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Abstract

The report is a continuation of an introductory report on the multigrid iterative
solvers for finite differences in Diffpack. We consider the solution of partial differ-
ential equations discretized by finite differences. We consider varying coefficient and
anisotropic operators and a variety of strategies for the convection-diffusion equation
and the biharmonic equation. In the introductory report only the Laplacian was
treated. We also discuss different multigrid restriction and prolongation operators
arising in some special multigrid versions. The first steps are guided by a couple of
examples.
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Multigrid for different finite differences equations

Gerhard W. Zumbusch *

November 22, 1996

1 Introduction

The solution of partial differential equations often leads to the solution of equation
systems. For large problem sizes this solution tends to dominate the overall complex-
ity of the whole simulation. Hence efficient equation solver like the multigrid method
are needed. The idea is to construct an iterative solver based on several discretiza-
tions on different scales. The multigrid method reaches optimal linear complexity
which is comparable to the assembly and input/output procedures in a finite element
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AddMultigrid Nest_ed_ Nonl.lngar Sym Add
Multigrid Multigrid SchwarzDD SchwarzDD
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Figure 1: Hierarchy of multigrid and domain decomposition methods

computation.

Multigrid methods and domain decomposition methods are implemented in Diffpack
in a common framework applicable to iterative solvers, preconditioners and nonlinear
solvers. The user has to add approximative solvers on the different discretizations and
grid transfer operators projecting and interpolating residuals and corrections from
one discretization to another. These components are specified in the DDSolverUDC
interface in Diffpack. For details we refer to the introductory tutorial on the imple-
mentation of multigrid methods for finite differences [Zum96b].

The V-cycle algorithm (figure 2) may be written recursively like this
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Figure 2: Multigrid V-Cycle

! S1(z,b)
@ = o'+ Rj1 ;9 1(0,R;;1(b— Ljal))
®(z,0) = S*(z%b)

where Sdenote the approximative solvers and R;_; ; and R;_; ; are the grid transfer
operators. The evaluation of the residual is denoted by b — Lz. The algorithm on
level one can be defined as

®y(z,0) = S(z,b)

We assume familiarity with some of the basic concepts of Diffpack [BL96]. We
will extend the code presented in in the multigrid introduction [Zum96b]. For a
more detailed presentation of the multigrid method (in the context of finite dif-
ferences) we refer to text books like [Hac85, Wes92] and other references found in
[Zum96¢]. It may be helpful to have access to the Diffpack manual pages dpman
while reading this tutorial. The source codes and all the input files are available at
$DPR/src/app/pde/ddfem/src/.

The report is organized as follows: First we will discuss the case of variable coefficient
Laplace type equations. This covers the preconditioning with constant coefficients
and with the operator itself. Next we have a look at anisotropic operators, which is
equivalent with a Laplace operator discretized on a distorted grid. In the following
chapter we experiment with different restriction and prolongation stars commonly
used in multigrid methods for finite differences, especially some higher order stars.
Next we treat the convection-diffusion equation in detail, with an artificial viscos-
ity discretization, an upwind discretization and a discretization with Galerkin prod-
ucts and operator dependent restriction and prolongation in an algebraic multigrid
fashion. In the last chapter we discuss a multigrid scheme for the finite difference
discretization of the biharmonic equation. Some conclusions follow.

2 Variable coefficients

In the introductory tutorial on multigrid methods for finite difference discretization
we only looked at the discretized Laplacian.
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This five-point difference stencil is applied to every interior node and forms the stiff-
ness matrix of the linear equation system to be solved by the multigrid method.
However, the stiffness matrix itself is never formed. Only the difference stencil needs
to be stored, which is five real numbers, independently of the number of degrees of
freedom and the size of the stiffness matrix. It can be considered as a very memory
efficient storage scheme. Of course this holds only for the constant coefficient case.

In the case that the difference stencils varies in the domain, we have to modify this
storage scheme. In order to maintain a minimal storage representation, we choose a
procedural representation of the difference stencils. This is accomplished using the
PtOpWf point operator function in Diffpack. We implement the general symmetric,
elliptic, varying coefficient problem

V(kVu) = f on$
u g1 onT C 090

%u = gz on dQ\T

with positive variable coefficients k(z) in .

2.1 Preconditioning with constant coefficients

We derive two different multigrid codes. The first one is only suitable as a precondi-
tioner in a Krylov iteration method, preferably a conjugated gradient method. The
idea is to use the standard multigrid method as it has been implemented for the
Laplacian already.
-1
-1 4 -1
-1

The variable coefficient function/ tensor k(z) has to fulfill certain conditions. It has
to be bounded and bounded away from zero

or in the tensor case
0 < kollyll2 < y'k(x)y < k1lly||2 for all y # 0

Given this condition, the operator VEV is norm-equivalent to the Laplacian V2
with an equivalence constant ky/kg. This justifies the use of a Laplacian based
preconditioner for a more complicated operator problem.

The implementation in Diffpack is based on the sample multigrid implementation
for finite differences MGfdm2 described in the introductory tutorial [Zum96b]. The
discretization of the linear equation system to be solved has to be modified. Hence
the procedure makeMatrix() is overloaded. The other parts of the code remain the
same. In order to implement the variable coefficients, we derive a point operator form
the base class PtOpW£. It is constructed with two parameters: The grid parameter h
and a scaling factor k. The basic functionality of this class MGfdm4W{f is implemented
in the procedure userfunc. The header file follows:'.



#ifndef MGfdm4_h_IS_INCLUDED
#tdefine MGfdm4_h_IS_INCLUDED

#include <MGfdm2.h>

class MGfdm4Wf: public PtOpWf (real)

{
protected:
real h; // step size
real k; // factor
public:
MGfdm4Wf (real h_, real k_);
virtual real userfunc(const Ptv(int)& index, const Ptv(int)& offset);
};
class MGfdm4: public MGfdm2
{
protected:
virtual void makeMatrix(); // set up lineq Matrix
};
#endif

The main change in the procedure makeMatrix() is the use of the instances of the
class MGEfdm4Wf instead of simple real values. We have one instance for the central
point 4 in the stencil and one instance for the other points —1. We also supply the
grid-size.

The class MGEfdm4Wf is used to define the userfunc. For a given central point index
and the offset to the central point, the entry of the difference stencil has to be
returned. We implement the variable coefficient function

E(z) = 1 4+ zy20 + (2122)?

The scaling factor k has been set to 4 or —1 to implement the difference stencil itself.

#include <MGfdm4.h>
void MGfdmé4:: makeMatrix()
{
int n = gridSize(no_of_grids);

Handle(MatPtOp(real)) A = new MatPtOp(real);

Handle (IndexSet) ind; // ’interior’ index set
Handle (IndexSet) bou; // ’boundary’ index set

!you will find the code in MGfdm4/

MGfdm4.h

MGfdm4.C



defineIndexSetI(ind, n);
defineIndexSetB(bou, n);

// point operator, two dimensional

A->redim(ind(),1); // with an offset of one from
// the central element A(0,0).

real h = 1.0 / real(n);

MGfdm4Wf* af = new MGfdm4Wf(h, 4.);
MGfdm4Wf* bf new MGfdm4Wf(h, -1.);

(¥4) ( 0,-1) = *bf;
(x8) (-1, 0) = *bf; (*xA)( 0, 0) = *af; (*A)( 1, 0) = *bf;
(¥4)( 0, 1) = *bf;

FieldFD* b = new FieldFD(grid(no_of_grids) (),"b"); // !!
b->values() = 0;

u.rebind (new FieldFD(grid(no_of_grids)(),"u"));
u->values() = 0;

// initialization of the right hand side

Ptv(int) is(2);
Ptv(real) ps(2);

ind() .startIterator(is);
while (ind().iterate()) {
ps(1) = hxis(1);
ps(2) = hxis(2);
b->valueIndex(is(1),is(2)) = hxhx*f(ps);
¥

// initialization of the boundary conditions
bou() .startIterator(is);
while (bou().iterate()) {
ps(1) = hxis(1);
ps(2) = hxis(2);
u->valueIndex(is(1),is(2)) = u0(ps);
}

lineg->attach(*A, *u, *b);

MGfdm4Wf:: MGfdm4Wf(real h_, real k_) : h(h_), k(k_)
{3

real MGfdm4Wf:: userfunc(const Ptv(int)& index, const Ptv(int)& offset)
{
real s = (index(1) + offset(1)) * h * (index(2) + offset(2)) * h; // x * ¥y
return k * (1 + s * (1 + s)); // 1+ xy + (xy)°2
}

The following input parameters may be some guideline for your experiments?. We

%files are in MGfdm4/Verify/



have implemented a smooth varying coefficient problem. We can compare the perfor-
mance of the multigrid method for this problem with the performance for the Laplace
problem.

The first test compares the conjugated gradient method without any preconditioning,
see table 1, input file test1.i. Here a comparison of the number of iterations or the
convergence rate depending on the number of levels (the grid size) may be of interest.
How do the number change due to the varying coefficients?

menu item answer
no of grid levels 3
coarse lattice 2
matrix type MatPtOp
basic method ConjGrad
preconditioning type | PrecNone

Table 1: Conjugated gradients for a variable coefficient problem, test1.1i

The next test deals with the multigrid preconditioned conjugate gradient method,
see table 2, input file test3.i. The number of iterations/ the convergence rate
as a function of the number of levels may be interesting. Compare these numbers
with the numbers for the pure Laplacian. How do the varying coefficients affect
the convergence? Is it possible to compensate the effect by a higher number of
smoothing sweeps, a higher cycle parameter gamma or a different smoothing or coarse
grid algorithm? How do the additive multigrid and the nested multigrid algorithms
perform for this problem?

Table 2: Variable coefficient problem, conjugated gradients with Multigrid precondi-

tioner, test3.1

menu item answer
no of grid levels 3
coarse lattice 2
sweeps [1,1]
matrix type MatPtOp
basic method ConjGrad
preconditioning type PrecDD
domain decomposition method | Multigrid
cycle type gamma 1
smoother matrix type MatPtOp
smoother basic method SOR
coarse grid matrix type MatPtOp
coarse grid basic method SOR
coarse grid max iterations 1




2.2 Preconditioning with the true operator

The quality of the previous approach to use multigrid as a preconditioner strongly
depends on the variable coefficients and the upper bound k;/kq. For a small ratio,
the cheaper preconditioner may be an advantage, while for large variations we have to
construct a better preconditioner. The idea is to incorporate the variable coefficients
into the multigrid method. We use the variable coefficient operator on every level.
So we can at least in part get rid of the ki /ko dependency of the convergence rate.
The success of this approach depends on the ability to resolve the variations of the
coeflicients on the coarser levels.

The implementation is based on the previous multigrid code MGfdm4. The discretiza-
tion procedure makeMatrix(int) for the multigrid discretizations is overloaded. The
code looks like this:3.

