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Abstract

The report serves as an alternative introductory report on the multigrid iterative
solvers in Diffpack using finite differences instead of finite elements covered previ-
ously. We consider the solution of elliptic partial differential equations on different
domains. We solve the resulting linear equation systems with a multigrid iteration
or a Krylov iteration with a multigrid preconditioner. The multigrid restriction and
prolongation are also implemented using finite “difference” type stencils. The first
steps are guided by a couple of examples and exercises.
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Multigrid for finite differences

Gerhard W. Zumbusch *

November 22, 1996

1 Introduction

The solution of partial differential equations often leads to the solution of equation
systems. For large problem sizes this solution tends to dominate the overall com-
plexity of the whole simulation. Hence efficient equation solver like the multigrid
method are needed. The idea is to construct an iterative solver based on several
discretizations on different scales at a time. The multigrid method reaches optimal
linear complexity which is comparable to input/output procedures and other data
handling in a computation.
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Figure 1: Hierarchy of multigrid and domain decomposition methods

Multigrid methods and domain decomposition methods are implemented in Diffpack
in a common framework applicable to iterative solvers, preconditioners and nonlinear
solvers. The user has to add approximative solvers on the different discretizations and
grid transfer operators projecting and interpolating residuals and corrections from
one discretization to another. These components are specified in the DDSolverUDC
interface in Diffpack.

The multigrid algorithm itself applies the approximate solvers on the different dis-
cretizations and uses coarse (= cheap) discretizations to correct solutions on finer (=
expensive) discretizations. The standard way to do this is called V-cycle.

SINTEF Applied Mathematics. Email: Gerhard.Zumbusch@math.sintef.no.



Figure 2: Multigrid V-Cycle

Given a second order differential operator £ and a domain €2, we look for the solution

of
Ly = f onf

u = g onl C 90
Ly = gy on0Q\T

on a bounded domain €2. The multigrid algorithm for an initial guess z and a right
hand side b to solve the equation system may be written recursively as

et = S'(z,b)
2 = o'+ Rj1;%;1(0,R;j;1(b— Ljz"))
®i(z,0) = S%*(z%b)

where § denotes the approximative solvers and R;_; ; and R;_; ; are the grid transfer
operators. The evaluation of the residual is denoted by b — Lz. The algorithm on
level one can be defined as

®y(z,0) = S(z,b)

We assume familiarity with some of the basic concepts of Diffpack [BL96]. For
a more detailed presentation of the multigrid method we refer to text books like
[Hac85],[Hac94, chapter 10]. An alternative introduction to multigrid methods in
Diffpack, based on finite element discretizations can be found in [Zum96] together
with additional references. It may be helpful to have access to the Diffpack man-
ual pages dpman while reading this tutorial. Some of the documentation of finite
differences in Diffpack can only be found in the online manual, see e.g. dpman
MatPtOp and dpman PtOpDS. The source codes and all the input files are available at
$DPR/src/app/pde/ddfem/src/.

The report is organized as follows: We introduce the multigrid and domain decom-
position solver interface in Diffpack. Next we develop a finite difference Poisson
equation simulator based on the Diffpack class MatPtOp with the standard choice
of direct and iterative solvers offered by LinEqAdm. We extend this simulator for a
multigrid iterative solver and a multigrid preconditioner for Krylov iterations. In the
last chapter we show how to run the simulator on an L-shaped domain instead of the
unit square. All the codes along with detailed explanations and sample input files
are given. Several experiments with the code are proposed to explore the properties
of the methods under consideration.



2 Interface

The Diffpack implementation of the multigrid method is based on the DDSolverUDC
interface. We will explain how to implement the necessary functions.

/*<DDSolverUDC: */
class DDSolverUDC : public HandleId

{
public:
DDSolverUDC () {}
virtual “DDSolverUDC ();
virtual Spaceld getNoOfSpaces() const = 0;
virtual void setStart (LinEqVector& x, Spaceld space, StartVectorMode start);
virtual BooLean solveSubSystem (
LinEqVector& b, LinEqVector& x, Spaceld space,
StartVectorMode start, DDSolverMode mode=SUBSPACE) = 0;
// return value indicates changes of the solution vector
virtual void residual (
LinEqVector& b, LinEqVector& x, LinEqVector& r, Spaceld space);
virtual void matVec (
const LinEqVector& b, LinEqVector& x, Spaceld space);
virtual BooLean transfer (
const LinEqVector& fv, Spaceld fi,
LinEqVector& tv, Spaceld ti,
BooLean add_to_t= dpFALSE, DDTransferMode=TRANSFER) = 0;
// indicates changes of the solution vector
virtual int getWorkTransfer (Spaceld fi, Spaceld ti, const PrecondWork work_tp)
const = 0;
virtual real getStorageTransfer (Spaceld fi, Spaceld ti) const = 0;
virtual int getWorkSolve (Spaceld space, const PrecondWork work_tp)
const = 0;
virtual real getStorageSolve (Spaceld space) const = 0;
virtual String comment ();
};

/*>DDSolverUDC: */

The function getNoOfSpaces returns the number of grids j. The function solveSubSystem
implements the smoother §(z,b) on the grid number space. The start argument
may indicate a zero start vector x. A zero start vector simplifies parts of the com-
putation and is therefore treated differently. For example multiplying with a matrix

by zero is easy. mode is used to make a distinction between the pre- 8! and the
post-smoothing §? if necessary. One should be able to compute the residual b — £,z

by the function residual. The grid transfer is done via the transfer function. It
implements a transfer

transfer(f,t) : Vi — V4



In the multigrid case it is only used for the prolongation j—1 — j and the restriction
j—j—-1

We need some enumeration flags to indicate different modes, for the smoothers
DDSolverMode and the common StartVectorMode and DDTransferMode for some

specific transfer operators. For the multigrid method we only need some of the val-
ues. We also use a special type enumerating the grids.

/*<Spaceld:*/
typedef int Spaceld;
/*>Spaceld:*/

/*<DDSolverMode: */

enum DDSolverMode

{
SUBSPACE = 1, // only one solver: coarse solver, symmetric solver ...
SUBSPACE_FWD = 2, // first solver, presmoothing, ...
SUBSPACE_BACK = 3 // second solver, postsmoothing, ...

