
Randomized Dimensionality Reduction in Machine
Learning

Sebastian Mayer
Institute for Numerical Simulation, University of Bonn Institute for Numerical Simulation

Rheinische Friedrich-Wilhelms-Universität Bonn

Introduction

Typical situation in machine learning:

I Feature space X ⊆ Rd with d very large (e.g. d = 40k):
I text represented as bag-of-word (BOW),
I image represented as histogram of gradients (HOG),
I property list in computational biology.

I Subproblem: computing distances or dot products

I Working on X difficult =⇒ data compression y = Ax.

Ak

d

compression

xd

input

= yk

compressed
representation

Here:

Compression = randomized dimensionality reduction

Motivations for (randomized) dimensionality reduction:

I computation speed-up

I memory or storage constraints

I trick in algorithm design

I better compression guarantees

Can we compress while preserving important
properties?

Johnson-Lindenstrauss embeddings (JLE): Basic version [JL ’84; Dasgupta, Gupta ’99]

Observation:

I Let A be a (k × d)-random matrix with i.i.d. entries
Aij ∼ N (0, 1/k).

I For fixed x ∈ Rd, we have EA‖Ax‖22 = ‖x‖22.
Given:

I finite S ⊂ Rd,

I Accuracy parameter ε ∈ (0, 1),

I Failure probability δ ∈ (0, 1),

Theorem: If

k = O
(
ε−2 ln(|S|/δ)

)
,

then a realization A = draw(A) is with probability 1− δ an
ε-isometry on S:

(1− ε)‖x− y‖22 ≤ ‖A(x− y)‖22 ≤ (1 + ε)‖x− y‖22,

for all x, y ∈ S.

Preservation of relative distances!

JLE: Extensions and Generalizations

JLE

other
matrices

random sparse
[Achlioptas ’01, Li et al. ’06]

hashing-like [6]

fast JL-transform [Ailon, Chazelle ’06]

circulant+random sign [Hinrichs, Vyb́ıral ’11]
RIP + random sign [Krahmer, Ward ’11]

kernel
Hilbert
spaces

Sampling the kernel [5]
what to

preserve?dot products

average-case guarantees

aspect of data distribution
locality-sensitive hashing [4]

infinite
cardinalitysparse data

[Baraniuk et al. ’08]

manifolds

Example 1: Nearest neighbour problems [e.g. Indyk ’01]

Given: finite set of n points S ⊂ Rd.

r-similarity graph: Compute
G = (S,E) such that for p, q ∈ S,

(p, q) ∈ E ⇐⇒ d(p, q) = ‖p− q‖2 ≤ r.

Computation time: O(dn2)

Can we speed up computations?

Relax problem:

(r, R, δ)-similarity graph: Compute
G′ = (S,E ′) such that with probability
1− δ,

(p, q) ∈ E ′ =⇒ d(p, q) ≤ r

(p, q) /∈ E ′ =⇒ d(p, q) ≥ R.

Computation time: JLE with sparse

matrix: C =
(
R2+r2

R2−r2
)2

O
(
C logn n2

)
dist. comp.

+O
(
C
√
d n log n

)
preprocessing

Example 2: Learning mixtures of Gaussians [Dasgupta ’99]

Given: n independent, Rd-valued
Gaussians N (µ1,Σ), . . . ,N (µn,Σ).

Goal: Estimate µ1, . . . , µn from
observations X1, . . . , Xm originating from
any Gaussian with equal probability.

I γ-separated Gaussians:

‖µi − µj‖2 ≥ γ
√
d λmax(Σ).

I Eccentricity:

ecc(Σ) =
√
λmax(Σ)/λmin(Σ).

If the Gaussians are sufficiently
separated and have low eccentricity,
then there is a relatively simple
algorithm which needs O(ρ−d)
observations to estimate with accuracy
ρ
√
d λmax(Σ).

Can we overcome the curse of
dimensionality and even handle

higher eccentricity?

A = draw(A)
=⇒

auxiliary Gaussians
µ̃i = Aµi, Σ̃ = AΣAT

Observation: If X ∼ N (µ,Σ), then

EA‖EXAX‖22 = ‖µ‖22

EACov(AX) =
trace(Σ)

k
Idk .