#ifndef MGfdm5_h_IS_INCLUDED
#define MGfdm5_h_IS_INCLUDED

#include <MGfdm4.h>

class MGfdm5: public MGfdm4
{
protected:
virtual void makeMatrix(int i); // set up smooth matrix
};
#endif

The implementation of the member function makeMatrix(int) is basically unchanged.

The difference stencil is defined by the point operator functions defined in the pre-
vious section, in the same way, as it was done with the difference stencil for the
equation system in MGfdm4.

#include <MGfdm5.h>

void MGfdm5:: makeMatrix(int i)
{

int n = gridSize(i);

Handle (MatPtOp(real)) 4;
A.rebind( new MatPtOp(real) );

Handle (IndexSet) ind; // ’interior’ index set
Handle (IndexSet) bou; // ’boundary’ index set

3you will find the code in MGfdm5/

-~

MGfdm5.h

MGfdm5.C



defineIndexSetI(ind, n);
defineIndexSetB(bou, n);

real h = 1.0 / real(n);

// point operator, two dimensional

A->redim(ind(),1); // with an offset of one from
// the central element A(0,0).

MGfdm4Wf* af = new MGfdm4Wf(h, 4.);

MGfdm4Wf* bf = new MGfdm4Wf (h, -1.);

(¥4) ( 0,-1) = *bf;
(x8) (-1, 0) = *bf; (*xA)( 0, 0) = *af; (*A)( 1, 0) = *bf;
(¥4)( 0, 1) = *bf;

FieldFD* rhs = new FieldFD(grid(i)(),"rhs"); // !!
rhs->values() = 0;

FieldFD* sol = new FieldFD(grid(i)(),"sol"); // !!
sol->values() = 0;

// initialization of the right hand side

Ptv(int) is(2);
Ptv(real) ps(2);

ind() .startIterator(is);
while (ind().iterate()) {
ps(1) = hxis(1);
ps(2) = hxis(2);
rhs->valuelndex(is(1),is(2)) = hxhxf(ps);
¥

// initialization of the boundary conditions

bou() .startIterator(is);
while (bou().iterate()) {
ps(1) = hxis(1);
ps(2) = hxis(2);
sol->valuelndex(is(1),is(2)) = u0(ps);
¥

smooth(i)->attach(*A, *sol, *rhs);
LinEgAdm &s = smooth(i)->linAdm();
ddsolver->attachLinRhs(s.bl(), i, dpTRUE);
ddsolver->attachLinSol(s.x1(), 1i);

The following input parameters may be some guideline for your experiments?.

The first test is the application of the multigrid method as an iterative method. This
is possible, since the multigrid now operates on the true differential equation. The
questions here are concerned with the number of iterations and the convergence rate,
see table 3, input file test2.i. The convergence rate depends on the smoother, the
number of smoothing steps, the coarse grid solver and the size of the coarse grid.

*files are in MGfdm5/Verify/



However, the main question is always, whether the convergence rate is independent
of the number of levels, that is the grid size.

menu item answer
no of grid levels 3
coarse lattice 2
sweeps [1,1]
matrix type MatPtOp
basic method DDlter
preconditioning type PrecNone
domain decomposition method | Multigrid
cycle type gamma 1
smoother matrix type MatPtOp
smoother basic method SOR
coarse grid matrix type MatPtOp
coarse grid basic method SOR
coarse grid max iterations 1

Table 3: Variable coeflicient multigrid, test2.1

The second test can serve as a comparison, both with the multigrid method base on
the Laplacian in the previous section and with the multigrid method as an iterative
method, see table 4, input file test3.1i. Since the multigrid implementation with
the true operator, as it is done now, might be more expensive and slower, the ques-
tion arises, whether this is compensated by an improved convergence of the Krylov
method. You may want to check this for several multigrid parameters and grid sizes.
However, it might also be interesting to modify the variable coefficient function to
study this effect.

The second question is the comparison of preconditioner and iterative solver. The
Krylov method around the multigrid method introduces some overhead, both in
storage as in operations. Certainly the Krylov delivers some robustness and might
increase the convergence for certain distributions of the eigenvalues of the differential
operator. The question of course is, whether that pays of. You might also want to
test this for different variable coefficient functions.

3 Anisotropic operator

In this chapter, we are studying anisotropic operators. We also refer to a related
chapter for finite element computations in [Zum96a]. Given the model problem

V(kVu) = f on$
u = ¢ onlI CIQ
Zu = g on 9Q\T
with a symmetric positive definite tensor k, we study the influence of k£ on the equation
solver. The tensor k can be diagonalized, rotating the coordinate system. We then



menu item answer
no of grid levels 3
coarse lattice 2
sweeps [1,1]
matrix type MatPtOp
basic method ConjGrad
preconditioning type PrecDD
domain decomposition method | Multigrid
cycle type gamma 1
smoother matrix type MatPtOp
smoother basic method SOR
coarse grid matrix type MatPtOp
coarse grid basic method SOR
coarse grid max iterations 1

s

Table 4: Conjugated gradients with variable coefficient multigrid preconditioner,
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Figure 3: Solutions of an anisotropic problem. Left: anisotropy along y-axis, right:
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Problem arise from the fact, that the element size of the discretization is not cor-
related to the behavior of the solution. While the elements are isotropic, that is
square shaped in our example, the operator has a preference direction. The ratio
ky/ky measures the strength of the anisotropy. The source for the anisotropy may be
physical material properties. Another possible source can of course be an anisotropic
grid/ domain with an isotropic Laplace type operator.

diagonal

have a tensor of the form

In general the anisotropy is not aligned with a coordinate axis. This means that
simple grid refinement does not remove the problem.

k12
k=

kll
k12
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The anisotropic operator is discretized as

0 -1 -1 -1
ki -1 2 =1 |4+ke| O 2 0| +ks 2 + ky 2
0 -1 -1 -1

with suitable coefficients k1, kg, k3, and k4, which are not uniquely determined by the
differential operator. These parameters are read by the code. For anisotropy along
coordinate axis, we use the equivalent of the five-point stencil, that is coefficients k

and ks.

The code is derived from the standard multigrid code for finite differences®.

MGfdm6.h

#ifndef MGfdm6_h_IS_INCLUDED
#define MGfdm6_h_IS_INCLUDED

#include <MGfdm2.h>

class MGfdm6: public MGfdm2 // see also MGOp3

{

protected:
VecSimple(real) k_coeff; // coefficient vector
virtual void makeMatrix(); // set up lineq Matrix
virtual void makeMatrix(int i); // set up smooth matrix

public:
virtual void define (MenuSystem& menu, int level = MAIN);
virtual void scan (MenuSystem& menu) ;

};

#endif

The coefficients of the operator are stored in k_coeff. The generation of the matrices
in makeMatrix() and makeMatrix(int) needs to be modified. We also extend the

MGfdmé6.C

menu handling define and scan.

#include <MGfdm6.h>
#include <MatPtROp_real.h>

void MGfdm6:: define (MenuSystem& menu, int level)

{
menu.addItem (level,
"k coeff", // menu command/name
"kcoeff", // command line option: +level

"star [-b -¢ -d][-a +x -al[-d -c -b]",

5you will find the code in MGfdm6/

11



"[1., 0., 1., 0.1",// default answer
"s"); // valid answer: string
MGfdm2:: define(menu, level);
}

void MGfdm6:: scan(MenuSystem& menu)
{

MGfdm2:: scan(menu);
k_coeff.redim(4);

Is rIs(menu.get ("k coeff"));
rIs->ignore (’[’);
for (int i = 1; i <= 4; i++) {
rIs->get (k_coeff(i));
if (i < 4)
rIs->ignore (’,’);

void MGfdm6:: makeMatrix()
{

int n = gridSize(no_of_grids);
Handle(MatPtOp(real)) A = new MatPtOp(real);

Handle (IndexSet) ind; // ’interior’ index set
Handle (IndexSet) bou; // ’boundary’ index set
defineIndexSetI(ind, n);
defineIndexSetB(bou, n);

// point operator, two dimensional

A->redim(ind(),1); // with an offset of one from
// the central element A(0,0).

(*x4) (-1, 0) -k_coeff(1);

(*A)( 1, 0) = -k_coeff(1);

(¥*A)( 1,-1) = -k_coeff(2);

(¥4) (-1, 1) = -k_coeff(2);

(*4)( 0,-1) = -k_coeff(3);

(*8)( 0, 1) = -k_coeff(3);

(*¥4) (-1,-1) = -k_coeff(4);

(*A)( 1, 1) = -k_coeff(4);

(xA)( 0, 0) = 2 * (k_coeff(1) +k_coeff(2) + k_coeff(3) + k_coeff(4));

FieldFD* b = new FieldFD(grid(no_of_grids) (),"d"); // !!
b->values() = 0;

u.rebind (new FieldFD(grid(no_of_grids) (),"u"));
u->values() = 0;

// initialization of the right hand side

Ptv(int) is(2);
Ptv(real) ps(2);

real h = 1.0 / real(n);

ind() .startIterator(is);
while (ind().iterate()) {

12



ps(1) = hxis(1);

ps(2) = hxis(2);

b->valueIndex(is(1),is(2)) = hxh*f(ps);
¥

// initialization of the boundary conditions
bou() .startIterator(is);
while (bou().iterate()) {
ps(1) = hxis(1);
ps(2) = hxis(2);
u->valueIndex(is(1),is(2)) = u0(ps);
}

lineg->attach(*A, *u, *b);

void MGfdmé6:: makeMatrix(int i)
{

int n = gridSize(i);

Handle (MatPtOp(real)) 4;
A.rebind( new MatPtOp(real) );

Handle (IndexSet) ind; // ’interior’ index set
Handle (IndexSet) bou; // ’boundary’ index set
defineIndexSetI(ind, n);
defineIndexSetB(bou, n);

// point operator, two dimensional

A->redim(ind(),1); // with an offset of one from
// the central element A(0,0).

(*4) (-1, 0) = -k_coeff(1);

(*A)( 1, 0) = -k_coeff(1);

(*A)( 1,-1) = -k_coeff(2);

(¥*A) (-1, 1) = -k_coeff(2);

(*A)( 0,-1) = -k_coeff(3);

(*A)( 0, 1) = -k_coeff(3);

(*4) (-1,-1) = -k_coeff(4);

(*A)( 1, 1) = -k_coeff(4);

(xA)( 0, 0) = 2 * (k_coeff(1) +k_coeff(2) + k_coeff(3) + k_coeff(4));

FieldFD* rhs = new FieldFD(grid(i)(),"rhs"); // !!
rhs->values() = 0;

FieldFD* sol = new FieldFD(grid(i)(),"sol"); // !!
sol->values() = 0;

// initialization of the right hand side

Ptv(int) is(2);
Ptv(real) ps(2);

real h = 1.0 / real(n);

ind() .startIterator(is);

while (ind().iterate()) {
ps(1) = hxis(1);
ps(2) = hxis(2);
rhs->valuelndex(is(1),is(2)) = hxhxf(ps);

13



}
// initialization of the boundary conditions

bou() .startIterator(is);
while (bou().iterate()) {
ps(1) = hxis(1);
ps(2) = hxis(2);
sol->valuelndex(is(1),is(2)) = u0(ps);
¥

smooth(i)->attach(*A, *sol, *rhs);
LinEgAdm &s = smooth(i)->linAdm();
ddsolver->attachLinRhs(s.bl(), i, dpTRUE);
ddsolver->attachLinSol(s.x1(), 1i);

The code reads the four parameters kq, ko, k3, and k4 and defines the new differences
stencils.

