fly algorithms that
iteratively improve the accuracy of the approximation by suitably choosing the
training data.

In practice, however, the biggest difficulty of Bayesian inference lies in the
evaluation of the involved integrals. Depending on the distributions chosen as
prior and likelihood, the resulting posterior may or may not be analytically
tractable. For the case that evaluating the integral is computationally demand-
ing, many approximation techniques such as the maximum a posteriori (MAP)
approximation exist. Here the posterior is written as

p(f?|y) =
∫
p(f?|f)p(f |y)df, (2.4)

and then the integral over p(f |y) is replaced by its mode, i.e. the value for which
p(f |y) is maximal. This leads to the following approximation

p(f?|y) ≈ p(f?|fMAP ), where fMAP = argmaxf p(f |y). (2.5)

10



2.1. Bayesian Inference

Another possibility is numerical integration via Monte Carlo methods [43].

We will see in the following subsection that one of the main reasons for the
popularity of the Gaussian Process regression is that the choice of normal dis-
tribution allows for all integrals to have closed analytical forms. Hence, we have
no need for any approximations.

2.1.1. Gaussian Process Regression

Gaussian process regression models the training data as a Gaussian process
(GP), meaning it assumes that the observed function values are jointly normally
distributed. The huge advantage of choosing this prior over any other arbitrary
distribution is the analytical and, as a result, computational tractability. An
introductory reference to Gaussian process regression is the book by Rasmussen
[42]. For the definition of the basic probability concepts used, refer to Appendix
A.

We start by defining the notion of a Gaussian process. Informally, a Gaussian
process is a collection of random variables, any finite number of which have a
joint Gaussian distribution. We now state this more rigorously.

Definition 1 (Gaussian Process).
Let I be an arbitray index set. A collection (Yt)t∈I of random variables Yt :
Ω → R defined on a probability space (Ω,A, P ) is called a Gaussian process if
and only if the joint distribution of any finite subcollection Yt1 , ..., Ytn, n ∈ N,
t1, ..., tn ∈ I is a multivariate normal distribution.

We note that the distribution of a Gaussian process (Yt)t∈I is uniquely deter-
mined by the distributions of finite subcollections and hence by the expectation
values

m(t) = E[Yt], t ∈ I, (2.6)

and the covariances

c(s, t) = Cov[Ys, Yt] := E[(Ys −m(s))(Yt −m(t))], s, t ∈ I. (2.7)

We will consider only centered Gaussian processes, i.e. processes withm(t) = 0.

Modelling the training data as a Gaussian process simply means that we in-
terprete the observations as random variables (f(x))x∈I , with the index set I
corresponding to the input space X , i.e. I = X = RD. For a given finite index
set x1, ...xN the vector of corresponding observations f(x1), ..., f(xN ) conse-
quently has a multivariate Gaussian distribution (cf. Appendix B.1)

f := (f(x1), ..., f(xN )) ∼ N (0,C), (2.8)

where C is the covariance matrix with the entries

Cij = Cov(f(xi), f(xj)) =: k (xi, xj). (2.9)

11



Chapter 2. Multivariate Function Approximation

Thus, the GP model allows us to express the covariance between two outputs
as a function k of the corresponding inputs which evaluates their “similarity”.
Mathematically, another term for a function mapping two inputs into R is
kernel. We will rigorously define the notion in the subsequent subsection.

In practice, one is often faced with the additional problem of not measuring
the actual latent function values f(xi), but some observation yi corrupted by
noise εi. In the context of Bayesian inference this noise is not considered to be
deterministic but random according to some distribution. The suitable choice
of this distribution is by no means an easy question and depends heavily on
the application. For simplicity, we will assume Gaussian white noise, i.e. that
the noise is independent and identically normally distributed over the training
data,

yi = f(xi) + ε, with ε ∼ N (0, σε). (2.10)

This choice has the main advantage that all posterior distributions obtained by
the Bayesian inference remain normal, allowing for the computation of exact
solutions.

Since the observed function values y are thus the sum of two Gaussian random
variables, they in turn are normally distributed as

y ∼ N (0,C + σ2
εI). (2.11)

We now introduce a test input x? for which we wish to predict the function
value f? := f(x?). Adding this value to our finite index set, we obtain the joint
prior on the latent training and test values consistently as

(y, f?) ∼ N

0,

C + σ2
εI k?

k? k??


 , (2.12)

where k? = (k (xi, x?))Ni=1 denotes the covariance between the training and test
values and k?? = k (x?, x?) the variance of the test value itself.

The posterior predictive distribution is now obtained by conditioning f? on the
observed function values y. Using the relations holding true for multivariate
Gaussian distributions found in Appendix B.2, it can be calculated as

f?|y ∼ N
(
k?(C + σ2

εI)−1y, k?? − k?(C + σ2
εI)−1k?

)
. (2.13)

Its mean value k?(C + σ2
εI)−1y is used as the prediction value for f?. We will

identify both and henceforth write

f? = f(x?) = k?(C + σ2
εI)−1y. (2.14)

Looking closely at this expression, we observe that the reconstructed function is
written as a linear combination of the kernel functions fixed by the data points,

12



2.1. Bayesian Inference

f(x?) =
n∑
i=1

αik (xi, x?), with α = (C + σ2
εI)−1y. (2.15)

The learning of this algorithm actually consists in the calculation of the co-
efficients α via a matrix inversion of the corrupted covariance matrix. This
means that the choice of the kernel function determines the space in which f
is reconstructed. This issue will be addressed in more detail when considering
multivariate function inference in the context of inverse problems in Section
2.2.

We will now present different covariance functions popular in the machine learn-
ing community.

Covariance Functions

The covariance function ensures the basic assumption in supervised learning,
namely that close inputs lead to similar target values. It has to provide a
measure of closeness for inputs on which the prediction can be based. Hence
the choice of the covariance function is crucial for the predictive quality of the
Gaussian process regression.

We will now provide a rigorous definition of the notion of a kernel and then
use the two terms covariance function and kernel interchangeably. For a more
detailed analysis of the subject we refer the reader to [47].

Definition 2.
Let X be a non-empty set. A function k : X × X → R is called a (positive
definite) kernel if for all M ∈ N and all x1, ..., xM ∈ X the matrix

K = {k (xi, xj)}Mi,j=1

is symmetric and positive semidefinite.

One can easily show that the covariance function of a Gaussian process defines
an admissible kernel.

As already noted at the beginning of this chapter under the term kernel trick,
kernels can also be understood as mappings into an implicit feature space. In
fact, every kernel can be represented as a dot product in some space H by virtue
of

k(x, x′) =
〈
Φ(x),Φ(x′)

〉
H , (2.16)

where Φ : X → H is called the feature map and defines the space H. In Section
2.2.2 we will describe the construction of the feature space in more detail by
choosing Φ as the map x 7→ k(., x).

There are many different types of kernels satisfying the above definition. In
our application we will require stationary kernels, i.e. functions invariant to

13



Chapter 2. Multivariate Function Approximation

translations in input space. Clearly, such kernels only depend on the difference
x− x′.

A standard choice for such a kernel is the squared exponential, or Gaussian
kernel

k (x, y) = σf exp
(
−||x− y||

2
2

2l2

)
, (2.17)

where l is called the characteristic length scale and σf denotes its amplitude.
Note that there is no dependence between the Gaussian prior on the latent
training values and the choice of the Gaussian kernel as a covariance function
for the resulting Gaussian process. The Gaussian prior assumption renders the
model analytically tractable, while for the covariance function other choices are
possible.

An alternative stationary kernel is e.g. the Laplacian kernel,

k (x, y) = exp
(
−|x− y|1

l

)
. (2.18)

It has a similar form as the Gaussian kernel but uses the `1 norm in the ex-
ponent of the exponential map leading to the slight disadvantage of not being
continuously differentiable.

Both the Laplacian and the Gaussian kernel can be interpreted as special cases
of the more general Matérn class of kernels, named after the work of Matérn
[30]. They are given by

k (x, y) = 21−ν

Γ(ν)

(√
2ν|x− y|

l

)ν
Kν

(√
2ν|x− y|

l

)
, (2.19)

where ν and l are positive parameters and Kν denotes the modified Bessel func-
tion. The Gaussian kernel is recovered in the limit ν → ∞ and the Laplacian
kernel corresponds to ν = 1

2 . For half-integer ν the functional form simplifies
into a product of a polynomial and an exponential term. Examples are

ν = 3
2 : k (x, y) = (1 +

√
3
l |x− y|) exp(−

√
3
l |x− y|),

ν = 5
2 : k (x, y) = (1 +

√
5
l |x− y|+

5
3l2 |x− y|

2) exp(−
√

5
l |x− y|).

So far all kernels mentioned are isotropic, meaning they are functions of r =
|x − x′| which weigh all input dimensions equally. Depending on the input, it
can be reasonable to relax this assumption and assign different length scales to
particular dimensions. The anisotropic Gaussian kernel for example is defined
as

k (x, y) = exp
(
−

D∑
i=1

(xi − yi)2

2l2i

)
(2.20)

for a vector l = (li)Di=1 of characteristic length scales.
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2.1. Bayesian Inference

Marginal Likelihood

Having chosen a kernel, the question remains how to chose its parameters. As
these are parameters of the prior, they are often refered to as hyperparameters
in order to distinguish them from possible parameters of the model itself. The
Bayesian framework provides a rather intuitive way to select the best hyperpa-
rameters for a given set of training data.

Consider the likelihood of the observed function values p(y). It is also called
marginal likelihood as it can be obtained by marginalisation of the latent func-
tion values,

p(y) =
∫
p(y|f)p(f)df. (2.21)

By our choice of priors and noise distribution it is normally distributed,

p(y) = N (0,C + σ2
εI). (2.22)

To be accurate, the observation values actually depend both on the input X
and on the hyperparameters Θ of the model,

p(y|X,Θ) = N (0,C(Θ) + σ2
εI) (2.23)

In order to determine the best set of parameters, we can maximise the likeli-
hood p(Θ|y,X) of the hyperparameters given the observed training data. Using
Bayes’ rule, it can be calculated as the normalised product of marginal likeli-
hood and hyperparameter prior,

p(Θ|y,X) = p(y|X,Θ)p(Θ)
p(y) . (2.24)

If we assume that all hyperparameters are initially equally likely (without hav-
ing seen the training data), i.e. if p(Θ) = const, then the arguments of the
maximum of the hyperparameter likelihood and the marginal likelihood coin-
cide,

argmaxΘ p(Θ|y,X) = argmaxΘ p(y|X,Θ). (2.25)

Hence, it suffices to maximise the marginal likelihood. This is facilitated by
applying the logarithmic map - which is monotonic - as the products then
transform into sums.

In practice, one minimises the negative loglikelihood of the density function of
the multivariate normal distribution (c.f. B.1) given by

− ln p(y|Θ) = 1
2 ln |C(Θ) + σ2

εI|+
1
2y
(
C(Θ) + σ2

εI
)−1

y + m

2 ln 2π (2.26)

Its terms can be interpreted as follows. The first term depends on the determi-
nant of the perturbed covariance matrix. Therefore, it penalises the complexity
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Chapter 2. Multivariate Function Approximation

of the chosen model. The second term is the data fit term and the third only a
normalisation.

A necessary condition for an extremum are vanishing gradients. Therefore, the
it is helpful to compute the derivatives of the loglikelihood with respect to the
hyperparameters as

∂ ln p(y|Θ)
∂θi

= 1
2 |C(Θ) + σ2

εI|
tr
(
C(Θ) + σ2

εI
) ∂ (C(Θ) + σ2

εI
)

∂θi

+ 1
2y
(
C(Θ) + σ2

εI
)−1 ∂

(
C(Θ) + σ2

εI
)

∂θi

(
C(Θ) + σ2

εI
)−1

y.

(2.27)

Minimisation of the negative loglikelihood can be done using any standard
optimisation technique such as gradient descent. We will not focus on such
methods here, but instead refer the interested reader to the optimisation chapter
in [47] as an introduction, or to [58] for a more detailed exposition.

2.2. The Regularisation Approach in the Context of
Inverse Problems

Having presented the Bayesian framework to multivariate function approxima-
tion we now turn to the classical approach. In fact, inference of a smooth
function can also be explored in the context of inverse problems. As references
for the material covered in this section refer to [14], [29], [24].

2.2.1. Tikhonov Regularisation

Let H1, H2 denote separable Hilbert spaces with respective norms ‖ ·‖H1 , ‖ ·‖H2

and let A : H1 → H2 be a linear continuous operator. Consider the operator
equation

Af = g, (2.28)

where f ∈ H1 and g ∈ H2. The direct problem consists of finding the output g
for given input f , whereas the inverse problem is to find the input f that solves
(2.28) for given g. The latter is called well-posed in the sense of Hadamard,
if the solution f exists, is unique and is stable under slight corruption of g,
meaning that f1, f2 are close if g1, g2 are close.

In practice, one often does not know g exactly but one has to make do with
noisy data gδ. Then, it can happen that gδ /∈ R(A), meaning the problem is
ill-posed as it has no solution. In order to overcome this, one generalises the
problem by minimising the defect

‖Af − g‖H2 → min . (2.29)
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2.2. The Regularisation Approach in the Context of Inverse Problems

When minimising in H1, however, the solution hereof does not have to be
unique. One therefore wants to restrict the minimisation to a subset V ⊂ H1
in order to enforce uniqueness. A possible definition of this set V can be made
using an operator Ω : H1 → H2 describing desired features and demanding that
the solution f fulfills this additional knowledge,

V := {f ∈ H1 : Ω(f) = 0}. (2.30)

Here, we assume that the regularisation operator Ω is strictly convex on the
null space of A, K(A), and non-negative on H1. Furthermore, we require it to
be lower semi-continuous. Reformulating the restricted minimisation problem
using Lagrangian multipliers leads to

min
f∈H1

Jλ(f) = min
f∈H1

‖Af − g‖2H2 + λΩ(f), (2.31)

where λ > 0 is called the regularisation strength.

In order to derive a solution to the regularised minimisation problem (2.31) we
specialise to

Ω(f) := ‖Bf‖2H3 , (2.32)

with a linear operator B : H1 → H3 mapping onto a Hilbert space H3 whose
domain D(B) is dense in H1. The operator (B?B) : H1 → H1 is assumed to be
strictly monotone on K(A), i.e. there exists β > 0 such that

‖Bf‖H3 > β‖f‖H1 for f ∈ K(A). (2.33)

This means that B can actually be set to zero on K(A)⊥, as A is non-negative
there. Under these conditions the regularised minimisation functional,

Jλ(f) = ‖Af − g‖2H2 + λ‖Bf‖2H3 , (2.34)

is called Tikhonov functional and is minimised by the solution fλ of the corre-
sponding regularised normal equation,

(A?A+ λB?B)fλ = A?g. (2.35)

To see this, consider first the operator defined by the left hand side of the
normal equation (2.35).

Lemma 1.
The operator C : H1 → H1 defined as C = A?A + λB?B is positive definite,
self-adjoint and injective.

Proof. First of all, consider the case 0 6= f ∈ K(A). Then it holds that

〈Cf, f〉H1 = λ‖Bf‖2H3 > λβ2‖f‖2H1 > 0. (2.36)

For 0 6= f ∈ K(A)⊥ we have with the above assumption concerning B

〈Cf, f〉H1 = ‖Af − g‖2H2 > 0. (2.37)
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Chapter 2. Multivariate Function Approximation

Combining 2.36 and 2.37, we obtain that C is positive definite and thus injective.
Secondly, for f, f̄ ∈ H1 we have

〈Cf, f̄〉H1 = 〈Af,Af̄〉H2 + λ〈Bf,Bf̄〉H3 = 〈f, Cf̄〉H1 , (2.38)

thus C is a self-adjoint operator.

With these properties, one can now formally prove the above statement.

Theorem 1.
Let A : H1 → H2 be a linear continuous operator between Hilbert spaces, and let
λ > 0. Then Jλ has a unique minimum. It is given by the solution fλ := C−1A?g
of the regularised normal equation (2.35).

Proof. Let (fn) ⊂ H1 be a minimizing sequence, i. e. we have

Jλ(fn)→ inf
f∈H1

Jλ(f) =: J. (2.39)

Then

Jλ(fn) + Jλ(fm) = 2Jλ(1
2(fn + fm))

+ 1
2‖A(fn − fm)‖2H2 + λ

2 ‖B(fn − fm)‖2H3

> 2J + λ

2β
2‖fn − fm‖2H1 ,

(2.40)

where the left hand side converges to 2J . Thus (fn) is a Cauchy sequence in a
Hilbert space and hence it converges to fλ ∈ H1. Since Jλ is lower semi-con-
tinuous, it follows that

J = lim inf
n→∞

Jλ(fn) > Jλ(lim inf
n→∞

fn) = Jλ(fλ). (2.41)

This proves existence of the solution fλ. Uniqueness of the solution follows from
injectivity of C.

To see thatA?g lies in the range of the operator C and that hence Cfλ = A?g can
be uniquely solved for fλ, one checks that (2.35) is actually the Euler-Lagrange
equation of the Tikhonov functional (2.34).

Finally, in order to show that the solution fλ minimises Jλ one calculates for
f ∈ H1 using Lemma 1 that

Jλ(f) = 〈Cf, f〉H1 − 2〈Af, g〉H2 + ‖g‖2H2

= 〈Cf, f〉H1 − 2〈Cfλ, f〉H2 + ‖g‖2H2

= 〈C(f − fλ), f − fλ〉H1 + 〈Cfλ, fλ〉H2 + ‖g‖2H2

> λβ2‖f − fλ‖2H1 + ‖g‖2H2 − 〈Afλ, g〉H2 .

(2.42)
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2.2.2. Application to Function Inference

The goal now is to apply the theory of Tikhonov Regularisation to the task of
infering a smooth function f : Rd → R from given noisy data D := (X,y) =
{xn, yn}n=1,...,N , related via

yn = f(xn) + ε, (2.43)

where ε describes the noise. To do so consider the projection operator

P : H1 → RN , Pf = {f(xi)}Ni=1. (2.44)

Then P is a linear and compact operator andH1 is chosen as a suitable separable
Hilbert space such that P is also continuous. Setting A = P in the definition
(2.34), the Tikhonov functional reads

Jλ(f) = ‖Pf − y‖2RN + λ‖Bf‖2H3 . (2.45)

A common choice for the inner product on RN is the standard Euclidean inner
product. Then one obtains the empirical quadratic error as the data dependent
term, i.e.

Jλ(f) =
N∑
i=n

(f(xn)− yn)2 + λ‖Bf‖2H3 . (2.46)

Application of Theorem 1 gives existence and uniqueness of the solution fλ =
(P?P + λB?B)−1P?g.

We now aim for a finite-dimensional representation of fλ by taking advan-
tage of the isometric isomorphism between H1 and `2. To this end, denote by
{ϕ(x)}∞j=1 an orthonormal basis of H1 to be chosen later and by γ = {γj}∞j=1
the coefficients of the series expansion of the solution

fλ(x) =
∞∑
j=1

γjϕj(x). (2.47)

Then the operators P?P and B?B transform as follows

〈P?Pf, f〉H1 =
∞∑
k=1

∞∑
j=1

γj〈Pϕj ,Pϕk〉2γk

=
∞∑
k=1

∞∑
j=1

γj

N∑
n=1

ϕj(xn)ϕk(xn)γk

= 〈P TPγ, γ〉l2 ,

〈B?Bf, f〉H1 =
∞∑
k=1

∞∑
j=1

γj〈B?Bϕj , ϕk〉γk

= 〈Bγ, γ〉l2 ,

(2.48)
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with infinite-dimensional matrices P and B where

Pnj = ϕj(xn) and Bij = 〈Bϕi,Bϕj〉H1 for n = 1, 2, ..., N, i, j = 1, 2, ... (2.49)

Hence the coefficients γ solve the linear system

(P TP + λB)γ = P T y. (2.50)

While this formulation is already simpler, it is still infinite-dimensional. By
choosing the orthonormal basis in a suitable way, however, it is possible to
discard the infinite series expansion in favor of a finite one. W.l.o.g. assume
that B is positive definite. This can always be achieved by defining

B = B̃T B̃, with B̃ =
√
BTB. (2.51)

Then we can define {ϕ(x)}∞j=1 as eigenvectors of B - corresponding to the
eigenvalues {µ}∞j=1 - as they form an orthonormal basis of H1. Consequently
the k-th row of (2.50) reads as

∞∑
i=1

N∑
n=1

γiϕk(xn)ϕi(xn) + λµkγk =
N∑
n=1

ϕk(xn)yn. (2.52)

Combining the infinite sum to f(xn), one obtains for the coefficients

γk = 1
λµk

(
N∑
n=1

ϕk(xn)(yn − f(xn))), (2.53)

which can be plugged into the series expansion of f to give

f(x) =
N∑
n=1

(
∞∑
k=1

1
µk
ϕk(x)ϕk(xn)) 1

λ
(yn − f(xn)) =

N∑
n=1

αnk (x,xn), (2.54)

with

k (x, y) =
∞∑
k=1

1
µk
ϕk(x)ϕk(y) and αn = 1

λ
(yn − f(xn)). (2.55)

Hence f can be represented as a finite sum of data-dependent functions k (·,xn)
with coefficients α solving the finite-dimensional linear system

(K + λI)α = y, (2.56)

where K = {k (xi,xj)}Ni,j=1 is a symmetric and positive semidefinite matrix.
This can be seen by calculating

N∑
i,j=1

ciKijcj =
N∑

i,j=1
ci

∞∑
k=1

1
µk
ψk(xi)ψk(xj)cj

=
∞∑
k=1

1
µk
〈c, ψk(X)〉2RN > 0.

(2.57)

Thus the function k is in fact a so-called kernel, cf. Definition 2.
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The Feature Space

One can now take a closer look at the space

H = span{
m∑
i=1

αik(·,x′i)|m ∈ N, αi ∈ R,x′1, ...,x′m ∈ Rd}

in which the solution f is found. In fact, we will observe that this is exactly
the feature space associated with the kernel k as noted in section 2.1.1.

Defining a dot product on H as

〈f, g〉H =
m∑
i=1

m′∑
j=1

αiβjk (xi,x′j) (2.58)

for f(·) =
∑m
i=1 αik (·, xi) and g(·) =

∑m′
j=1 βjk (·, x′j), H becomes a Hilbert

space with k acting as the representer of evaluation, since

〈k (·,x′), f〉 =
m∑
i=1

αik (x′, xi) = f(x′). (2.59)

In particular, pointwise evaluations are bounded, as

|f(x)|2 = |〈k (·,x), f〉|2 6 k (x,x)‖f‖. (2.60)

This motivates the following definition.

Definition 3.
A reproducing kernel Hilbert space (RKHS) H is defined as a Hilbert space of
real functions f : X → R such that all evaluating functionals f 7→ f(x), x ∈ X ,
are continuous.

It was shown above that one can construct a RKHS from a given positive definite
function k . On the other hand, as indicated by the name, the existence of a
reproducing kernel for a given Hilbert space follows by the Riesz representation
Theorem,

∀x ∈ X : ∃!k (·, x) such that f(x) = 〈f, k (·, x)〉, (2.61)

and the definition

k(x, x′) = 〈k (·, x), k (·, x′)〉H. (2.62)

Thus for every regularisation operator Ω of the form Ω(f) = ‖Bf‖2 there ex-
ists a RKHS with a kernel k such that the Tikhonov functional (2.46) can be
equivalently written as

Jλ(f) =
N∑
i=n

(f(xn)− yn)2 + λ‖f‖2H, (2.63)

21



Chapter 2. Multivariate Function Approximation

and the solution f can be represented as a finite linear combination of kernels
centered on the data points. This can be stated in a more general context for
arbitrary loss functions instead of the empirical quadratic error. The following
theorem is taken from [47], see therein for the proof. As before, H denotes a
RKHS with its reproducing kernel k.

Theorem 2 (Representer Theorem).
Denote by Ω : [0,∞)→ R a strictly monotone increasing function, by X a set,
and by c : X × R2 → [0,∞) an arbitrary loss function, i. e., c(x, y, y) = 0 for
all x ∈ X and y ∈ R. Then each minimizer f ∈ H of the regularised risk

c((x1, y1, f(x1)), ..., (xm, ym, f(xm))) + Ω(‖f‖H) (2.64)

admits a representation of the form

f(x) =
m∑
i=1

αik (xi, x). (2.65)

This result allows for the treatment of many different kernel-based machine
learning methods under one generalised framework. The respective methods
differ in the choice of the specific loss function and regularisation operator.
The standard support vector regression (c.f. [47]), for example, corresponds to
the use of the so-called ε-insensitive loss function,

c(x, y, f(x)) = max{0, |y − f(x)| − ε}, (2.66)

and the regularisation operator Ω(||f ||H) = 1
2 ||f ||

2
H.

In order to establish a rigorous connection between regularisation operator Ω
and kernel k, the question remains whether for every RKHS there exists a
corresponding regularisation operator of the form ||B · ||H3 . It is answered by
the next theorem.

