
Fast Sparse Pseudo-spectral
Methods for

High-dimensional Problems

Vasil Velikov

Born 13th May 1988 in Dobrich, Bulgaria

15th June 2016

Master’s Thesis Mathematics

Advisor: Prof. Dr. Michael Griebel

Second Advisor: Prof. Dr. Jochen Garcke

Mathematical Institute

Mathematisch-Naturwissenschaftliche Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Contents

1 Introduction 1

2 Preliminaries 3

2.1 Discrete Fourier Transform . 3

2.2 Discrete Chebyshev Transform . 5

2.3 Mixed Fourier-Chebyshev transform . 8

2.4 Generalized Hermite Transform . 10

3 Generalized Sparse Grids 12

3.1 Interpolation in one dimension . 12

3.2 Interpolation in multiple dimensions . 13

3.3 General interpolation operator . 15

3.4 The hierarchical basis . 17

3.5 Computing the general interpolation operator . 20

3.6 Algorithms . 22

4 Dyadic Sparse Grids 26

4.1 Dyadic Fourier Sparse Grids . 26

4.1.1 Definition . 26

4.1.2 Choice of index set . 28

4.1.3 Approximation error of the interpolant . 30

4.2 Dyadic Polynomial Sparse Grids . 31

4.2.1 Definition . 31

4.2.2 Choice of index set . 34

4.2.3 Approximation error of the interpolant . 34

5 Leja Sequences 36

5.1 Classic Leja sequences . 37

5.2 R-Leja sequences . 38

5.3 Weighted Leja Sequences . 40

5.4 Hermite Sparse Grids . 42

6 Mixed Sparse Grids 44

6.1 General definition . 44

i

6.2 Approximation error in Fourier-Chebyshev grids 47

6.3 Computational complexity of dyadic Fourier-Hermite grids 52

7 Adaptive Sparse Grids 54

7.1 Basic adaptive algorithm . 54

7.2 Generalized adaptive algorithm . 57

7.3 Dimension-adaptive algorithm . 60

8 Practical Remarks 62

8.1 Computation of Leja sequences . 62

8.2 Fast inversion of matrix sequences . 63

9 Numerical Results 66

9.1 Mixed sparse grids . 66

9.2 General grids . 71

9.3 Adaptive grids . 75

10 Conclusion 79

ii

List of Figures

1 Hermite basis functions with different α and β parameters 11

2 Examples of upper boundary setsMd(I) . 23

3 2D dyadic Fourier sparse grid with T = 0 . 29

4 2D dyadic Fourier sparse grid with T = 0.4 . 29

5 3D dyadic Fourier sparse grid with T = 0 . 30

6 2D dyadic Chebyshev sparse grid with T = 0 . 35

7 2D dyadic Chebyshev sparse grid with T = 0.4 35

8 3D dyadic Chebyshev sparse grid with T = 0 . 35

9 Degrees of freedom in dyadic Fourier grid . 36

10 Empirical distribution of Leja sequences . 38

11 Empirical distribution of weighted Leja sequences 41

12 2D dyadic Hermite sparse and full grids . 43

13 2D and 3D dyadic hermite sparse grids with T = 0 43

14 2D dyadic Fourier-Chebyshev grids with T = 0 46

15 3D dyadic Fourier-Hermite-Chebyshev grid with T = 0 47

16 Several steps of the adaptive algorithm . 56

17 Decay of the index weights after the adaptive algorithm 57

18 Convergence on Fourier-Chebyshev sparse and full grids 67

19 Convergence of different functions on Fourier-Chebyshev sparse grids 67

20 Convergence on Fourier-Chebyshev sparse grids for different dimensions 68

21 Convergence on Fourier-Chebyshev sparse grids for different dimensions 68

22 Convergence on Chebyshev-Hermite sparse and full grids 69

23 Convergence on Chebyshev-Hermite sparse grids for different dimensions 69

24 Convergence on Fourier-Chebyshev-Hermite sparse and full grids 70

25 Convergence on Fourier-Chebyshev-Hermite sparse grids for different dimensions 70

26 Comparison of Chebyshev grids with classic and Leja points 72

27 Comparison of Chebyshev grids with classic and Leja points 72

28 Comparison between Hermite dyadic and full grids 73

29 Comparison of Hermite grids with different parameters α and β 73

30 Comparison of Chebyshev full, dyadic and PLUS1 grids for different dimensions . 74

31 Comparison of Fourier-Chebyshev full, dyadic and PLUS1 grids for different di-
mensions . 74

iii

32 Convergence comparison between adaptive and sparse grids 77

33 Convergence comparison using different weighting functions. 77

34 Number of added grid nodes for a target L2-error accuracy. 78

35 Execution time of the dimension-adaptive algorithm. 78

iv

Notation and List of Symbols

n The dimension of the grid
i, j, k, µ, ν One-dimensional indices
i, j,k,µ,ν Multidimensional indices
ν ′,ν ′′ Subparts of a multi-index ν, ν = (ν ′,ν ′)
|ν|1, |ν|∞ Different multi-index norms
xi Interpolation points
Iν , II Interpolation operator
∆ν Hierarchical interpolation operator
σ(i) Index mapping function
ωk, Tk,Hα,βk Basis functions for the Fourier, Chebyshev and Hermite transforms
φk Multidimensional regular basis function
ψk Multidimensional hierarchical basis function
f̂k Coefficients in the infinite series expansion
f̂νk Discrete regular coefficients
f̌k Discrete hierarchical coefficients
Sk,ν Index set/multiset used for the summation in the aliasing formulas
gk Number of interpolation points in level k
T, I Interpolation intervals for the Fourier and Chebyshev transforms
L2(Tn), L2

w(In) Interpolation spaces
Hw,Ht,rmix Weighted Sobolev space and weighted Sobolev space of mixed smoothness
Xn, Vν Infinite dimensional Hilbert space and finite-dimensional subspaces
Wν Hierarchical subspaces of Xn

Sν , S
h
ν Sets of interpolation points and hierarchical interpolation points

Bν ,Bhν Sets of regular and hierarchical basis functions
Gν ,Jν Index set and hierarchical index set
I, ITL ,Md(I) Sets of level indices and their upper boundary in direction d
zn, ξn Elements of different Leja sequences
O,A Old and active sets in the adaptive algorithm

v

vi

1 Introduction

Numerical simulation is widely used to solve problems in chemistry, physics, statistics and other
scientific fields. Many of them involve a large amount of variables which leads to the need of
efficient numerical methods for high-dimensional problems. The first step of a numerical method
is the discretization of the underlying function domain. The classic approach is to use a uniform
mesh with mesh spacing h in each direction. This leads to a large number of nodes M of order
O(h−n), where n is the dimension of the problem. The gained approximation accuracy is of
order O(hs), where s is the function’s isotropic smoothness. This leads to an exponential decay
of the rate of convergence with the growth of the dimension n, a problem commonly referred to
as the curse of dimensionality [Bel61]. It limits the practical applicability of these discretization
methods to only a few dimensions.

A common approach for overcoming this limitation are the so-called sparse grids [Smo63;
Zen91]. The basic idea is to use a carefully chosen subset of grid nodes instead of the entire
full grid. Regular sparse grids use the grid nodes based on a hyperbolic cross cutoff. The
resulting subset has a number of nodes M of order O(h−1 log(h−1)n−1). Under the assumption
that the approximated function has limited t-th mixed derivatives, it can be proven that the
convergence rate is O(ht log(h−1)n−1). This estimate greatly improves the ratio between invested
computational cost and achieved approximation accuracy. The curse of dimensionality is broken
up to a logarithmic term.

The classic setting of regular sparse grids can be extended in many different ways. The
hyperbolic cross based selection of grid points can be generalized in order to adjust for different
smoothness classes, anisotropicity and other function properties. This choice can be done a
priori, based on the function class, or it can be generated with the help of an adaptive algo-
rithm([Heg03; Gar07; GG03]). Thanks to the tensor product construct of sparse grids, it is easy
to use different transforms in each direction of the problem. This way the properties of each
dimension can be exploited individually. Moreover, interactions between different dimensions
can be limited by simply not including grid points that correspond to them. The growth rate
of the degrees of freedom can also be controlled more finely by allowing a careful selection of
refinement steps in each dimension.

The purpose of this work is to examine several of the possible extensions of sparse grids and to
combine them so that they can work together. From a theoretical point of view the extensions
are fairly orthogonal, i.e. they can be applied together without special treatment. From an
implementation point of view this is not necessarily the case. One of the goals is to implement
the methods in an efficient and flexible C library that can make use of any combination of them.
The library is called HCFFT and its writing, optimizing and documenting are a substantial part
of this thesis.

The main extensions discussed in this text and implemented in HCFFT are:

• Mixed sparse grids, i.e. grids that use different transforms in the different directions. First,
a general setting for mixed grids is presented. Thanks to the tensor product structure of
sparse grids this setting is straightforward and is mostly notational. Then, a particular
type of mixed Fourier-Chebyshev grids is presented and analyzed. Error bounds similar
to [GH14] are derived.

1

• Generalized sparse grids, i.e. grids that allow slower refinement steps. Regular sparse grids
use dyadic refinement in each direction. This is the only way to guarantee nestedness of the
interpolation points. To achieve smaller refinement steps and consequently higher control
over the degrees of freedom, it is necessary to use an alternative set of interpolation points.
The Leja and weighted Leja points are the natural choice for this purpose. In the case of
weighted Leja sequences, they do not only allow better control but they actually make the
very existence of nested Hermite, Jacobi or Laguerre sparse grids possible.

• Adaptive grid construction, i.e. grids which are built based on the properties of the target
function. An extension of the algorithm that allows more control over the grid generating
process is presented. Different optimizations and common pitfalls are discussed.

The text is organized as follows. Section 2 introduces the transforms that are used for
the sparse grids in this work. Apart from simple definitions, it also contains a proof of an
aliasing lemma for the coefficients of mixed Fourier-Chebyshev transforms. Section 3 introduces
the concept of interpolation on sparse grids in a general way, without fixing the underlying
transform or the refinement steps. Section 4 presents two concrete cases of dyadic sparse grids,
namely Fourier grids and Clenshaw-Curtis grids. Section 5 discusses alternative interpolation
points for several different transforms. Leja sequences and several generalizations are presented.
Section 6 presents the notational setting for mixed grids. It also contains an error estimate for
the interpolant of mixed Fourier-Chebyshev grids. Section 7 discusses the adaptive algorithm
as well as several extensions to it. Section 8 addresses some practical issues that arise while
implementing the methods as well as efficient ways to solve them. Finally, section 9 demonstrates
the efficiency of the methods by showing the convergence of different classic functions.

2

2 Preliminaries

2.1 Discrete Fourier Transform

The Discrete Fourier Transform is a broad topic covered by numerous mathematical texts(e.g.
[Pey02; Boy01]). This subsection contains a brief overview of the definitions and properties that
are used in this work. To a great extent its main goal is to familiarize the reader with the related
notation because it often varies between different authors.

Let T be the interval [0, 2π] in which the endpoints are identified. The one-dimensional
Fourier basis functions are defined for every k ∈ Z with the formula

ωk(x) := eikx. (2.1)

In the n-dimensional case the Fourier basis functions are defined as a tensor product,

ωk(x) :=
(n⊗
d=1

ωkd

)
(x) =

n∏
d=1

ωkd(xd) (2.2)

for every k ∈ Zn and x ∈ Tn. The functions ωk(x) form a basis of the space L2(Tn). Thus,
every function f from this space can be expanded in a Fourier series,

f(x) =
∑
k∈Zn

f̂kωk(x). (2.3)

The Fourier series is useful for approximating the function f . This is usually achieved by
truncating the series by some criteria. An alternative approach for approximating f is to do it
by interpolation. Let ν ∈ Nn be a vector representing the number of basis functions in each
dimension. The points that are used for interpolation are

xi := (xi1 , . . . xin), xid := 2idπ
νd

(2.4)

for every id ∈ {0, 1, . . . νd−1} and every d ∈ {1, 2, . . . n}. The points xi form a grid of equidistant
nodes. Note that there are no points on the right boundary of Tn. The reason for this is the
periodicity of the space.

The interpolation operator Iν is now defined as a mapping

Iν : L2(Tn)→ span{ωσ(k) : 0 ≤ k < ν} (2.5)

such that for every interpolation point xi it holds

Iνf(xi) = f(xi). (2.6)

The function σ is an indexing function whose purpose is to alternate between the positive and
negative Fourier frequencies. It is defined by

σ(l) :=
{
−l/2 l is even,
(l + 1)/2 l is odd,

(2.7)

σ(l) := (σ(l1), . . . , σ(ld)). (2.8)

3

For every function f ∈ L2(Tn) the interpolant Iνf can be expressed in a unique way as

Iνf =
∑

0≤i<ν
f̂νi ωσ(i), (2.9)

where f̂νi are the discrete Fourier coefficients. They can be computed with the formula

f̂νi = ν−1
1 . . . ν−1

n

∑
0≤k<ν

f(xk)ω∗σ(i)(xk). (2.10)

This formula can easily be derived with the help of the following orthogonality property of the
Fourier basis functions: ∑

0≤i<ν
ωk(xi)ω∗l (xi) = ak,l, (2.11)

where

ak,l :=
{
ν1 . . . νn if l = k +mν for some m ∈ Zn,
0 otherwise.

(2.12)

This identity can also be used to find a relation between the Fourier coefficients f̂k and the
discrete Fourier coefficients f̂νk .

Lemma 2.1 (Fourier aliasing formula). The following identity holds

f̂νk =
∑
m∈Zn

f̂σ(k)+mν (2.13)

for every 0 ≤ k < ν.

Proof. The proof follows easily by applying equations (2.10), (2.3) and (2.11) in this order:

f̂νi = ν−1
1 . . . ν−1

n

∑
0≤k<ν

f(xk)ω∗σ(i)(xk)

= ν−1
1 . . . ν−1

n

∑
0≤k<ν

ω∗σ(i)(xk)
∑
l∈Zn

f̂lωl(xk)

= ν−1
1 . . . ν−1

n

∑
l∈Zn

f̂l
∑

0≤k<ν
ω∗σ(i)(xk)ωl(xk)

= ν−1
1 . . . ν−1

n

∑
l∈Zn

f̂laσ(k),l

=
∑
m∈Zn

f̂σ(i)+mν

(2.14)

The aliasing formula is used for the derivation of error bounds for dyadic Fourier sparse grids.
Although its proof is straightforward, it serves as a good starting point for more complicated
aliasing formulas that are proven later in this text. To unify the notation with them, the
following alternative formulation of Lemma 2.1 will be used:

f̂νk =
∑
i∈Sk,ν

f̂i, (2.15)

where the index set Sk,ν is defined as {σ(k) +mν : m ∈ Zn}.

4

2.2 Discrete Chebyshev Transform

The next set of basis functions which is used extensively in this work is the set of Chebyshev
polynomials. Let I denote the closed interval [−1, 1]. The Chebyshev polynomials of the first
kind Tn are defined for every x ∈ I and every k ∈ N0 with the formula

Tk(x) := cos(k cos−1(x)). (2.16)

They are orthogonal with respect to the weight function w(x) = (1 − x2)−1/2. In the n-
dimensional case Tk is defined as a tensor product of one-dimensional basis functions,

Tk(x) :=
(n⊗
d=1

Tkd

)
(x) =

n∏
d=1

Tkd(xd) (2.17)

for every k ∈ Nn0 and every x ∈ In. The Chebyshev polynomials form an orthogonal basis of the
weighted space

L2
w(In) :=

{
f :
∫
In
f(x)2w(x)dx <∞

}
(2.18)

where w(x) =
n∏
d=1

(1 − x2
d)−1/2. Every function f in this space can be expanded in an infinite

series
f(x) =

∑
k∈Nn0

f̂kTk(x), (2.19)

where f̂k are the uniquely defined Chebyshev coefficients.

This work is focused on interpolation with Chebyshev polynomials. Let ν ∈ Nn0 be a vector
representing the number of interpolation points in each dimension. The points that are used are
the extrema of the Chebyshev polynomials, i.e.

xi := (xi1 , . . . xin), xid := cos πid
νd

(2.20)

for every id ∈ {0, 1, . . . νd} and every d ∈ {1, 2, . . . n}. Note that in this case the underlying
domain is not periodic and therefore both endpoints of the interval I are included.

We can now define an interpolation operator Iν as a mapping

Iν : L2
w(In)→ span{Tk : 0 ≤ k ≤ ν} (2.21)

such that for every function f ∈ L2
w(In) and every interpolation point xi it holds

Iνf(xi) = f(xi). (2.22)

The result of this operator can be represented uniquely in the form

Iνf =
∑

0≤i≤ν
f̂νi Ti, (2.23)

where f̂νi are the discrete Chebyshev coefficients. There is an explicit formula for their compu-
tation:

f̂νi = 2nν−1
1 . . . ν−1

n c−1
i

∑
0≤k≤ν

c−1
k f(xk)Ti(xk), (2.24)

5

where the constants ci are defined as

ci :=
n∏
d=1

cid , cid :=

2 id = 0,
1 0 < id < νd,

2 id = νd.

(2.25)

The discrete orthogonality relation∑
0≤i≤ν

c−1
i Tk(xi)Tl(xi) = 2−nν1 . . . νnckδk,l (2.26)

holds for every 0 ≤ k, l ≤ ν, where δk,l = 1 if l = k and equals δk,l = 0 in all other cases.
Just as in the Fourier case, this formula can be used to find a relation between the Chebyshev
series coefficients f̂k and the discrete coefficients f̂νk . This relation is slightly more complicated
compared to the Fourier transform. Thus it will first be proven in the one-dimensional case.

Lemma 2.2 (Chebyshev aliasing formula in one dimension). The identity

f̂νk = f̂k +
∞∑
m=1

ck
−1f̂k+2mν +

∞∑
m=1

−k+2mν>ν

ck
−1f̂−k+2mν (2.27)

holds for every 0 ≤ k ≤ ν.

Proof. The proof follows the steps from [Pey02]. The first part is as in the Fourier case:

f̂νk = 2ν−1c−1
k

ν∑
i=0

c−1
i f(xi)Tk(xi)

= 2ν−1c−1
k

ν∑
i=0

c−1
i Tk(xi)

∞∑
l=0

f̂lTl(xi)

= 2ν−1c−1
k

∞∑
l=0

f̂l
∑

0≤i≤ν
c−1
i Tk(xi)Tl(xi)

= 2ν−1c−1
k

∞∑
l=0

bk,lf̂l

= 2ν−1c−1
k

ν∑
l=0

bk,lf̂l + 2ν−1c−1
k

∞∑
l=ν+1

bk,lf̂l,

(2.28)

where the terms bk,l are defined as

bk,l :=
∑

0≤i≤ν
c−1
i Tk(xi)Tl(xi). (2.29)

The key to proving the aliasing formula is simplifying this expression. For l ≤ ν the discrete
orthogonality relation (2.26) implies

bk,l = 2−1νckδk,l (2.30)

which yields

f̂νk = f̂k + 2ν−1c−1
k

∞∑
l=ν+1

bk,lf̂l. (2.31)

Unfortunately, the Chebyshev orthogonality is not valid for l > ν. Thus, in the second sum bk,l

must be computed directly. For this purpose the following trigonometric identity is used:

Ap :=
ν∑
i=0

cos piπ
ν

=
{
ν + 1 if p = 2mν for some m ∈ Z,
1+(−1)p

2 otherwise.
(2.32)

6

The expression for bk,l can now be simplified:

bk,l =
ν∑
i=0

c−1
i Tk(xi)Tl(xi)

=
ν∑
i=0

c−1
i cos

(
k cos−1

(
cos iπ

ν

))
cos

(
l cos−1

(
cos iπ

ν

))
=

ν∑
i=0

c−1
i cos kiπ

ν
cos liπ

ν

= 1
2

ν∑
i=0

c−1
i

[
cos k − l

ν
iπ + cos k + l

ν
iπ

]
.

(2.33)

We can now use the definition (2.25) of the constants ci to get

bk,l = 1
2

ν∑
i=0

[
cos k − l

ν
iπ + cos k + l

ν
iπ
]
− 1

4
[

cos 0 + cos 0 + cos(k − l)π + cos(k + l)π
]

= 1
2

ν∑
i=0

[
cos k − l

ν
iπ + cos k + l

ν
iπ
]
− 1

4
[
2 + (−1)k−l + (−1)k+l

]
= 1

2
[
Ak−l +Ak+l − 1− (−1)k+l

]
.