};
enum DDTransferMode
{
TRANSFER = 1, // standard transfer

TRANSFER_NESTED = 2 // higher order transfer for nested iteration
};
/*>DDSolverMode: */

3 The Poisson equation

We want to compute an approximation of

~Au = f inQ=10,1]?
u = 0 ondQ

First we introduce a simulator for the linear scalar Poisson equation based on a finite
difference scheme. We use a five point stencil to represent the Laplacian

-1
-1 4 -1
-1

on a uniform lattice grid on the unit square [0, 1]2. The grid spacing is h = 1/n with
(n — 1) X (n — 1) interior points. The finite difference operator is represented by a
MatPtOp point operator matrix in Diffpack.

The Diffpack code is in the files MGfdm1.h and MGfdmi.C!. It is similar to the
standard Diffpack simulators for finite elements [Lan94] and it is based in part on
the sample codes given in the online manual dpman MatPtOp.

!you will find the code in MGfdm1/

enum

MGfdm1.h
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Figure 3: The index sets and the finite difference stencil cycling over all interior
points.

#ifndef MGfdm1_h_IS_INCLUDED
#tdefine MGfdm1_h_IS_INCLUDED

#include <FdmLinAdm.h>
#include <MenuUDC.h>
#include <Store4Plotting.h>
#include <DrawFD.h>
#include <UnixUtil.h>

class MGfdml: public MenuUDC, public Store4Plotting

{
protected:
// general data:
real h; // mesh size parameter
int n; // partition constant
Handle (IndexSet) ind; // ’interior’ index set
Handle (IndexSet) bou; // ’boundary’ index set
Handle (MatPtOp(real)) A; // point operator
Handle(GridLattice) grid; // the grid
Handle(FieldFD) u; // the difference approximation
Handle (FieldFD) b; // the right hand side
Handle (FdmLinAdm) lineq; // interface to equation solvers
virtual real f£(Ptv(real)% ) const;
virtual real u0(Ptv(real)% ) const;
void scanGrid (MenuSystem& menu);
virtual void defineIndexSet
(Handle(IndexSet)& interior, Handle(IndexSet)& boundary) ;
public:

MGfdm1();
“MGfdm1 () {}

virtual void adm (MenuSystem& menu) ;

virtual void define (MenuSystem& menu, int level = MAIN);
virtual void scan  (MenuSystem& menu);

virtual void solveProblem ();



virtual void resultReport ();
1
#endif

The index set ind contains all interior points of the lattice, where the finite difference
stencil is to be applied. The boundary nodes with Dirichlet boundary conditions are
contained in the index set bou. Both index sets are initialized in define IndexSet.
The complete lattice grid is represented by grid, which is initialized in scanGrid.
The right hand side of the linear equation system is assembled in b and the solution
is in u. The right hand side of the differential equation is implemented as function
f and the initial solution used by an iterative solver is given by uO. The linear
equation system and the equation solver are managed by lineq which is derived

from LinEqAdm.

#include <MGfdml.h>

MGfdmi:: MGfdmi ()
{3

void MGfdml:: adm (MenuSystem& menu) // administer the menu
{
MenuUDC: :attach (menu); // enables later access to menu arg. as menu_system—>
define (menu); // define/build the menu
menu.prompt () ; // prompt user, read menu answers into memory
scan (menu); // read menu answers into class variables and init

void MGfdml:: define (MenuSystem& menu, int level)
{
menu.addItem(level, "n", '"n",
"No of intervals in [0,1] ",
1" ,"I");
FdmLinAdm: :defineStatic(menu,level+l);
Store4Plotting: :defineStatic(menu,level+1);
}

void MGfdml:: scan(MenuSystem& menu)
{
A.rebind (new MatPtOp(real));
grid.rebind (new GridLattice);
u.rebind (new FieldFD);
b.rebind (new FieldFD);
lineq.rebind (new FdmLinAdm);

n
h

menu.get ("n") .getInt () ;
1.0 / real(n);

defineIndexSet (ind,bou);

scanGrid(menu) ;

void MGfdml:: scanGrid(MenuSystem& menu)



lineg->scan(menu) ;
Store4Plotting::scan(menu, 2); // dim

// point operator, two dimensional
AQ) .redim(ind(),1); // with an offset of one from
// the central element A(0,0).
AO(C0,-1) = -1;
AO(-1, 0) = -1; A0(0, 0) = 4; A0(1, 0) = -1;
AQCoO, 1 -1;

grid() .scan(aform("d=2 [0,1]x[0,1] index:[0:%d]x[0:%d]", n,n));

u() .redim(grid(),"u");
b() .redim(grid(),"b");

0;
0;

u().values()
b().values()

// initialization of the right hand side
Ptv(int) 1is(2);
Ptv(real) ps(2);

ind() .startIterator(is);
while (ind().iterate())
{
ps(1) = hxis(1);
ps(2) = hxis(2);
b() .valueIndex(is(1),is(2)) = hxh*f(ps);

// initialization of the boundary conditions
bou() .startIterator(is);
while (bou().iterate())
{
ps(1) = hxis(1);
ps(2) = hxis(2);
u() .valueIndex(is(1),is(2)) = u0(ps);
}

lineg->attach(4(),u(),b());

void MGfdml:: defineIndexSet (Handle(IndexSet)& indi, Handle(IndexSet)& indb)
{

BoxIndices& interior = *new BoxIndices;
indi.rebind (interior);

interior.scan(aform("2(%d,%d) (%d4,%d)",1,1,n-1,n-1));

IndexSetIndices& boundary = #new IndexSetIndices(6);
indb.rebind (boundary);
BoxIndices boxxl1;

boxx1.scan(aform("2(0,0) (%d,0)",n));
boundary.add(boxxl) ;
boxxl.scan(aform("2(0,%d) (%d,%d)",n,n,n));
boundary.add(boxxl1) ;