Theorem 3.
For every RKHS H with reproducing kernel k there exists a linear operator
B : H → H3 such that for all f ∈ H,

〈Bk (x, ·),Bf(·)〉 = f(x), (2.67)

and in particular,〈
Bk (x, ·),Bk (x′, ·)

〉
= k (x, x′) (2.68)

However, the correspondence between regularisation operator and kernel does
not have to be unique. For example choosing B as the identity and H3 as H
always provides a valid regularisation operator, effectively proving the theorem.
Typically, the difficulty lies in finding a regularisation operator corresponding
to a specific Hilbert space H3.
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2.3. Relation between Regularisation and GP Regression

2.3. Relation between Regularisation and GP Regression

As we have seen in the sections before, the equations (2.15) and (2.56) stating
the solutions to GP regression and Tikhonov regularisation are identical. In this
section, the connection between the two approaches is illustrated. For further
reading refer to [42]. We note that, in the Machine Learning community, the
approach of deriving Equation (2.56) via Tikhonov regularisation is also called
kernel ridge regression (KRR).

Applying the exponential map to the negative regularised Tikhonov functional
(2.46), one obtains

exp
(
− 1
λ
Jλ(f)

)
= exp

(
− 1
λ

N∑
n=1

(f(xn)− yn)2
)

exp
(
−‖Bf‖2

)
. (2.69)

Here the first term on the right hand side is proportional to the likelihood of
the GP regression

p(y|f) = N (f, σ2
εI) (2.70)

if one identifies λ with the variance σ2
ε .

The second term corresponds to the prior of the GP regression (2.8). To see
this, we use the expansion of the latent training values in the kernel functions,

f(xi) =
N∑
j=1

αjk (xj , xi), (2.71)

to calculate

p(f |X) ∼ exp
(
−f(X)TC−1f(X)

)
= exp

(
−αTCα

)
= exp

(
−‖f‖2H

)
= exp

(
−‖Bf‖2

)
.
(2.72)

Here, we have used that Cij := k (xi, xj) and we have chosen B as the regulari-
sation operator corresponding to the kernel k . This means that by choosing a
regularisation operator B one selects a particular prior, even when not thinking
in the bayesian framework.

We can now conclude that since f? minimises Jλ(f), it maximises (2.69) and
hence it is the maximum a posteriori (MAP) solution. For a Gaussian distribu-
tion the mode and the mean coincide. Therefore, the solution of the regularised
Tikhonov functional and the prediction of the Gaussian process regression are
equal. Note however, that for this equivalence to hold the assumption it is
crucial to assume that both data and noise are Gaussian distributed.
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3. Application to the Potential Energy
Hypersurface

In this chapter we apply the mathematical theory of Gaussian process regres-
sion to the approximation of the high-dimensional Born-Oppenheimer potential
energy surface. We start by describing the concept of this surface as well as the
fundamental energy decomposition the framework is based on. We continue by
deriving an explicit functional representation for the atomic contributions to the
total energy and extend the prediction to gradient values. These are needed in
molecular dynamics simulations as they correspond to the negative forces act-
ing on the particles. We also describe how to incorporate gradient information
into the training data in order to enhance function value prediction.

We conclude this chapter by presenting an extension of the framework to the
learning of energy correction terms.

3.1. The Born-Oppenheimer Potential Energy Surface

As a reference to the subject from the point of view of computational chemistry
we note the book by Errol G. Lewars, [27], Chapter 2.

The potential energy surface is a hypothetical concept relating the geometric
structure of a (finite) chemical compound to its energy. It usually neglects that
the atoms composing the molecule are not stationary but can occupy different
vibrational energy levels depending on the ambient temperature.

It is motivated by the Born-Oppenheimer approximation of quantummechanics.
This approximation postulates that due to their huge difference in mass the
movements of the nucleii and the electrons occur on different time scales. This
means that the electrons effectively see the nuclei as stationary. Mathematically,
this assumption allows the Schroedinger equation to become decoupled into an
electronic and a nuclear equation, where the electronic one depends no longer
on time but only on the nuclear coordinates. This electronic potential defines
the potential energy surface on which the nuclei move according to the laws of
classical mechanics.

Intuitively, this allows us to think of the potential energy surface as the graph
of the function that maps nuclear coordinates to energy,

E = E(x1, ...,xP ). (3.1)
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Chapter 3. Application to the Potential Energy Hypersurface

The resulting high-dimensional hypersurface can be used for a descriptive inter-
pretation of chemical reactions. Minima of the surface correspond to chemical
configurations having a lower energy than any surrounding configuration that
could be reached by slightly perturbing the geometric coordinates. Chemically
speaking, this is the definition of a meta-stable state. First-order saddle points
on the other hand are configurations for which the energy is minimal under per-
turbation in all directions but one. Changing the coordinates in this direction
leads to configurations with a lower energy, meaning one has identified a tran-
sition state. This way the PES can be searched for meta-stable configurations
and the reaction paths between them.

For their ability to introduce mathematical techniques to the analysis of chem-
ical problems, PES are an important construct in computational chemistry.
Their accurate calculation within the limits of the Born-Oppenheimer approxi-
mation requires the solving of the electronic Schroedinger equation. While
already simplified, the numerical calculation of the potential is still computa-
tionally demanding. Hence, one aims to restrict the evaluation of the approxi-
mated Schroedinger equation to a minimum. This justifies the large interest in
interpolating the PES using techniques as presented in the preceding chapter.

We will now continue with the application of the Gaussian process regression
to PES interpolation.

3.2. The Atomic Decomposition Ansatz

It is our aim to present a framework for interpolating potential energy hypersur-
faces needed in the molecular dynamics simulations of general particle systems.
They should be applicable to molecules and crystalline solids alike.

When considering the total energy of a P -particle system, we will assume it can
be written as the sum of the P atomic contributions,

Etotal =
P∑
p=1

Eatomic(qp), (3.2)

where qp describes the representation of the neighbourhood of the p-th atom
using some generalised characteristics. For molecular dynamics applications,
it is these atomic contributions one needs to evaluate. Quantum mechanical
calculations, however, are only able to provide the total energy Etotal. Hence, it
is our goal to use Gaussian process regression based on the observed total energy
values y in order to derive an expression for the atomic energy contributions
Eatomic(qp). In this chapter the target function to be infered is the atomic
energy, which we will denote by f(q) = Eatomic(q).

In order to be able to cope with very large particle systems or even infinite
periodic structures like crystals, we have to limit the atomic neighbourhoods to
a finite region by introducing a cut-off radius, effectively breaking the system
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3.2. The Atomic Decomposition Ansatz

into smaller subsystems. Strictly speaking this only makes sense if the following
localisation assumption holds:

Assumption 1 (Localisation).
The atomic contribution depends only on the environment q within a suitable
cut-off radius of the atom.

If the assumption is violated for the total energy, it is always possible to learn
only short range interactions via regression, which are localised by definition,
and let the long-term contributions be modeled by an explicit potential. We
will address this issue in Section 3.4.

3.2.1. Deriving an Expression for Atomic Energy Contributions

We now apply the atomic decomposition ansatz to the Gaussian process regres-
sion described in Section 2.1.1 in order to derive an expression for the inference
of the atomic energy function, f(q) = Eatomic(q). The concept of localised
Gaussian process regression for the interpolation of the PES was introduced by
Bartók et al. under the name of Gaussian Approximation Potentials (GAP)
[4, 1]. However, they do not describe the aspect of the atomic contributions in
much detail, which is why we will recapitulate the derivation.

Let N denote the number of training examples, i.e. we have N particle systems
with N corresponding total energy values y where system n consists of Pn
particles. As usual, we assume that the observed energy values differ from the
underlying energy function Etotal by additive, i.i.d. Gaussian noise ε, i. e.,

y = Etotal + ε, with ε ∼ N (0, σ2
ε). (3.3)

Denote by f = {Eatomic(qk)}k=1,...,K the K :=
∑N
n=1 Pn local and unobservable

atomic contributions, where qk describes the local environment of the k-th atom.
Let L be the K ×N matrix relating the total to the atomic energies, i. e.,

Etotal = LT f. (3.4)

Then we can relate the covariance matrix CN of the total energy values to the
covariance matrix CK of the atomic contributions as

(CN )ij := Cov(Etotal(xi), Etotal(xj)) = Cov(
K∑
l=1

Llifl,
K∑
k=1

Lkjfk)

=
K∑

k,l=1
Lli(CK)l,kLkj

= (LTCKL)ij .

(3.5)

Analogously, the covariance between the training data and a new test input x?
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Chapter 3. Application to the Potential Energy Hypersurface

with P ? particles can be written as

(k?)n := Cov(Etotal(xn), E?total) = Cov(
K∑
l=1

Llnfl,
P ?∑
p=1

f?p )

=
K∑
l=1

Lln

P ?∑
p=1

Cov(fl, f?p )

=
P ?∑
p=1

(LT c?(p))n.

(3.6)

As an expression for the variance of the test input we obtain

k?? := Cov(E?total, E
?
total) =

P ?∑
p,p′=1

Cov(f?p , f?p′) =
P ?∑

p,p′=1
(c??)pp′ . (3.7)

Thus the covariance between total energy values is decomposed, allowing for
the definition of a kernel function based only on the representation of the local
environment of a particle,

(CK)ij := k (qi, qj), i, j = 1, ...,K,
(c?(p))k := k (qk, q?p), k = 1, ...,K, p = 1, ..., P ?

(c??)pp′ := k (q?p, q?p), p, p′ = 1, ..., P ?.
(3.8)

As noted before, this is important in order to be able to cope with very large
particle systems. In practice, we will use the Gaussian kernel as defined in
Equation (2.17) as the standard choice.

Plugging the expressions into regular GP regression as described in Section
2.1.1 gives

E(E?total) =
P ?∑
p=1

(c?(p))
TL(LTCKL+ σ2

εI)−1y,

Var(E?total) =
P ?∑

p,p′=1

[
(c??)pp′ − (c?(p))

TL(LTCKL+ σ2
εI)−1LT c?(p′)

]
,

(3.9)

as an estimate for the total energy of the input system x? and its variance based
only on local atomic environments. The individual atomic contribution of the
p-th atom of x? is

f(q?p) = E?atomic(q?p) =
K∑
k=1

k (qk, q?p)αk, (3.10)

with the coefficients α = L(LTCKL+ σ2
εI)−1y. As with regular Gaussian pro-

cess regression, the interpolated function is reconstructed as a sum of weighted
kernel functions centered at the training data, which now corresponds to the
atomic environments instead of the complete particle system.
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3.2. The Atomic Decomposition Ansatz

3.2.2. Relating Global to Local Indexing

In order to make the relation between global and local indexing clearer, we
explicitly execute the localised Gaussian process regression for a small (theo-
retical) example.

Assume we have 2 training systems, the first with 3 particles and the other with
2. Hence, we need in total 3+2 = 5 local atomic environment representations qk,
k = 1, ..., 5. If we enumerate the local particles sequentially, the representations
q1 to q3 correspond to the first particle system and q4 and q5 to the second.
The matrix L relating total energy values to their local energy contributions
therefore takes the form

LT =

1 1 1 0 0

0 0 0 1 1

 . (3.11)

By defining kij := k (qi, qj) = (CK)ij we obtain

LTCKL =


∑3
i,j=1 kij

∑3
i=1

∑5
j=4 kij∑3

i=1
∑5
j=4 kij

∑5
i,j=4 kij

 , (3.12)

and consequently,

(LTCKL+ σ2
εI)−1 = 1

∆


∑5
i,j=4 kij + σ2

ε −
∑3
i=1

∑5
j=4 kij

−
∑3
i=1

∑5
j=4 kij

∑3
i,j=1 kij + σ2

ε

 , (3.13)

where

∆ := det(LTCKL+ σ2
εI) = (

3∑
i,j=1

kij + σ2
ε)(

5∑
i,j=4

kij + σ2
ε)− (

3∑
i=1

5∑
j=4

kij)2.

Computing α as

α1 = 1
∆(y1(

5∑
i,j=4

kij + σ2
ε)− y2

3∑
i=1

5∑
j=4

kij) (3.14)

α2 = 1
∆(−y1

3∑
i=1

5∑
j=4

kij + y2(
3∑

i,j=1
kij + σ2

ε)), (3.15)

the final expression for the p-th local energy of an arbitrary system is given by

f(q?p) = α1k(q1, q
?
p) + α1k(q2, q

?
p) + α1k(q3, q

?
p)

+ α2k(q4, q
?
p) + α2k(q5, q

?
p).

(3.16)
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Chapter 3. Application to the Potential Energy Hypersurface

3.3. Incorporating Derivatives

Aside from the local energy contributions, the molecular dynamics applications
also need to compute the forces acting on each particle, i.e. the negative gradient
of the potential with respect to the coordinates of the particles. Therefore, one
wants to extend the Gaussian process regression to include predictions for the
gradient. Furthermore, one can use information on the gradient to enhance the
prediction of function values.

As before, let D = (X,y) = {xn, yn}n=1,...,N denote the training data, with xn
representing the cartesian coordinates of the n-th particle system and yn the
corresponding observed energy value. The target energy values differ from the
latent function values by i.i.d. Gaussian noise ε,

yn = Etotal(xn) + ε, n = 1, ..., N, with ε ∼ N (0, σ2
ε). (3.17)

In order to facilitate the notation, we will now assume w.l.o.g. that each of the
training particle systems has exactly P atoms. This can always be achieved by
introducing dummy atoms, whose influence is eliminated by the local environ-
ment descriptors. For the use of the local Coulomb matrix this is the case when
assigning them a zero nuclear charge along with arbitrary cartesian coordinates.

Additionally, we assume that for each training system xn ∈ Rd∗P the gradient
is given by

gkn = ∂Etotal(xn)
∂xkn

, n = 1, ..., N, k = 1, ..., d ∗ P. (3.18)

The gradient is afflicted with i.i.d. Gaussian noise κ,

zn = gn + κ, n = 1, ..., N, with κ ∼ N (0, σ2
κ). (3.19)

Note that κ 6= ε, since in general the error of the gradient is one order of
magnitude worse than the error of the function values.

3.3.1. Prediction of Gradient Values

Assume we have a test system x? with P ? particles and atomic environments
q?p, p = 1, ..., P ?. In order to infere gradient values from training data including
only function values, i.e. the energy observations but no forces, it suffices to dif-
ferentiate the function reconstructed by the localised GP regression in Equation
(3.10). It holds

gi? = ∂E?total
∂xi?

=
P ?∑
p=1

K∑
k=1

∂

∂xi?
k (qk, q?p)αk, with α = L(LTCKL+ σ2

εI)−1y︸ ︷︷ ︸
independent of test system

.

(3.20)

Analogously to the reconstructed energy function, we can write the gradient as
a sum of weighted basis functions where the coefficients are the same as learned
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3.3. Incorporating Derivatives

by the regression for predicting the energy values and hence do not have to be
calculated again. The basis functions are now derivatives of the local kernels
with respect to the cartesian coordinates. Application of the chain rule (cf.
Appendix C.1) leads to

∂

∂xi?
k (qk, q?j ) =

∂k (qk, q?j )
∂q?j

·
∂q?j
∂xi?

=
∂k (qk, q?j )

∂q? · ∂q
?

∂xi?
, (3.21)

Aside from the definition of the local environment representations q and q?,
one consequently also needs to specify the derivative of the representation with
respect to the atomic coordinates, ∂q?

∂x?i
.

3.3.2. Inclusion of Gradients to Enhance Function Value Prediction

One can make use of available gradient data to enhance the prediction of func-
tion and gradient values for a test system. To this end, it suffices to apply
Gaussian process regression to an extended target vector including the gradi-
ents,

yext = (y1, ..., yN , z1, ..., zN )T , (3.22)

leading to the equation

E(f?,g?) = (c?ext)T (Cext + Iext)−1yext. (3.23)

Here, Cext denotes an extended covariance matrix, comprising not only the
covariance between different function values, but also between function and
gradient values, as well as between different gradient values. It can be decom-
posed into

Cext =



LTCKL Cf,g1 . . . Cf,gN

Cg1,f Cg1,g1 . . . Cg1,gN

...
... . . . ...

CgN ,f CgN ,g1 . . . CgN ,gN


, (3.24)

with

Cf,gn = {Cov(Etotal(xi),
∂Etotal(xn)

∂xjn
)}i=1,...,N ;j=1,...,d∗Pn ,

Cgn,gm = {Cov(∂Etotal(xn)
∂xin

,
∂Etotal(xm)

∂xjm
)}i=1,...,d∗Pn;j=1,...,d∗Pm .

(3.25)

Analogously, the c?ext is comprised of the covariances between the extended data
and the test system,

c?ext =

C?
f?,f C?

f?,g1 . . . C?
f?,gN

C?
g?,f C?

g?,g1 . . . C?
g?,gN

 , (3.26)
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where

C?
f?,f = {Cov(E?total, Etotal(xn))}n=1,...,N ,

C?
f?,gn = {Cov(E?total,

∂Etotal(xn)
∂xkn

)}k=1,...,d∗P ,

C?
g?,f = {Cov(∂E

?
total
∂xi?

, Etotal(xn))}i=1,...,d∗P ?;n=1,...,N ,

C?
g?,gn = {Cov(∂E

?
total
∂xi?

,
∂Etotal(xn)

∂xkn
)}i=1,...,d∗P ?;k=1,...,d∗P ,

(3.27)

and the matrix Iext deals with the implications of noisy data,

Iext =

σ2
εIN 0

0 σ2
κId∗K

 . (3.28)

The entries in the extended covariance matrices Cext and c?ext can be calculated
rigorously (see Appendix C.2 for the details).

As before, both function value and gradients can be written as a weighted sum
of basis functions centered on the data points. The weights are the extended
coefficients learnt by the Gaussian process regression,

αext = (Cext + Iext)−1yext, (3.29)

which can be partitioned according to the structure of the extended covariance
matrix Cext into

α = (β1, ..., βN , γ1, ..., γN )T , with βn ∈ R and γn ∈ Rd∗P . (3.30)

Then, identifying the mean value of the posterior predictive distribution with
the prediction for the total energy of the test system as usual, we obtain

E?total = C?f?,fβ +
N∑
n=1

C?
f?,gnγn

=
P ?∑
p=1

(c?(p))
TLβ +

N∑
n=1

LTn,:dn(p)γn.
(3.31)

For the local energy of the p-th atom this gives

f(q?p) =
K∑
k=1

β′kk (qk, q?p) +
K∑
k=1

N∑
n=1

d∗P∑
i=1

(γ′ni)(k)∂k (qk, g?p)
∂q · ∂q

∂xin
, (3.32)

where

β′ = Lβ,
(γ′nk)(i) = Linγ

(k)
n .

(3.33)
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3.4. Extension to Learning Energy Differences

The basis set in which the reconstructed function is expanded is now comprised
of both the kernel functions centered at the training environments, k (qi, q?p),
and the corresponding derivatives, ∂k (qi,g?p)

∂q .

Analogously to the preceding subsection, one can now differentiate this expres-
sion with respect to the cartesian coordinates of the test system in order to
obtain a prediction for the gradient. As before, the coefficients are transfered,
since they are independent of the test system. The basis set transforms to the
first and second order derivatives of the local kernel k ,

gj? =
P ?∑
p=1

∂

∂xj?
f(q?p)

=
P ?∑
p=1

K∑
k=1

β′k
∂k (qk, q?p)

∂q? · ∂q
?

∂xj?

+
P ?∑
p=1

K∑
k=1

N∑
n=1

d∗P∑
i=1

(γ′ni)(k)
(∂q?
∂xj?

)T
·
∂2k (qk, g?p)
∂q∂q? · ∂q

∂xin
.

(3.34)

3.4. Extension to Learning Energy Differences

The GAP can also be used to learn energy correction terms. Assume that we
have two models for the total energy, a costly but accurate model A and a
cheap but not so accurate model B. Then we use the GAP to calculate only the
difference between the models,

EGAP = EModel A − EModel B. (3.35)

A straigthforward application would be for example to choose model A as a DFT
calculator and model B as an empirical potential whose accuracy we would
like to improve. This can be done using any empirical potential. To obtain
a prediction value for the total energy, the empirical potential needs to be
evaluated in addition to the GAP. Nevertheless, these additional computational
costs remain small compared to those needed to evaluate model A.

We can also use the above learning of differences to improve the prediction of the
localised GP regression by explicitly accounting for long-range interactions. To
this end, the empirical potential is chosen as the long-range Coulomb potential.
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4. Descriptors of Local Atomic
Environments

The success of nearly all methods in computational chemistry hinges on the
quality of the encoding of the chemical structure into numerical input variables.
This representation, also called the descriptor, has to capture the identity of the
molecule or environment in terms of composition and configuration. Hundreds
of different descriptors have been proposed, most of them for use in quantative-
structure relationship studies (QSR) [55]. Generally, they can be classified into
three categories depending on the level of included prior knowledge [56]: in-
tegrated, coarsened and first-principles-like. Integrated descriptors make use
of experimentally measurable physical characteristics known to correlate well
with the desired properties, whereas coarsened descriptors only take structural
features into account. Both are tailored to the specific needs of a chemical com-
pound, like molecules or crystalline solids, and are hence of limited generality.

We will focus on descriptors built from first principles, i.e. based only on the
nuclear charge and the cartesian coordinates of the particle system in question.
The reason for this decision lies in the Hamiltonian H which is uniquely de-
termined by these properties, and in turn so are the state and energy of the
system via the Schroedinger equation Hψ = Eψ. Hence, one expects to retain
the complete informative value by forgoing all integrated properties and conse-
quently to allow for a greater transferability across chemical compound space.
The challenge consists of incorporating physically observable invariances while
not losing uniqueness.

In this chapter we review both the physical and computational requirements
needed for a reliable descriptor. We present different first-principle-like descrip-
tors in use for the representation of local atomic environments before defining a
new local descriptor based on the global Coulomb matrix introduced by Rupp
et al. [45].

4.1. Physical and Computational Requirements for
Descriptors

The desired properties stated in this subsection are a summary filtered from
the discussion found in the papers by von Lilienfeld et al. [56], and Bartók et
al. [3].

The most straightforward requirements for a descriptor used for the prediction
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of energy values stem from the corresponding properties of the Hamiltonian and
can be motivated physically. First of all, one wants the mapping from chemical
environment to numerical representation to be unique. Assigning the same
descriptor to different configurations not only contradicts physical intuition
but also introduces systematic errors possibly hindering a successful learning
procedure. Secondly, as the total energy of a system is independent of its
orientation in space, the descriptor has to account for translation and rotation
invariance. Additionally, one would expect that symmetrically equivalent atoms
or particle groups contribute equally to the energy through the descriptor. Last
but not least, the descriptor must be invariant with respect to the indexing of
the atoms.

The above requirements of invariance are crucial to obtain reliable descriptors
for the generation of physically accurate potentials. We now turn our focus to
computational requirements that facilitate the practical aspects of the learning
process. As such the most important feature is of course its computational
cost. The determination of the descriptor must not outweigh the prediction
of the property of interest. This implies that the dimension should be as low
as possible and favorably independent of the specific chemical configuration
in order to avoid costly adjustments when comparing different structures, e.g.
environments with different numbers of neighbours.

At best one thrives for a closed analytic form that is able to cope with the
various ranges relevant to physical chemistry. In order to keep numerical errors
as small as possible, one demands continuity of the descriptor with respect
to small variations in inter-atomic distances or nuclear charge. For physical
applications, differentiability with respect to both is important as well.

All in all, one hopes to achieve that the property of interest, in our case the
energy of a particle system, is a smooth function of the descriptor, as this
greatly facilitates the learning process. In practice, however, this is difficult to
check and performance of the descriptor has to be assessed using reference data
and reliable error estimation methods such as cross validation.

4.2. Overview over other Local Descriptors in Use

In this section we provide a brief overview over other local descriptors employed
in the generation of potentials via Machine Learning methods.

When first introducing the GAP in the physical review letter [4] in 2010, Bartók
et al. used a modified bispectrum as a descriptor of mono-species crystalline
environments. They form a local atomic density from the neighbours,

ρ(r) = δ(r) +
∑
j

δ(r − rij)fcut(|rij |), (4.1)
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coupled with a cutoff function

fcut(r) =
{

1/2 + cos(πr/rcut)/2 if r < rcut

0 else
, (4.2)

to limit the spatial scale of the interactions. Summation over the neighbours
renders it invariant to permutation of the atomic indices. In order to attain
rotational invariance, the atomic density is projected on the surface of the four-
dimensional unit sphere, this way retaining all information, even radial, from the
3D spherical region inside the cutoff. Expansion in the 4D spherical harmonics,
the so-called Wigner matrices, leads to (infinitely many) coefficients from which
the rotationally invariant bispectrum can be calculated as the triple-correlation.

In practice, the spatial resolution of the bispectrum has to be truncated. Never-
theless, even when using only up to 42 bispectrum coefficients, this descriptor
is able to distinguish between different crystalline structures with a high accu-
racy. In principle, it can be extended to any multi-species atomic environment.
For a more detailed description, refer to the supplementary information of the
physical review letter cited above or to A. Bartók-Pártay’s Ph.D. thesis [1].