The following input parameters may be some guideline for your experiments®.

We first have a look at anisotropy along coordinate axis, see table 5, input file
testl.i. The first experiment is about the convergence rate of the conjugate gradi-
ent method in the presence of anisotropy. Compare the number of iterations for the
different test cases. Is there a difference between the second and the third test case,
both an anisotropy of 1 : 107

menu item answer
k coeff {[1,0,1,0] & [1, 0, 10, 0] & [1, O, .1, 0]}
no of grid levels 4
coarse lattice 2
matrix type MatPtOp
basic method ConjGrad
preconditioning type PrecNone

Table 5: Conjugated gradients, anisotropy along coordinate axis, testl.1

The next two test contain multigrid for the anisotropy along the axis. The first case is
the reference computation for the isotropic Laplacian, see table 6, input file test2.1.

How is the multigrid performance affected by the presence of the anisotropy? Com-
pare the number of iterations/ the convergence rate. Try some modifications of the
smoother. The node ordering in an SOR smoother plays a role. So you can perform
experiments changing the direction of the anisotropy and observe the difference in
the convergence rate. You can also have a look at large coarse grids, with a low
quality coarse grid solver. How is the multigrid iteration affected now?

We can do the same tests with multigrid as a preconditioner, see table 7, input file
test3.i. Does the additional conjugated gradient algorithm increase the perfor-

Sfiles are in MGfdm6/Verify/
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menu item answer
k coeff {[1, 0,1, 0] & [1, 0, 10, 0] & [1, 0, .1, 0]}
no of grid levels 4
coarse lattice 2
sweeps [1,1]
matrix type MatPtOp
basic method DDlter
preconditioning type PrecNone
domain decomposition method Multigrid
cycle type gamma 1
smoother matrix type MatPtOp
smoother basic method SOR
coarse grid matrix type MatPtOp
coarse grid basic method SOR
coarse grid max iterations 1

Table 6: Multigrid, anisotropy along coordinate axis, test2.1

mance of the iteration? Is it preferable to use the Krylov iteration in the presence of
anisotropy?

We next set of test is concerned with directions of anisotropy, which is not aligned
with the coordinate axis, see table 8, input file test4.i. We compare one of the
previous examples with case witch are rotated by 7/4. In fact we are able to compare
two different discretizations for the rotated case.

—-45 -1
-1 13 -1
—-.1 —.45
and
-9 45
-9 27 -9
45 -9

There is a substantial difference in the performance of the multigrid method. Both
solutions look quite similar. However, if it comes to iterative solvers, one discretiza-
tion is better suited. Why? (Look at the signs of the entries in the stencil, compare
the M-matrix property)

We can redo the test with the rotated anisotropic operator for the conjugated gradient
method preconditioned by the multigrid method, see table 9, input file test5.1i. You
can also look at the additive multigrid preconditioner.

4 Different prolongation and restriction stencils

Up to now we have considered a nine-point stencil for prolongation and an adjoint
operator for restriction. This is equivalent to the interpolation scheme for bi-linear
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menu item answer
k coeff {[1, 0,1, 0] & [1, 0, 10, 0] & [1, 0, .1, 0]}
no of grid levels 4
coarse lattice 2
sweeps [1,1]
matrix type MatPtOp
basic method ConjGrad
preconditioning type PrecDD
domain decomposition method Multigrid
cycle type gamma 1
smoother matrix type MatPtOp
smoother basic method SOR
coarse grid matrix type MatPtOp
coarse grid basic method SOR
coarse grid max iterations 1

Table 7: Conjugated gradients with Multigrid preconditioner, anisotropy along coor-
dinate axis, test3.1

finite elements on square shaped domains. However, in finite differences there is
no such natural interpolation scheme connected with the discretization. We are
free to use different schemes for restriction and prolongation. So we will test some
cheaper stencils in the next section, while we have a look at higher order interpolation
afterwards.

4.1 Low order prolongation and restriction stencils

We will have a look at several cheap restriction and prolongation stencils from the
multigrid literature for finite differences. The standard nine-point stencil reads

11 17 1
i1 : 1 1
: L g |=|1 *[5 1 5}
I 1 1 1
4 2 4 | 2
We study the seven-point stencil
I L1
T
;3 13
L 1
L2 2

arising in the interpolation of linear triangular shaped elements (in a type 1 triangu-
lation), the five point stencil

L Ll
NN
o=
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menu item

answer

k coeff

{[1,0,.1,0] & [.1, .45, .1, 0] &
[9,0,.9,-.45] & [.1,0, 1, 0] &
[9,-.45,.9, 0] & [.1,0, .1, .45]}

no of grid levels 4
coarse lattice 2
sweeps [1,1]
matrix type MatPtOp
basic method DDlter
preconditioning type PrecNone
domain decomposition method Multigrid
cycle type gamma 1
smoother matrix type MatPtOp
smoother basic method SOR
coarse grid matrix type MatPtOp
coarse grid basic method SOR
coarse grid max iterations 1

Table 8: Multigrid, anisotropy in different directions, test4.1

which is sometimes referred to as “half-weighting” and the trivial injection

which is only applicable as a restriction.

We derive the test simulator from the standard finite difference multigrid simulator

MGfdm77.

#ifndef MGfdm7_h_IS_INCLUDED
#define MGfdm7_h_IS_INCLUDED

#include <MGfdm2.h>

class MGfdm7: public MGfdm2
{
protected:

virtual void initProj();
public:

// setup proj

virtual void define (MenuSystem& menu, int level = MAIN);

};
#tendif

“you will find the code in MGfdm7/
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menu item answer
k coeff {[1,0,.1,0] & [.1, .45, .1, 0] &

[.9,0,.9,-45] & [.1,0,1,0] &

[.9,-.45,.9,0] & [.1,0, .1, .45]}
no of grid levels 4
coarse lattice 2
sweeps [1,1]
matrix type MatPtOp
basic method ConjGrad
preconditioning type PrecDD
domain decomposition method Multigrid
cycle type gamma 1
smoother matrix type MatPtOp
smoother basic method SOR
coarse grid matrix type MatPtOp
coarse grid basic method SOR
coarse grid max iterations 1

Table 9: Conjugated gradients with Multigrid preconditioner, anisotropy in different
directions, test5.1

The menu handling procedure define is extended to read the restriction and the
prolongation stencil. The function initProj reads these descriptions of the stencils
and defines the projectors for restriction proj_r and for prolongation proj_p accord-
ingly. The transfer in the nested iteration proj nest is always set to the bi-linear

MGfdm7.C

interpolation scheme.

#include <MGfdm7.h>
#include <MatPtROp_real.h>

void MGfdm7:: define (MenuSystem& menu, int level)

{

menu.addItem (level,
"prolongation", // menu command/name
"prolongation", // command line option: +level
"star [a b c][d e £]1[g h i]",
"[.25, .5, .26][.5, 1, .5][.25, .5, .25]",// default answer
"S'); // valid answer: string

menu.addItem (level,
"restriction", // menu command/name
"restriction", // command line option: +level

"star [a b c]J[d e £]1[g h i]",
"[.25, .5, .25][.5, 1, .5][.25, .5, .25]",// default answer
"s"); // valid answer: string

18



MGfdm2:: define(menu, level);

void MGfdm7:: initProj() // setup proj operators
{
int i, j, k;
MatSimple(real) pro(3,3);
Is pIs(menu_system->get ("prolongation'"));
for (i = 1; 1 <= 3; i++) {
pIs->ignore (°[’);
for (j = 1; j <= 3; j++) {
pls->get (pro(i,jl));
if (j<3)
pls->ignore (’,’);

MatSimple(real) res(3,3);
Is rIs(menu_system->get ("restriction"));
for (1 = 1; 1 <= 3; i++) {
rIs->ignore (’[’);
for (j = 1; j <= 3; j++) {
rIs->get (res(i,j));
if (j<3)
rIs->ignore (’,’);

for (i=1; i<no_of_grids; i++) {
int n = gridSize(i);
int m = smooth(i+1)->1inAdm() .getLinEgSystem (). A() .mat().getNoRows();
Handle (IndexSet) indi; // ’interior’ index set fine
defineIndexSetI (indl, 2 * n, 2);

Handle (IndexSet) ind?2; // ’interior’ index set coarse
defineIndexSetI (ind2, n, 1);

Handle (MatPtROp(real)) M;
// restriction
M.rebind(new MatPtROp(real));
M->redim(ind1(), ind2(), 1);
M->setNoRows (m) ;
for (j=1; j<=3; j++)

for (k=1; k<=3; k++)

(*M) (j-2, k-2) = res(j,k);
M->optimize();
Handle(LinEgMatrix) MM;
MM.rebind (new LinEqMatrix(*M));
proj_r(i) .rebind(new ProjMatrix());
proj_r(i)->rebindMatrix (*MM) ;

proj_r(i)->init();

// prolongation
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M.rebind(new MatPtROp(real));
M->redim(ind1(), ind2(), 1);
M->setNoRows (m) ;

for (j=1; j<=3; j++)
for (k=1; k<=3; k++)
(*M) (j-2, k-2) = pro(j,k);

M->optimize();
MM.rebind (new LinEqMatrix(*M));

proj_p(i) .rebind(new ProjMatrix());
proj_p(i)->rebindMatrix (*MM) ;
proj_p(i)->init();

// nested
M.rebind(new MatPtROp(real));

M->redim(ind1(), ind2(), 1);
M->setNoRows (m) ;

(*M) (-1,-1) = .25; (*M)(-1, 0) = .5; (M) (-1, 1) = .25;
(*M)( 0,-1) = .5; (xM)( 0, 0) =1.; (M) (o0, 1) = .5;
(xM)( 1,-1) = .25; (xM)( 1, 0) = .5; (M) (1, 1) = .25;

M->optimize();
MM.rebind (new LinEgMatrix(*M));

proj_nest (i) .rebind(new ProjMatrix());
proj_nest (i) ->rebindMatrix (xMM) ;
proj_nest(i)->init();

The following input parameters may be some guideline for your experiments®.

For reference we include the standard input file for the un-preconditioned conjugated
gradient method, see table 10, input file test1.i. Changes in the restriction and
prolongation do not affect this procedure.

menu item answer
no of grid levels 4
coarse lattice 2
matrix type MatPtOp
basic method ConjGrad
preconditioning type PrecNone
#1: convergence monitor name | CMAbsTrueResidual
#1: max error 1.0e-7

Table 10: Conjugated gradients on a finite difference discretization, test1.i

We test the multigrid method with the given restriction and prolongation stencils, see

8files are in MGfdm7/Verify/
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table 11, input file test2.i. The code executes all combinations of the parameters.
This means that there are several cases, where the restriction and the prolongation
are not adjoint. Hence we have an unsymmetric iterative solver.