-~



boxx1l.scan(aform("2(0,1) (0,%d)",n-1));
boundary.add(boxx1) ;

boxxl.scan(aform("2(%d,1) (%d,%d)",n,n,n-1));
boundary.add(boxxl) ;

}

void MGfdml::solveProblem()

{
lineqg->makeSystem() ; // make the equation system
lineqg->solve(); // solve eqution system
int niterations; BoolLean c; // for iterative solver statistics

if (lineq->1linAdm() .getStatistics(niterations,c)) // iterative solver?
s_o << oform("\n\n *** solverisconverged in %3d iterations ***\n\n",

c? "™ "™ : " not ",niterations);
Store4Plotting: : dump(u()); // dump for later visualization
lineCurves(u());
}
void MGfdml:: resultReport()
{3
real MGfdmi:: f(Ptv(real)%& ) const
{
return 1.;
}
real MGfdmi:: uO(Ptv(real)%& ) const
{
return 0. ;
}

The procedures define and scan handle the input menu. The procedure resultReport
is a template for output of the solution and statistics. The five point Difference sten-
cil is set up in the procedure scanGrid. The right hand side is scaled by k2. The
alternative would be to scale the difference stencil instead, which is also quite com-
mon.

Az = bwith b; = h? f(x;)

with lattice points z; and vectors z and b. The defineIndexSet procedure defines
the iterators on the nodes, indi cycling over all interior nodes [1,n — 1]? and indb
cycling over all Dirichlet boundary nodes [0,n]%\ [1,n — 1]2. This also defines the
order of the iteration, which is lexicographic. Some administration is hidden in the
class FdmLinAdm which extends some of the capabilities of LinEqAdm. One feature is
the conversion of the finite difference type operator MatPt0Op into a banded matrix in
the case you employ a Gaussian elimination equation solver or you request another
matrix storage type.

The main program is only given for this example, initializing Diffpack, constructing
the simulator class and running it. The multiple loop environment enables several
different runs using all combinations of alternatives of input data, see [LP94].

main.C

#include <MGfdml.h>



int main(int nargs, const char** args)

{
initDIFFPACK (nargs,args) ;
global _menu.init ("finite difference Poisson equation simulator","MGfdmi");
MGfdm1l problem; // make a simulator object, called problem
global_menu.multipleLoop (problem);// solve one or several problems
DBP("leaving main'");
return 0;

The following input parameters may be some guideline for your experiments?.

We give the input parameters for a run of the simulator for a solution with a conju-
gated gradient iteration and an absolute termination criterion, see table 1, input file
testl.i.

menu item answer
n 16
matrix type MatPtOp
basic method ConjGrad
preconditioning type PrecNone
#1: convergence monitor name | CMAbsTrueResidual
#1: max error 1.0e-7

Table 1: Conjugated gradients on a finite difference discretization, test1.i
Possible experiments include:

e the number of iterations depending on the grid size n

e the number of iterations depending on the iterative solution procedure like SOR
and Jacobi

e a comparison of direct and iterative solvers

a study of different termination criteria and tolerances

a study of preconditioners for the conjugated gradient method

4 Multigrid for finite differences

We will now implement a multigrid preconditioner for the simulator MGfdm1. We use
finite differences to represent the differential operator on each grid and we construct
restriction and prolongation operators implemented in a similar way with “difference”
stencils. We create a new simulator MGEdm2 modifying and extending the original code
MGfdm1. First we need to include the DDSolver related files. The class is inherited

%files are in MGfdm1/Verify/



from DDSolverUDC to implement the domain decomposition interface. The multigrid

algorithms available in the library use this interface.

The code of the simulator follows3:

#tifndef M
#tdefine M

#include
#include
#include

Gfdm2_h_IS_INCLUDED
Gfdm2_h_IS_INCLUDED

<FdmLinAdm.h>
<MenuUDC.h>
<Store4Plotting.h>

#include <DrawFD.h>
#include <UnixUtil.h>
#include <VecSimplest_Handle.h> // VecSimplest’s needed
#include <DDSolver.h> // DDSolver
#include <DDSolverUDC.h> // interfacing to DDSolver
#include <DDSolver_prm.h> // DDSolver parameters
class MGfdm2: public MenuUDC, public Store4Plotting, public DDSolverUDC
{
protected:
// general data:
VecSimplest (Handle(GridLattice)) grid; // the grids
Handle (FieldFD) u; // the difference approximation
prun(Precond) precondPrm; // prm for DD preconditioner
Handle (FdmLinAdm) lineq; // interface to equation solvers
VecSimplest (Handle (FdmLinAdm)) smooth; // equation solvers
virtual real f(Ptv(real)% ) const;
virtual real u0(Ptv(real)% ) const;
virtual void scanGrid (MenuSystem& menu) ;
virtual void defineIndexSetB (Handle(IndexSet)& boundary, int n);
virtual void definelIndexSetIl (Handle(IndexSet)& interior, int n, int s=1);
// multigrid related data:
int no_of _grids; // multigrid levels
int coarse_grid; // size coarse grid
int preSmooth; // no of iterations
int postSmooth; // no of iterations
prm(DDSolver) ddsolver_prm; // parameters multigrid solver
VecSimplest (Handle (Proj)) pProj_p; // projection operators
VecSimplest (Handle (Proj)) proj_r; // projection operators
VecSimplest (Handle (Proj)) proj_nest; // nested transfer
Handle (DDSolver) ddsolver; // multigrid solver
virtual void initProj(); // setup proj
virtual void initMatrices(); // init matrices A(i)
virtual void makeMatrix(); // set up lineq Matrix
virtual void makeMatrix(int i); // set up smooth matrix
virtual int gridSize(Spaceld i); // grid size n, lattice n#*n
public:
MGfdm2();
3you will find the code in MGfdm2/

10
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“MGfdm2() {}

virtual void adm (MenuSystem& menu) ;

virtual void define (MenuSystem& menu, int level = MAIN);
virtual void scan (MenuSystem& menu);

virtual void solveProblem ();

virtual void resultReport ();

// DDSolverUDC
Spaceld getNoOfSpaces() const; // no_of_grids
BooLean solveSubSystem (LinEqVector& b, LinEqVector& x,