(2.34)

From the definition of Ap it follows that bk,l is not equal to zero only if l = k + 2mν or
l = −k + 2mν for some m ∈ Z. If exactly one of these relations holds, then bk,l = ν/2. The
other option is to have both l = k + 2m1ν = −k + 2m2ν. This case is only possible for k = 0
and then bk,l = ν. Therefore

f̂νk = f̂k + 2ν−1c−1
k

∞∑
l=ν+1

bk,lf̂l

= f̂k +
∞∑
m=1

ck
−1f̂k+2mν +

∞∑
m=1

−k+2mν>ν

ck
−1f̂−k+2mν .

(2.35)

The aliasing formula written in this form is not particularly compact. To simplify the
notation, we can define the set of all coefficient indices that are present on the right-hand side
of (2.27) as follows:

Sk,ν := {k} ∪ {k + 2mν : m ∈ N} ∪ {−k + 2mν : m ∈ N,−k + 2mν > ν}. (2.36)

Note that the set is actually a multiset in the case k = 0 because the two sums on the right-hand
side coincide. In this case, the elements in Sk,ν have cardinality of at most 2. In all other cases,
Sk,ν is a set. Now equation (2.27) can be written more compactly:

f̂νk =
∑
i∈Sk,ν

ci,kf̂i (2.37)

where ci,k = 1 if i = k and ci,k = c−1
i for all other values of i. It should be once again stressed

that this sum runs over a multiset of indices and every term must be taken into account as many
times as its cardinality.

This form is more convenient to be extended to the n-dimensional case.

7

Lemma 2.3 (Chebyshev aliasing formula in n dimensions). The identity

f̂νk =
∑
i∈Sk,ν

ci,kf̂i (2.38)

holds for every 0 ≤ k ≤ ν, where

ci,k :=
n∏
d=1

cid,kd (2.39)

and
Sk,ν =

n×
d=1

Skd,νd (2.40)

is a multiset of indices. The cardinality of each element in this multiset is at most 2n.

Proof. The proof goes as in the one-dimensional case:

f̂νk = 2nν−1
1 . . . ν−1

n c−1
k

∑
0≤i≤ν

c−1
i f(xi)Tk(xi)

= 2nν−1
1 . . . ν−1

n c−1
k

∑
0≤i≤ν

c−1
i Tk(xi)

∑
l∈Nn0

f̂lTl(xi)

= 2nν−1
1 . . . ν−1

n c−1
k

∑
l∈Nn0

f̂l
∑

0≤i≤ν
c−1
i Tk(xi)Tl(xi)

= 2nν−1
1 . . . ν−1

n c−1
k

∑
l∈Nn0

bk,lf̂l,

(2.41)

where

bk,l :=
∑

0≤i≤ν
c−1
i Tk(xi)Tl(xi)

=
n∏
d=1

[
νd∑
i=0

c−1
i Tkd(xi)Tld(xi)

]

=
n∏
d=1

bkd,ld

(2.42)

Hence, bk,l is non-zero only for l = εk+ 2mν where ε ∈ {−1, 1}n. Equation (2.38) now follows
easily by applying the same logic as in the one-dimensional case. Finally, the cardinality of each
element in Sk,ν is at most 2n because the cardinality of each element in Skd,νd is at most 2.

2.3 Mixed Fourier-Chebyshev transform

A mixed transform is an n-dimensional transform which uses different basis functions in the
different dimensions. This subsection is devoted to finding explicit formulas for the coefficients
of one such transform as well as an aliasing formula for the relation between continuous and
discrete coefficients. The following derivations are to a great extent analogous to the non-mixed
cases. However, they are worth exploring separately because the more complicated notation
makes them more technical and therefore not completely straightforward.

Without loss of generality, assume that the first p dimensions of the mixed transform use
Fourier basis functions and the other n−p dimensions use Chebyshev basis functions. To simplify
the notation, the following convention is adopted: each multi-index i ∈ Zp × Nn−p0 can be split
into Fourier and Chebyshev parts, i′ and i′′, respectively. In this splitting, i′ ∈ Zp, i′′ ∈ Nn−p0

8

and i = (i′, i′′). Furthermore, every variable, function or space that is denoted with a prime or
a double prime is related to the Fourier or the Chebyshev transform, respectively.

The mixed transform can now be defined for functions on the product domain Tp × In−p.
The mixed basis functions are

ξk := ωk′ ⊗ Tk′′ . (2.43)

They are used for approximating functions in the space L2(Tp) × L2
w(In−p). Every function f

from this space can be expanded in a mixed infinite series,

f(x) =
∑

k∈Zp×Nn−p0

f̂kξk(x). (2.44)

The interpolation points are also easily defined as x := (x′,x′′), where x′ is a p-dimensional
Fourier point and x′′ is an (n − p)-dimensional Chebyshev point. For an index ν ∈ Nn, the
mixed interpolation operator is a mapping

Iν : L2(Tp)× L2
w(In−p)→ span

{
ξσ(k) : 0 ≤ k′ < ν ′,0 ≤ k′′ ≤ ν ′′

}
(2.45)

such that Iνf(x) = f(x) for every x from the mixed product grid. In the above definition,
the indexing function σ is defined as σ(k) := (σ′(k),k′′). For each f the interpolant can be
uniquely represented as

Iνf =
∑

0≤i′<ν′,0≤i′′≤ν′′
f̂νi ξσ(i), (2.46)

where f̂νi are the discrete mixed coefficients. They can be computed with the formula

f̂νi = 2n−pν−1
1 . . . ν−1

n c−1
i′′

∑
0≤k′<ν′,0≤k′′≤ν′′

c−1
k′′
f(xk)ξ∗σ(i)(xk). (2.47)

The proof of this formula is very similar to the proof of the aliasing formula for the mixed
transform and thus it is omitted.

Lemma 2.4 (Mixed aliasing formula). The identity

f̂νk =
∑
i∈Sk,ν

ci′′,k′′ f̂i (2.48)

holds, where

ci′′,k′′ :=
n∏

d=p+1
cid,kd (2.49)

and
Sk,ν := S′k′,ν′ × S

′′
k′′,ν′′ (2.50)

is a multiset of indices. The cardinality of each element in the multiset is at most 2n−p.

9

Proof.

f̂νi = 2n−pν−1
1 . . . ν−1

n c−1
i′′

∑
0≤k′<ν′,0≤k′′≤ν′′

c−1
k′′
f(xk)ξ∗σ(i)(xk)

= 2n−pν−1
1 . . . ν−1

n c−1
i′′

∑
0≤k′<ν′,0≤k′′≤ν′′

c−1
k′′
ξ∗σ(i)(xk)

∑
l∈Zp×Nn−p0

f̂lξl(xk)

= 2n−pν−1
1 . . . ν−1

n c−1
i′′

∑
l∈Zp×Nn−p0

f̂l
∑

0≤k′<ν′,0≤k′′≤ν′′
c−1
k′′
ξl(xk)ξ∗σ(i)(xk)

= 2n−pν−1
1 . . . ν−1

n c−1
i′′

∑
l∈Zp×Nn−p0

f̂l

[p∏
d=1

νd−1∑
k=0

ωld(xk)ω
∗
σ′(id)(xk)

][
n∏

d=p+1
c−1
k

νd∑
k=0

Tld(xk)Tid(xk)
]

= 2n−pν−1
1 . . . ν−1

n c−1
i′′

∑
l∈Zp×νn−p0

aσ′(i′),l′bi′′,l′′ f̂l,

(2.51)

where aσ′(i′),l′ is defined as in (2.12) and bi′′,l′′ is defined as in (2.29). Both of them are non-
zero only for indices l in the set S′

k′,ν′ × S
′′
k′′,ν′′ . The conclusion of the lemma follows easily by

applying the formulas for the values of aσ′(i′),l′ and bi′′,l′′ .

2.4 Generalized Hermite Transform

The Hermite spectral and pseudospectral methods are widely used for approximation of Gaussian-
type functions on the entire real line R. In their basic form they often provide suboptimal results
because of poor resolution([Tan93]). This means that too many basis functions are required for
a good approximation. The usual way to remedy this disadvantage is to generalize the typical
basis functions by augmenting them with scaling and translating factors α and β. This results
in an entire family of parametrized transforms.

The physical Hermite polynomials are defined with the formula

Hk(x) := (−1)kex2 dk

dxk
(e−x2) (2.52)

for every k ∈ N0. They are orthogonal with respect to the weight function w(x) := e−x
2 . The

generalized normalized Hermite basis functions are defined as

Hα,βk :=
(

α

2kk!
√
π

) 1
2

Hk(α(x− β))e−
1
2α

2(x−β)2 (2.53)

for a scaling parameter α > 0 and a translating parameter β ∈ R. With this definition
{Hα,βk }k∈N0 form an orthonormal basis of L2(R). This form of the basis functions is not suitable
for numerical computation. In practice, the following recurrence relation is used:

2α2(x− β)Hα,βk (x) =
√

2α2kHα,βk−1(x) +
√

2α2(k + 1)Hα,βk+1(x). (2.54)

For more properties of the generalized Hermite basis functions you can refer to [LY13].

In the n-dimensional case, the generalized Hermite functions are defined as

Hα,βk (x) :=
(

n⊗
d=1
Hαd,βdkd

)
(x) =

n∏
d=1
Hαd,βdkd

(xd) (2.55)

10

and they form an orthonormal basis of L2(Rn). Every function f in this space can be represented
in the form

f(x) :=
∑
k∈Nn0

f̂kHα,βk (x). (2.56)

Nevertheless, the Hermite methods are typically used only for functions f with exponential
decay because otherwise the convergence of the series is too slow.

Let ν ∈ Nn and let {xk : 0 ≤ k ≤ ν} be the interpolation points. The interpolation operator
Iν is defined as the mapping

Iν : L2(Rn)→ span{Hα,βk : 0 ≤ k ≤ ν} (2.57)

which interpolates every function f in every interpolation point x. The result of the operator is

Iνf =
∑

0≤k≤ν
f̂k,νHα,βk , (2.58)

where f̂k,ν are the discrete Hermite coefficients. The typical choice of interpolation points
{xk : 0 ≤ k ≤ ν} is xk := (γk1 , . . . γkn), where {γj}Nj=0 are the roots of the polynomial HN+1.
While this set of points provides good approximation results, it suffers from a limitation that
renders it unusable for interpolatory sparse grids. The discussion of finding a proper set of
interpolation points is postponed to subsection 5.3.

As already mentioned, the choice of the transform parameters is crucial for the efficiency of
the method. While the choice of β is usually obvious, finding the best value for α is a much
more complicated task. A detailed discussion of this topic can be found in [Tan93]. The effect
of α and β on the form of the basis functions can be seen in Figure 1.

Figure 1: Effect of the parameters α and β on the shape and location of the basis function.

11

3 Generalized Sparse Grids

Sparse grids can be introduced in many different ways with a varying degree of complexity,
rigorousness and extensibility. Most texts introduce them in the context of a specific transform
- Zenger [Zen91] explores their properties for a basis of piecewise linear functions, Hallatschek
[Hal92] focuses on the Fourier transform and Barthelmann, Novak and Ritter [BNR00] develop
the theory for polynomial interpolation. One of the conveniences of working with sparse grids
is that they can be used with a large variety of transforms. One of the goals of this thesis is to
demonstrate precisely this. Thus, an introduction that is bound to a specific transform would
not be appropriate. The approach adopted in this text is to introduce sparse grids in a general
setting, abstracting from the underlying transform. All results that are derived in this section
are valid for all interpolatory sparse grids. The theory follows closely [Hal92] and [GH14]. The
notation is mostly borrowed from [GH14].

3.1 Interpolation in one dimension

Consider an infinite-dimensional Hilbert space X = {f : I → C} of one-dimensional functions,
where I is an arbitrary finite or infinite subinterval of R. Consider also a sequence of linearly
independent functions φn ∈ X for every n ∈ N0. For an arbitrary increasing sequence of natural
numbers gn, we can define the index set

Gn := {0, 1, . . . gn − 1}, (3.1)

the set of basis functions
Bn := {φi : i ∈ Gn}, (3.2)

and the finite-dimensional subspaces

Vn := span{Bn}. (3.3)

These definitions imply that the spaces Vn form an increasing sequence, i.e. Vn−1 ⊂ Vn for every
n ∈ N.

The goal of this subsection is to define an interpolation operator In that maps every function
f ∈ X to an approximation function Inf ∈ Vn. In order to define In, we need a sequence of
interpolation points xn ∈ I, n ∈ N0. The interpolation operator In is the unique operator
In : X → Vn such that

Inf(x) = f(x) (3.4)

for every x ∈ Sn := {xi : i ∈ Gn}. For a fixed function f ∈ X, the result of the operator In can
be represented as a linear combination of the basis functions of Vn,

Inf =
∑
i∈Gn

f̂i,nφi. (3.5)

The coefficients f̂i,n are uniquely defined as long as certain conditions are satisfied. More pre-
cisely, the interpolation conditions given by equation (3.4) form a system of gn linear equations
for the gn coefficients. Therefore, a unique solution exists if and only if the matrix of the system

12

is invertible,

Agn−1 :=

φ0(x0) . . . φgn−1(x0)

...
φ0(xgn−1) . . . φgn−1(xgn−1)

 . (3.6)

If this is true then the coefficients can be computed with the formula
f̂0,n
...

f̂gn−1,n

 = A−1
gn−1

f(x0)

...
f(xgn−1)

 . (3.7)

Finally, to make subsequent definitions easier, define V−1 := {0}, B−1 := {}, G−1 = {},
S−1 := {} and I−1 : X → V−1, f 7→ 0.

3.2 Interpolation in multiple dimensions

We can now move on to the concept of interpolation in multiple dimensions. The operator from
the previous subsection can easily be extended by using a tensor product approach. Consider
functions f that belong to the tensor product space Xn = X ⊗ · · · ⊗ X. For a multi-index
ν ∈ Nn0 the multidimensional equivalents of the index sets, basis functions, basis function spaces,
approximation spaces and collocation points are defined as follows:

Gν :=
n×
d=1
Gνd , (3.8)

φν(x) :=
(n⊗
d=1

φνd

)
(x) =

n∏
d=1

φνd(xνd), (3.9)

Bν := {φµ : µ ∈ Gν}, (3.10)

Vν :=
n⊗
d=1

Vνd = span{Bν}, (3.11)

Sν :=
n×
d=1

Sνd . (3.12)

The interpolation operator is a mapping from Xn to Vν and is also defined as a tensor product
of one-dimensional operators,

Iν =
n⊗
d=1

Iνd . (3.13)

With this definition, Iν interpolates a function f ∈ Xn in all points x ∈ Sν . The result of the
interpolation can be expressed as a linear combination of multidimensional basis functions:

Iνf =
∑
i∈Gν

f̂i,νφi, (3.14)

where f̂i,ν are coefficients that are uniquely defined by the interpolation properties of Iν .

Computing Iνf is equivalent to finding the coefficients f̂i,ν . In the one-dimensional case this
is straightforward and is achieved by applying equation (3.7). The complexity of this procedure
in the general case is O(g3

ν) because it is equivalent to a matrix inversion problem. For specific
transforms and sequences gν , however, this can be done in a much more efficient way and

13

the complexity can get as low as O(gν log gν)(e.g. the Fourier transform). This stems from
the fact that the matrix Aν has a very specific structure. Using this approach directly in the
multidimensional case is impractical. For dimension n > 1, the system of equations is∑

i∈Gν
f̂i,νφi(x) = f(x) (3.15)

for x ∈ Sν has |Sν | = gν1 . . . gνn unknowns. This means that the complexity of solving it
by directly inverting its matrix is O(g3

ν1 . . . g
3
νn). Therefore, this approach is computationally

infeasible for even small values of n.

The usual way to tackle this problem is to use an iterative approach to find the interpolation
coefficients. The tensor product structure allows us to do this in a very efficient way. The basic
idea is to perform a one-dimensional transform in every dimension of the problem. To make
this more precise, fix a grid level ν and define the parametrized coefficients f̂ iα(xi+1, . . . xn) for
an i-dimensional index α < (ν1, . . . νi). For i = 0, the index α can be omitted since it has
zero entries. For the base case, i = 0 f̂0 is defined as f̂0 := f . For subsequent values of i, the
coefficients are defined iteratively with the equation

Iνi+1 f̂
i
α(xi+1, . . . xn) =

∑
j∈Gνi

f̂ i+1
(α,j)(xi+2, . . . xn)φj(xi+1). (3.16)

Starting from f̂0 and moving up the dimensions, we eventually get the coefficients f̂nα, α ∈ Gν .
The goal is to prove that these coefficients are equal to the coefficients that are computed with
the naive approach, i.e. f̂nα = f̂α,ν . To achieve this, consider the operator

I ′νf(x) =
∑
i∈Gν

f̂ni φi(x). (3.17)

Because of the uniqueness of the interpolation operator, proving that I ′νf(x) = f(x) for every
x ∈ Sν will prove the desired result. This can be achieved by induction over n. For convenience,
the following notation is used:

ν = (ν1, ν2, . . . νd) = (ν ′, νd), (3.18)

i = (i1, i2, . . . id) = (i′, id), (3.19)

x = (x1, x2, . . . xd) = (x′, xd). (3.20)

Consider first the base case n = 1:

I ′νf(x) =
∑
i∈Gν

f̂ni φi(x) =
∑

i1∈Gν1

f̂1
i1φi1(x1) = Iν1 f̂

0(x1) = Iν1f(x1) = f(x1) (3.21)

for every x1 ∈ Sν1 . Hence, for n = 1 the operator I ′ν interpolates f in all points from Sν .

14

Now fix some n > 1 and assume that the statement is true for all values less than n:

I ′νf(x) =
∑
i∈Gν

f̂ni φi(x)

(1)=
∑
i′∈G

ν′

∑
in∈Gνn

f̂n(i′,in)φi′(x
′)φin(xn)

(2)=
∑
i′∈G

ν′

φi′(x′)
∑

in∈Gνn

f̂n(i′,in)φin(xn)

(3)=
∑
i′∈G

ν′

φi′(x′)Iνn f̂n−1
i′

(xn)

(4)= Iνn
∑
i′∈G

ν′

f̂n−1
i′

(xn)φi′(x′)

(5)= Iνnf(x′, xn)
(6)= f(x)

(3.22)

In the calculation above, step (1) is achieved by splitting the sum into two sums, the first one
running over the first n − 1 dimensions and the second one running over the last dimension.
Step (2) is a simple reordering of the terms. Step (3) uses the definition of the parametrized
coefficients (3.16) with i = n− 1. Step (4) exploits the linearity of the operator Iνn and the fact
that it is applied only on the last variable. Step (5) uses the induction hypothesis for n − 1.
Step (6) uses the interpolation property of the one-dimensional operator Iνn .

This proves that the operator I ′ν is indeed equivalent to Iν and in the same time provides
an efficient iterative algorithm for its computation. The overall computational complexity of
the procedure is O(gν1 . . . gνn(g2

ν1 + · · · + g2
νn)) which is a significant improvement over the

naive O(g3
ν1 . . . g

3
νn). For transforms that allow fast computation of the one-dimensional inter-

polation coefficients, the complexity is reduced even more. In the Fourier case it is equal to
O(gν1 . . . gνn log(gν1 . . . gνn)).

3.3 General interpolation operator

The main problem with the interpolation operators Iν constructed in the previous section is that
they work exclusively on product grids(also known as full grids). The number of points in a full
grid grows exponentially with the dimension n. This leads to infeasibility of the interpolation
problem when the dimension increases.

The goal of this subsection is to define an approach for the construction of interpolation op-
erators that work on a more flexible set of grids. Starting from the one-dimensional interpolation
operator In, the difference operators ∆n are defined as

∆n := In − In−1 : X 7→ Vn, (3.23)

∆ν := ∆ν1 ⊗ · · · ⊗∆νn : Xn 7→ Vν . (3.24)

15

The following relation between Iν and the difference operators holds:

Iν = Iν1 ⊗ · · · ⊗ Iνd

= (
ν1∑
i1=0

∆i1)⊗ · · · ⊗ (
νd∑
id=0

∆id)

=
∑

0≤i≤ν
∆i.