We can compare the performance of the multigrid method for the different stencils.
It is easy to compare the number of iterations and the convergence rates. It is more
difficult to actually observe a difference in the execution time for one multigrid cycle.
Although we use optimized stencils, that is the removal of zeros in the stencil, and
the application of a five point stencil requires less (floating point) operations than a
seven point stencil in Diffpack, this effect is small compared to the overall execution
time. However, the effect of the convergence rate is definitely visible.

The “half-weighting” stencil and the trivial injection stencil have been introduced in
specifically tuned versions of the multigrid method. This is usually tied to a certain
choice for the smoothing algorithm. To be able to repeat these methods exactly, spe-
cific choice have to made. This e.g. requires a red-black Gauss-Seidel iteration, which
can be implemented with some modifications of the iterators defineIndexSetI().
See also the red-black Gauss-Seidel in the finite element multigrid tutorial [Zum96c]|.

menu item answer
prolongation {[.25, .5, .25][.5, 1, .5][.25, .5, .25] &
[0, .5, .5][.5, 1, .5][.5, .5, 0] &

[0, .25, 0][.25, 1, .25][0, .25, 0]}

restriction {[.25, .5, .25][.5, 1, .5][.25, .5, .25] &
[0, .5, .5][.5, 1, .5][.5, .5, 0] &

[0, .25, 0][.25, 1, .25][0, .25, 0] &

[0, 0, 0][0, 1, O][0, 0, 0]}

no of grid levels 4
coarse lattice 2
sweeps [1,1]
matrix type MatPtOp
basic method DDlter
preconditioning type PrecNone
domain decomposition method Multigrid
cycle type gamma 1
smoother matrix type MatPtOp
smoother basic method SOR
coarse grid matrix type MatPtOp
coarse grid basic method SOR
coarse grid max iterations 1

Table 11: Multigrid with different restriction and prolongation stencils, test2.1

We can redo the same test for the multigrid preconditioner, see table 12, input
file test3.i. Since some of the multigrid versions, in the case the restriction and
prolongation are not adjoint, are in fact unsymmetric operations, you might want to
use an unsymmetric Krylov iteration like BiCGstab or CGS instead of the conjugated
gradient iteration. Does the surrounding Krylov iteration improve the multigrid
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performance, especially for very cheap restriction or prolongation operators?

menu item answer
prolongation {[.25, .5, .25][.5, 1, .5][.25, .5, .25] &
[0, .5, .5][.5, 1, .5][.5, .5, 0] &

[0, .25, 0][.25, 1, .25][0, .25, 0]}

restriction {[.25, .5, .25][.5, 1, .5][.25, .5, .25] &
[0, .5, .5][.5, 1, .5][.5, .5, 0] &

[0, .25, 0][.25, 1, .25][0, .25, 0] &

[0, 0, 0][0, 1, O][0, 0, 0]}

no of grid levels 4
coarse lattice 2
sweeps [1,1]
matrix type MatPtOp
basic method ConjGrad
preconditioning type PrecDD
domain decomposition method Multigrid
cycle type gamma 1
smoother matrix type MatPtOp
smoother basic method SOR
coarse grid matrix type MatPtOp
coarse grid basic method SOR
coarse grid max iterations 1

Table 12: Conjugated gradients with Multigrid preconditioner using different restric-
tion and prolongation stencils, test3.1

4.2 High order prolongation

The motivation for low order restriction and prolongation operators was the cost.
Less entries in the operator stencil mean less number of operations. This is especially
true, if values computed by the prolongation are overwritten immediately by the
smoothing algorithm, like in some red-black Gauss-Seidel iterations.

So the application of higher order transfer operators here is rather un-usual. There
is another occasion, where an interpolation scheme is needed. In the nested iteration
the solution on one grid has to be interpolated to the next finer grid. This interpolant
serves as an initial guess for the following multigrid iteration.

In order to use the all the information, which is contained in this vector, a higher oder
interpolation scheme may be appropriate. Since this interpolation is only performed
once per grid in the complete multigrid solution procedure, one can afford a more
expensive scheme here. This procedure of course will only pay off in regions, where
the solution to be interpolated is regular enough.
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We now look at the implementation of a bi-cubic interpolation on the square.

Since this requires a larger support of the stencil, which is not available near the
boundary, we have to modify the scheme there. Near the boundary we use an un-
symmetric quadratic interpolation scheme instead. Near to the left boundary we
use

002120 -1
(00§15 }

and near to the right boundary
If even this scheme is not applicable, we use our standard linear interpolation scheme.
1 1
(314
In general we use the highest order possible and use a tensor product approach to
construct the formula.”.

o=

03120 0]

MGfdm11.h

#ifndef MGfdm11_h_IS_INCLUDED
#define MGfdm11_h_IS_INCLUDED

#include <MGfdm2.h>

class MGfdm11l: public MGfdm2

{
protected:
virtual void initProj(); // setup proj
virtual void makeProj(int i); // create proj i,i+1
virtual void makeProj_nest(int i); // create nested proj i,i+1
virtual int noPtop(int n); // number of higher order stencils on a grid

virtual BooLean defineIndexSetIc(Handle(IndexSet)& indi,
int n, int x, int y, int step); // higher order
virtual BooLean defineIndexSetIl(Handle(IndexSet)& indi,
int n, int step); // linear
public:
};
#tendif

%you will find the code in MGfdm11/
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We derive our simulator from the standard multigrid code MGEdm2. In order to imple-
ment these interpolation schemes, we have to modify the procedures, which handle
the transfer operators: makeProj(int) is split into the part for standard restriction
and prolongation operators and makeProj nest(int) defines the new nested inter-
polation schemes. initProj() now calls both initialization procedures. We define
new iterators for all nodes, which have to be interpolated linearly defineIndexSetl
and nodes that are interpolated cubic or quadratic defineIndexSetc in x and in y
direction, depending on the flags x and y.

#include <MGfdmil.h>
#include <MatPtROp_real.h>

void MGfdmll:: makeProj(int i)

{
int n = gridSize(i);
int m = smooth(i+1)->1inAdm() .getLinEqSystem (). A() .mat().getNoRows();
Handle (IndexSet) indi; // ’interior’ index set fine
defineIndexSetI (indl, 2 * n, 2);

Handle (IndexSet) ind?2; // ’interior’ index set coarse
defineIndexSetI (ind2, n, 1);

Handle (MatPtROp(real)) M;
M.rebind(new MatPtROp(real));

M->redim(ind1(), ind2(), 1);
M->setNoRows (m) ;

(*M) (-1,-1) = .25; (*xM)(-1, 0) = .5; (*M) (-1, 1) = .25;
M (0,-1) = .5; (M(0, 0) =1.; M0, 1) = .5;
(M) ( 1,-1) = .25; (xM)( 1, 0) = .5; M (1, 1) = .25;

M->optimize();
Handle(LinEgMatrix) MM;
MM.rebind(new LinEgMatrix(*M));

// restriction
proj_r(i).rebind(new ProjMatrix());
proj_r(i)->rebindMatrix (xMM) ;
proj_r(i)->init();

// prolongation
proj_p(i).rebind(new ProjMatrix());

proj_p(i)->rebindMatrix (xMM) ;
proj_p(i)->init();

}
int MGfdmi1l:: noPtop(int n)
{
if (n < 4) return 1;
return 9;
}
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BooLean MGfdm11:: defineIndexSetlc

(Handle(IndexSet)& indi, int n, int x, int y, int step)

{ // higher order interpolation points (formula x,y)
if (n < 4 * step) return dpFALSE;

BoxIndices* interior = new BoxIndices;
indi.rebind (interior);

Ptv(int) steps(2);
steps = step;

int x0 = 2%step;

int x1 = n-2*step;

if (x<0) x1 = x0 = step; // left layer
if (x>0) x0 = x1 = n-step; // right layer

int yO = 2*step;

int y1 = n-2*step;

if (y<0) y1 = y0 = step;
if (y>0) yO = y1 = n-step;

interior->scan(aform("2(%d,%d) (%d,%d)", x0, y0, x1, yi));
interior->setSteps(steps);
return dpTRUE;

BooLean MGfdml1l:: defineIndexSetIl
(Handle(IndexSet)& indi, int n, int step)
{ // linear interpolation points

if (n >= 4 * step) return dpFALSE;

BoxIndices* interior = new BoxIndices;
indi.rebind (interior);

Ptv(int) steps(2);
steps = step;

interior->scan(aform("2(%d,%d) (%d,%d)", step, step, n-step, n-step));
interior->setSteps(steps);
return dpTRUE;

void MGfdmll:: makeProj_nest(int i)
{
const int offset = 3;
static const real inter[][1+2*offset] = {
{0 , 0, .375, 1, .75, 0, -.125}, // quadratic (left)
{-.0625, 0, .5625, 1, .5625, 0, -.0625},// cubic

{-.125, o0, .75, i, .375, 0, 0} // quadratic (right)
// {0, 0, .5, 1, .5, 0, 0%, // linear
}
int n = gridSize(i);
int m = smooth(i+1)->1inAdm() .getLinEgSystem (). A() .mat () .getNoRows();

Handle (MatPtROp(real)) M;
M.rebind(new MatPtROp(real));
M->init (noPtop(n)); // number different stencils

int ptop = 1;
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// cubic (quadratic) interpolation along an axis, as high as possible
for (int x=-1; x<=1; x++)
for (int y=-1; y<=1; y++) {
Handle(IndexSet) indi; // ’interior’ index set fine
if (defineIndexSetIc (indl, 2 * n, x, y, 2)) {

Handle (IndexSet) ind2; // ’interior’ index set coarse
defineIndexSetIc (ind2, n, x, y, 1);

Handle (PtROpDS(real)) P;
P.rebind(new PtROpDS(real));
P->redim(ind1(), ind2(), offset);

for (int l=-offset; l<=offset; 1++)

for (int m=-offset; m<=offset; m++)
(*P) (1, m) = inter[i1+x][l+offset] * inter[i1+y][m+offset];

M->attach(*P, ptop++);

}
}

// (bi-)linear interpolation, where necessary
Handle (IndexSet) indi; // ’interior’ index set fine
if (defineIndexSetIl (indil, 2 * n, 2)) {

Handle (IndexSet) ind?2; // ’interior’ index set coarse
defineIndexSetIl (ind2, n, 1);

Handle (PtROpDS(real)) P;
P.rebind(new PtROpDS(real));
P->redim(ind1(), ind2(), 1);

(¥pP) (-1,-1) = .25; (*P)(-1, 0) = .5; (*P) (-1, 1) = .25;
*P)(0,-1) = .5; (*P)( 0, 0) =1.; *P)(0, 1) = .5;
(xP)( 1,-1) = .25; (xP)( 1, 0) = .5; P)( 1, 1) = .25;

M->attach(*P, ptop++);

}

if (noPtop(n)'!= ptop-1) warningFP("MGfdmll:: makeProj_nest",
"noPtop not ok");

M->optimize();

M->setNoRows (m) ;
Handle(LinEgMatrix) MM;
MM.rebind(new LinEgMatrix(*M));

s_o<<"nested interpolation, level "<<i<<endl; M->print(s_o);
proj_nest(i).rebind(new ProjMatrix());

proj_nest(i)->rebindMatrix (xMM) ;
proj_nest(i)->init();

void MGfdmil:: initProj() // setup proj operators

{

for (int i=1; i<no_of_grids; i++) {
makeProj(i);
makeProj_nest(i);

}
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The procedure defineIndexSetIc defines an iterator for all interior domain nodes
applicable for quadratic or cubic interpolation. The parameters x and y indicate the
exact interpolation method used, along the z and the y axis. The values —1 and
1 are used for quadratic interpolation on the left and the right layer, while a value
0) indicates cubic interpolation. So we define nine different types of nodes. The
tenth type contains the remaining nodes, for which bi-linear interpolation is used
(procedure defineIndexSetIl). The number of non-empty sets of node types is
computed by noPtop(int). Each defineIndexSet returns false in the case of an
empty node iterator, since this case has to be treated differently form the non-empty
iterators.

