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lar dynamics simulations of a single-walled carbon nanotube embedded in polyethy-
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Brenner. Alternatively, only the carbon nanotube is modeled with Brenner’s poten-
tial and the polyethylene matrix is modeled by a united-atom potential. For these
systems we perform molecular dynamics simulations to derive stress-strain curves.
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carbon nanotube embedded in polyethylene and the polyethylene matrix itself. The
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of the short nanotube.
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1 Introduction

With the discovery of pure carbon structures different from graphite and dia-
mond, a new fast developing area in nanomaterial science started recently [1].
In particular, very long tube-like structures were first reported by Iijima in
1991; see [2]. The diameter range of these carbon nanotubes is in the nanome-
ter range and their length can be in the micrometer range [3]. Due to their
structure and form, they seem to tolerate extreme distortion without fracture.
They also show elastic bending, twisting, buckling and other reversible defor-
mations. The bending stiffness is in the range of 0.4 to 4 TPa [4]; furthermore
a local tension of hundreds of Giga Pascal can be reached before fracture oc-
curs [5]. Due to their properties carbon nanotubes can be used to reinforce
polymer composites. Here, they possess the potential for large increases in
strength and stiffness when compared to typical carbon-fiber-reinforced poly-
mer composites. Therefore, nanotube-polymer composites have gained consid-
erable interest in the materials research community.

Meanwhile, some nanotube composite materials have been characterized ex-
perimentally [6–15]. This however is a demanding and expensive task. To this
end, computational methods can be used to greatly facilitate the development
of nanotube composite materials. Computer simulations allow for parametric
studies of the influence of composite and geometry on the material properties.
In particular, first-principle techniques [16–19], semi-empirical schemes [20],
and empirical potential methods [16,17,21–27] have been applied successfully
to study nanostructures. Here, especially for large systems with hundred atoms
and more, molecular dynamics simulations are an important tool to better un-
derstand the properties of polymer-carbon nanotube composites. In this work,
we derive stress-strain curves from molecular dynamics simulations of polymer-
carbon nanotube composites to predict their macroscopic elastic moduli and
compare them to a rule-of-mixtures, which takes only the volume fraction of
the fiber into account, and an extented rule-of-mixtures, which takes also the
distribution of the fiber into account [28,29]. Here, we use empirical potentials
because of the size of the systems we study.

In several earlier works, molecular dynamics simulations have been success-
fully applied to predict elastic properties of polymer-carbon nanotube com-
posites [30–32]. Here, the application of strain has been accomplished by uni-
formly expanding the length of the simulation cell in the direction of the
deformation. To equilibrate the system for the new cell size, the coordinates
of the atoms are re-scaled to fit to the new geometry, and a molecular dy-
namics simulation or a potential energy minimization is performed. This way,
the stress at different strain values can be calculated successively. Among
this static technique [33,16,21,23,20,26,27,34], there exist two methods based
on the Parrinello-Rahman [35] approach. First, the fluctuation method to
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calculate the elastic constants [36–42,34], and second the dynamic method.
The dynamic method involves using constant stress molecular dynamics to
measure the stress-strain behavior of a material subjected to an applied load
[43,44,39,45,46]. In the present work, we carry out the application of strain by
employing a Parrinello-Rahman-Nosé Lagrangian to control stress and tem-
perature in an NPT ensemble [35,47]. Similar to the dynamic method we
apply an external stress tensor within the equations of motion and measure
the linear stress tensor. We compute the stress-strain curves of three periodic
model systems, an infinite (10, 10) single-walled carbon nanotube, a finite
(10, 10) single-walled capped carbon nanotube embedded in polyethylene, and
the polyethylene matrix itself. To model the bonded interaction within these
hydrocarbon systems, we use a many-body bond order potential due to Bren-
ner [48,49]. Alternatively, we model the polyethylene matrix by a united-atom
potential [50] and just the carbon nanotube by Brenner’s potential. In both
models, the nonbonded interaction of the atoms is represented by a simple
Lennard-Jones potential. We exploit the slopes of the stress-strain curves to
derive different elastic moduli and constants.

The remainder of this paper is organized as follows: In section 2 we give the
computational methods which we used in our study of polymer-carbon nano-
tube composites. Here, in section 2.1 we give the details of the the molecular
dynamics approach in the framework of an NPT ensemble. In section 2.2
we discuss the two different models which we use to represent hydrocarbon
systems. In section 2.3 we present a computational method to derive the elas-
ticity tensor. Section 3 gives the results of our numerical experiments. We
relate these results to the two different rule-of-mixtures in section 4. Finally
we give some concluding remarks.