(3.25)

From now on, we will only be interested in functions f ∈ Xn for which ∆νf are summable and
the corresponding series converges pointwise to f , i.e. for which

f =
∑
ν∈Nn0

∆νf. (3.26)

The hierarchical set of collocation points Shν is defined as

Shn := Sn \ Sn−1, (3.27)

Shν := Shν1 × · · · × S
h
νn = Sν \

(⋃
µ≤ν,µ6=ν

Sµ
)
. (3.28)

The sets Shν are disjoint for different values of ν. The same observation holds for the hierarchical
set of indices

Jn := Gn \ Gn−1, (3.29)

Jν := Jν1 × · · · × Jνn = Gν \
(⋃
µ≤ν,µ6=ν

Gµ
)
. (3.30)

Consider now an arbitrary index set I ⊂ Nn0 and define the operator

IIf :=
∑
ν∈I

∆νf (3.31)

and the interpolation points
SI :=

⋃
ν∈I

Shν . (3.32)

If I = {µ ∈ Nn0 : 0 ≤ µ ≤ ν} then the operators II and Iν are equivalent. Therefore, II
is an interpolating operator on the set SI . In the general case, it is important to find what
are the minimal conditions that I must satisfy in order to guarantee that the operator II is
interpolatory on SI .

First, note that for every point x ∈ Sn−1 it holds

∆nf(x) = Inf(x)− In−1f(x) = f(x)− f(x) = 0 (3.33)

because both In and In−1 are interpolating operators on Sn−1. In multiple dimensions this
relation becomes

∆νf(x) = (∆n1 ⊗ · · · ⊗ (Iνi − Iνi−1)⊗ · · · ⊗∆νn)f(x) = 0 (3.34)

if xi ∈ Sνi−1 for any i = 1, . . . n. Therefore, among the points Sν the operator ∆ν is non-zero
only on the subset Shν .

16

According to equation (3.26), for every point x ∈ In we have

f(x) =
∑
ν∈Nn0

∆νf(x). (3.35)

This relation also holds for every x ∈ SI ⊂ In. The goal is to find under what conditions this
identity remains valid if the sum on the right-hand side runs only over the set I. This would be
true if all terms ∆νf for ν ∈ Nn0 \ I are equal to zero when evaluated at any point x ∈ SI . Fix
one such point x and let Shµ, µ ∈ I, be the unique hierarchical set to which x belongs. Consider
now an arbitrary index ν ∈ Nn0 . If νi > µi for some i = 1, . . . n then the corresponding difference
operator evaluates to zero at the point x, i.e. ∆νf(x) = 0. This follows from equation (3.34).
Hence, in the infinite sum (3.35) for a fixed point x ∈ Shµ all terms with ν � µ are zero. This
leads to the following definition. The set I is called admissible if the following condition holds:

{ν ∈ Nn0 : ν ≤ µ} ⊆ I (3.36)

for every µ ∈ I. If the set I is admissible, then the corresponding operator II is interpolatory
for all points in SI . From now on, all index sets I in this text are assumed to have this property.

For such a set I, the set of functions VI is defined as

VI :=
∑
ν∈I

Vν . (3.37)

It is clear that Im(II) ⊆ VI . The functions φν for ν ∈ I form a basis of VI . Therefore, it follows
that dim(VI) = |SI |. Fix an index ν ∈ I and consider the image of the function φν under the
operator II . Since II is interpolatory on SI , we know that IIφν(x) = φν(x) for every x ∈ SI .
This means that the image of φν is φν itself. Since every function in VI can be represented as
a finite linear combination of basis functions φν , it follows that II maps every function f ∈ VI
to itself. Therefore, II is a projection and Im(II) = VI .

3.4 The hierarchical basis

In the previous subsection it was proven that an interpolatory operator can be constructed for an
arbitrary admissible index set I. The next step is to provide an efficient method for computing
this operator. Without such a method its practical value is very limited.

Subsection 3.2 described a procedure for computing efficiently the operator Iν . The proposed
method relied heavily on the tensor product structure of the full grid. Unfortunately, this method
cannot be applied directly for a general admissible set I because this structure is no longer
present. This is why a slightly different approach is needed to tackle this problem. To achieve
this, the properties of the difference operators ∆ν must first be explored in greater depth.

Consider the image of the operator ∆n and denote it as Wn := Im(∆n) ⊆ Vn. The intersec-
tion of Wn1 and Wn2 is equal to {0} for each n1 6= n2. To prove this, assume that n1 < n2 and
choose a function φ ∈ Wn1 ∩Wn2 . Since φ ∈ Wn2 , it follows that φ(x) = 0 for each x ∈ Sn2−1.
Since n1 < n2, it also follows that Sn1 ⊆ Sn2−1 and therefore φ(x) = 0 for each x ∈ Sn1 . Hence,
the function φ is identically equal to 0.

This observation is easily extended to the multidimensional case: Wν1 ∩Wν2 = {0} for each
ν1 6= ν2, where

Wν =
n⊗
d=1

Wνi . (3.38)

17

Since II =
∑
ν∈I ∆ν it follows that VI can be represented as a direct sum of the sets Wν :

VI =
∑
ν∈I

Vν =
⊕
ν∈I

Wν . (3.39)

It also holds that Vν1 ∩Wν2 = {0} for every ν2 ∈ Nn0 and every ν2 � ν1.

A sequence of basis function sets Bhn, n ∈ N0 ∪ {−1}, is called a hierarchical basis system if
the following conditions are satisfied:

1. The sequence is increasing, i.e. Bhn−1 ⊂ Bhn for every n ∈ N0.

2. Bhn is a basis of Vn for n ∈ N0 ∪ {−1}.

3. Bhn \ Bhn−1 is a basis of Wn for n ∈ N0.

Condition 3 has an important consequence: for every hierarchical basis function ψ ∈ Bhn \ Bhn−1
and every point x ∈ Sn−1 it holds ψ(x) = 0. This follows from the fact that ψ ∈ Wn, the
definition of Wn and equation (3.33). More importantly, this consequence is actually equivalent
to condition 3. To prove this, assume that every basis function ψ ∈ Bhn \ Bhn−1 satisfies ψ(x) = 0
for every x ∈ Sn−1. According to equation (3.39) in one dimension, the function ψ can be
represented as ψ = v + w, where v ∈ Vn−1 and w ∈ Wn. Based on the assumption and on
equation (3.33), it follows that v(x) = 0 for every x ∈ Sn−1 and therefore v is identically zero.
Hence, each basis function ψ ∈ Bhn \ Bhn−1 belongs to Wn. The conclusion follows from the fact
that the number of elements in Bhn \ Bhn−1 and the dimension of Wn are both equal to |Jn|.
Condition 3 can now be rephrased:

3′. For every n ∈ N0, ψ ∈ Bhn \ Bhn−1 and x ∈ Sn−1 it holds ψ(x) = 0.

This is the key property of the hierarchical basis that makes the fast computation of the operator
II possible. While the basis functions Bn satisfy conditions 1 and 2, they are not guaranteed to
satisfy condition 3. This is why the hierarchical basis must be defined additionally.

The sets Bhn can now be written as Bhn = {ψi : i ∈ Gn}, where ψi are the hierarchical basis
functions. Condition 3′ means that ψi(xj) = 0 if i ∈ Jn and j ∈ Gn−1 for some n ∈ N. In the
multidimensional case, it follows that ψi(xj) = 0 for every i ∈ Jν and j ∈ Gν \ Jν .

Since both Bn and Bhn span Vn, the image Inf of every function f ∈ X has two representa-
tions, corresponding to these two basis sets:

Inf =
∑
i∈Gn

f̂i,nφi, (3.40)

Ǐnf =
∑
i∈Gn

f̌i,nψi. (3.41)

In fact, it is easy to prove that the coefficients f̌i,n depend only on the first index i. To see this,
consider the hierarchical representation of ∆n+1f :

∆n+1f = Ǐn+1f − Ǐnf =
∑
i∈Gn

(f̌i,n+1 − f̌i,n)ψi +
∑

i∈Jn+1

f̌i,n+1ψi = u+ v. (3.42)

The functions u and v belong to the sets Vn and Wn+1, respectively. If u is non-zero then the
sum u+ v would belong to the set Vn+1 \Wn+1. However, this is not true because by definition

18

∆n+1f ∈Wn+1. This means that u ≡ 0 and all terms in the first summation in equation (3.42)
are equal to zero, i.e. f̌i,n = f̌i,n+1 for every i ∈ Gn. Therefore f̌i,n does not depend on n.
Thanks to this observation, equation (3.41) can be rewritten as

Inf =
∑
i∈Gn

f̌iψi. (3.43)

The procedure of transforming the regular representation of Inf to its hierarchical represen-
tation Ǐnf is called hierarchization. The inverse procedure is called dehierarchization. These two
operations play an important role in the sparse grid theory. They are equivalent to transforming
the vector of coefficients f̂i,n to f̌i and vice versa. In the most general case, this can be done
with a matrix multiplication which has quadratic complexity.

First, consider the question of existence of such a hierarchical basis. For each j ∈ N0, ψj is
a linear combination of the functions {φ0, . . . φj}:

ψj =
j∑

k=0
cj,kφk. (3.44)

Assume that j ∈ Jn. According to condition 3′, for each interpolation point xi, i ∈ Gn−1, the
following should hold:

ψj(xi) =
j∑

k=0
cj,kφk(xi) = 0. (3.45)

These conditions form a system of gn−1 equations with j + 1 unknown variables:
φ0(x0) . . . φj(x0)

...
φ0(xgn−1−1) . . . φj(xgn−1−1)

cj,0
...
cj,j

 =

0
...
0

 . (3.46)

This system has a solution space with dimension j+1−gn−1. Each of the solutions corresponds
to one possible choice for a hierarchical basis function ψj . To fix a specific one, it is required to
add j + 1− gn−1 more equations to the system:

φ0(xgn−1) . . . φj(xgn−1)
...

φ0(xj) . . . φj(xj)

cj,0
...
cj,j

 =

dgn−1,j

...
dj,j

 , (3.47)

where the vector on the right-hand side is arbitrary non-zero (j + 1− gn−1)-dimensional vector.
For some transforms, there is a specific choice of this vector that makes the computations
significantly easier. Good examples are the Fourier and Chebyshev transforms. For others,
there are no obvious advantages of choosing one vector over another one. In these cases one can
simply choose the vector di,j = δi,j . In fact, this choice has certain computational advantages
that will be discussed below.

The full square system of equations for cj,k can now be written as

Agn−1cj = dj , (3.48)

where cj = (cj,0, . . . cj,j , 0, . . . 0)T and dj = (0, . . . 0, dgn−1 , . . . dj , 0, . . . 0)T are gn-dimensional
vectors whose last entries are zeroes. Define the gn × gn matrix Cgn−1 as

Cgn−1 :=

c0,0 . . . c0,gn−1
...

cgn−1,0 . . . cgn−1,gn−1

 . (3.49)

19

This is simply the change of basis matrix between the regular and the hierarchical basis. If
Φj := (φ0, . . . φj)T and Ψj := (ψ0, . . . ψj)T then

Ψgn−1 = Cgn−1Φgn−1. (3.50)

The interpolation operator in the regular basis form can be written as

Inf =
∑
i∈Gn

f̂i,nφi = F̂ Tgn−1Φgn−1, (3.51)

where F̂gn−1 = (f̂0,n, . . . f̂gn−1,n)T . In analogy, the hierarchical form is

Ǐnf =
∑
i∈Gn

f̌iψi = F̌ Tgn−1Ψgn−1, (3.52)

where F̌gn−1 = (f̌0, . . . f̌gn−1)T . Using equation (3.50), we deduce the following general equations
for hierarchization

F̂gn−1 = C−Tgn−1F̌gn−1 (3.53)

and dehierarchization
F̌gn−1 = CTgn−1F̂gn−1. (3.54)

As mentioned earlier, in the general case these operations have complexity O(g2
n). For certain

transforms the vectors dj can be chosen in such a way that the matrices C and C−1 are sparse.
In these cases, the complexity can become as small as linear. In the general case it is reasonable
to choose the dj = ej . With this choice, equation (3.48) becomes

Agn−1Cgn−1 = Ign . (3.55)

Therefore, once we have computed the matrices Agn−1 and their inverses, it is no longer necessary
to compute Cgn−1 and C−1

gn−1 separately. This typically saves a lot of computational time.

As a conclusion of this subsection, we will prove the following lemma.

Lemma 3.1. Assume that for every i ∈ Jn, ψi is the only hierarchical basis function that
includes φi in its representation (3.44). Assume also that the coefficient in front of φi in this
representation is 1. Then f̌i = f̂i,n for every i ∈ Jn.

Proof. The assumption in the statement of the lemma simply means that the i-th row of the
matrix CTgn−1 contains a single non-zero entry in position i and this entry is equal to 1. Equation
(3.54) yields the desired result.

3.5 Computing the general interpolation operator

Subsection 3.2 described a procedure for the efficient computation of the operator Iν . The
computation relied heavily on the tensor product structure of the operator and the underlying
grid. This structure is no longer present for the general operator II and therefore the same
method cannot be applied directly. Fortunately, this problem can be circumvented by exploiting
the convenient properties of the hierarchical operator ǏI . Working in the hierarchical basis allows
the application of an almost identical efficient method.

20

Just as in tensor product case, we will define an iterative approach for finding the hierarchical
coefficients f̌α. For i = 0, 1 . . . n define the parametrized coefficient functions f̌ iα(xi+1, . . . xn)
with the equations

f̌0(x) = f(x), (3.56)

Ǐνi+1 f̌
i
α(xi+1, . . . xn) =

∑
j∈Gνi

f̌ i+1
(α,j)(xi+2, . . . xn)φj(xi+1). (3.57)

The goal is to prove that f̌α = f̌nα. This is equivalent to proving that the operators ǏI and Ǐ ′I
are identical, where

Ǐ ′If :=
∑
µ∈I

∑
i∈Jµ

f̌ni ψi(x). (3.58)

To prove this, it is enough to verify that ǏIf(x) = Ǐ ′If(x) for every x ∈ SI . This can be done
in two steps.

First, assume that the set I has a product structure, i.e. I = {µ ∈ Nn0 : µ ≤ ν} for some
index ν. This case can be proven by induction over the dimension n. The proof is completely
identical to the one in subsection 3.2 and thus will be omitted.

Assume now that I no longer has a product structure and choose a point x ∈ SI . Because of
the hierarchical decomposition of SI (3.32), there exist a unique index ν ∈ I such that x ∈ Shν .
The value of Ǐ ′If at the point x is

Ǐ ′If(x) =
∑
µ∈I

∑
i∈Jµ

f̌ni ψi(x). (3.59)

The key observation here is that ψi(x) = 0 for all indices i ∈ Jµ with µ � ν. Discarding these
terms leads to the equation

Ǐ ′If(x) =
∑
µ≤ν

∑
i∈Jµ

f̌ni ψi(x) = Ǐ ′{µ≤ν}f(x) = f(x). (3.60)

The last equality holds because {µ ≤ ν} is a product set and the statement is already proven
for it.

This method allows the computation of the hierarchical coefficients by applying a series of
one-dimensional transforms in each direction. However, usually we are interested in finding the
regular basis coefficients. There are multiple reasons to prefer the regular basis representation
over the hierarchical one. The regular basis usually has some meaning and its coefficients can be
interpreted in certain ways. The case is different with the hierarchical basis. Its basis functions
have no meaning outside the context of sparse grids. Therefore, the hierarchical coefficients
cannot be interpreted as easily as the regular ones. Another reason is that the regular basis
functions are much faster to compute. Each hierarchical basis function is computed as a linear
combination of up to a linear number of regular basis functions. Therefore, evaluating the
interpolant at a given point in its hierarchical form is several times slower compared to evaluating
the regular interpolant.

Because of these reasons we also need an efficient method for finding the regular coefficients
from the hierarchical ones. This can be achieved with a similar iterative approach over the
dimension n. Define the coefficients cki for i ∈

⋃
µ∈I Jµ and k = 0, . . . n as

IIf =
∑
µ∈I

∑
i∈Jµ

cki (ψi′ ⊗ φi′′), (3.61)

21

where i = (i′, i′′), i′ ∈ Nn−k0 and i′′ ∈ Nk0. From this definition, it follows that c0
i = f̌i and

cni = f̂i,µ. The goal is to find an efficient way to transform the coefficients cki to ck+1
i . It will be

demonstrated how to do this for k = 0. For other values of k, the only difference is the more
complicated notation. First, we need a few definitions:

µ = (µ′, µn),µ′ ∈ Nn−1
0 , µn ∈ N0, (3.62)

I ′ = {µ′ : ∃µ ∈ I such that µ = (µ′, µn)}, (3.63)

h(µ′) = max{µn : ∃µ ∈ I such that µ = (µ′, µn)}. (3.64)

The set I ′ is simply the projection for the set I along the n-th dimension. The function h(µ′) is a
height function which denotes the height of the set I at the point µ′. Note that the admissibility
property of I implies that (µ′, µn) ∈ I for every µ′ ∈ I and µn = 0, . . . h(µ′). We are now ready
to proceed to the first iteration step:

IIf =
∑
µ∈I

∑
i∈Jµ

f̌iψi

=
∑
µ∈I

∑
i∈Jµ

c0
iψi

(1)=
∑
µ′∈I′

h(µ′)∑
µn=0

∑
i′∈Jµ′

∑
in∈Jµn

c0
i (ψi′ ⊗ ψin)

(2)=
∑
µ′∈I′

∑
i′∈Jµ′

ψi′ ⊗
(h(µ′)∑
µn=0

∑
in∈Jµn

c0
iψin

)
(3)=
∑
µ′∈I′

∑
i′∈Jµ′

ψi′ ⊗
(∑
in∈Gh(µn)

c0
iψin

)
(4)=
∑
µ′∈I′

∑
i′∈Jµ′

ψi′ ⊗
(∑
in∈Gh(µn)

c1
iφin

)
(5)=
∑
µ∈I

∑
i∈Jµ

c1
i (ψi′ ⊗ φin).

(3.65)

In the calculation above, step (1) is achieved by splitting the summation into one summation
over the dimensions 1, . . . n − 1 and a second summation over dimension n. Note that because
of the non-product structure of I, the inner sum runs over a different set of numbers for each
µ′ ∈ I. Step (2) comes from reordering the summations. Step (3) uses the definition of Jn and
Gn. Step (4) is the crucial step since it applies a one-dimensional dehierarchization on the sum
in the parenthesis. Finally, step (5) simply reverts back the summation to its original form. The
conclusion of this computation is that the coefficients c0

i can be transformed to c1
i by applying

one-dimensional dehierarchizations on a subsets of coefficients, corresponding to each projected
index µ′ ∈ I.

3.6 Algorithms

The previous subsection described two iterative methods for finding the hierarchical interpolant
and for multidimensional dehierarchization. It is useful to see how these methods can be written
in algorithmic form. In the algorithms below, u denotes a vector of values

u := {ui : µ ∈ I, i ∈ Jµ} (3.66)

22

corresponding to each interpolation point. The upper boundary of I can also be denoted as

Md(I) := {µ ∈ I : µ+ ed /∈ I}, (3.67)

where ed is the standard basis vector in direction d. If the height function in direction d is
defined as

hd(µ′,µ′′) := max{µd : ∃µ ∈ I such that µ = (µ′, µd,µ′′),µ′ ∈ Nd−1
0 }, (3.68)

then the setMd(I) can also be defined as

Md(I) = {(µ′, hd(µ′,µ′′),µ′′) : (µ′, µd,µ′′) ∈ I and µ′ ∈ Nd−1
0 }. (3.69)

Figure 2: The upper boundary of I in both dimensions. Each index in I is depicted with a
square. Red squares are in the upper boundary set. Left image showsM1(I) and right image
showsM2(I)

Furthermore, assume that we have the following one-dimensional algorithms. All of them
work on a one-dimensional vector v and work in-place:

• TRANSFORM(v) – Transforms a function value vector v into the corresponding vector
of regular coefficients.

• INVERSE_TRANSFORM(v) – Transforms a regular coefficient vector v into the corre-
sponding function value vector.

• HIERARCHIZE(v) – Transforms regular coefficients into hierarchical coefficients.

• DEHIERARCHIZE(v) – Transforms hierarchical coefficients into regular coefficients.

In the general case, these algorithms are simply implemented as the matrix multiplications given
in (3.7), (3.53) and (3.54).

23

We are finally ready to write the multidimensional algorithms.