The following input parameters may be some guideline for your experiments!®.

We run a nested multigrid iteration, see table 13, input file test2.i. The idea is to
compare the number of iterations with the nested iteration multigrid with bi-linear
nested interpolation of MGfdm2. Since the difference is small, you may want to test
different smoothers and number of smoothing steps to study the quality of the higher
order interpolation.

menu item answer
no of grid levels 4
coarse lattice 2
sweeps [1,1]
matrix type MatPtOp
basic method DDlter
preconditioning type PrecNone
domain decomposition method | NestedMultigrid
cycle type gamma 1
smoother matrix type MatPtOp
smoother basic method SOR
coarse grid matrix type MatPtOp
coarse grid basic method SOR
coarse grid max iterations 1

Table 13: Multigrid on a finite difference discretization, test2.1i

5 Convection-diffusion equation

We are now studying the scalar linear convection-diffusion equation as a prototype
for an unsymmetric equation and a model for transport equations.

—Au + U-Vu = f

1%files are in MGfdm11/Verify/
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Since we already know how to treat the diffusion, the convection term @-Vu introduces
some difficulties. In the case of large convection, a straightforward second order

discretization with central differences for the convection!!.

U1 U9
— 1 -10 1 2
2h +2h

is unstable. So we have to modify the discretization, either add some stabilization
term, which we do in the next section, or use a different (lower order) difference stencil
for convection term, which we do in a later section. This choice of the discretization
of course affects the multigrid solution algorithm.

5.1 Artificial viscosity

Y-AXis

Figure 4: Solution of a convection diffusion problem with artificial viscosity.

The instability of the central difference discretization can be observed, if one of the
off-central entries of the difference stencil changes sign and becomes positive

1 -1 v v 1
— | -1 4 -1 21101 2
h2 1 *on *on 1

This is caused, if the first order convection term starts to dominate over the second
order diffusion term. One way to enforce stability in such a case is to increase the

"In this chapter it is important to denote the 1/h and 1/h® terms in the first and second order
differential operators. In the implementation however, all terms are multiplied by h? like in the

previous chapters.
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diffusion. This is needed, if

lv] > 7

which is very likely for coarse grid discretizations. In such a case we introduce a
diffusion of

kE = hlv|

instead of the original diffusion of 1. There are some refinement for this scheme: It
is enough to enforce stability along each coordinate axis for this difference stencil.
So we can introduce an anisotropic diffusion operator with just enough diffusion to
stabilize the equation in all directions. Another refinement for the application of
multigrid may be to introduce a C' dependence of the artificial diffusion term form
the mesh size h. In the standard approach, the artificial diffusion is just switched on,

when the mesh-size reaches the threshold of ﬁ

Our sample simulator is derived from the standard Diffpack multigrid simulator for
finite differences. We introduce a new parameter vector velocity, which is initialized
by the menu handling procedures define and scan. The procedures makeMatrix()

and makeMatrix(int) implement an anisotropic artificial viscosity discretization!?.

#ifndef MGfdm8_h_IS_INCLUDED
#tdefine MGfdm8_h_IS_INCLUDED

#include <MGfdm2.h>

class MGfdm8: public MGfdm2 // see also MGOpl, artificial viscosity
{

protected:
Ptv(real) velocity;
virtual void makeMatrix(); // set up lineq Matrix
virtual void makeMatrix(int i); // set up smooth matrix
public:

virtual void define (MenuSystem& menu, int level = MAIN);
virtual void scan (MenuSystem& menu);

};

#tendif

The main change in the makeMatrix procedures is the introduction of the convection
term with an artificial viscosity stabilization.

#include <MGfdm8.h>

12you will find the code in MGfdm8/
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#include <MatPtROp_real.h>

void MGfdm8:: define (MenuSystem& menu, int level)
{
menu.addItem (level,
"velocity", // menu command/name

"velocity", // command line option: +velocity
'scale velocity",
"[1.0,1.0]", // default answer 2D
"S'); // valid answer: String
MGfdm2:: define(menu, level);

void MGfdm8:: scan (MenuSystem& menu)
{

MGfdm2: : scan(menu) ;

velocity.redim(2);
Is rIs(menu.get ("velocity"));
rIs->ignore (’[’);
for (int i = 1; i <= 2; i++) {
rIs->get (velocity(i));
if (1 < 2)
rIs->ignore (’,’);

void MGfdm8:: makeMatrix()
{

int n = gridSize(no_of_grids);
Handle(MatPtOp(real)) A = new MatPtOp(real);

Handle (IndexSet) ind; // ’interior’ index set
Handle (IndexSet) bou; // ’boundary’ index set
defineIndexSetI(ind, n);
defineIndexSetB(bou, n);

// point operator, two dimensional

A->redim(ind(),1); // with an offset of one from
// the central element A(0,0).

real h = 1.0 / real(n);

real cx = h * .5 * fabs(velocity(1)); // artificial viscosity x
if (fabs(cx) < 1) cx = 1;

real cy = h * .5 * fabs(velocity(2)); // artificial viscosity y
if (fabs(cy) < 1) cy = 1;

(*A)( 0,-1) = -cy - h * .5 * velocity(2);
(%4)(-1, 0) = -cx - h * .5 * velocity(1);
(x0)( 0, 0) = 2 % (cx + cy);
(*A)( 1, 0) = —cx + h * .5 * velocity(1);
(*A)( 0, 1) = -cy + h * .5 * velocity(2);

FieldFD* b = new FieldFD(grid(no_of_grids) (),"b");
b->values() = 0;

u.rebind (new FieldFD(grid(no_of_grids)(),"u"));
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u->values() = 0;
// initialization of the right hand side

Ptv(int) is(2);
Ptv(real) ps(2);

ind() .startIterator(is);
while (ind().iterate()) {
ps(1) = hxis(1);
ps(2) = hxis(2);
b->valueIndex(is(1),is(2)) = hxh*f(ps);
}

// initialization of the boundary conditions
bou() .startIterator(is);
while (bou().iterate()) {
ps(1) = hxis(1);
ps(2) = hxis(2);
u->valueIndex(is(1),is(2)) = u0(ps);
¥

lineg->attach(*A, *u, #*b);

void MGfdm8:: makeMatrix(int i)
{

int n = gridSize(i);

Handle (MatPtOp(real)) 4;
A.rebind( new MatPtOp(real) );

Handle (IndexSet) ind; // ’interior’ index set
Handle (IndexSet) bou; // ’boundary’ index set
defineIndexSetI(ind, n);
defineIndexSetB(bou, n);

// point operator, two dimensional

A->redim(ind(),1); // with an offset of one from
// the central element A(0,0).

real h = 1.0 / real(n);

real cx = h * .5 * fabs(velocity(1)); // artificial viscosity x
if (fabs(cx) < 1) cx = 1;

real cy = h * .5 * fabs(velocity(2)); // artificial viscosity y
if (fabs(cy) < 1) cy = 1;

(*4)( 0,-1) = -cy - h * .5 * velocity(2);
(%4)(-1, 0) = -cx - h * .5 * velocity(1);
(x4)( 0, 0) = 2 * (cx + cy);
(*A)( 1, 0) = —cx + h * .5 * velocity(1);
(*A)( 0, 1) = -cy + h * .5 * velocity(2);

FieldFD* rhs = new FieldFD(grid(i)(),"rhs");
rhs->values() = 0;

FieldFD* sol = new FieldFD(grid(i)(),"sol");
sol->values() = 0;
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// initialization of the right hand side

Ptv(int) is(2);
Ptv(real) ps(2);

ind() .startIterator(is);
while (ind().iterate()) {
ps(1) = hxis(1);
ps(2) = hxis(2);
rhs->valuelndex(is(1),is(2)) = hxhx*f(ps);
}

// initialization of the boundary conditions

bou() .startIterator(is);
while (bou().iterate()) {
ps(1) = hxis(1);
ps(2) = hxis(2);
sol->valueIndex(is(1),is(2)) = u0(ps);
}

smooth(i)->attach(*4A, *sol, *rhs);
LinEgAdm &s = smooth(i)->linAdm();
ddsolver->attachLinRhs(s.bl(), i, dpTRUE);
ddsolver->attachLinSol(s.x1(), i);

The following input parameters may be some guideline for your experiments'3.

The first test is the solution of the convection-diffusion problem with a Krylov it-
eration, see table 14, input file testl.i. We use the BiCGStab method, because
the equation system is unsymmetric. One possible study is the dependence of the
convergence rate on the velocity v. A velocity zero means a symmetric Laplace type
problem. A large velocity probably introduces trouble for the iterative solver.

menu item answer
velocity [100,10]
no of grid levels 4
coarse lattice 2
matrix type MatPtOp
basic method BiCGStab
preconditioning type | PrecNone

Table 14: Conjugated gradients for an artificial viscosity discretization, test1.1i

The next test is the multigrid method applied to the same problem, see table 15,
input file test2.i. We can compare the number of iterations and the convergence
rate for different values of the velocity. It might also be interesting to study effects
of the smoothing algorithm and the number of smoothing steps on the convergence.