Several different descriptors also featuring radial functions for the description of
neighbourhood configurations at their core have been proposed. In [5], Behler
discusses in detail a local descriptor of atomic environments using symmetry
functions that explicitly incorporate the needed invariances. This descriptor
was originally introduced by Behler and Parinello as input to high-dimensional
neural networks [6]. Based on the same cut-off function defined in Equation
(4.2) different radial and angular functions are proposed, such as

G1 =
∑
j

fcut(rij),

G2 =
∑
j

e−η(rij−rs)2 · fcut(rij),

G3 =
∑
j

cos(κrij) · fcut(rij),

G4 =21−ζ∑
j,k

(1 + λ cos θijk)ζ · e−η(r2
ij+r

2
ik+r2

jk)

· fcut(rij) · fcut(rik) · fcut(rjk)

(4.3)

where η, rs, κ, ζ, and λ are parameters and θijk denotes the angle centered at
atom i. A set of these functions with different parameter settings is then used
to describe the distribution of neighbours within the cutoff sphere.

As with the bispectrum employed by Bartók et al., the dimension of this de-
scriptor has to be chosen empirically. Consequently, the uniqueness of this
descriptor is impaired. In practice, the dimensions are chosen clearly larger
than the number of of degrees of freedom, minimising the risk of introducing
systematic errors via contradictory training data. For well chosen parameters,
this leads to promising prediction results with a high accuracy. However, the
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performance is very sensitive with respect to the chosen set of symmetry func-
tions and the underlying cut-off radius. An inappropriate combination leads
to a poor prediction. This is a downside of this descriptor, as there is little
physical motivation for a particular combination and hence suitable sets have
to be selected via an extra evaluation procedure.

A global molecular descriptor composed of local atomic contributions also using
radial distribution functions is introduced by von Lilienfeld et al. [56]. They
represent each atom in the molecule by its nuclear charge multiplied with a
cosine term that has the radial distribution of all other atoms as an argument,
effectively describing the atomic neighbourhood for an infinite cut-off radius.
By summing over all atomic contributions, they obtain a Fourier series, fulfilling
uniqueness and invariance requirements. The specific choice of radial distribu-
tion function is arbitrary. When employing a Gaussian function, the descriptor
reads

FGR(r) =
∑
j

Zαj cos( 1
Zj

∑
i

Zi exp(−(r − rij)2/σ)) (4.4)

where α and σ are hyperparameters. Von Lilienfeld et al. subject this ver-
sion of the descriptor to preliminary testing on the same data set as was used
for the evaluation of the Coulomb matrix in [45], a subset of the GDB-13
database. Combined with Gaussian kernel ridge regression as the Machine
Learning method used for prediction, the Fourier series of Gaussian radial dis-
tribution functions (FGR) shows a predictive power on par with the Coulomb
matrix.

The faithfulness of descriptors like the bispectrum employed by Bartók or the
symmetry functions used by Behler can only difficultly be assessed using the-
oretical means because of the complicated algebraic dependency relationships
between descriptor elements, making it unclear whether the number of indepen-
dent degrees of freedom in the neighbourhood configuration, is (over-)achieved
in terms of algebraically independent elements, i.e. if it is (over-)complete. For
this reason, Bartók et al. evaluate it numerically by trying to reconstruct a
reference configuration after perturbation of the atomic coordinates [3]. They
find that for a fixed number of descriptor elements, the faithfulness decreases
as the number of neighbours increases. However, the reconstruction quality
improves with increasing descriptor length, in accordance with the expectation
that the infinite series of the basis set expansion leads to overcomplete descrip-
tors when not truncated. This suggests that the accuracy and completeness of
these descriptors can be refined at will by including the truncation parameter
into the set of hyperparameters.

In the same publication, Bartók et al. refine their bispectrum descriptor used
for the GAP. Instead of considering only the representation of the atomic en-
vironment, they extend their design process to the (dis-)similarity measure
used to compare the neighbourhoods, combining descriptor and kernel of the
Gaussian process. Starting with directly defining the similarity of two atomic
environments as the inner product of two neighbour densities, they obtain a

38



4.3. Designing a Local Descriptor Based on the Coulomb Matrix

rotationally and permutationally invariant similarity kernel by integrating over
all possible rotations R̂ in three-dimensional space of one of the environments,

k(ρ, ρ′) =
∫ ∣∣∣∣∫ ρ(r)ρ′(R̂r)dr

∣∣∣∣3 dR̂. (4.5)

In order to facilitate the evaluation of the angular integral, they change their
construction of the atomic neighbour density from using Dirac-delta functions
to using smooth Gaussians, expanded in terms of spherical harmonics Ylm and
radial basis functions gn,

ρ(r) =
∑
i

exp(−α|r− ri|2) =
∑
nlm

cnlmgn(r)Ylm(r̂). (4.6)

This allows the kernel to be calculated as the dot product of the bispectrum
(see the original publication for details). Normalisation then leads to the gen-
eral form of their SOAP (Smooth Overlap of Atomic Positions) kernel. They
compare this combination to the standard bispectrum and Behler’s descriptor
used with the Gaussian kernel on silicon clusters and find an improvement both
in reconstruction quality and in predictive power.

While this derivation of a similarity measure ultimately leads back to the bi-
spectrum based on a modified atomic density and combined with a different
kernel as before, its main difference lies in the elimination of many of the ad
hoc choices necessary for descriptors and kernels. Although this ansatz has its
advantages, we will continue to differentiate between the descriptor as numerical
input and the kernel as similarity measure, as it allows for a more generalised
framework.

4.3. Designing a Local Descriptor Based on the
Coulomb Matrix

All of the local descriptors presented in the previous subsection show promising
results for the generation of potentials when used in combination with Machine
Learning methods. They have in common that they are all based on some kind
of radial function for the description of atomic neighbourhoods. Some of them,
like the bispectrum, require a computational cost not to be underestimated that
can only be limited by restricting their resolution. A different and much simpler
first-principles-like descriptor recently introduced with comparable prediction
accuracy is the Coulomb matrix of Rupp et al. [45]. It is a molecular global
descriptor in matrix form considering Coulomb interactions between atom pairs
as off-diagonal entries and a polynomial fit of the nuclear charge to free atomic
energies on the diagonal. The formal definition of its entries is given as

Mij =

0.5Z2.4
i i = j,

ZiZj
||Ri−Rj ||2 i 6= j,

(4.7)
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where Zi denotes the nuclear charge of the i-th atom, Ri its cartesian coordi-
nates and the standard euclidean norm is used as a distance measure.

By construction, the Coulomb matrix is translation and rotation invariant, as
it takes only inter-atomic distances into account. It is also continuous and dif-
ferentiable with respect to nuclear charges and cartesian coordinates. In order
to attain invariance with respect to atom-indexing, however, further measures
have to be employed, since permutating the order of the atoms results in dif-
ferent matrices that can all be associated with the same molecule. In [32],
Montavon et al. propose three methods to do so. The first is to not use the
n× n Coulomb matrix itself as input to the learning method but its spectrum,
the n sorted Eigenvalues. This solves the permutation problem but the sharp
dimensionality reduction leads to a violation of the uniqueness criterion.

Their second proposition consists in selecting a representing permutation for the
molecule out of all possibilities. They decide on sorting both rows and columns
decreasingly according to the row norm to maintain symmetry. This approach
does not violate the uniqueness of the descriptor and yields the desired effect.

Lastly, they suggest a sort of data set extension with the goal of dealing with
the larger dimensionality of the Coulomb matrix compared to its spectrum.
Instead of selecting just one permutated matrix as a representation, they draw
several randomly sorted Coulomb matrices according to a conditional distribu-
tion afflicted with noise over all matrices associated with one molecule.

When comparing the performance of the three variants, Montavon et al. find
that the random Coulomb matrices perform slightly better than the sorted
variant at the cost of considerably larger training set sizes.

Our goal is now to design a local descriptor capitalising on the simplicity of the
Coulomb matrix while still achieving an accuracy comparable to the descriptors
employed by Bartók for the GAP in [4] and later publications.

4.3.1. The Localised Coulomb Matrix

The Coulomb matrix is a global descriptor of a molecule. As such it can only
be applied to a finite number of particles, making it a priori non-applicable to
infinitely periodic crystals. In our case, the decomposition of the total energy
as a sum of atomic contributions depending only on the local environment
within a suitable cut-off radius allows us to use a molecular descriptor such
as the Coulomb matrix even for infinite structures. In order to apply it to
the individual environment of a specific atom, however, it needs to be related
to the atom in question in some way, resulting in a local instead of global
representation. We propose to combine the entries of the Coulomb matrix with
the SNCF metric (also called the British Rail metric or Post Office metric),
effectively scaling the contribution of each atom pair by its distance to the
atom in the center.

For a fixed central atom, consider its neighbours located within a given cut-off
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radius. Following the example of the Coulomb matrix, we construct a matrix
with entries for each possible particle pair, resulting in the matrix dimension of
number of neighbours plus one (the central particle itself) squared. An upper
bound nmax can be calculated for the number of neighbours for any fixed radius
using the maximum packing efficiency for crystalline solids or similar concepts
extended to general particle systems. Hence by introducing dummy atoms when
necessary, the dimension of the descriptor can be rendered independent of the
actual number of neighbours currently residing in the neighbourhood.

For the diagonal entry describing the contribution of the central atom itself we
adopt the polynomial fit of the nuclear charge to free atomic energies used in
the definition of the diagonal entries of the Coulomb matrix. In all other entries,
we adjust the denominator of the Coulomb interaction term by interchanging
the inter-atomic distance between the two atoms with the metric induced by
the euclidean norm to the SNCF metric,

dc(Ri,Rj) = ||Ri −Rc||2 + ||Rj −Rc||2, (4.8)

where Rc refers to the cartesian coordinates of the central atom, and Ri, Rj

to the respective coordinates of the particle pair considered, one of which can
well be the central atom itself. We call the resulting matrix localised Coulomb
matrix in order to emphasise its origin.

A p-particle system is then described by p localised Coulomb matrices of di-
mension nmax + 1 × nmax + 1, each corresponding to the environment of one
atom in the system, defined for the k-th atom as

M(k)ij =

0.5Z2.4
i i = j = k,

ZiZj
||Ri−Rk||2+||Rj−Rk||2 otherwise.

(4.9)

Just as the Coulomb matrix, this descriptor is translation and rotation invariant
by construction, as well as continuous and differentiable with respect to the
inter-atomic distances and nuclear charges. We achieve permutation invariance
concerning atom-indexing by following Montavon et al.’s second proposition.
While fixing the row and column belonging to the central atom as the first row
and column respectively in each local matrix, the other rows and columns are
sorted with respect to their row norm.1

We want to stress that this proposition of a localised Coulomb matrix is by far
not the only possible choice. For example it is not clear, whether the above
definition of diagonal entries not corresponding to the central atom is the most
suitable for application purposes. By weighting the nuclear charge of the atom
with the inverse distance to the central atom, an exponential decay on the
diagonal is introduced, which is in accordance with the localisation assumption.
It is however possible, that this decay masks the unique identity of the atom,
e.g. that there is no difference in the diagonal entries of a small hydrogen atom

1Revised Version: Here the incorrect statement about the uniqueness of the descriptor
was removed.
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near the central atom and a carbon atom further away. In order to examine
this effect, we introduce a second definition of the localised Coulomb matrix,
in which the diagonal is not weighted. We refer to this variant as localised
Coulomb Matrix WLD (weightless diagonal). A p-particle system is then as
before described by p matrices, now defined for the k-th atom as

M(k)WLD
ij =

0.5Z2.4
i i = j,

ZiZj
||Ri−Rk||2+||Rj−Rk||2 otherwise.

(4.10)

Additionally, one could of course deviate stronger from the original Coulomb
matrix in choice of underlying norm or manner of incorporating the type of
atom. The Coulomb matrix has, however, proven its performance at least for
biomolecular applications, so we refrain from such fundamental modifications.

We expect that the localisation extends the suitability of this descriptor from
biomolecules to also include crystalline data sets. Using a global ansatz, this
was not possible until now, even though attempts have been made. In [48],
Schütt et al. propose two global descriptors for crystal structures based on the
Coulomb matrix by applying it either to the Bravais matrix conventionally used
in the solid state community or to the k nearest neighbours of a fixed atom.
However, they find that both descriptors are outperformed by a third variant
not related to the Coulomb matrix but built using partial radial distribution
functions.

In order to verify our expectation, we perform tests of this descriptor on bio-
molecular data as well as on silicon crystal structures. For the results refer to
Chapter 6.

4.3.2. Examining the (Non-)Uniqueness of the Localised Coulomb
Matrix

As the uniqueness of the mapping from environment to numerical representation
is crucial for a successful inference of physical properties using interpolation of
the PES, we now examine it for our localised Coulomb matrix descriptor in
detail.2

Consider the environment of a particle P with an arbitrary number of neigh-
bours N1, ..., Np∗ . If p∗ < nmax, dummy atoms with nuclear charge zero are
added. We assume w.l.o.g that the neighbours are already indexed in such an
order that we obtain the matrix whose rows are decreasingly ordered according
to their row norm, i.e. that no further permutation is necessary. Then the lo-
calised Coulomb matrix used to describe this neighbourhood has the following

2Revised Version: This whole subsection has been rewritten to address the inability of
the localised Coulomb matrix to distinguish between atomic environments differing only in
local rotations of the atoms around the central atom (but not in atom types or distances
to the central atom).
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entries

M(P )ij =



0.5Z2.4
P i = j = 0,

ZPZNj
||RNj

−RP ||2 i = 0 and j 6= 0,
ZPZNi

||RNi
−RP ||2 j = 0 and i 6= 0,

ZNiZNi
2||RNi

−RP ||2 i = j and i 6= 0,
ZNiZNj

||RNi
−RP ||2+||RNj

−RP ||2 otherwise,

(4.11)

where we have explicitly listed the cases of the first row and column, when one
of the two particles considered corresponds to P .

If this descriptor is not unique, we can find an environment of a different particle
P ′ with the same number of neighbours N ′1, ..., N ′p∗ but with a different chem-
ical configuration whose associated localised Coulomb matrix is identical with
M(P ). This means that there exists a permutation π : {0, ..., p∗} → {0, ..., p∗}
with π(0) = 0 such that

M(P )ij = M(P ′)π(i)π(j) for all i, j = 0, ..., p∗. (4.12)

As we are fixing the row and column belonging to the central particle to be the
first in every matrix, we immediately obtain that both particles P and P ′ have
to be of the same type, i.e. ZP = Z ′P . Furthermore, using the other entries in
the first row and the diagonal entries, we obtain the following two equivalences,

ZNj
||RNj −RP ||2

=
ZN ′

π(j)

||RN ′
π(j)
−RP ||2

,

Z2
Nj

||RNj −RP ||2
=

Z2
N ′
π(j)

||RN ′
π(j)
−RP ||2

,

(4.13)

from which we can deduce that

ZNj = ZN ′
π(j)

and ||RNj −RP ||2 = ||RN ′
π(j)
−RP ||2. (4.14)

Hence, the composition of the environments in terms of nuclear charges of the
neighbours and inter-atomic distances with respect to the central atom have to
coincide. However, this does not uniquely determine the atomic environment as
it provides no angular information about the position of two different neighbours
relative to each other. This means that the definition of the localised Coulomb
matrix as provided in Equation (4.9) is not able to distinguish between envi-
ronments differing only in local rotations of the neighbours around the central
atom. Two such environments resulting in identical localised Coulomb matrices
are depicted exemplarily in Figure 4.1.

The reason for this “angular blindness” of the localised Coulomb matrix lies in
the way the localisation was achieved by measuring all distances (only) with
respect to the central atom. Consequently, in order to render the localised

43



Chapter 4. Descriptors of Local Atomic Environments

Figure 4.1.: Two example atomic environments resulting in identical localised
Coulomb matrices as they differ only with respect to the angles
between the neighbours.

Coulomb matrix truly unique for any atomic environment we would need to
provide the missing angular information by including also the distances between
any two atoms in the environment, as it is the case for the global Coulomb
matrix as given by Equation (4.7). A possible redefinition would therefore be

M(k)ij =

0.5Z2.4
i i = j = k,

ZiZj
||Ri−Rk||2+||Rj−Rk||2+||Ri−Rj ||2 otherwise,

(4.15)

where the contribution of an atom pair is now also weighted by the inverse of
their direct distance, thereby fixing the angle between them and the central
atom.

We want to stress that this deficiency in the uniqueness of the localised Coulomb
matrix is of course only an issue for the efficient approximation of the poten-
tial energy surface, if the provided training and test data actually consist of
environments which differ only in the angles between the neighbours. When
describing the data used for evaluation in Section 5.1, we will show that neither
the biomolecular nor the silicon data set exhibit the pathological case, meaning
that the environments present in these data sets are uniquely represented by
the localised Coulomb matrix as defined in Equation (4.9). Hence, all results
obtained in this thesis can be expected to extend directly to a unique version.

4.3.3. Reinforcing the Localisation Effect

In molecular dynamics applications, particles enter and leave the atomic vicin-
ity dynamically in between timesteps as part of the simulation of nanoscale
processes. This behaviour introduces a sort of noise into the representation of
nearly identical neighbourhoods. In order to limit the influence of this noise,
the descriptor should have a smooth decay at the borders of the individual
atomic environment. This can be achieved by different approaches, e.g. by
multiplication of a smooth cutoff function. For the localised Coulomb matrix
we choose to reinforce the penalisation of the distance of contributing particles
to the central atom, leading to a stronger decay of the entries and a reduction
of noise. This is done by introducing a parameter α as the exponent of the
denominator of the entries and setting it to values larger than one, e.g. inspired
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by the Lennard-Jones potential, α = 6. The adaptation is then defined as

M(k)ij =

0.5Z2.4
i i = j = k,

ZiZj
(||Ri−Rk||2+||Rj−Rk||2)α otherwise.

(4.16)

This stronger penalisation of the distance effectively reduces the size of the
region, in which particles contribute significantly, resulting in a higher localisa-
tion of the descriptor. We expect localised Coulomb matrices with this raised
exponent to be particularly well-suited for molecules without dipoles where all
interactions between atoms can be assumed to be short-range only. We will
however verify its performance unbiasedly also on regular biomolecules and
crystalline solids.

4.3.4. Derivatives of the Localised Coulomb Matrix

As described in Section 3.3, the derivatives of the descriptor with respect to the
cartesian coordinates of the particle system are needed, when predicting the
gradient or including gradient information into the training data to enhance
function value prediction. Due to its simple structure, this is not a problem
with the localised Coulomb Matrix. We state here the derivative of the standard
variant.

Consider a given system consisting of P particles with cartesian coordinates
x ∈ RP×d. Then we can write the descriptor qk of the k-th particle built using
the localised Coulomb matrix formally as

qLCMk = FΠM(k)Π, (4.17)

where Π denotes the permutation matrix that takes care of the correct sorting
and F the storage operator that flattens the matrix into a vector row-wise.
Both Π and F are independent of the cartesian coordinates of the system,
hence we have for the derivative of qk with respect to the cartesian coordinate
xtp, t = 1, ..., d, of the p-th particle,

∂qk
∂xtp

= FΠ(∂M(k)
∂xtp

)Π, (4.18)

meaning that the differentiation only affects the entries of M(k). For those it
holds,

∂M(k)ij
∂xtp

=



αZiZj
(||Ri−Rk||2+||Rj−Rk||2)α+1 ( xti−x

t
k

||Ri−Rk||2 + xtj−x
t
k

||Ri−Rk||2 ),
if p = k and (i 6= k or j 6= k)

−αZiZj(xtp−xtk)
(||Ri−Rk||2+||Rj−Rk||2)α+1||Rp−Rk||2 ,

if (p = i and i 6= k) or (p = j and j 6= k)
0 else

(4.19)

where as before Ri = (xti)dt=1.
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5. Assessment and Validation

In this chapter we specify all details concerning the validation of accurately in-
terpolating the PES via the LC-GAP. For the results of this evaluation approach
refer to Chapter 6.

Starting with the description of the employed data sets and any preparatory
steps executed on them, we provide the example implementation of the localised
Coulomb matrix in pseudo-code and analyse its computational cost. Next, we
present the library used for the generation of the potentials and derive the
computational complexity of the framework.

Finally, we depict the cross validation procedure used for the assessment of the
predictive power, as well as how the hyperparameters are chosen using both
nested cross validation and maximisation of the likelihood.

5.1. Data Sets

The concept of localised GP regression in combination with localised Coulomb
matrices as a descriptor of local atomic environments is validated on two dif-
ferent data sets, demonstrating the versatility of the ansatz.

5.1.1. The Biomolecular Data Sets

The data set QM7 used in [45] and [20] for the validation of the Coulomb matrix
as a suitable global molecular descriptor is a subset of the GDB-13, a database
enumerating nearly a billion small druglike organic molecules [9]. QM7 itself
consists of 7165 biomolecules composed of up to 7 heavy atoms (C, N, O, S) and
saturated with hydrogen. It is freely available, both in a Matlab and in a Python
readable format [40]. Aside from the precalculated (global) Coulomb matrices
and the target atomisation energies, splits for executing a cross validation pro-
cedure with five runs are also provided, as well as the nuclear charges and
cartesian coordinates of the composing atoms. Hence all information needed
for the calculation of localised Coulomb matrices is provided, making it the
ideal choice for comparing the predictive power of this local descriptor to that
of the global one it is based on.

As stated in [45], the QM7 data set includes constitutional isomers which consist
of the same atoms but differ in the connecting bonds, but it does not contain
conformational isomers, meaning that no two chemical compounds from the
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data set can be interconverted by rotation about single bonds. Hence, the
pathological case where the localised Coulomb matrix is not able to uniquely
represent the atomic environments (cf. Section 4.3.2) is explicitly excluded and
this data set is well-suited for the evaluation of this descriptor.1

In order to obtain multiple data sets with a natural ordering concerning their
size, QM7 is filtered into the (non-disjoint) subsets QM4, QM5 and QM6, each
comprised of molecules with up to 4, 5 and 6 heavy atoms respectively. These
three data sets consisting of 59, 217 and 1167 molecules, are mainly used for
validating the framework due to their manageable sizes. For this, two fur-
ther preparations steps are necessary. In the first step, the organisation of the
chemical configurations is restructured from individual arrays for coordinates,
nuclear charges and atomisation energies to a list of AtomSystems, in which each
molecule is represented as its own instance with a number of atoms n, an array
of coordinates of dimension n × 3, an array of nuclear charges of dimension n
and an associated atomisation energy value. In a second step, the representa-
tions of the local atomic environments are calculated once for each variant of
the localised Coulomb matrix and value of the cut-off radius as described in
the following section. They are stored as another property of the respective
AtomSystem, resulting in multiple copies of the data sets only differing in the
specific descriptor chosen. On these data sets, the cross validation is carried
out, individually assessing the performance of the different variants.

There are two fundamentally different settings for the cut-off radius on these
data sets: none, or a finite value in Å. The first option corresponds to atomic en-
vironments that take all other atoms in the molecule into account, independent
of their distance to the central atom. This means the atomic decomposition
described in Section 3.2 makes no assumption at all about the atomic contribu-
tions only depending on a local neighbourhood. We start with this option in our
analysis in Chapter 6 as it is well-suited for comparing the localised Coulomb
matrix with its global basis. It stands in contrast to the second option, where
one restricts the influence of the neighbours to the atomic energy to include
only those within a finite region.

Depending on the option, the matrix dimensions are calculated differently. With
a finite cut-off radius, the maximum number of neighbours is determined via a
dense packing of methane molecules, (cf. Subsection 5.2.1 for details). With the
cut-off radius set to none, all environments have the dimensions of the largest
molecule present in the data set. This is necessary as all environments are
required to have the exact same dimensions for comparison within the learning
scheme. This means, however, that when one aims to test a potential trained
e.g. on QM5 on a data set containing larger molecules, e.g. QM7, the dimensions
of the localised Coulomb matrix of the smaller data set have to be adjusted by
padding with zeros. This extra preparatory step is done for the validation of
the transferability of potentials built using the localised Coulomb matrix, the

1Revised Version: This paragraph was added in order to examine whether the atomic
environments present in this data set are uniquely represented by the localised Coulomb
matrix.
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Data set Excluded Configuration(s)

QM5_onlyC* 1,3-pentadiyne

QM6_onlyC* 1,3-pentadiyne, benzene

QM7_onlyC* 1,3-pentadiyne, benzene,
toluene, 1,3,5-heptatriyne

Table 5.1.: Systems excluded from the data sets QMx_onlyC* compared to QMx_onlyC

results of which are presented in Subsection 6.1.4.

Data Sets Featuring only Carbon and Hydrogen Atoms

As described in Subsection 4.3.3, we would like to test the influence of an ex-
ponent larger than one in the denominator of the entries of the local Coulomb
matrix on its predictive power. Since a higher exponent reinforces the local-
isation of the descriptor, we expect the performance to improve especially on
data sets featuring only short-range interactions. To this end, the data sets
QM4, QM5, QM6 and QM7 are filtered once again, this time as to contain only
molecules consisting of carbon and hydrogen, effectively banning all possible
dipoles. The corresponding sets are labeled with the suffix _onlyC. They con-
sist of 20, 49, 151 and 498 molecules respectively. The data set QM4 is not
considered in the evaluation process due to its small training set size.