Algorithm 1 Transforms the vector u of function values into a vector of hierarchical coefficients.
1: procedure N_TRANSFORM
2: for d = 1, . . . n do
3: for µ ∈Md(I) do
4: for i′ ∈ Jµ1 × · · · × Jµd−1 , i

′′ ∈ Jµd+1 × · · · × Jµn do
5: TRANSFORM (u(i′,0,i′′), . . . , u(i′,gµd−1,i′′))
6: HIERARCHIZE(u(i′,0,i′′), . . . , u(i′,gµd−1,i′′))
7: end for
8: end for
9: end for

10: end procedure

Algorithm 2 Transforms the hierarchical coefficients vector u into a vector of function values.
1: procedure INVERSE_N_TRANSFORM
2: for d = n, . . . 1 do
3: for µ ∈Md(I) do
4: for i′ ∈ Jµ1 × · · · × Jµd−1 , i

′′ ∈ Jµd+1 × · · · × Jµn do
5: DEHIERARCHIZE(u(i′,0,i′′), . . . , u(i′,gµd−1,i′′))
6: INVERSE_TRANSFORM (u(i′,0,i′′), . . . , u(i′,gµd−1,i′′))
7: end for
8: end for
9: end for

10: end procedure

Algorithm 3 Transforms the vector u of regular coefficients into a vector of hierarchical coef-
ficients.

1: procedure N_HIERARCHIZE
2: for d = 1, . . . n do
3: for µ ∈Md(I) do
4: for i′ ∈ Jµ1 × · · · × Jµd−1 , i

′′ ∈ Jµd+1 × · · · × Jµn do
5: HIERARCHIZE(u(i′,0,i′′), . . . , u(i′,gµd−1,i′′))
6: end for
7: end for
8: end for
9: end procedure

24

Algorithm 4 Transforms the vector u of hierarchical coefficients into a vector of regular coef-
ficients.

1: procedure N_DEHIERARCHIZE
2: for d = n, . . . 1 do
3: for µ ∈Md(I) do
4: for i′ ∈ Jµ1 × · · · × Jµd−1 , i

′′ ∈ Jµd+1 × · · · × Jµn do
5: DEHIERARCHIZE(u(i′,0,i′′), . . . , u(i′,gµd−1,i′′))
6: end for
7: end for
8: end for
9: end procedure

25

4 Dyadic Sparse Grids

The primary goal of the previous section was to explore the interpolatory properties of operators
on sparse grids. Apart from purely theoretical results, it also included efficient algorithms for the
computation of these operators. While these questions are interesting on their own, they fail to
demonstrate the importance of sparse grids, namely their approximation properties. The main
reasons to compute an interpolant on a sparse grid is to use it for computation of approximate
function values outside the grid. To this moment, this question has not been addressed in this
text. The reason is that section 3 aimed to introduce spare grids in their most general setting
and deriving error bounds in such a setting is not possible. Therefore, in order to get error
estimates for the interpolant, it is required to work with concrete grids. This section is devoted
to several such grids.

To transform the general definition of a sparse grid from the previous section into a concrete
one, the following information should be provided:

• The function space X

• The interpolation interval I and the interpolation points xn

• The number of grid points per level gn

• The regular basis functions φn

• The hierarchical basis functions ψn

Additionally, if the transform allows it, the general quadratic procedures TRANSFORM, IN-
VERSE_TRANSFORM, HIERARCHIZE and DEHIERARCHIZE should be replaced with
faster alternatives, tailored to the specific type of transform.

Finally, if we wish to derive error bounds for the interpolant, the space Xn is usually too
big to allow any useful results. This is why the error estimates are derived for functions f in a
subspace Y ∈ Xn which does not necessarily have a product structure.

4.1 Dyadic Fourier Sparse Grids

4.1.1 Definition

Fourier sparse grids are based on the Fourier transform and thus are used for approximation of
periodic functions. The interpolation interval I is the 1-torus T and the function space X is
L2(T). The basis functions are defined as

φn(x) = ωσ(n)(x) = eiσ(n)x. (4.1)

As we know from subsection 2.1, the points that are used for the Fourier transform with gn

nodes are {2kπ/gn : k = 0, 1, . . . gn − 1}. This specific choice of points has many benefits for
the accuracy and efficiency of the transform. This is why, it is best to use these points for the
Fourier sparse grid. Since this text focuses only on nested sparse grids, this means that the set
of points {2kπ/gn : k = 0, 1, . . . gn − 1} must be a subset of {2kπ/gn+1 : k = 0, 1, . . . gn+1 − 1}

26

for every n. It is easy to see that setting gn = 2n satisfies this requirement. With this choice
of grid points and level sizes, it becomes possible to use the fast Fourier transform and its
inverse for the 1-dimensional algorithms. Therefore, the general functions TRANSFORM and
INVERSE_TRANSFORM with quadratic complexity can be replaced with the functions FFT
and IFFT, which have complexity O(gn log gn).

The next important question is the choice of hierarchical basis functions. As discussed in
subsection 3.4, there is an infinite space of choices for this basis. However in the case of dyadic
Fourier grids, one specific choice leads to a change of basis matrix which is very sparse. The
hierarchical basis functions are defined as

ψn =
{
φ0 n = 0,
φn − φ2l−n−1 2l−1 ≤ n ≤ 2l − 1.

(4.2)

The change of basis matrices Cgn−1 for the first few values of n are

(
1
)
,

(
1 0
−1 1

)
,

1 0 0 0
−1 1 0 0
0 −1 1 0
−1 0 0 1

 ,

1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
−1 0 0 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 −1 0 0 1 0 0
0 −1 0 0 0 0 1 0
−1 0 0 0 0 0 0 1

. (4.3)

The inverse matrices are also sparse:

(
1
)
,

(
1 0
1 1

)
,

1 0 0 0
1 1 0 0
1 1 1 0
1 0 0 1

 ,

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0
1 1 1 0 0 1 0 0
1 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1

. (4.4)

This sparsity can be exploited to implement faster hierarchization and dehierarchization algo-
rithms. More precisely, the complexity of the specialized versions of the HIERARCHIZE and
DEHIERARCHIZE functions is O(gn), compared to the general case O(g2

n). One way to imple-
ment these functions is to use regular sparse matrix multiplication. Another and more efficient
way is to avoid the matrix multiplication whatsoever and to replace it with iteration over the
grid levels.

Algorithm 5 Hierarchization of a coefficient vector a of length gn.
1: procedure FOURIER_HIERARCHIZE
2: for l = n downto 1 do
3: for k = 2l − 1 downto 2l−1 do
4: a2l−1−k += ak

5: end for
6: end for
7: end procedure

27

Algorithm 6 Dehierarchization of a coefficient vector a of length gn.
1: procedure FOURIER_DEHIERARCHIZE
2: for l = 1 to n do
3: for k = 2l−1 to 2l − 1 do
4: a2l−1−k −= ak

5: end for
6: end for
7: end procedure

The definition of the hierarchical basis in this form has another important consequence. The
hierarchical basis functions satisfy the requirements of Lemma 3.1. Therefore, f̌k = f̂k,ν for
every k ∈ Jν . Combining this result with the aliasing formula (2.1) yields an aliasing formula
for the hierarchical coefficients.

Lemma 4.1. The hierarchical Fourier coefficients satisfy the identity

f̌k =
∑
m∈Zn

f̂σ(k)+mgν =
∑

i∈Sk,gν

f̂i (4.5)

for every index k ∈ Jν .

4.1.2 Choice of index set

In the previous section, we defined the admissibility property of the index set I which is required
for the interpolatory properties of the sparse grid operator. This definition is too broad to be
able to derive any useful estimates for it. This is why we need to define a smaller family of index
sets that will be used for Fourier sparse grids. The following parametrized index set, introduced
in [GK00], can be used:

ITL := {l : |l|1 − T |l|∞ ≤ (1− T)L}, T < 1. (4.6)

Note that I−∞L and I0
L correspond to full grids and conventional sparse grids, respectively.

With this choice of index set, one can prove the following bound for the number of points in
the sparse grid.

Lemma 4.2. The dimension of the sparse grid space VITL is limited by

|VITL | =
∑
l∈ITL

2|l|1 .

2L 0 < T < 1,
2LLn−1 T = 0,
2L

T−1
T/n−1 T < 0,

2Ln T = −∞,

(4.7)

where n is the number of dimensions, L ∈ N0 and T < 1.

Proof. A proof of this lemma can be found in [GK00].

On several occasions in this and the previous sections, we discussed the complexity of the
one-dimensional algorithms. We also discussed some presumably efficient algorithms for com-
putations on sparse grids. However, up until now we have not shown any concrete results about
the computational complexity of these algorithms. Lemma 4.3 fills this gap.

28

Lemma 4.3. Let T [I] denote the computational complexity of Algorithm 1 in which TRANSFORM
and HIERARCHIZE are replaced with FFT and FOURIER_HIERARCHIZE. Then the
following upper bound holds:

T [ITL] . nL
∑
l∈ITL

2|l|1 .

nL2L 0 < T < 1,
nL2LLn−1 T = 0,
nL2L

T−1
T/n−1 T < 0,

nL2Ln T =∞.

(4.8)

Proof. A proof of a generalized version of this lemma can be seen in Lemma 6.7.

Figure 3: Index set I0
5 (left) and the corresponding Fourier sparse grid(right).

Figure 4: Index set I0.4
5 (left) and the corresponding Fourier sparse grid(right).

29

Figure 5: 3D Fourier sparse grid generated for the index set I0
5 .

4.1.3 Approximation error of the interpolant

The next step in the analysis of Fourier grids is to find error bounds for the sparse grid in-
terpolant. Since the space L2(Tn) is too big for any useful result, we will focus on a subset
of functions which are sufficiently smooth. More precisely, let w : Zn → R+ be a continuous
positive weight function. We can define the weighted Sobolev space Hw(Tn) by measuring the
decay of the weighted Fourier coefficients of a function:

Hw(Tn) :=
{
f(x) =

∑
k∈Zn

f̂kωk(x) : ||f ||w :=
√∑
k∈Zn

w(k)2|f̂k|2 <∞
}
. (4.9)

Two specific choice of weight functions are commonly used. The first one is w(k) = λiso(k)r =
(1 + |k|∞)r and it corresponds to the isotropic Sobolev space Hr, as defined in [Ada75]. The
other choice is w(k) = λmix(k)t =

∏n
d=1(1 + |kd|)t and it corresponds to the Sobolev space with

dominated mixed smoothness Htmix, as defined in [ST87]. Error bounds for Fourier grids can
be derived in a space that generalizes these two concepts, i.e. a generalized Sobolev space of
dominating mixed smoothness [GK00]:

Ht,rmix(Tn) :=
{
f(x) =

∑
k∈Zn

f̂kωk(x) : ||f ||Ht,rmix :=
√∑
k∈Zn

λmix(k)2tλiso(k)2r|f̂k|2 <∞
}
.

(4.10)

The following lemma can now be proven:

Lemma 4.4. Let f ∈ Htmix have pointwise convergent Fourier series, L ∈ N0, T < 1, r < t and
t > 1/2. Then the following holds:

||f − IITL f ||Hr .

 2−((t−r)+(Tt−r) n−1
n−T)Ln−1||f ||Htmix T ≥ r/t,

2−(t−r)L||f ||Htmix T < r/t.
(4.11)

30

Proof. A proof of a generalized version of this lemma can be seen in Lemma 6.3.

This error bound can be transformed to a bound with respect to the degrees of freedom of
the grid, instead of the grid level L.

Lemma 4.5. Let f ∈ Htmix have a pointwise convergent Fourier series, L ∈ N0, 0 < r < t,
t > 1/2 and 0 < T < r/t. Then the following holds:

||f − IITL f ||Hr .M−(t−r)||f ||Htmix , (4.12)

where M denotes the number of degrees of freedom in the grid, M := |VITL |.

4.2 Dyadic Polynomial Sparse Grids

Using polynomial basis functions for sparse grids is a natural choice because of the vast amount
of theory that exists for regular polynomial interpolation. However, the choice of a particular
set of basis functions is not that obvious. While any set of linearly independent polynomials
can be used, not all choices are good, just as in the one-dimensional case. For example, one can
construct a sparse grid with monomial basis. However, this is in general a bad idea, because
of the ill-conditioned Vandermonde matrix and the lack of an efficient hierarchical basis. The
Lagrange polynomials solve the first problems as they eliminate the need for solving a system
of interpolation conditions. However, the problem with the hierarchical basis still exists.

The polynomial basis of choice in this text is the set of Chebyshev polynomials. The Cheby-
shev transform, as introduced in subsection 2.2, does not suffer from problems with the condition
number of the transformation matrix. A hierarchical basis exists which is as efficient as in the
Fourier case. Moreover, because of the tight relation between the Chebyshev and the Fourier
transforms, there exist efficient algorithms for the transform and its inverse, at least in the case
of dyadic grids.

It is important to stress that the problems of the alternative polynomial basis sets are entirely
of practical nature. The ill-conditioning of the transformation matrix is problematic because
of the limitations of floating point arithmetic in computers. The lack of a good hierarchical
basis is even less important because it only affects the complexity of the computation of the
interpolation operator. The same is valid for the existence of the fast transforms and its inverse.
From a point of view of the theoretical error bounds, these problems have no effect whatsoever.
Once the interpolation interval I, the index set I and the interpolation points xν are fixed, the
interpolant IIf is always the same, no matter what basis functions are used for its representation
and no matter how efficient it is to compute. Therefore, one can think of polynomial sparse grids
from two different points of view. A practical one, that is used to implement them numerically,
and a theoretical one, that is used for their error analysis.

4.2.1 Definition

The most natural way to define Chebyshev sparse grids is to follow the same approach as in the
Fourier case. This results in the so-called Clenshaw-Curtis grids which are examined in more
detail in [BNR00]. The interpolation interval I is the closed interval [−1, 1] and the function

31

space X is L2
ω(I). The basis functions are defined as the Chebyshev polynomials,

φn(x) := Tn(x) = cos(n cos−1 x). (4.13)

The number of grid points per level gn could be set to 2n + 1 and the interpolation points for
each level could be {cos(kπ/2n) : k = 0, . . . 2n}. This way we could construct a valid nested
sparse grid that fits in the general framework from section 3.

This definition, however, suffers from a serious problem and it is caused by the fact that
g0 = 2. From the admissibility property it follows that every index set I contains the index 0.
This means that every sparse grid of dimension n contains the grid S0 and thus has at least
gn0 degrees of freedom. Hence, the number of degrees of freedom in the most simple sparse grid
grows exponentially with the dimension. This limits the applicability of such grids to problems
with at most 10− 15 dimensions. This is clearly undesirable. Therefore, although in theory g0

can have any value, in practice it should always be set to 1.

This requirement leads to the following definitions for the number of grid points

gn :=
{

1 for n = 0,
2n + 1 for n ≥ 1,

(4.14)

and the interpolation points

Sn :=
{
{0} for n = 0,
{cos(kπ/2n) : k = 0, . . . 2n} for n ≥ 1.

(4.15)

The sets Sn are nested and thus suitable for the definition of sparse grids. Just as in the Fourier
case, it is possible to use the fast Chebyshev transform and its inverse instead of the general
functions TRANSFORM and INVERSE_TRANSFORM. The fast algorithms have complexity
O(gn log gn).

The hierarchical basis functions can now be defined as

ψn :=

φn for n = 0, 1,
φ2 + φ0 for n = 2,
φn − φ2l−n for 2l−1 + 1 ≤ n ≤ 2l, l ≥ 2.

(4.16)

Again, this choice leads to sparse change of basis matrices Cgn−1:

(
1
)
,

 1 0 0
0 1 0
1 0 1

 ,

1 0 0 0 0
0 1 0 0 0
1 0 1 0 0
0 −1 0 1 0
−1 0 0 0 1

 ,

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 −1 0 1 0 0 0 0 0
−1 0 0 0 1 0 0 0 0
0 0 0 −1 0 1 0 0 0
0 0 −1 0 0 0 1 0 0
0 −1 0 0 0 0 0 1 0
−1 0 0 0 0 0 0 0 1

(4.17)

32

and their inverses:

(
1
)
,

 1 0 0
0 1 0
−1 0 1

 ,

1 0 0 0 0
0 1 0 0 0
−1 0 1 0 0
0 1 0 1 0
1 0 0 0 1

 ,

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
0 1 0 1 0 1 0 0 0
−1 0 1 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1

. (4.18)

Exactly as in the Fourier case, the specific structure of the matrices can be exploited to get
hierarchization and dehierarchization algorithms with lower complexity than the general case.
Note that a direct sparse matrix multiplication leads to a O(gn log gn) complexity. Algorithms 7
and 8, however, are linear. Note also that because of the special definition of ψ2, the algorithms
have to handle a0 separately.

Algorithm 7 Hierarchization of a coefficient vector a of length gn.
1: procedure CHEBYSHEV_HIERARCHIZE
2: for l = n downto 2 do
3: for k = 2l downto 2l−1 + 1 do
4: a2l−k += ak

5: end for
6: end for
7: a0 −= a2

8: end procedure

Algorithm 8 Dehierarchization of a coefficient vector a of length gn.
1: procedure CHEBYSHEV_DEHIERARCHIZE
2: a0 += a2

3: for l = 2 to n do
4: for k = 2l−1 + 1 to 2l do
5: a2l−k −= ak

6: end for
7: end for
8: end procedure

This choice of hierarchical basis functions also satisfies the requirements of Lemma 3.1.
Therefore, f̌k = f̂k,ν for every k ∈ Jν and every ν ∈ Nn0 . By using Lemma 2.3, this leads to the
following aliasing formula for the hierarchical coefficients:

Lemma 4.6. The hierarchical Chebyshev coefficients satisfy the identity

f̌k =
∑

i∈Sk,gν

ci,kf̂i, (4.19)

where ci,k and Sk,N are defined as in Lemma 2.3.

33

4.2.2 Choice of index set

Consider now dyadic Chebyshev sparse grids for index sets ITL in the form defined in (4.6).
Unsurprisingly, the same lemmata as in the Fourier case hold for the degrees of freedom of the
sparse grid and for the computational complexity of the interpolant. The reason is that the
setting of both types of grids is almost the same. The number of grid points per level differ by
at most 1. The computational complexity of the transform, inverse transform, hierarchization
and dehierarchization is the same in both cases. Therefore, it is easy to see that the number
of grid points and the computational effort have the same rate of growth with respect to the
parameters T and L. The statements of Lemma 4.2 and Lemma 4.3 will not be repeated here
because they are completely identical.

4.2.3 Approximation error of the interpolant

For the error analysis of the interpolant, we will limit the discussion to the index set I0
L. As in

the Fourier case, the function space L2
w(In) is too big for the derivation of error bounds. The

results in this subsection are limited to functions from the function space

F kn := {f : In → R : Dαf exists and is continuous for every for |α|∞ ≤ k} (4.20)

with the norm
||f ||Fkn := max{||Dαf ||∞ : |α|∞ ≤ k}. (4.21)

The following estimate is proven in [BNR00].

Lemma 4.7. For every function f ∈ F kn it holds

||f − II0
L
f ||∞ .M−k(logM)(k+2)(n−1)+1||f ||Fkn (4.22)

where M is the number of grid points.

34

Figure 6: Index set I0
5 (left) and the corresponding Chebyshev sparse grid(right).

Figure 7: Index set I0.4
5 (left) and the corresponding Chebyshev sparse grid(right).

Figure 8: 3D Chebyshev sparse grid generated for the index set I0
5 .

35

5 Leja Sequences

The sparse grids that were considered in section 4 have a very specific dyadic structure. This
structure brings important advantages. First, the construction of these grids is very natural.
The reason for this is the nestedness of the classic Fourier and Chebyshev interpolation nodes for
the appropriate number of grid points per level. The second major advantage of these grids is the
possibility to use fast algorithms for the one-dimensional transforms and for the hierarchization
and dehierarchization procedures. These advantages, however, come at a cost which is expressed
in the lack of flexibility in the sparse grid construction. This rigidity stems from the fact that the
number of grid points per level must be doubled on every step in order to keep the nestedness of
the grid points. A flexible sparse grids framework should possess the quality of granularity, i.e.
the increase in the number of grid points after a single refinement step should be reasonable.
Ideally, the control over the degrees of freedom in the grid should be as big as possible. Clearly,
in the case of dyadic grids this control is very limited because each level has a fixed number of
interpolation points. Although this is acceptable for small values of the dimension n, the issue
worsens for high-dimensional problems (see Figure 9).

n = 1 n = 5 n = 10 n = 20
L = 1 2 6 11 21
L = 2 4 26 76 251
L = 3 8 96 416 2231
L = 4 16 321 1966 16356
L = 5 32 1002 8378 104380
L = 6 64 2972 33028 599020
L = 7 128 8472 122468 3158460

Figure 9: Number of grid points in a dyadic Fourier grid with dimension n and index set I0
L

To circumvent this problem, finer control over the number of grid points per level should
somehow be allowed . In theory, it is possible to construct sparse grids with an arbitrary
sequence gn(although it is strongly advisable to keep g0 = 1). In practice, an arbitrary sequence
gn requires a suitable sequence of sets of interpolation points Sn. While this choice is obvious for
the dyadic grids from section 4, this is not at all the case for arbitrary gn. The goal of this section
is to provide means of finding good sets of interpolation points Sn for arbitrary sequence {gn}. By
good we mean that the corresponding one-dimensional interpolation operator on these points
has a slowly increasing Lebesgue constant. Fourier sparse grids that utilize such a sequence
have been discussed in length in [Mat14] and thus they will not be considered here. This section
focuses on finding such sequences for Chebyshev and Hermite sparse grids.