Spaceld space, StartVectorMode start,

DDSolverMode mode=SUBSPACE);
void residual (LinEqVector& b, LinEqVector& x, LinEqVector& r, Spaceld space);
BoolLean transfer (const LinEqVector fv, Spaceld fi,

LinEqVector& tv, Spaceld ti,

BoolLean add_to_t= dpFALSE, DDTransferMode=TRANSFER); // apply proj

virtual int getWorkTransfer (Spaceld fi, Spaceld ti, const PrecondWork work_tp) const;
virtual real getStorageTransfer (Spaceld fi, Spaceld ti) const;
virtual int getWorkSolve (Spaceld space, const PrecondWork work_tp) const;
virtual real getStorageSolve (Spaceld space) const;
String comment ();
}
#endif

We need a hierarchy of lattice grids grid in contrary to the one grid in the previ-
ous case. Although we are only interested in the solution u on the finest grid, we
will perform computations on all grids. The grids are numbered from 1 (coarse) to
no_of _grids (fine). We have one handle to FdmLinAdm lineq to manage the equation
system we want to solve. Additionally we have one FdmLinAdm smooth for each grid
to manage the smoothing on the grid. A FdmLinAdm basically stores the representa-
tion of the matrix representing the differential operator, some vectors and a equation
solver.

The equation solver of 1ineq uses a equation solver DDIter, which is a template for
the multigrid algorithms, or a preconditioned Krylov iteration (e.g. ConjGrad) with
a multigrid preconditioner PrecDD. The smoothers are implemented by the equation
solvers in smooth. This usually is a fixed number of iterations of some iterative
method like SOR or Jacobi and for larger coarse grids some direct solver in smooth(1).
The finite difference stencil is stored for each FdmLinAdm object along with an iterator
over all interior nodes. This means that usually the same difference stencil is present
several times, which does not require much memory. There are cases, where the
stencils differ. Even the finite difference operator in smooth(no_of _grids) and lineq
do not need to coincide if we use multigrid as a preconditioner.

The right hand side £ and the initial guess uO remain unchanged. The scanGrid
procedure is now respounsible to create the whole hierarchy of grids. We double the

11



grid size n from one grid to the next grid starting with a grid size of n =coarse_grid,
which means (n — 1)? interior nodes. This is coded in the function gridSize, which
returns the number n for each level. The grids are nested.

We split the creation of iterators into one procedure for interior nodes used for 1ineq,
smooth and the restriction and prolongation operators and another procedure for
boundary nodes used in 1ineq. The parameter s denotes the step size for the iterator.
The default is 1, an iterator over all nodes. The step size 2 in each direction is used
in restriction and prolongation operators, applying a stencil for each node, which has
a counterpart on the next coarser grid.

The parameters preSmooth and postSmooth are used to override the number of
iterations for all the equation solvers in smooth except for the coarse grid solver
smooth(1). The parameter ddsolver store the type of multigrid algorithm and its
parameters. It is read from the menu.

We introduce some new procedures to structure the initialization process. The proce-
dure initProj initializes the prolongation proj_p, restriction proj_r and interpola-
tion proj mest (for nested multigrid) operators. The initMatrices procedure calls
makeMatrix () to set up the equations to solve in 1ineq and makeMatrix(int) to set
up the equations visible for the smoothers on each level. The finite difference stencil
presented earlier is implemented here.

The procedures adm, define, scan, solveProblem and resultReport are the stan-
dard building blocks of Diffpack simulators and are adapted accordingly.

The DDSolverUDC interface is implemented through the following procedures: getNoOfSpaces
returns the number of grid levels stored in no_of _grids. The procedure solveSubSystem
implements the smoother, which is the approximate solution on a given grid space

with right hand side b and initial guess x. The solution is returned in x. The flag

start indicates whether the initial guess is valid or the iteration should be started

with zero. The flag mode enables us to separate pre-smoothing and post-smoothing

and to use the appropriate number of iterations. The return value indicates whether

the vector x has been touched. It does not have to be touched for zero iterations,

either zero pre- or zero post-smoothing steps.

The procedure transfer implements the projection and restriction operators. The
vector fv on grid £1 has to be transferred to grid ti. The result is stored in vector tv.
This can both be prolongation ¢ — 41 as a restriction 1+ 1 — 7. Either the operator
proj_p or proj_r is called. The flag add_to_t indicates whether the projected vector
should be overwritten onto tv or it should be added. This flag is passed to the
projection operators, which themselves pass this flag to the matrix multiply usually
employed. The flag mode can be used to separate the case of standard prolongation
of corrections and some other interpolation of a solution in a nested iteration cycle.
In this case we can use the same operator. This would not be true if we had used
another scaling of the finite difference stencil. In such a case both operations would
always differ.

The last procedures getWorkTransfer, getStorageTransfer, getWorkSolve and
getStorageSolve provide some statistics which is passed to the linear solver or
preconditioner statistics and describes estimates for the smoothers and transfer op-

12



erators, both in memory requirement and number of operations. An identifier string

comment should also be implemented.

#include <MGfdm2.h>

#include <createDDSolver.h> // creating multigrid object
#include <DDIter.h>

#include <PrecDD.h>

#include <MatPtROp_real.h>

MGfdm2:: MGfdm2 ()

{3
void MGfdm2:: adm (MenuSystem& menu) // administer the menu
{
MenuUDC: :attach (menu); // enables later access to menu arg. as menu_system—>
define (menu); // define/build the menu
menu.prompt () ; // prompt user, read menu answers into memory
scan (menu); // read menu answers into class variables and init
}
void MGfdm2:: define (MenuSystem& menu, int level)
{
menu.addItem (level,
"no of grid levels", // menu command/name
"level", // command line option: +level
"no of uniform refinements",
g // default answer
"I1'); // valid answer: 1 integer
menu.addItem (level,
"coarse lattice", // menu command/name
"lattice", // command line option: +level
"lattice is n*n",
AN // default answer
"I1'); // valid answer: 1 integer
menu.addItem (level,
"sweeps", // menu command/name
'sweeps", // command line options: +sweeps
"string like [2,2] = pre & post smoothing sweeps",
“[1,17", // default answer: Vi,1 cycle
"S'); // valid answer: string
FdmLinAdm:: defineStatic(menu,level+1);
prm(DDSolver) :: defineStatic (menu, level+1);// multigrid parameters
menu.setCommandPrefix("smoother");
FdmLinAdm:: defineStatic(menu,level+1);
menu.setCommandPrefix("coarse grid");
FdmLinAdm:: defineStatic(menu,level+l);
menu.unsetCommandPrefix();
Store4Plotting:: defineStatic(menu,level+1l);
}

void MGfdm2:: scan(MenuSystem& menu)