The data preparation steps concerning restructuring of the data organisation
and calculation of the atomic environment representations are executed as de-
scribed above. However, upon inspection of the regression results for these
filtered data sets, it becomes apparent that a further data processing step is
necessary. The drastic reduction of the number of molecules present in these
data sets leads to the problem of strong outliers on which prediction of the atom-
isation energies fails significantly when compared to the mean prediction error.
This is for example the case for benzene in QM6_onlyC, the only aromatic
molecule in the data set. With all interpolation techniques, the prediction is
only valid as long as one remains in the range of the interpolation points. In our
case, the quality of the generated potential depends strongly on the learned sys-
tems. For a chemical configuration that differs significantly from those present
in the training data, prediction is bound to fail. For our purposes we decide to
exclude all systems whose absolute difference in prediction deviates more than
eight times the standard deviation from the mean absolute error. The data sets
are modified into the sets QM5_onlyC*, QM6_onlyC* and QM7_onlyC* as
summarised in Table 5.1, where the indicated molecules feature unique configu-
rations and hence do not allow for inference from the other training molecules.
Figure 5.1 depicts the structural formula for the excluded molecules.
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(a) 1,3-pentadiyne (b) 1,3,5-heptatriyne

(c) benzene (d) toluene

Figure 5.1.: Skeletal formula of the molecules excluded in QMx_onlyC*. At each vertex
a carbon atom is located. Additionally, each carbon atom is understood to
be saturated with hydrogen atoms such that each carbon atom features four
bonds.

5.1.2. The Silicon Data Sets

The biomolecular data sets QMx are suited to assess whether the localised
Coulomb matrix can be employed successfully when learning across chemical
compound space, i.e. for the prediction of energies of different chemical com-
pounds, all at equilibrium configuration. However, a second kind of application
requires the PES of just one chemical compound to be interpolated. The diffi-
culty here lies in accurately predicting not only the local minima which repre-
sent the chemically meta-stable states, but also structures deviating from the
equilibrium configuration, e.g. in reaction path finding applications.

For this case we prepare a second kind of data sets, based on the semiconductor
silicon, a crystalline solid. Also, this allows us to verify the capability of the
localised Coulomb matrix to cope with periodic infinite chemical structures.
Additionally, the calculation of forces is easier on crystals than on molecules as
there are less degrees of freedom to perturb. Hence, we will use these data sets
to evaluate the prediction of gradient values within the localised GP regression
framework.

The generation of these crystalline data sets is done using the Atomistic ToolKit
(ATK) [41]. This software package provides an interface to atomic-scale mod-
elling using DFT methods, refer to [10] and [51]. As a basis for the data sets the
silicon 8-atom supercell is chosen, as shown in Figure 5.2. Silicon crystallises
in a diamond structure, with a lattice constant of 5.4306Å in equilibrium con-
figuration.

Three different data sets are constructed. First, only the cartesian coordinates
of the atoms are randomly perturbed by up to pAÅ, leading to the data set
Si8ApCC. In Si8ApLV, perturbation of up to pLV Å only affects the coordinates
of the lattice vectors. Lastly, both the lattice vectors and the atoms are per-
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Figure 5.2.: 8-Atom supercell in diamond structure. The diamond structure is obtained by
placing the primitive cell composed of two tetrahedrally bonded atoms at the
positions of the face-centered cubic Bravais lattice. When counting, atoms are
weighted by the inverse number of supercells they belong to (8∗ 1

8 +6∗ 1
2 +4 = 8).

Shading is added for better visuality (corners: black, faces: grey, interior points:
light grey).

turbed simultaneously in the data set Si8ApALV. The perturbation values are
drawn randomly from a uniform distribution on the interval [-pA, pA] or [-pLV ,
pLV ] respectively. All three data sets describe a neighbourhood of the equilib-
rium configuration in the high-dimensional Born-Oppenheimer PES. However
they differ in the number of degrees of freedom which are included in the per-
turbation. In Si8ApCC and Si8ApLV only subspaces of the PES are sampled.

Due to the construction of these data sets via random perturbation of a basis
cell, it is highly unlikely that atomic environments will be generated where the
neighbours are situated at the exact same distance from the central atom, but
differ in the angle. The possible decline in performance of the learning method
due to non-unique neighbourhood representations is hence negligible and we
deem these data sets suitable for the evaluation of the LC-GAP.2

We stress that also due to the construction procedure of the data sets, the 8-
atom basis supercell itself is not necessarily included. This is important to keep
in mind for the analysis of the results obtained in Section 6.2. The results are
bound to improve by enforcing the inclusion of the basis supercell, which we
note as an important enhancement for the future.

Each perturbed supercell configuration is stored as a ATK BulkConfiguration.
Calculation of the total energies and forces is done using the numerical or-
bital model implemented in the an ATK-DFT LCAOCalculator with the following
settings:

Basis set: DoubleZetaPolarized,
Spin: polarised,
Exchange correlation: SGGA with PBES,

2Revised Version: This paragraph was added in order to examine whether the atomic
environments present in this data set are uniquely represented by the localised Coulomb
matrix.
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K-Point sampling: (5,5,5),
Electron temperature: 1000K.

For the mathematical basics concerning density functional theory we refer to
the books [46] and [36] and the references therein.

As with the biomolecular data sets, the descriptors are calculated once per
configuration and parameter settings, and stored for future access. Thus, the
data set is ready for the evaluation of the LC-GAP. During a validation run
a fixed number of configuration files storing the bulk configuration along with
energy and forces is randomly selected from the data repository and the required
descriptors read from associated files.

5.2. Calculation of the Localised Coulomb Matrix

In this section we describe the calculation of the localised Coulomb matrix. For
our validation of this descriptor when used in combination with the GAP frame-
work, we use a Python implementation. It is based on an abstract class called
LocalEnvironmentCalculator defining a method calculcate_local_environments. Pa-
rameters for this method are the particle system itself, the localisation exponent
α, the cut-off radius and the lattice type. The different variants of the localised
Coulomb matrix inherit from the LocalEnvironmentCalculator class and specify
the environment calculation according to their definition provided in Section
4.3.

In Listing 5.1 a Python-like pseudo-code description of the standard variant of
the localised Coulomb matrix is shown. Of course, the implementation has to
be adjusted to the particular requirements of the AtomSystem or BulkConfiguration
class, respectively.

The procedure for calculating the numerical representation of the atomic en-
vironments of a given system is as follows. First, the maximum number of
particles possible within a given cut-off radius is calculated (refer to the sub-
sequent subsection for the details). The dimension of the descriptor is then
fixed using this value. When exploiting the symmetry of the localised Coulomb
matrix only the upper triangular part needs to be stored.

Next, we iterate over every atom in the given system. Its actual neighbours are
determined and the localised Coulomb matrix entries filled by iterating over
their list in two nested for-loops, again making use of its symmetry property.
Invariance with respect to atom-indexing is ensured by sorting the matrix both
row- and column-wise decreasingly according to the row-norm. The row and
column of the central particle, however, remain fixed as the first row and column
of the matrix, thereby conserving uniqueness of the descriptor. The individual
matrix (respective its upper triangular part) is flattened and stored row-wise
as a vector.

Lastly, the environments for the whole system are combined into one large
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matrix, where each row corresponds to one atom, and returned.

When predicting forces, the calculate_local_environments method is extended
to include the calculation of the gradient of the localised Coulomb matrix (cf.
Section 4.3.4). We do not describe it here in more detail, as the procedure is
similar to the assembly of the localised Coulomb matrix itself. Note that the
same sorting permutation has to be applied in order to ensure correct indexing.

When handling very large particle systems it may be more useful to calculate
the environment of each atom individually at prediction time in order to re-
duce storage costs, instead of assembling all environments for a given system
together.

5.2.1. Calculation of the Matrix Dimensions for a Given Cut-off
Radius

In order for the localised Coulomb matrix to be useful as a descriptor of atomic
environments in practice, its dimension has to depend merely on the fixed cut-
off radius. This can be done using a dense packing of spheres with a general
packing factor and a pessimistic assumption about the smallest covalent atom
radius possible. This way the dimensions of the descriptor are independent of
the actual number of neighbours residing in the particular atomic environment.

For most chemical compounds, however, this will largely exceed the actual
storage capacity required. Since the training data can be expected to be more
or less homogeneous with respect to its chemical nature (it does not make
sense to predict crystalline structures using a Gaussian approximation potential
trained on organic molecules), we will relax this requirement slightly and allow
the dimension to additionally depend on the basic chemical layout, such as the
lattice type for crystallines.

For the two data sets we use for validation the dimensions are fixed in detail
as follows. First of all, concerning the silicon crystalline data set, the calcu-
lation can be based in a straightforward manner on its lattice type and the
corresponding atomic packing factor. Silicon crystallises in the diamond cu-
bic lattice structure which has a density of π

√
3

16 ≈ 0.34. Its covalent radius is
rsilicon = 1.11 Å. We add this value to the cut-off radius to ensure inclusion of
atoms situated exactly at the cut-off border. This results in the following for-
mula where the volume of the enlarged cut-off region multiplied with the atomic
packing factor is divided by the approximate volume of the silicon atom,

Nmax =
⌈
π
√

3(rc + rsilicon)3

16(rsilicon)3

⌉
. (5.1)

In contrast, the optimal formula is less obvious for the biomolecular data set
QM7 and its subsets. Empirical testing led us to basing the maximum dimen-
sion of the descriptor on a dense packing of methane molecules with an effective
radius of rmethane = 1.4 Å and the densest atomic packing factor of π

3
√

2 ≈ 0.74.
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1 calculate_local_environments(atom_system ,
2 alpha,
3 cut_off_radius ,
4 lattice_type):
5

6 n_particles_max = get_number_particles(cut_off_radius ,
7 lattice_type)
8

9 if UT: # only store upper triangular part
10 dim = n_particles_max*(n_particles_max+1)/2
11 else:
12 dim = n_particles_max*n_particles_max
13 environments = zeros(atom_system.n_atoms, dim)
14

15 # calculate local environment for each atom
16 for atom in atom_system:
17 neighbours_list = get_neighbours(atom,
18 atom_system ,
19 cut_off_radius)
20 M = zeros(len(neighbours_list)+1, len(neighbours_list)

+1)
21 M[0, 0] = 0.5*atom.nuclear_charge^^2.4
22

23 # assume neighbours have indices from 1 to
24 # n_particles_max -1 (or less)
25 for neighbour_i in neighbours_list:
26 M[0, neighbour_i.index] = atom.nuclear_charge*

neighbour_i.nuclear_charge/norm(neighbour_i.
coordinates -atom.coordinates)^^alpha

27 # exploit symmetry
28 M[neighbour_i.index, 0] = M[0, neighbour_i.index]
29

30 for neighbour_j in
31 neighbours_list[neighbour_i.index:]:
32 M[neighbour_i.index, neighbour_j.index] =

neighbour_i.nuclear_charge*neighbour_j.
nuclear_charge/(norm(neighbour_i.coordinates
-atom.coordinates)+norm(neighbour_j.
coordinates -atom.coordinates))^^alpha

33 # exploit symmetry
34 M[neighbour_j.index, neighbour_i.index] =
35 M[neighbour_i.index, neighbour_j.index]
36

37 # take care of sorting (decreasing order)
38 row_norms = sum(M[1:,:], axis=0)
39 sorting_permutation = argsort(row_norms)[::-1]+1
40 # adjust for central atom
41 sorting_permutation = concatenate([0],
42 sorting_permutation)
43 M = M[:, sorting_permutation]
44 M = M[sorting_permutation , :]
45

46 if UT:
47 M = M.upper_triangular_part()
48 environment[atom.index] = M.flatten()
49 return environments

Listing 5.1: Pseudo-code description of the implementation of the standard variant
of the localised Coulomb matrix.
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Additionally, we again adjust the cut-off radius rc in order to surely include all
atoms on the border, this time by the covalent radius rsulfur = 1.05 Å of sulfur,
the biggest atom in the data set. Hence, in this case we have

Nmax =
⌈
π(rc + rsulfur)3

3
√

2(rmethane)3

⌉
. (5.2)

5.2.2. Computational Cost

We now consider the computational cost of the localised Coulomb matrix for
a given particle system with P particles. Based on the Listing 5.1, we observe
that for each particle we need to determine its neighbours and then iterate over
them in a double loop in order to consider all possible pairs. The determination
of its neighbours is done in the worst case by considering all other particles.
However, using a suitable data structure such as the linked cell method [16], this
can easily be improved. We therefore argue that the assembly of the localised
Coulomb matrix is the more expensive operation.

The maximum number of neighbours is limited depending only on the cut-off
value by n_particles_max. Hence, in order to fill the entries of the localised
Coulomb matrix, we have a computational cost of O(n_particles_max2), where
the multiplicative constant is improved by exploiting its symmetry and the fact
that in practice of course, iteration is done only over the actual number of
neighbours of the particular atom.

Summing over all particles, we arrive at a cost of O(P∗ n_particles_max2) for the
calculation of all environments for a given system. Here, we assume that owing
to our localisation assumption n_particles_max � P . Since n_particles_max does
not actually depend on P , we conclude that the complexity required for the
calculation of the descriptors of a P -particle system is O(P ), i.e. linear in the
number of particles in the given system.

5.3. Generation of the GAP

We use the mgauss library developed by the Virtual Materials group at Fraun-
hofer SCAI for the generation of the LC-GAP. It is written in C and provides
a Python interface. It implements both the standard Gaussian process regres-
sion described in Section 2.1.1 and the localised variant presented in Section
3.2. Additionally, it provides optimisation routines for the model selection of
the hyperparameters via maximisation of the marginal likelihood (cf. Section
5.4.2).

The Python interface is essentially determined by four classes:

TrainingData stores the training data by providing a method
addLocalizedData(input, target)
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Kernel specifies the kernel used by the Gaussian process by providing differ-
ent subclasses such as IsotropicSquaredExponential(hyperparameters)

HyperparameterOptimizer specifies the optimisation routines for the model se-
lection by providing methods such as setRelativeTolerance and
setMaxIterations.
If no optimisation is needed, set to None.

GaussianApproximation generates the learnt potential via (localised) Gaussian
process regression by providing the method
generate(training_data, kernel, optimiser).
Prediction is then done using the method evaluate(input).

The optimisation routines provided by the HyperparameterOptimizer class are
based on the NLopt nonlinear-optimisation package [23]. We use the Con-
strained Optimization by Linear Approximations method, NLOPT_LN_COBYLA, as a
default with a relative tolerance of 10−6 and a maximum number of iterations
of 1000. Its mathematical theory can be found in the publication [38].

5.3.1. Computational Cost

We now analyse the computational cost of the Gaussian process regression based
on atomic energy contributions, as summarised in Equation (3.10). As we will
see, the complexity is not affected by introducing the localisation.

We perform our analysis in two steps, separating between learning and predic-
tion.

Learning of the Potential

First, we consider the cost of the generation of the potential as a function of the
number of training examples N . For the Gaussian process regression, learning
consists of calculating the coefficients of the linear combination of kernel basis
functions which determine the interpolation. They are given by

α = L(LTCKL+ σ2
εI)−1y. (5.3)

From this equation we identify the following necessary steps:

1. Calculate the entries of the covariance matrix CK ,

2. Multiply with the sparse matrix L and its transpose,

3. Add the perturbation,

4. Invert the perturbed covariance matrix ,

5. Multiply with observations y,

6. Multiply again with sparse matrix L.
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Here, K denotes the number of atomic environments counted over all training
examples. Of course, the covariance matrix CK of the atomic environments
should never be assembled in practice but always be directly multiplied with
the matrices L and its transpose.

Without loss of generality we assume that each training system features P
atoms, hence K is a linear function of N given by K = P ∗ N . We can use
this to derive that the first step has a complexity of O(K2) = O(N2), since
the number P of particles can be considered as a constant. Equally, the cost
of evaluating the kernel function does not affect the complexity as it is limited
independently of the number of training systems. This is a consequence of
the upper bound on the dimension of the atomic environments (cf. Subsection
5.2.1). Additionally, the calculation of the atomic environments themselves has
a complexity of O(K) = O(N) as described in Section 5.2.2.

Multiplication with the sparse matrix L in step 2 as well as the matrix-vector
multiplication in step 5 has a computational complexity of O(N2), as the num-
ber of entries in each row of L is independent of N , whereas steps 3 and 4 cost
O(N). The most costly step is hence the inversion of the perturbed covariance
matrix, step 4, which has the complexity of O(N3) for an N ×N -matrix.

This inversion determines the overall complexity of the learning of the training
data which remains at O(N3). While this cost is interesting to note, it plays
only a minor role in practice as the generation is done only once. The more
important information is how much it costs to evaluate the potential for a given
particle system, which we analyse next.

Prediction of Energy Values and Forces

In order to predict the energy for a new particle system in our atomic decompo-
sition ansatz, we have to evaluate Equation (3.10) once for each particle, hence
P ? times. The coefficients have been calculated before-hand and are indepen-
dent of the particular test system. The evaluation cost of Equation (3.10) itself
is independent of the number of particles P ?. It only depends on the number of
atomic systems present in the training data, which is considered as constant at
this point. Of course, we need to consider the computational cost of calculating
the atomic environments as well. As noted before, this scales equally as O(P ?).

The argumentation remains valid for the prediction of forces, given by equation
(3.20).

We conclude that the complexity of the prediction as a function of the number
of particles is given by O(P ?), meaning our framework scales linearly in the
number of particles. This is very important in order to be able to tackle large
scale problems with thousands of particles.
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5.4. Evaluation Procedure

The aim of this thesis is not only to present a new method for the generation of
atomic potentials, but to also assess its performance. To this end, we subject
it to a validation procedure.

First of all, we have to decide how to measure the quality of a prediction f(x)
for a given instance x and target value y, by defining a suitable loss function
c : X ×R ×R :→ [0,∞). In our analysis we will use both the `1 error, i.e. the
absolute difference, and the `2 error, the squared difference, as loss functions,

c`1(x, y, f(x)) = |y − f(x)|,
c`2(x, y, f(x)) = (y − f(x))2.

(5.4)

We now obtain the empirical error for a given test set X? = (x?m)Mm=1 by
summing over the loss function values of each instance and normalising by
their number,

Rempirical(X?) = 1
M

M∑
m=0

c(x?m, y?m, f(x?m)). (5.5)

Plugging in c`1 and c`2 results in the mean absolute error (MAE) and root mean
squared error (RMSE), respectively,

MAE(X?) = 1
M

M∑
m=0
|y?m − f(x?m)|,

RMSE(X?) = 1
M

M∑
m=0

(y?m − f(x?m))2.

(5.6)

These two errors are well established in the statistics community for assessing
the prediction accuracy of regression models [57]. In our case we calculate
them for the prediction of the energy values. As we have only total energies as
target values, we are forced to sum up the predicted atomic contributions when
calculating the difference.

When evaluating on the silicon data sets, the prediction errors are calculated
per atom, as it is often done in the material science community for better
comparability independent of supercell sizes. To achieve this, we divide both
the target and the predicted energy by the number of atoms present in the
supercell.

Of course, the real goal is not the calculation of the errors on a set where target
values are known, but an assessment of the transferability of the prediction to
new data points. In order to obtain a estimate of the generalisation error on
unseen test examples, we employ k-fold cross validation on our supervised data
set, which will be described in the next section.

A pseudo-code summary of the evaluation procedure as implemented in this
thesis to obtain the numerical results presented in Chapter 6 can be found in
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Listing 5.2. The presented method evaluate() takes as input the prepared data
set, which has the local atomic enviroments already calculated, the number
of cross validation runs, and the parameters of the Gaussian process regres-
sion: the variance of the noise, the kernel and its hyperparameters or suitable
candidates for model selection.

5.4.1. k-fold Cross Validation

k-fold cross validation is a standard procedure to estimate the generalisation
error when only limited data sets are available. The case of k = 2 was formally
introduced by Stone in 1974 [52]. Since then, it has been widely used by the
Machine Learning community as a simple yet effective method for both per-
formance evaluation and model selection. We will address the latter aspect of
model selection in Subsection 5.4.2. For an analysis of the statistical properties
of k-fold cross validation, we refer to the publications [26] and [44] and the
references therein.

In detail, the procedure works as follows. The data set is randomly partitioned
into k equally sized folds and in each of the k runs one fold is withheld for
testing while the potential is learned on the remaining k − 1 folds. This way
k models are built and the MAE and RMSE (in our case of the total energy)
are calculated over all instances in the particular test set for each model. The
mean value and the standard deviation of the distributions of both errors are
then determined over all cross validation runs. These are the final prediction
errors stated in the results chapter.

As the test set cycles systematically through all folds, every instance in the
data set is used once for testing and k − 1 times for learning. The higher the
number of splits k is chosen, the more stable the training sets are and the
smaller the variance of the estimate becomes. It can be shown that for the
maximum number of splits possible, i.e. with only one instance in each test set,
the prediction becomes an almost stable estimator of the generalisation error
[47]. As a trade-off between stability of the estimate and computational cost,
we choose values of k between 5 and 10. We are aware that this means that our
findings constitute a proof of concept and could be enforced more rigorously by
investing more calculation time.

The variance of the estimate could also be reduced when stratifying the cross
validation by making sure that the distribution of target values in each train-
ing set resembles the distribution over the complete data set. We will refrain
from this extra preparation step but keep it in mind as another possible future
refinement of the validation procedure.

5.4.2. Selection of the Hyperparameters

Until now we have only described the evaluation routine for the LC-GAP
without taking into account that the predictive power depends strongly on
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1 evaluate(data_set ,
2 n_cvruns ,
3 noise,
4 kernel,
5 hyperparameters ,
6 candidates):
7 # load data
8 AS = load_data(data_set)
9 # make splits for CV

10 n_fold = floor(len(AS)/n_cvruns)
11 ind = arange(0, len(AS))
12 P = random.permutation(ind).reshape(n_cvruns, n_group)
13 # do the CV runs
14 for test_indices in P:
15 # split data
16 test_systems = AS[test_indices]
17 training_systems = AS[!test_indices]
18 # do model selection via nested CV if necessary
19 if ms_nested_cv:
20 hyperparameters = nested_cv(training_systems ,
21 n_cvruns -1,
22 noise,
23 kernel,
24 candidates)
25 # specify kernel (example)
26 k = mgauss.IsotropicSquaredExponential(hyperparameters)
27 # do model selection via optimisation if necessary
28 if ms_likelihood:
29 opt = mgauss.HyperparameterOptimizer()
30 else:
31 opt = None
32 # learn training data
33 td = mgauss.TrainingData()
34 td.setVariance(noise)
35 for system in traing_systems:
36 td.addLocalizedData(system.local_environments ,
37 system.energy)
38 # generate Gaussian Approximation
39 gd = mgauss.GaussianApproximation.generate(td, k, opt)
40 # test
41 for system in test_system:
42 for environment in system.local_environments:
43 predicted_energy += gd.evaluate(environment)
44 absolut_diff[system.index] = abs(system.energy-

predicted_energy)
45 # calculate errors of the particular CV run
46 MAE[cv_run] = mean(absolut_diff)
47 RMSE[cv_run] = sqrt(mean(absolut_diff**2))
48 # calculate average over all CV runs
49 overall_mean_MAE = mean(MAE)
50 overall_std_MAE = std(MAE)
51 overall_mean_RMSE = mean(RMSE)
52 overall_std_RMSE = std(RMSE)

Listing 5.2: Pseudo-code description of the evaluation procedure using k-fold cross
validation.
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well-chosen hyperparameters of the underlying Gaussian process. We will now
present the two methods we employ for model selection, i.e. the procedure of
choosing the parameter setting that is expected to have the best transferability
to unseen input configurations based on the available training data. The first
is nested cross validation, the other maximisation of the marginal likelihood.

In our framework, we only recognise parameters of the kernel, e.g. the ampli-
tude and the characteristic length scale for the isotropic Gaussian, as hyperpa-
rameters that need to be fitted to the training data. Contrary to many others
including Bartók et al. [4], we do not include the variance of the Gaussian noise.
Instead we interpret it as fixed by the numerical instability of the method used
to generate the data. For the silicon data set where we calculated the DFT
energies ourselves we set the noise to the default tolerance of the numerical
solver of the DFT calculator, 2.7 ∗ 10−3 eV. For the biomolecular data sets,
however, we do not have any information about the uncertainty of the provided
atomisation energies. Here, we set it to the default value of 10−6 kcal/mol.

Using Nested Cross Validation

Nested cross validation as a model selection procedure has been extensively
studied, see e.g. [11] and the references therein.

It is possible to extend the evaluation via k-fold cross validation to include
model selection in each of the k runs. To this end, one executes a nested cross
validation with k−1 folds on the current training set. Each candidate parameter
or parameter combination is tested k− 1 times, once on each fold, while having
been trained on the remaining k− 2 folds. Then, the candidate that performed
best by leading to the smallest MAE on the average of folds, is chosen and used
for training on the complete training set as part of the superior run. This means
that depending on the particular cross validation run, possibly different models
are selected, whose performance is then averaged into the final prediction error.
It is important to not use the test set for evaluation of the performance in the
model selection process as to ensure its unbiasedness.

