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1 Introduction

The oceans bear a vast reliable natural energy source, which is still waiting to be exploited
— the waves. Numerous types of Wave Energy Converters (WEC) have been proposed
in the last century to take advantage of the wave energy. A few of these devices have
already been tested in laboratories and also in field tests around the globe. A huge problem
scientists face when trying to examine a model in a real world setting, are the cost and effort
necessary to build a prototype. A challenging wave climate makes it hard to construct a
device and in some cases even destroys it during construction — e.g. the project OSPREY
(Ocean Swell Powered Renewable Energy), which was supposed to be built in 1995 off
the coast of Scotland — or after only a few years of testing, such as the WEC built in
1985 by Kvaemer on the Norwegian island Toftestallen, which was destroyed in a storm in
1988 [Graw, 1995].
A solution to a better understanding of these devices, prior to the actual construction,

is the aid of Computational Fluid Dynamics (CFD). This makes it possible to simulate
both smaller laboratory experiments, as well as large scale projects, without ever actually
building a wave energy plant.
The aim of this thesis is to employ numerical optimization techniques to maximize the

energy output of a wave energy converter. The computationally expensive CFD simulation
is treated as a blackbox, whose output or response is unknown. For that purpose, the
energy converter design is parametrized resulting in a high dimensional parameter space.
By simulating a large number of the possible parameter combinations an exploration of
the high dimensional parameter space can be achieved to determine an optimal shape of
the device.
High dimensional design optimization with computationally expensive blackbox func-

tions is an active research field and not many publications address all three of the ma-
jor difficulties of those so–called HEB (high dimensional, expensive, blackbox) problems.
Typical optimization methods for expensive blackbox functions are usually limited to lower
dimensional problems [Shan and Wang, 2010].

1.1 Motivation

The world wide available resources of wave power are estimated to be around two TW [Drew
et al., 2009] and only a small fraction of it is being captured today. The use of renewable
energy sources is a current research topic and the demand is likely to increase over the
next years. Wave power in particular has a number of advantages. For example, it has
the highest energy density among the renewable energy sources [Clément et al., 2002] and
waves can travel large distances with almost no loss in energy. Additionally, the wave
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1 Introduction

climate changes due to seasonal temperature changes and this tends to produce more
energy in the colder seasons, when there is also a higher energy demand. On top of that,
wave power is available about 90% of the time as opposed to only 20% to 30% for solar or
wind power [Drew et al., 2009]. Finally, the construction of wave energy converters has a
very small environmental impact, comparable to offshore wind energy. Since no chemicals
of any kind are involved, there is no direct pollution and also no harm to sea life, which
can even swim inside the wave power plant unharmed. At coasts with already existing
breakwater constructions, a device can even be built into a breakwater caisson, like at
Sakata Port, Japan. This cuts down the construction cost and the environmental impact
during construction. Depending on the size and position of a WEC, the visual impact is
also very small.
Nevertheless, there are also some downsides of wave power usage. The wave climate

can change dramatically on a daily basis and only seasonal averages are predictable. This
influences the efficiency, since most WEC work best in a specific wave climate. Also, sudden
weather changes put a power plant at risk of minor damages or even complete destruction
by suddenly occurring large waves, like OSPREY and the device on Toftestallen. While
some swimming or otherwise moving WEC are built to “duck” under such waves and avoid
any damages, fixed constructions are at the mercy of the elements.
These considerations have to be taken into account when designing a wave power plant.

So far, most devices are not competitive with other technologies and more research is
necessary to cut down the cost of energy production.
The goal of this thesis is to optimize the energy output of an Oscillating Water Column

device for a given wave climate and water height within specified bounds.

1.2 Solution strategy

The approach to determine the optimal design is to parametrize the wave energy converter
and investigate its behavior in a CFD simulation. The output of the simulation is used to
define an objective function depending on the flow velocity field, which models the energy
output of the device. This objective function is to be optimized on a prescribed parameter
space. Since the objective function depends on a computer simulation and cannot be
expressed explicitly by an algebraic equation, not much information about its properties,
especially the derivatives, is known. This is called a blackbox function and owing to the
lack of gradient information, most gradient–based methods fail at the optimization task.
Instead, the function is sampled within the domain and a metamodel is constructed

from the calculated solution to find the global maximum. In this manner, the response
of the computationally expensive fluid simulation is modeled by a cheap surrogate model.
This model can be chosen to be smooth enough to define its gradient and hence can be
optimized by gradient–based approaches as well.
The task of choosing an appropriate set of sample points, called the Design of Experi-

ments (DoE) is very important and crucial for the fidelity of the model. A large set of well
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selected points results in an accurate approximation, but also increases the computational
cost of the optimization process. In this thesis, four different points sets are considered
and compared. The found optimum is then compared to five selected reference devices,
which have already been actually build and tested.

The CFD simulation consists of a numerical wave tank, which is used to numerically
generate specified waves, which arrive at the discretized OWC construction. As mentioned
before, each simulation run is expensive and it is not feasible to conduct a large number of
them. Therefore, two cases are considered to explore the parameter space. The first case
only examines two parameters and only one solitary wave induced by a falling water column
is simulated. This ensures a short runtime and a larger set of points can be evaluated more
quickly.
The second case inspects a set of six parameters in a fully equipped wave tank, i.e. the

waves are generated by a moving paddle, called wave maker. These simulations run longer
with regard to total simulation time and are more expensive due to the moving wave maker
and larger size of the wave tank. Therefore, smaller sets of sample points are considered
than in the two–dimensional case.

The CFD simulations for this thesis are performed with the Navier–Stokes solver
NaSt3DGPF developed at the Institute for Numerical Simulation at the University of
Bonn.

1.3 Own contribution

Following, the achievements in the scope of this thesis are summarized.

• Characterization and parametrization of Oscillating Water Column devices with re-
spect to real world reference constructions.

• Establishing a model to express the optimization problem with the help of a high
dimensional, bounded and constrained blackbox function.

• Defining two test cases with an appropriate computational complexity, that are there-
fore feasible to compute with the given resources.

• Optimization of the objective function within the specified parameter space, resulting
in a significant improvement compared to the reference wave power devices.

1.4 Overview

This thesis is structured as follows. In chapter 2 an introduction to theory of water
waves and Oscillating Water Column devices is given. First of all, the formation and
mathematical description of water waves is discussed, followed by the working principle of
wave energy converters.

3
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Chapter 3 defines the parametrization of the considered OWC and states the problem
formulation including bounds and constraints on the objective function.
A overview of global optimization and the methods employed in this thesis is given in

chapter 4. Both direct search and metamodel methods are presented with a focus on the
latter, how the sample points are chosen and the surrogate model is constructed.

Chapter 5 discusses the Navier–Stokes solver NaSt3DGPF developed at the Institute
for Numerical Simulation, which is used for the simulation of a numerical wave tank. This
is utilized to generate waves and analyze the WEC design.
The results are presented in chapter 6. First, the numerical generation of the desired

average wave is discussed. Then, two cases of optimization with different sets of parameters
are investigated. The results show considerable improvement compared to the reference
designs.
Finally, a conclusion and outlook is given in chapter 7.
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2 Wave power and Wave Energy Converters

Waves occur naturally in different forms and are the product of a variety of influences.
Understanding of how waves arise in nature and which type of waves should be captured
by the wave energy converter is essential for the numerical wave generation.

This chapter gives an overview of water waves, their characteristics and how they can
be described mathematically by wave theory. Also, an outline of wave energy converters,
how they work and the current state of the art in research and development is given.

2.1 Water waves

Water waves are the deflection of the water surface, i.e. the free surface separating water
and air, for example in the ocean, in lakes, rivers or even in puddles. They are induced
by different influences, such as gravity, wind or earthquakes. Tides, for example, are the
result of the gravity forces of moon and sun and have a very long period of 12 to 24 hours.
In contrast, ordinary gravity waves have a period ranging from one to 30 seconds. Hence,
we need to know which waves are of interest for wave energy converters.

Crest

Trough

Wave length
L

H   
Wave
height

Ocean floor (sediment)

Mean water
level

Water depth
d

Ocean
(water)

Atmosphere
(air)

Fig. 2.1.1: Characteristics of waves.

Figure 2.1.1 depicts the wave characteristics and the notation, which is used in the
following. The highest part of wave is called crest, the lowest part trough. An ideal
progressive wave — like a sine wave — shows a regular sequence of crests and troughs.
The horizontal distance between two successive wave crests (or troughs) is known as the
wave length L, the vertical distance between crest and trough as wave height H. The
amplitude A is the distance from the mean water level to the highest part of the crest. The
wave period T is the time needed for a successive crest to pass a fixed point in space. The
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Fig. 2.1.2: Different types of waves, classified by frequency/period. Causing forces are shown in
green. The curve indicates the relative amplitude [Munk, 1950].

wave velocity or celerity C is the rate of propagation, i.e.

C =
L

T
.

The wave steepness s describes the ratio of wave height to its length, i.e.

s =
H

L
.

Fig. 2.1.3: Ripples (capillary
waves) on the surface of a river
due to wind (above) and a lake
due to rain (below).

Figure 2.1.2 depicts a classification of ocean waves accord-
ing to the wave period, as proposed by [Munk, 1950]. The
classification and corresponding acting forces are also sum-
marized in table 2.1.1.
Capillary waves, also called ripples, have a period of less than
0.1 seconds and a wave length of up to a few centimeters.
They are caused by wind or droplets, such as rain drops,
and their dynamics are dominated by surface tension. These
waves have a great effect on the appearance of the water
surface, as they cause what Munk refers to as “the inher-
ent roughness of the surface”, c.f. figure 2.1.3. Most surfaces
display this roughness caused by wind or rain. Some wa-
ters are even famous for their (almost) absence of capillary
waves, such as the Mirror Lakes in New Zealand or Califor-
nia, which can be almost perfectly still due to lack of wind

(and rain) in the morning or evening and therefore reflect the surrounding landscape. Fig-
ure 2.1.3 shows a part of the Mirror Lakes in New Zealand, which — unlike in the picture
— perfectly mirrors the words “Mirror Lakes” at times without any disturbances of the
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2.2 Gravity waves

water surface.

Gravity waves are induced by wind as well, but are also influenced by gravity as the
restoring force. Ultra–gravity waves, also called gravity–capillary waves, have a period of
about 0.1 to 1 second and are influenced by both surface tension and gravity. Capillary
and gravity waves are also referred to as wind waves, or wind–generated waves. Ordinary
gravity waves can be much larger than ripples; they reach heights over 30 meters and
lengths of up to one kilometer. Once the local wind, which generates the wave, subsides,
the wave propagates freely until it hits the coast. The propagated waves are called swell
and can travel large distances without loosing much of their energy or height. Several waves
can interfere with each other, creating a vast variety of waves in the oceans. Sometimes
they cancel each other out or superpose producing one huge wave. Infra–gravity waves are
the product of both wind and gravity and are highly influenced by the bottom topography
of the entire continental shelf [Munk, 1950].
Long period waves with a period of 5 min to 12 h are caused by earthquakes resulting in
tsunamis or storms producing storm surges.
Ordinary tidal waves are generated by the gravitational attraction of moon and sun. They
have a fixed period of about 12 or 24 hours for semi–diurnal or diurnal waves, respectively.
Such waves can be observed for example in the north sea.
Finally, trans–tidal waves with a period larger than 24 hours caused by storms or the
gravitational influence of sun and moon.

Table 2.1.1: Classification of ocean surface waves [Affholder and Valiron, 2001].
Classification Period range Depth classifi-

cation
Restoring forces Generation

forces
Capillary waves ≤ 0.1 s Deep water Surface tension Winds
Ultra–gravity waves 0.1− 1 s Deep water Surface tension

& gravity
Winds

Ordinary gravity waves 1− 30 s Deep to shallow
water

Gravity Winds

Infra–gravity waves 30 s - 5 min Deep to shallow
water

Gravity & Cori-
olis effect

Winds & grav-
ity

Long period waves 5 min - 12 h Intermediate Gravity & Cori-
olis effect

Storms & earth-
quakes

Ordinary tidal waves 12h or 24 h Shallow water Gravity & Cori-
olis effect

Gravitational
attraction of
moon and sun

Trans–tidal waves ≥ 24 h Shallow water Gravity & Cori-
olis effect

Storms, sun &
moon

2.2 Gravity waves

Ordinary gravity waves bear a vast amount of the total estimated energy of the oceans
and seas, and they propagate over large distances of the water, thus arriving steadily at
the coasts. Therefore, they are of great interest for the use of wave energy converters. The
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energy Ew of a wave is proportional to the square of its amplitude A and the wave period
T , i.e. Ew ∝ A2T . For example, waves with relatively long periods of about seven to ten
seconds and high amplitudes of about two meters have an estimated energy of about 40

to 70 kW per meter width of incoming wave [Clément et al., 2002]. There are also devices
that capture the energy of tidal waves, but these might have a greater (negative) impact
on the coastal environment and might not be the best choice. Most wave energy converters
are designed to capture ordinary gravity waves.
As described above, these are generated by wind with three critical factors for the shape

and height of the wave: wind velocity, duration of the wind blowing in the same direction
and the fetch — the length of water over which the corresponding wind blows in one direc-
tion. In other words, the waves are influenced by the amount of energy transferred from
the wind to the water [Affholder and Valiron, 2001]. The water depth can also play a role,
as described in more detail below.

The physical process of the creation of wind–generated waves is still not completely
understood, but Phillips [Phillips, 1957] and Miles [Miles, 1957] developed two theories,
also known as the Miles–Phillips Mechanism, which helped to a better understanding of
the procedure. According to Phillips’ theory, turbulent winds blowing over a perfectly
still water surface create a resonant interaction between water and air. That means, a
wind blowing over a body of water at rest, which blows not only horizontally, but also has
some vertical components, creates tiny motions in the water surface. The wind pushes up
disturbances in the water surface, causing pressure differences in front of and behind (in
terms of wind direction) the wave crest. These pressure differences cause a fluctuation of
the water surface and form capillary waves. These are vital for the generation of any wind
induced wave. This mechanism is linear in time.
The second part of mechanism is explained by Miles’ theory. Once the water surface

contains capillary waves, the water surface appears to be more rough, which also allows
the horizontally blowing wind to influence the wave climate. The wind grasps the rough
water surface and pushes up already existing bumps. This leads to more roughness of the
surface, which in turn lets the wind get an even better grip of the water. This process
leads to an exponential growth of the waves in time.
Obviously, this procedure cannot go on forever. This is where the restoring force comes

into play, which is gravity for the larger waves. It pulls the water back down at the same
rate the wind lifts it up and thus prevents the wind from generating higher waves. The
stronger the wind, i.e. the higher the wind velocity, the larger its influces becomes com-
pared to gravitational forces and higher waves will be produced.

The wave height is also limited by the wave period and water depth. Once the particles
at the water surface move faster than the wave velocity, the wave breaks. Whether a
breaking wave is spilling, plunging, collapsing or surging (which are the four types of
breaking waves) it loses energy due to turbulences or friction. This can occur on the open
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Water depth
d

No wave
motion

Shallow waterIntermediateDeep water

direction of wave propagation

Fig. 2.2.1: Influence of water depth on waves. The division into deep and shallow water is with
regard to the relative water depth d/L. The ellipses represent the movement of water
particles (adapted from [Keith A. Sverdrup and Duxbury, 2000]).

sea or at the coast, where all waves eventually break. Here, the water depth is an essential
influence on the wave height and shape.
As the waves reach shallow water, the friction of the bottom changes the wave. In

deep water, the water particles show a circular motion, i.e. a particle on the water surface
moves in a circle during a wave cycle. With less water depth, this movement transforms
into an elliptical motion, since the wave motion reaches the bottom, c.f. figure 2.2.1. The
characterization of deep and shallow water is with respect to the relative water depth d

L ,
where d is the water depth (with respect to the mean water level) and L the wave length,
c.f. figure 2.1.1, which also influences the wave velocity. Deep water has a relative water
depth of d

L ≥
1
2 , in shallow water it is d

L ≤
1
20 , and in the intermediate zone 1

20 ≤
d
L ≤

1
2 .

When a wave reaches shallow water, it decreases in both height and velocity. A part
of its energy is lost due to turbulences while breaking or by friction at the bottom, which
both slows it down. Sometimes even the direction of wave propagation can change. This
can be observed at beaches, for example, where the wave crests are usually almost parallel
to the coastline. This phenomenon can be explained by the influence of the water depth.