{

13



// load answers from the menu:
no_of_grids = menu.get ('"no of grid levels").getInt();
coarse_grid = menu.get ('coarse lattice").getInt();

grid.redim (no_of_grids);
smooth.redim (no_of_grids);
proj_p.redim (no_of_grids-1);
proj_r.redim (no_of_grids-1);
proj_nest.redim (no_of_grids-1);

ddsolver_prm.scan(menu) ;
ddsolver = createDDSolver(ddsolver_prm) ;
ddsolver->attachUserCode (*this) ;

lineq.rebind (new FdmLinAdm);
lineg->scan(menu) ;
Store4Plotting: :scan(menu, 2); // dim

scanGrid(menu) ;

precondPrm.scan(menu) ;
lineg->1linAdm().attach (precondPrm);

Is is(menu.get ("sweeps'));
is->ignore (’[’);

is->get (preSmooth);
is->ignore (’,’);

is->get (postSmooth);

}
int MGfdm2:: gridSize(Spaceld i)
{
return (coarse_grid / 2) << i;
}
void MGfdm2:: scanGrid(MenuSystem& menu)
{
for (int i=1; i<=no_of_grids; i++) {
int n = gridSize(i);
grid(i) .rebind (new GridLattice);
grid(i)->scan(aform("d=2 [0,1]x[0,1] index:[0:%d]x[0:%d]", n, n));
if (i>1)
menu.setCommandPrefix("smoother");
else
menu.setCommandPrefix('coarse grid");
smooth(i) .rebind (new FdmLinAdm);
smooth(i)->scan(menu);
menu.unsetCommandPrefix() ;
}
}

void MGfdm2:: makeMatrix()
{
int n = gridSize(no_of_grids);

Handle(MatPtOp(real)) A = new MatPtOp(real);

Handle (IndexSet) ind; // ’interior’ index set
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Handle (IndexSet) bou; // ’boundary’ index set
defineIndexSetI(ind, n);
defineIndexSetB(bou, n);

// point operator, two dimensional

A->redim(ind(),1); // with an offset of one from
// the central element A(0,0).
(%8)( 0,-1) = -1;
(*8)(-1, 0) = -1; (*A)( 0, 0) = 4; (xA)( 1, 0) = -1;
(x8)( 0, 1) = -1;

FieldFD* b = new FieldFD(grid(no_of_grids) (),"b"); // !!
b->values() = 0;

u.rebind (new FieldFD(grid(no_of_grids) (),"u"));
u->values() = 0;

// initialization of the right hand side

Ptv(int) is(2);
Ptv(real) ps(2);

real h = 1.0 / real(n);

ind() .startIterator(is);
while (ind().iterate()) {
ps(1) = hxis(1);
ps(2) = hxis(2);
b->valueIndex(is(1),is(2)) = hxh*f(ps);
}

// initialization of the boundary conditions
bou() .startIterator(is);
while (bou().iterate()) {
ps(1) = hxis(1);
ps(2) = hxis(2);
u->valueIndex(is(1),is(2)) = u0(ps);
}

lineg->attach(*A, *u, *b);

void MGfdm2:: makeMatrix(int i)
{

int n = gridSize(i);

Handle (MatPtOp(real)) 4;
A.rebind( new MatPtOp(real) );

Handle (IndexSet) ind; // ’interior’ index set
Handle (IndexSet) bou; // ’boundary’ index set
defineIndexSetI(ind, n);
defineIndexSetB(bou, n);

// point operator, two dimensional
A->redim(ind(),1); // with an offset of one from
// the central element A(0,0).
(x4)( 0,-1) = -1;
(*8)(-1, 0) = -1; (*A)( 0, 0) = 4; (xA)( 1, 0) = -1;
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(x4)(C 0, 1) = -1;

FieldFD* rhs = new FieldFD(grid(i)(),"rhs"); // !!
rhs->values() = 0;

FieldFD* sol = new FieldFD(grid(i)(),"sol"); // !!
sol->values() = 0;

// initialization of the right hand side

Ptv(int) is(2);
Ptv(real) ps(2);

real h = 1.0 / real(n);

ind() .startIterator(is);
while (ind().iterate()) {
ps(1) = hxis(1);
ps(2) = hxis(2);
rhs->valuelndex(is(1),is(2)) = hxhxf(ps);
}

// initialization of the boundary conditions

bou() .startIterator(is);
while (bou().iterate()) {
ps(1) = hxis(1);
ps(2) = hxis(2);
sol->valuelndex(is(1),is(2)) = u0(ps);
}

smooth(i)->attach(*A, *sol, *rhs);
LinEgAdm &s = smooth(i)->linAdm();
ddsolver->attachLinRhs(s.bl(), i, dpTRUE);
ddsolver->attachLinSol(s.x1(), 1i);

void MGfdm2:: defineIndexSetlI
(Handle(IndexSet)& indi, int n, int step)

{
BoxIndices* interior = new BoxIndices;
indi.rebind (interior);
Ptv(int) steps(2);
steps = step;
interior->scan(aform("2(%d,%d) (%d,%d)",step,step,n-step,n-step));
interior->setSteps(steps);
}

void MGfdm2:: defineIndexSetB

(Handle (IndexSet)& indb, int n)

{
IndexSetIndices& boundary = #*new IndexSetIndices(4);
indb.rebind (boundary);