In contrast to model selection via maximisation of the likelihood, nested cross
validation is only able to select its parameters from a finite candidate list.
However, this also means that larger parameter regions can be sampled and the
accuracy improved by refining the candidate grid.

Using Maximisation of the Likelihood

An alternative approach to selecting the hyperparameters is to make use of the
negative logarithm of the likelihood given in equation (2.26) as described in
Section 2.1.1.

The optimisation routines used are local routines, meaning they depend strongly
on the choice of initial values. Therefore, it is a reasonable approach to first
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execute a nested cross validation based on a coarse candidate list and then
refine the chosen value via local maximisation of the marginal likelihood.
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6. Numerical Results

In this chapter, the numerical results obtained for the Localised Coulomb ma-
trix based Gaussian Approximation Potential (LC-GAP) are presented. The
description is split into two parts based on the data sets studied. First, we
consider the biomolecular data sets in Section 6.1 and then the crystal data set
for silicon in Section 6.2. Prediction errors are stated as mean absolute error
(MAE) ± standard deviation to the reference energy value calculated using
DFT methods, as well as root mean squared error (RMSE) ± standard devi-
ation. As units we use kcal/mol for the biomolecules and meV per atom for
the crystals. In the summarising tables throughout this chapter, we highlight
important results using a boldface font. For the details concerning preparation
of the data sets, model selection and cross validation (CV) procedures, refer to
the preceding Chapter 5.

Starting with the assessment of the localised Coulomb matrices on subsets of
the data set QM7, on which the global variant was introduced by Rupp et al.
in [45], we evaluate slightly different variants as to their performance and cost.
As common in Machine Learning applications, we use the isotropic Gaussian
kernel as the standard covariance measure, but also investigate the benefit of
the anisotropic variant, which is able to weigh diagonal and off-diagonal parts
of the localised Coulomb matrices independently. Furthermore, we assess the
validity of the localisation ansatz by intensifying penalisation of the distance
to the central atom and by varying the cutoff parameter which limits the size
of the atomic neighbourhood. We test a potential trained on a subset of small
molecules on a superset consisting of larger molecules in order to testify the
transferability of the method. Additionally, we present a saturation study on
the original data set QM7.

In Section 6.2, we describe the results of applying the LC-GAP to silicon crystal
structures. We analyse the performance when learning minima in the PES
and their neighbourhood by sampling across all degrees of freedom. As an
important application for molecular dynamics simulation, we test the prediction
of gradient values in addition to the total energy.

6.1. Results on Biomolecular Data

In [20], Hansen et al. validate different Machine Learning techniques for pre-
dicting molecular atomisation energies. The methods they study include kernel
ridge regression with isotropic Gaussian kernels. It is equivalent to Gaussian
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Process regression combined with an isotropic Gaussian covariance function (cf.
Section 2.3). Using the whole QM7 data set and Coulomb matrices as a global
descriptor, they achieve a mean absolute error of 8.57 ± 0.40 kcal/mol for a
regularisation parameter of λ = 1.67 ∗ 10−7 ± 0.00. As for the characteristic
length scale of the Gaussian kernel, they obtain a mean value of 77 ± 0 via
4-fold nested cross validation using their global ansatz.

Keeping in mind that the regularisation parameter is equivalent to the variance
of the Gaussian noise in the GP framework, this is the result we want to compare
with. To this end, we evaluate the LC-GAP on the subsets QM4, QM5 and
QM6. For better comparability, we state the resulting mean absolute errors
as done by Hansen et al.. In the summarising tables, however, the RMSEs
are provided as well for completeness. Unless stated otherwise, all results were
obtained for an assumed noise variance of σ2

ε = 10−6 kcal/mol.

6.1.1. Comparing Different Variants of the Localised Coulomb
Matrix

As described in Chapter 4, there are multiple minor choices to be made when
defining a localised Coulomb matrix. First of all, we test the standard variant
as defined in Equation (4.9). The obtained MAEs are 6.73 ± 1.73 , 6.03 ± 1.31
and 4.23 ± 0.22 kcal/mol respectively, as can be seen in Table 6.1. This means
that our results are of comparable accuracy to those of Hansen et al. even on
the smallest data set QM4 which has only 44 molecules in each training set
when executing 5-fold cross validation. On the also small data set QM5 (172
molecules in each training set), we obtain a slightly improved MAE, which is
further reduced on the QM6 data set featuring 932 molecules. It is noteworthy
that our results were obtained using regular cross validation (all training set
combinations are totally random). In contrast, Hansen et al. stratified the data
set, making sure that in each training set combination molecules spanning the
complete range of atomisation energies were present. It stands to reason that
our results would further improve, should we include this extra preprocessing
step.

The values of the characteristic length scale of the isotropic Gaussian kernel,
that were selected via a nested cross validation routine, are 23.40 ± 1.96 (for
QM4), 22.60 ± 3.20 (for QM5) and 14.60 ± 1.96 (for QM6, averaged over all
cross validation runs). They are considerably smaller when compared to the
value of Hansen et al. cited above, resulting in more localised Gaussian kernel
functions, in accordance with the framework.

When extending the model selection procedure to include maximisation of the
marginal likelihood on the data sets QM4 and QM5, the results neither improve
nor deteriorate significantly, cf. Table 6.2. The characteristic length scales found
do not deviate much from the initial values chosen by the cross validation, mean-
ing they are already good approximations to the (local) minima. Even including
the amplitude in the model selection procedure does not improve the result in a
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significant manner. This is to be expected, since the amplitude is a linear factor
of the kernel. Based on the definition of GP regression, the final functional form
is a linear combination of kernel functions centered at the training data points,
hence all changes to the amplitude only affect the coefficients calculated by the
regression but not the overall quality of the representation. The unimproved
accuracy of the prediction does not justify the large additional computational
cost required for the local optimisation routines. Extending the optimisation
to using global methods would be simply unfeasible. Therefore, we deem the
hyperparameters chosen via nested cross validation accurate enough and refrain
from executing the minimisation of the negative marginal likelihood on every
run.

Although the above results are already quite satisfactory, we compare them
to the performance of slightly different variants, since there is no unique way
to define a localised Coulomb matrix. We now test the alternative definition
with the non-weighted diagonal as defined in Equation (4.10), abbreviated by
adding WLD (weight-less diagonal). This results in larger errors and larger
characteristic length scales compared with the standard variant, as can be seen
in Table 6.3. Evaluation on QM5 gives a MAE of 8.99 ± 1.11 kcal/mol for a
mean characteristic length scale of 41.00 ± 9.80, whereas using QM6 results in
a MAE of 6.10 ± 1.44 kcal/mol for a mean characteristic length scale of 33.00
± 2.53. It seems as if the decay on the diagonal, which is deliberately excluded
for this variant, helps the covariance function to better distinguish between
different local environments, as it introduces a continuity in the entries. We
will therefore abide by the standard variant for the rest of the following analysis.

The third variant we examine is not related to the definition of the entries
but the dimensions of the representation fed to the kernel. Since the localised
Coulomb matrix is symmetric by construction, storing only the upper triangular
matrix in order to reduce storage costs should not have a negative impact on the
predictive power of the Gaussian process regression. Testing of the hypothesis
that only redundant information is discarded, is done using the standard variant
of the localised Coulomb matrix as defined in (4.9). The obtained MAEs are
6.66 ± 3.47, 5.95 ± 1.58 and 4.68 ± 0.51 kcal/mol respectively, (cf. Table 6.4).
The model selection via cross validation leads to slightly smaller characteristic
length scales of 17.50 ± 1.32 (QM4), 15.00 ± 2.00 (QM5) and 9.80 ± 1.60
(QM6), while still achieving an accuracy comparable to the procedure using
the whole matrices.

From now on, we will profit from the reduced cost of the learning process
stemming from the reduced input dimensions and use this trimmed variant
for the representation of the local atomic environments in our further studies.
We will identify it with the abbreviation Local Coulomb matrix UT (upper
triangular).

In order to conclude the comparison of the performance of the different localised
Coulomb matrix variants, we determine the respective MAEs for training set
sizes ranging from 100 to 900 molecules using QM6. As before, we use 5-fold
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Data Set Training Set
Size

Characteristic
Length Scale MAE [kcal/mol] RMSE

[kcal/mol]

QM4 44 23.40 ± 1.96 6.73 ± 1.73 8.77 ± 2.47

QM5 172 22.60 ± 3.20 6.03 ± 1.31 9.22 ± 2.39

QM6 932 14.60 ± 1.96 4.23 ± 0.22 7.47 ± 1.19

Table 6.1.: Prediction errors using the localised Coulomb matrix (variance Gaussian noise:
10−6 kcal/mol; No. CV runs: 5; grid char. length scale: 1:4:100, 1:4:50 (QM6);
amplitude Gaussian kernel: 1.0)

Data
Set

Train.
Set
Size

Amplitude Char. Length
Scale

MAE
[kcal/mol]

RMSE
[kcal/mol]

QM4 44 49.24 ± 1.56 21.02 ± 0.63 7.03 ± 1.22 9.13 ± 1.41

QM5 172 51.02 ± 1.47 19.29 ± 0.32 6.06 ± 0.88 10.18 ± 1.31

Table 6.2.: Prediction errors using the localised Coulomb matrix (variance Gaussian noise:
10−6 kcal/mol; No. CV runs: 5)

Data Set Training Set
Size

Characteristic
Length Scale MAE [kcal/mol] RMSE

[kcal/mol]

QM4 44 52.20 ± 20.61 11.36 ± 2.41 17.45 ± 3.93

QM5 172 41.00 ± 9.80 8.99 ± 1.11 15.46 ± 5.06

QM6 932 33.00 ± 2.53 6.10 ± 1.44 16.99 ± 12.35

Table 6.3.: Prediction errors using the localised Coulomb matrix WLD (variance Gaussian
noise: 10−6 kcal/mol; No. CV runs: 5; grid char. length scale: 1:4:100; ampli-
tude Gaussian kernel: 1.0)

Data Set Training Set
Size

Characteristic
Length Scale MAE [kcal/mol] RMSE

[kcal/mol]

QM4 49 17.50 ± 1.32 6.66 ± 3.47 8.13 ± 3.89

QM5 189 15.00 ± 2.00 5.95 ± 1.58 9.62 ± 3.29

QM6 932 9.80 ± 1.60 4.68 ± 0.51 9.73 ± 2.19

Table 6.4.: Prediction errors using the localised Coulomb matrix UT (variance Gaussian
noise: 10−6 kcal/mol; No. CV runs: 8 (QM4, QM5), 5 (QM6); grid char. length
scale: 1:4:100; amplitude Gaussian kernel: 1.0)
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Figure 6.1.: Plot of the mean absolute errors obtained for the localised Coulomb matrix
variants: standard, WLD and UT.

cross validation. As hyperparameters we choose the values selected via nested
cross validation as indicated in the Tables 6.1, 6.3 and 6.4. The results are
plotted in Figure 6.1 as a function of the training set size for all three variants.

We clearly observe the following two trends. Firstly, the weight-less diagonal
variant does significantly worse than the standard variant. It will therefore not
be considered for the rest of the analysis. Secondly, storing only the upper
triangular part of the localised Coulomb matrix does not interfere with its
predictive power.

6.1.2. Using a Higher Degree of Localisation

Enforcing the localisation of the respresentation of the atomic environments can
be done by different means. One possibility is to penalise the distance to the
central particle more severely, using a higher exponent α in the denominator of
the entries of the localised Coulomb matrices as described in Equation (4.16).
We test the effect of this approach by setting α to 6.0, inspired by the Lennard-
Jones exponent. Evaluation is done on both the normal data sets QM4, QM5
and QM6, as well as on the reduced data sets QM5_onlyC, QM6_onlyC and
QM7_onlyC. From those, all molecules including atoms other than carbon and
hydrogen have been excluded in order to rule out any dipoles possibly leading
to long-range interactions. Refer to Section 5.1 for a detailed description of the
preparation of the data sets.

There are two surprising trends apparent when comparing the results presented
in Table 6.5 with those obtained using the standard exponent of the localised
Coulomb matrix. First of all, the MAEs are significantly smaller but slightly
more spread (relatively seen), as we have a MAE of 3.95 ± 2.57 kcal/mol for
QM4 and a MAE of 2.32 ± 0.81 kcal/mol for QM5. It is interesting to note that
the MAE itself improves only slightly on the larger data sets, as it is already
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skeletal formula.

rather small for QM4, but the deviation diminishes. Still, the improvement from
QM4 to QM6 is about 3 kcal/mol as we obtain a MAE of 1.62 ± 0.15 kcal/mol
for QM6. Secondly, the chosen characteristic length scales are significantly
smaller, ranging from 0.70 ± 0.35 for QM4 to 0.20 ± 0.03 for QM6.

These trends carry over to the filtered data sets. Here, the MAEs are even
more spread (cf. Table 6.6), leading to MAEs of 6.86 ± 10.86 kcal/mol for
QM5_onlyC, 2.52 ± 1.48 kcal/mol for QM6_onlyC and 2.73 ± 1.75 kcal/mol
for QM7_onlyC.

Inspecting the data set for the reason of this large standard deviation, one can
identify a handful of molecules, for which the prediction is significantly worse
than for the rest. In order to illustrate this, the distribution of the absolute
deviation of the predicted energy to the target value is plotted examplarily for
the data set QM6_onlyC in Figure 6.2. One can easily identify two outliers, for
which the prediction is significantly worse than in average; one very strong at
index 66 corresponding to benzene, and a smaller one at index 35 corresponding
to 1,3-pentadiene. The situation is similar for the other data sets QM5_onlyC
and QM7_onlyC. In each of them several molecules are found for which in-
ference fails, as they feature unique configurations in the training set (mostly
cycles or triple bonds), leading to an undersampling effect. For a complete list
of these outliers refer to Subsection 5.1.1.

Exclusion of the outlier molecules helps diminish the spread of the MAEs
and produces values of 1.57 ± 0.56, 1.20 ± 0.38 and 1.56 ± 0.21 kcal/mol for
QM5_onlyC*, QM6_onlyC* and QM7_onlyC* respectively.

It is a major result that the accuracy of the LC-GAP for general small bio-
molecules can be enhanced to a MAE of 1.62 ± 0.15 kcal/mol by raising the
localisation parameter of the localised Coulomb matrix. For alcanes, it is re-
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Figure 6.3.: Plot of the mean absolute error obtained for the localised Coulomb matrix UT
combined with different values of the localisation exponent α on QM5

duced even further to a MAE of 1.20 ± 0.38 kcal/mol; both results nearing the
desired chemical accuracy of 1 kcal/mol. In Section 6.2.1 we test if the same
holds true for silicon data.

Trying to get a feel how much localisation is optimal, we test the performance
of additional values for the exponent on the data set QM5. The results of
preliminary testing (a systematic approach using a model selection procedure
that includes different descriptor variants into a nested cross validation goes
beyond the scope of this thesis and is a subject for further research) can be
found in Figure 6.3 and indicate that an optimal value lies between 5.0 (MAE
of 2.22 ± 0.64 kcal/mol) and 6.0 (MAE of 2.32 ± 0.81 kcal/mol). Note that
raising the exponent α in Equation 4.16 to a value of 2.0 descreases the MAE
already to half its value for the standard exponent of 1.0. Since the variation in
MAEs is quite small, we will continue to use the value of 6.0 for testing localised
Coulomb matrices with a higher degree of localisation.

6.1.3. Using an Anisotropic Gaussian Kernel

The results of the previous subsections were obtained using the isotropic Gaus-
sian kernel, a standard choice in kernel-based machine learning methods. Iso-
tropic means that all dimensions of the input to the kernel are weighted equally,
resulting in only one characteristic length scale hyperparameter. Dropping the
assumption of equal importance of all dimensions, one arrives at the anisotropic
Gaussian kernel as defined in Equation (2.20), which assigns one characteristic
length scale to each input dimension.

In our case the input to the kernel are the local environment descriptions, i.e.
the localised Coulomb matrices. The entries of these are not defined homo-
geneously, hence the isotropy assumption is questionable. In order to restrict
the number of hyperparameters, which have to be optimised, we distinguish
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three different kinds of entries in the localised Coulomb matrices. Firstly of
all, the diagonal entry belonging to the central particle which is a polynomial
of its nuclear charge, secondly, the other diagonal entries which consider the
interaction between the central particle and a specific neighbour, and lastly the
off-diagonal entries scaling pairwise interactions with the distance to the cen-
tral particle. Weighting these three different “regions” independently each with
its own characteristic length scale, lc, ld, lo, one hopes to enable the covariance
function to improve its notion of similarity for atomic environments. The vector
of characteristic length scales used to achieve this, has the form

l = ( lc, lo, ..., lo︸ ︷︷ ︸
#neighbours+1

, ld, lo, ..., lo︸ ︷︷ ︸
#neighbours

, ld, lo, ..., lo︸ ︷︷ ︸
#neighbours−1

, ..., ld), (6.1)

as only the upper triangular part of the localised Coulomb matrices is stored
row-wise as a vector.

We test if this increased number of hyperparameters and the associated cost for
the model selection reflects a better predictive power of the Gaussian process
regression. This is done on the QM4 and QM5 data sets using the localised
Coulomb matrix UT. We refrain from executing the evaluation procedure on
the QM6 data set due to the elevated costs of selecting a combination of three
hyperparameters via cross validation.

Unfortunately, the results do not show the improvement we hoped for. The
MAEs obtained when allowing for these two additional degrees of freedom are
not better than when using the isotropic kernel. As shown in Table 6.7, they
are 6.51 ± 1.88 kcal/mol for QM4 and 5.91 ± 0.83 kcal/mol for QM5, compared
to 6.66 ± 3.47 kcal/mol and 5.95 ± 1.58 kcal/mol respectively. Additionally, the
model selection for the three values for the characteristic length scale is rather
inconclusive. With deviations of 50.00 ± 20.98 for the length scale belonging to
the diagonal entry of the central atom on QM4 or 46.00 ± 36.66 for the other
diagonal entries on QM5, one is not even able to derive a tendency for a good
combination for lc, ld, and lo.

The same behaviour can be found when increasing the localisation of the de-
scriptor by setting α once again to 6.0 (cf. Table 6.8).

As the results on QM4 and QM5 are less than satisfactory for both values of
the exponent α, we reject the hypothesis that identifying different regions in
the localised Coulomb matrix based on the different definitions of the entries
leads to an improvement in comparing local atomic environments. However,
we do not dismiss the promise of refinement by using an anisotropic kernel just
yet. We now invest the computational cost of maximising the likelihood with
respect to the whole characteristic length scale vector. We use the length scales
chosen for the isotropic kernel as initial values to the local optimisation.

The prediction errors for this approach can be found in Table 6.9 for α = 1.0
and in Table 6.10 for α = 6.0. With MAEs of 4.04 ± 0.95 (QM4), 5.84 ±
1.51 (QM5) and 4.09 ± 0.58 kcal/mol (QM6), the results show only a slight
improvement with respect to the isotropic Gaussian for the standard degree

70



6.1. Results on Biomolecular Data

Data Set Training Set
Size

Characteristic
Length Scale MAE [kcal/mol] RMSE

[kcal/mol]

QM4 44 0.70 ± 0.35 3.95 ± 2.57 6.10 ± 4.36

QM5 172 0.49 ± 0.24 2.32 ± 0.81 4.15 ± 2.49

QM6 932 0.20 ± 0.03 1.62 ± 0.15 2.90 ± 0.74

Table 6.5.: Prediction erors using the localised Coulomb matrix UT, α = 6.0 (variance Gaus-
sian Noise: 10−6 kcal/mol; No. CV runs: 5; grid char. length scale: 0.05:0.05:1.0,
0.1:0.1,1.1 (QM6); amplitude Gaussian kernel: 1.0)

Data Set Training
Set Size

Characteristic
Length Scale MAE [kcal/mol] RMSE

[kcal/mol]

QM5_onlyC 40 0.08 ± 0.02 6.86 ± 10.86 17.95 ± 32.34

QM5_onlyC* 40 0.08 ± 0.02 1.57 ± 0.56 2.31 ± 0.87

QM6_onlyC 125 0.21 ± 0.17 2.52 ± 1.48 8.21 ± 7.35

QM6_onlyC* 125 0.13 ± 0.07 1.20 ± 0.38 2.01 ± 0.94

QM7_onlyC 415 0.14 ± 0.06 2.73 ± 1.75 11.07 ± 14.86

QM7_onlyC* 415 0.07 ± 0.02 1.56 ± 0.21 3.26 ± 1.49

Table 6.6.: Prediction errors using the localised Coulomb matrix UT, α = 6.0 (variance
Gaussian noise: 10−6 kcal/mol; No. CV runs: 5; grid char. length scale:
0.05:0.05:1.0; amplitude Gaussian kernel: 1.0)

Data
Set

Train.
Set
Size

Length
Scale

Central
Atom

Length
Scale

Diagonal

Length
Scale Off
Diagonal

MAE
[kcal/mol]

RMSE
[kcal/mol]

QM4 44 50.00 ±
20.98

12.00 ±
4.00

82.00 ±
9.80 6.51 ± 1.88 8.91 ± 3.80

QM5 172 14.00 ±
8.00

46.00 ±
36.66

22.00 ±
9.80 5.91 ± 0.83 10.74 ±

4.79

Table 6.7.: Prediction errors using the localised Coulomb Matrix UT and an anisotropic
kernel, α = 1.0 (variance Gaussian noise: 10−6 kcal/mol; No. CV runs: 5, grid
char. length scales: [10 : 10 : 100]3 (QM4), [10 : 20 : 100]3 (QM5); amplitude
Gaussian kernel: 1.0)

71



Chapter 6. Numerical Results

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150

V
a
lu

e
 o

f 
th

e
 C

h
a
ra

ct
e
ri

st
ic

 L
e
n
g

th
 S

ca
le

Index of the Characteristic Length Scale

Optimised Characteristic Length Scales for the Anisotropic Gaussian on QM5

Figure 6.4.: Plot of the characteristic length scales chosen by optimisation of the marginal
likelihood for the anisotropic Gaussian kernel for α = 1.0

of localisation. For α = 6.0 the results are even worse than when using the
isotropic kernel, featuring MAEs of 3.89 ± 1.23 (QM4), 4.57 ± 2.74 (QM5) and
3.05 ± 0.55 (QM6). This could of course be due to the ever present statistical
uncertainty incorporated into the evaluation procedure using cross validation
with only five runs. Additionally, it is quite prossible that the local optimisation
only worked rudimentarily for the high-dimensional length scale vector of 105,
153 or 210 dimensions for QM4, QM5 and QM6, as the maximum number of
iterations set to 1000 was attained during the optimisation procedure.

Nevertheless, we want to analyse the hyperparameters chosen by maximisation
of the likelihood for a tendency concerning distribution along the entries. To
this end, we plot the values chosen on QM5 for α = 1.0 in five cross validation
runs against the indices as seen in Figure 6.4. We refrain from inferring any
tendencies from the data set QM4 due to the small training set size.

Interestingly, the overall behaviour of the anisotropic characteristic length scales
selected on QM5 seems to indicate that the length scales corresponding to the
first 10 or so input dimensions are chosen significantly smaller than the rest of
the 153 dimensions. In order to understand the reason for this effect, we plot the
size of the entries of the localised Coulomb matrices for α = 1.0 in Figure 6.5 for
comparison. Due to the row-wise storage of only the upper triangular matrix
combined with the sorting of the rows and columns decreasingly according to
their row norms, we observe several peaks rapidly diminishing in size for larger
indices. This means that the vast majority of the entries are relatively small and
contribute little to the overall mass of the localised Coulomb matrices. Hence, it
makes sense that the model selection via maximisation of the likelihood assigns
a rather noisy but uniform characteristic length scale to over ninety percent of
the entries and only distinguishes the first few entries. We conclude that the
limited number of larger entries is the reason the anisotropic kernel is not able
to improve the prediction significantly, as the assumption of equal importance
of the input dimensions is violated only for a negligible percentage.
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Data
Set

Train.
Set
Size

Length
Scale

Central
Atom

Length
Scale

Diagonal

Length
Scale Off
Diagonal

MAE
[kcal/mol]

RMSE
[kcal/mol]

QM4 44 0.10 ± 0.00 0.46 ± 0.44 0.56 ± 0.33 3.52 ± 1.37 6.44 ± 2.71

QM5 172 0.64 ± 0.44 0.50 ± 0.41 0.56 ± 0.34 2.34 ± 0.54 4.62 ± 1.72

Table 6.8.: Prediction errors using the localised Coulomb matrix UT and an anisotropic
kernel, α = 6.0 (variance Gaussian noise: 10−6 kcal/mol; No. CV runs: 5 , grid
char. length scales: [0.1 : 0.1 : 1.0]3; amplitude Gaussian kernel: 1.0)

Data
Set

Train.
Set
Size

Initial
Value
Length
Scale

Amplitude MAE
[kcal/mol]

RMSE
[kcal/mol]

QM4 44 17.5 38.94 ±1.03 4.04 ± 0.95 5.12 ± 1.19

QM5 172 15.0 40.51 ±2.83 5.84 ± 1.51 10.46 ± 4.26

QM6 932 9.8 26.92 ±1.23 4.09 ± 0.58 8.37 ± 4.22

Table 6.9.: Prediction errors using the localised Coulomb matrix UT and an anisotropic
kernel, α = 1.0 (variance Gaussian noise: 10−6 kcal/mol; No. CV runs: 5)

Data
Set

Train.
Set
Size

Initial
Value
Length
Scale

Amplitude MAE
[kcal/mol]

RMSE
[kcal/mol]

QM4 44 0.7 1931.78 ±
525.57 3.89 ± 1.23 6.73 ± 3.24

QM5 172 0.5 64.02 ± 15.48 4.57 ± 2.74 13.68 ± 15.97

QM6 932 0.2 14.25 ± 2.18 3.05 ± 0.55 11.69 ± 6.34

Table 6.10.: Prediction errors using the localised Coulomb matrix UT and an anisotropic
kernel, α = 6.0 (variance Gaussian noise: 10−6 kcal/mol; No. CV runs: 5)
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Figure 6.5.: Plot of the mean entry sizes for the localised Coulomb matrix UT with α = 1.0
on QM5

The effect of mostly uniformly small matrix entries is strengthened by increasing
the localisation exponent α to 6.0. Therefore, it is comprehensible that the
anisotropic kernel does even less to improve the prediction for the more localised
Columb matrices UT, as seen in Table 6.10.