!3files are in MGfdm8/Verify/
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For large coarse grids the influence of the (inexact) coarse grid solver can be studied.
Since the quality of the discretization of the coarse grid problem for convection-
diffusion problems is often very poor, the overall performance now depends on the
quality of the smoothers. So studies of smoother, which are exact for pure transport
equations as some upstream Gauss-Seidel or ILU schemes, are of special interest.

menu item answer
velocity [100,10]
no of grid levels 4
coarse lattice 2
sweeps [2,2]
matrix type MatPtOp
basic method DDlter
preconditioning type PrecNone
domain decomposition method | Multigrid
cycle type gamma 1
smoother matrix type MatPtOp
smoother basic method SOR
coarse grid matrix type MatPtOp
coarse grid basic method SOR
coarse grid max iterations 1

Table 15: Multigrid for an artificial viscosity discretization, test2.1

The last test for the artificial viscosity discretization is the preconditioned BiCGStab
iteration. Now also the non-symmetric Krylov iteration improves the transport of the
solution- and error-components, see table 16, input file test3.1i. In a comparison of
the number of iterations with the ordinary multigrid method, you have to take into
account, that the BiCGStab iteration requires more work per iteration than just a
standard conjugated gradient iteration.

5.2 Upwind discretization

The alternative to the artificial viscosity discretization (adding diffusion) is the mod-
ification of the difference stencil for the first order convection term. The idea is to
switch to a first order one-sided difference stencil.

! 1 _411 Tl+2 211042 1
12 . h nl

for positive vy, vz and similar one-sided (shifted) stencils for negative v components,

e.g. for v; <0
™

h
The stability is maintained and no operator has to be changed. However, this dis-
cretization is only first order in contrast to the second order central difference scheme

(01 —1]

above. Some refinement of the upwind scheme is to modify the discretization in a
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Table 16: Conjugated gradients with Multigrid preconditioner for an artificial viscos-

menu item answer
velocity [100,10]
no of grid levels 4
coarse lattice 2
sweeps [2,2]
matrix type MatPtOp
basic method BiCGStab
preconditioning type PrecDD
domain decomposition method | Multigrid
cycle type gamma 1
smoother matrix type MatPtOp
smoother basic method SOR
coarse grid matrix type MatPtOp
coarse grid basic method SOR
coarse grid max iterations 1

ity discretization, test3.1

C'(h) way to change into the second order central difference scheme for small A in

order to increase precision.

We implement the upwind scheme in a simulator derived from the previous convection-

diffusion simulator!'?.

#ifndef MGfdm9_h_IS_INCLUDED
#tdefine MGfdm9_h_IS_INCLUDED

#include <MGfdm8.h>

class MGfdm9: public MGfdm8 // see also MGOpl, upwind

{
protected:

virtual void makeMatrix();
virtual void makeMatrix(int i);

};
#tendif

We have to modify the implementation of the discretization of the convection term

in the procedures makeMatrix.

#include <MGfdm9.h>

you will find the code in MGfdm9/
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Figure 5: Solution of a convection diffusion problem with an upwind scheme.

#include <MatPtROp_real.h>
void MGfdm9:: makeMatrix()
{

int n = gridSize(no_of_grids);
Handle(MatPtOp(real)) A = new MatPtOp(real);

Handle (IndexSet) ind; // ’interior’ index set
Handle (IndexSet) bou; // ’boundary’ index set
defineIndexSetI(ind, n);
defineIndexSetB(bou, n);

// point operator, two dimensional

A->redim(ind(),1); // with an offset of one from
// the central element A(0,0).

real h = 1.0 / real(n);

real ¢ = fabs(velocity(1)) + fabs(velocity(2)); // upwind
(x4)( 0,-1) = -1;

(x8)(-1, 0) = -1; (#A)( 0, 0) = 4+ c * h; (*A)( 1, 0) = -1;
() (0, 1) = -1;

if (velocity(1)>0)
(xA) (-1, 0) = -1
else
(*A)( 1, 0) = -1 + h * velocity(1);

1
=2
*

velocity(1);

if (velocity(2)>0)
(xA)( 0,-1) = -1
else
(*A)( 0, 1) = -1 + h * velocity(2);

1
=2
*

velocity(2);
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FieldFD* b = new FieldFD(grid(no_of_grids) (),"b");
b->values() = 0;

u.rebind (new FieldFD(grid(no_of_grids)(),"u"));
u->values() = 0;

// initialization of the right hand side

Ptv(int) is(2);
Ptv(real) ps(2);

ind() .startIterator(is);
while (ind().iterate()) {
ps(1) = hxis(1);
ps(2) = hxis(2);
b->valueIndex(is(1),is(2)) = hxh*f(ps);
¥

// initialization of the boundary conditions
bou() .startIterator(is);
while (bou().iterate()) {
ps(1) = hxis(1);
ps(2) = hxis(2);
u->valueIndex(is(1),is(2)) = u0(ps);
¥

lineg->attach(*A, *u, *b);

void MGfdm9:: makeMatrix(int i)
{

int n = gridSize(i);

Handle (MatPtOp(real)) 4;
A.rebind( new MatPtOp(real) );

Handle (IndexSet) ind; // ’interior’ index set
Handle (IndexSet) bou; // ’boundary’ index set
defineIndexSetI(ind, n);
defineIndexSetB(bou, n);

// point operator, two dimensional

A->redim(ind(),1); // with an offset of one from
// the central element A(0,0).

real h = 1.0 / real(n);

real ¢ = fabs(velocity(1)) + fabs(velocity(2)); // upwind
(x2)( 0,-1) = -1;

(xa)(-1, 0) = -1; (xA)( 0, 0) 4+ c*h; (xA)(1, 0) =-1;
(x2)C0, 1) = -1;

if (velocity(1)>0)

(*¥A) (-1, 0) = -1 - h * velocity(1);
else

(*A)( 1, 0) = -1 + h * velocity(1);

if (velocity(2)>0)

(*4)( 0,-1) = -1 - h * velocity(2);
else
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(*A)( 0, 1) = -1 + h * velocity(2);

FieldFD* rhs = new FieldFD(grid(i)(),"rhs");
rhs->values() = 0;

FieldFD* sol = new FieldFD(grid(i)(),"sol");
sol->values() = 0;

// initialization of the right hand side

Ptv(int) is(2);
Ptv(real) ps(2);

ind() .startIterator(is);
while (ind().iterate()) {
ps(1) = hxis(1);
ps(2) = hxis(2);
rhs->valuelndex(is(1),is(2)) = hxhxf(ps);
¥

// initialization of the boundary conditions

bou() .startIterator(is);
while (bou().iterate()) {
ps(1) = hxis(1);
ps(2) = hxis(2);
sol->valuelndex(is(1),is(2)) = u0(ps);
}

smooth(i)->attach(*A, *sol, *rhs);
LinEgAdm &s = smooth(i)->linAdm();
ddsolver->attachLinRhs(s.bl(), i, dpTRUE);
ddsolver->attachLinSol(s.x1(), 1i);

We can redo the experiments of the last section on artificial viscosity and compare

the performance of the iterative solvers for the different types of discretization'®.

The first test is the un-preconditioned Krylov iteration for the solution of the un-
symmetric equation system, see table 14, input file test1.i. The next test is the
application of a multigrid method, see table 15, input file test2.i. Here some stud-
ies of the performance of different smoother are interesting. Last is the multigrid
preconditioned Krylov iteration, see table 16, input file test3.1i, with a comparison
to the ordinary multigrid iteration.

5.3 Operator dependent transfers and Galerkin products

We discuss a third strategy to cope with the stability problem in convection-diffusion
equations. However, this more algebraic strategy has a wider scope than just the
convection-diffusion equation. Assume we have a stable discretization of the equation
on the finest grid. It is likely that similar discretizations on coarser levels will become

!5 files are in MGfdm9/Verify/
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unstable. So we generate these discretization in a different, an algebraic way. The
alerkin

idea is to use the property of a Galerkin discretization
Aj = rAjp

with restriction r, prolongation p, a fine grid stiffness matrix A;;; and a coarse
grid matrix A;. Given a prolongation operator as the standard interpolation and
defining the restriction as the adjoint r = p*, we are able to compute A; without
the need for a discretization procedure. If we start with a discretization A;; that is
equivalent to a finite element discretization of an equation, and we use the associated
interpolation scheme p, the resulting coarse grid discretization A; is equivalent to the
associated coarse grid finite element discretization. However, we are free to modify

both discretization and interpolation scheme. algebraic
multigrid

We apply this scheme step by step to construct the sequence of matrices, starting

with the given fine grid stiffness matrix. This procedure is sometimes referred to
as algebraic multigrid, although a pure algebraic multigrid procedure additionally
requires an heuristic procedure to construct a suitable prolongation p for a given
matrix (-graph) Ajy;.

However, there is one drawback of this approach so far: We are starting with a stable
fine grid discretization for the convection-diffusion equation, for example with an
upwind discretization A; ;

1

o (-1 1 0]

and we iterate the coarsening scheme A; = p*A;,p several times to compute A;. If
we are looking at the limit case Ao, — Ay, we observe that the discretization on the
coarsest level A; now is a central difference scheme

U1 [

L-10 1]

2h

which is unstable and which we wanted to avoid. The idea now is to modify the

restriction/ prolongation in order to maintain stable discretizations. We construct a operator

prolongation scheme that depends on the differential operator or, more precise, on gepe?dent
ranster

a given discretization. In one dimension, the choice is fairly straightforward: If we

denote the difference stencil by
Aj_|_1 = [ a_1 Qap ay }
then we can define the prolongation stencil by
a_
p=r"= {—3—3 1 —a—ol}

The idea is to preserve both a one-sided difference as well as a central difference
operator and to look at the expression A;;p.

The generalization of this operator dependent prolongation scheme into two and three
dimensions is not clear or unique. We follow one possible line of generalization. We
denote the difference stencil in two dimensions by

a_1.1 ap,1 ay,1
Aj-|—1 = a_1,0 ap,0 1,0
a_1,-1 Qo,—1 4a1,—1
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and define the prolongation by

P-1.1 Po,1 P11
p=r"=|pao 1 a1,0
P-1,-1 Po,—-1 P1,-1

In analogy to the one dimensional case we define average difference stencils along a
coordinate axis and use the one-dimensional formulas. We define the entries

P+10 = — E]‘:—l,o,l aﬂFLj/ Ej:—l,o,l @o,;
Po+1 = — E]‘:—l,o,l aj51/ Zj:—l,o,l aj5,0

The entries p4q 41 are still missing. We choose

P+1,£1 = P+1,0 Po,+1

to mimic the bi-linear nine-point interpolation stencil. For alternative choices we
refer to the literature [Hac85, Wes92].

The implementation of the operator dependent transfers and the Galerkin product
discretization is based on the finite differences multigrid code for the convection-
diffusion equation with an upwind discretization. Of course it is also possible to start
with the artificial viscosity discretization from the last section. However, we have to

start with a stable discretization of the convection-diffusion equation.!.

We have to modify the initialization procedure used in the multigrid codes. We split it
into a management procedure initProjMatrices, which calls the Galerkin products
makeMatrixG(int) and transfer operator initialization makeProj(int) in the right
order. It is not possible to initialize differential operators and transfer operators
separately.