Finally, it should be kept in mind that the flexibility of arbitrary grids also comes at a cost.
The reason is that the specific advantages of dyadic sparse grids are lost. More precisely, the
optimal properties of the classic interpolation nodes cannot be counted on because these nodes
are not the ones used for the arbitrary grid. There are also no fast algorithms for arbitrary
number of points for any type of transform. Thus the construction of an arbitrary grid takes
more computational time compared to a dyadic one. As always, there is a trade-off between
flexibility and optimality. The applicability of dyadic and arbitrary grids depends on the specific

36

problem. Both of them can be either suitable or not for the problem at hand.

5.1 Classic Leja sequences

As explained in section 4.2, the theoretical results obtained for one polynomial basis are often also
valid for other sets of polynomial basis functions. Although we are interested in Chebyshev sparse
grids, this subsection focuses on general polynomial interpolation. Finding a good sequence of
nodes for polynomial interpolation is a challenging problem with a long history. One possible set
of interpolation points that is guaranteed to be good is the sequence of Fekete points [Fek23].
They are defined as the points that maximize the corresponding Vandermonde determinant.
The problem with them is that their computation is extremely costly because it requires the
solving of a multivariate optimization problem. Analytical formulas are known in only a few
types of domains.

An alternative set of points is the set of Leja points [Lej57]. They provide a good compromise
between computational efficiency and approximation accuracy. Their computation also involves
the solution of a sequence of optimization problems but in this case the problems have a single
variable.

Definition 5.1. A Leja sequence on the set [−1, 1] is a sequence of points {zn}n∈N0 defined by
z0 = 0 and

zn ∈ arg max
z∈[−1,1]

{
n−1∏
k=0
|zk − z|

}
(5.1)

for n ≥ 1.

A Leja sequence can be defined for a general compact subset E ⊂ C and an arbitrary
initial point z0 ∈ E. Applying the maximum principle on the maximization problem implies
that all Leja points belong to the boundary of E, i.e. zn ∈ ∂E for n ∈ N0. Of course, in
our limited case this does not mean anything because the set is the same as its boundary,
∂[−1, 1] = [−1, 1]. The second and more important observation is that the maximization problem
often has several solutions. For this reason, it is not possible to define the Leja points with
equality in Equation (5.1). The compactness of the set [−1, 1](and E in the general case)
guarantees that the maximization problem has at least one solution. Therefore, at least one
Leja sequence exists but it might not be unique. In our case, all possible Leja sequences have
the same properties regardless of which maximization point is chosen on every step.

The properties of classic Leja sequences are derived with the help of potential theory which
is out of the scope of this work. A detailed introduction can be found in [DM04]. Here we only
list the results that are relevant to the application of the sequence to sparse grids.

Lemma 5.1. The Leja points are asymptotically distributed as the Chebyshev nodes. Assume
that N ∈ N, ξk,N are the Chebyshev nodes, zn are the Leja points and δ is the Dirac delta
function. Then

lim
n→∞

νCN = lim
n→∞

νLN (5.2)

in a week sense, where

νCN = 1
N

N∑
k=0

δ(ξk,N) (5.3)

37

and

νLN = 1
N

N∑
k=0

δ(zn) (5.4)

The lemma states that the Leja sequence distributes in the interval [−1, 1] exactly as the
Chebyshev nodes(see Figure 10). This hints that the sequence might have good approximation
properties because the set of Chebyshev nodes does. The Lebesgue constant for interpolation on
the Chebyshev nodes is of order O(logn). Unfortunately, such a strong result does not exist for
the Leja sequences. In fact, it is only theoretically proven that the growth of the corresponding
Lebesgue constant is subexponential.

Figure 10: Empirical distribution of Leja points vs limit distribution of Chebyshev nodes.

Lemma 5.2. Let Λn be the Lebesgue constant that corresponds to the interpolation operator at
the Leja points {z0, . . . zn}. Then the following holds:

lim
n→∞

(Λn)1/n = 1. (5.5)

Proof. A proof of this result can be found in [TT10].

This bound is too weak to justify the practical usage of Leja sequences. However, numerical
evidence exists that the asymptotic behaviour of the Lebesgue constant Λn is actually linear
instead of exponential ([Chk13]). This is the reason that in spite of the lack of theoretical
support the Leja sequences are often used in practice.

5.2 R-Leja sequences

The previous subsection discussed polynomial interpolation on Leja sequences. This approach
has some important disadvantages. The Leja sequence still must be computed numerically.
Even though the computation is relatively fast, it is easy to see how this can be a problem if
we need to compute the first several thousand Leja points. The second disadvantage is the fact

38

that there is no proof that the Lebesgue constant grows linearly. This subsection considers a
variation of the Leja sequence that solves both of these problems at the cost of a slight decrease
in the approximation properties.

Definition 5.2. A Leja sequence on the unit disk D := {z ∈ C : |z| ≤ 1} is a sequence of points
{zn}n∈N0 defined by z0 := 1 and

zn ∈ arg max
z∈D

{
n−1∏
k=0
|zk − z|

}
(5.6)

for n ≥ 1.

The same remarks as the ones after Definition 5.1 are valid for Leja sequences on the unit
disk. All points belong to the boundary of the disk(i.e. |zn| = 1), the sequence is guaranteed
to exist and it is not uniquely defined. Using this definition, we can finally define the R-Leja
sequence.

Definition 5.3. An R-Leja sequence is a sequence {ξn}n∈N0 , ξn ∈ [−1, 1], defined by ξ0 := 1
and

ξn := Real(zm), m := min
{
k ∈ N0 : Real(zk) /∈ {ξ0, . . . ξn−1}

}
(5.7)

where {zn}n∈N0 is a Leja sequence on the unit disk.

This definition means that an R-Leja sequence is generated by projecting the points from a
Leja sequence on the unit disk to the [−1, 1] interval and removing the duplicates. Since Leja
sequences are not unique, it follows that the R-Leja sequences are also not unique. There is,
however, one instance of these sequences that is particularly important.

Lemma 5.3. The sequence {ξn}n∈N0 defined by

ξn := cos
(
π

s∑
l=0

kl2−l
)

(5.8)

where kl are the digits in the binary representation of k, k =
∑s
l=0 kl2l, is an R-Leja sequence.

Proof. A proof of this result can be found in [CM11].

This lemma provides a closed formula for the points of the sequence. It is interesting to note
that the first 2n+1 nodes of this sequence coincide with the set of Chebyshev nodes for N = 2n.
This means that the R-Leja sequence simply provides a specific ordering of the same nodes that
are used for dyadic interpolation.

The closed formula solves one of the problems related to the classic Leja sequences. What
is left is to prove a bound for the Lebesgue constant for interpolation on these points. The next
lemma addresses this issue.

Lemma 5.4. For each n ∈ N the Lebesgue constant Λn of the R-Leja sequence from Lemma
5.3 satisfied

Λn . 8
√

2(n+ 1)2 (5.9)

Proof. A proof of this lemma can be found in [CC15].

39

This means that Λn is of order O(n2). This bound is slightly worse than O(n) but it has
the benefit of being mathematically proven. In practice, however, classic Leja sequences usually
outperform the R-Leja sequence. Therefore, if one can neglect the lack of proven bound and
the higher computational cost, then Leja sequences are usually the better choice.

5.3 Weighted Leja Sequences

In the previous subsections Leja sequences were considered as a method for overcoming the
limitations inherent to dyadic Chebyshev grids. Nonetheless, Chebyshev grids still exist even
without the Leja sequences. The case is different when it comes down to the Hermite transform.
As mentioned in subsection 2.4, the classic nodes for interpolation with Hermite basis functions
are the Gauss-Hermite nodes. The problem with them is that there is no nestedness relation
between the interpolation points. Thus, constructing a sparse grid with Hermite basis functions
is not as straightforward as in the dyadic Chebyshev and Fourier cases. One way to achieve this
is to drop the nestedness condition on the sparse grid. The result is a non-nested Hermite sparse
grid([LY13]). This type of grid has the limitation that the corresponding operator is no longer
interpolatory. Another problem is that it contains a much higher number of points because the
lack of nestedness prevents higher grid levels to reuse points from lower levels. Therefore this
construction is not suitable for the purposes of this work.

The alternative way is to find a modified Leja sequence that can provide interpolation points
for the Hermite sparse grid. The definition given here is based on the work in [NJ14].

Definition 5.4. Let w(z) = e−z
2 . A weighted Leja sequence on the set R is a sequence of points

{zn}n∈N0 defined by z0 = 0 and

zn ∈ arg max
z∈R

{√
w(z)

n−1∏
k=0
|zk − z|

}
(5.10)

for n ≥ 1.

This recursive definition is similar to the one for the classic Leja sequence. The main dif-
ference is that it incorporates the weight function in the optimization problem. The weighted
Leja sequence is not unique because the optimization problems might have several maximizers.
On the other hand, it is guaranteed to have at least one maximizer because of the exponential
decay of the weight function and the polynomial growth of the product term:

lim
|z|→∞

√
w(z)

n−1∏
k=0
|zk − z| = 0. (5.11)

The reason for the specific way in which the weight function is included in the optimization
problem is the following result, proven in [NJ14].

Lemma 5.5. The weighted Leja sequence is asymptotically distributed as the w-Gauss quadra-
ture nodes. Assume that N ∈ N, ξk,N are the w-Gauss nodes, zn are the weighted Leja points
and δ is the Dirac delta function. Then

lim
n→∞

νGN = lim
n→∞

νLN (5.12)

40

in a week sense, where

νGN = 1
N

N∑
k=0

δ(N−1/2ξk,N) (5.13)

and

νLN = 1
N

N∑
k=0

δ(N−1/2zn) (5.14)

Therefore, just as in the unweighted case, w-Leja sequences distribute in the same way as
the classic nodes for interpolation with Hermite functions. The limit distribution of the w-Gauss
nodes can be found in [Gaw87] . This does not guarantee that these points are good and there
are currently no theoretical results about the growth rate of the resulting Lebesgue constant.
However, numerical results suggest that the sequence is a good choice for the construction of
sparse grids.

Figure 11: Empirical distribution of weighted Leja points vs limit distribution of w-Gauss nodes.

The described weighted Leja sequence is good for approximation with non-parametrized
Hermite basis functions, i.e. (α, β) = (1, 0). For the general case of the Hermite transform,
one way to find suitable interpolation points is to modify the weight in the definition of the
sequence (5.4). This, however, is unnecessary because of the following simple observation. The
parameters α and β simply scale and translate the Hermite basis functions. Therefore, it makes
sense to define the interpolation points for the parametrized Hermite transform by simply scaling
and translating the Leja points for the base case (α, β) = (1, 0). The resulting parametrized
weighted Leja sequence is {zα,βn := zn/α + β}. The direct computation of the sequence with a
parametrized weight function yields the same points.

As a conclusion, it should be noted that definition 5.4 can also be extended for other weight
functions. This is done in [NJ14] for the generalized Jacobi and generalized Laguerre weights.
The resulting Leja sequences provide good nodes for Jacobi and Laguerre sparse grids. Both of
these types of sparse grids are available in HCFFT.

41

5.4 Hermite Sparse Grids

Parametrized Hermite sparse grids are used for interpolation of functions from the space X :=
L2(Rn). In practice, only function which have exponential decay are considered because other-
wise the convergence is too slow. The interpolation interval is the entire real line, i.e. I = R.
The basis functions are

φn(x) := Hα,βn (x). (5.15)

The weighted Leja sequence from definition 5.4 is used to provide interpolation points. This
choice does not limit the number of grid points per level. Moreover, a fast Hermite transform
does not exist. Thus, there are no limitations on the size of the grid levels because there is
no way to benefit from such a limitation. Therefore, any increasing sequence gn can be used.
There is also no obvious way to define a hierarchical basis which produces a sparse change of
basis matrix. The reason is that the interpolation points are computed numerically. Thus, the
general definition of the hierarchical basis from subsection 3.4 is used. This means that the al-
gorithms TRANSFORM, INVERSE_TRANSFORM, HIERARCHIZE and DEHIERARCHIZE
have quadratic complexity. As a result, the computational complexity for the computation of
the sparse grid operator is higher compared to the case of dyadic Fourier and Chebyshev grids.
The following lemma measures exactly how much slower the algorithms is.

Lemma 5.6. Let T [I] denote the computational complexity of Algorithm 1 for a Hermite sparse
grid with gn := 2n. Then the following upper bound holds:

T [ITL] . n2L
∑
l∈ITL

2|l|1 .

n22L 0 < T < 1
n22LLn−1 T = 0

n2L
(

T−1
T/n−1 +1

)
T < 0

n2L(n+1) T =∞

(5.16)

Proof. For a general admissible set I we have

T [ITL] .
n∑
d=1

∑
l∈Md(I)

22ld2|l|1−ld

=
n∑
d=1

∑
l∈Md(I)

2ld2|l|1

= 2lmax
n∑
d=1

∑
l∈Md(I)

2|l|1

≤ n2lmax
∑
l∈I

2|l|1

(5.17)

where lmax := maxl∈I |l|∞. For the set ITL , we can calculate lmax = L. Applying the inequality
from Lemma 4.2 yields the desired result.

42

Figure 12: 2D Hermite grid with index set I−∞4 (left) and with index set I0
4 (right).

Figure 13: Hermite grid with index set I0
7 in two dimensions(left) and with index set I0

6 in three
dimensions(right).

43

6 Mixed Sparse Grids

Section 3 introduced sparse grids in a very general setting. However, this definition is still not
flexible enough for many practical problems. One of the main reasons for this lack of flexibility
is the requirement to use the same type of transform in every dimension of the problem. Many
functions arising from real-life problems are asymmetric and the different variables have very
different nature and therefore different properties. It is often unrealistic to expect that a single
type of transform would be able to represent accurately all features of such a function. Using
the appropriate transform for each dimension leads to better convergence rates. In some cases,
the improvement in convergence is so big that the problem is practically unsolvable without it.

The goal of this section is to lift the limitation imposed in section 3 by introducing and
analysing mixed sparse grids, i.e. sparse grids that can utilize different types of transforms in
the different dimensions. Both the interpolation and the approximation properties of the mixed
sparse grid operator are discussed.

6.1 General definition

Thanks to the tensor-product structure of sparse grids, allowing the use of different transforms
in different dimensions is fairly straightforward. In fact, it is mostly a matter of enriching
the notation used for non-mixed grids. This subsection presents such a notation and briefly
demonstrates how the results and properties of sparse grids are translated into the mixed case.

To define mixed sparse grids, we need to provide different one-dimensional parameters for
each dimension. Each one-dimensional object is defined in n different versions by adding a
superscript (d) to it, where d is the corresponding dimension index. Therefore, to define a
general mixed grid the following information should be provided for d = 1, . . . n:

• Interpolation interval I(d) and function space X(d)

• Number of grid points per level g(d)
k

• Interpolation points S(d)
k := {x(d)

i : i ∈ G(d)
k }

• Regular basis functions φ(d)
k

• Hierarchical basis functions ψ(d)
k

All other one-dimensional objects are defined in terms of the objects in this list and their
definition is completely identical to the one given in section 3. This is why it will be omitted
here.

The multidimensional objects are now defined exactly as in the non-mixed case with the
addition of a superscript for the appropriate dimension to each one-dimensional object. For
example, the mixed basis functions are defined as

φν(x) :=
(n⊗
d=1

φ(d)
νd

)
(x) =

n∏
d=1

φ(d)
νd

(xνd), (6.1)

the hierarchical set of indices for level ν as

Jν := J (1)
ν1 × · · · × J

(n)
νn , (6.2)

44

and the difference operators as

∆ν := ∆(1)
ν1 ⊗ · · · ⊗∆(n)

νn : (X(1) × · · · ×X(n)) 7→ Vν . (6.3)

The rest of the multidimensional objects (Bhν , Gν , ψν , etc) are defined analogously and thus their
definitions are also omitted.

Finally, the mixed interpolation operator II is defined again as in the non-mixed case,

IIf :=
∑
ν∈I

∆νf. (6.4)

This operator has the same properties as the operator on non-mixed grids. The most important
one of them, namely that the operator is indeed an interpolation operator, is proven in the next
lemma.

Lemma 6.1. For any admissible index set I the operator II interpolates every function f ∈
X(1) × · · · ×X(n) on the set of points SI .

Proof. Choose a point x ∈ SI and let ν ∈ I be the unique index such that x ∈ Shν . The
interpolant’s value at the point x is

IIf(x) =
∑
µ∈I

∆µf(x). (6.5)

We can now use the fact that ∆µf(x) = 0 for all indices µ � ν. Removing these terms from
the sum yields

IIf(x) =
∑
µ∈I

∆µf(x)

=
∑

0≤µ≤ν
∆µf(x)

= Iνf(x)

= (I(1)
ν1 ⊗ · · · ⊗ I

(n)
νn)f(x)

= f(x).

(6.6)

The last equality follows from the properties of tensor product interpolation operators on full
grids.

We will also need the following generalization of Lemma 3.1.

Lemma 6.2. Assume that the conditions in Lemma 3.1 are satisfied for the basis functions in
every dimension of the mixed grid. Then for every ν ∈ Nn0 and every k ∈ Jν we have f̌k = f̂k,ν .

The algorithms for the computation of the mixed interpolation operator and its inverse,
and those for hierarchization and dehierarchization are straightforward generalizations of the
non-mixed versions. For example, the interpolation operator can be computed with Algorithm
9.

45

Algorithm 9 Transforms the vector u of function values into a vector of hierarchical coefficients.
1: procedure N_MIXED_TRANSFORM
2: for d = 1, . . . n do
3: for µ ∈Md(I) do
4: for i′ ∈ J (1)

µ1 × . . .J
(d−1)
µd−1 , i′′ ∈ J (d+1)

µd+1 × . . .J
(n)
µn do

5: TRANSFORM (d)(u(i′,0,i′′), . . . , u(i′,g(d)
µd
−1,i′′))

6: HIERARCHIZE (d)(u(i′,0,i′′), . . . , u(i′,g(d)
µd
−1,i′′))

7: end for
8: end for
9: end for

10: end procedure

Figure 14: Mixed Fourier-Chebyshev grid with index set I0
6 (left) and mixed Fourier-Hermite

grid with index set I0
6 (right).

46

Figure 15: Mixed Fourier-Hermite-Chebyshev grid with index set I0
6 .

6.2 Approximation error in Fourier-Chebyshev grids

The setting from the previous subsection guarantees that the sparse grid operator has the same
interpolatory properties as the operator on non-mixed grids. However, it does not explore the
approximation accuracy of the interpolant. Exactly as in the case of non-mixed sparse grids, the
reason is that in order to derive error bounds for the interpolant we need to work with concrete
grids. This is why the current subsection is devoted to defining and analyzing one particular
type of mixed grids, namely the mixed Fourier-Chebyshev grid.

Let n be the dimension of the problem and p ∈ {0, 1, . . . n}. Without loss of generality,
assume that the Fourier transform is used for the first p dimensions of the sparse grid and the
Chebyhsev transform is used for the other n − p. To simplify the subsequent derivations, the
following notation convention is established. Functions, sets, constants, indices, and coefficients
that correspond to the Fourier transform(or equivalently, to the first p dimensions) are marked
with a single prime, e.g. φ′n, B′n and J ′n. Chebyshev related objects are marked with a double
prime, e.g. φ′′n, B′′n and J ′′n . Objects that do not have any additional superscript denote mixed
objects and can be split into Fourier and Chebyshev parts. The following examples illustrate
the idea:

ν = (ν ′,ν ′′), where ν ∈ Zp × Nn−p0 , ν ′ ∈ Zp and ν ′′ ∈ Nn−p0 , (6.7)

φν = φ′ν′ ⊗ φ′′ν′′ , (6.8)

Jν = J ′ν′ × J ′′ν′′ . (6.9)

The Fourier-Chebyshev interpolant is defined for functions in the space L2(Tp)× L2
w(In−p).