We conclude that due to the strong decay in its entries, the localised Coulomb
matrix is not able to profit from the higher flexibility of the anisotropic kernel
in a way that would justify the additional computational cost. We will therefore
continue using the isotropic variant.

6.1.4. Learning on QMx, Testing on QMy

Another reason for choosing a localisation ansatz is the hope for a wide trans-
ferability of the generated potential. Once one has learned enough different
atomic environments, one would expect to be able to predict even much larger
molecules. In order to verify this hypothesis, potentials are trained on the
data sets QM4, QM5 and QM6 and tested on a sample of 100 other molecules
from the larger data sets. As a descriptor the standard variant of the localised
Coulomb matrix is used in combination with both α = 1.0 and α = 6.0.

The results for α = 1.0 are not satisfactory. Whilst their error decays from
QM4 to QM5 when testing on QM7d (cf. Table 6.11), it grows surprisingly for
a potential built using QM6, resulting in a MAE of 499.36 ± 7.61 kcal/mol. All
in all, it seems that the standard variant is not localised enough to deal with
the much larger number of QM7 molecules (> 7000) and the resulting variety
of environments present.

Using a higher degree of localisation, namely an exponent α of 6.0, however,
causes the prediction errors to diminish greatly and continuously (cf. Table
6.12). With only the 217 QM5 molecules learned, the molecules in QM7 featur-
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Figure 6.6.: Histogram of the interactomic distances in the data set QM7

ing up to six atoms more can be predicted with a MAE of 7.67 ± 1.12 kcal/mol.
This is of the same accuracy as the results obtained by Hansen et al., when
training on QM7 itself [20]. Using the 1167 QM6-molecules results in a even
smaller MAE of 5.22 ± 1.03 kcal/mol.

This clearly shows that potentials learned via localised GP regression are ca-
pable of transference if used in combination with a suitable local descriptor,
e.g. the localised Coulomb matrix. Next, we will test the effect of introducing a
finite cut-off for the atomic neighbourhoods on the performance of the LC-GAP.

6.1.5. Varying the Cutoff Parameter

Up until now, the local neighbourhood of a particle always contained all other
particles composing the molecule. This was a design decision due to the man-
ageable size of the molecules present in the data sets and the goal of comparing
to the global Coulomb matrices of Rupp et al. introduced in [45]. For larger
molecules, however, this approach is infeasible. Therefore a cut-off radius must
be introduced, limiting the size of the neighbourhood.

The value of this radius has to be fixed depending on the application. For
our case of biomolecules, we want to study the influence of stepwise extending
the neighbourhood from encompassing only direct neighbours featuring a bond
with the central particle, to including particles exhibiting a bond with a direct
neighbour and so on. In order to identify suitable cut-off radii, we plot the
frequencies of the interactomic distances for the largest data set QM7. The
histogram can be seen in Figure 6.6.

Evidently, the first and largest peak of the distribution lies at around 1 Å.
This is explained by the fact that the majority of the bonds present in small
biomolecules are carbon-hydrogen bonds, whose length can be measured to be
108 pm. The second peak slightly to the right of 2.0 Å represents the distance
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Learned
Data Set

Train.
Set Size Test Set Char.

Length Scale MAE [kcal/mol] RMSE
[kcal/mol]

QM4 59 QM5d 23.4 37.20 ± 4.11 75.99 ± 11.53

QM4 59 QM6d 23.4 167.58 ± 9.77 189.09 ± 15.32

QM5 217 QM6d 22.6 261.80 ± 9.47 272.30 ± 9.12

QM4 59 QM7d 23.4 499.46 ± 4.48 510.49 ± 5.96

QM5 217 QM7d 22.6 333.16 ± 16.35 361.26 ± 14.68

QM6 1167 QM7d 14.6 499.36 ± 7.61 514.08 ± 6.92

Table 6.11.: Prediction errors using the localised Coulomb matrix UT, α=1.0 (variance
Gaussian noise: 10−6 kcal/mol; No. CV runs: 5; amplitude Gaussian kernel:
1.0)

Learned
Data Set

Train.
Set Size Test Set Char.

Length Scale MAE [kcal/mol] RMSE
[kcal/mol]

QM4 59 QM5d 0.70 11.14 ± 1.08 20.62 ± 3.32

QM4 59 QM6d 0.70 19.57 ± 1.62 24.99 ± 3.94

QM5 217 QM6d 0.49 4.18 ± 0.63 8.01 ± 3.51

QM4 59 QM7d 0.70 30.01 ± 2.36 36.21 ± 3.90

QM5 217 QM7d 0.49 7.67 ± 1.12 14.24 ± 3.24

QM6 1167 QM7d 0.20 5.22 ± 1.03 16.35 ± 7.52

Table 6.12.: Prediction errors using the localised Coulomb matrix UT, α=6.0 (variance
Gaussian noise: 10−6 kcal/mol; No. CV runs: 5; amplitude Gaussian kernel:
1.0)
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between two hydrogen atoms connected by a carbon atom. Based on the fre-
quency plot, we chose values of 2.0, 3.0 and 4.0 Å for the cut-off radius so that
we include the major peaks successively. We stress that the representation of
the neighbourhood using the localised Coulomb matrix is totally independent
of any bond information; we only use it to derive meaningful parameters for the
potential. The details of how the dimension of the localised Coulomb matrix is
calculated depending on the cut-off radius can be found in Subsection 5.2.1.

We evaluate the performance of the localised Coulomb matrix combined with
a cut-off radius for both the standard variant and the one with the higher
localisation exponent α of 6.0. Results for the first case are found in Table 6.13
and for the latter in Table 6.14.

We first analyse the performance for the standard exponent α = 1.0. Here,
the behaviour when enlarging the cut-off radius depends on the data set. For
a cutoff radius of 2.0 Å on QM4, the results are significantly better than when
including the whole molecule in the neighbourhood. The MAE we obtain now
is 3.86 ± 1.60 kcal/mol in comparison with 6.66 ±3.47 kcal/mol. The charac-
teristic length scale chosen via nested cross validation is larger than when not
using a finite cut-off. Enlarging the atomic neighbourhood to a radius of 3.0 Å
and further to 4.0 Å deteriorates the prediction accuracy on QM4 to 7.29 ±
1.01 kcal/mol and 13.16 ± 3.50. It seems that the standard variant of the lo-
calised Coulomb matrix used in combination with such a large cut-off includes
too much “unnecessary” information for the small molecules present in QM4.

On QM5 using a cut-off of 2.0 Å results in a prediction accuracy of 5.50 ±
2.09 kcal/mol, which is comparable to when spanning the whole molecule. It
improves slightly to 4.90 ± 0.81 kcal/mol for a radius of 3.0Å and stagnates at
about this accuracy for 4.0 Å (5.01 ± 0.35 kcal/mol). Additionally, enlarging
the atomic neighbourhood stabilises the characteristic length scale chosen via
nested cross validation. While it is already rather well-defined for 3.0 Å (26.60
± 4.80), it becomes clear-cut for a cut-off radius of 4.0 Å with a value of 17.00
± 0.00.

All in all, it is important to note that the predictive power of the LC-GAP
remains strong when introducing a limitation of the size of the atomic neigh-
bourhoods on QM5. Since it does not improve significantly, however, we forego
the costly evaluation for the standard variant on the additional data set QM6.

We now turn our attention to the more localised Coulomb matrix with an
exponent of α = 6.0. For those the findings improve once again significantly
compared to the standard exponent, strengthening our belief that the more
pronounced decline leads to a densification of the information value contained
in the localised Coulomb matrix. The error values on QM4 are again already
better with a MAE of 3.06 ± 1.89 kcal/mol for a cutoff radius of 2.0 Å. As
before, they do not improve on this data set when enlarging the cutoff, hence
for the small molecules with at most 14 atoms, it is sufficient to consider a
neighbourhood of 2.0 Å.
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On the data set QM5, which features molecules of up to 17 atoms, one no-
tices a decline in the MAEs from 5.31 ± 2.40 kcal/mol to 2.33 ± 0.31 kcal/mol
when raising the cutoff from 2.0 to 3.0 Å. It does not continue for a cutoff
radius of 4.0 Å, which results in a MAE of 2.32 ± 0.39 kcal/mol. Hence, here,
consideration of a 3.0 Å-environment is sufficient.

We observe the same behaviour on the data set QM6. Here, prediction is already
good for a radius of 2.0 Å with a MAE of 3.03 ± 0.33 kcal/mol and improves
for a spatial cutoff of 3.0 Å to 1.67 ± 0.10 kcal/mol. Then, it stagnates when
enlarging the neighbourhood to 4.0 Å, with a MAE of 1.80 ± 0.28 kcal/mol.

It is interesting to note that there are only 8 atoms on average in a neighbour-
hood of 3.0 Å, compared to 11 atoms for the larger cutoff radius of 4.0 Å. Most
surprisingly, the localised Coulomb matrix with an exponent α of 6.0 already
provides significantly better results with on average only 3 atoms in the atomic
environments, as is the case for a cutoff of 2.0 Å than when including the whole
molecule. This once again seems to indicate that considering a too large cut-off
sphere obstructs the localisation properties of our ansatz.

We conclude that the localised Coulomb matrix with α set to 6.0 is a reliable
descriptor for the local atomic environments of biomolecules. It can be expected
to be employed successfully in the prediction of energy values for large organic
systems where the partition via a localisation ansatz is indispensable.

6.1.6. Saturation Study on QM7

We now use the findings from the previous subsections to perform a saturation
study on QM7. Featuring 7165 molecules, QM7 is too large to be handled as a
whole in the evaluation process at the current state of the implementation. A
cross validation with 5 runs would use 5732 molecules per training set, leading
to a covariance matrix with 32 million entries. To handle such large systems
would go beyond the scope of this thesis. Therefore, we limit ourselves to
training sets comprised of up to 1500 molecules and do not execute a model
selection procedure but rather transfer the characteristic length scale l of the
isotropic Gaussian kernel (2.17) of 0.2 chosen on the smaller subset QM6. For
the amplitude σf of the Gaussian kernel, we use the default of 1.0. We set the
test set size to 100 molecules which are randomly drawn for each run.

As descriptors we use the localised Coulomb matrix stored as an upper trian-
gular matrix with a localisation exponent α of 6.0 and the spatial cutoff radius
of the atomic neighbourhoods set to 3.0 Å.

The prediction errors obtained are plotted as a function of the number of train-
ing examples in Figure 6.7. We observe that the MAE decreases from about
10 kcal/mol, using only 100 training examples, to about 4.5 kcal/mol for 600
training examples, where it seems to stagnate, as there is no significant further
decrease for larger training set sizes.

The RMSE, on the other hand, is much less steady and grows back to about
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Data
Set

Train.
Set
Size

Cutoff
Radius [Å ]

Char. Length
Scale

MAE
[kcal/mol]

RMSE
[kcal/mol]

QM4 44 2.0 48.20 ± 10.24 3.86 ± 1.60 6.96 ± 3.71

QM5 172 2.0 85.80 ± 22.40 5.50 ± 2.09 12.03 ± 7.35

QM4 44 3.0 25.80 ± 5.88 7.29 ± 1.01 11.64 ± 4.71

QM5 172 3.0 26.60 ± 4.80 4.90 ± 0.81 7.94 ± 2.31

QM4 44 4.0 21.80 ± 13.95 13.16 ± 3.50 19.09 ± 8.45

QM5 172 4.0 17.00 ± 0.00 5.01 ± 0.35 7.81 ± 1.16

Table 6.13.: Prediction errors using the localised Coulomb matrix UT, α=1.0 (variance
Gaussian noise: 10−6 kcal/mol; No. CV runs: 5; grid char. length scale 1:4:100;
amplitude Gaussian kernel: 1.0)

Data
Set

Train.
Set
Size

Cutoff
Radius [Å ]

Char. Length
Scale

MAE
[kcal/mol]

RMSE
[kcal/mol]

QM4 44 2.0 0.97 ± 0.06 3.06 ± 1.89 4.89 ± 3.78

QM5 172 2.0 0.41 ± 0.31 5.31 ± 2.40 17.07 ± 12.56

QM6 932 2.0 0.19 ± 0.06 3.03 ± 0.33 7.70 ± 3.27

QM4 44 3.0 0.65 ± 0.35 4.05 ± 0.86 6.08 ± 1.92

QM5 172 3.0 0.60 ± 0.17 2.33 ± 0.31 4.26 ± 1.24

QM6 932 3.0 0.20 ± 0.00 1.67 ± 0.10 3.10 ± 0.87

QM4 44 4.0 0.70 ± 0.38 4.80 ± 4.50 8.16 ± 9.82

QM5 172 4.0 0.60 ± 0.31 2.32 ± 0.39 4.45 ± 1.86

QM6 932 4.0 0.20 ± 0.05 1.80 ± 0.28 3.76 ± 1.71

Table 6.14.: Prediction errors using the localised Coulomb matrix UT, α=6.0 (variance
Gaussian noise: 10−6 kcal/mol; No. CV runs: 5; grid char. length scales:
0.01:0.01:1.0; amplitude Gaussian kernel: 1.0)
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Figure 6.7.: Prediction error on QM7 using the localised Coulomb matrix UT, α=6.0, cutoff
radius = 3.0 Å (variance Gaussian noise: 10−6 kcal/mol; No. CV runs: 5;
amplitude Gaussian kernel: 1.0)

18 kcal/mol for 900 and 1300 training molecules after having decreased to about
10 kcal/mol when using 600 training examples. This is an indication of a rather
large variance present in the prediction of the test sets. Due to the multitude
of drastically different chemical configurations present in QM7 (such as cyclo-
alcanes, triple-bond configurations or configurations featuring dipoles) it is to
be expected that using only a limited number of training examples will not
enable every configuration to be predicted with the same accuracy.

We stress once again that the mean absolute errors we obtain are better by a
factor of nearly two than those reported by Hansen et al., even when training on
much smaller sets. They presented a mean absolute error to the DFT atomisa-
tion energy on the complete data set QM7 of 8.57 ± 0.40 kcal/mol. In contrast,
our LC-GAP leads to a mean absolute error of about 4.47 ± 0.32 kcal/mol on
a subset comprised of 600 randomly chosen molecules. Additionally, when con-
straining the data set to include only 415 alcanes with up to seven heavy atoms,
we observe a mean absolute error of 1.56 ± 0.21 kcal/mol. This is already very
close to the desired chemical accuracy of 1 kcal/mol, required for drug design
applications.

We conclude that the localised Coulomb matrix introduced by us is a valid local
descriptor at least for biomolecular applications where conformational isomers
and stereoisomers are excluded.1 In the next section, we will analyse how well
it is able to cope with crystal data.

1Revised Version: The statement of the validity of the localised Coulomb matrix for
biomolecular applications was restricted due to the limitations of the uniqueness of the
representation for atomic environments differing only with respect to angular information.
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6.2. Results on Silicon Data

In [1] and [4], Bartók-Pártay introduces Gaussian Approximation Potentials
for the semiconductors carbon, silicon and germanium. Using localised GP
regression with an anisotropic Gaussian kernel as the covariance function in
combination with a modified bispectrum as a descriptor of atomic environments,
he asserts RMSEs of less than 0.001 eV per atom in the energy. Additionally,
he makes use of the ability of the Gaussian process regression to easily expand
the prediction from energy to forces, for which he presents errors of less than
0.5 eV/Å.

As we have adopted the localised GP regression ansatz from Bartók-Pártay, we
are able to assess the performance of the localised Coulomb matrix specifically
in contrast to the alternative descriptor of the modified bispectrum. We restrict
ourselves to silicon as the most common semiconducting material. We remark,
however, that due to Bartók-Pártay adding gradient information to the training
data, we can expect his prediction to be about one magnitude more accurate
for a given number of training points. Incorporation of gradient information
goes beyond the scope of this thesis and is an important extension that should
be addressed in future research.

Since the use of an anisotropic Gaussian kernel did not improve the prediction
errors significantly on the biomolecular data sets, we will refrain from invest-
ing the additional computational cost of the model selection for the strongly
increased number of hyperparameters and use only the isotropic variant on
the silicon data sets. We note that this decision stands in contrast to Bartók-
Pártay’s approach and are curious to see its impact on the results.

Bartók-Pártay selects the amplitude and the characteristic length scale of the
Gaussian kernel as well as the variance of the Gaussian noise via maximisation
of the likelihood. Unfortunately, he does not provide the chosen values in the
supplementary information. We interpret the variance of the Gaussian noise as
fixed, since it corresponds to the assumed noise in the measured data values. We
use the default tolerance of 10−4 Hartree = 2.7∗10−3 eV of the numerical solver
to the DFT calculations as an approximation to the uncertainty of the DFT
data. For the selection of the characteristic length scale we employ both nested
cross validation and maximisation of the likelihood. When known, we try to
replicate the design decisions reported by Bartók-Pártay for better comparison.
Hence, the spatial cutoff is explicitly set to 4.8 Å for silicon, following Bartók-
Pártay’s value.

We state both MAE and RMSE in meV per atom for the energy and convert the
most promising results also in kcal/mol for better comparison with the results
obtained on the biomolecular data in the previous section. Note, however,
that the comparison is somewhat limited for two reasons. Firstly, considering
energies per atom does not make sense for systems with different atom types
present, as is the case for the biomolecular data. For systems where every
atom can be expected to contribute an equal amount to the total energy and
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the number of atoms is constant for all test systems, it is, however, possible to
convert error values per atom to error values for the total energy by multiplying
with the number of atoms. This is the case in a perturbed crystal structure
based always on the same supercell. Secondly, the goal of the biomolecular data
sets was to show that the localised Coulomb matrix is able to handle different
chemical compositions, which are all given in equilibrium configuration, leading
to the possibility of learning across chemical compound space. The crystal data
sets, on the other hand, put the focus on the accurate approximation of the PES
of a single chemical composition including non-equilibrium states. Hence, we
expect the error values to be smaller for the crystal data, at least when testing
only data already close to the training systems by construction.

6.2.1. Learning Minima of the PES

When approximating the PES for a given chemical configuration the accurate
prediction of local minima is most important, since they represent meta-stable
states. In order to ensure this, we learn a potential using configurations located
in the direct vincinity of the equilibrium configuration as training data. We
propose a step-wise approach to the sampling of the high-dimensional neigh-
bourhood exploiting that the Born-Oppenheimer PES of a crystal structure can
be understood as a function of the cartesian coordinates of the atoms and the
lattice vectors of the underlying supercell. In the first two steps, we perturb
either only the cartesian coordinates of the atoms or only those of the lattice
vectors, effectively sampling subspaces with the goal of analysing how the lo-
calised Coulomb matrix deals with them. As the last step, we perturb both
atoms and lattice vectors, corresponding to a sampling across all dimensions.

Perturbing only the Atoms

We start by evaluating the localised Coulomb matrix on a data set of 8-atom
silicon supercells whose atoms have been uniformly randomly perturbed by up
to 0.3 Å in relation to the equilibrium configuration. This data set is abbreviated
as Si8ApCC. We train on subsets with 50, 150 and 450 configurations and
test on 10, 50 or 150 configurations respectively. Based on the findings on
the biomolecular data sets concerning storage and permutation variants, we
immediately use the upper triangular localised Coulomb matrix.

The RMS errors per atom that we obtain for the standard localisation exponent
α of 1.0 are 83.40 ± 27.95, 54.98 ± 10.94 and 34.07 ± 2.48meV for the different
training set sizes as seen in Table 6.15. This is two orders of magnitude worse
than the results reported by Bartók-Pártay. When naively compared to the
biomolecular results, the MAE of 25.26 ± 0.39meV per atom corresponds to
a value of 4.66 ± 0.07 kcal/mol which is matchable to the performance of the
localised Coulomb matrices UT on QM6. Hence our expectation of overall
smaller MAEs for the silicon data is met, as we obtain comparable accuracy on
a training set half the size.
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Interestingly, the silicon data set requires far larger characteristic length scales
for the Gaussian kernels, as it was the case for the biomolecular data sets.
Model selection on a training set of 450 configurations leads to a length scale
of 390.00 ± 20.00 in comparison to a value of 9.80 ± 1.60 on QM6. The
significant difference in the hyperparameters reflects the ability of the LC-GAP
to be fitted to any chemical configuration independent of the physical properties.
This means, however, that while the LC-GAP is applicable to molecules and
crystalline solids alike, potentials have to be trained for a specific chemical class
in order to avoid extrapolation that is bound to fail.

We now check if selecting the hyperparameters via minimisation of the nega-
tive logarithmic likelihood improves the prediction. The values chosen via cross
validation are once again used as initial values for the search for the charac-
teristic length scale. For the amplitude the standard value of 1.0 is chosen as
initial value. The results can be found in Table 6.16. While optimisation of the
likelihood did not increase the accuracy significantly for the biomolecular data
sets, it does so for the Si data. The RMS error is decreased to a value of 9.62 ±
0.70 meV per atom, which is only one order of magnitude worse than Bartók-
Pártay’s result. As noted in the introduction of this Section, these are results
as good as we expect to be able to obtain without adding gradient information.

The optimisation has difficulties identifying a unique minimum for training set
sizes smaller than 450 configurations. Selection using only 150 configurations
results in an amplitude of 161.17 ± 135.09 and a characteristic length scale
of 1861.71 ± 1450.85, both of which feature a large spread. In contrast, the
values for the training set of 450 perturbed structures are 37.37 ± 0.54 for the
amplitude and 459.28 ± 12.02 for the length scale.

Since raising the localisation exponent α to 6.0 improved the results signifi-
cantly for the biomolecules, we test the effect also on the silicon crystals. Once
again we observe a decrease in error values as well as in selected characteristic
length scales for the more localised descriptors. Nevertheless, the improvement
in prediction error is small when compared to the behaviour observed on the
biomolecules, whereas the change in characteristic length scale is as significant
as before. As summarised in Table 6.17, we obtain slightly smaller RMSEs
of 56.20 ± 13.92, 37.69 ± 4.82 and 26.90 ± 7.49meV for characteristic length
scales selected to 74.00 ± 17.44, 20.00 ± 0.00 and 15.00 ± 0.00, respectively.
Note that for training set sizes of 150 and 450 configurations the model selection
via nested cross validation is able to uniquely identify the values.

Again, selection of the hyperparameters via optimisation of the likelihood im-
proves the prediction (cf. Table 6.18). Using 450 training set configurations
leads to a RMSE of 6.27 ± 0.24meV. The hyperparameters of 6670.98 ± 4654.38
for the amplitude and 185.37 ± 113.31 for the characteristic length scale, are,
however, not chosen uniquely over the evaluation runs. Surprisingly, this prob-
lem does not show for the smaller training set sizes.