2.3 Wave theory

There is a variety of water wave theories developed to describe the behavior of waves
as explained above. The earliest attempts date back to Newton in 1687, later works
include theories by Lagrange, Laplace, Poisson and Cauchy. In the middle of the 19th
century, British scientists made considerable contributions, among them Airy, whose linear
wave theory, known as Airy theory is still used in many applications today. This set the
foundation for the works of Stokes, who derived a nonlinear wave theory. A very thorough
account of the historical development of water wave theory can be found in [Craik, 2004].
The following gives a short overview over two popular theories, namely Airy theory de-

scribing a linear waves for shallow and deep water and Stokes theory describing a nonlinear
waves in non–shallow water.

9
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2.3.1 Airy wave theory

Airy wave theory [Airy, 1841], also known as linear wave theory, describes both deep and
shallow water waves. For the deep water waves, it gives a good approximation of waves
with small ratios of the wave height to water depth H/d� 1; for shallow water waves the
same is true for a small ratio of wave height to wave length, called steepness, H/L � 1.
Thus, it is limited to waves with a small amplitude. It is a linearized description of the
propagation of gravity waves over a horizontal bottom and assumes a uniform mean water
depth, i.e. the mean water level does not change during wave propagation. The water
flow is assumed to be inviscid, incompressible and irrotational. Also, surface tension and
Coriolis effect are neglected, thus gravity is the only influencing force.

A potential flow approach is used to characterize the motion of the waves. The free
surface elevation η(x, t) of a wave component, i.e. the elevation from the mean water level,
is a sine function, where x is the horizontal position x and t the time. The x–axis is
represented by the mean water level, which is assumed to be constant. The function η

takes the form
η(x, t) = A cos(kx− ωt), (2.3.1)

where A is the wave amplitude — since we consider a sinusoidal wave, the amplitude is
equal to half the wave height, i.e. H = 2a — k is the wave number in radian, which is
related to the wave length L by

k =
2π

L
.

ω is the angular frequency

ω =
2π

T
.

Hence, the wave velocity C can also be expressed in terms of k and ω by

C =
L

T
=
ω

k
.

Note, that a one–dimensional model is considered, with x being the direction of wave
propagation and y = η(x, t) the surface elevation, hence y = A at the top of a crest and
y = −A at the bottom of a trough.

As depicted in figure 2.2.1, the fluid underneath the surface moves according to the free
surface motion. The particles in a propagating wave show an orbital motion, which are
closed curves according to Airy theory. These orbits shrink with depth below the surface.
The particles do not move in the direction of wave propagation, but rather oscillate around
their average position. Thus, instead of mass, energy is transported in the direction of wave
propagation.

The flow problem formulation is derived from potential theory, i.e. the general theory
of solutions to Laplace’s equation. As an irrotational flow is assumed, the flow velocity
u = (ux, uy) ∈ R2 of the fluid — which should not be confused with the wave velocity C

10



2.3 Wave theory

— satisfies ∇× u = 0 and can be represented by the gradient of a scalar function Φ, i.e.

u = ∇Φ,

which is called velocity potential of u. Since the flow is also supposed to be incompressible,
the fluid density ρ is constant and the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0

reduces to
∇ · u = 0.

Thus, the velocity potential satisfies the Laplace equation

∇ · (∇Φ) = ∆Φ = 0. (2.3.2)

As the assumptions were made for the water phase, this equation holds for −d ≤ y ≤ 0.

Three boundary conditions close the system of equations. The first one, known as
kinematic boundary condition is derived from the fluid particle motion, and states, that
particles close to the surface stay close to the surface over time, following the motion of
the surface. In general, it can be expressed as

∂η

∂t
+ u

∂η

∂x
=
∂Φ

∂y
at y = η. (2.3.3)

In the case of Airy theory, this equation is linearized and reduces to

∂η

∂t
=
∂Φ

∂y
at y = η. (2.3.4)

Additionally, the bottom is supposed to be impermeable, which is expressed by the bed
kinematic boundary condition

∂η

∂t
= 0 at y = −d. (2.3.5)

The third boundary condition is derived from Bernoulli’s equation for unsteady potential
flow

∂Φ

∂t
+

1

2
u2 +

p

ρ
+ gη = 0 at y = η, (2.3.6)

with gravity denoted by g and pressure by p, which in turn is derived by integrating Euler’s
momentum equation. In linear theory, the pressure at the water surface is assumed to be
constant and equal to zero without loss of generality, since this does not alter the flow.
Also, the nonlinear term in u is dropped and thus yields the dynamic boundary condition

∂Φ

∂t
+ gη = 0 at y = η. (2.3.7)

Given the surface elevation is of the form (2.3.1), the potential flow can be derived from

11



2 Wave power and Wave Energy Converters

the solution of the system of equations (2.3.2), (2.3.4) and (2.3.5), which is

Φ(x, y) =
Ag

ω

cosh(k(y + d))

cosh(kd)
sin(kx− ωt). (2.3.8)

The last boundary condition, equation (2.3.7), is used to derive the dispersion relation

ω2 = gk tanh(kd).

Hence, ω and k are dependent and cannot be chosen independently.

2.3.2 Stokes wave theory

Similar to the linear theory developed by Airy, Stokes derived a nonlinear theory for peri-
odic waves in non–shallow water [Stokes, 1847]. The underlying assumptions are the same
as in Airy theory, i.e. the fluid is assumed to be inviscid, incompressible, irrotational, of
constant density and the only influencing force to be considered is gravity. Hence, the
same system of equations (2.3.2), (2.3.3), (2.3.5) and (2.3.6) is studied, but not linearized.
Instead, a Fourier series is considered.

The elevation function η(x, t) and the velocity potential Φ(x, y) are considered to be
periodic with spatial period equal to the wavelength L, i.e.

η(x+ L) = η(x) and Φ(x+ L, y) = Φ(x, y).

Also, the velocity potential is assumed to be an odd function in space and therefore the
surface elevation must an even function. These considerations lead to a similar form of η
as in equation, namely a Fourier series von even components

η(x, t) =
∞∑
n=1

ηn cos(knx− ωnt), (2.3.9)

whereHn may depend on A and d and have to be calculated using the boundary conditions.
Likewise, the potential velocity takes the form

Φ(x, y) =
∞∑
n=1

φn
cosh(kn(y + d))

cosh(knd)
sin(knx− ωnt) (2.3.10)

and the dispersion relation

ω2 =
∞∑
n=1

Ωngk tanh(knd).

It is not feasible to calculate all terms in the Fourier series, hence an approximation up
to order N is used in Stokes theory, i.e. the series is truncated for n > N . For N = 1, this
yields the linear approximation of Airy theory, for N = 2 a second order approximation,
and so forth. Most studies use approximations up to fifth order.
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2.3 Wave theory

direction of wave propagation

Stokes driftAiry (linear) wave theory

Fig. 2.3.1: Movement of water particles according to Airy and Stokes wave theory, respectively.
The green point tracks the motion of a particle over time.

Another aspect, which changes in higher order approximations is the particle movement.
In linear theory, they are assumed to move in circles or ellipses around a fixed point, which
is their average position in space over time, i.e. a particle starting at position (x, y) will
always return to position (x, y) after each time period T . However, taking higher order
terms into account, the particles additionally exhibit a movement in the direction of wave
propagation, i.e. a particle starting in (x, y) will move some distance X in the direction of
wave propagation, Y in vertical direction, and end up at position (x+X, y+ Y ) after one
period T , c.f. figure 2.3.1. This phenomenon is known as Stokes drift and can be observed
in nature, for example when objects are washed ashore. Hence, besides the transport of
energy in a wave, there is also a transport of mass. The exact magnitude of X and Y can
be calculated by a Lagrange representation of the flow velocity.

Other wave theories include the Boussinesq approximation for nonlinear waves in shal-
low water, with arbitrary direction of wave propagation, i.e waves can travel in opposing
direction simultaneously. The Korteweg–de Vries (KdV) equation is a nonlinear equation
of third order, which defines long shallow water waves. The latter is easier to solve than
the Boussinesq equation. One type of solutions of the KdV equation are known as Cnoidal
waves. Further information can be found in [Affholder and Valiron, 2001,Dean and Dal-
rymple, 1990]

Knowing how waves are formed and how to describe them mathematically, is very im-
portant for the physically correct numerical generation of waves, see section 5.4.

2.3.3 Wave climate

The theory described so far assumes a very basic model of a wave and is essentially two–
dimensional. However, actual ocean waves are far more complicated, less predictable and
of course three–dimensional.
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2 Wave power and Wave Energy Converters

One of the most challenging tasks is to estimate the average wave climate for a given
location. This is usually described by the significant wave height Hs = H1/3 and significant
wave period Ts = T1/3, which are determined by the mean height and period, respectively,
of the highest third of the waves. This definition stems from the original kind of wave mea-
surement, namely the visual judgment, which usually overlooks smaller waves and focuses
on the larger components.

There are various methods to measure waves, visually or with the help of instruments.
[Affholder and Valiron, 2001] categorizes the available tools into three groups: surface type,
sub–surface or underwater type and above surface or aerial type. The first class includes
step–resistance gauges, which are usually installed at piers or other shoreline structures.
The gauge consists of a sealed pipe with several electrical contact points, which measure the
presence or absence of water along the vertical pipe. Since these kind of measuring devices
are sometimes impractical due to size, cost or visual obstruction, underwater instruments
are a good alternative. These can detect pressure fluctuations under the water surface or
measure the vertical and horizontal movement of buoys fixed at the seabed to capture the
wave motion. The latter is a very common tool in the North Sea. Up–to–date reports
and forecasts can be found at the Bundesamt für Seeschifffart und Hydrographie (BSH)1,
which has six buoys in different locations.

Finally, aerial type wave measuring tools include satellites, aircrafts and radars, which
determine the wave climate from a remote location. The main difference to the first two
approaches is, that the waves can be measured over a greater area and therefore are usually
space averaged and almost immediate, as opposed to the time averaged point measurements
of gauges or buoys.

Several large data collections (atlases) of wave energy statistics have been developed
over the last decades. Among them the WERATLAS, which covers European deep waters
and is an essential tool for wave energy planning in Europe [Falcão, 2010]. Since the water
depth has a large influence on the wave propagation, there is hardly any comprehensive
data available for near–shore areas. One exception is the ONDATLAS [Pontes et al., 2005],
which contains detailed statistics of the Portuguese coast. Data for specific sites, where
a Wave Energy Converter is planned, usually have to be collected prior to designing the
actual device.

Even with given statistics for a given construction site, it is still hard to predict the actual
wave climate for the near future, except for seasonal fluctuations and a rough average.
Nevertheless, the wave amplitude, period and direction are highly irregular and sudden
extreme weather conditions, like storms or hurricanes, put any construction at risk to be
at least partially destroyed. Hence, it is crucial to estimate the expected load on a device,
while neither under– nor overestimating it. The latter might lead to unnecessarily high
production costs.

1available online at www.bsh.de/de/Meeresdaten/Beobachtungen/Seegang
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2.4 Wave Energy Converter

2.3.4 Wave simulation

For a controlled simulation of waves in a lab, so–called experimental wave tanks (EWC)
are used. Inside the wave tank, different waves can be reproduced and small–scale tests
can be performed. This method is particularly of interest for the testing of wave energy
converters.

Fig. 2.3.2: Wave tank with a piston wave maker [Peuker, 2011].

An experimental wave tank can be thought of as a huge aquarium, with a wave maker,
consisting of a moving object, for example a paddle or flap, on the one side, and a kind of
beach on the other side to prevent the waves from being reflected off the back wall of the
wave tank, c.f. figure 2.3.2. This “beach” can take different forms. For example, a literal
beach, i.e. a slope in the bottom of the tank, slows the waves down through friction and
wave breaking. Another solution can be the use of a lower wall at the end of tank, such
that the waves can overflow, in which case the overspilling water has to be transported
back into the wave tank. Some wave tanks also include a sediment bed to examine the
interaction between sediment and waves, e.g. [Hudson et al., 2001].

2.4 Wave Energy Converter

A variety of wave energy converters have been proposed to capture the power of the ocean.
The devices not only differ in construction type (e.g. floating vs. fixed at the seabed), but
also in the type of energy conversion (water or air driven turbine vs. flexible hydraulic
elements). Also, the devices are designed for a particular location: on–shore, near–shore
or off–shore with a specific wave climate and water depth, while keeping their effect on
the environment as low as possible. A good overview of different WEC types can be found
in [Graw, 1995]; current state of art and an overview of former and current installments,
both experimental and commercial, can be found in [Clément et al., 2002,Falcão, 2010].

2.4.1 Types of WEC

There are various ways to classify WEC devices, for example by type of installment, i.e.
fixed or floating. The former includes Oscillating Water Column (OWC) devices, c.f. sec-
tion 2.4.2, such as Pico on Pico Island, Azores, or LIMPET by Voith on Islay, Scotland;
and over–topping devices like TAPCHAN (Tapered Channel Wave Power Device) by
Norwave located in Norway, which collects incoming waves in a basin and lets the water
flow back into the ocean, driving an hydroelectric turbine with the flow.
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2 Wave power and Wave Energy Converters

Floating designs also include OWC, like the OE Buoy by Ocean Energy Ltd. in Ireland
or the Mighty Whale by JAMSTEC in Japan, and over–topping mechanisms, such as the
Wave Dragon in Denmark. Other floating devices use the wave motion through hydraulic
elements, which employ either the wave heave (i.e. vertical translation) or the rotational
component, such as the Pelamis by the Scottish Pelamis Wave Power Ltd. The latter has
been successfully tested in full scale and has now, amongst other projects, several wave
farms in development.

In the course of this thesis, the focus lies on fixed OWC devices, as they can be modeled
and examined even without the turbine and have a quite basic construction.

2.4.2 Oscillating Water Column

Figure 2.4.1 depicts the simple composition of an OWC device: the construction consists
of a partly submerged building with two openings. One is under water to capture the
incoming waves and the other is above the water for a turbine, usually at the back or on
top of the building, and lets the air flow through the turbine. As the waves rush into the
device, the water level rises inside the chamber, which compresses the enclosed air and
therefore pushes the air through the turbine. Once the waves retreat, the water level falls,
letting the air flow back into the chamber and passing the other way through the turbine.
This oscillating movement of the water level — or water column — gave these devices their
name.

direction of
wave propagation

air flow

turbine

water

air

OWC device

Fig. 2.4.1: Operation mode of an Oscillating–Water–Column device. The enclosed water column
induces an air flow, which drives the turbine when flowing in and out of the chamber
[Peuker, 2011].

One aspect that needs special attention is the choice of turbine, as the air flow is bidi-
rectional. Several possible solutions have been proposed to solve this problem, for example
the Wells turbine, which always rotates in the same direction, independently of the air flow
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2.4 Wave Energy Converter

direction. Another bidirectional turbine is the Denniss–Auld turbine, or its advancement
the airWAVE by Oceanlinx.

The use of air turbines instead of directly water driven turbines ensures longer durability
due to less corrosion and other technical factors.

This type of WEC can be installed onshore, near shore or offshore and it can be either
installed fixed into the ground or a wall, or it can float on the water. A wide variety of
these devices have been proposed and some of them have already been tested in small scale
wave tanks, fewer even in actual open sea tests.

Following, five OWC devices, are described, which are depicted in figure 2.4.2. These
particular designs were chosen for comparison reasons and are also modeled in the course
of the thesis, c.f. section 3.2. Figure 2.4.2 also shows the computer simulation model of
each device. Note, that only one chamber is modeled, even if some of them are composed
of several chambers.

All of these wave energy converters are on–shore or near–shore devices, which are fixed
at the seabed. They share certain characteristics, such as comparable height and width,
and are built in similar wave climates and water depths.

LIMPET, Islay, Scotland

The first commercial OWC device, known as LIMPET (Land Installed Marine Power
Energy Transmitter) [Boake et al., 2002], was installed in 2000 on the Isle of Islay, Scotland.
It was designed and built by the Irish Wavegen Ltd. (which was bought by the German
company Voith in 2005) in cooperation with the Queen’s University of Belfast, UK, with
support of the European Non Nuclear Energy Programme JOULE III. The device delivered
power into the British power grid until it was shut down in 2013.

A first 75 kW2 prototype was built in 1991 and in operation until 1999. The full scale
plant consists of three chambers with a width of six meters each and a height of 12.8 meters
above mean water level. The chamber is angled at 40◦ to the horizontal, c.f. figure 2.2(a),
which is supposed to give an easier path for the water resulting in less turbulence and
hence a lower energy loss [Webb et al., 2005].

Although the original estimated overall efficiency — from wave to pneumatic to me-
chanical to electrical — was predicted to be about 48%, the actually measured efficiency
was only 8%. Part of the problem was the overestimated wave climate at the construction
site. Prior measurements had estimated 20 kW/m, whereas after construction a resource
of only 12 kW/m was measured at the lip. This demonstrates the importance of wave
climate measurements prior to construction.