BoxIndices boxxl;

boxxl.scan(aform("2(0,0) (%d,0)",n));
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boundary.add(boxx1) ;

boxxl.scan(aform("2(0,%d) (%d,%d)",n,n,n));
boundary.add(boxxl) ;

boxxl.scan(aform("2(0,1) (0,%d)",n-1));
boundary.add(boxx1) ;

boxxl.scan(aform("2(%d,1) (%d,%d)",n,n,n-1));
boundary.add(boxxl) ;

void MGfdm2:: initProj() // setup proj operators
{
for (int i=1; i<no_of_grids; i++) {
int n = gridSize(i);
Handle (IndexSet) indi; // ’interior’ index set fine
defineIndexSetI (indil, gridSize(i+1), 2);

Handle (IndexSet) ind?2; // ’interior’ index set coarse
defineIndexSetI (ind2, n, 1);

Handle (MatPtROp(real)) M;
M.rebind(new MatPtROp(real));

M->redim(ind1(), ind2(), 1);
M->setNoRows (smooth(i+1)->1inAdm() .getLinEqSystem ().
A(Q) .mat () .getNoRows () ;

(*M) (-1,-1) = .25; (*M)(-1, 0) = .5; (*M) (-1, 1) = .25;
M (0,-1) = .5; (M(0, 0) =1.; M0, 1) = .5;
(*M)( 1,-1) = .25; (xM)( 1, 0) = .5; M (1, 1) = .25;

M->optimize();

Handle(LinEgMatrix) MM;
MM.rebind (new LinEgqMatrix(*M));

// restriction

proj_r(i) .rebind(new ProjMatrix());
proj_r(i)->rebindMatrix (*MM) ;
proj_r(i)->init();

// prolongation

proj_p(i) .rebind(new ProjMatrix());
proj_p(i)->rebindMatrix (*MM) ;
proj_p(i)->init();

// nested

proj_nest (i) .rebind(new ProjMatrix());
proj_nest (i) ->rebindMatrix (xMM) ;
proj_nest(i)->init();

void MGfdm2:: initMatrices()
{
for (int i=1; i<=no_of_grids; i++) {
makeMatrix(i);
smooth(i)->makeSystem();
¥

makeMatrix();
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lineg->makeSystem();

}
void MGfdm2::solveProblem()
{
initMatrices();
initProj();
if (lineq->1linAdm() .getSolver().description().contains("Domain Decomposition™)) {
BasicItSolver& sol = CAST_REF(lineq->1inAdm().getSolver(), BasicItSolver);
DDIter& ddsol = CAST_REF(sol, DDIter);
ddsol.attach(*ddsolver);
}
Precond &prec =lineq->1inAdm().getPrec();
if (prec.description().contains("Domain Decomposition")) {
PrecDD& sol = CAST_REF (prec, PrecDD);
sol.init (*ddsolver);
¥
lineg->solve(); // solve eqution system
int niterations; Boolean c; // for iterative solver statistics
if (lineq->linAdm() .getStatistics(niterations,c)) // iterative solver?
s_o << oform("\n\n *** solverisconverged in %3d iterations ***\n\n",
c? " "™ : " not ",niterations);
Store4Plotting: : dump(u()); // dump for later visualization
lineCurves(u());
}
void MGfdm2:: resultReport ()
{3
real MGfdm2:: f(Ptv(real)%& ) comst
{
return 1.;
}
real MGfdm2:: uO(Ptv(real)%& ) const
{
return 0. ;
}
Spaceld MGfdm2:: getNoOfSpaces() const
{
return no_of _grids;
}

BooLean MGfdm2:: solveSubSystem (
LinEqVector& b, LinEqVector& x,
Spaceld space, StartVectorMode start, DDSolverMode mode)
{
prm(LinEgSolver) &smooth_prm = (prm(LinEqSolver)&)
smooth(space)->1linAdm() .getSolverPrm () ;
if (space>1) {
if ((mode==SUBSPACE_FWD) | | (mode==SUBSPACE))
smooth_prm.max_iterations = preSmooth;
else if (mode==SUBSPACE_BACK)
smooth_prm.max_iterations = postSmooth;
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else fatalerrorFP("MGfdm2:: solveSubSystem","mode ", mode);
if (smooth_prm.max_iterations == 0)
return dpFALSE; // solution has not changed
¥

smooth_prm.startmode = start;

LinEgSystemPrec &lin
LinEgSolver &sol
lin.attach (x, b);

smooth (space)->1inAdm() .getLinEqgSystem ();
smooth (space)->1inAdm() .getSolver();

sol.solve (lin);

return dpTRUE; // solution has changed

void MGfdm2:: residual (
LinEqVector& b, LinEqVector& x, LinEqVector& r, Spaceld space)
{
LinEqSystemPrec &lin = smooth (space)->1inAdm().getLinEqSystem ();

lin.attach (x, b);

lin.residual (r);

}

BooLean MGfdm2:: transfer (
const LinEqVector& fv, Spaceld fi, LinEqVector& tv, Spaceld ti,
BooLean add_to_t, DDTransferMode mode)

{
if (mode == TRANSFER) {
if (fi == ti-1) // prolongation
proj_p (fi)->apply (fv, tv, NOT_TRANSPOSED, add_to_t);
else if (fi == ti+1) // restriction
proj_r (ti)->apply (fv, tv, TRANSPOSED, add_to_t);
else fatalerrorFP ("MGfdm2:: transfer","from %d to %d", f£i, ti);
} else if (mode == TRANSFER_NESTED) {
if (fi == ti-1) // nested interpolation
proj_nest (fi)->apply (fv, tv, NOT_TRANSPOSED, add_to_t);
else fatalerrorFP ("MGfdm2:: transfer nested","from %d to %d", fi, ti);
}
else fatalerrorFP("MGfdm2:: transfer mode?",'"mode %d", mode);
return dpTRUE;
}

int MGfdm2:: getWorkTransfer (Spaceld fi, Spaceld ti, const PrecondWork) const
{
if (fi == ti-1)
return proj_p (fi)->getWork();
if (fi == ti+1)
return proj_p (ti)->getWork();
return 0;

}

real MGfdm2:: getStorageTransfer (Spaceld fi, Spaceld ti) const

{
if (fi == ti-1)
return proj_p (fi)->getStorage();
return 0;

}
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int MGfdm2:: getWorkSolve (Spaceld space, const PrecondWork) const
{ return CAST_CONST_AWAY(MGfdm2)->smooth (space)->
linAdm() .getSolver().getWork(); }

real MGfdm2:: getStorageSolve (Spaceld space) const
{ return CAST_CONST_AWAY(MGfdm2)->smooth (space)->
linAdm() .getSolver().getStorage(); }

String MGfdm2:: comment ()
{ return "MGfdm2 multigrid test"; }

The finite difference stencil in makeMatrix() and makeMatrix(int) representing the
Laplacian is again chosen to be a five point star.