The decision to perturb the equilibrium configuration of the silicon 8-atom
supercell by up to 0.3Å was made to reproduce a data set as close as possible to
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Data Set
Train.
Set
Size

Test
Set
Size

Char. Length
Scale

MAE per atom
[meV]

RMSE per
atom [meV]

Si8ApCC 50 10 640.00 ± 228.91 63.35 ± 19.98 83.40 ± 27.95

Si8ApCC 150 50 450.00 ± 44.72 39.59 ± 5.06 54.98 ± 10.94

Si8ApCC 450 100 390.00 ± 20.00 25.26 ± 0.39 34.07 ± 2.48

Table 6.15.: Prediction errors using the localised Coulomb matrix UT, α = 1.0 (pA = 0.3 Å;
variance Gaussian noise: 2.7∗10−3 eV; No. CV runs: 5; grid char. length scale:
50:50:1000; amplitude Gaussian kernel: 1.0)

Data Set
Train.
Set
Size

Test
Set
Size

Amplitude
Char.
Length
Scale

MAE per
atom
[meV]

RMSE per
atom
[meV]

Si8ApCC 50 10 85.01 ±
22.86

1171.34 ±
293.72

45.09 ±
7.04

60.38 ±
17.78

Si8ApCC 150 50 161.17 ±
135.09

1861.71 ±
1450.85

13.50 ±
1.79

17.18 ±
2.03

Si8ApCC 450 100 37.37 ±
0.54

459.28 ±
12.02 7.42 ± 0.19 9.62 ±

0.70

Table 6.16.: Prediction errors using the localised Coulomb matrix UT, α = 1.0 (pA = 0.3 Å;
variance Gaussian noise: 2.7 ∗ 10−3 eV; No. CV runs: 5)

Data Set
Train.
Set
Size

Test
Set
Size

Char. Length
Scale

MAE per atom
[meV]

RMSE per
atom [meV]

Si8ApCC 50 10 74.00 ± 17.44 41.91 ± 10.34 56.20 ± 13.92

Si8ApCC 150 50 20.00 ± 0.00 26.56 ± 0.86 37.69 ± 4.82

Si8ApCC 450 100 15.00 ± 0.00 18.21 ± 1.96 26.90 ± 7.49

Table 6.17.: Prediction errors using the localised Coulomb matrix UT, α = 6.0 (pA = 0.3 Å;
variance Gaussian noise: 2.7∗10−3 eV; No. CV runs: 5; grid char. length scale:
10:10:150, 5:5:65 (450 training examples); amplitude Gaussian kernel: 1.0)
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Bartók-Pártay’s specification for better comparison. Now we want to double-
check the performance of the LC-GAP, by analysing the prediction errors for
different perturbation values. The smaller the perturbation, the greater the
accuracy in energy prediction should become, as the difference in configuration
becomes less. We test this hypothesis by setting the perturbation level to 0.01,
0.1 and 1.0Å in addition to 0.3Å as done previously. For the training and test
set sizes we choose 150 and 50 configurations.

The results are summarised in Table 6.19. As we expected, there is a significant
decline in prediction errors for smaller perturbation values. While for a large
perturbation of 1.0 Å, the accuracy is bad with a RMSE of 311.95 ± 90.75meV
for an exponent α = 1.0, it decreases to about 1meV for a perturbation value of
0.01 Å. Interestingly, the characteristic length scale decreases as well for smaller
perturbation values.

We note that, contrary to our expectation, we do not observe that the prediction
errors improve for a higher degree of localisation (α = 6.0). It can be surmised
that the large perturbation of 1.0 Å leads to atomic environments with a smaller
number of neighbours and consequently a smaller informative value. This effect
is effectively reinforced by the stronger decay of the entries of the localised
Coulomb matrix due to the higher exponent in the denominator, resulting in
the bad prediction error of 4761.30 ± 1657.21meV. This hypothesis, however,
does not explain why the RMSE is also slightly worse compared to the standard
exponent for a perturbation value of 0.1 Å and is only comparable but not
better when perturbing only by 0.01 Å. We will keep an eye on the effect in
the following subsections. A systematic investigation as to why the higher
localisation merits such a strong improvement on the biomolecules but not on
the silicon crystals, however, is beyond the scope of this thesis.

Perturbing only the Lattice Vectors

Next, we test on the data set Si8ApLV, where only the coordinates of the lattice
vectors, but not of the atoms, have been perturbed by up to 0.5 Å. Once again
we use the upper triangular localised Coulomb matrix with both α = 1.0 and
α = 6.0. Also, we use the same training and test set sizes as before.

Compared to the results of the previous subsection, perturbing the lattice vec-
tors instead of the atoms seems to make accurate prediction of the total energy
values more difficult. As can be seen in Table 6.20, the RMSEs when training on
50 or 150 configurations are significantly worse with values of 728.92 ± 1029.24
and 127.55 ± 21.24meV. Using 450 training examples, the error decays to 53.95
± 9.61meV, which is only about twice the value obtained on Si8ApCC (34.07
± 2.48meV). Of course, we have to keep in mind that the perturbation acting
on the lattice vectors was chosen larger than that on the atomic coordinates.

The characteristic length scales chosen via nested cross validation on the other
hand are even slightly smaller, selected as 350.00 ± 31.62 for 450 training
configurations.
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Data Set
Train.
Set
Size

Test
Set
Size

Amplitude
Char.
Length
Scale

MAE per
atom
[meV]

RMSE per
atom
[meV]

Si8ApCC 50 10 194.76 ±
112.62

55.15 ±
28.57

15.07 ±
2.70

19.09 ±
4.16

Si8ApCC 150 50 87.99 ±
7.73

21.69 ±
2.27 8.32 ± 0.44 10.95 ±

1.25

Si8ApCC 450 100 6670.98 ±
4654.38

185.37 ±
113.31 4.95 ± 0.18 6.27 ±

0.24

Table 6.18.: Prediction errors using the localised Coulomb matrix UT, α = 6.0 (pA = 0.3 Å;
variance Gaussian noise: 2.7 ∗ 10−3 eV; No. CV runs: 5; amplitude Gaussian
kernel: 1.0)

Data Set α Perturb. Char. Length
Scale

MAE per
atom [meV]

RMSE per
atom [meV]

Si8ApCC 1.0 1.0 430.00 ± 112.25 231.77 ±
46.19

311.95 ±
90.75

Si8ApCC 1.0 0.1 300.00 ± 0.00 1.93 ± 0.27 2.44 ± 0.33

Si8ApCC 1.0 0.01 250.00 ± 0.00 0.76 ± 0.07 0.97 ± 0.09

Si8ApCC 6.0 1.0 90.00 ± 0.00 1577.04 ±
738.60

4761.30 ±
1657.20

Si8ApCC 6.0 0.1 20.00 ± 0.00 3.56 ± 0.51 4.49 ± 0.64

Si8ApCC 6.0 0.01 15.00 ± 0.00 0.77 ± 0.09 1.00 ± 0.10

Table 6.19.: Prediction errors using the localised Coulomb matrix UT while varying the
perturbation (variance Gaussian noise: 2.7 ∗ 10−3 eV; No. CV runs: 5; grid
char. length scale: 50:50:1000 (α = 1.0), 5:5:90 (α = 6.0); amplitude Gaussian
kernel: 1.0)

Data Set
Train.
Set
Size

Test
Set
Size

Char. Length
Scale

MAE per atom
[meV]

RMSE per
atom [meV]

Si8ApLV 50 10 850.00 ± 200.00 384.76 ± 485.06 728.92 ±
1029.24

Si8ApLV 150 50 370.00 ± 24.49 86.44 ± 10.78 127.55 ± 21.24

Si8ApLV 450 150 350.00 ± 31.62 38.72 ± 3.66 53.95 ± 9.61

Table 6.20.: Prediction errors using the localised Coulomb matrix UT, α = 1.0 (pLV = 0.5 Å;
variance Gaussian noise: 2.7∗10−3 eV; No. CV runs: 5; grid char. length scale:
50:50:1000; amplitude Gaussian kernel: 1.0)
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Using the maximisation of the likelihood for model selection with the charac-
teristic length scales gained via cross validation as initial values, improves the
results to a RMSE of 20.89 ± 8.31meV per atom (cf. Table 6.21). This is
still twice the error value when training on 450 configurations from Si8ApCC
and choosing the hyperparameters via the local optimisation routines. Interest-
ingly, this is comparable to the RMSE obtained on Si8ApCC when using only
150 configurations for training: hence, it seems that about three times more
training examples from Si8ApLV are needed to obtain the same accuracy.

When comparing the deviation of the hyperparameters chosen by nested cross
validation with those selected via optimisation routines, both procedures are
able to identify more or less unique values with comparable accuracy.

As in the previous subsection, intensifying the localisation improves the results
only slightly (cf. Table 6.22). Training on 450 configurations leads to a RMSE
of 38.96 ± 12.12meV per atom for a characteristic length scale of 37.00 ± 19.90.
We again observe the ratio of this being about twice as bad as when executing
the same procedure on Si8ApCC. This behaviour carries over when using the
maximisation of the likelihood for model selection (cf. Table 6.23). The RMSE
decays to 15.95 ± 5.09meV per atom for training on 450 configurations and
the characteristic length scales are chosen smaller as 14.20 ± 4.56. While for
the standard localisation exponent both methods of model selection produced
hyperparameters with comparable accuracy, it seems that for α = 6.0 the model
selection via nested cross validation has some difficulties, leading to values with
a rather relatively large spread. Maximisation of the likelihood on the other
hand is able to select hyperparameters with a smaller standard deviation. On
Si8ApCC it was exactly the inverse case, with the cross validation identifying
unique hyperparameters instead.

We conclude that perturbation of the lattice vectors makes prediction more
difficult as it introduces a larger diversity in the atomic environments present
in the training and test data than when perturbing only the atoms. Hence, one
needs more training examples to compensate and achieve comparable prediction
errors. We expect the effect to be even more pronounced in the next subsection,
where evaluation is done on a data set built by perturbing the equilibrium
configuration in all possible degrees of freedom.

Perturbing both Atoms and Lattice Vectors

We now expand the perturbation of the silicon 8-atom supercell to include the
cartesian coordinates of both the atoms and the lattice vectors. As before, the
cartesian coordinates of the atoms are perturbed by up to 0.3 Å, whereas the
perturbation of coordinates of the lattice vectors is up to 0.5 Å. This data set
is abbreviated Si8ApALV. Concerning localised Coulomb matrix, number of
training and test configurations, we use the same settings as in the previous
sections for better comparison, i.e. the localised Coulomb matrix UT with a
localisation exponent of 1.0 and 6.0 and 50, 150 and 450 training configurations
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Data Set
Train.
Set
Size

Test
Set
Size

Amplitude
Char.
Length
Scale

MAE per
atom
[meV]

RMSE per
atom
[meV]

Si8ApLV 50 10 68.17 ±
7.12

745.26 ±
140.35

117.73 ±
49.21

154.66 ±
49.23

Si8ApLV 150 50 72.01 ±
14.88

706.15 ±
140.90

32.47 ±
5.57

55.73 ±
14.94

Si8ApLV 450 100 46.33 ±
0.94

419.87 ±
13.40

10.67 ±
2.82

20.89 ±
8.31

Table 6.21.: Prediction errors using the localised Coulomb matrix UT, α = 1.0 (pLV = 0.5 Å;
variance Gaussian noise:2.7 ∗ 10−3 eV; No. CV runs: 5)

Data Set
Train.
Set
Size

Test
Set
Size

Char. Length
Scale

MAE per atom
[meV]

RMSE per
atom [meV]

Si8ApLV 50 10 35.00 ± 30.33 45.27 ± 16.61 65.27 ± 26.56

Si8ApLV 150 50 56.00 ± 22.89 42.67 ± 10.32 56.51 ± 13.57

Si8ApLV 450 150 37.00 ± 19.90 29.05 ± 9.37 38.96 ± 12.12

Table 6.22.: Prediction errors using the localised Coulomb matrix UT, α = 6.0 (pLV = 0.5 Å;
variance Gaussian noise: 2.7∗10−3 eV; No. CV runs: 5; grid char. length scale:
5:5:100; amplitude Gaussian kernel: 1.0)

Data set
Train.
Set
Size

Test
Set
Size

Amplitude
Char.
Length
Scale

MAE per
atom
[meV]

RMSE per
atom
[meV]

Si8ApLV 50 10 78.26 ±
12.89

21.22 ±
4.17

25.93 ±
7.87

33.86 ±
10.52

Si8ApLV 150 50 96.05 ±
24.75

12.55 ±
1.12

15.40 ±
1.54

23.92 ±
3.88

Si8ApLV 450 100 310.04 ±
187.23

14.20 ±
4.56 9.01 ± 1.37 15.95 ±

5.09

Table 6.23.: Prediction errors using the localised Coulomb matrix UT, α = 6.0 (pLV = 0.5 Å;
variance Gaussian noise:2.7 ∗ 10−3 eV; No. CV runs: 5)
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combined with 10, 50 and 150 test cells respectively.

We start our analysis with the standard exponent, for which the results can be
found in Table 6.24. As already expected, the prediction errors are worse on
this data set than on both Si8ApCC and Si8ApLV. The RMSEs for 50, 150 and
450 training configurations are 471.85 ± 334.94, 219.37 ± 135.58 and 125.06 ±
71.26meV per atom respectively. With only 50 configurations in the training
set, the model selection via cross validation has significant problems identifying
a suitable characteristic length scale, resulting in a value of 2500.00 ± 894.43.
For comparison, training on 150 or 450 configurations leads to much smaller
values with a diminished spread of 385.00 ± 20.00 and 365.00 ± 20.00. We
conclude that 50 training configurations are simply not enough for a reliable
model selection due to the high diversity present in this data set by construction.

Once again we use the characteristic length scales chosen by nested cross valida-
tion as initial values for the model selection via maximisation of the likelihood.
The results can be found in Table 6.25. While the characteristic length scale
reported as 365.45 ± 10.90 differs only in its spread from the previous runs
using 450 training configurations, the RMSE is halved to 56.95 ± 8.52 meV per
atom. This is comparable to the RMSEs obtained when using maximisation
of the likelihood as model selection procedure on 50 Si8ApCC configurations
or on 150 Si8ApLV configurations. As already suggested in the previous sub-
section, the combined perturbation of all degrees of freedom at once has to be
compensated by learning more training examples.

In contrast to evaluation on the previous data sets, intensifying the localisation
does not improve the results on Si8ApALV (cf. Table 6.26). On the contrary, the
model selection via cross validation identifies uncharacteristically large length
scales with a wide spread, indicating that it was not able to identify a minimum.
This leads to the unsatisfactorily large RMSEs of 2302.45 ± 4121.96, 444.79 ±
307.11 and 912.82 ± 1641.91meV per atom. Model selection via optimisation
of the likelihood is able to better identify characteristic length scales, which fall
into the same order of magnitude as before, e.g. 5.40 ± 0.75 for 450 training
configurations. Nevertheless, (cf. Table 6.27), it obtains very large prediction
errors with values of 3503.10 ± 3147.65meV per atom when training on 450 con-
figurations. Surprisingly, the RMSEs are smaller when using a smaller training
set size, completely contradicting the idea of a converged training data set. We
conclude that using a higher degree of localisation in the local Coulomb matrix
renders it unable to deal with the large variety in the atomic environments due
to the sampling across all dimensions of the potential energy surface.

We summarise the ability of the localised Coulomb matrix for an exponent α
of 1.0 to cope with the perturbation of the different degrees of freedom (atom
coordinates, lattice vector coordinates, or both) in Figure 6.8, where the predic-
tion errors on the three data sets have been plotted as a function of the training
set size.

One can clearly see the higher training set sizes required on Si8ApLV and
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Data Set
Train.
Set
Size

Test
Set
Size

Char. Length
Scale

MAE per atom
[meV]

RMSE per
atom [meV]

Si8ApALV 50 10 2500.00
±894.43 303.72 ± 188.52 471.85 ± 334.94

Si8ApALV 150 50 385.00 ± 20.00 102.97 ± 30.69 219.37 ± 135.58

Si8ApALV 450 150 365.00 ± 20.00 57.58 ± 10.82 125.06 ± 71.26

Table 6.24.: Prediction errors using the localised Coulomb matrix UT, α = 1.0 (pA = 0.3 Å,
pLV = 0.5 Å; variance Gaussian noise: 2.7 ∗ 10−3 eV; No. CV runs: 5; grid
char. length scale: 500:500:5000 (Si8ApALV 50), 25:25:500 (Si8ApALV 150,
450); amplitude Gaussian kernel: 1.0)

Data Set
Train.
Set
Size

Test
Set
Size

Amplitude
Char.
Length
Scale

MAE per
atom
[meV]

RMSE per
atom
[meV]

Si8ApALV 50 10 73.36 ±
5.03

672.04 ±
58.38

179.84 ±
42.48

249.74 ±
86.36

Si8ApALV 150 50 54.89 ±
2.46

518.08 ±
27.42

61.02 ±
15.37

110.14 ±
66.89

Si8ApALV 450 100 50.41 ±
1.36

365.45 ±
10.90

32.22 ±
3.64

56.95 ±
8.52

Table 6.25.: Prediction errors using the localised Coulomb matrix UT, α = 1.0 (pA = 0.3 Å,
pLV = 0.5 Å; variance Gaussian noise: 2.7 ∗ 10−3 eV; No. CV runs: 5)

Data Set
Train.
Set
Size

Test
Set
Size

Char. Length
Scale

MAE per atom
[meV]

RMSE per
atom [meV]

Si8ApALV 50 10 150.00 ± 178.19 789.68 ±
1304.70

2302.45 ±
4121.96

Si8ApALV 150 50 220.00 ± 142.65 145.61 ± 41.34 444.79 ± 307.11

Si8ApALV 450 100 145.00 ± 121.86 179.99 ± 219.77 912.82 ±
1641.91

Table 6.26.: Prediction errors using the localised Coulomb matrix UT, α = 6.0 (pA = 0.3 Å,
pLV = 0.5 Å; variance Gaussian noise: 2.7∗10−3 eV; No. CV runs: 5; grid char.
length scale: 25:25:500; amplitude Gaussian kernel: 1.0)
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Figure 6.8.: Comparison of the root mean squared errors on the data sets Si8ApCC,
Si8ApLV and Si8ApALV using the localised Coulomb matrix UT, α = 1.0
(pA = 0.3 Å, pLV = 0.5 Å, variance Gaussian noise: 2.7∗10−3 eV; No. CV runs:
5)

Si8ApALV to attain the same accuracy as on Si8ApCC.

6.2.2. Saturation Study on Si8ApALV

All in all, it seems that a maximum training size of 450 configurations is too
small to obtain satisfactory prediction errors for a perturbation of the lattice
vectors of up to 0.5 Å, even with the standard localisation exponent α = 1.0.
Before investing the added computational cost for generating more training
configurations and learning on larger training sets, we decrease the perturba-
tion of the lattice values to at most 0.2 Å, the same perturbation reported by
Bartók-Pártay in the physical review letter introducing the GAP [4]. For the
perturbation of the atomic coordinates, we stay with the value of 0.3 Å.

As a higher localisation exponent did not lead to a significant improvement in
accuracy on this data set, we now evaluate only using α = 1.0.

Decreasing the maximum perturbation inflicted on the coordinates of the lattice
vectors significantly improves the prediction errors, as expected (cf. Table 6.28).
We now obtain a RMSE of 48.14 ± 9.85meV per atom when training on 450
configurations. This is more than twice as good as the value obtained for a
maximum perturbation of 0.5 Å, which is 125.06 ± 71.26meV per atom. It is
slightly better than when training on Si8ApCC using 150 configurations, i. e.
when only the atomic coordinates are perturbed. As far as the characteristic
length scales are concerned, reducing the perturbation only leads to a slightly
smaller value. For a perturbation of 0.5 Å 365.00 ± 20.00 was chosen as the
characteristic length scale, now the value is 330.00 ± 24.49.

Using maximisation of the likelihood for model selection decreases the RMSE to
14.03 ± 0.83meV per atom (cf. Table 6.29). This is very close to the accuracy
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Figure 6.9.: Prediction errors on Si8ApALV as a function of the training set size using the
localised Coulomb matrix UT, α = 1.0 (pA = 0.3 Å, pLV = 0.2 Å; variance
Gaussian noise: 2.7 ∗ 10−3 eV; No. CV runs: 5)

of about 1meV per atom, which is the best we expect to be possible without
inclusion of gradient information. The characteristic length scale chosen via
this method, 434.61 ± 8.11, is larger than when using nested cross validation.
The MAE obtained on 450 training configurations is 8.76 ± 0.50meV per atom.
When converted to kcal/mol, this corresponds to a MAE for the total energy
of 1.61 ± 0.09 kcal/mol. Compared to the results obtained on the biomolecular
data sets under the reservations explained at the beginning of this section,
this is as good as when training on either 415 alcanes or on over 900 general
small organic molecules. Hence, the localised Coulomb matrix shows promising
results on both finite and periodic chemical structures.

We now perform a saturation study on Si8ApALV in order to analyse the effect
of the training set size on the prediction errors. To this end, we chose larger
training set sizes ranging from 550 to 1050 while keeping the test set size at
100 configurations. We use the hyperparameters chosen using 450 training
configurations and maximisation of the likelihood. The results are plotted in
Figure 6.9.

Both MAE and RMSE show a linear decay for increased training set sizes which
has not yet saturated for 1050 configurations. We explicitly remark that using
more than 1000 training configurations pushes even the RMSE into the order of
magnitude of 1meV, our current benchmark goal. This clearly shows that the
higher variety in local atomic enviroments on Si8ApALV can be compensated
by augmenting the training set size. In [1], Bartók-Pártay also notes the large
training set sizes required without specifying actual numbers. They are due
to the fact that it is not possible to add only single local atomic environments
because of the lack of observation of the atomic energy contributions. Hence,
one has to add a complete supercell, regardless of the number of actually dif-
ferent neighbourhoods. In order to limit the training set sizes, Bartók-Pártay
employs a sparsification process using pseudo-inputs as described by Snelson
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Data Set
Train.
Set
Size

Test
Set
Size

Amplitude
Char.
Length
Scale

MAE per
atom
[meV]

RMSE per
atom
[meV]

Si8ApALV 50 10 112.49 ±
15.19

17.92 ±
2.35

116.85 ±
117.22

259.54 ±
376.66

Si8ApALV 150 50 181.41 ±
128.48

10.67 ±
3.46

247.79 ±
382.50

1031.91 ±
1834.94

Si8ApALV 450 100 114.03 ±
31.73 5.40 ± 0.75 486.23 ±

439.54
3503.10 ±
3147.65

Table 6.27.: Prediction errors using the localised Coulomb matrix UT, α = 6.0 (pA = 0.3 Å,
pLV = 0.5 Å; variance Gaussian noise: 2.7 ∗ 10−3 eV; No. CV runs: 5)

Data Set
Train.
Set
Size

Test
Set
Size

Char. Length
Scale

MAE per atom
[meV]

RMSE per
atom [meV]

Si8ApALV 50 10 920.00 ± 60.00 69.64 ± 13.17 84.08 ± 15.17

Si8ApALV 150 50 390.00 ± 66.33 54.63 ± 8.72 73.14 ± 20.52

Si8ApALV 450 150 330.00 ± 24.49 34.01 ± 2.89 48.14 ± 9.85

Table 6.28.: Prediction errors using the localised Coulomb matrix UT, α = 1.0 (pA = 0.3 Å,
pLV = 0.2 Å; variance Gaussian noise: 2.7∗10−3 eV; No. CV runs: 5; grid char.
length scale: 50:50:1000; amplitude Gaussian kernel: 1.0)

Data Set
Train.
Set
Size

Test
Set
Size

Amplitude
Char.
Length
Scale

MAE per
atom
[meV]

RMSE per
atom
[meV]

Si8ApALV 50 10 64.23 ±
9.39

803.23 ±
121.57

64.42 ±
9.88

82.99 ±
17.16

Si8ApALV 150 50 59.67 ±
2.90

616.30 ±
21.34

20.86 ±
1.13

30.42 ±
3.17

Si8ApALV 450 100 47.42 ±
0.88

434.61 ±
8.11 8.76 ± 0.50 14.03 ±

0.83

Table 6.29.: Prediction errors using the localised Coulomb matrix UT, α = 1.0 (pA = 0.3 Å,
pLV = 0.2 Å; variance Gaussian noise: 2.7 ∗ 10−3 eV; No. CV runs: 5)
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Figure 6.10.: Comparison of the energy curve provided for the perturbed 8-atom supercell
using the LC-GAP trained on 1050 Si8ApALV configurations and the DFT
calculator. (localised Coulomb matrix UT, α = 1.0; pA = 0.3 Å, pLV = 0.2 Å;
variance Gaussian noise: 2.7 ∗ 10−3 eV)

and Ghahramani [49]. With this technique, he is able to reduce the training set
to 300 atomic neighbourhoods. The incorporation of a sparsification method
into our implementation is an important subject for future research.

Last but not least, we compare the energy curve provided by the LC-GAP for
the 8-atom silicon supercell to the DFT method in Figure 6.10. Here, the LC-
GAP was trained on 1050 Si8ApALV configurations using the localised Coulomb
matrix UT with the standard localisation exponent and the hyperparameters
for the isotropic Gaussian kernel chosen above as 47.42 ± 0.88 for the amplitude
and as 434.61 ± 8.11 for the characteristic length scale. The configurations used
for testing were chosen by multiplying the lattice constant by a strain factor
between 0.95 and 1.05. We observe that the LC-GAP is able to reproduce the
form of the DFT-curve quite well. The absolute deviation in prediction is less
than 0.05 eV and most likely due to the basis supercell not being included in the
reference data. As noted before, this could be improved in further applications
of the LC-GAP.

We now continue the validation of the usefulness of the LC-GAP in molecular
dynamics simulations by evaluating its performance when predicting gradient
values.