This function space, however, is too big for the derivation of error bounds because it contains
functions which are not sufficiently smooth. The error analysis is therefore limited to functions

47

from the weighted Sobolev space

Hw(Tp × In−p) :=
{
f(x) =

∑
k∈Zp×Nn−p0

f̂kωk′(x′)Tk′′(x′′) : ||f ||w <∞
}
, (6.10)

where
||f ||2w :=

∑
k∈Zp×Nn−p0

w(k)2|f̂k|2 (6.11)

and w : Zp×Nn−p0 → R+ is a positive weight function. We will derive bounds for weight functions
in the form w = wt,r := λtmixλ

r
iso. For such a weight function, the corresponding Sobolev space

is denoted with Ht,rmix(Tp × In−p). If the parameter r is equal to zero, then the space is denoted
with Htmix(Tp × In−p). If r is equal to zero, the notation becomes Hr(Tp × In−p).

The goal of this subsection is to prove the following lemma:

Lemma 6.3. Let f ∈ Htmix have pointwise convergent mixed series, L ∈ N0, T < 1, r < t and
t > 1/2. Then the following holds:

||f − IITL f ||Hr .

 2−((t−r)+(Tt−r) n−1
n−T)Ln−1||f ||Htmix T ≥ r/t

2−(t−r)L||f ||Htmix T < r/t
(6.12)

The proof of this lemma is rather lengthy and is partitioned into several other lemmata.
First, we need the following general aliasing formula.

Lemma 6.4. The hierarchical mixed coefficients satisfy the identity

f̌k =
∑

i∈Sk,gl

ci′′,k′′ f̂i (6.13)

for every l ∈ Nn0 and every k ∈ Jl, where ci′′,k′′ and Sk,gl are defined as in Lemma 2.4.

Proof. The mixed sparse grid uses the Fourier and Chebyshev hierarchical basis functions as
defined in section 4. This means that the conditions of Lemma 6.2 are satisfied. Hence for every
k ∈ Jl we have f̌k = f̂k,l. Combining this with the mixed aliasing formula from Lemma 2.4
yields the desired result.

We also need the following basic inequality:

Lemma 6.5. For L ∈ N0, T < 1 and t ≥ 0 it holds

∑
l∈Nn0 \I

T
L

2−t|l|1+r|l|∞ ≤

 2−
(

(t−r)+(Tt−r) n−1
n−T

)
LLn−1 for T ≥ r/t

2−(t−r)L for T < r/t
(6.14)

Proof. The proof of this lemma can be found in [Kna00].

Let us define the following indexing functions:

µ′v,l(j) :=

j for v = 0,
−1 for v = 1 and l = 0,
2l − 1− j for v = 1 and l ≥ 1,

(6.15)

48

µ′′v,l(j) :=

j for v = 0,
−1 for v = 1 and l = 0,
2l − j for v = 1 and l ≥ 1,

(6.16)

µv,l(j) := (µ′v1,l1(j1), . . . µ′vp,lp(jp), µ
′′
vp+1,lp+1(jp+1), . . . µ′′vn,ln(jn)). (6.17)

The purpose of these indexing functions is to simply allow us to write the hierarchical basis
functions more conveniently. The following relations hold:

ψ′j = φ′µ0,l(j)− φ
′
µ1,l(j), (6.18)

ψ′′j = φ′′µ0,l(j)− φ
′′
µ1,l(j), (6.19)

for every l ∈ N0 and j ∈ J ′l or j ∈ J ′′l , respectively (recall that both φ′−1 and φ′′−1 were defined as
equal to 0). By using these indexing functions the statement of the next lemma can be written
more compactly.

Lemma 6.6. Let w̃ = λriso and w = λtmix. Then the inequality

w̃(σ(µv,l(j)))2 ∑
m∈Sj,gl

|w(m)|−2 ≤ C22−2t|l|1+2r|l|∞ (6.20)

holds for every l ∈ Nn0 , j ∈ Jl, v ∈ {0, 1}n, l ≥ v and a constant C which does not depend on j
and v.

Proof. We will first find a bound for the sum

∑
m∈Sj,gl

|w(m)|−2 =
∑

m∈Sj,gl

n∏
d=1

(1 + |md|)−2t. (6.21)

Consider an index d ≤ p. In this case md ∈ S′jd,g′ld
, hence md = σ′(jd) + kg′ld for some k ∈ Z.

Note that σ′(jd) ∈ {−2ld−1, · · · − 2ld−2 − 1} ∪ {2ld−2 + 1, . . . 2ld−1} because jd ∈ J ′ld . Three
different cases for k exist:

• If k = 0 then 1 + |md| = 1 + |σ′(jd)| ≥ 4−12ld

• If k ≥ 1 then 1 + |md| = 1 + |σ′(jd) + k2ld | = 1 + σ′(jd) + k2ld ≥ 4−12ld(1 + k)

• If k ≤ −1 then 1 + |σ′(jd) + k2ld | = 1− σ′(jd)− k2ld ≥ 4−12ld(1− k)

Hence, in all cases we have 1 + |md| ≥ 4−12ld(1 + |k|).

Consider now an index d > p. In this case md ∈ S′′jd,g′′ld
, hence md = εjd+ 2kg′′ld ≥ 0 for some

k ∈ N0 and some ε ∈ {−1, 1}. Two different cases exist:

• If k = 0 then ε must be equal to 1 because md ≥ 0. Then 1 + |md| = 1 + jd ≥ 2−12ld

• If k ≥ 1 then 1 + |md| = 1 + εjd + 2(2ld + 1)k ≥ 2−12ld(1 + k)

Hence, we get 1 + |md| ≥ 2−12ld(1 + |k|).

49

Recall that the cardinality of each element in the set Sj,gl is at most 2n−p. Hence, we get
the inequality

∑
m∈Sj,gl

|w(m)|−2 =
∑

m∈Sj,gν

n∏
d=1

(1 + |md|)−2t

≤ 2n−p
∑

k∈Zp×Nn−p0

p∏
d=1

(4−12ld(1 + |kd|))−2t
n∏

d=p+1
(2−12ld(1 + |kd|))−2t

.
∑

k∈Zp×Nn−p0

n∏
d=1

(2ld(1 + |kd|))−2t

.
∑
k∈Zn

n∏
d=1

(2ld(1 + |kd|))−2t

. 2−2t|l|1
∑
k∈Zn

n∏
d=1

(1 + |kd|)−2t

. 2−2t|l|1 .

(6.22)

The other weight function can be bounded much more easily:

w̃(σ(µv,l(j)))2 = (1 + |σ(µv,l(j))|∞)2r ≤ (1 + |2l|∞)2r . 22r|l|∞ . (6.23)

Now we are finally ready to move on to the proof of the mixed error bound.

Proof of Lemma 6.3. The proof of this lemma extends the proof of the analogous bound for
non-mixed Fourier grids given in [GH14]. The first part of the proof is valid for arbitrary weight
functions w and w̃ and arbitrary index set I. The interpolation error can be bounded by

||f − IIf ||w̃ = ||
∑
l∈Nn0

∑
j∈Jl

f̌jψj −
∑
l∈I

∑
j∈Jl

f̌jψj ||w̃

= ||
∑

l∈Nn0 \I

∑
j∈Jl

f̌jψj ||w̃

≤
∑

l∈Nn0 \I
||
∑
j∈Jl

f̌jψj ||w̃.

(6.24)

The next step is to find an upper bound for the terms in the inner sum of the last inequality:

||
∑
j∈Jl

f̌jψj ||2w̃ = ||
∑
j∈Jl

f̌jψ
′
j1 ⊗ · · · ⊗ ψ

′
jp ⊗ ψ

′′
jp+1 ⊗ · · · ⊗ ψ

′′
jn ||

2
w̃

= ||
∑
j∈Jl

f̌j
(p⊗
d=1

(φ′µ0,ld (jd) − φ
′
µ1,ld (jd))

)
⊗
(n⊗
d=p+1

(φ′′µ0,ld (jd) − φ
′′
µ1,ld (jd))

)
||2w̃

= ||
∑
j∈Jl

f̌j
∑

v∈{0,1}n
εv
(p⊗
d=1

φ′µvd,ld (jd)

)
⊗
(n⊗
d=p+1

φ′′µvd,ld (jd)

)
||2w̃

= ||
∑
j∈Jl

f̌j
∑

v∈{0,1}n
εvφµv,l(j)||

2
w̃

(6.25)

where εv ∈ {−1, 1}. Next, we will discard some of the terms in the inner sum. Assume that
ld < vd for some d ≤ p. This is only possible if ld = 0 and vd = 1. However, µ′1,0(jd) = −1 and

50

φ−1 = 0, hence φµv,l(j) = 0. The same argument is valid if ld < vd for some d > p. Hence, all
terms in the inner sum which do not satisfy l ≥ v are equal to zero. After discarding them we
get

||
∑
j∈Jl

f̌jψj ||2w̃ = ||
∑
j∈Jl

∑
v∈{0,1}n,l≥v

f̌jεvφµv,l(j)||
2
w̃

(1)= ||
∑
j∈Jl

∑
v∈{0,1}n,l≥v

f̌jεvωσ′(µ′
v′,l′ (j

′)) ⊗ Tµ′′
v′′,l′′ (j

′′)||2w̃

(2)=
∑
j∈Jl

∑
v∈{0,1}n,l≥v

|f̌j |2w̃(σ(µv,l(j)))2

(3)=
∑
j∈Jl

∑
v∈{0,1}n,l≥v

∣∣ ∑
m∈Sj,gl

cm′′,j′′ f̂m
∣∣2w̃(σ(µv,l(j)))2

(4)=
∑
j∈Jl

∑
v∈{0,1}n,l≥v

∣∣∣ ∑
m∈Sj,gl

cm′′,j′′ f̂m
w(m)
w(m)

∣∣∣2w̃(σ(µv,l(j)))2

(5)
≤
∑
j∈Jl

∑
v∈{0,1}n,l≥v

∣∣∣ ∑
m∈Sj,gl

f̂m
w(m)
w(m)

∣∣∣2w̃(σ(µv,l(j)))2

(6)
≤
∑
j∈Jl

∑
v∈{0,1}n,l≥v

(∑
m∈Sj,gl

|f̂mw(m)|2
)(∑

m∈Sj,gl

|w(m)|−2
)
w̃(σ(µv,l(j)))2.

(6.26)

Step (1) in the derivation above is achieved by replacing the mixed basis function φµv,l(j) with
its actual representation. Step (2) is achieved by applying the definition of ||.||w̃. This is possible
because each basis function appears in the sum at most once. Step (3) is obtained by applying
the aliasing formula from Lemma 6.4. Step (4) is the result of simply multiplying and dividing
by w(m). Step (5) uses the fact that cm′′,j′′ ≤ 1. Finally, step (6) applies the Cauchy-Schwarz
inequality.

Define the function g(l) := 2−2t|l|1+2r|l|∞ . Lemma 6.6 can now be applied to the right-hand
side of the inequality:

||
∑
j∈Jl

f̌jψj ||2w̃ ≤
∑
j∈Jl

∑
v∈{0,1}n,l≥v

(∑
m∈Sj,gl

|f̂mw(m)|2
)
C2g(l)2

≤ 2nC2g(l)2 ∑
j∈Jl

∑
m∈Sj,gl

|f̂m|2|w(m)|2

. g(l)2 ∑
j∈Jl

∑
m∈Sj,gl

|f̂m|2|w(m)|2

. g(l)2||f ||2w

(6.27)

The last inequality holds because the multiset
⋃
j∈Jl

Sj,gl contains every index k ∈ Zp × Nn−p0 at

most a constant number of times, and this constant depends only on n and p.

Returning to the inequality in the beginning of this proof, we get

||f − IIf ||w̃ .
(∑
l∈Nn0 \I

g(l)
)
||f ||w. (6.28)

Applying Lemma 6.5 finishes the proof.

The next important question is about the number of degrees of freedom in the mixed sparse
grid. It is easy to see that for every index set ITL it holds |V ′ITL | ≤ |VITL | ≤ |V

′′
ITL
|, where |V ′ITL | and

51

|V ′′ITL | are the degrees of freedom of a Fourier and a Chebyshev grid, respectively. These values
have the same asymptotic behaviour. Hence, Lemma 4.2 is also valid for mixed grids.

The same conclusion is easily reached for the computational complexity T [I]. The trans-
form and inverse transform algorithms have complexity O(n logn) for both the Fourier and the
Chebyshev transforms. The hiearchization and dehierarchization algorithms are also linear in
both cases. Since we already established that the number of degrees of freedom of the grid grows
with the same rate, it follows easily that Lemma 4.3 is also valid in the mixed case.

6.3 Computational complexity of dyadic Fourier-Hermite grids

Little is known about the approximation error of the interpolant on Hermite sparse grids. [LY13]
explores the approximation accuracy with Hermite functions on hyperbolic cross index sets.
However, the approximation there is achieved with a spectral method instead of a pseudospectral
one. Thus, the results are not directly applicable to sparse grids. Error bounds for mixed sparse
grids that involve the Hermite transform as well as other transforms do not exist.

Hence, the only results that are discussed in this subsection are the estimation of the degrees
of freedom and of the computational complexity of dyadic Fourier-Hermite grids. The results
for Chebyshev-Hermite grids are the same and therefore they are not considered separately. A
dyadic Fourier-Hermite grid has the same number of grid points as the corresponding dyadic
Fourier grid. Therefore, Lemma 4.2 also holds in this case. The question about the computa-
tional complexity is a bit more difficult. As already explained, the one-dimensional algorithms
for the Hermite transform have quadratic complexity. The overall computational complexity is
bounded in the following lemma.

Lemma 6.7. Let T [I] denote the computational complexity of Algorithm 9 for a dyadic Fourier-
Hermite grid which uses the Fourier transform in the first p dimensions and the Hermite trans-
form in the other n− p. Then the following upper bound holds:

T [ITL] . (pL+ (n− p)2L)
∑
l∈ITL

2|l|1 .

(pL+ (n− p)2L)2L 0 < T < 1
(pL+ (n− p)2L)2LLn−1 T = 0
(pL+ (n− p)2L)2L

T−1
T/n−1 T < 0

(pL+ (n− p)2L)2Ln T =∞

(6.29)

Proof. For a general admissible set I we have

T [ITL] .
p∑
d=1

∑
l∈Md(I)

2ld ld2|l|1−ld +
n∑

d=p+1

∑
l∈Md(I)

22ld2|l|1−ld

=
p∑
d=1

∑
l∈Md(I)

ld2|l|1 +
n∑

d=p+1

∑
l∈Md(I)

2ld2|l|1

≤ lmax
p∑
d=1

∑
l∈Md(I)

2|l|1 + 2lmax
n∑

d=p+1

∑
l∈Md(I)

2|l|1

≤ plmax
∑
l∈I

2|l|1 + (n− p)2lmax
∑
l∈I

2|l|1

=
(
plmax + (n− p)2lmax

)∑
l∈I

2|l|1

(6.30)

52

where lmax := maxl∈I |l|∞. For the set ITL , we have lmax = L. Applying the inequality from
Lemma 4.2 finishes the proof.

53

7 Adaptive Sparse Grids

Sections 4 and 6 contained error estimates for sparse grids with an index set in the form ITL .
The reason for this choice is that if the interpolated function belongs to a certain smoothness
class then the constructed sparse grid is optimal([BG04; GK09]). Therefore, the decision for
using such a sparse grid for the problem at hand is based on the a priori knowledge of the
function’s properties. Often, however, we need to work with functions which do not possess
the required smoothness or whose properties are not known. In high-dimensional problems it
is common to have the different dimensions contributing to the function in a different degree.
The interactions between the dimensions can also vary strongly. The importance of these inter-
actions should be captured by the sparse grid by adding more refinement levels in dimensions
with higher contribution. In the general case, index sets in the form ILT do not suffice. One
straightforward generalization is to consider level indices which are weighted with a weight vec-
tor a ∈ Rn+([GG02]). This results in anisotropic grids and allows the grid to focus in dimensions
which are more important. However, the a priori choice of the weight vector a is still a difficult
task.

A common method to handle such problems is to execute a dimension-adaptive algorithm
which constructs a sparse grid depending on the approximated function([Heg03]). The goal
of the adaptive algorithm is to construct the grid levels by evaluating their contribution to
the approximation properties of the interpolant. The resulting sparse grid is tailored to the
specific function instead of to an entire function class. Moreover, the difficult task of choosing
an appropriate index set is delegated to the adaptive algorithm.

7.1 Basic adaptive algorithm

There are many variations of the adaptive algorithm which arise from the various applications of
sparse grids([GG03; Gar07; Mat14]). This subsection introduces the most simple one of them.
There are two main reasons for this choice. First, working with adaptive sparse grids can be
difficult and can produce unexpected results. There are certain pitfalls that should be avoided.
With the simple algorithm it is easy to demonstrate them. The second reason is that this
algorithm was used by default in the previous version of HCFFT.

The algorithm is provided in pseudocode in Algorithm 10. During the adaptive refinement
the set of grid indices is split into two disjoint subsets – the set of old indices, O, and the set
of active indices, A. At any given point, the grid index set I is equal to the union of these two
sets. The algorithm starts by setting O to the empty set and inserting the index 0 into A. Each
index in A has an associated weight which denotes its importance, i.e. its contribution to the
final approximation. Each step starts by pulling the index with the highest weight from A and
inserting it into O. The algorithm then inspects all forward neighbours of the newly inserted
index. All of the admissible ones are inserted in the active set. An index is considered to be
admissible if all of its backward neighbours are in O. The algorithm continues as long as there
are active indices whose weight is larger than some ε. The rest of the active indices are simply
popped from the active set and inserted in the old set. The final result is the old set since at
the end the active set is empty.

54

Algorithm 10 Basic adaptive algorithm
1: O = {}
2: A = {0}
3: while A is not empty do
4: i = arg maxk∈A{weight(k)}
5: O = O ∪ {i}
6: A = A \ {i}
7: if weight(i) > ε then
8: for d = 1, . . . n do
9: j = i+ ed

10: if j /∈ O and admissible(O ∪ {j}) then
11: A = A ∪ {j}
12: end if
13: end for
14: end if
15: end while
16: return O

The described algorithm is a greedy one. On every step it chooses the best index according
to some heuristically computed importance indicator. Neighbours of important indices are also
inspected, hoping that importance is propagated locally. As soon as an unimportant index is
encountered, the algorithm is no longer interested in continuing the expansion in this direction.
An example application of this algorithm can be seen in Figure 16 and Figure 17.

It is important to note that at every step of the algorithm the index set I is equal to O ∪A
instead of just O. The reason is that the weight function weight(l) typically uses the coefficients
at the grid points Shl . Since this weight function is computed for all indices in the active set, it
follows that the active set should be contained in the grid index set. Of course, it is possible to
terminate the algorithm once the condition weight(i) > ε is violated without adding the rest of
the active indices to the final index set. However, this would not make much sense because we
have already computed the target function at all grid points O ∪A. Terminating the algorithm
prematurely would artificially shrink the index set. Any subsequent numerical benefit/cost
estimates would be inaccurate because they would not account for the function computations
in the rest of the indices in A. Typically, the most time is spent on function computations
because the target function is very complicated. Therefore, this inaccuracy would be significant.
Moreover, adding A to the final index set should not increase the computational time of the
interpolant significantly. As a consequence, the final grid contains some indices on the boundary
with a weight less than the given threshold ε.

Some typical choices of weighting function are:

weight1(l) :=
∑
i∈Jl

|f̂ li |2, weight2(l) :=
∑
i∈Jl

|f̂ li |2/|Jl|2, (7.1)

weight3(l) :=
∑
i∈Jl

|f̌i|2, weight4(l) :=
∑
i∈Jl

|f̌i|2/|Jl|2. (7.2)

The functions weight3 and weight4 measure the importance of an index by summing its corre-
sponding hierarchical coefficients. An important property of the hierarchical coefficients is that

55

Figure 16: Several steps of the algorithm executed on the function f(x1, x2) = e−x
2
1 + e−x

2
2/10 +

e−x
2
1/10−x2

2/10. The grid uses Chebyshev basis functions in both directions. The weight function
is weight2(). The top row depicts the index set I. Blue squares indicate indices in the old set,
while red squares are used for the active set. The selected active index for expansion is marked
with a blue dot. The bottom row shows the corresponding grid.

they do not change when the grid evolves. This means that the coefficients corresponding to
index l stay the same through the entire algorithm. The case is different with the regular coeffi-
cients f̂ li and the weight functions weight1 and weight2. The regular coefficients that correspond
to index l can change when the grid index set I grows. This means that if an index l had a
weight greater than ε at the time of its insertion, this weight might actually become less than
ε at the end of the algorithm. This behaviour is not particularly important for the efficiency of
the method. However, one should keep that in mind when inspecting the final generated index
set since the results might seem confusing.