2A model with a rated capacity of 1 kW will produce 1 kWh of electricity per hour when exposed to a
specific wave climate.
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2 Wave power and Wave Energy Converters

(a) LIMPET [LIM, n.d.] (b) LIMPET

(c) Pico [Pic, n.d.] (d) Pico

(e) MK1 at Port Kembla
[MK1, n.d.]

(f) MK1

(g) Vizhinjam [Viz, n.d.] (h) Vizhinjam

(i) Sakata [Sak, n.d.] (j) Sakata

Fig. 2.4.2: Actual OWC constructions and the corresponding OWC geometries for the values
according to table 3.2.1.
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European Wave Energy Pilot Plant, Pico, Portugal

Another wave energy plant was built from 1996 to 1999 on Pico Island in the Central Group
of the Portuguese Azores. It was designed by the Instituto Superior Tecnico of Lisbon and
is managed by the Wave Energy Centre (WavEC), a private non–for–profit organization,
since 2004. The device has undergone several testing phases and subsequent improvements
and is currently in danger of collapsing due to corrosion3.
The OWC plant consists of one chamber with a width of 12 meters and a total height

of 15.0 meter above mean water level. The front of the chamber is angled at 60◦ to the
horizontal, c.f. figure 2.2(c).
The device was built as pilot project co–funded by the European Commission to evaluate

and demonstrate the viability of wave energy on small islands. So far it has been very
successful and has also been included in the European Marine Renewables Infrastructure
Network (MARINET) as a one of the most relevant testing devices in Europe4.

MK1, Port Kembla, Australia

The Australian company Oceanlinx (formerly Energetech Australia Pty Limited), founded
in 1997 by Dr. Tom Denniss, has developed three OWC devices so far, which where built
in full scale at the Australian coast at Port Kembla in New South Wales. The first one,
called MK1, was built in 2005 and heavy enough — weighing 500 tonne — to sit on the
seabed under its own weight. It has one chamber with 10 meters in width, which is angled
at 45◦. Unlike LIMPET or the Pico plant, it has parabolic harbor walls at each side to
concentrate the incoming waves, c.f. figure 2.2(e).
Another difference is the employed turbine. LIMPET and the Pico device both use the

Wells turbine, whereas Oceanlinx developed its own bidirectional air turbine, known as the
Denniss–Auld turbine. Its successor, the airWAVE, uses a latching control stategy and is
supposed to spin constantly regardless of change of direction of the air flow.
In 2012, Oceanlinx was awarded the first prize in the The Australian Innovation Chal-

lenge in the category Energy and Minerals for its 1 MW OWC plant greenWAVE, an
advancement of the MK1.

Vizhinjam, Trivandrum, India

At Port Vizhinjam near the town Trivandrum, India, one of the oldest full scale OWC has
been built in 1991. The device also includes harbor walls, which protrude straight towards
the sea. It consists of one chamber, 10 meters wide and 14.5 meters above sea level. The
front is a vertical wall, which is not angled, c.f. figure 2.2(g).
A new, improved model has been commissioned in 1996 and research has been continued

up to a few years ago. One of the biggest problems was the fluctuations in power generation.
Only during the months of monsoon (June to September), the facility was able to capture

3See http://www.save--pico--powerplant.org/
4See http://www.fp7-marinet.eu/WavEC-wavec-pico-owc.html

19
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a maximal amount of energy from the incoming waves. During the rest of the year, the
power output was low to nearly non existent. This again demonstrates the difficulties faced
with fluctuations in the wave climate.

Sakata, Japan

The first breakwater OWC was built into an existing breakwater caisson at Sakata Port,
Japan, in 1989 [Takahashi et al., 1992]. It was a project of the Port and Harbor Research
Institute, a division of the Ministry of Transport. The device consists of five chambers
with a width of 3 meters each. However, only three of the chamber were actually used afer
a testing phase. The front is angled at 45◦ and the caisson has a height of 12.5 meters
above sealevel, c.f. figure 2.2(i).

Many other OWC projects have been launched around the globe and research is growing
in many countries. However, only a few projects have made the jump to a commercial start
so far, while others have been shut down or are still struggling, as the OWC plant on Pico
Island. Part of the problem are the high construction costs and the improvable overall
wave–to–wire efficiency, which makes it less profitable. Apart from the very important
turbine construction, a better understanding of the WEC design itself through computer
simulations can help immensely to cut down the cost of research and development and
improve the energy output.
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3 Optimization Problem

In the previous chapter, theory on waves, wave power and wave energy converters was
introduced. From this discussion, it became clear, that a computer simulation of an OWC
device can be helpful to achieve an improved efficiency of the construction. The following
introduces the mathematical model to undertake this task.

3.1 Definition of the objective function

A complete model of a wave power plant would involve many degrees of freedom, including
the simulation of air and water via a CFD simulation, different wave climates and a turbine.
However, such a complex model also requires a vast amount of computation time and has
many unknowns leading to an exceptionally high dimensional problem.
Therefore, a few simplifications are in order. First of all, the construction is to be tested

in a prescribed wave climate. An “average” wave is generated and used for all simulations.
More details on the chosen wave and its parameters can be found in section 3.2.
Furthermore, the turbine is very complex and involves many unknowns. Either a very

simple model can be employed or the turbine can be left out altogether. For this thesis,
the latter approach is used due to lack of significant knowledge about the operation of an
air turbine. This way, the different OWC designs also become more comparable, since the
turbine influences the pressure inside the chamber and therefore also the air flow and final
energy output.
What is left in the simplified model is a two–phase fluid simulation, wave generation,

and parameters describing the geometry of the Oscillating Water Column. Thus, we know
the input, namely the parametrization of the WEC, and the setup for the CFD simulation.
What is left to determine is the desired output of the simulation.

A typical CFD simulation delivers information about the flow, more precisely the flow
velocity u(x, t, s) ∈ R3 and the pressure p(x, t, s) ∈ R3 over time. These are the unknown
variables of the Navier–Stokes equations, described in chapter 5. They both depend on
space (x), time (t) and the d–dimensional parameter domain s ∈ D ⊂ Rd describing the
OWC design. The question is which information we can extract from these to determine
the energy output of the device.
A common approach in engineering would be to determine the average flow through

the turbine and match it to a characteristic curve which ensures maximal efficiency of the
turbine. A turbine needs a certain amount of air speed in order to operate and produce
electricity. Since the air flows in and out, there are intervals of low to zero air flow, which
need to be decreased, while times with greater flow should increase.
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Ωout

air flow

x

y
z

Fig. 3.1.1: Cutting plane Ωout through turbine orifice to measure the average air flow.

In our case, only the flow in the orifice, where the turbine would be, can be measured.
Given the air flow velocity u(x, t, s) = u(s) = (u(s), v(s), w(s)) from the simulation, the
average air flow through a cutting plane Ωout ⊂ R2 of the opening, c.f. figure 3.1.1, can be
determined by ∫

Ωout×[t1,t2]
|u(s)| dy dz dt. (3.1.1)

If a characteristic curve c(t) were known, the optimization problem would read

min
D

∫
Ωout×[t1,t2]

|u(s)| dy dz − c(t) dt. (3.1.2)

However, c(t) depends on the turbine in use and we do not know the exact shape of such
a curve. Therefore, this idea is dismissed for the use in this thesis. Instead, the average
air flow (3.1.1) itself is to be maximized.

3.2 OWC design parametrization

The last step is to define a parametrization of the WEC geometry. To this end, consider
the devices described in section 2.4.2. For comparison reasons and to get an idea of the
actual size, we chose five devices, that have actually been built and have been in use for
testing purposes. With each parameter the dimension d of the parameter domain D ⊂ Rd

and thus the complexity of the optimization problem increases. Therefore, the number of
parameters should be chosen carefully. Only as many as necessary should be considered
to avoid the curse of dimensionality as much as possible.
Some characteristics are crucial, such as the height, length and width of the construction.

Others might have a smaller influence, for example the lip depth below the mean water
level, which mainly depends on the wave climate (which is fixed in our scenario). Also, not
all measurements of the power plants are known, leaving some dimensions to be guessed
by sense of proportion.
Some measurements can be found in [Webb et al., 2005], namely the total width, chamber
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width, lip depth below mean water level, total height above mean water level and the
turbine diameter. Taken these into account, the following eleven parameters are considered
for fixed mean water level (MWL= 15.0m) and inner air shaft height above mean water
level (h = 3.0m):

a the height above MWL,

b the lip depth below MWL,

c the inner chamber length,

α the vertical lip angle α with associated length d(α), i.e.

d(α) =

(a+ b) sin(α)
cos(α) if 0 < α < 90

0 if α = 0
,

β the inner vertical chamber angle β with associated length e(β), i.e.,

e(β) =

(MWL + h) sin(β)
cos(β) if 0 < β < 90

0 if β = 0
,

f the chamber width and

g the inner air shaft length.

i, j lengths of the two–part harbor walls in front of the device

γ, δ angles of the two–part harbor walls

Furthermore, the position, as well as width, height and length of the air shaft are fixed
for comparison reasons. The final parametrization is depicted in figure 3.2.1 and the values
for the five reference OWC devices (figure 2.4.2) are summarized in table 3.2.1. Note, that
the values of c, g and any measurements of the harbor walls, i.e. i, j, γ, δ, are unknown to
the author and can only be guessed from pictures and descriptions.

Table 3.2.1: Parameter values for the five real OWC devices [Webb et al., 2005].

a b c α β f g i j γ δ
LIMPET 12.8 m 2.3 m 15.0 m 50◦ 50◦ 6.0 m 10.0 m 0 m 0 m 0◦ 0◦

Pico 15.0 m 2.5 m 10.0 m 30◦ 0◦ 12.0 m −10.0 m 0 m 0 m 0◦ 0◦

Port Kembla 12.0 m 3.0 m 10.0 m 45◦ 0◦ 10.0 m 5.0 m 8 m 8 m 45◦ 30◦

Vizhinjam 14.5 m 1.1 m 15.0 m 0◦ 0◦ 10.0 m 0.0 m 14 m 14 m 0◦ 0◦

Sakata 12.5 m 3.0 m 15.0 m 45◦ 0◦ 5.0 m 0.0 m 0 m 0 m 0◦ 0◦
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(b) Bird’s eye view.

Fig. 3.2.1: Parametrization of the OWC geometry.
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Table 3.2.1 describes the values for the five reference OWC, denoted by Dref ⊂ D, and
defines the bounds for the parameter domain D. Hence,

D = {s1, . . . , s11|lbi ≤ xi ≤ ubi, i = 1, . . . , 11}

= {12.5 ≤ a ≤ 15.0

3.0∗ ≤ b ≤ 4.0∗

10.0 ≤ c ≤ 15.0

0.0 ≤ α ≤ 50.0

0.0 ≤ β ≤ 50.0

5.0 ≤ f ≤ 12.0

−10.0 ≤ g ≤ 10.0

0.0 ≤ i ≤ 14.0

0.0 ≤ j ≤ 14.0

0.0 ≤ γ ≤ 45.0

0.0 ≤ δ ≤ 30.0}

Note, that due to a different wave average than at the constructions sites, the values of b
were changed to ensure that the lip remains under water at all times during the simula-
tion. Furthermore, due to computational complexity and limited resources, two cases will
be considered in Chapter 6 with a subset if these parameters. First, a two–dimensional
test case with varying height a and angle α and finally a six–dimensional example with
fixed width and without the harbor walls.

Now we can also define the volume of an OWC device using the parameters above. Since
the mean water level MWL= 15.0m and the inner air shaft height h = 3.0m above mean
water level is fixed, we get the volume V (s) of an arbitrary wave energy plan parametrized
by s and the average volume of the five reference OWC Vref defined by

V (s) = f((a+ 15)c+ 0.5(a+ b)d(α) + (15− b)d(α)− 19g − (15 + h)e(β)) (3.2.1)

Vref =
1

5

∑
s∈Dref

V (s). (3.2.2)

Finally, the wave climate defined by significant wave height and period plus water depth
at the OWC lip as given in [Webb et al., 2005] for each of the reference constructions, can
be used to define an average target wave. The height is about 2.5 meters and the wave
period around 7.4 seconds. The mean water level is fixed at 15 meters.
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3.3 Constraints

Next, we need to consider any constraints on the input variables. First of all, the parameter
domain D should be bounded in order to find a global optimum of the objective function,
i.e.

D = {s1, . . . , sd|lbi ≤ si ≤ ubi, i = 1, . . . , d}.

Furthermore, the volume of the OWC device should be bounded. Otherwise, the largest
designs will be favored and the simulations become (at least partially) redundant. Defin-
ing a reference average volume Vref (see equation (3.2.2) below) and the volume V (s)

(equation (3.2.1)) of the parametrized OWC for each simulation, we get the condition
|V (s)−Vref | ≤ δ for some δ > 0. This constraint can be added to the problem formulation
by a penalization term.
In order to find an optimum inside the domain, another penalization term is added at

the boundary. For this purpose, we define the d–dimensional flattened Gauss function
f : [−1, 1]d → Rd by

f(x) = 1− exp(−
d∑
i=1

x30
i ).

Then, the boundary penalization can be expressed in terms of f(t(s)), where t : D →
[−1, 1]d is the transformation from D to the unit–hypercube.
Hence, the objective function F : D → R including the two penalization terms is defined

by

F (s) =

∫
Ωout×[t1,t2]

|u(s)| dy dz dt.− λ1|V (s)− Vref | − λ2f(t(s)) (3.3.1)

for some constants λ1, λ2 > 0.
Additionally, there needs to be a constraint on the angles α and β to ensure there is an

opening at the entrance of the device. If β is large and α is small, the two angled walls
cross and leave no opening. Therefore, the constraint c+ d(α) > e(β) + g + 4.0 is applied
to ensure a horizontal distance of the end of the lip to the inner angled wall of at least
4.0 meters. This is constraint is enforced in two ways. First of all, the values of F (s) are
set to −∞ on the subset {s ∈ D|cs + d(αs) > e(βs) + gs + 4.0}. Secondly, the objective
function is not sampled on this subset, c.f. section 4.4.1.
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3.4 Problem formulation

Taking all the considerations above into account, we can formulate the optimization prob-
lem as a blackbox optimization problem. In this scenario, the Navier–Stokes solver, defining
u(s) = NaSt(s), is the blackbox, i.e. an unknown function to be evaluated, c.f. figure 3.4.1.
The full problem then reads

Find the maximum s∗ ∈ D of F : D → R defined by

s∗ = arg max
D

F (s) =

∫
Ωout×[t1,t2]

|u(s)| dy dz dt.− λ1|V (s)− Vref | − λ2f(t(s)) (3.4.1)

subject to

u(s) = NaSt(s) (3.4.2a)

D = {s1, . . . , sd|lbi ≤ xi ≤ ubi, i = 1, . . . , d} (3.4.2b)

cs + d(αs) > e(βs) + gs + 4.0. (3.4.2c)

Hence, we have a

• high dimensional,

• bounded,

• constrained,

• expensive blackbox

optimization problem.

Blackbox

u(s) = NaSt(s)

Input

lb ≤ s ≤ ub

Output

F (s) = · · · −λ1|V (s)− Vref | − λ2 · · ·

Fig. 3.4.1: Blackbox optimization.
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4 Global Optimization

The following chapter describes general global optimization techniques to solve problems
as described in the previous chapter, the difficulties observed in this field and different
approaches to deal with these.
In general, global optimization refers to the minimization (or maximization, which is

equivalent to the minimization of −F ) of a function F : X → Y ⊆ R, called objective
function. Here, X ⊂ Rd, often called feasible region, is some bounded set. Note, that Y
can also be higher dimensional, making it a multiobjective optimization problem and some
of the methods mentioned in this chapter can also be used in this case. However, we are
going to concentrate on the single–objective scenario Y ⊆ R.

4.1 Difficulties in global optimization

An element x∗ ∈ X is said to be a global minimum of the objective function F , if and only
if

F (x∗) ≤ F (x)∀x ∈ X.

However, this is not always possible and sometimes only local minima can be found, i.e.
elements x∗l ∈ X such that there exists an ε > 0 with

F (x∗l ) ≤ F (x)∀x ∈ X, ‖x− x∗l ‖ < ε.

Many nonlinear functions observe multiple local and/or global minima and maxima in its
domain X, which can be hard to detect. Many classical algorithms focus on local opti-
mization and tend to “get caught” in local minima. For this reason a global method should
have a good balance between local and global optimization.