-1
-1 4 -1
-1

The prolongation and adjoint restriction operators are defined in procedure initProj.
We use the interpolation scheme analogue to bilinear finite elements.

111
4 2 14
1 1
2 13
111
4 2 14

In fact the setting of nested finite element spaces and a natural prolongation, if
x € Vi C V, then also z € V5 does not apply in the case of finite differences,
since functions are only known at certain nodes on a grid. However, we can use
the operators derived from multigrid for finite elements. We can also use different
operators, which do not have a continuous counterpart.

We generate a rectangular shaped matrix M of size

Me Rding xdimV;

which defines the prolongation/ interpolation. The transposed is used for restric-
tion. We use a projection of type ProjMatrix which is initialized by the matrix. In
the finite element context we use some projection classes with built-in interpolation
algorithms instead.

We construct a matrix of type MatPtROp which is a rectangular counterpart of the
matrix type MatPtOp for n X n matrices used for the finite difference stencil. The
matrix MatPtROp is initialized with two index sets instead of one: We use one iterator
for the rows V; and one iterator for the columns V; (see figure 4). Both iterators are
used at the same time and have to iterate over exactly the same number of nodes.
To achieve this, we iterate over all nodes on the coarse grid V;. The corresponding
iterator on the fine grid V; iterates over every second node in each direction. The
matrix multiply is done in a way that the stencil is applied to every node pointed to
by the iterator. The 3 x 3 stencil with given center point is then applied on the V5
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Figure 4: Projection and restriction with stencils using MatPtROp.

side which corresponds to the node pointed to on the V; side. Which side is read and
which is written depends on whether we apply the operator or its transposed.

The procedure solveProblem performs two DDSolver specific tasks. Since a multi-
grid solver form the menu is only a template DDIter and a multigrid preconditioner
is a template PrecDD, we have to pass a reference to the actual algorithm contained
in a DDSolver object. This is done with an attach respective an init call.

The following input parameters may be some guideline for your experiments?.

We give the input parameters for the new simulator to run the same examples as in
the previous chapter, see table 2, input file test1.i. This standard iterative solvers
can be used for comparisons with the following multigrid solvers

menu item answer
no of grid levels 4
coarse lattice 2
matrix type MatPtOp
basic method ConjGrad
preconditioning type PrecNone
#1: convergence monitor name | CMAbsTrueResidual
#1: max error 1.0e-7

Table 2: Conjugated gradients on a finite difference discretization, test1.i

The input parameters for multigrid as an iterative solver is given in table 3, input
file test2.i. We use a multigrid V-cycle, indicated by cycle type gamma equals
1. A number two means a multigrid W-cycle instead. We use one pre- and one
post-smoothing step specified by sweeps. This is also called a V; ;-cycle. We use a
SOR smoother and one iteration SOR as a coarse grid solver.

The coarse grid is a 2 X 2 grid specified in coarse lattice. This means one interior
node and one degree of freedom on the coarsest grid. Hence the coarse grid problem
is solved exactly be one step of the un-damped SOR iteration. The final solution

*files are in MGfdm2/Verify/
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is obtained on grid number 4 (no of grid levels), which means 3 refinements by
bisection and a grid size of 16. We have to specify the MatPt0Op matrix type for each
grid, the global grid matrix type, the coarsest grid coarse grid matrix type and
the finer grids the smoother operates on smoother matrix type.

menu item answer
no of grid levels 4
coarse lattice 2
sweeps [1,1]
matrix type MatPtOp
basic method DDlter
preconditioning type PrecNone
#1: convergence monitor name | CMAbsTrueResidual
#1: max error 1.0e-7
domain decomposition method Multigrid
cycle type gamma 1
smoother matrix type MatPtOp
smoother basic method SOR
coarse grid matrix type MatPtOp
coarse grid basic method SOR
coarse grid max iterations 1

Table 3: Multigrid on a finite difference discretization, test2.1

The input file for the conjugated gradient method with a multigrid preconditioner
is given in table 4, input file test3.1i. The difference to the previous table are the
lines with basic method and preconditioning type determining the role of the
multigrid algorithm to play.

Possible further experiments include:

e a comparison of multigrid as a preconditioner and multigrid as an iterative
solver

e a comparison of multigrid as a preconditioner and other preconditioners
e a comparison of multigrid as a iterative solver and other iterative solvers

e the number of multigrid iterations depending on the grid size/ the number of
levels

e the number of multigrid iterations depending on the smoother, both the type
of algorithm and the total number of smoothing steps

e the number of multigrid iterations depending on the number of smoothing steps,
the difference between pre- and post-smoothing (with respect to the error norm)

e the performance of non-symmetric multigrid as a preconditioner for conjugated
gradients and other non-symmetric Krylov methods with non-symmetry due to
non-symmetric smoothers (e.g. SOR) or different numbers of pre- and post-
smoothing

22



menu item answer

no of grid levels 4
coarse lattice 2
sweeps [1,1]
matrix type MatPtOp
basic method ConjGrad
preconditioning type PrecDD
#1: convergence monitor name | CMAbsTrueResidual
#1: max error 1.0e-7
domain decomposition method Multigrid
cycle type gamma 1
smoother matrix type MatPtOp
smoother basic method SOR
coarse grid matrix type MatPtOp
coarse grid basic method SOR
coarse grid max iterations 1

Table 4: Conjugated gradients with Multigrid preconditioner, test3.1

e the difference between additive and multiplicative multigrid as preconditioner
e the difference between multiplicative and nested multigrid as iterative solver

e the number of multigrid iterations depending on the coarse grid, the size and
the precision of the coarse grid solution

e the computing time depending on the coarse grid, different direct and iterative
solvers on a large coarse grid

5 The L-shaped domain

One severe restriction for the application of finite differences is the geometry of the
domain. We have developed a code for a structured, uniform lattice grid for the
unit square. We will now have a look at a domain derived as a subset of this square
shaped lattice grid. Of course there are also mechanisms to cope with not aligned
and even curved boundaries, modifying difference stencils locally, but this will be
covered elsewhere.