Theorem: If

k = O
(
ε−2 log(2n/δ)

)
and

ecc(Σ) = O

(
τ
√
d

log(k/(δτ))

)
,

then with probability 1− δ
I Preservation of separability:

‖µ̃i− µ̃j‖22 ≥ (1− ε)(1− τ)γ2kλmax(Σ̃),

I Reduction of eccentricity:

(1− τ)λ ≤ |vT Σ̃v| ≤ (1 + τ)λ

for all v ∈ Sk−12 and λ = trace(Σ)/k.

References

[1] Arriaga, Vempala (2006): An algorithmic theory of learning: Robust concepts and random
projection.

[2] Balcan, Blum, Vempala (2006): Kernels as features: On kernels, margins, and low-dimensional
mappings.

[3] Calderbank, Jafarpour (2012): Finding needles in compressed haystacks.

[4] Gionis, Indyk, Motwani (1999): Similarity search via hashing in high dimensions.

[5] Rahimi, Recht (2007): Random features for large-scale kernel machines.

[6] Weinberger, Dasgupta, Langford, Smola, Attenberg (2009): Feature hashing for large scale
multitask learning.

Example 3: Learning a linear classifier

Related work: [1, 2, 3]
Given: Classification problem (D, `), where
I (unknown) distribution D over
X ⊆ {x ∈ Rd : ‖x‖2 ≤ R},

I labelling function ` : X → {−1, 1}.

Properties:

I (D, `) linearly separable: there is w ∈ Rd

R0,D(w) := PX∼D(`(X)〈w,X〉) ≥ 0) = 1.

I (D, `) linearly separable at margin γ:

(∃w ∈ Sd−12) PX∼D(`(X)〈w,X〉) ≥ γ) = 1.

Hinge risk:

I Rγ,D(w) = EX∼D
(
1− `(X)〈w,X〉

γ

)
+

I convex, 1/γ-Lipschitz

I Surrogate for misclassification rate:
R0,D(w) ≤ Rγ,D(w).

Learning task: Draw i.i.d. samples

X1, . . . , Xm ∼ D, learn ŵ ∈ Rd with minimal
misclassification rate:

ŵ = argminw∈RdR0,D(w).

I Required amount of samples m increases with
decreasing γ.

Can we learn and predict on compressed data?

A = draw(A)
=⇒

compressed classification problem (AD, `)

〈w
,x
〉 =

0
〈w
,x
〉 =
γ

〈w
,x
〉 =
−γ

2γ

γ

w

Learning a linear classifier: Some results [M. ’13]

Theorem (Preservation of linear
separability):
Fix w ∈ Rd with ‖w‖2 ≤ R. If

k = O
(

(
1 +R2

εγ
)2 log(1/δ)

)
,

then a realization A = draw(A) fulfils

|Rγ,AD(Aw)−Rγ,D(w)| ≤ ε

with probability 1− δ.

Theorem (Preservation of sample
complexity):
Let X ∼= Rds and w ∈ Sd−12 . If

k = O
(

(
1 +R2

τγ
)2s log(d/s) + log(1/δ))

)
,

then a realization A = draw(A) fulfils

PX∼D(`(X)〈Aw,AX〉 ≥ (1− τ)γ) = 1

with probability 1− δ.

Numerical experiment: Support Vector Machines (SVM)

I Model: D uniform distribution over C1 ∪ C2, where

C1 := (R + γ)e1 + [−R,R]50, C2 := −(R + γ)e1 + [−R,R]50.

I Training: fixed number of training samples; train both in ambient and projected space.

I Evaluation: Accuracy (=1-misclass. rate) in projected space relative to accuracy in ambient space.

I Interpretation:

Good:
I easy learning problems,
I labelling cheap.

Bad:
I harder learning problems,
I labelling expensive.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

20

30

40

50

R/γ

k

Min. dimension to attain 0.95 relative accuracy with high probability

Research Group Ullrich - Endenicher Allee 62, 53115 Bonn, Germany - mayer@ins.uni-bonn.de