An important feature of this algorithm is that its termination criteria is local. This means
that the termination decision is taken only based on the local properties of the indices. There is
no way to stop the index set generation by inspecting the entire grid. A partial solution to this
problem is to execute the algorithm in a loop with a decreasing threshold ε. The resulting grid
is inspected after every iteration. If the grid has the desired properties the loop is terminated.
If it does not, then ε is decreased and the grid is refined further. When ε reaches some minimal
value εmin the loop is terminated, even if the grid still does not have the desired properties.
The algorithm is written in pseudocode in Algorithm 11. The function testGrid() contains the
global termination criteria.

Another consequence of the local termination criteria is the fact that the algorithm can be
forced to terminate early. This may happen when the weight function does not decrease when
the index increases. If an index has a backward neighbour whose weight is less than ε, then

56

Figure 17: The final result of the adaptive algorithm executed on the function f(x1, x2) =
e−x

2
1 + e−x

2
2/10 + e−x

2
1/10−x2

2/10. The chosen ε is 10−6. Red indices indicate the state of the
active set after the last index was expanded. Each square has two numbers in it. The first line
shows the moment at which the index was added to the old set. Thus, the indices were added
in the order (0, 0), (1, 0), (2, 0), (0, 1), (3, 0) . . . The second line contains the weight of the index,
calculated with the weight2() function.

there is no way to add this index to the grid, even if its weight is greater than ε. This situation
is particularly easy to happen with the so-called PLUS1 grids([Mat14]). The reason is that
every index l corresponds to a single grid point. Thus, the algorithm is extremely sensitive to
fluctuations in the coefficients. Unfortunately, there is no easy way to solve this problem. If
the weight function does not decrease when |l|1 increases, then the application of the algorithm
might not be possible.

7.2 Generalized adaptive algorithm

This subsection aims to transform the basic adaptive algorithm into an extensible and customiz-
able procedure. The goal is to define a general algorithm that can be applied to a large set of
problems by simply adjusting its parameters. The algorithm that is currently implemented in
HCFFT is presented in pseudocode in Algorithm 12.

57

Algorithm 11 Iterative adaptive algorithm
1: ε = εinit

2: while ε ≥ εmin do
3: I := { result of Algorithm 10 with the current ε }
4: if testGrid(I) then
5: break
6: end if
7: ε = ε/2
8: end while
9: return I

Algorithm 12 Generalized adaptive algorithm
1: O = {}
2: A = I0

3: while A is not empty do
4: i = arg maxk∈A{weight(k)}
5: O = O ∪ {i}
6: A = A \ {i}
7: if expand(i,O ∪A) then
8: for d = 1, . . . n do
9: j = i+ ed

10: if j /∈ O and admissible(O ∪ {j}) and insert(j,O ∪A) then
11: A = A ∪ {j}
12: end if
13: end for
14: end if
15: end while
16: return O

The goal of Algorithm 12 is to allow more control over the grid indices that go into the
index set. There are two user-defined functions that are used for this purpose – expand and
insert. The former decides when the neighbours of an index should be inspected and eventually
inserted into the active set. The latter performs a finer selection by allowing to exclude specific
neighbours. Note that both functions have two arguments – the local index i and the current
index set I = O ∪ A. Therefore, they can be used to make a non-local decision. Note also
that this algorithm allows the active index set to acquire some initial value, I0. This way the
algorithm can start refining some already existing grid. It is common to set I0 = ITL for some
small value L.

The combination of the functions expand, insert and weight allows a great deal of flexibility.
Several common choices are discussed below.

Basic adaptive algorithm

The basic algorithm easily fits in the described framework. The concrete functions are
described in Algorithm 13.

58

Algorithm 13 Functions for the basic adaptive algorithm
1: function Expand(l,O ∪A)
2: return Weight(l) > ε

3: end function
4:

5: function Insert(l,O ∪A)
6: return true
7: end function
8:

9: function Weight(l,O ∪A)
10: return

∑
j∈Jl
|f̌j |2

11: end function

Regular grid generation

The adaptive algorithm can actually be used to generate a regular grid with index set ITL .
There is no reason to use this in practice but it is still interesting to see how it works since it
provides a deeper understanding about the general algorithm. This is demonstrated in Algorithm
14. To make the example more interesting, we can impose an additional constraint on the index
set. Define the order of an index as order(i) := #{ik > 0}. Only indices with orders less than
or equal to maxOrder will be allowed to enter the grid. Thus the grid will neglect function terms
that involve the interaction of more than maxOrder variables.

Algorithm 14 Functions for the generation of a regular sparse grid
1: function Expand(l,O ∪A)
2: return true
3: end function
4:

5: function Insert(l,O ∪A)
6: return (order(l) ≤ maxOrder) and (|l|1 − T |l|∞ ≤ (1− T)L)
7: end function
8:

9: function Weight(l,O ∪A)
10: return -|l|1
11: end function

L2-error driven refinement

A more interesting application is an adaptive algorithm which terminates when the approx-
imate L2 error drops under a certain threshold. This involves a time-consuming approximate
error computation for every inserted grid index. Therefore, the algorithm is generally slow.
However, it has the advantage that it avoids overrefinement by terminating as soon as the error
threshold is passed. Algorithm 11 can be used in a similar way. However, it usually inserts more
indices in the grid because the global L2 error is not computed for every added index.

59

Algorithm 15 Functions for the L2-driven refinement
1: function Expand(l,O ∪A)
2: return true
3: end function
4:

5: function Insert(l,O ∪A)
6: return ||f − IO∪Af ||2 > ε

7: end function
8:

9: function Weight(l,O ∪A)
10: return

∑
j∈Jl
|f̌j |2

11: end function

7.3 Dimension-adaptive algorithm

The adaptive method from the previous section inspects each level index individually and decides
whether to insert it in the grid or not. The adaptive behaviour of the algorithm can be enhanced
even more by allowing it to also adapt to the dimension of the problem. Assume that we have
an n-dimensional function f with decreasing importance of its dimensions. This means that its
values depend less on the variables from the higher dimensions compared to the variables from
the lower dimensions. Such a function should be approximated with an anisotropic grid. If Ld
denotes the maximum refinement level in direction d, then Ld should be a decreasing function
of d. If the dependence of the function of the last dimensions is very low, then it might be best
to choose Ld = 1 for d > n0 for some n0 < n. With this choice, the resulting interpolant is in
practice a function of only n0 variables.

Consider now what would happen if the adaptive algorithm is executed on such a function.
Assume that the initial index set is I0 = {0}. On the first step, the index 0 will be inspected
and all of its neighbours will be added to the active set. The neighbours have indices ed,
d ∈ {1, . . . n}. On each step the algorithm will choose the most important active index. Since
the variation in dimensions d > n0 is insignificant, the weight of the indices ed will be close
to zero. Thus, the algorithm will never insert an index ed with d > n0 to the old set. The
resulting index set will contain no indices ν with νd > 0 for some d > n0(apart from the initially
inserted ed). The constructed interpolant will effectively be an n0-dimensional function. The
index set can be analyzed after the algorithm has finished and the non-important dimensions
can be discarded.

This approach is perfectly valid. However, it suffers from the disadvantage that it inspects
an n-dimensional sparse grid for the construction of an n0-dimensional interpolant. Working
with n-dimensional grids is inherently slower than working with n0-dimensional grids even if
the index sets are the same(ignoring the last n − n0 elements of the larger indices, which are
equal to 0). The extra computational time comes mostly from the slower operations on the data
structures that represent the sparse grid. Some overhead also comes from the target function
computation for the indices ed for d > n0. The number of extra evaluations is (g1− g0)(n−n0).

This problem can be solved by allowing the algorithm to adapt also to the dimension of

60

the function. The modified algorithm starts by constructing a grid with a small number of
dimensions. On each step it decides which index to insert in the old set. The modification
is that it also decides whether the current grid dimension should be increased. If this is the
case then two things should be done. First, all indices(old and active) should be widened by
appending a 0 to their end. Second, the index ed should be added to the active set, where d is
the newly added dimension. The algorithm only adds the dimensions which are needed. The
data structure maintenance cost remains low and the resulting index set is the same(except for
the indices ed for d > n0, but they do not contribute to the approximation). This improvement
can have a significant impact on the computational time of the adaptive algorithm, especially
when n0 << n. The pseudocode of the algorithm is included in Algorithm 16.

Algorithm 16 Dimension adaptive algorithm
1: n0 = ninit

2: O = {}
3: A = {0}
4: while A is not empty do
5: i = arg maxk∈A{weight(k)}
6: O = O ∪ {i}
7: A = A \ {i}
8: if expand(i,O ∪A) then
9: for d = 1, . . . n do

10: j = i+ ed
11: if j /∈ O and admissible(O ∪ {j}) and insert(j,O ∪A) then
12: A = A ∪ {j}
13: end if
14: end for
15: if i = en0 and n0 < nmax then
16: n0 = n0 + 1
17: updateDataStructures()
18: end if
19: end if
20: end while
21: return O

61

8 Practical Remarks

One of the main goals of this work is to implement the theoretical results from the previous
sections in an efficient and flexible C library. Implementing numerical algorithms can be a
challenging task. Often the gap between theory and implementation is significant and the
practical application of the methods is difficult. Section 4 contained a discussion about efficient
algorithms for the computation of sparse grid operators. Section 7 also contained algorithms for
adaptive grid refinement. However apart from these few examples, there are many issues that
arise in practice and that have not been discussed yet. The goal of this section is to address
several of them and to present ways to tackle them efficiently.

8.1 Computation of Leja sequences

The recursive definition of classic and weighted Leja sequences is simple from a mathematical
point of view but presents some computational difficulties. The main problem arises from the
limited floating point precision of most programming languages. The term

∏n
k=0 |z − zk| in the

optimization problem is difficult to handle because it can easily cause a precision overflow or
underflow. In fact, the computation becomes unstable much before overflow is reached because
floating point precision degrades quickly when the values increase. Another problem is that the
optimized function has many local maxima and finding the global one requires some additional
observations.

Let us first consider the problem about finding the global maximum. The Leja sequence is
generated by finding the maximizer of the function |pn(z)|, where pn(z) =

∏n
k=0(z− zk). p(z) is

simply a polynomial with n+1 different real roots. Hence it has a unique local extremum between
every two consecutive roots. Therefore, the function |pn(z)| has exactly one local maximum in
every interval (zk, zk+1) for k = 0, . . . n− 1.

In the case of weighted Leja sequences, the optimized function is |v(z)pn(z)|, where v(z) :=√
w(z) = e−z

2/2. The goal now is to prove that the function v(z)pn(z) also has a single extremum
between every two consecutive points. Each extremum corresponds to a root of the derivative
(vpn)′:

(vpn)′(z) = v′(z)pn(z) + v(z)p′n(z) = −zv(z)pn(z) + v(z)p′n(z) = v(z)[p′n(z)− zpn(z)] (8.1)

Since v is positive for every z ∈ R, it follows that the roots of (vpn)′ are the same as the roots
of h(z) := p′n(z) − zpn(z). h is a polynomial of degree n + 2 and has at most n + 2 real roots.
Therefore vpn has at most n+ 2 extrema. On the other hand, vpn has at least one extremum in
every interval (zk, zk+1) for k = 0, . . . n − 1. We also know that limz→∞ v(z)pn(z) = 0 because
pn is a polynomial and v(z) has an exponential decay. Since v(zn)pn(zn) = 0, it follows that
vpn has at least on other extremum in the interval (zn,∞). The same holds for (−∞, z0). Since
the maximum number of extrema of vpn is n + 2, it follows that it has exactly one extremum
in (zn,∞), (−∞, z0) and in every interval (zk, zk+1) for k = 0, . . . n− 1. Thus, |vpn| has exactly
one local maximum in each of these intervals.

The goal of this discussion was to justify the usage of a simple local optimizer for each
interval (zk, zk+1). Using Newton’s method is sufficient. To find the global maximizer we need
to compute all local maximizers and then take the one that yields the biggest function value.

62

This means that there might be up to several thousand Newton’s method executions just to find
a single Leja point. Unfortunately, this is unavoidable. A partial solution to this problem is to
run the optimization problems in parallel, since they are independent of each other.

Let us now consider the more subtle problem of avoiding the floating point limitations. To
unify the notation, define v(z) := 1 for the case of classic Leja sequences. The way to avoid the
numerical overflows and underflows is to transform the problematic product to a summation.
The usual way to do this is by taking a logarithm of the product. The resulting local optimization
problem is

zn+1,k ∈ arg max
z∈(zk,zk+1)

{
log(v(z)) +

n∑
i=0

log |z − zi|
}

(8.2)

for every k = 0, . . . n − 1. In the weighted case we can set z−1 := −∞ and zn+1 := ∞ and
define zn+1,−1 and zn+1,n+1 in the same way. This optimization problem does not suffer from
the numerical instability as the product version.

As a conclusion, let us discuss the necessity of this method. In practice, it is rare to need
more than the first several hundred terms of a Leja sequence. In some cases these terms can be
precomputed and simply stored on the disk for future usage. The initial computation can be
done with a more advanced software package that has infinite floating point precision as well
as local and global optimizers. Therefore, it is tempting to think that the discussion in this
subsection is unnecessary.

This observation is valid for the case of classic Leja sequences since its basis functions are
not parametrized. It is actually also true for the generalized Hermite transform because the
parametrized weighted Leja sequences can be generated from the base weighted Leja sequence
by simply scaling and translating it with α and β. Thus, it is enough to precompute and store
the base sequence. However, this is not always the case. The weighted Leja sequence can also
be defined for the Jacobi transform by simply changing the weight function in the optimization
problem. The Jacobi basis functions also depend on two parameters α and β but in this case
their interpretation is not as straightforward as in the Hermite case. The parametrized Leja
sequences that are generated for different pairs (α, β) are not related to each other. There is no
way to precompute all possible sequences because the space of parameters is infinite. Therefore,
the only possible option is to compute each Leja sequence on the fly. The method described in
this section can easily be extended to work with generalized Jacobi weight functions.

8.2 Fast inversion of matrix sequences

The general algorithms for forward and inverse transforms, hierarchization and dehierarchiza-
tion, are performed with the help of the change of the matrix Agn−1(as defined in equation
(3.6)) and its inverse. In a mixed sparse grid these matrices must be computed for all types of
transforms and for all possible levels gn. If this computation is done inefficiently, it can sub-
stantially increase the computational time of the algorithm. In fact, if it is done naively, most
of the computational time is spent on matrix inversion.

One possible solution to this problem is to store the precomputed matrices on the disk. The
matrices can later be read directly from the disk instead of computed anew. This approach
is only a partial solution because it introduces a new problem - the amount of stored data is

63

enormous. One matrix must be stored for each type of transform and for each possible level. For
some transforms the supported levels must contain up to several thousand interpolation points.
The required disk space can easily become many gigabytes. This is clearly impractical. Thus,
the only viable option is to compute the matrices on the fly in a very efficient manner.

To optimize the process, we should consider the following more general problem. Assume
that n ∈ N and M ∈ Cn×n is a matrix whose inverse M−1 is known. Let M and M−1 have the
following representation

M :=
(
A B

C D

)
, M−1 :=

(
E F

G H

)
, (8.3)

where A,E ∈ Cm×m, B,F ∈ Cm×(n−m), C,G ∈ C(n−m)×m and D,H ∈ C(n−m)×(n−m) for some
m < n. Assume also that H is invertible. The question is how to find the inverse of A by using
the fact that M−1 is already computed. We know that

(
E F

G H

)(
A B

C D

)
=
(
Im 0
0 In−m

)
. (8.4)

Multiplying this equation on the left with the matrix(
Im −FH−1

0 In−m

)
. (8.5)

gives (
E − FH−1G 0

G H

)(
A B

C D

)
=
(
Im −FH−1

0 In−m

)
. (8.6)

This equation implies that (E − FH−1G)A = Im and thus

A−1 = E − FH−1G. (8.7)

The next questions is what is the computational complexity of equation (8.7). It involves one
matrix inversion, two matrix multiplications and one matrix subtraction. Let us examine these
operations separately:

• Computing the inverse H−1 has complexity O((n−m)3).

• Computing the product H−1G has complexity O((n−m)2m).

• Computing the product F (H−1G) has complexity O((n−m)m2).

• Computing the subtraction E − F (H−1G) has complexity O(m2).

Therefore, the total complexity of equation (8.7) is O((n −m) max((n −m)2, (n −m)m,m2)).
The question now becomes: for what values of m this method is faster than direct matrix
inversion, whose complexity is O(m3). For example, if m = n − 1 the complexity of equation
(8.7) becomes O(n2) which is a major improvement over the direct O(n3). On the other hand,
if m is a small constant, then equation (8.7) has complexity O(n3) while the direct inversion
method takes constant time. Clearly, when m gets smaller the benefit of using the new formula
decreases. The equilibrium point is m = n/2. In this case, both formulas have complexity

64

O(n3/8). Therefore, for all values of m > n/2 equation (8.7) is the preferred method. If
m ≤ n/2 or if H is not invertible, one should use direct inversion of the matrix A.

This approach can be applied to sparse grids in the following way. For each type of trans-
form the matrices Ag0−1, Ag1−1, . . . Agn−1 and their inverses A−1

g0−1, A
−1
g1−1, . . . A

−1
gn−1 must be

computed. The first step is to compute A−1
gn−1 with a direct matrix inversion(e.g. with LU

decomposition). Next, the algorithm proceeds down the grid levels and computes A−1
gk−1 for

k = n−1, . . . 0. If gk > gk+1/2 then equation (8.7) is applied, with A = Agk−1 andM = Agk+1−1.
Otherwise A−1

gk−1 is computed directly. This procedure is summarized in Algorithm 17.

Algorithm 17 Computes the inverse matrices A−1
A0−1, A

−1
g1−1, . . . A

−1
gn−1.

1: procedure MATRIX_SEQUENCE_INVERSION
2: A−1

gn−1 = INV ERSE(Agn−1)
3: for k = n− 1, downto 0 do
4: if gk > gk+1/2 and IS_INVERTIBLE(Hgk+1−1) then
5: A−1

gk−1 = Egk+1−1 − Fgk+1−1H
−1
gk+1−1Ggk+1−1

6: else
7: A−1

gk−1 = INV ERSE(Agk−1)
8: end if
9: end for

10: end procedure

To demonstrate the efficiency of the method, consider the PLUS1 grids introduced in [Mat14].
The sparse grid levels in PLUS1 grids grow as slowly as possible, i.e. gn = n+ 1. A direct com-
putation of all inverses leads to a complexity of O(13)+O(23)+ . . . O((n+1)3) = O(n4). On the
other hand, the method described here can be applied to every level because the corresponding
matrix Hgk−1(which in this case is simply a number) is always invertible. The total computa-
tional complexity is O(12) + O(22) + . . . O(n2) + O((n + 1)3) = O(n3) + O((n + 1)3) = O(n3).
This is a significant improvement that allows for the computation of much bigger problems.

65

9 Numerical Results

9.1 Mixed sparse grids

This subsection demonstrates the convergence behaviour of mixed sparse grids. The tests com-
bine typical functions for the Fourier, Chebyshev and Hermite transforms. The functions are
combined in a tensor product manner. The constructed grids are regular dyadic grids and have
up to 12 dimensions. The tests measure the relative L2-norm and the L∞-norm, which are
computed numerically. The number of grid nodes is limited to 107 due to limitations of the
testing machine. In a few of the graphics it is evident that the number of points is not enough
to demonstrate the limit convergence behaviour for dimensions n = 10 and n = 12. Finally, the
Hermite transform in this subsection is used with (α, β) = (1, 0).

The testing functions are:

• For the Fourier transform([GH14]):

Fp(x) := (2 + sign(x− π)) sin(x)p (9.1)

for p = 1, 2, 3, 4 and on the interval T.

• For the Chebyshev transform([BNR00]):

C1(x) := 1
4 + (x− 0.5)2 (9.2)

on the interval [0, 1].