2 Computational Methods

In this section we describe the modeling and implementational aspects of our
approach. First we discuss isobaric-isothermal molecular dynamics simulations
due to Parrinello-Rahman. Then we give a review on the potentials we use to
model hydrocarbon systems. Finally we discuss the generation of stress-strain
curves and the computation of elastic moduli and constants.
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2.1 Molecular Dynamics Simulations

NPT ensemble

The Hamiltonian for a molecular system with N particles, constant volume
and constant energy is given by

H =
1

2

N∑

i=1

~pT~xi~p~xi
mi

+ V (~x1, . . . , ~xN) (1)

with cartesian coordinates ~xi, moments ~p~xi , masses mi and a conservative po-
tential V . The corresponding ensemble is called NVE. To obtain an isothermal-
isobaric ensemble, or NPT ensemble which allows to control pressure and tem-
perature, we introduce additional degrees of freedom. To this end, we define
a 3 × 3 matrix ĥ = [~a1,~a2,~a3] and re-scale the coordinates ~̂si = ĥ−1~xi. Here,
~a1,~a2,~a3 are the basis vectors of the simulation cell with volume Ω = det ĥ > 0.
We also re-scale the time t by t̄ =

∫ t
0 γ(τ)dτ and obtain the velocities in the

form ~̇xi(t̄) = γĥ
˙̂
~si(t). Furthermore, we define a fictitious potential Pext det ĥ

with the externally applied pressure Pext and a fictitious potential NfkBT ln γ,
where T denotes the target temperature, Nf denotes the number Nf of degrees
of freedom of the system, and kB is Boltzmann’s constant. This way we have
nine additional degrees of freedom hij for the pressure control and one degree
of freedom for the temperature control. Now a so-called Parrinello-Rahman-
Nosé Lagrangian can be postulated and an extended Hamiltonian

H =
1

2

N∑

i=1

~pT~siG~p~si
mi

+
1

2

tr(pThph)

MP

+
1

2

p2
γ

MT

+ V + Pext deth+NfkBTη (2)

with variables

~si(t) := ~̂si(t̄), h(t) := ĥ(t̄), G := hTh, η(t) := ln γ(t̄) ,

can be derived [35,47,51]. Here, MP is a fictitious mass or inertia parameter
to control the time-scale of motion of the cell h, and MT is an analogous
parameter with respect to temperature. The resulting equations of motion
then read

~̇si =
~p~si
mi

, ḣ =
ph
MP

, η̇ =
pγ
MT

, (3)

~̇p~si =h−1 ~Fi −G−1Ġp~si −
pγ
MT

p~si , (4)

ṗh = (Πint − diag (Pext))h
−T deth− pγ

MT

ph , (5)

ṗγ =
N∑

i=1

~pT~siG~p~si
mi

+
tr(pThph)

MP

−NfkBT , (6)
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where ~Fi := −∇~xiV denotes the force which is contributed by the potential
V and acts on particle i. Furthermore, the internal stress tensor Πint can be
written as

Πint =
1

deth

N∑

i=1

mih~si~s
T
i h

T + Πpot
int , Πpot

int =
1

deth
Fhh

T ,

(Fh)αβ := − d

d hαβ
V , α, β ∈ {1, 2, 3} .

(7)

In particular, one third of the trace of the internal stress tensor equals the
instantaneous internal pressure Pint = 1

3
tr(Πint). If we assume that the po-

tential V does not depend explicitly on the cell matrix h, the 3 × 3 matrix
Fh = − d

d h
V (h~s1, . . . , h~sN) can be written as Fh =

∑N
i=1

~Fi~s
T
i by exploiting the

chain rule. We calculate the instantaneous temperature

Tinstan =
2Ekin

NfkB
, Ekin =

1

2

N∑

i=1

~pTsiG~p~si
mi

as usual; the thermodynamic temperature is the time-average of Tinstan.

Periodic systems

If periodic boundary conditions are used, the potential V depends explicitly on
the matrix h, because atoms in the unit cell interact not only with other atoms
in the same unit cell but also with their translated images. These interactions
with the images must be included correctly in the potential contribution ex-
pressions Πpot

int and ~Fi. In the case of a potential V (~x1, . . . , ~xN) =
∑
i<j vpair(rij)

which only involves pair terms vpair(rij), where ~rij := ~xj − ~xi and rij := ‖~rij‖,
the periodic potential can be written as

V periodic(h, ~x1, . . . , ~xN) =
∑

i<j

vpair(rij) +
∑

i6=j

∑

s∈Z3\(0,0,0)

vpair(rij,hs) , (8)

where rij,hs := ‖~rij,hs‖ and ~rij,hs := ~xj + hs− ~xi. Note that the infinite series
in equation (8) is usually convergent, because the pair terms are of short

range. If we define pair forces ~Fij := − d
d~xi
vpair(rij), we evaluate the potential

contribution to the forces on the particles in equation (4) in the form

~Fi =
∑

j 6=i
~Fij +

∑

j

∑

s∈Z3\(0,0,0)

~Fij,hs ,

with ~Fij,hs := d
d~xi
vpair(rij,hs). Furthermore, we can exploit Newton’s third law

~Fij = −~Fji and the corresponding relation ~Fij~r
T
i + ~Fji~r

T
j = −~Fij~rij to write
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the potential contribution of the internal stress tensor in equation (7) as

Πpot
int =

1

deth


∑

i<j

−~Fij~rTij +
∑

i6=j

∑

s∈Z3\(0,0,0)

−~Fij,hs~rTij,hs


 .

