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Approximating functions which depend on a large number of variables can be a hard
to solve problem. In many settings, it is known to suffer from the curse of dimension-
ality even for very smooth functions. So, if smoothness is not enough, what additional
inner structure of functions could help to overcome the curse? In this regard, we inves-
tigate ridge functions f(x) = g(a · x) in high dimensions d in our current work [3]. A
ridge function is characterized by two components: a d-dimensional vector a, called the
ridge direction, and a univariate function g, which is called the profile. Ridge functions
provide a simple, coordinate-independent model to describe inherently one-dimensional
structures hidden in a high-dimensional ambient space.

The setting. The problem we study is that of approximating ridge functions in the
uniform norm in the worst-case by means of deterministic, adaptive algorithms. As
information, the algorithms have only a limited amount of function values available.
The function classes F , where the ridge functions may be taken from, are introduced
below. For the remainder of this text, let us call this setup the sampling problem. The
key quantity, for which we find bounds from above and below, is the n-th (adaptive)
sampling number

gadan,d (F , L∞)

:= inf
{

sup
f∈F

‖f − S(f)‖∞ : S adaptive algorithm using n function values
}

.

So, let us finally introduce the ridge function classes. As domain Ω, we fix the closed
Euclidean unit ball Ω = B̄d

2
. Then, we impose two constraints: firstly, we restrict the

norm of the feasible ridge directions, namely we require ‖a‖p ≤ 1 for some 0 < p ≤
2; secondly, we define the feasible profiles to be those which have a certain order of
Lipschitz -smoothness α > 0 . We denote the so obtained classes by Rα,p

d . In a sense,
the case p = 2 can be understood as all directions being possible. Letting p get smaller
and smaller, then imposes a more and more strict sparsity constraint on the feasible
directions.
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Bounds on sampling numbers. What could an algorithm that exploits the ridge
structure look like? At least for α > 1, there is an intuitive idea: find a point where
the first derivative of the profile g′ is sufficiently large, do first-order Taylor around
that point to recover the ridge direction a, and finally sample along a to approximate
g. Unfortunately, this cannot work for ridge functions on the Euclidean unit ball as
given by the class Rα,p

d . Let us just mention the crucial point here: whatever algorithm
we take, sampling the whole relevant domain of the profile is only then possible if
the algorithm samples exactly along the ridge direction. Otherwise, there is always a
range the algorithm cannot reach; there is no guarantee to find a point where the first
derivative g′ is sufficiently large. It turns out that for functions fromRα,p

d , particularly in
case p = 2, we cannot really do better than for general multi-variate Lipschitz functions.
In terms of algorithms, this means that the best one can try is to spread the sampling
points, in a certain sense, as uniformly as possible over the domain.

Let us formulate in more detail what bounds we get by the above reasoning. Both
the lower and the upper bound on gadan,d (R

α,p
d , L∞) are determined to a large extent by

(dyadic) entropy numbers ek. For the lower bound, it is the entropy numbers of the
p-sphere in ℓd

2
; for the upper bound, it is the entropy numbers of the domain B̄d

2
in ℓdp′,

where p′ is the dual index of p given by 1/max{1, p}+ 1/p′ = 1. In formulas, if we let
k be the smallest integer such that n ≤ 2k−1, then we have bounds

ek(S
d−1

p , ℓd
2
)2α . gadan,d (R

α,p
d , L∞) . glinn,d(R

α,p
d , L∞) . ek−∆(B̄

d
2
, ℓdp′)

α, (1)

where ∆ is a positive integer depending logarithmically on the dimension d and the
smoothness parameter α. The behaviour of these entropy numbers is completely un-
derstood; for details, see [3, Subsection 2.3] and references therein, and [4]. If we just
plug in these existing results on entropy numbers, then we obtain that sampling of
ridge functions from Rα,2

d is essentially as difficult as sampling of general multi-variate
Lipschitz functions. For p < 2, the situation gets better, but still the bounds are far
worse than those one would get for univariate Lipschitz functions. (Actually, we prove
a slightly better lower bound than that shown in (1); this better bound is less easy to
grasp, however.)

Tractability results. Translating the bounds on gadan,d (R
α,p
d , L∞) into bounds on the

information complexity

n(ε, d) := inf{n ∈ N : gadan,d (F , L∞) ≤ ε},

we see a surprisingly diverse picture in terms of degrees of tractability. Namely, we
see almost the entire spectrum of degrees of tractability as introduced in the recent
monographs by Novak and Woźniakowski. To be precise, the sampling problem

(a) suffers from the curse of dimensionality if p = 2 and α < ∞,

(b) never suffers from the curse of dimensionality if p < 2,

(c) is intractable if p < 2 and α ≤ 1

1/p−1/2
,
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(d) is weakly tractable if p < 2 and α > 1

1/max{1,p}−1/2
,

(e) is quasi-polynomially tractable if α = ∞.

Let us emphasize the case (a). Not only do we understand here that the ridge structure
alone does not help to overcome the curse of dimensionality. It even tells us that neither
adaptivity nor non-linearity of algorithms leads to improvements. In the remaining
cases, it is less obvious what to learn from the results. Especially, for p ≤ 1, the choice
of the domain Ω = B̄d

2 becomes somewhat artificial. The natural choice then would be
the cube Ω = [−1, 1]d.

Actually, in a recent work [1] it has been shown that, when Ω = [0, 1]d, α > 1,
and p ≤ 1, then the sampling problem is polynomially tractable, provided that the
feasible ridge directions are component-wise larger than zero. The results are based on
an adaptive algorithm which is basically constructed like the intuitive step-wise scheme
we have sketched above. This time, it works efficiently because on Ω = [0, 1]d it is
possible to reach the whole relevant range of the profile’s domain without knowing the
ridge direction a priori; one just has to sample along the direction (1, . . . , 1).

We have already argued that a comparable algorithm cannot work whenever the
domain is the Euclidean unit ball. But, of course, there is one remedy: make it explicit
knowledge about the problem that the profiles’ first derivatives are uniformly bounded
away from zero in some point, say the origin. In other words, for α > 1 and some
0 < κ < 1, we add the constraint |g′(0)| ≥ κ for all feasible profiles g to the class Rα,p

d .
In this we follow [2], where the approach has been worked out in broader generality.
Now, the sampling problem becomes polynomially tractable, no matter what precise
values the parameters α > 1 and p take.
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