#ifndef MGfdm10_h_IS_INCLUDED
#tdefine MGfdm10_h_IS_INCLUDED

#include <MGfdm8.h>

class MGfdm10: public MGfdm8

{

protected:
virtual void initProjMatrices(); // setup proj and matrices
virtual void makeProj(int i); // set up projection i+1,i
virtual void makeMatrixG(int i); // set up smooth matrix i

public:
virtual void solveProblem ();

};

#endif

1% you will find the code in MGFdm10/
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The procedure makeProj(int i) implements the operator dependent transfer defined
earlier. Based on the operator i+1 grabbed from smooth(i+1) the transfer operator
on level i is constructed. All projection operators are initialized that way.

The procedure makeMatrixG(int i) implements the Galerkin products A; = p*A;41p
based on the operator in smooth(i+1) and the prolongation in proj p(i).

The management procedure initProjMatrices calls the standard discretization pro-
cedure makeMatrix on the finest grid and subsequently the operator dependent trans-

fers and Galerkin product procedures until the coarsest level is reached.

#include <MGfdm10.h>
#include <MatPtROp_real.h>
#include <DDIter.h>
#include <PrecDD.h>

void MGfdm10:: makeProj(int i) // operator dependent transfer

{
int n = gridSize(i);
Handle (IndexSet) indi; // ’interior’ index set fine
defineIndexSetI (indl, 2 * n, 2);

Handle (IndexSet) ind2; // ’interior’ index set coarse
defineIndexSetI (ind2, n, 1);

MatPtOp(real)& A = CAST_REF(smooth(i+1)->1linAdm() .getLinEqSystem ().
A() .mat (), MatPtOp(real));

Handle (MatPtROp(real)) M;

M.rebind(new MatPtROp(real));

M->redim(ind1(), ind2(), 1);
M->setNoRows (A.getNoRows()) ;

Ptv(int) ci(1,1); // dim 2
int j, k;
real amj = 0, a0j = 0, apj = 0;
for (k=-1; k<=1; k++) {
amj += A(-1, k).eval(ci);
a0j += A( 0, k).eval(ci);
apj += A( 1, k).eval(ci);
}

real ajm = 0, ajOo = 0, ajp = 0;

for (k=-1; k<=1; k++) {
ajm += A(k, -1).eval(ci);
ajo += A(k, 0).eval(ci);
ajp += A(k, 1).eval(ci);

}

(*M) (-1, 0) = -apj/a0j;
(M) ( 0,-1) = -ajp/ajo; (*M)( 0, 0) = 1.; (M) ( 0, 1) = -ajm/ajo;
(M1, 0) -amj/a0j;

for (j=-1; j<=1; j += 2)
for (k=-1; k<=1; k += 2)
(M) (3, k) = (*xM)( j, 0).eval(ci) * (xM)( 0, k).eval(ci);
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// (M) (j, k) = -A(-j, -k).eval(ci) / A(0, 0).eval(ci);

M->optimize();
s_o<<"proj, level '<<i<<endl; M->print(s_o);

Handle(LinEgMatrix) MM;
MM.rebind(new LinEgMatrix(*M));

// restriction
proj_r(i).rebind(new ProjMatrix());
proj_r(i)->rebindMatrix (xMM) ;
proj_r(i)->init();

// prolongation
proj_p(i).rebind(new ProjMatrix());
proj_p(i)->rebindMatrix (xMM) ;
proj_p(i)->init();

// nested

proj_nest(i).rebind(new ProjMatrix());
proj_nest(i)->rebindMatrix (xMM) ;
proj_nest(i)->init();

void MGfdm10:: makeMatrixG(int i) // Galerkin products
{

int n = gridSize(i);

Handle (MatPtOp(real)) 4;
A.rebind( new MatPtOp(real) );

Handle (IndexSet) ind; // ’interior’ index set
Handle (IndexSet) bou; // ’boundary’ index set
defineIndexSetI(ind, n);
defineIndexSetB(bou, n);

// point operator, two dimensional
A->redim(ind(),1); // with an offset of one from
// the central element A(0,0).
MatPtOp(real)& AF = CAST_REF(smooth(i+1)->1linAdm().getLinEgSystem ().
A() .mat (), MatPtOp(real)); // fine matrix
MatPtOp(real)& M = CAST_REF (proj_p(i)->A() .mat(), MatPtOp(real));
// transfer operator
Ptv(int) ci(1,1); // dim 2

int j0, j1, kO, ki, 10, 11;
for (jO=-1; jo<=1; jO++)
for (ji=-1; ji<=1; ji++) {
real t = 0;
for (kO0=-1+2%j0; k0<= 1+2%j0; kO++)
for (ki=-1+2%j1; ki<= 1+2%j1i; ki++) {
real a = M(k0-2%j0, k1-2%j1) .eval(ci);
for (10=-1+k0; 10<=1+k0; 10++)
if ((-1 <=10)&&(10<= 1))
for (11=-1+k1; 1i1<=1+k1; 11++)
if ((-1 <=11)&&(11<= 1))
t += a * AF(k0-10, ki1-11).eval(ci) * M(10, 11).eval(ci);
}
(%4) (jO, j1) = t;
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A->optimize();
s_o<<"matrix, level "<<i<<endl; A->print(s_o);

real h = 1.0 / real(n);

FieldFD* rhs = new FieldFD(grid(i)(),"rhs");
rhs->values() = 0;

FieldFD* sol = new FieldFD(grid(i)(),"sol");
sol->values() = 0;

// initialization of the right hand side

Ptv(int) is(2);
Ptv(real) ps(2);

ind() .startIterator(is);
while (ind().iterate()) {
ps(1) = hxis(1);
ps(2) = hxis(2);
rhs->valuelndex(is(1),is(2)) = hxhxf(ps);
}

// initialization of the boundary conditions

bou() .startIterator(is);
while (bou().iterate()) {
ps(1) = hxis(1);
ps(2) = hxis(2);
sol->valuelndex(is(1),is(2)) = u0(ps);
¥

smooth(i)->attach(*A, *sol, *rhs);
LinEgAdm &s = smooth(i)->linAdm();
ddsolver->attachLinRhs(s.bl(), i, dpTRUE);
ddsolver->attachLinSol(s.x1(), 1i);

}
void MGfdm10:: initProjMatrices()
{
makeMatrix(no_of _grids); // original discretiztion
s_o<<"matrix, finest level\n";
smooth(no_of_grids)->1inAdm() .getLinEqSystem() .A() .mat () .print(s_o);
for (int i=no_of_grids-1; i>=1; i--) {
makeProj(i); // operator dependent transfer
makeMatrixG(i); // Galerkin product
smooth(i)->makeSystem();
}
makeMatrix();
lineq->makeSystem() ;
}

void MGfdm10: :solveProblem()
{

injitProjMatrices();
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if (lineg->1linAdm() .getSolver().description().contains("Domain Decomposition™)) {
BasicItSolver& sol = CAST_REF(lineq->1inAdm().getSolver(), BasicItSolver);
DDIter& ddsol = CAST_REF(sol, DDIter);
ddsol.attach(*ddsolver);

¥

Precond &prec =lineq->1inAdm().getPrec();

if (prec.description().contains("Domain Decomposition'")) {
PrecDD& sol = CAST_REF (prec, PrecDD);
sol.init (*ddsolver);

¥
lineg->solve(); // solve eqution system
int niterations; Boolean c; // for iterative solver statistics

if (lineg->linAdm() .getStatistics(niterations,c)) // iterative solver?
s_o << oform("\n\n *** solverisconverged in %3d iterations ***\n\n",
c? "™ "™ : " not ",niterations);

Store4Plotting: : dump(u()); // dump for later visualization
lineCurves(u());

The following input parameters may be some guideline for your experiments!?. The
test in this section remains the same. We can compare the performance of the
multigrid method, see table 15, input file test2.1 and the multigrid preconditioned
Krylov iteration, see table 16, input file test3.1i with the performance for the equa-
tion solvers for the original upwind discretization. Another comparison could be with
the artificial viscosity. Studies of the performance of different smoothers and num-
ber of smoothing steps in the presence of the modified restriction and prolongation
operators might also be of interest.

However, this operator dependent transfer scheme is also applicable to jumping coef-
ficient problems. So further experiments could be to study the performance of this
multigrid version in the presence of rough or jumping coefficients, where the modified
transfer operators also proof to be useful.

6 Biharmonic equation

In this chapter we are looking at a different scalar symmetric elliptic differential
equation. The fourth order biharmonic equation. One physical motivation, among
others, of the biharmonic equation is the Kirchhoff plate bending model.

A’uw = f onQ

w = g on JfQ
%u = g2 on 99
Standard finite element procedures to solve this problem are higher order conforming,
that is C! finite elements. They introduce some problems in a multigrid scheme
because the finite element spaces are either non-nested and the elements are quite

17fles are in MGfdm10/Verify/
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Figure 6: Solution of biharmonic equation.

complicated and expensive. The alternative in finite elements are non-conforming
approaches, solving a coupled system of two Poisson equations. Techniques for non-
conforming finite elements apply.

However, the finite difference approach for the biharmonic equation is completely
different. Using a standard 13-point difference stencil in two dimensions

1
1 2 -8 2
7 1 -8 20 -8 1
2 -8 2
1

We have a rather simple conforming approach, where all interior nodes can be treated
in the same way. The boundary conditions require some special treatment of two
layers of boundary nodes, since the support of the difference stencil is larger than
the one layer of the 5- 7- or 9- point Laplacian. The Dirichlet conditions given above
(note that we impose two conditions per node) can be implemented by defining the
values of all nodes on both boundary layers of nodes.

The main theoretical difficulty for iterative solvers for this discretization is, that the
stiffness matrix is not longer an M-matrix. For the application of multigrid theory
also requires the use of higher order restriction and prolongation schemes (at least
quadratic). This reflects the fact that the finite element discretization also requires
higher order elements.

We derive the finite difference multigrid code for the biharmonic equation in Diffpack
from the standard finite difference multigrid code MGfdm2'®.

¥ you will find the code in MGfdm12/

44



#ifndef MGfdm12_h_IS_INCLUDED
#define MGfdm12_h_IS_INCLUDED

#include <MGfdm2.h>

class MGfdm12: public MGfdm2

{

protected:
virtual void makeMatrix(); // set up lineq Matrix
virtual void makeMatrix(int i); // set up smooth matrix
virtual void initProj(); // setup proj
virtual int gridSize(Spaceld i); // grid size n, lattice n#*n
virtual void scanGrid (MenuSystem& menu) ;
virtual void defineIndexSetB (Handle(IndexSet)& boundary, int n);
virtual void definelIndexSetIl (Handle(IndexSet)& interior, int n, int s=1);

public:

};

#endif

We have to redefine the definition of the differential operators in the makeMatrix
procedures. We also have to modify the grid handling procedures and the procedures
defining the node iterators in order to deal with the two boundary layers of nodes
and the additional boundary conditions.

We use the 13-point stencil discretization of the biharmonic operator and bi-linear
restriction and prolongation. The additional boundary layer extends the side length

of the global grid by 2h.