Figure 4.1.1 demonstrates a number of possible scenarios faced when minimizing a func-
tion. The bubbles represent the possible candidates for a minimum found by a typical
(search) algorithm [Weise, 2009]. The best case scenario (figure 4.1(a)) shows a convex
function, which has only a single global optimum by its nature, that can be found by basi-
cally any optimization method. There are methods to transform a non–convex problem into
a convex one by a convexification, which are however not discussed here. Figure 4.1(b)
shows an example of a non–convex function with low variation in the neighborhood of
the local optimum. Even though an algorithm might find the local minimum first, the
global one can still be attained with a moderate number of function evaluations/iterations.
This task becomes more difficult with multiple (local) minima and more variation, c.f. fig-
ure 4.1(c). This situation is even more complicated in a scenario as in figure 4.1(d), where
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(a) Best Case (b) Low Variation

(c) Multimodal (d) Rugged

(e) Deceptive (f) Neutral

(g) Neelde–In–A–Haystack (h) Nightmare

Fig. 4.1.1: Different possible properties of an objective function (minimization) [Weise, 2009].
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the information of the gradient leads to jumps between different local optima. Similarly,
the gradient in figure 4.1(e) is misleading and leads to a local minimum instead of the
global optimum. Even less helpful is the gradient in flat areas as depicted in figure 4.1(f)
and figure 4.1(g). Additionally, the only (global) minimum might isolated, i.e. in rapidly
decreasing in a very small interval, which can be easily overlooked, c.f. figure 4.1(g). Fi-
nally, the possible worst case scenario is a combination of all these problems and can be
seen in figure 4.1(h).
The “difficulty” of a problem correlates to the number of function evaluations necessary

to find the optimum, i.e. its computational complexity [Weise, 2009]. This is especially
important if the function to be evaluated is computationally expensive. Therefore, the
goal is to find a reliable method with as little function evaluation as possible. As can be
seen from the examples above, it is almost impossible to find an algorithm that works well
for any kind of problem. Thus, it can be helpful to know as much as possible about the
objective function and choose the optimization techniques accordingly.

4.2 Blackbox optimization

However, there are cases, where essentially no information about the function is given.
For example, if the function cannot be represented explicitly by some formula and can
be treated as a blackbox. This is the case, where the objective function depends on the
output of a computer simulations — like the Navier–Stokes solver employed in this thesis.
Merely heuristics can by applied to predict how the function might behave to choose an
appropriate optimization algorithm.
It should be noted, however, that there exist other approaches, which aim to derive

the blackbox function numerically and thus can use the classical framework of gradient
based methods. Nevertheless, this is not the focus of this thesis, as we are interested in a
metamodel to describe the behavior of the unknown function.

4.3 Derivative–free optimization

Since not much is known about the objective function, classical optimization algorithms,
that use information such as the derivative to find the optimum, are not feasible. However,
there exist a vast amount of derivative–free optimization algorithms. A good overview can
be found in [Rios and Sahinidis, 2012], where both local and global methods are discussed
along with different implementations. Following, some global methods are discussed.

4.3.1 Deterministic search algortihms

An advantage of deterministic algortihms is that no multiple runs have to be performed,
as the outcome will always be the same.
Lipschitzian optimization is concerned with the global optimization by constructing a

piecewise linear underestimator of the function. A function f : D ⊂ Rd → R is called
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4.3 Derivative–free optimization

Lipschitz continuous, if there exists a constant L > 0, such that

|f(x)− f(y)| ≤ L‖x− y‖ for x, y ∈ D.

Shubert’s algorithm

Assuming the Lipschitz constant is known, [Shubert, 1972] considered the one–dimensional
minimization problem

Φ = min
x∈D

f(x),

where f is Lipschitz continuous and D = [a, b] ⊂ R is a closed interval. Substituting the
interval bounds into the definition of Lipschitz–contiunity results in the two conditions

f(x) ≥ f(a)− L(x− a), (4.3.1a)

f(x) ≥ f(b) + L(x− b) (4.3.1b)

for f(x) with x ∈ [a, b]. This defines the underestimator, which has one extreme point

M0 = max
x∈[a,b]

min
xk=a,b

f(xk) + L|x− xk|,

c.f. figure 4.1(a). The new point divides the interval [a, b] into two subintervals, which
define a new piecewise underestimator. The minimum of this new estimator defines the
next point of the iteration and so on. The algorithm is summarized in algorithm 1 and
illustrated in figure 4.3.1.

Algorithm 1 Shubert’s algorithm
Require: Function f , interval bounds a, b, Lipschitz constant L > 0, ε
1: F0 = minxk=a,b f(xk) + L|x− xk|
2: M0 = maxx∈[a,b] F0

3: x1 = arg maxx∈[a,b] F0

4: Φ0 = f(x0)
5: n = 0
6: while Mn − Φn ≥ ε do
7: Fn+1(x) = mink=0,...,n f(xk) + L|x− xk|
8: Mn+1 = maxx∈[a,b] Fn+1

9: xn+1 = arg maxx∈[a,b] Fn+1

10: Φn+1 = maxk=0,...,n f(xk)
11: n = n+ 1
12: end while

Some advantages of the algorithm include the use of very few parameters, i.e. only the
Lipschitz constant L has to be known. This is also gives a bound on the error Φ − Φn,
since Mn ≥ Φ ≥ Φn and therefore the difference

∆n = Mn − Φn
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4 Global Optimization

is an upper bound to the error and can be used as stopping criterion.

However, the Lipschitz constant, which balances the algorithm between local and global
search, is not uniquely defined and if not much information about the objective function
is given, it can be arbitrarily large. This can influence the speed of convergence severely.
Also, the computational complexity grows exponentially with dimension and hence the
method is not feasible in high dimensions.

DIRECT algorithm

An extension to Shubert’s algorithm is the DIRECT method [Jones et al., 1993], where
the name can be taken literal, as it is a direct search algorithm. Also, the initials stand for
DIViding RECTangles, which describes how the method works. Since one major drawback
of Shubert’s algorithm is the lack of knowledge about the Lipschitz constant L, DIRECT
uses all possible values of L, which also leads to a better balance between global and local
search. The method was also designed for use in higher dimensions, i.e. the objective
function lives in a d–dimensional domain D ⊂ Rd, which consists of a hyper–rectangle
D = [Ai, Bi]

d
i=1. For simplicity, the domain is normalized to the unit hypercube D̄ = {x ∈

Rd : 0 ≤ xi ≤ 1}.
The main idea is to sample the objective function at the center of hyper–rectangles. This

solves the problem of computational complexity of Shubert’s algorithm in the initialization

a b

f(x)

x1

M0

slope -L slo
pe

 L

(a) First iteration of Shubert’s algorithm.

a b

f(x)

x1

M1

x2
(b) Second iteration of Shubert’s algorithm.

a b

f(x)

x1

M2

x2 x3
(c) Third iteration of Shubert’s algorithm.

Fig. 4.3.1: First three iteration steps of Shubert’s algorithm, c.f. algorithm 1.
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4.3 Derivative–free optimization

step, as only one point of the initial domain D has to be sampled, instead of all 2d corner
points. When dividing the rectangle, it has to be ensured, that no previously calculated
function evaluations are lost, i.e. they should still be center points of some hyper–rectangle.
Hence, the domain is divided into three subrectangles instead of two.
The first step of the algorithm is to evaluate the objective function at the center point

c1 = (0.5, . . . , 0.5) ∈ Rd of the unit hypercube. Then the domain is to be divided into
three equally sized hyper–rectangles. To this end, the function is sampled at the points
c1 + δei, i = 1, . . . , d, where δ = 1/3 is one third of the side length of the hyper cube and
ei is the i–th unit vector. To decide which dimension is to divided first, the best function
values

wi = min(f(c1 + δei), f(c1 − δei)), i = 1, . . . , d

in each dimension are calculated. The dimension with the smallest value wi is then divided
into thirds. Next, the other dimensions are divided accordingly, leaving the new points at
the center of new hyper–rectangles, c.f. figure 4.3.2. This way the best function values are
left in the largest space, which leads to a preferred search in these rectangles leading to a
slight emphasis on the local search. Each hyper–rectangle is only partitioned along its long
dimensions. For example, considering a flat hyper–rectangle with measurements 5× 6× 1,
would be divided in its longer dimensions x1 and x2, but not in the third dimension x3.
This ensures, that the rectangles shrink after each iterations, which is essential for the
convergence of the algorithm.

5 8

6

2

5 8

6

2

5 8

6

2

Fig. 4.3.2: Division of rectangles in one DIRECT iteration [Jones et al., 1993].

This process in then iterated, but no for all hyper–rectangles. Instead, the so–called
potentially optimal hyper–rectangles are identified and further divided in each iteration.
The definition of these rectangles is motivated by the following idea (for simplicity assume
d = 1). Suppose the domain has already been partitioned into subintervals [ai, bi], i =

1, . . . ,m. Figure 4.3(a) depicts each division by a dot with the coordinates (di, f(ci)),

where di = (bi − ai)/2 is the distance of the inteval’s center point ci to its vertices. Since
the points ci always remain in the center of the interval, the value of di captures how well
the domain has been searched in the interval with respect to global search. The value of the
evaluated function values f(ci) on the other hand, i.e. the vertical coordinate, represents
the local search. Any line with slope L > 0 through the point (di, f(ci)) will define a lower
bound for the corresponding interval at the vertical intercept. Like in Shubert’s algorithm,
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the Lipschitz constant L determines the balance between local and global search. If its
value is too high, the global search will dominate, if it is too low, the search will be very
local. To overcome these difficulties, all possible values of L > 0, that define a lower
bound of an interval are selected, c.f. figure 4.3(b). The corresponding intervals are the
potentially optimal hyper–rectangles. In the general d–dimensional case, the definition is
the following. A hyper–rectangle is said to be potentially optimal, if there exists a constant
L̃ > 0, such that

f(cj)− L̃ · dj ≤ f(ci)− L̃ · di, ∀i = 1, . . . , d, (4.3.2a)

f(cj)− L̃ · dj ≤ fmin − ε|fmin|, (4.3.2b)

where cj is the center point of the rectangle j and dj is a measure for the hyper–rectangles
(e.g. the distance of cj to the edges of j). The parameter ε ensures that f(cj) is greater than
the current optimum. This ensures, that no unnecessary function evaluations are performed
in a local search, when there is not a big improvement to be expected. Therefore, some
smaller rectangles might not be selected as potentially optimal. Note, that L̃ is not the
actual Lipschitz constant, but rather represents the rate of change.

Since the algorithm does not require to know a Lipschitz constant of the objective
function, a different stopping criterion than in Shubert’s method has to be used. In the

f(c)

d

slope L
~

f(c ) - L di i

d i

f(c )i

~

(a) Condition 1.

f(c)

d
(b) Condition 1.

f(c)

d

fmin

f      - ε|f     |min min

(c) Condition 2.

Fig. 4.3.3: Illustration of condition (4.3.2a) and (4.3.2b) for potentially optimal hyper–rectangles
[Jones et al., 1993].
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original version of DIRECT, a limit of the number of iterations has been proposed. Another
criterion could be the maximal number of function samples, if the objective function is
expensive to evaluate. Algorithm 2 summarizes the DIRECT method in d dimensions.

Algorithm 2 DIRECT algorithm [Jones et al., 1993]

Require: Function f , lower & upper bounds {Ai, Bi}di=1, maxits, maxevals
1: Normalization: D̄ = {x ∈ Rd : 0 ≤ xi ≤ 1}
2: Initialization: c1 = (0.5, . . . , 0.5), fmin = f(c1), i = 0,m = 1
3: while it ≤ maxits and m ≤ maxevals do
4: Determine S of all potentially optimal rectangles (according to (4.3.2a),(4.3.2b))
5: for j ∈ S do
6: Determine longest side of rectangle j
7: Evaluate f at center points of new rectangles
8: Divide j into smaller rectangles:

Identify set I of dimensions with maximum side length lmax
Set δ = 1/3lmax
Evaluate f(cj ± δei) ∀i ∈ I
Calculate wi = min(f(cj + δei), f(cj − δei)) ∀i ∈ I
Divide j into thirds (dimesion with lowest value wi first)

9: Update fmin
10: m = m+ 2d

11: end for
12: it = it+ 1
13: end while

4.3.2 Model–based search algorithms

Another approach is to construct a surrogate– or metamodel to get an approximation of
the objective function, which gives information about the general behavior of the function
and also permits to determine an (approximate) gradient or even higher derivatives. This
model should capture the function as accurate as possible in order to produce valuable
data concerning its local and global optima. To this end, the function has to be sampled
within the given domain, covering as much of it as possible to give a high–fidelity model.
Both direct search methods as described above and the model–based approach have been

considered for the use in this thesis. However, the latter was chosen, because it can be
easily implemented to run fully parallel, whereas a direct search depends on the values
calculated in the previous iteration steps. More details on model–based algorithms can be
found in section 4.4.

4.3.3 Stochastic search algorithms

In contrast to deterministic search algorithms, stochastic methods involve a non–deterministic
approach at some point in the algorithm. There is a vast amount of literature on this type
of optimization methods, which include Hit–and–run algorithms, simulated annealing, ge-
netic algorithms and particle swarm algorithms [Rios and Sahinidis, 2012].
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4.4 Metamodeling

In order to optimize the energy output of the OWC device, we employ the methods ofMeta-
modeling, which is very popular for engineering problems, where a process with multiple
input variables and objectives has to be optimized.

A metamodel (or response surface model or surrogate model) Ŷ is an approximation of
the unknown response function y = F (NaSt(s)), where the error of the approximation is
assumed to be due to model error as opposed to experimental noise, as we consider a deter-
ministic computer simulation. Given the sample points S ∈ Rd×k and the corresponding
responses Y ∈ Rk, the response surface can either be the result of an interpolation problem,
i.e. functions that pass through the given points have to be found. Or the model can be
non–interpolating, which means that it is obtained via a minimization of the deviations of
the model Ŷ from the unknown objective function y. In this case, low–order polynomials
obtained by least square regression are a common choice. For interpolation response sur-
faces, radial basis functions or Kriging, which is described in more detail in section 4.4.2,
are often used.

For this process, both the input parameters, called factors or variables, and the respective
(computer) experiment results, called responses, are needed. The steps are usually as
follows.

First, the design variables or parameters

xi, i = 1, . . . , d

have to be selected and if necessary, bounds and constraints need to be chosen. In the
case of the OWC device, these are the height, width, depth, and so on, as described in
section 3.2. This yields the design space or parameter space, which often consists of a
hyper–rectangle

D = {x ∈ Rd|lbi ≤ xi ≤ ubi, i = 1, . . . , d}

with appropriate lower and upper bounds lbi and ubi, respectively. For simplicity, this
rectangle can be normalized to the d–dimensional unit hyper–cube D̂, such that

D̂ = {x ∈ Rd| − 1 ≤ x̂i ≤ 1 i = 1, . . . , d}.

The variables and bounds need to be chosen carefully, keeping in mind what needs to be
achieved. It is advisable to choose only as many input parameters as necessary, since each
factor increases the complexity of the problem. If in doubt which factors are important
and which might be neglectable, a screening process with less trial runs could be a good
first step before running a complete experiment series.

Once the parameters are chosen, the sample points s1, . . . , sk ∈ D̂ — also called design
sites — can be selected. These are the points in the parameter space D̂, for which an
experiment/simulation is run, i.e. a response is determined. This task is not quite simple,
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as it needs to be appropiate for the task at hand. One needs to keep in mind how the
expected response might behave (e.g. linear or nonlinear) and how well the parameter
space has to be covered in order to estimate the response at untried points in the design
space. These questions are incorporated in the so–called Design of Experiments (DoE).
There are several approaches to select the sample points appropriatly, which are covered
in more detail in section 4.4.1.

At the given sample points s1, . . . , sk ∈ D̂, the response needs to be calculated. Since
the subsequent optimization process does not depend on the evaluated function, this is
called blackbox optimization. This means, that the objective function — which in our case
depends on the Navier Stokes solver with the complete setup including the wave generation
and the wave energy converter, which we denote by NaSt(), c.f. chapter 5 — does not have
to be represented by some algebraic formula, but instead might be quite abstract. It is
simply treated as a blackbox, which determines the desired responses Yi, i = 1, . . . , k for
given input variables, i.e.

Yi = F (NaSt(si)),

c.f. section 3.4.

The previous step is the most time and cost consuming, as each conducted experiment
— in our case each simulation run — can be very expensive. This is why the process of
DoE is very important.

Given the sample points and respective responses (si, Yi), i = 1, . . . , k, the optimization
process begins. As mentioned before, a screening process and possible model reduction
might be helpful to identify the important factors and reduce the design complexity. Fol-
lowing this step, a new, refined DoE and therefore additional blackbox evaluations might
be useful for a more refined model.