• For the Hermite transform:
H1(x) := (1 + x)e−x2 (9.3)

on R.

The multidimensional tensor product functions are denoted with a superscript, i.e.

F (n)
p =

n⊗
d=1

Fp. (9.4)

Mixed test functions are written explicitly, e.g.
(
F

(3)
p ⊗ C(3)

1 ⊗H(3)
1
)
.

66

(a) n = 2 (b) n = 6

Figure 18: Convergence behaviour of full and regular sparse Fourier-Chebyshev grids for different
dimensions. The test function is F (n/2)

2 ⊗ C(n/2)
1 .

(a) n = 4 (b) n = 6

Figure 19: Convergence behaviour of regular sparse Fourier-Chebyshev grids for different di-
mensions and different values of the parameter p. The test function is F (n/2)

p ⊗ C(n/2)
1 .

67

(a) L2-error (b) L∞-error

Figure 20: Convergence behaviour of regular sparse Fourier-Chebyshev grids for different di-
mensions. The test function is F (n/2)

1 ⊗ C(n/2)
1 .

(a) L2-error (b) L∞-error

Figure 21: Convergence behaviour of regular sparse Fourier-Chebyshev grids for different di-
mensions. The test function is F (n/2)

4 ⊗ C(n/2)
1 .

68

(a) L2-error (b) L∞-error

Figure 22: Convergence behaviour of full and regular sparse Chebyshev-Hermite grids. The test
function is C(2)

1 ⊗H(2)
1 .

(a) L2-error (b) L∞-error

Figure 23: Convergence behaviour of regular sparse Chebyshev-Hermite grids for different di-
mensions. The test function is C(n/2)

1 ⊗H(n/2)
1 .

69

(a) L2-error (b) L∞-error

Figure 24: Convergence behaviour of full and regular sparse Fourier-Chebyshev-Hermite grids.
The test function is F (1)

4 ⊗ C(1)
1 ⊗H(1)

1 .

Figure 25: Convergence behaviour of regular sparse Fourier-Chebyshev-Hermite grids for differ-
ent dimensions. The test function is F (n/3)

4 ⊗ C(n/3)
1 ⊗H(n/3)

1 .

70

9.2 General grids

This subsection discusses the convergence properties of general grids. First, we show a compar-
ison between dyadic Chebysev grids using the classic interpolation nodes and Leja points. The
examples confirm that Leja sequences perform well but still incur an accuracy penalty. This
is not visible in the one-dimensional cases but is obvious in higher dimensions. Several func-
tions are compared because they have different properties and this reflects in the convergence
comparison.

Next we demonstrate the convergence of Hermite grids with weighted Leja sequences. Un-
fortunatelly, a comparison between Leja points and the classic nodes is not possible because a
sparse grid cannot be constructed with the latter. The examples are limitted to a convergence
comparison between full and sparse grids.

Finally, we show a possible use case of slowly growing sparse grids. The convergence be-
haviour between full, sparse and PLUS1 grids is compared. PLUS1 one grids grow as slowly
as possible, i.e. gn = n + 1 in every direction. They are studied in detail in the context of
the Fourier transform in [Mat14]. Here, we demonstrate that the results are also applicable to
Chebyshev and mixed Fourier-Chebyshev grids.

For testing functions we use C1 and H1 from the previous subsection, as well as the following:

• For the Fourier transform:
F2(x) := ecos(x) (9.5)

on the domain T.

• For the Chebyshev transform:

C
(n)
2 (x) := 1

1 + 0.5
∑n
i=1 xi

(9.6)

on the domain [0, 1]n.

• For the Hermite transform:
H2(x) := (1 + |x|)e−x2 (9.7)

on R.

71

(a) n = 2 (b) n = 8

Figure 26: Convergence behaviour on dyadic Chebyshev grids with classic interpolation points
and with Leja points in different dimensions. The test function is C(n)

1 .

(a) n = 2 (b) n = 8

Figure 27: Convergence behaviour on dyadic Chebyshev grids with classic interpolation points
and with Leja points in different dimensions. The test function is C(n)

2 .

72

(a) n = 2 (b) n = 4

Figure 28: Comparison between Hermite full and dyadic grids in different dimensions. The test
function is H(n)

2 .

Figure 29: Comparison of convergence on general Hermite grids with gn = 2n + 1 and with
different parameters α and β. The test function is H(3)

1 .

73

(a) n = 4 (b) n = 6

Figure 30: Comparison of the convergence behaviour on full, dyadic and PLUS1 Chebyshev
grids in different dimensions. The test function is C(n)

2 .

(a) n = 4 (b) n = 6

Figure 31: Comparison of the convergence behaviour on full, dyadic and PLUS1 Fourier-
Chebyshev grids in different dimensions. The test function is F (n/2)

2 ⊗ C(n/2)
2 .

74

9.3 Adaptive grids

One typical application of the adaptive algorithm is on functions which do not depend on inter-
actions between many variables. More precisely, consider the ANOVA decomposition([ES81]) of
a function f :

f(x) =
∑

u⊂{1,...n}
fu(xu), (9.8)

where xu is a subvector of x formed by the elements corresponding to the indices in u. The
dependence of f on interactions between s variables is captured by the terms with |u| = s. This
subsection provides some examples for the effectiveness of the adaptive algorithm when fu = 0
for |u| > C for some small constant C << n. In this case we have

f(x) =
∑

u⊂{1,...n},|u|≤C
fu(xu). (9.9)

If we know a priori that the function f has this form, we can limit the index set of the grid
to contain only indices of order not greater than C, i.e. order(i) := #{ik > 0} ≤ C. This is
true because every level index i typically corresponds to basis functions which involve order(i)
variables. Basis functions with more than C variables will not contribute to the function f .
Therefore, all coefficients from Ji with order(i) > C will be equal to zero. Note that hyperbolic
cross index sets include level indices with arbitrary high order and thus are not directly appro-
priate for approximation of functions of this type. If we know the order C, we can eventually
use hyperbolic cross index sets with excluded high order indices.

If we do not know the maximum order C, we can execute an adaptive algorithm to detect
it. The adaptive algorithm is guaranteed to excluded all indices with order higher than C

because the weight of each such index will be zero. This leads to a big improvement compared
to hyperbolic cross grids. This is demonstrated in Figure 32a with a Fourier-Chebyshev grid
and test function

F
(n)
C (x) :=

n∑
d=1

e

1
n

C−1∑
k=0

cos(x(d+k) mod C)
(9.10)

on Tn/2 × In/2. Note that FC is a sum of n functions with C variables.

In fact, this reasoning is only valid under certain assumptions. It was assumed that an index
with order C includes basis functions which depend only on C variables. This is indeed true for
Fourier and Chebyshev transforms because the first basis function in both cases is simply equal
to 1. For example, in the Chebyshev case we have

Tk(x) =
n∏
i=1

Tki(xi) =
C∏
i=1

Tki(xi) (9.11)

if ki = 0 for i > C.

Things are not that straightforward with the Hermite transform and the reason is that
H1,0

0 (x) = ce−x
2/2. Therefore, every basis function depends on n variables and this holds even

for H1,0
0 . Thus, the application of adaptive grids involving the Hermite transform (both mixed

and non-mixed) to functions with such ANOVA expansion is impossible. Assume now that the
function has the modified form

f(x) =
∏
i∈S
Hαi,βi0

∑
u⊂{1,...n},|u|≤C

fu(xu), (9.12)

75

where S ⊂ {1, . . . n} is the set of indices that correspond to the directions in the grid that use
the Hermite transform and (αi, βi) are the parameters in these directions. In this case, the
adaptive algorithm can be applied as in the Fourier-Chebyshev case. The order of all inserted
level indices will be smaller or equal to C. An example of this can be seen in Figure 32b on a
Fourier-Chebyshev-Hermite grid with the modified test function

F̃
(n)
C (x) :=

n∏
i= 2

3n+1

H1,0
0

n∑
d=1

e

1
n

C−1∑
i=0

cos(x(d+k) mod C)
. (9.13)

The Hermite transform is used with parameters (1, 0) for dimensions {2n/3 + 1, . . . n}. The
Fourier and the Chebyshev transforms are used for dimensions {0, . . . n/3} and {n/3+1, . . . 2n/3},
respectively.

Apart from the finite order convergence results, we also examine the generated degrees of
freedom when different weights are used. In most cases the average square sum of hierarchical
coefficients provides slightly better results (Figure 33).

Then we compare the number of degrees of freedom in grids generated with Algorithm 11
and Algorithm 15 with the same global termination criteria. In Algorithm 15 this criteria is
checked on every index insertion and thus the number of nodes in this case is slightly smaller.
The iterative ε reduction algorithm typically adds a few more indices before it stops.

Finally, we demonstrate the execution time of the dimension-adaptive approach for the
function

G(x) :==
(
1 +

n∑
d=1

2−2i+1xi
)−1

(9.14)

on a dyadic Chebyshev grid with domain [0, 1]n. The importance of higher dimensions in this
function decreases quickly. The dimension adaptive version of the basic algorithm with ε =
10−7 and weighting function weight4 adds just 12 dimensions, no matter how high we set the
maximum allowed dimension. The execution time does not depend on the maximum allowed
dimension at all. We present a comparison to an adaptive algorithm that always works with a
maximum dimension grid. Even though this algorithm never refines the grid in direction higher
than 12, the overhead of the internal grid representation is visible (Figure 35).

76

(a) F (8)
4 (b) F̃ (6)

3

Figure 32: Comparison between the convergence on adaptive, sparse and full grids for different
functions.

(a) F (6)
3 on a Fourier-Chebyshev grid (b) F̃ (6)

3 on a Fourier-Chebyshev-Hermite grid

Figure 33: Convergence comparison between the functions weight3 and weight4 from section 7.
In most cases averaged sum of squared hierarchical coefficient is a better importance indicator
than the non-averaged one.

77

Figure 34: Comparison between the iterative Algorithm 11 and the L2-driven Algorithm 15. The
figure shows the number of nodes in the generated grid for a desired error accuracy. The L2-
driven approach always adds less points and consequently performs less function computations.

Figure 35: Execution time of a dimension-adaptive algorithm with a different maximum dimen-
sion. The blue line shows the execution time when the initial dimension is set to 1. The green
line shows the time when the initial dimension is equal to the maximum one.

78

10 Conclusion

In this work we discussed several extensions to the regular sparse grids setting. The most focus
was given on mixed sparse grids, i.e. grids in which the different directions make use of different
transforms. The definition of this kind of grids is straighforward but their error analysis is not.
Mixed Fourier-Chebyshev grids were presented in more detail. Error bounds were derived for
the dyadic case on parametrized hyperbolic cross index sets. A key element in these derivations
was the mixed aliasing lemma, which was also proven separately.

Another important part of this work was the discussion about general sparse grids. Dyadic
sparse grids suffer from a lack of granularity, i.e. the control over the number of degrees of free-
dom is limited. Defining non-dyadic grids requires an appropriate set of alternative interpolation
points since the classic ones are not nested anymore. The natural choice for polynomial grids
are the Leja sequences because of their presumably good approximation properties. For the case
of Hermite grids the interpolation points are given by a weighted Leja sequence. This sequence
allows the very existence of nested Hermite grids because the classic Hermite interpolation nodes
do not allow any nesting.

We also considered several important algorithms as well as optimization techniques. The
adaptive algorithm was presented in several forms, with increasing level of complexity and
flexibility. We discussed the advantages and disadvantages of the simple version of the algorithm
and showed some cases in which it may produce unexpected results. Furthermore, an extension
of the algorithm was considered that allows the application of non-local termination criteria.
Apart from this algorithm, we also presented ways to decrease the complexity in key parts
of the interpolation operator computation. The first one is the efficient computation of Leja
sequences. The second and more crucial one is the efficient computation of the change of basis
matrices and their inverses. The approach proposed here allows the computation of much larger
general sparse grids.

Finally, we demonstrated how all of these methods can work together. The numerical results
were based on classic functions used for the Fourier, Chebyshev and Hermite transforms. All
computations were performed with the HCFFT library. A non-trivial task was to implement
them efficiently. A lot of time was spent to add the ability to combine all of them transparently
to the user. Apart from simply implementing the algorithms we also put a lof of effort on
designing, optimizing and documenting the library.

The results in this work are by no means extensive or conclusive. The approximation prop-
erties of general polynomial sparse grids with Leja points are currently unproven. Even less is
known in the case of Hermite sparse grids and no estimates exist for mixed grids involving the
Hermite transform. An interesting application of Hermite sparse grid would be to test their
efficiency for the solution of PDE. Hermite grids are already used in this context but they are
non-nested because they are based on the classic Hermite interpolation nodes. Using Hermite
grids with weighted Leja sequences will be less accurate but the reduced number of grid nodes
might compensate for the worse approximation properties.

79

References

[Ada75] R. Adams. Sobolev Spaces. Academic Press, 1975.

[Bel61] Richard E. Bellman. Adaptive control processes - A guided tour. Princeton, New Jer-
sey, U.S.A.: Princeton University Press, 1961, p. 255.

[BG04] Hans-Joachim Bungartz and Michael Griebel. “Sparse grids”. In: Acta Numerica 13
(2004), pp. 1–123.

[BNR00] V. Barthelmann, E. Novak, and K. Ritter. “High dimensional polynomial interpo-
lation on sparse grids”. In: Advances in Computational Mathematics 12.4 (2000),
pp. 273–288.

[Boy01] John P. Boyd. Chebyshev and Fourier Spectral Methods. Second. Dover Books on
Mathematics. Mineola, NY: Dover Publications, 2001. isbn: 0486411834 9780486411835.

[CC15] Albert Cohen and Abdellah Chkifa. “On the stability of polynomial interpolation
using hierarchical sampling.” In: Sampling theory, a renaissance. Compressive sensing
and other developments. Cham: Birkhäuser/Springer, 2015, pp. 437–458. isbn: 978-
3-319-19748-7. doi: 10.1007/978-3-319-19749-4_12.

[Chk13] Moulay Abdellah Chkifa. “Full Length Article: On the Lebesgue Constant of Leja
Sequences for the Complex Unit Disk and of Their Real Projection”. In: J. Approx.
Theory 166 (Feb. 2013), pp. 176–200. issn: 0021-9045. doi: 10.1016/j.jat.2012.
11.005. url: http://dx.doi.org/10.1016/j.jat.2012.11.005.

[CM11] J.-P. Calvi and P. V. Mahn. “Lagrange interpolation at real projections of Leja
sequences for the unit disk”. In: Journal of Approximation Theory 163(5) (2011),
pp. 608–622.

[DM04] Stefano De Marchi. “On Leja Sequences: Some Results and Applications”. In: Appl.
Math. Comput. 152.3 (May 2004), pp. 621–647. issn: 0096-3003. doi: 10 . 1016 /
S0096-3003(03)00580-0. url: http://dx.doi.org/10.1016/S0096-3003(03)
00580-0.

[ES81] B. Efron and C. Stein. “The Jackknife Estimate of Variance”. In: Ann. Statist. 9
(1981), pp. 586–596.

[Fek23] M. Fekete. “Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichun-
gen mit ganzzahligen Koeffizienten”. In: Mathematische Zeitschrift 17.1 (Dec. 1923),
pp. 228–249. issn: 0025-5874. doi: 10.1007/bf01504345. url: http://dx.doi.org/
10.1007/bf01504345.

[Gar07] Jochen Garcke. “A dimension adaptive sparse grid combination technique for ma-
chine learning”. In: Proceedings of the 13th Biennial Computational Techniques and
Applications Conference, CTAC-2006. Ed. by Wayne Read, Jay W. Larson, and A. J.
Roberts. Vol. 48. ANZIAM J. http://anziamj.austms.org.au/ojs/index.php/
ANZIAMJ/article/view/70 [December 27, 2007]. Dec. 2007, pp. C725–C740.

[Gaw87] Wolfgang Gawronski. “On the asymptotic distribution of the zeros of Hermite, La-
guerre, and Jonquière polynomials”. In: Journal of Approximation Theory 50(3)
(1987), pp. 214–231.

80

[GG02] Jochen Garcke and Michael Griebel. “Classification with sparse grids using simpli-
cial basis functions”. In: Intell. Data Anal. 6.6 (2002), pp. 483–502. url: http :
//content.iospress.com/articles/intelligent-data-analysis/ida00107.

[GG03] Thomas Gerstner and Michael Griebel. “Dimension-Adaptive Tensor-Product Quadra-
ture”. In: Computing 71.1 (2003), pp. 65–87. doi: 10.1007/s00607-003-0015-5.
url: http://dx.doi.org/10.1007/s00607-003-0015-5.

[GH14] M. Griebel and J. Hamaekers. “Fast Discrete Fourier Transform on Generalized
Sparse Grids”. In: Sparse grids and Applications. Vol. 97. Lecture Notes in Com-
putational Science and Engineering 1305. INS Preprint No. 1305. Springer, 2014,
pp. 75–108.

[GK00] M. Griebel and S. Knapek. “Optimized tensor-product approximation spaces”. In:
Constructive Approximation 16.4 (2000), pp. 525–540.

[GK09] M. Griebel and S. Knapek. “Optimized general sparse grid approximation spaces
for operator equations”. In: Mathematics of Computation 78 (Dec. 2009), pp. 2223–
2257. doi: 10.1090/s0025-5718-09-02248-0. url: http://dx.doi.org/10.1090/
s0025-5718-09-02248-0.

[Hal92] K. Hallatschek. “Fouriertransformation auf dünnen Gittern mit hierarchischen Basen”.
In: Numerische Mathematik 63 (1992), pp. 83–97.

[Heg03] M. Hegland. “Adaptive sparse grids”. In: Proc. of 10th Computational Techniques
and Applications Conference CTAC-2001. Ed. by K. Burrage and Roger B. Sidje.
Vol. 44. [Online] http://anziamj.austms.org.au/V44/CTAC2001/Hegl [April 1,
2003]. Apr. 2003, pp. C335–C353.

[Kna00] S. Knapek. “Approximation und Kompression mit Tensorprodukt-Multiskalenräumen”.
Dissertation. Universität Bonn, 2000.

[Lej57] Franciszek Leja. “Sur certaines suites liées aux ensembles plans et leur application à
la représentation conforme”. fre. In: Annales Polonici Mathematici 4.1 (1957), pp. 8–
13. url: http://eudml.org/doc/208291.

[LY13] X. Luo and S. Yau. “Hermite Spectral Method with Hyperbolic Cross Approximations
to High-Dimensional Parabolic PDEs”. In: SIAM Journal on Numerical Analysis
51(6) (2013), pp. 3186–3212.

[Mat14] K. Matuschke. “Trigonometrische Interpolation auf verallgemeinerten dünnen Git-
tern mit beliebiger Levelstruktur”. Diplomarbeit. Institut für Numerische Simulation,
Universität Bonn, 2014.

[NJ14] Akil Narayan and John D. Jakeman. “Adaptive Leja Sparse Grid Constructions for
Stochastic Collocation and High-Dimensional Approximation”. In: SIAM J. Scientific
Computing 36.6 (2014). doi: 10.1137/140966368. url: http://dx.doi.org/10.
1137/140966368.

[Pey02] R. Peyret. Spectral Methods for Incompressible Viscous Flow. Vol. 148. Applied Math-
ematical Sciences. 2002.

[Smo63] S. A. Smolyak. “Quadrature and interpolation formulas for tensor products of certain
class of functions”. In: Dokl. Akad. Nauk SSSR 148.5 (1963). Transl.: Soviet Math.
Dokl. 4:240-243, 1963, pp. 1042–1053.

81

[ST87] H.J. Schmeisser and H. Triebel. Topics in Fourier Analysis and Function Spaces.
Mathematik und ihre Anwendungen in Physik und Technik. Akademische Verlagsge-
sellschaft Geest & Portig K.-G., 1987. isbn: 9783321000010. url: https://books.
google.lu/books?id=bg35AQAACAAJ.

[Tan93] Tao Tang. “The Hermite Spectral Method for Gaussian-Type Functions”. In: SIAM
J. Scientific Computing 14.3 (1993), pp. 594–606. doi: 10 . 1137 / 0914038. url:
http://dx.doi.org/10.1137/0914038.

[TT10] R. Taylor and V. Totik. “Lebesgue constants for Leja points”. In: Ima Journal of
Numerical Analysis 30 (2 2010), pp. 462–486. doi: 10.1093/imanum/drn082.

[Zen91] C. Zenger. “Sparse grids”. In: Parallel Algorithms for Partial Differential Equations
31 (1991), pp. 241–251.

82