#include <MGfdmi12.h>
#include <MatPtROp_real.h>

int MGfdm12:: gridSize(Spaceld i)
{

return 2 + ((coarse_grid / 2) << i);
}

void MGfdmi2:: makeMatrix()
{

int n = gridSize(no_of_grids);

Handle(MatPtOp(real)) A = new MatPtOp(real);
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Handle (IndexSet) ind; // ’interior’ index set
Handle (IndexSet) bou; // ’boundary’ index set
defineIndexSetI(ind, n);
defineIndexSetB(bou, n);

// point operator, two dimensional
A->redim(ind(),2); // with an offset of two from
// the central element A(0,0).

real h = 1.0 / real(n-2);
hxh;

real s

(*4)( 0,-2)
(%xA) (-1,-1) = 2/s; (xA)( 0,-1)
(*¥4) (-2, 0) = 1/s;

1/s;
-8/s; (xA)( 1,-1) = 2/s;

(%8) (-1, 0) = -8/s; (xA)( 0, 0) = 20/s; (¥4)( 1, 0) = -8/s;

(*0)(2, 0) =
-8/s; (xA)( 1, 1) = 2/s;
1/s;

(*4) (-1, 1) = 2/s; (xA)(C 0, 1)
(xA)(C 0, 2)

FieldFD* b = new FieldFD(grid(no_of_grids)(),"d"); // !!
b->values() = 0;

u.rebind (new FieldFD(grid(no_of_grids) (),"u"));
u->values() = 0;

// initialization of the right hand side

Ptv(int) is(2);
Ptv(real) ps(2);

ind() .startIterator(is);
while (ind().iterate()) {
ps(1) = h*(is(1)-1);
ps(2) = hx(is(2)-1);
b->valueIndex(is(1),is(2)) = hxhx*f(ps);
}

// initialization of the boundary conditions
bou() .startIterator(is);
while (bou().iterate()) {
ps(1) = h*(is(1)-1);
ps(2) = h*(is(2)-1);
u->valueIndex(is(1),is(2)) = u0(ps);
}

lineg->attach(*A, *u, *b);
void MGfdmi12:: makeMatrix(int i)
{

int n = gridSize(i);

Handle (MatPtOp(real)) 4;
A.rebind( new MatPtOp(real) );

Handle (IndexSet) ind; // ’interior’ index set

Handle (IndexSet) bou; // ’boundary’ index set
defineIndexSetI(ind, n);
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defineIndexSetB(bou, n);

// point operator, two dimensional

A->redim(ind(),2); // with an offset of two from
// the central element A(0,0).

real h = 1.0 / real(n-2);

real s = hxh;

(xA)( 0,-2)
(%8) (-1,-1) = 2/s; (*A)( 0,-1)
(*x4) (-2, 0) = 1/s;
(*4) (-1, 0) = -8/s; (xA)( 0, 0) = 20/s; (xA)( 1, 0) = -8/s;
(xA)( 2, 0) = 1/s;
-8/s; (xA)( 1, 1) = 2/s;
1/s;

1/s;
-8/s; (%A)( 1,-1) = 2/s;

(*4) (-1, 1) = 2/s; (xA)(C 0, 1)
(xA)( 0, 2)

FieldFD* rhs = new FieldFD(grid(i)(),"rhs"); // !!
rhs->values() = 0;

FieldFD* sol = new FieldFD(grid(i)(),"sol"); // !!
sol->values() = 0;

// initialization of the right hand side

Ptv(int) is(2);
Ptv(real) ps(2);

ind() .startIterator(is);
while (ind().iterate()) {
ps(1) = h*(is(1)-1);
ps(2) = h*(is(2)-1);
rhs->valuelndex(is(1),is(2)) = hxhxf(ps);
¥

// initialization of the boundary conditions

bou() .startIterator(is);
while (bou().iterate()) {
ps(1) = h*(is(1)-1);
ps(2) = h*(is(2)-1);
sol->valuelndex(is(1),is(2)) = u0(ps);
¥

smooth(i)->attach(*A, *sol, *rhs);
LinEgAdm &st = smooth(i)->1inAdm();
ddsolver->attachLinRhs(st.bl(), i, dpTRUE);
ddsolver->attachLinSol(st.x1(), i);

void MGfdm12:: defineIndexSetI (Handle(IndexSet)& indi, int n, int step)
{

BoxIndices* interior = new BoxIndices;

indi.rebind (interior);

Ptv(int) steps(2);
steps = step;

interior->scan(aform("2(%d,%d) (%d,%d)", 1+step, 1+step, n-step-1, n-step-1));
interior->setSteps(steps);
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void MGfdm12:: defineIndexSetB (Handle(IndexSet)& indb, int n)
{
IndexSetIndices& boundary = #*new IndexSetIndices(4);
indb.rebind (boundary);

BoxIndices boxxl; // two lines of boundary

boxx1.scan(aform("2(0,0) (%d,1)",n));
boundary.add(boxxl) ;

boxx1l.scan(aform("2(0,%d) (%d,%d)",n-1,n,n));
boundary.add(boxx1) ;

boxxl.scan(aform("2(0,2) (1,%d)",n-2));
boundary.add(boxx1) ;

boxx1.scan(aform("2(%d,2) (%d,%d)",n-1,n,n-2));
boundary.add(boxx1) ;

void MGfdm12:: scanGrid(MenuSystem& menu)
{
for (int i=1; i<=no_of_grids; i++) {
int n = gridSize(i);
real h = 1. / n;

grid(i) .rebind (new GridLattice);
grid(i)->scan(aform("d=2 [%g,%glx[%g,%g]l index:[0:%d]x[0:%d]",
-h, 1+h, -h, 1+h, n, n));
if (i>1)
menu.setCommandPrefix("smoother");
else
menu.setCommandPrefix('coarse grid");
smooth(i) .rebind (new FdmLinAdm);
smooth(i)->scan(menu);
menu.unsetCommandPrefix() ;

void MGfdmi12:: initProj()
{
for (int i=1; i<no_of_grids; i++) {
int n = gridSize(i);
int m = smooth(i+1)->1inAdm() .getLinEgSystem (). A() .mat().getNoRows();

Handle (MatPtROp(real)) M;
M.rebind(new MatPtROp(real));

Handle (IndexSet) indi; // ’interior’ index set fine
defineIndexSetI (indl, gridSize(i+1), 2);

Handle (IndexSet) ind?2; // ’interior’ index set coarse
defineIndexSetI (ind2, n, 1);

M->redim(ind1(), ind2(), 1);

(*M) (-1,-1) = .25; (*M)(-1, 0) = .5; (*M) (-1, 1) = .25;
M(0,-1) = .5; (M(0, 0) =1.; Mo, 1) = .5;
(M) ( 1,-1) = .25; («xM)( 1, 0) = .5; M (1, 1) = .25;
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M->optimize();

M->setNoRows (m) ;
Handle(LinEgMatrix) MM;
MM.rebind(new LinEgqMatrix(*M));

// restriction

proj_r(i) .rebind(new ProjMatrix());
proj_r(i)->rebindMatrix (*MM) ;
proj_r(i)->init();

// prolongation

proj_p(i) .rebind(new ProjMatrix());
proj_p(i)->rebindMatrix (*MM) ;
proj_p(i)->init();

// nested

proj_nest (i) .rebind(new ProjMatrix());
proj_nest (i) ->rebindMatrix (xMM) ;
proj_nest(i)->init();

The following input parameters may be some guideline for your experiments!®.

Since we have a fourth order differential operator, which means a condition number
of O(h™*) instead of O(h~2) for the Laplacian, and a discretization, which violates
the M-matrix property, we expect the iterative equation solvers to be less efficient
than for the Laplacian. First we try the conjugated gradient method, see table 17,
input file test1.i. Observe the number of iterations dependent on the grid size/
number of levels. You should be able to observe the effect of the O(h™*) increase of
the condition number.

menu item answer
no of grid levels 4
coarse lattice 2
matrix type MatPtOp
basic method ConjGrad
preconditioning type | PrecNone

Table 17: Conjugated gradients for the biharmonic equation, test1.1i

Due to the discretization, we also expect the multigrid method to be sensitive to
changes in the smoother and its parameters and the number of smoothing steps. So
we suggest to start with a more robust multigrid W-cycle instead of the standard V-
cycle, see table 18, input file test2.1i. The main point is of course the dependence of
the number of iterations/ the convergence rate on the number of discretization levels.
You should do some experiments with different smoothers such as SOR, Jacobi and
ConjGrad instead, modify relaxation parameters and number of steps. You can also
try to find good parameters for the V-cycle.

files are in MGfdm6/Verify/
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menu item answer

no of grid levels 4
coarse lattice 2
sweeps [2,2]
matrix type MatPtOp
basic method DDlter
preconditioning type PrecNone
domain decomposition method | Multigrid
cycle type gamma 2
smoother matrix type MatPtOp
smoother basic method SSOR
smoother relaxation parameter 1.4
coarse grid matrix type MatPtOp
coarse grid basic method SSOR
coarse grid max iterations 1

Table 18: Multigrid for the biharmonic equation, test2.1

The comparison with the multigrid preconditioned conjugated gradient method in
this case is interesting, see table 19, input file test3.i. So a comparison of the
convergence rate and the work per iteration for both alternatives is interesting. Try
to explain, why the conjugated gradient method is so efficient for this discretization
of the biharmonic equation.

7 Conclusion

In this report we have demonstrated the use of iterative multigrid equation solvers
for the finite difference discretization of different partial differential equations. While
the previous introductory report on multigrid covered the Poisson equation, this
reports extends the variety of equations. We applied multigrid to non-symmetric
problems implementing the convection-diffusion equation with artificial viscosity and
with upwind schemes, to varying coefficient problems and to anisotropic problems.

The simulators were based on a standard finite difference Poisson equation simulator
with multigrid developed in the introductory report [Zum96b]. The extensions of
the simulator to implement the different operators and input parameters were quite
short. Some basic strategies for efficient multigrid were discussed, while no changes
to the multigrid implementation of the simulators were needed.

We could use the multigrid method both as a stand-alone iterative solver and as a
preconditioner for a conjugated gradient method (Krylov method in general). Both
the discretization and the transfer operators were implemented in a finite difference
stencil fashion, which requires only a constant amount of memory regardless the
number of unknowns and matrix size.

The discussion of the code and some numerical properties was accompanied with
numerical experiments and exercise to be done using the codes. This discussion of
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menu item answer

no of grid levels 4
coarse lattice 2
sweeps [2,2]
matrix type MatPtOp
basic method ConjGrad
preconditioning type PrecDD
domain decomposition method | Multigrid
cycle type gamma 2
smoother matrix type MatPtOp
smoother basic method SSOR
smoother relaxation parameter 1.4
coarse grid matrix type MatPtOp
coarse grid basic method SSOR
coarse grid max iterations 1

Table 19: Conjugated gradients with multigrid preconditioner for the biharmonic
equation, test3.1

different partial differential equations is necessarily incomplete and we have to refer
to the literature for the treatment of other operators.
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