The next step is to determine an appropriate meta– or surrogate model. This can be
for example a response surface model calculated by Kriging, e.g. with the quite popular
Design and Analysis of Computer Experiments (DACE) method [Sacks et al., 1989]. See
section 4.4.2 for more details.

Finally, the calculated metamodel can be employed to estimate the optimum of the
objective blackbox function. The steps of the optimization algorithm is summarized in
algorithm 3.

Another approach to determine the optimum, is to simply select the optimal point among
the calculated responses (si, Yi), i = 1, . . . , k, without any further calculations.

Obviously, all point evaluations to calculate the responses (si, Yi), i = 1, . . . , k can run
in parallel once the sample points are determined, which yields a perfectly scaling parallel
algorithm with respect to point evalutation. But other adaptive algorithms, where the
choice of new points depends on already calculated responses, have also shown to be be
quite useful.
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Algorithm 3 Design Optimization

Require: design variables/parameters xi, i = 1, . . . , d, bounds xloweri ≤ xi ≤ xupperi , i =
1, . . . , d for each parameter, number of desired sample points K,L, blackbox function
f

1: Normalize parameter space D to D̂[−1, 1]d

2: Initialize k := 0, l := 0, j := 0
3: while k ≤ K do
4: Determine sample points s1, . . . , skj ∈ D̂, kj ≤ K − k
5: Calculate responses Yi = f(si), i = 1, . . . , kj
6: Set k = k + kj , j = j + 1
7: end while
8: Postprocessing: determine metamodel and find optimum of metamodel
9: Screening process & parameter space reduction (optinal)

10: while l ≤ L do
11: Determine sample points s1, . . . , slj ∈ D̂, lj ≤ L− l
12: Calculate responses Yi = f(si), i = 1, . . . , lj
13: Set l = l + lj , j = j + 1
14: end while
15: Postprocessing: determine refined metamodel and find optimum of metamodel (op-

tional)

4.4.1 Design of Experiments (DoE)

As mentioned before, the choice of sample points si ∈ D̂, i = 1, . . . , k, called the design
of the experiment, is essential to obtain an accurate model while conducting only few
simulation runs. Therefore, the DoE step is very important to maintain both the precision
and the efficiency of the method. Following, a short overview of common experimental
designs is given. Given the development of DoE, these can be categorized into classical
and modern designs, where the difference lies in the conducted experiments — lab/field
experiments vs. computer experiments [Giunta et al., 2003]. In both classical and modern
designs, it is essential to choose as few sample points as possible to cut the cost of the
experiment.

4.4.1.1 Classical DoE

DoE was initially developed for field or lab experiments, where the measured response Yi
is assumed to contain a random error term ε due to measurement error for example, i.e.

Yi = f(si) + εi , i = 1, . . . , k.

As a result of this error term, the calculated response may vary even if measured at the
same sample point. Also, to minimize the effect of the random error, the sample points
are usually chosen at the boundary of the design space. This ensures, that at least the
right trend of the actual response can be approximated. A good illustration of this can
be found in [Giunta et al., 2003], c.f. figure 4.4.1. It shows, that the effect of random
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error terms ε1 and ε2 can be lead to a wrong trend in the estimated model. In this case,
it causes a negative slope in the estimated model, whereas the actual linear model has a
positive slope. This effect can be reduced by moving the sample points to the boundary, as
it is now easier to distinguish the influence of the response trend from the influence of the
error terms. Therefore, classical designs have many boundary points and only few interior
points, which are often repeated, i.e. more than one response is calculated to minimize the
random error.

(a) Due to random error,
the estimated linear model
(dashed) shows a different
trend than the true model
(solid).

(b) Moving the sample points to
the boundary reduces the effect
of the random error.

Fig. 4.4.1: Effect of random error in classical DoE [Giunta et al., 2003].

A few common classical designs are summarized to give an overview and a better un-
derstanding of how and why we choose our final designs.

Factorial Designs Factorial designs are very popular in engineering and statistics, where
factors are tested at different discrete levels l = (l1, ..., ld) ∈ Nd and the combination of
these should be tested as well, i.e. the correlation between the different factors. A full
factorial design consists of all possible combination of these, whereas a fractional factorial
design only incorporates some combinations. Hence, a full factorial design is simply a
regular grid with mesh size hlk = 2−lk for the respective level lk, k = 1, . . . , d in each
dimension, i.e.

SFracFac ⊂ SFullFac = {si,l ∈ D̂|xik,lk = ±ik · hlk = ±ik · 2−lk , ik = 0, . . . , 2lk}

and
|SFullFac| = ld, |SFracFac| = ld−p.

For example, a full factorial of three factors with levels l = (2, 2, 2), called a 23 design, is
commonly visualized as a cube, as seen in figure 4.2(a), where the vertices each represent
a sample point, i.e. there are 23 sample points. This design evaluates the main effects and
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interactions between the factors. The term effect refers to the influence of a factor, i.e.
how the response changes when the value of the input parameter varies. The influence of a
single factor is called main effect. Increasing the number of levels will result in evaluation
of higher order effects. In general, the full factorial design with the same number of levels
L for each of the d factors consists of Ld sample points, i.e. the complexity increases
exponentially with the number of factors. Hence, for a large number of factors, it might
be too expensive to evaluate at all sample points.

An obvious solution to this problem is to evaluate only at some points of the full grid,
resulting in a fractional factorial design, the most common being 2d−p designs, where the
fraction is equal to 1/2p, c.f. figure 4.2(b) for p = 1. One drawback of this, is of course
the loss of accuracy. As some effects are not tested, the results are biased, which needs to
be kept in mind when evaluating the model. Never the less, this design proves to be quite
handy and is often used for a first screening step, where the most important factors are
identified.

x1 x2

x3

(a) 23 full factorial.

x1 x2

x3

(b) 23−1 fractional factorial.

Fig. 4.4.2: Factorial designs for three factors with two levels each.

Central Composite Designs Quadratic effects can be estimated by the 3d full factorial
or an appropriate fractional factorial designs. However, the number of sample points can
get out of hand quite quickly. A common second–order design, which is constructed to
reduce the number of design points in this case, is the Central Composite Design (CCD)
introduced by Box and Wilson [Box and Wilson, 1951]. It consists of a two–level factorial
design (full or fractional) and additional axial points, called the star points, plus a certain
number n of center points, i.e. the center point is evaluated more than once to reduce the
impact of the error term ε. If the factorial design points are located at the vertices of a
unit hyper–cube, the star points are located at ±α for each factor, where |α| ≥ 1 depends
on the desired properties of the chosen design. Hence

SCC ⊂ {s = (s1, . . . .sd) ∈ D̂|sj ∈ {0,±1,±α}, j = 1, . . . , d}

40
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and
|SCC | = 2d−p + 2d+ n.

Figure 4.4.3 shows the three common designs and their relationship. The so–called
Circumscribed (CCC) design is the original Central Composite Design, where the star
points constitute new extremes for each factor; in figure 4.3(a) α =

√
2. The Inscribed

(CCI) design limits the star points by the original extremes and is therefore a scaled down
version of the CCC design by the factor α. Finally, the Face Centered (CCF) design sets
the star points at the faces of the factorial design space, i.e. α = ±1. Note that the
CCC investigates the largest design space, whereas the CCI the smallest space. The CCF
explores the same design space as the underlying 2d factorial design, but evaluates more
sample points.

+1

 -1

(a) CCC

+1

 -1

(b) CCI

+1

 -1

(c) CCF

Fig. 4.4.3: Different Central Composite Design for two factors. It is composed of the 22 factorial
design points, additional star points and center points.

In general, α can be chosen, such that the experiment design is rotatable, i.e. the design
can be rotated around the center point without changing the prediction variance at any
point in the design space. Also, the value of α may help to achieve orthogonality of the
design, i.e. that each factor can be evaluated independtly.

Box–Behnken Unlike CCD, Box–Behnken designs [Box and Behnken, 1960] do not incor-
porate a factorial design, but include the center points of the faces of the parameter space,
i.e. the star points of the CCF design, and the center point. It is rotatable, but usually
not orthogonal. It requires three levels for each factor and evaluates quadratic effects.

Placket–Burman Placket and Burman investigated a design [Plackett and Burman, 1946],
which — similar to factorial designs — includes factors with a certain number of levels,
but with a smaller number of experiments and such that the variance of the dependent
variables would be minimized. These designs assume negligible interactions between the
factors and focuses on a few important main effects. In general, main effects are heavily
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confounded (or aliased) with two–factor interactions, i.e. the response of the main effect is
influenced by higher order interactions.

The method of finding the desired design works for a number of sample points, which are
a multiple of four. However, if the number of points is a power of two, the design coincides
with a fractional factorial design. Hence, the Placket–Burman designs usually consider a
number, which is a multiple of four, but not a power of two, e.g. 12, 20, 24, 28, and so on.

4.4.1.2 Modern DoE

In contrast to classical DoE, the modern designs do not have to account for random error
due to measurement or other external influences, since the conducted experiments are de-
terministic computer experiments. Therefore the repeated evaluation of a sample points
does not make much sense, as the outcome will be (exactly) the same. Instead, the error
term in equation (4.4.1.1) accounts for model error. Also, the sample points must not lie
mostly at boundary to minimize the influence of the error term. Instead, it is assumed
that the true trend of the response is unknown and therefore most points are placed in
the interior of the design space in order to search the parameter space most thoroughly,
i.e. one is looking for a space filling design. Also, the design should be extendable, so
that additional design sites can be added at any point of the optimization algorithm. Of
course, also the number of necessary experiments should be as low as possible to save valu-
able computing time. Hence, the design should also show a good computational complexity.

Random selection (Monte Carlo) One of the most obvious ways to select points in a
domain (other than a regular grid, i.e. a full factorial design) is by random sampling. This
Monte Carlo approach works quite well for a large number of points, but as one would like
to keep the number of sampling points as low as possible, this might not be the smartest
choice. Let N denote the number of sample points. Then the set of design sites is defined
by

SMC = {si ∈ D̂|si(pseudo–random) number with normal distribution in D̂, i = 1, . . . , N}.

The biggest problem is, that often large portions of the design space remain unexplored
and therefore no information of the response is given in these areas. Hence, the Monte
Carlo method is neither the best choice in terms of complexity, nor in terms of design
space coverage. But is possible to add new points to the design at any time, i.e. it can be
augmented, c.f. figure 4.4.5 for a random selection of 10 points and additional 90 points,
i.e. a total of 100 points.
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Quasi Random selection (Quasi Monte Carlo) This approach selects the points ac-
cording to a Quasi Monte Carlo method [Morokoff and Caflisch, 1995], i.e. the points are
generated according to a given low discrepancy sequence, which appears to be random,
but is actually deterministic. However, this method can also be randomized. Popular
sequences are Van der Corput, Halton or Sobol sequences.

The discrepancy refers to a measure of how much the distribution of the sample points
differs from a uniform distribution. The discrepancy DN of a sequence of N points in the
unit hypercube D̂ is defined by

DN = sup
Q⊂D̂

∣∣∣∣#points in Q
N

−m(Q)

∣∣∣∣ ,
where Q is a rectangle in D̂ with sides parallel to the coordinate axes and with volume
m(Q). The discrepancy contributes to the error bound of Monte Carlo methods and should
be therefore bounded from above. Low discrepancy sequences have a particularly low upper
bound.

The Van der Corput sequence is defined by reversing the base representation of the set
of natural numbers N. More precisely, if n ∈ N is (uniquely) represented in base b by

n =
m∑
j=0

aj(n)bj ,

where ai ∈ {0, . . . , b− 1}, then its corresponding value in the Van der Corput sequence is

V C(n) =
m∑
j=0

aj(n)b−j−1.

This sequence is defined for the interval [0, 1] in one dimension. It can be extended to
the interval [−1, 1] and several methods to extend the sequence to higher dimesions, while
keeping the low discrepancy, have been proposed.

One of them is the Halton sequence, which is a generalization of the one–dimensional Van
der Corput sequence, where a different prime base is used in each dimension. However, this
approach leads to a high correlation between the points in successive higher dimensions.
Therefore, a sort of rearranged version of the Halton sequence, called Faure sequence, has
been proposed. It uses the same base for each dimension, but rearranges the corresponding
elements of the Van der Corput sequence in each dimension.

The Sobol sequence is another generalization of the Halton sequence. Similar to the Faure
sequence, it uses the same base, namely base 2, for all dimensions, but the rearranging is
more complicated. For details refer to [Galanti and Jung, 1997].

The set of Quasi Monte Carlo points ensure a good coverage of the design space due to
the low discrepancy. The design also shows a better complexity than the random selection
of points, but can be augmented just as easily. Figure 4.4.5 shows the first 10 and the
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next 90 to give a total of 100 points of the Sobol sequence. Note how the configuration
resembles a rotated regular grid as the number of points gets larger.

Latin Hypercube Similar to the first designs, the Latin Hypercube sampling first proposed
by [McKay et al., 1979] involves randomly selected points. But in this case, the points are
not selected independently. Instead, each of the d one–dimensional subspace of the design
space is divided into N equidistant intervals, where N is the number of sampling points and
d the number of factors, i.e. the design space is divided into Nd bins. The points are then
selected, such that each projection onto a one–dimensional subspace contains exactly one
point in each bin. These points can either lie in the center of each bin (c.f. figure 4.4(a))
or at a random point inside the bin (c.f. figure 4.4(b)). This yields a uniform distribution
for each one–dimensional projection. The complexity and design space coverage is similar
to the Quasi Monte Carlo approach, but the addition of new points can be a challenge, as
all points are chosen simultaneously. However, this is not a problem when a larger set of
points is to be selected in each iteration of an algorithm. In figure 4.4.5, the first 10 points
are randomly selected within 102 = 100 bins (10 bins for each dimension) and to refine the
design to give a total of 100 points, the domain is divided into 1102 = 12100 bins to get
a Latin Hypercube sampling of the additional 90 points, where bins containing one of the
previous 10 sampled points are rejected.

X

X

X

X

(a) centered

X
X

X
X

(b) random
Fig. 4.4.4: Latin hypercube designs.

Orthogonal designs A generalization to Latin Hypercube sampling is orthogonal sam-
pling, which requires, that the space should be covered evenly. This design is comprised
of equally probable subspaces, which are sampled with the same density. A t-dimensional
projection should show a uniform distribution, where t is called the strength of the design.
As a special case, Latin Hypercube designs are orthogonal with strength 1. This is not
easy to implement for t ≥ 2, as sometimes orthogonality can only be achieved for a certain
number of points and subspaces.

Sparse Grids In particular with regard to computational complexity in high dimensional
space, sparse grids [Bungartz and Griebel, 2004] come to mind. These grids naturally cover
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(a) Monte Carlo

−1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

(b) Quasi Monte Carlo
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0
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(c) Latin Hypercube
Fig. 4.4.5: Different random designs with refinement. Number of total sample points N = 10, 100

in the unit hypercube [−1, 1]2. In the Latin Hypercube design, the bins for the sam-
pling of 10 points are shown.

the whole design space and can be (adaptively) refined if necessary. They also show a good
complexity. Sparse grid points are not very common in response surface methods, however
there have been some works on this topic; see for example [Beena and Ganguli, 2010],
where this approach has been employed to optimize various objective functions commonly
used for testing global optimization algorithms.

Sparse grids are a special discretization method based on hierarchical basis functions, c.f.
section 4.4.1.2 for more details. There are several ways to define a sparse grid, depending
on the norm used to define the index set. The maximum– or L2–norm grid SSGmax with
boundary points is defined as

SSGmax =
⋃
|l|1≤n

(Sl1SGmax × · · · × S
ld
SGmax) (4.4.1)

with the nested sets SlSGmax ⊂ S
l+1
SGmax of level l defined by

SlSGmax = {sl,i ∈ D̂|sl,i =
i− 1

ml − 1
forj = 1, . . . ,ml,ml = 2l + 1}. (4.4.2)

Excluding the boundary points, it is defined as

SSGNB =
⋃
|l|1≤n

(Sl1SGNB × · · · × S
ld
SGNB) (4.4.3)

with the nested sets SlSGNB ⊂ S
l+1
SGNB defined by

SlSGNB = {sl,i ∈ D̂|sl,i =
i

ml + 1
forj = 1, . . . ,ml,ml = 2l − 1}. (4.4.4)

In this thesis, the latter approach is used due its lower complexity. For example, the
first level of SSGmax consists of 3d points, i.e. 729 for d = 6 or 177147 for d = 11, whereas
SSGNB has only one.

Other sparse grids based on one–dimensional quadrature rules to construct the grid
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for numerical integration include the Clenshaw–Curtis rule, the Gauss–Patterson rule or
Chebychev integration, c.f. [Gerstner and Griebel, 1998].

