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Introduction

Typical situation in machine learning: Observation:

» Feature space X C R? with d very large (e.g. d = 40k):
» text represented as bag-of-word (BOW),
» image represented as histogram of gradients (HOG),
» property list in computational biology.

Ai; ~ N(0,1/k).

» Subproblem: computing distances or dot products Given:

» finite S C Rd,

>

» Working on X difficult = data compression y = Ax.

k A ixX = kY » Failure probability 6 € (0, 1),
d
. . compressed
COMPression imnput :
representation

manifolds

Here:

sparse data
[Baraniuk et al. "08]

Compression = randomized dimensionality reduction

Motivations for (randomized) dimensionality reduction:

» computation speed-up
» memory or storage constraints
» trick in algorithm design

» better compression guarantees

average-case guarantees

Can we compress while preserving important
properties?

Example 1: Nearest neighbour problems [e.g. Indyk ’01]

Given: finite set of n points S C R Relax problem:

(r, R, §)-similarity graph: Compute

r-similarity graph: Compute G’ = (5, E') such that with probability

G = (S, E) such that for p,q € 9,

1 -6
(p.q) € E <= d(p,q)=|p—qll2 < (pq) € ' = d(p,q) <r
(p,q) ¢ B = d(p,q) > R.

Computation time: O(dn”) Computation time: JLE with sparse

matrix:

Can we speed up computations?

(9( lognn2)+0( Vdn logn)

dist. comp. preprocessing

Example 2: Learning mixtures of Gaussians [Dasgupta ’99]

Given: n independent, R%valued Observation: If X ~ AN (u, ), then

Gaussians N (p1, 2), ..., N (pp, X).

Goal: Estimate pq, ..., u, from B[ ExAX|z = [lul:

observations X7, ..., X,, originating from E 4 Cov(AX) = M Id, .

any Gaussian with equal probability:. k
Theorem: If

» y-separated Gaussians:

i = willa > Y/ d A ().
» Eccentricity:

ece(X) = v/ Amax(X) /Amin(2).

If the Gaussians are sufficiently
separated and have low eccentricity,
then there is a relatively simple
algorithm which needs O(p~9)
observations to estimate with accuracy

p\/d Amaz(23).

Can we overcome the curse of
dimensionality and even handle
higher eccentricity?

A = draw(A)
—
auxiliary Gaussians

fli = Api, = ARAT

k= 0O(c "log(2n/9))

and

TVd
log(k/(67)) | °

then with probability 1 — ¢

ecc(X) = O <

» Preservation of separability:

i1 — ﬁj”% > (1—¢)(1 - 7_)72]{)‘1’1183((2)7
» Reduction of eccentricity:

(1—7A< o8] < (14 7)A

for all v € S5 and A = trace(X) /.
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» Let A be a (k x d)-random matrix with i.i.d. entries

» For fixed o € R?, we have E4||Az||% = ||z||%.

dot products

Johnson-Lindenstrauss embeddings (JLE): Basic version [JL ’84; Dasgupta, Gupta ’99]

Theorem: If
k:(’)( ln(|S|/5)),

then a realization A = draw(.A4) is with probability 1 — ¢ an
e-isometry on S

(1—e)llz —ylz <A@ =)z < A +e)llz —yl3,
for all z,y € S.

Preservation of relative distances!

JLE: Extensions and Generalizations

[Achlioptas "01, Li et al. "06]
random sparse

infinite -
cardinality hashing-like |0
fast JL-transform [Ailon, Chazelle "06]

circulant+random sign [Hinrichs, Vybiral "11]
RIP + random sign |Krahmer, Ward "11]

locality-sensitive hashing 4]
aspect of data distribution

N

kernel
Hilbert
spaces

——— Sampling the kernel [5]

Example 3: Learning a linear classifier

Related work: [1, 2, 3]
Given: Classification problem (D, £), where

Hinge risk:
> Ry p(w) = EXND(l — W)
» convex, 1/7-Lipschitz

+
» (unknown) distribution D over

X Cl{rz cR?: ||z||, < R},

» Surrogate for misclassification rate:
» labelling function ¢ : X — {—1,1}.

Rojp(w) S R%p(w).

Properties: Learning task: Draw i.i.d. samples

X, ..., X, ~ D, learn w € R? with minimal
misclassification rate:

» (D, ) linearly separable: there is w € R?
Rop(w) :=Pxpl(X)(w, X)) >0)=1.
» (D, /) linearly separable at margin ~:
(Fw e Sy Pxop(l(X){w, X)) >7) =1.

w = argminweRd R(),D(w).
» Required amount of samples m increases with
decreasing .

AL
7
. &-\//
Can we learn and predict on compressed data? o O\ ,@// "
oo & P
A = draw(A) & 7
s @ ", /

compressed classification problem (AD, /)

Learning a linear classifier: Some results [M. '13]

Theorem (Preservation of linear
separability):
Fix w € RY with ||w]l, < R. If

k=0O ( log(1/5)> ,
then a realization A = draw(.A) fulfils
Ryap(Aw) — Ry p(w)| < €
with probability 1 — 9.

Theorem (Preservation of sample
complexity):
Let X @ R% and w € S§~1. 1If

k=0 ( slog(d/s) + 1og(1/6>>) ,
then a realization A = draw(.A) fulfils

Py p(l(X)(Aw,AX) > (1 —7)y) =1
with probability 1 — 9.

Numerical experiment: Support Vector Machines (SVM)
» Model: D uniform distribution over C; U Cy, where

Ci = (R+7)e; +[-R, R, Co:=—(R+7)e; +[-R,R™.

» Training: fixed number of training samples; train both in ambient and projected space.
» Evaluation: Accuracy (=1-misclass. rate) in projected space relative to accuracy in ambient space.

» Interpretation: Min. dimension to attain 0.95 relative accuracy with high probability

Good: 50 | | | | | | | ‘ ‘
» easy learning problems,
» labelling cheap. A0 |
Bad: O
» harder learning problems, =2
Labell . 30 |
» labelling expensive.
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