6.2.3. Predicting Gradient Values

As described in Section 3.3.1, differentiating the target function reconstructed
via Gaussian process regression as in Equation (3.10) gives a prediction for the
gradient values. This is important for molecular dynamics simulations as the
negative gradient with respect to the particle coordinates corresponds to the
force acting on the particle. We evaluate the accuracy on all three data sets
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Figure 6.11.: Comparison of the root mean squared errors of gradient prediction on the data
sets Si8ApCC, Si8ApLV and Si8ApALV using the localised Coulomb matrix
UT, α = 1.0 (pA = 0.3 Å, pLV = 0.5 Å (Si8ApLV), pLV = 0.2 Å (Si8ApALV);
variance Gaussian noise: 2.7 ∗ 10−3 eV; No. CV runs: 5)

Si8ApCC, Si8ApLV and Si8ApALV using the localised Coulomb matrix UT
with the localisation exponent α set to 1.0. As perturbation values we stay
with 0.3 Å for the atoms, 0.5 Å when perturbing only the lattice vectors and
0.2 Å for the lattice vectors when perturbing both. As characteristic length
scales we use the values chosen via model selection in the previous subsections.

We have summarised the prediction errors for the gradients in Table 6.30. All in
all, we obtain RMS errors per atom that are comparable or even slightly better
than those presented by Bartók-Pártay (<500meV/Å). Learning 450 training
configurations leads to values of 58.16 ± 3.66, 157.35 ± 16.67 and 102.22 ±
4.90meV/Å per atom on Si8ApCC, Si8ApLV and Si8ApALV, respectively. This
is two orders of magnitude worse than our results for the prediction of the energy
values.

For better comparison, we plot the RMSEs for the gradient prediction as a
function of the training set sizes for the three data sets in Figure 6.11. As addi-
tional training set sizes 250 and 350 configurations are chosen, both combined
with a test set size of 100 configurations.

As before, we observe that larger training sets, about double in size, are needed
on Si8ApLV and Si8ApALV to obtain the same accuracy as on Si8ApCC. Nev-
ertheless, it seems that the accuracy of the gradient prediction saturates for all
three data sets rather quickly. For Si8ApCC it saturates at about 50meV/Å
per atom, for Si8ApALV at about 100meV/Å per atom and for Si8ApLV at
about 150meV/Å per atom. Since we decreased the maximum perturbation
value on the lattice vectors when sampling across all dimensions, the predic-
tion of gradient values is better on Si8ApALV than when not simultaneously
perturbing the atomic coordinates as well.

It is to be expected that larger training set sizes do not improve the prediction
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errors indefinitely, as we include no gradient information in the training data.
The incorporation of gradient values into the learning process is an important
extension for future research. All the more, this means that the accuracy we
obtain in predicting the gradients naively by differentiation of the reconstructed
function is astonishing, as it is more than comparable to the results reported
by Bartók-Pártay who does include gradient information in the training data.

We conclude from the analysis performed in this section that the localised
Coulomb matrix has the potential of being a suitable descriptor for the local
atomic environments of crystalline solids as well as of organic molecules. It
can be used for both learning across chemical compound space and the inter-
polation of the PES of a single chemical structure. Concerning the exponent α
in the entries of the localised Coulomb matrix, we observe that increasing the
localisation effects different chemical structures differently. While it leads to a
significant improvement on the biomolecular data sets, there is little to none on
the silicon crystals. Hence, we note that the exponent should be included in the
hyperparameters of the framework and should be fitted according to the chem-
ical compound in question just as the characteristic length scale. Nevertheless,
the standard exponent α = 1.0 leads to satisfactory results on both data sets
and can be used as a default value.
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Data Set
Train.
Set
Size

Test
Set
Size

Ampl.
Char.
Length
Scale

MAE per atom
[meV/Å]

RMSE per
atom [meV/Å]

Si8ApCC 50 10 37.37 459.28 233.82 ± 41.87 292.49 ± 46.00

Si8ApCC 150 50 37.37 459.28 103.48 ± 10.30 130.88 ± 13.18

Si8ApCC 450 100 37.37 459.28 45.40 ± 2.75 58.16 ± 3.66

Si8ApLV 50 10 46.33 419.87 400.92 ± 29.11 511.52 ± 30.57

Si8ApLV 150 50 46.33 419.87 182.59 ± 10.55 236.13 ± 17.95

Si8ApLV 450 100 46.33 419.87 115.27 ± 9.59 157.35 ±
16.67

Si8ApALV 50 10 47.42 434.61 331.43 ± 31.20 417.89 ± 42.31

Si8ApALV 150 50 47.42 434.61 155.34 ± 17.27 196.27 ± 21.08

Si8ApALV 450 100 47.42 434.61 79.44 ± 4.15 102.22 ± 4.90

Table 6.30.: Prediction errors for the gradients using the localised Coulomb matrix UT,
α = 1.0 (pA = 0.3 Å, pLV = 0.5 Å (Si8ApLV), pLV = 0.2 Å (Si8ApALV);
variance Gaussian noise: 2.7 ∗ 10−3 eV; No. CV runs: 5)
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7. Conclusions and Outlook

In this thesis, we presented a kernel-based learning method for the efficient
approximation of the Born-Oppenheimer potential energy hypersurface. We
combined the Gaussian approximation potentials framework [4] described by
Bartók et al. in 2010 with a newly introduced local descriptor of atomic en-
vironments based on the Coulomb matrix [45] presented by M. Rupp et al. in
2012. We now summarise the properties and advantages of this improved ap-
proach, which we called localised Coulomb matrix based Gaussian approximation
potentials (LC-GAP) and discuss possible extensions.

7.1. Conclusion

Building on the Gaussian Approximation Potential (GAP) presented by Bartók
et al., we described a new framework for the interpolation of potential energy
surfaces by changing the numerical representation of the particle system. Our
solution was based on the global molecular descriptor introduced by Rupp et
al., which we applied to the local atomic environment of a single particle by
weighting all pairwise contributions by their combined distance to the central
particle. We called this local version localised Coulomb matrix. This descriptor
incorporated the required physical invariances with respect to translations and
rotations by construction and with respect to atom-indexing by sorting its rows
and columns in a suitable way. As the localisation was achieved by measuring
all distances only with respect to the central particle, this descriptor encodes
no angular information about the neighbours and does not distinguish between
environments differing only in local rotations around the central particle.1

We demonstrated that the resulting LC-GAP represents the potential energy
hypersurface as a linear combination of kernel functions centered at the atomic
environments present in the given training data. The forces applied to the
system required for molecular dynamics simulations can be obtained by using
the gradient of the respective kernel basis functions.

In their recent review [17] of Machine Learning approaches for the potential
energy hypersurface interpolation, Handley and Behler state six fundamental
requirements for constructing atomistic potentials: Accuracy, Efficiency, Gener-
ality, Reactivity, Automation and Costs. We summarise that in the conducted
experiments the LC-GAP fulfills all of them.

1Revised Version: The last sentence of this paragraph was added to address the limitations
of the uniqueness of the descriptor.
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First, we have shown that the LC-GAP predicts the atomisation energies of
organic molecules in equilibrium configuration with an accuracy close to the
desired chemical accuracy of 1 kcal/mol. Our result of a mean absolute error
of 4.47 ± 0.32 kcal/mol from the DFT data obtained when executing a 5-fold
cross validation procedure on only 600 training examples of the QM7 data set
is nearly twice as good as the reference value reported by Hansen et al. in [20]
for more than 10 times as many reference molecules. For alcanes, we were able
to reduce the error to 1.56 ± 0.21 kcal/mol.

Additionally, the LC-GAP is transferable as testing a potential trained only on
a set of small molecules resulted in a mean absolute error of 7.67 ± 1.12 kcal/mol
for larger molecules with up to six atoms more. We stress that this prediction
is better than the reference value which was obtained on the larger molecules
themselves. This constitutes a strong indication that the localisation ansatz is
valid for organic molecules.

Furthermore, predicting the total energies and forces for perturbed silicon su-
percells using the LC-GAP resulted in an accuracy comparable to that presented
by Bartók-Pártay in his initial publication of the GAP [4]. We stress that we
obtain this result without including the unperturbed silicon supercell itself or
gradient information in the reference data. This demonstrates the versatility of
the ansatz.

We derived that the complexity of predicting both the energy and forces of a
particle system using the LC-GAP is linear in the number of particles. This
means it is efficient enough to enable large scale simulations clearly beyond the
realm of DFT methods.

The LC-GAP is general in the sense that it can be successfully applied to both
finite and infinitely periodic chemical structures and since no prior assumptions
about the bonding structure are made, it is also able to describe arbitrary
chemical reactions. It can be applied to learning across chemical compound
space (excluding conformational and stereoisomers)2 as well as to molecular
dynamics simulations in the material sciences. Additionally, it could also be
used to correct empirical potentials with respect to DFT calculations (see below
in the outlook section).

The model parameters that need to be fitted to the reference data can be
selected by an automated procedure of nested cross validation and maximisation
of the marginal likelihood with a minimum of human effort.

We conclude that our LC-GAP constitutes a promising approach to the interpo-
lation of general potential energy hypersurfaces capable of a prediction accuracy
close to DFT calculations but involving only a fraction of their computation
time.

2Revised Version: This restriction was added to address the limitations of the uniqueness
of the descriptor.
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7.2. Outlook

We now discuss possible enhancements to the LC-GAP which merit further
research.

Of course, establishing uniqueness of the representation for any atomic environ-
ment, i.e. including angular information between neighbours into the descriptor,
would extend the validity of the LC-GAP to biomolecular applications where
stereoisomers are common. There are multiple possibilities of achieving this,
one of which has been proposed in Section 4.3.2.3

One of the most promising extensions to the LC-GAP for applications in the
material sciences would be the incorporation of gradient information into the
training data, turning the Gaussian process regression into a scheme similar
to Hermite interpolation. We have described the mathematical background in
Chapter 3. Unfortunately, we were not able to test it due to time constraints.
The improvement in prediction accuracy could be expected to be at least one
order of magnitude.

This would potentially lead to larger training set sizes necessitating the use of
sparsification methods, such as the ansatz proposed by Snelson and Ghahramani
in [49].

Aside from these improvements, it would certainly be beneficial to extend the
similarity measures employed by the LC-GAP. Instead of focusing only on the
Gaussian kernel, a more general choice of the Matérn kernel could improve
the prediction. Hansen et al. favor the Laplacian kernel for the prediction of
atomisation energies in [20] and [19], however, using this kernel for molecular
dynamics applications is not advisable as it is not continuously differentiable.
Nevertheless, adoption of the Matérn class for possible kernels would include
both choices, Gaussian and Laplacian, and could provide a rigorous comparison
of their performance among others.

As already described in Section 3.4, the LC-GAP could also be applied to learn-
ing energy correction terms between two energy models with different accuracy
properties and computational costs. Here the goal would be to achieve the ac-
curacy of e.g. a costly DFT method by learning the difference to any suitable,
much faster to evaluate, empirical potential.

This ansatz could also be used to improve the performance of the LC-GAP if
the validity of the localisation assumption is doubtful and prediction fails for
computationally reasonable cutoff values. This could be the case when long-
range interactions are present, as then the size of the atomic neighbourhood has
to be very large in order to capture all relevant information. We would then
account for the long-range interactions explicitly using a long-range Coulomb
potential and learn only the short-range part of the total energy via the LC-
GAP, thereby reinstating the validity of the localisation assumption.

3Revised Version: This paragraph was added to address the possibility of extending the
uniqueness of the localised Coulomb matrix to any atomic environment.
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A similar, yet more fundamental extension could be done concerning the un-
derlying decomposition ansatz for the energy. Instead of using the atomistic
decomposition, we could consider the many-body cluster expansion,

Etotal =
∑
i

E
(i)
atomic +

∑
i<j

E
(ij)
pair +

∑
i<j<k

E
(ijk)
triple + ...+ En-tuple, (7.1)

which can also be interpreted as an ANOVA-like decomposition or High-dimen-
sional Model Representation (HDMR) [21]. We could then use the difference
learning ansatz to impose a hierarchical structure of energy approximation mod-
els. Based on the prediction of the atomistic energy contributions, one could
learn the pairwise contributions as a correction term to the total energy in a
second step. The procedure could then be iterated such that the contribution
of a j-tuple is learned as the difference between the total energy and all inter-
actions stemming from less than j atoms. This way the prediction could be
improved step-wise until a predefined tolerance is achieved.

We summarise that the LC-GAP in its current state is able to generate reliable
potentials for large scale simulations in both biochemistry and the material
sciences. Nonetheless, it is flexible enough to handle future challenges through
further extensions, since the above enhancements can be incorporated into the
LC-GAP in a modular fashion.
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0.5 Å; variance Gaussian noise:2.7 ∗ 10−3 eV; No. CV runs: 5) . . . . . . . 88

6.22. Prediction errors using the localised Coulomb matrix UT, α = 6.0 (pLV =
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0.3 Å, pLV = 0.5 Å; variance Gaussian noise: 2.7 ∗ 10−3 eV; No. CV runs: 5) 90

6.26. Prediction errors using the localised Coulomb matrix UT, α = 6.0 (pA =
0.3 Å, pLV = 0.5 Å; variance Gaussian noise: 2.7 ∗ 10−3 eV; No. CV runs: 5;
grid char. length scale: 25:25:500; amplitude Gaussian kernel: 1.0) . . . . . 90

6.27. Prediction errors using the localised Coulomb matrix UT, α = 6.0 (pA =
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A. Basic Stochastic Concepts

In this chapter we state some basic concepts from probability theory. For details
refer to [25].

Definition 4 (Probability Space).
A probability space is a triple (Ω,F , P ) consisting of an non-empty set Ω, a
σ-algebra F ⊆ 2Ω and a probability measure P : F → [0, 1]. Here, Ω is called
the sample space and the σ-algebra F constitues a set of subsets of Ω, called
measurable sets, such that

Ω ∈ F ,
if A ∈ F , then (Ω \A) ∈ F ,
if Ai ∈ F for i ∈ I with I a countable index set, then (∪i∈IAi) ∈ F .

Furthermore, a probability measure P is a function assigning each measurable
set A ∈ F a non-negative number P (A) such that P (Ω) = 1 and P is countably
additive, i.e. if {Ai} ⊆ F is a countable collection of disjoint sets, then

P (∪Ai) =
∑

P (Ai).

Definition 5 (Random Variable).
A random variable Y : Ω→ S on a given probability space (Ω,F , P ) is defined
as a measurable function from the sample space Ω to another measurable space
(S,S) called state space. Here, the term measurable function means that the
preimages of measurable sets are measurable, i.e., Y (−1)(B) ∈ F for all B ∈ S.

Its probability distribution is defined as the measure PY on (S,S) given by

PY (A) := P ({ω ∈ Ω : Y (ω) ∈ A}), for A ∈ S. (A.1)

Definition 6 (Expectation Value).
The expectation value or mean of a random variable Y : Ω→ S on a probability
space (Ω,F , P ) is defined as the Lebesgue integral

E[Y ] =
∫

Ω
Y (ω)dP (ω). (A.2)

If the probability distribution of Y admits a probability density ρ with respect to
the Lebesgue measure, i.e.,

P (A) =
∫
A
ρ(s)ds (A.3)
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then the expected value can be written as

E[Y ] =
∫
S
xρ(s)ds. (A.4)
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B. Gaussian Identities for the
Multivariate Normal Distribution

B.1. The Multivariate Normal Distribution

We start by explicitely stating the density function of the multivariate normal
distribution N (µ,Σ) with mean vector µ and covariance matrix Σ. For an
n-dimensional vector x it has the form

p(x) = 1
(2π)n/2

1
|Σ|1/2

exp
(
−1

2(x− µ)TΣ−1(x− µ)
)

(B.1)

B.2. Conditional Gaussian Distributions

The identities derived here for the multivariate normal distribution follow the
exposition from the book [8] by Bishop, Chapter 2.3.

If two vectors of random variables are jointly Gaussian, conditioning one vector
on the other will again result in a normal distribution. In order to derive its
mean and its covariance matrix, consider the vector x composed of two disjoint
subvectors xa and xb as

x =

xa
xb

 . (B.2)

If x is normally distributed with mean vector µ and covariance matrix Σ, we
partion both accordingly as

µ =

µa
µb

 , Σ =

Σaa Σab

Σba Σbb

 . (B.3)

For simplicity we denote the inverse of the covariance matrix by Θ and partition
it as

Θ =

Θaa Θab

Θba Θbb

 . (B.4)
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Using Schur’s complement for Σ, it holds

Θaa = (Σaa − ΣabΣ−1
bb Σba)−1,

Θab = −(Σaa − ΣabΣ−1
bb Σba)−1ΣabΣ−1

bb ,

Θba = −Σ−1
bb Σba(Σaa − ΣabΣ−1

bb Σba)−1,

Θbb = Σ−1
bb + Σ−1

bb Σba(Σaa − ΣabΣ−1
bb Σba)−1ΣabΣ−1

bb .

(B.5)

The conditional distribution of xa given xb is defined as

p(xa|xb) = p(xa, xb)
p(xb)

. (B.6)

This means it can be determined by considering p(xa, xb) only as a function
of xa with xb fixed and then normalising it in a suitable way. To this end, we
write the functional dependence in x of the normal distribution as

(x−µ)TΣ−1(x−µ) = xTaΘaaxa + xa(Θaaµa−Θab(xb−µb)) + const, (B.7)

where we have grouped the terms according to their power in xa. Comparison
of the coefficients leads to the equations

Σa|b = Θ−1
aa ,

Σ−1
a|bµa|b = Θaaµa + Θab(xb − µb),

(B.8)

From those we obtain as mean and covariance matrix of the conditional distri-
butions

µa|b = µa + ΣabΣ−1
bb (xb − µb),

Σa|b = Σaa − ΣabΣ−1
bb Σba.

(B.9)
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C. Calculation Details

C.1. Derivatives of the Localised Kernel

When incorporating gradient information into the Gaussian Process regres-
sion, it is necessary to compute first and second order derivatives of the kernel
function with respect to the cartesian coordinates of the particles. As the ker-
nels are defined as functions of the local atomic environments, this implies the
need for the application of the chain rule. Consequently, one computes for
m,n = 1, ...,K, j = 1, ..., N and l = 1, ..., Pj ,

∂

∂xlj
k (qm(X), qn(X)) = ∂k (qm(X), qn(X))

∂qm
· ∂qm
∂xlj

+ ∂k (qm(X), qn(X))
∂qn

· ∂qn
∂xlj

= ∂(CK)mn
∂q · ∂q

∂xlj
,

(C.1)

and

∂

∂xki

∂

∂xlj
k (qm(X), qn(X)) = ∂

∂xki

(∂(CK)mn
∂q · ∂q

∂xlj

)
= ∂q
∂xki
· ∂

2(CK)mn
∂q∂q · ∂q

∂xlj
+ ∂(CK)mn

∂q · ∂2q
∂xki ∂x

l
j

.

(C.2)

This means that when defining a local environment representation q, one also
needs to specify the derivatives ∂q

∂xlj
and ∂2q

∂xki ∂x
l
j

.

Similarly, calculating the derivatives of the kernel applied to test and training
systems both with respect to the coordinates of a training and of a test system,
one obtains,

∂k (qi, q?p)
∂xkn

=
∂(c?(p))i
∂q

· ∂q
∂xkn

,

∂k (qi, q?p)
∂xk?

=
∂(c?(p))i
∂q? ·

∂q?

∂xk?
,

(C.3)

and

∂2k (q?p, ql)
∂xi?∂x

k
n

=
(∂q?
∂xi?

)T
·
∂2(c?(p))l
∂q∂q? ·

∂q
∂xkn

. (C.4)
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C.2. Entries of the Extended Covariance Matrices

C.2.1. Covariance between Training Data, Function Values and
Gradients

The single entries describing the covariance between energy and gradient values
can be computed as follows,

Cov(Etotal(xi), glj) = ∂

∂xlj
Cov(Etotal(xi), Etotal(xj))

= ∂

∂xkj
(LTCKL)ij

=
K∑

m,n=1
Lmi

∂

∂xlj
k (qm, qn)Lnj

=
K∑

m,n=1
Lmi

(∂(CK)mn
∂q · ∂q

∂xlj

)
Lnj ,

(C.5)

where the derivative of the kernel was given in Appendix C.1. Collecting the
derivatives for a given cartesian coordinate xlj in a matrix Dj,l,

Dj,l :=
(∂(CK)lm

∂q
· ∂q
∂xlj

)K
l,m=1

, (C.6)

one obtains as an expression for the whole block

Cf,gj = Cov(Etotal,gj)

=


∑K
m,n=1 Lm1(Dj,1)mnLnj ...

∑K
m,n=1 Lm1(Dj,Pj )mnLnj

...
...∑K

l,m=1 LmN (Dj,1)mnLnj ...
∑K
m,n=1 LmN (Dj,Pj )mnLnj


= LT

(
Dj1L:,j , ...,DjPjL:,j

)
.

(C.7)

Analogously one obtains,

Cgi,f = Cov(gi,Etotal) =


LTi,:Di1

...

LTi,:DiPi

L. (C.8)

This can be written in a more compact way by defining a block matrix D with
the matrices Di1, ...,DiPi as row i and introducing a shorthand notation for the
multiplication of its rows with a column vector or row vector, i. e.,

Dj,:L:j :=
(
Dj1L:,j , ...,DjPjL:,j

)
, (C.9)
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and

LTi,:Di,: :=


LTi,:Di1

...

LTi,:DiPi

 . (C.10)

The expression for the covariance between gradient values is more complicated
as it involves second derivatives.

Cov(gki , glj) = Cov(∂Etotal(xi)
∂xki

,
∂Etotal(xj)

∂xlj
)

= ∂

∂xki

∂

∂xlj
(LTCKL)ij

=
K∑

m,n=1
Lmi

∂

∂xki

∂

∂xlj
k (qm, qn)Lnj

=
K∑

m,n=1
Lmi

( ∂q
∂xki
· ∂

2(CK)mn
∂q∂q

· ∂q
∂xlj

+ ∂(CK)mn
∂q

· ∂2q
∂xki ∂x

l
j

)
Lnj

(C.11)

Defining for every index pair (i, j) a block matrix H(i,j) comprised of matrices

Hkl
(i,j) :=

( ∂q
∂xki
· ∂

2(CK)mn
∂q∂q · ∂q

∂xlj
+ ∂(CK)mn

∂q · ∂2q
∂xki ∂x

l
j

)K
m,n=1

, (C.12)

and extending the shorthand notation, it holds

Cgi,gj = Cov(gi,gj) =


LTi,:H

1,:
(i,j)L:,j

...

LTi,:H
Pi,:
(i,j)L:,j

 =: LTi,:H(i,j)L:,j . (C.13)

Summarizing, the extended covariance matrix can be written as

Cext =



LTCKL LTD1,:L:1 . . . LTDN,:L:N

LT1,:D1,:L LT1,:H(1,1)L:,1 . . . LT1,:H(1,N)L:,N

...
... . . . ...

LTN,:DN,:L LTN,:H(N,1)L:,1 . . . LTN,:H(N,N)L:,N


. (C.14)
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C.2.2. Covariance between Training and Test Data

As with the localised Gaussian process regression applied only to function val-
ues, one has

C?
f?,f =

P ?∑
p=1

(c?(p))
TL. (C.15)

The same technique as used in Subsection 3.2.1 can be applied to compute

Cov(E?total,
∂Etotal(xn)

∂xkn
) = ∂

∂xkn
Cov(

P ?∑
p=1

f(q?p),
K∑
i=1

fiLin)

=
P ?∑
p=1

K∑
i=1

∂k (qi, q?p)
∂xkn

Lin.

(C.16)

Introducing for a given particle p and training system n the matrices dn(p) com-
prised of the derivatives of the local kernels with respect to the training system
coordinates,

(dn(p))ik =
∂k (qi, q?p)

∂q · ∂q
∂xkn

, (C.17)

it holds

C?
f?,gn =

P ?∑
p=1

LTn,:dn(p). (C.18)

Analogously, one can define matrices d?(p) comprised of the derivatives of the
local kernels with respect to the test system coordinates,

(d?(p))ik =
∂k (qi, q?p)
∂q? · ∂q

?

∂xk?
, (C.19)

to obtain

C?
g?,f =

P ?∑
p=1

(d?(p))
TL (C.20)

as an expression for the covariance between test gradients and learnt energy
values.

Lastly, collecting the second order derivatives of the local kernels with respect
to the test system coordinates and a given training system coordinate xkn into
matrices hnk(p) for a given particle p,

(hnk(p))il =
(∂q?
∂xi?

)T
·
∂2k (q?p, ql)
∂q∂q? · ∂q

∂xkn
, (C.21)
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and building a block matrix h(p) out of these submatrices, one can write the
covariance between gradients as

C?
g?,gn =

P ?∑
p=1

hn,:(p)L:,n. (C.22)

To summarize, the extended covariance matrix between training and test data
including gradient information can be written as

cext =
P ?∑
p=1

(c?(p))
TL LT1,:d1

(p) . . . LTN,:dN(p)

(d?(p))TL h1,:
(p)L:,1 . . . hN,:(p)L:,N

 . (C.23)
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