Select By Hand In addition to all those designs, it is possible to add some or even all
sample points by hand. For example, if one wishes to determine a certain response for
comparison reasons. In our case, these points are the parameter points of the five OWC
constructions discussed in section 3.2, i.e. the points given in table 3.2.1.

Note, that for all designs, points in the subset {s ∈ D|cs + d(αs) > e(βs) + gs + 4.0}
are neglected and not sampled, as described in section 3.3.

Four sets of sample points are selected for comparison and also combined for a more
refined metamodel. These four selected designs are Monte Carlo, Quasi Monte Carlo,
Latin Hypercube and Sparse Grid points.

Sparse Grids

Sparse grids, also known as hyperbolic cross points, discrete blending or Boolean interpo-
lation, were originally designed for the interpolation of high dimensional functions, which
suffer the curse of dimensionality— a term coined by [Bellman, 1961]. It refers to exponen-
tial dependence of classical discretization techniques on the dimension d, i.e. the number
of grid points and therefore (expensive) function evaluations grows asymptotically O(2nd),
c.f. the full factorial grid.

To fully understand this problem and find a solution, consider a function f : U ⊂ Rd → R
and the corresponding interpolant u defined by

f(x) ≈ u(x) =
∑
i

αiφi(x),

with suitable basis functions φi(x) and coefficients αi.

First of all, consider the problem in one dimension. For discretization on a full grid, the
underlying approximation space is decomposed into subspaces. The basis of each subspace
is based on the usual one–dimensional hat functions

Φ(x) =

1− |x| if x ∈ [−1, 1]

0 else,
(4.4.5)

which is used to generate a family of basis functions Φl,i defined by

Φl,i(x) = Φ

(
x− ihl
hl

)
(4.4.6)

with support in [xl,i − hl, xl,i + hl].
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The hierarchical increment spaces are then defined by

Wl = span{Φl,i|i ∈ Il}

with the index set
Il = {i ∈ N|1 ≤ i ≤ 2l − 1, i odd}.

The corresponding discrete function space Vl is then the direct sum of these subspaces, i.e.

Vl =
⊕
k≤l

Wk.

This yields the one–dimensional interpolant

f(x) ≈ u(x) =
l∑

k=1

∑
i∈Ik

αk,iΦk, i(x),

which can be extended to higher dimensions via a tensor product construction. The basis
functions are the product of the one–dimensional basis functions, i.e.

Φl,i(x) =

d∏
n=1

Φln,in(xn)

with the corresponding index set

Il = {i ∈ Nd|1 ≤ in ≤ 2ln − 1, in odd}, 1 ≤ n ≤ d

and hierarchical subspaces
Wl = span{Φl,i|i ∈ Il}.

Hence, the d–dimensional interpolant of level n is defined by

f(x) ≈ u(x) =
∑
|l|∞≤n

∑
i∈Ik

αk,iΦk,i(x).

So far, the full grid construction has been considered and the interpolant is constructed
for (2n − 1)d grid points (assuming f |∂U = 0). For sufficiently smooth functions, the
asymptotic error decay is

‖f(x)− u(x)‖L2 ∈ O(h2
n),

but with O(h−dn ) = O(2nd) function evaluations, i.e. the computational cost increases ex-
ponentially with the dimension, which is known as the curse of dimensionality.

Sparse grids are designed to overcome this difficulty, i.e. the discretization uses less
function evaluations, while maintaining the order of accuracy. The prerequisite is that the

47



4 Global Optimization

second mixed derivatives are bounded, i.e. the function belongs to the Sobolev space

Hmix
2 (U) = {f : U → R|Dlf ∈ L2(U), |l|∞ ≤ 2, f |∂U = 0},

which leads to a rapid decay of the coefficients

|αl,i| = O(22|l|1).

Leaving out the subspaces with little contribution to the overall interpolant leads to the
sparse grid space

V S
0,n =

⊕
|l|1≤n+d−1

Wl

and interpolant
fS0,n(x) ≈ u(x) =

∑
|l|1≤n+d−1

∑
i∈Ik

αk,iΦk,i(x).

Thus, the number of grid points are O(h−1
n (log(h−1

n ))d−1) = O(2nnd−1) and the accuracy

‖fS0,n(x)− u(x)‖L2 ∈ O(h2
n(log(h−1

n ))d−1).

Sparse grids were introduced by [Smolyak, 1963] for quadrature and interpolation of
high dimensional functions using the tensor product approach. The method is also used
for solving partial differential equations and has application in various areas such as data
mining, computational finance, data compression and much more.

4.4.2 DACE

Kriging was first introduced by and named after [Krige, 1951] and later formalized by
[Matheron, 1962]. After its initial use in geostatistics, [Sacks et al., 1989] used the technique
for creating a metamodel for (deterministic) computer experiments, which is known as the
DACE (Design and Analysis of Computer Experiments) model and it is now a common
tool in statistics and widely used for the modeling of computer experiments.

The main idea is to interpret the deterministic response Y of a simulation as a stochastic
variable, i.e.

Ŷ (x) =
k∑
j=1

βjfj(x) + Z(x),

where the first term is a regression model and Z(x) a random variable with mean zero and
covariance

V (w, x) = σ2R(w, x),

between Z(w) and Z(w), i.e. the product of the process variance σ and a given correlation
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model R(w, x). The functions fj : Rd → R, j = 1, . . . , k are chosen regression functions
with regression parameters βj .

In order to find the Kriging predictor, the design matrix F, Fij = fj(si), the matrix of
stochastic process correlation R (given at the sample points) and the vector of correlations
at untried point x ∈ D are defined by

f(x) = (f1(x), . . . , fk(x))T ,

F = (fT (s1), . . . , fT (sd)))
T ∈ Rd×k,

R = {R(si, sj)} ∈ Rd×d,

r(x) = (R(s1, x), . . . , R(sk, x))T .

Next, we want to derive the best linear unbiased predictor (BLUP) Ŷ (x) of y. To this
end, consider the linear predictor

Ŷ (x) = c(x)TY, (4.4.8)

with coefficient c = c(x) ∈ Rk. Assuming the predictor is unbiased, i.e.

E[Y (x)− Ŷ (X)] = 0

⇐⇒ F T c(x) = f(x), (4.4.9)

then the error of the model is

Ŷ (x)− y(x)
(4.4.8)

= cTY − y(x)

(4.4.2)
= cT (Fβ + Z)− (f(x)Tβ + z)

= cTZ − z + (F T c− f(x))Tβ

(4.4.9)
= cTZ − z,

where Z is the error at the sample points. The mean squared error is therefore given by

φ(x) = E[(Ŷ (x)− y(x))2]

= E[(cTZ − z)2]

= E[y2 − 2cTZz + cTZZT c]

= σ2(1 + cTRc− 2cT r). (4.4.10a)

In order to get the best predictor with respect to the mean squared error, φ(x) has to be
minimized with the unbiased constraint (4.4.9). To this end, consider the Lagrangian

L(c, λ) = σ2(1 + cTRc− 2cT r)− λT (F T c− f).

49



4 Global Optimization

Calculating the derivative

∂

∂c
L(c, λ) = 2σ2(Rc− r)− λTF T

yields the system of linear equations(
R F

F T 0

)(
c

λ̃

)
=

(
r

f

)
(4.4.11)

with λ̃ = −λ/(2σ2).
The solution to (4.4.11) is given by

λ̃ = (F TR−1F )−1(FR−1r − f) (4.4.12)

c = R−1(r − Fλ̃), (4.4.13)

which defines the linear predictor (4.4.8) through

Ŷ = cTY

= (R−1(r − Fλ̃))TY

R symm.
= (r − Fλ̃)TR−1Y

= rTR−1Y − (F TR−1r − f)T (F TR−1F )F TR−1Y︸ ︷︷ ︸
β∗

= rTR−1Y − (F TR−1r − f)Tβ∗

= fTβ∗ + rT R−1(U − Fβ∗)︸ ︷︷ ︸
γ∗

= f(x)Tβ∗ + r(x)Tγ∗, (4.4.14)

where β∗ = (F TR−1F )F TR−1Y is the generalized least squares estimate of β (i.e. a solu-
tion of the regression problem Fβ ' Y ) and γ∗ = R−1(U − Fβ∗) are fixed for a given set
of sample points. The latter is computed by the residuals Rγ∗ = Y − Fβ∗.
Hence, once the parameters β∗ and γ∗ are determined for a given set S ∈ D, the predictor

can be easily calculated by two simple vector multiplications and one addition. Therefore
a computationally cheap response surface model has been constructed.
Note, that also the gradient of the predictor (4.4.14) can be calculated via

Ŷ ′ = Jf (x)Tβ∗ + Jr(x)Tγ∗,

where
(Jf (x))ij =

∂fi
∂xj

(x), (Jr(x))ij =
∂R
∂xj

(θ, si, x)

are the Jacobian of f and r, respectively.
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The error (4.4.10a) of the predictor can also be calculated explicitly by

φ(x) = σ2(1 + cTRc− 2cT r)

= σ2(1 + cT (Rc− 2r))

(4.4.13)
= σ2(1 + (R−1(r − Fλ̃))T (RR−1(r − Fλ̃)− 2r))

= σ2(1 + (r − Fλ̃)TR−1(−Fλ̃− r))

= σ2(1 + (Fλ̃− r)TR−1(Fλ̃+ r))

= σ2(1 + λ̃TF TR−1Fλ̃− rTR−1r)

(4.4.12)
= σ2(1 + uT (F TR−1F )−1u− rTR−1r),

where u = F TR−1r − f and σ2 can be determined by

σ2 =
1

d
(Y − Fβ∗)TR−1(Y − Fβ∗),

and represents the maximum likelihood estimate of the variance corresponding to the nor-
mal equations (F TF )β∗ = F TY [Lophaven et al., 2002].

Finally, an appropriate regression model and correlation function have to be chosen to
define the response surface. Common choices for the regression functions f are polynomials
of lower order, depending on the desired accuracy of the model. An obvious choice for the
sparse grid approximation are the hierarchical basis functions described in the previous
section. However, to make a fair comparison between the different chosen experimental
designs, the same basis functions are selected for all of them.

The correlation function R should be chosen according to the modeled problem, i.e. the
objective function. The chosen function highly affects the accuracy of the predictor, c.f.
section 6.3. Typical correlation functions are stationary, i.e. R(w, x) = R(w−x), assuming
that any non–stationary behavior can be modeled by the regression function [Sacks et al.,
1989]. Furthermore, only product–type correlations of the formR(w, x) =

∏d
i=1Ri(wi−xi)

are considered. For example, the exponential correlation model

R(w, x) =

d∏
i=1

exp(−θi|wi − xi|p)

with parameters θi > 0 and 0 < p ≤ 2 or the linear model

R(w, x) =

d∏
i=1

(1− θi|wI − xi|),

which yields a linear spline response Ŷ .
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4.5 Implementation

The four set of sample points are produced by a set of Python scripts. Each one is saved
in a separate text file. Since Sparse Grid points are the only ones depending on a level,
the other experiment designs comply with the number of points of each sparse grid level.
The generation of Monte Carlo sample points is straight forward with the Python build–in
function random.uniform(a,b), which selects an element from a uniform distribution on
the interval [a, b]. An additional point set can be easily added the same way for each new
“level”.
The Python library SOBOL by Corrado Chisari1 is employed for the generation of Quasi

Monte Carlo points. Additional points are simply the next points of the Sobol sequence.
The augmentation of the Latin Hypercube design is slighty more complicated. For the

first set of N points, the parameter space is divided into Nd bins creating a Nd matrix
and points are chosen sequentially. For each selected point, the corresponding columns
and rows of the bin matrix are deleted, which results in a Latin Hypercube Design. For
the addition of Mpoints, the design space is divided into (M + N)d bins and all rows
and columns corresponding to the already selected points are deleted before the additional
points are selected in the same manner.
Finally, the Sparse Grid points are produced as described in equations (4.4.3) and (4.4.4).

The files containing the sample points are then parsed into the input files for the Navier–
Stokes solver containing a parametrized version of the OWC, which in turn are utilized to
start the simulation. The solver produces a number of output files containing the calcu-
lated velocity field among other flow information. These files are then converted into the
VTK2 format, which can be processed by yet another Python script calculating the the
average airflow in the opening for the turbine.

The final response as well as the metamodel are calculated with MATLAB. The sample
points and corresponding average air flow values are read from input files, then the ad-
ditional constraints in equations (3.4.1) and (3.4.2) are applied. The response surface is
determined with the MATLAB Toolbox DACE [Lophaven et al., 2002].

Since the Gauss correlation model yields a smooth response surface and the gradient
can be calculated via (4.4.2), two different gradient–based optimization algorithms are ap-
plied to the metamodel. The two methods are a Trust–Region method3 implemented in the
MATLAB function fminunc for unconstrained optimization and a Trust–Region–Reflective
algorithm4 via the MATLAB function fmincon. The latter is used for constrained opti-

1available online at http://people.sc.fsu.edu/~jburkardt/py_src/sobol/sobol.html
2Visulization Toolkit, see http://www.vtk.org/
3See http://www.mathworks.de/de/help/optim/ug/unconstrained-nonlinear-optimization-algorithms.
html#brnpcy5

4See http://www.mathworks.de/de/help/optim/ug/constrained-nonlinear-optimization-algorithms.
html#brnpeek
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mization, where the only constraints given to the function are the bounds of the parameter
space.
Apart from these two methods, two different direct search algorithms are employed as

well. The first one is the DIRECT search method described in section 4.3.1. A MATLAB
implementation of the method by [Finkel, 2003] is used for this purpose. The method
is bounded in nature, but unconstrained. Another unconstrained, but unbounded search
algorithm is the Nelder–Mead–Simplex method5 implemented in the MATLAB routine
fminsearch.

The modularization and automatization via several scripts makes changes in the work
flow very simple. For example, the information extracted from the Navier–Stokes solver
can be altered easily, since all the information about the flow is saved in the output files.

5See http://www.mathworks.de/de/help/optim/ug/unconstrained-nonlinear-optimization-algorithms.
html#brnoxyk
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5 Navier Stokes solver

The blackbox consists of a two–phase fluid simulation with a wave generator and a wave
energy converter corresponding to the input parameters. The following describes the flow
solver in detail, i.e. the governing equations, discretization and employed numerical meth-
ods. Furthermore, the numerical wave generation outlined.

5.1 Modeling equations

The governing equations for the flow are the incompressible Navier–Stokes equations, which
are to be solved in each phase. In this section, the equations and the corresponding two–
phase solver including fluid–structure interaction with a rigid body are described.

Since we consider water and air, we have to look at a two phase flow. The two fluids
do not mix, i.e. the domain Ω ∈ R3 can be decomposed as Ω = Ω1 ∪ Ω2 ∪ Γf , where
Ωi, i = 1, 2 contains the respective fluid and Γf = ∂Ω1 ∩ ∂Ω2 denotes the free boundary
separating those two. Both Ωi and Γf are time–dependent. Each fluid can be described
by the single–phase Navier–Stokes equation in its respective domain Ωi.
Additionally, the fluid–structure interaction is modeled by the kinematic movement equa-
tions, which have to be integrated into the two–phase framework. This is done via the
material properties of the rigid body — density and viscosity — as well as the velocity
and an additional level–set function. The part of the domain occupied by the rigid body
is denoted by R.
Taking all of the above into consideration, we obtain the system of equations

ρ(φ)
Du

Dt
+∇p = ∇ · (µ(φ)D)

− σκδ(φ)n + ρ(φ)g + fs

in Ω× [0, T ], (5.1.1a)

∇ · ui = 0 in Ωi × [0, T ], (5.1.1b)

ui = 0 on Γ× [0, T ], (5.1.1c)

ui = u0i on Ωi × {0}, (5.1.1d)

ρs
∂us
∂t

= −∇ps + ρsg in R× [0, T ], (5.1.1e)

∇ · us = 0 in R× [0, T ], (5.1.1f)

where ui : Ω× [0, T ]→ R3 is the velocity field — for i = 1, 2 the respective fluid velocity,
for i = s the rigid body velocity and simply u the total velocity. Also, pi : Ω× [0, T ]→ R
denotes the pressure, ρi ∈ R the density, νi ∈ R the viscosity — with the indices as for
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5.2 The Level Set Method

the velocity field, where applicable. The surface tension coefficient is given by σ, which is
treated as a material dependent constant coefficient, and κ describes the local curvature
of the fluid interface. The use of the level–set functions φ, φs : Ω× [0, T ]→ R is described
below. Also, there are the volume forces gravity g : Ω× [0, T ]→ R and fs : Ω× [0, T ]→
R, which is an additional term formally modeling the fluid–structure interaction. The
deformation tensor D is defined as D = ∇u + {∇u}T andDuDt = du

dt + u · ∇u denotes
the material derivative, c.f. [Croce et al., 2009]. Furthermore, there are two additional
constraints on the free boundary, the so called kinematic condition u1 = u2 and the
dynamic condition (T 1−T 2) ·n = σκn on Γf . Here T i := −piI +µiDi denotes the stress
tensor, σ the surface tension coefficient, which is treated as a material dependent constant
coefficient, and local curvature κ. Using the level–set function φ : Ω × [0, T ] → R, we get
the two–phase system

ρ(φ)
Du

Dt
+∇p = ∇ · (µ(φ)D)

− σκδ(φ)n + ρ(φ)gin Ω,

(5.1.2)

where Du
Dt = du

dt + u · ∇u denotes the material derivative. Here, density and viscosity are
globally defined by

ρ(φ) = ρ1 + (ρ2 − ρ1)H(φ),

µ(φ) = µ1 + (µ2 − µ1)H(φ),

where H describes the Heaviside function:

H(φ) :=


0 if φ < 0

1
2 if φ = 0

1 if φ > 0

. (5.1.4)

We consider an open rectangular domain Ω ∈ R3 with slip boundary condition on each
wall of the Lipschitz boundary Γ = ∂Ω, i.e.