The L-shaped domain is defined as the initial unit square [0, 1]®> minus one quarter
of the square: [0,1]?\ [1/2,1] x [0, 1/2], see figure 5.

We now compute an approximation of
-Au = f in Q= [071]2\[%71] X [07%]
w = 0 ondQ

The code for the new class MGfdm3 follows®.

5you will find the code in MGfdm3/
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Figure 5: Index sets on the L-shaped domain.

Y-AXxis

Figure 6: Solution on an L-shaped domain

MGfdm3.h

#ifndef MGfdm3_h_IS_INCLUDED
#tdefine MGfdm3_h_IS_INCLUDED

#include <MGfdm2.h>

class MGfdm3: public MGfdm2 // L-shape
{
virtual void defineIndexSetB (Handle(IndexSet)& boundary, int n);
virtual void defineIndexSetI (Handle(IndexSet)& interior, int n, int s=1);
};
#tendif
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The class MGEfdm3 is derived from the multigrid for finite differences class MGfdm2.
It implements the index sets differently. Consequently the initialization procedures
defineIndexSetB for the boundary and defineIndexSetI for the interior nodes are

overloaded. There are no further changes necessary.

#include <MGfdm3.h>

void MGfdm3:: defineIndexSetlI
(Handle(IndexSet)& indi, int n, int step)
{

IndexSetIndices& interior = *new IndexSetIndices(2);

indi.rebind (interior);

int n2 = n/2;
if (!'n2) errorFP("MGfdm2::defineIndexSet",'n>1 !");

BoxIndices boxxl;
Ptv(int) steps(2);
steps = step;

boxxl.scan(aform("2(%d,%d) (%d,%d)",step,step,n2-step,n2));

boxx1.setSteps(steps);
interior.add( boxxl );

boxxl.scan(aform("2(%d,%d) (%d,%d)",step,n2+step,n-step,n-step));

boxx1.setSteps(steps);
interior.add( boxxl );

void MGfdm3:: defineIndexSetB
(Handle (IndexSet)& indb, int n)
{

IndexSetIndices& boundary = #*new IndexSetIndices(6);

indb.rebind (boundary);

int n2 = n/2;

if (!'n2) errorFP("MGfdm2::defineIndexSetB",'"n>1 !");

BoxIndices boxxl;

boxx1.scan(aform("2(0,0) (%d,0)",n2));
boundary.add(boxxl) ;

boxxl.scan(aform("2(%d,1) (%d,%d)", n2,n2,n2));
boundary.add(boxx1) ;

boxxl.scan(aform("2(%d,%d) (%d,%d)", n2+1,n2,n,n2));

boundary.add(boxxl) ;
boxx1l.scan(aform("2(%d,%d) (%d,%d)", n,n2,n,n));
boundary.add(boxx1) ;
boxx1.scan(aform("2(%0,%d) (%d,%d)", n,n-1,n));
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boundary.add(boxx1) ;
boxx1.scan(aform("2(0,1) (0,%d)", n-1));
boundary.add(boxxl) ;

}

The new index sets are created as compounds of several box iterators. We cannot use
the definition of the domain €2 as a boolean minus, but we can add several disjoint
components. The interior is implemented as the disjoint sum of one rectangle and
one square and the boundary is put together from 6 lines.

The input parameters for this example of multigrid on the L-shaped domain are
similar to the parameters used on the unit square®. The difference is the parameter
coarse lattice, since we have to use a larger coarse grid to have some degrees of
freedom on the coarsest grid. The old 2 x 2 grid minus one quarter would had left
only boundary nodes.

menu item | answer

coarse lattice 4

The rest of the input files remains unchanged and the new versions are also called
testl.i (table 2) for the conjugated gradient method, test2.i (table 3) for the
multigrid iteration and test3.i (table 4) for the multigrid preconditioner.

Possible further experiments include:

e a comparison of the solvers for the unit square and the L-shaped domain.

e the number of multigrid iterations depending on the grid size/ the number of
levels

and of course the other experiments of the list for the unit square example. The point
here is not only the different geometry of the domain, but the less regular solution
and its influence on the convergence.

6 Conclusion

In this report we have demonstrated the use of iterative multigrid equation solvers for
the finite difference discretization of partial differential equations. We introduced a
Diffpack simulator for the solution of a Poisson problem based on finite differences.

We extended the simulator to execute a multigrid solver. This meant to manage
and store a hierarchy of discretizations and to introduce transfer operators from one
grid to the next finer and the next coarser grid. We introduced several types of
equation solvers, for the coarsest grid, for a grid in the hierarchy and for the global
equation system. Finally we were able to use the DDSolver family of multigrid (and
domain decomposition) methods available in Diffpack. We could use the multigrid

Sfiles are in MGfdm3/Verify/
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method both as a stand-alone iterative solver and as a preconditioner for a conjugated
gradient method (Krylov methods in general).

Both the discretization and the transfer operators were implemented in a finite dif-
ference stencil fashion, which requires only a constant amount of memory regardless
the number of unknowns and matrix size. This in connection with a structured
array-like storage scheme for the unknowns can be considered as a great advantage
compared to ordinary unstructured finite elements. We showed that this approach is
also applicable to some non-unit-square shaped domains.

The discussion of the code and some numerical properties was accompanied with
numerical experiments and exercise to be done using the codes.
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