(u · n)|Γ = 0, ∂n(u · t)|Γ = 0, ∂n(u · s)|Γ = 0,

where n is the outer unit normal vector and t and s are linearly independent tangential
vectors.

5.2 The Level Set Method

As mentioned above, the free surfaces are modeled employing the so–called level set func-
tion introduced by Osher and Sethian [Osher and Sethian, 1988]. Following this surface
capturing method, the surface is approximated by a smooth scalar function φ and the
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surface is implicitly given by the zero level set of this function, i.e.

Γf (t) := {x ∈ Ω|φ(x, t) = 0} (5.2.1)

and therefore all x(t) vanish on Γf (t), i.e.

φ(x(t), t) = 0. (5.2.2)

Derivation then yields the transport equation

φt +∇φ(x(t), t) · x′(t) = 0. (5.2.3)

Here, x′(t) is the velocity field u on the free surface Γf and thus, the initial value problem
for the transport of the level set function is given by

φt + u · ∇φ = 0, (5.2.4a)

φ(x, 0) = φ0. (5.2.4b)

Another property of a level set function is that it should be a signed distance function.
Hence, we have the additional constraints

φ(x, t) =


> 0 if x ∈ Ω1

= 0 if x ∈ Γf

< 0 if x ∈ Ω2

(5.2.5a)

and |∇φ| = 1. (5.2.5b)

This property ensures that we have a Lipschitz–continuous function in the whole domain,
which in return ensures numerical stability and accuracy. However, once the level set
function is transported, the Eikonal equation (5.2.5b) might not hold any longer. This
essential property should at least hold in an ε–neighborhood of the free boundary. We
ensure this by a reinitialization step following the ideas of Sussman et al. [Sussman et al.,
1994]. In this step, the zero level set stays unchanged, while the property of a distance
function is regained. To do so, the initial value problem

dτ + sign(φ)(|∇d| − 1) = 0, (5.2.6a)

d(x, 0) = φ(x), (5.2.6b)
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with artificial time τ and sign function

sign(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

has to be solved. Since this is only done in an ε–neighborhood of the free surface, the num-
ber of necessary iterations of the reinitialization can be dramatically reduced by stopping
as soon as |∇d| = 1 holds for all |d| ≤ ε.

5.3 Discretization

u u

v

v

w

w
p,ϕ

Fig. 5.3.1: Cell in a
staggered grid [Peuker,
2011].

The hyper–rectangular domain Ω is discretized by an equidistant
grid in all three dimensions. For stability reasons a staggered grid
is employed, i.e. the variables are stored at different node points,
as illustrated in figure 5.3.1. The scalar variables, in our case
pressure and level set function values, are stored in the cell cen-
ter, whereas the vector components u, v and w of the velocity field
are stored at the center points of the cell walls. In order to be able
to store all values, an additional boundary layer has to be intro-
duced, the so–called ghost cells. They are not part of the domain
Ω and contain the values necessary to implement the boundary
conditions.

The time steps δt are adaptively controlled by a CFL–condition for the different forces.

The discrete level set function φh satisfies all the properties mentioned above. However,
since density and viscosity are not continuous at the free surface, they have to be smoothed
along Γf . To this end, we introduce the boundary layer thickness ε(x), which behaves like
the mesh size and preserves the global convergence rate. Therefore, we define the global
density and viscosity, respectively, by

ρε(φh) = ρ2 + (ρ1 − ρ2)Hε(φh), (5.3.1a)

µε(φh) = µ2 + (µ1 − µ2)Hε(φh), (5.3.1b)

where Hε(φh) is the smoothed Heaviside function. It is defined by

Hε(φh(x)) :=
0 if φh(x) < −ε(x)

1
2(1 + φh(x)

ε(x) + 1
π sin(πφh(x)

ε(x) )) if |φh(x)| ≤ ε(x)

1 if φh(x) > ε(x)

.

Since now we have a smooth function Hε, it is differentiable and the corresponding delta
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functional is the derivative of this smooth Heaviside function, i.e.

δε(φh(x)) = ∂φhH
ε(φh(x))

=

 1
2ε(x)(1 + cos(πφh(x)

ε(x) )) if |φh(x)| ≤ ε(x)

0 else.

Additionally, the curvature κ and unit normal n are accordingly discretized. This means,
we replace σκδ(φ)n in (5.1.1a) by σκhδε(φh)nh with discrete curvature

κh := ∇ · nh

and discrete unit normal

nh :=
∇φh
|∇φh|

=
(φx, φy, φz)

T
h√

(φ2
x + φ2

y + φ2
z)h

.

In each time step, the level set function is transported by solving

∂tφh + uh · ∇φh = 0 (5.3.2)

and afterward density and viscosity are calculated by (5.3.1).

The rigid body level–set function is used in the same manner and the rigid body velocity
can be calculated by

Hε(φs)us(x, t) = Hε(φs)(v(t) + w(t)× r) in R+ ε, (5.3.3)

where v is the translation velocity, w the angular velocity, r the vector from an arbitrary
point within the rigid body to its center of mass and ε describes the radius, within which
the structure is describes by its level–set function φs.

Following the smoothed profile method (SPM) [Nakayama and Yamamoto, 2005], the
total velocity is represented by a smooth convex combination of the rigid body velocity us

and the fluid velocity uf , i.e.

u : = (1−Hε(φs))uf +Hε(φs)

= uf +Hε(φs)(us − uf ).
(5.3.4)

The discrete transport equation (5.3.2) is solved by a fifth order WENO–method for the
convective part u · ∇φh. The time discretization is handled by a second order Adams–
Bashforth–method. The reinitialization step (5.2.6) is discretized by a third order Runge–
Kutta–scheme for the temporal part and a fifth order WENO–scheme for the spacial part.

In order to decouple the momentum (5.1.1a) and the continuity equation (5.1.1b) of the
incompressible Navier–Stokes equations, we employ the Chorin–Teman projection method
as proposed by both Chorin [Chorin, 1968] and Temam [Témam, 1969]. This allows us
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5.3 Discretization

to calculate the pressure and the velocity field separately. The idea of this method is to
decompose the impulse equation (5.1.1a) into a divergence free and a rotation free part.
To this end, the divergence free approximated velocity field u∗ is projected onto the space
of divergence free velocities using the pressure p.

This means, we first compute the auxiliary velocity u∗ by

u∗ = un + δt(g −∇ · (un ⊗ un)

+
1

ρε(φn, φns )
(∇ · (µε(φn, φns )Dn)

− (1−Hε(φns ))σκ(φn)δε(φn, φns )∇φn)),

(5.3.5)

which is subsequently transported by the level set function and reinitialized. This yields
the new level set functions φn+1, φn+1

s and we get the system of equations

u∗,n+1 − u∗

δt
+

∇p∗,n+1

ρ(φn+1, φn+1
s )

= 0, (5.3.6a)

∇ · u∗,n+1 = 0. (5.3.6b)

Next, the divergence operator is applied to (5.3.6a) and under consideration of equation
(5.3.6b), we get the first pressure poisson equation

∇ ·
(

∇p∗,n+1

ρε(φn+1)φn+1
s

)
= ∇ · u

∗

δt
. (5.3.7)

Solving this equation gives the new pressure p∗,n+1 and u∗,n+1 is calculated by the first
velocity correction step

u∗,n+1 = u∗ − δt

ρε(φn+1)φn+1
s
∇p∗,n+1. (5.3.8)

The preliminary pressure and velocity does not distinguish between fluid and structure,
i.e. the rigid body is considered to be a part of the fluid. This assumption is corrected by
an additional pressure within the body. The rigid body velocity is given by

Hε(φn+1
s )un+1

s (x, t) = Hε(φn+1
s )(vn+1(t)

+ wn+1(t)× rn+1).
(5.3.9)

Next, the auxiliary pressure p∗s for the rigid body can be derived by solving the second
pressure poisson equation

∇ ·

(
∇p∗,n+1

s

ρε(φn+1), φn+1
s

)
= ∇ · H

ε(φn+1
s )(un+1

s − u∗,n+1)

δt
. (5.3.10)

For this step, we assume the velocity field to be divergence free, which in turn implicitly
guarantees the impermeability condition, i.e. the rigid body boundary is impervious. Fi-
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nally, the rigid body velocity us can be integrated into the total velocity field u by the
second velocity correction step

un+1 = u∗,n+1 +Hε(φn+1
s )(un+1

s − u∗,n+1)

− δt

ρε(φn+1, φn+1
s )

∇p∗,n+1
s .

(5.3.11)

This step ensures that the global velocity is divergence free, as well as the stiffness of the
rigid body.
Finally, the pressure can be simply calculated by

pn+1 = p∗,n+1 + p∗,n+1
s . (5.3.12)

In order to have well–defined problems (5.3.7) and (5.3.10), we need the additional
boundary conditions

∂np
∗n+1|Γf

=
ρε(φn+1, φn+1

s )

δt
(u∗Γ − un+1

Γ ) · n, (5.3.13a)

∂np
∗n+1
s |Γf

=
ρε(φn+1, φn+1

s )

δt
(u∗Γ − un+1

Γ ) · n (5.3.13b)

i.e. equation (5.1.1a) is projected onto the outer unit normal. In case u∗Γ = un+1
Γ , we know

that ∂npn+1|Γf
= 0, which means we have a homogeneous Neumann boundary condition.

The Poisson equations (5.3.7) and (5.3.10) are discretized using finite differences, which
yields a linear system of equations Ax = b, which can be solved by various iterative
methods, e.g. SOR or CG.
In summary, the main steps of the algorithm to solve the incompressible two–phase

system are to use the Chorin–Temam projection method to calculate the pressure and
the auxiliary velocity fields, transport and reinitialize the level set functions and finally
compute the actual velocity field by a correction step, see algorithm 1.
The whole algorithm runs parallel using the libraryMPI (Message Passing Interface) [Fo-

rum, 1993]. To this end, the domain Ω is decomposed into disjoint subdomains Ω1
h, . . . ,Ω

P
h

and each of the 1, . . . , P processes solves the equations in its respective domain. Addi-
tionally, the boundary layers of each subdomain have to be communicated between the
different processes at each time step.
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5.3 Discretization

Algorithm 4 Parallel two–phase solver
Require: mesh sizes δx, δy, δz ∈ R, end time T , level set function φ0, domain Ω
1: Assign local subdomains Ωq, q ∈ {1, . . . , P}.
2: Set t := 0, n := 0 and h := max(δx, δy, δz).
3: Initialize un := u0, pn := p0 und φn := φ0 in each subdomain Ωq, q ∈ {1, . . . , P}.
4: Set boundary layer thickness ε(x).
5: Initialize rigid body center of mass x0

s.
6: Set boundary values of un on local boundaries ∂Ωq ∩ ∂Ω.
7: Time loop:
8: while t ≤ T do
9: Compute time step size δt.
10: Impulse equation:

Comm. boundary values of un and φn.
Compute aux. velocity u∗(un, φn, φsin) as in (5.3.5) in Ωq.
Set boundary values for u∗ on ∂Ωq ∩ ∂Ω.

11: Set RHS of Poisson equation:
Comm. boundary values of u∗.
Set RHS b := ∇ · u∗ of euqation (5.3.7) in Ωq.

12: Transport equation:
Transport level set functions as in (5.3.2).

13: Reinitialization:
Reinitialize following (5.2.6).

14: Pressure Poisson equation I:
Compute p∗,n+1.
Compute boundary values of p∗it for each iteration step it.

15: Velocity correction step I:
Compute u∗,n+1 as in (5.3.8) in Ωq.
Set boundary values for u∗,n+1 on ∂Ωq ∩ ∂Ω.

16: Set RHS of Poisson equation II:
Comm. boundary values of u∗s.
Set RHS of (5.3.10) in Ωq.

17: Pressure Poisson equation II:
Compute p∗,n+1.
Comm. boundary values of pit for each iteration step it.

18: Velocity correction step II:
Compute un+1 as in (5.3.11) in Ωq.
Set boundary values for un+1 on ∂Ωq ∩ ∂Ω.

19: Set t := t+ δt and n := n+ 1.
20: end while
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5 Navier Stokes solver

5.4 Numerical wave generation

An overview of different approaches to numerical simulation of waves can be found in [Kim
et al., 1999] and [Tanizawa, 2000]. There are two main types of wave generation in a
numerical wave tank.

• The introduction of a source term on the boundary or inside of the simulation domain
and

• the introduction of a moving wave maker – e.g. a paddle or flap – to reproduce waves
as in an experimental wave tank (EWT) in a lab.

Either way, the computational domain of the wave simulation is called numerical wave
tank (NWT).
The simulations computed for this Thesis use the second approach. Examples of similar

NWT simulations in two spatial dimensions can be found in [Mikkola, 2007] or [Park et al.,
2001]. However, we are going to employ a three dimensional wave tank, as we will study
three dimensional WEC devices.

Examples for the first type of NWT, where a source term induces the waves, include [Lin
and Liu, 1999] (2D) and [Ha et al., 2011] (extension to 3D), where a source term s within
a subdomain Ωs of the computational domain is introduced for the continuity equation of
the Navier–Stokes equations, i.e.

∇u = s(x, t) in Ωs.

Depending on the source term s, different kind of waves known from wave theory can be
reproduced. The corresponding source term is derived from the water surface elevation
η(x, t), c.f. equations 2.3.1 and 2.3.9. This produces an increase in mass and thus results
in a movement of the water surface. Depending on the source term, which is derived from
wave theory, c.f. section 2.3, different kinds of waves can be produced.
A similar approach is used in the package REEF3D [Bihs, 2011], where the wave motion is

prescribed by a velocity field uanalytical, which is derived from wave theory, i.e. uanalytical =

∇Φ. This analytical velocity field, which is similar to the source term s introduced in [Lin
and Liu, 1999,Ha et al., 2011], is then combined with the velocity field unumerical from the
computational solution of the Navier–Stokes equations via a space–dependent relaxation
function Ψ(x) – therefore called relaxation method as introduced by [Larsen and Dancy,
1983].

urelaxed = Ψ(x)uanalytical + (1−Ψ(x))unumerical. (5.4.1)

This ensures that the waves are a produced in the first part of the computational domain
(wave generation zone), combined with the computational solution in the next zone (reflec-
tion protection zone) and the numerical wave tank containing the actual produced waves
in another region of the domain. Finally, as in most NWT, the waves are absorbed at the
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so–called numerical beach, so that the waves are not reflected off the back wall of the wave
tank [Kamath, 2012].

The so–called LONGTANK by [Wang et al., 1995] employs modified boundary condi-
tions to generate arbitrary waves. Other examples of this purely numerical wave generation
– i.e. it cannot be reproduced in an EWT – include [Chen et al., 1999,Watanabe et al.,
2005,Choi and Yoon, 2009,Senturk, 2011].

Many wave simulations only consider a one phase model, i.e. just the water phase is
simulated and the air is disregarded. As we are interested in the air flow induced by the
construction of the wave energy converter, a two phase model is essential.
Most of the studies involving a source term for wave generation, validate the accuracy

of the produced waves by the wave theory model they used to derive the source term – e.g.
linear waves, Stokes waves or Cnoidal waves. Many show very good results for a variety
of these waves. However, changing the original conditions (either boundary condition or
governing equations) might lead to unphysical effects, such as an increase of mass in a
region of the computational domain and thus might not lead to physically correct waves.
Therefore, we choose the wave generation similar to an EWT.

We employ a wave tank as described in [Peuker, 2011], where different types of wave
makers are used to generate consistent waves of different shapes, height and period. Since
the piston wave maker, as depicted in figures 2.3.2 and 5.4.1, creates the heighest waves
and is easy to control, it is also utilized here. The velocity of the wave maker is prescribed
by the time–dependent function

A sin(πt/B)

with parameters A and B to be determined, c.f. section 6.1. The numerical beach consists
of a simple sloped bottom to absord some of the wave energy. In the simulations with the
wave energy converters, the devices replace the slope.
Another approach to produced a single wave instead of a number of consecutive ones, is

to use a falling water column. This means, that in the initial state of the fluid simulation,
the water level is higher at the one end of the wave tank, c.f. figure 6.3.1, which is pulled
down by gravity and induces a wave during the simulation. This approach is used in a
two–dimensional test case, see section 6.3.

Fig. 5.4.1: Setup of the computational domain including the wavemaker (left) and the OWC
Geometry (right) [Peuker, 2011].
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6 Numerical Results

The following summarizes the numerical results of the simulations performed to optimize
the shape of the wave energy converter. The design is parametrized as described in sec-
tion 3.2 and two cases with subsets of the complete eleven–dimensional parameter space
are considered.

6.1 Optimal wave

First of all, the average wave climate (c.f. section 3.2) has to be simulated in a numerical
wave tank as described in the previous chapter. To this end, the wave maker velocity is
prescribed by a scaled sine function of the form

A sin(πt/B)

with parameters A and B to be determined and variable time t. The parameter A controls
the height of the sine function and therefore the peak velocity of the wave maker, while B
manipulates the period of the wave maker and thus also the period of the induced wave.
More precisely, the period of the wave maker is equal to 2B and a similar period can be
expected for the wave. The wave tank measures 350 × 50 × 50 with a numerical beach
consisting of a slope at the end. In order to find a stable wave climate, each simulation
lasts 70 seconds of simulation time.
Since a good approximation of the ideal average wave climate was found by varying

both parameter on a regular grid, no further optimization was necessary. The values
A = 3.0, B = 5.5 are found to be optimal and produce on average a wave height of 2.495

meters with a period of 7.3825 seconds. Figure 6.1.1 shows the wave height measured at
the center of the wave tank during the simulation.
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Fig. 6.1.1: Wave height over time, measured at the center of the numerical wave tank.
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6.2 Difficulties

As discussed in the previous chapters, the evaluation of the blackbox function is com-
putationally expensive. Several test runs are performed to determine the cost of a single
simulation run and estimate the total runtime for the evaluation of a complete set of sample
points.

The ideal setup would be a longtime simulation (70 seconds of simulation time for about
ten wave periods) of an OWC device parametrized by all eleven parameters in a full three–
dimensional wave tank with a high resolution. However, to fullfill (almost) all of these
criteria, a single simulation run lasts about three whole days on 64 cores (on an Intel Xeon
EM 64 T 3.2 GHz cluster with Myrinet XP interconnect on Ubuntu 10.04 LTS) — with
a low resolution of one meter per grid cell. This runtime makes it infeasible to perform a
sufficient number of simulations to search the whole eleven–dimensional parameter space
— one point evaluation per parameter direction would already take more than a month
(assuming only 64 cores were available).

For these reasons, some compromises concerning the simulation time, number of param-
eters and size of the wave tank have to be made. Since the resolution is already as low
as possible (mesh size of one meter), the next step is to shrink the size of the wave tank
to reduce the number of degrees of freedom. As the wave maker needs a sufficiently large
distance from the OWC to reduce the influence of reflected waves from the wave energy
device on the wave maker, the length cannot be shortened. Also, the height of the wave
tank is bounded by the height of the wave energy converter. However, the width can be
changed if the harbor walls are neglected — which conveniently also reduces the number
of parameters to only seven. To further reduce the number of parameters, the width of
the OWC is fixed as well. This also ensures a better comparability of the different designs,
since the walls of the wave tank can act as harbor walls if they are close to the device.
Finally, the simulation time is reduced to only 35 seconds, which gives it just enough time
for the first full oscillation inside the turbine shaft to be be observed.

The results of this six–dimensional optimization problem can be found in section 6.4.

In order to get an idea of how the whole optimization works and to get a visual output
of the complete metamodel, an even further reduced test case is considered in section 6.3.
Only two parameters are considered and the wave maker, which adds a large amount of
the computational complexity of the CFD solver, is replaced by a falling water column.
Thus, the simulation time is considerably reduced to olny ten seconds.

6.3 Case 1: 2D

The two–dimensional test case is a small version of the actual optimization problem. The
wave maker is neglected and instead only one solitary wave is induced by a falling water
column. The start configuration is shown in figure 6.3.1. The simulation time of ten
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seconds grantees that the wave can enter the wave energy plant and induce the water
column to rise and fall once. Since only one wave arrives, the device does not develop its
full oscillation potential, but at least a first approximation of the oscillation mode can be
determined. Each simulation run only takes about 10 to 30 minutes on 32 cores.

Fig. 6.3.1: Initial setup of falling water column.

The two parameters to be examined are the height a and lip angle angle α, which are
confined to the interval a, α ∈ [13, 15] × [0, 40]. The other measurements are fixed at
b = 3.0, c = 15.0, β = 0.0◦, f = 6.0, g = 5.0. The wave tank measures 120 × 40 × 6, with
one meter per grid cell. This makes it a quasi–two–dimensional CFD simulation.

Figure 6.2(a) depicts the maximal response value found after each point evaluation, i.e.
the convergence of the sampling procedure. The vertical lines mark each level (of the
sparse grid design). Each experimental design contains 769 sample points, corresponding
to a sparse grid of level six. The values sorted by magnitude without respect to the order
of evaluation are shown in figure 6.2(b). This demonstrates that all experiment designs
essentially cover the same spectrum of values. The horizontal lines mark the responses for
the five reference power plants. For a fairer comparison, the values of b, c, β, f and g have
also been fixed to the values and only a and α are determined by table 3.2.1. All sample
point designs were able to find an improvement to the best performing reference OWC,
namely the device at Port Kembla with a response value of 0.08171833. All responses are
presented dimensionless, since a unit of measure does not make sense for the objective
function — which is determined by the average flow (m/s), the volume penalization (m3)
and the boundary penalty term.

The metamodel is constructed with a Gauss correlation model, i.e.

R(w, x) =

2∏
i=1

exp(−θi(wi − xi)2)

with fixed values θ1,2 = 0.03. Although the DACE Toolbox includes an algorithm to find
the optimal value of θi in each dimension, we choose to fix its value for a better comparison
of the different designs. Second order polynomials are used as regression functions. The
penalization constants in equation (3.4.1) are set to λ1 = 7 · 10−5 and λ2 = 6 · 10−2.

Figure 6.3.3 shows the contour plots of the metamodels resulting from the four different
set of sample points along with the calculated optimal values.
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6.3 Case 1: 2D
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Fig. 6.3.2: Response values for MC, QMC, LHS and SG for 769 sample points (2D).

First, all optimization algorithms are given the same initial guess s0 = (14.0, 20.0), i.e.
the center of the parameter space. The maximal number of function evaluations is set
to 10000 and each algorithm is allowed enough iterations to reach these. However, both
gradient–based algorithms do not converge and stay at a local maximum close to the center.
The reason for this is a very small gradient in this area. This leads to small trial steps in
each iteration, which is a stopping criterion for the algorithm. The direct search methods
also fail to find the global maximum, but are able to find larger local maxima than the
other two algorithms.

The solution to this problem is to use several different initial starting points. Hence, the
algorithms are started several times with random initial guesses inside the domain and the
best solution is taken. This yields the global maximum around (a, α) = (13.20434535.847820),
c.f. figure 6.3(a). Table 6.3.1 summarizes the maxima found among the sample points, i.e.
without the metamodel, and the maximal value found with the optimization algorithms.
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6 Numerical Results
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(a) MC response surface for N = 769

 
Response Surface for average air flow (gauss correlation model,QMC)
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(b) QMC response surface for N = 769

Fig. 6.3.3: Response surfaces for different designs for N sample points.
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6.3 Case 1: 2D

 
Response Surface for average air flow (gauss correlation model,LHS)
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(c) LHS response surface for N = 769

 
Response Surface for average air flow (gauss correlation model,SG)
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(d) LHS response surface for N = 769

Fig. 6.3.3: Response surfaces for different designs for N sample points (cont.).
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6 Numerical Results

 
Response Surface for average air flow (gauss correlation model, combined)
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Fig. 6.3.3: Response surfaces for different designs for N sample points (cont.).

Note, that the maxima on the respective grids are greater than the ones calculated with the
response surface. This is due to the Gauss correlation function, which smooths the meta-
model and does not interpolate the responses. Nevertheless, the surrogate model suggests,
that there is a global maximum on the interval [13.0, 13.3] × [35.9, 36.8], i.e. in the upper
left corner in figure 6.3.3. The best value, as shown in table 6.3.1 was always achieved by
the fminsearch algorithm, i.e. a direct search via the Nelder–Mead–Simplex method.

Table 6.3.1: Optimization results with and without the metamodel in 2D.
design max. value (a, α) max. value (a, α)

(without metamodel) (with metamodel)
MC 0.088798 (13.49100034.983000) 0.080618 (13.20434535.847820)
QMC 0.088106 (13.22500035.430000) 0.082245 (13.23716636.303537)
LHS 0.088573 (13.38900035.062000) 0.078473 (13.00122335.964302)
SG 0.088667 (13.43800035.000000) 0.077735 (13.26692836.799194)
all 0.088798 (13.49100034.983000) 0.078810 (13.24149836.315449)

6.4 Case 2: 6D optimization

The second setup is more complex and involves all the ingredients described in this the-
sis. As mentioned above, the full eleven–dimensional case is very time consuming and
requires a very large high–performance computing (HPC) cluster. Therefore, a reduced
six–dimensional example is investigated. The harbor walls and width measurements are
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6.4 Case 2: 6D optimization

neglected and only the parameters a, b, c, α, β and g are considered. Furthermore, the
waves are generated by a piston wave maker with prescribed velocity function as specified
in section 6.1. Therefore, the length of the wave tank needs to be increased to ensure
an appropriate distance between the wave maker and the OWC device. Additionally, the
width is increased, because the wave maker requires a minimum distance from the wave
tank walls (note, that this is due to implementation issues; in theory, the wave maker
can touch the walls). The height is slightly raised as well to give more room for the out
flowing air in order to avoid any influence of the boundary on the air flow. The total
measurements are 350 × 50 × 40 with a meshsize of one meter. The simulation time is
35 seconds. On average, each simulation takes about three to four hours on 32 cores. A
total of 461 sample points are selected for the sparse grid design. These are 545 points
corresponding to a sparse grid of level three, minus the points rejected by the angular
constraint cs + d(αs) > e(βs) + gs + 4.0. For the other three designs, a total of 507

sample points is chosen. Since Monte Carlo and Lathin Hypercube are random designs,
other configurations with less points would also be possible due to the angular constraint.
The same constants, correlation and regression functions are employed as in the previous

example.
Figure 6.1(a) shows the maximal response value found during the point evaluation pro-

cess, i.e. the convergence of the sampling procedure. All four designs are able to find a
much greater response than the value of any of the reference OWC devices. The Sakata
wave power plant shows the best response with a value of 3.17685602, whereas the maximal
value found by the sparse grid design found a response of 11.342959 after only six point
evaluations. Thus, an optimal response more than five times the highest value of the best
performing reference device is already found before constructing the metamodel.
Since the problem is six–dimensional, the complete metamodel cannot be depicted. In-

stead, table 6.4.1 demonstrates the optimization process. The optimal values found by the
optimization of the metamodel are shown. First of all, it should be noted, that an even
higher value was found with the help of the metamodel. The sparse grid based model re-
turned 11.984163, which is already a slight increase compared to its maximal value without
the response surface. This value was found by both fminsearch and fmincon. Finally,
the combined surrogate model delivered the optimal value of 12.090718, which was also
determined by fminsearch. Since the six–dimensional metamodel cannot be plotted, it
is not clear whether this maximum is the global maximum or not. But the data at least
suggests, that the other three sets of sample points found different local maxima than the
sparse grid design.
The final optimal design defined by

(a, b, c, α, β, g) = (13.76, 3.82, 311.23, 24.99, 25.00,−0.03)

is depicted in figure 6.4.2.
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Fig. 6.4.1: Response values for 461 (SG) and 507 (MC, QMC, LHS) sample points (6D).

Table 6.4.1: Optimization results with and without the metamodel in 6D.
max. value

design (without metamodel) (a, b, c, α, β, g)

MC 9.520051 (14.973000, 3.105000, 13.725000, 45.871000, 40.356000, 7.046000)
QMC 7.036090 (13.076000, 3.551000, 14.707000, 23.633000, 31.055000,−8.516000)
LHS 8.646090 (14.547000, 3.412000, 10.400000, 49.551000, 11.539000,−9.965000)
SG 11.342959 (13.750000, 3.875000, 11.250000, 25.000000, 25.000000, 0.000000)
all 11.342959 (13.750000, 3.875000, 11.250000, 25.000000, 25.000000, 0.000000)

max. value
design (with metamodel) (a, b, c, α, β, g)

MC 8.088654 (14.202786, 3.310767, 11.593907, 27.772063, 28.998330,−1.055030)
QMC 6.807009 (13.510053, 3.398983, 10.685681, 38.267004, 37.245975,−9.220258)
LHS 7.332093 (14.505524, 3.819245, 14.515013, 37.458303, 31.736926,−9.407385)
SG 11.984163 (13.750350, 3.827286, 11.252087, 25.000828, 24.999760,−0.002708)
all 12.090718 (13.757924, 3.81788, 311.231243, 24.992624, 25.003900,−0.028400)
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6.4 Case 2: 6D optimization

Fig. 6.4.2: Final optimal design.
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7 Conclusion and Outlook

Summary

Within the scope of this thesis, different global optimization techniques have been discussed
for the optimization of a special kind of wave energy converter — an Oscillating Water
Columns device.
The first step was to parametrize the wave power plant with a set of parameters. With

the help of five reference devices, that have actually been built and tested at sea, these
parameters and their bounds were determined to define a high dimensional parameter
space. Subsequently, an objective function was determined in order to define the value
of interest. This function depends on an expensive CFD simulation, which cannot be
represented by some algebraic formula and is thereafter treated as a blackbox. This means,
that no information on the properties of the objective function are known, which adds to
the difficulty of the global optimization problem.
In order to solve this, a number of sample points have been chosen within the paramter

domain, for which the objective function was evaluated. These so–called designs, or sets of
sample points, need to fulfill different criteria to serve as a suitable basis for a metamodel.
This model was constructed by Kriging and could then be used for further optimization.
This way, the expensive unknown blackbox function was transferred to a computationally
cheap function defined by a surrogate model.

Two cases have been considered to optimize the design of the OWC. The first one was
a simple two–dimensional test case and very condensed version of the actual problem. It
was very useful to demonstrate the complete optimization procedure and to get a visual
output as well. All four considered designs produced an improvement with respect to the
reference designs and a global optimum was found with the help of the metamodel.
The second case was a six–dimensional study, which showed an even greater improvement

than the first one. The sparse grid design was able to produce a significant improvement
in the response compared to the best reference configuration and even more with the help
of the metamodel. Even though we do not know if this is the global optimum, this (local)
maximum is promising.

Outlook

The two cases discussed in this thesis are only two examples of possible parametrizations
and optimizations of a wave energy converters. Both models were simplified versions of
the original problem. A full model would include a turbine, have a higher resolution and
a longer runtime. However, all of the factors contribute to the computational complexity
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and therefore also increase the required the computing time. With the help of large High–
Performance Cluster Computers this can still be possible.
Moreover, the presented metamodels can be further investigated. The first step would

be evaluate the optimal points determined by the surrogate in order to refine the model.
This is the most common approach, along with the method used by the EGO (Efficient
Global Optimization) algorithm [Jones et al., 1998]. The latter uses a metamodel obtained
with DACE and its standard error to determine the expected improvement of the predictor.
Accordingly, the next sample point is not only chosen by the current optimal value, but
also by the improvement to be expected in largely unexplored areas of the parameter space.

Yet another kind of improvement can be achieved by a model reduction. To this end, a
screening process via ANOVA (analysis of variance) decomposition or HDMR (high dimen-
sional model representation) could determine the most important factors. The parameters
with negligible influence are subsequently eliminated and further sampling can be used to
define a refined, lower dimensional model.

In conclusion, global optimization — and in particular metamodelling techniques —
have proven to be very useful for high dimensional design optimization of wave energy
converters and there still exists a variety of ways to enhance its output.
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