In a way similar to the pair-dependent terms vpair(rij), we treat angle-dependent
three-body terms vang(θijk) and torsional-dependent four-body terms vtor(φijkl).
Here, θijk denotes the angle between ~rij and ~rik and φijkl denotes the so-called
torsional or dihedral angle ^(~rij × ~rjk, ~rjk × ~rkl). Analogous to equation (8)
and Newton’s third law, we define the corresponding periodic potential and
the force contribution ~F ijk

n := − d
d~xn

vang(θijk). We then exploit the relations

~F ijk
i = −~F ijk

j − ~F ijk
k ,

~F ijk
i ~ri + ~F ijk

j ~rj + ~F ijk
k ~rk = ~F ijk

j ~rTij + ~F ijk
k ~rTik

to evaluate the corresponding potential contributions ~Fi and Πpot
int in the angle-

dependent case. In the dihedral angle or torsional-dependent case, we define
~F ijkl
n := − d

d~xn
vtor(φijkl) and use the relations

~F ijkl
i = −~F ijkl

j − ~F ijkl
k − ~F ijkl

l ,

~F ijkl
i ~ri + ~F ijkl

j ~rj + ~F ijkl
k ~rk + ~F ijkl

l ~rl = −~F ijkl
i ~rTij − (~F ijkl

i + ~F ijkl
j )~rTjk + ~F ijkl

l ~rTkl .

In particular, the contribution of the torsional potential to the trace of the
stress tensor is zero and therefore the contribution to the pressure is zero as
well [52]. However, the contribution to the full stress tensor must be taken
into account. Note that the internal stress tensor Πint is symmetric in the case
of pair, angle and torsional potentials.

Time integration

For the numerical solution of the system of the ordinary differential equa-
tions (3)-(6), we have to employ a time integration scheme. Here, the following
problem appears: The forces in the equations of motion (3)-(6) are velocity-
dependent. This usually presents a difficulty to “non-predictor-corrector” al-
gorithms which are based on the assumption that the forces depend on the
coordinates only. We therefore use the “predictor-corrector” scheme (9). It is
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based on Beeman’s approach [53] and was later modified by Refson [54]:

a) q(t+ ∆t) := q(t) + ∆t pq(t)
m

+ ∆t2

6m
[4ṗq(t)− ṗq(t−∆t)]

b) p(p)
q (t+ ∆t) := pq(t) + ∆t

2
[3ṗq(t)− ṗq(t−∆t)]

c) ṗq(t+ ∆t) := F
(
{qi(t+ ∆t), p(p)

qi
(t+ ∆t)}, i = 1 . . . n

)

d) p(c)
q (t+ ∆t) := pq(t) + ∆t

6
[2ṗq(t+ ∆t) + 5ṗq(t)− ṗq(t−∆t)]

e) Replace p(p)
q with p(c)

q and goto c). Iterate to convergence.

(9)

Here, the symbol q represents any dynamic variable (the scaled coordinates,
the cell matrix or the variable of the thermostat) and p(p)

q and p(c)
q represent the

“predicted” and “corrected” moments, respectively. The predictor-corrector
cycle (steps c) to e)) is iterated until the predicted and corrected velocities
have converged with respect to a relative precision. This iteration usually
takes two or three cycles in practice. In particular, the expensive evaluation
of the coordinate-dependent terms of the force calculation in step c) has to be
performed just once per time step. Only the relatively cheap evaluation of the
velocity-dependent terms of the force calculation has to be computed in every
cycle.

Note that compared to the Hamiltonian (1) of an NVE ensemble, the physical
energy Ekin + V contained in the Hamiltonian (2) of an NPT ensemble is not
conserved. But the Hamiltonian (2) of the physical energy, the fictitious energy
of the barostat and the fictitious energy of the thermostat remain constant
over time.

2.2 Potentials for Hydrocarbons

Atomistic model (Model I)

To represent hydrocarbon systems (i.e. the carbon nanotube and the polyethy-
lene matrix) we use a so-called atomistic model in which all the atoms in the
monomeric units are treated explicitly. To model the short-range chemical
interactions, we employ Brenner’s potential, which is a reactive empirical po-
tential for hydrocarbons involving bond order terms (REBO). It describes
covalent bonding within both the polymer and the carbon nanotubes [48].
Additionally we use a Lennard-Jones potential to characterize nonbonded van
der Waals interactions [55,56]. The resulting potential is given as a sum over
bonds

Epot =
∑

i

∑

i<j

(
VR(rij)− B̄ijVA(rij) + VW (rij)

)
, (10)

where rij = |~xj − ~xi| denotes the distance between atoms i and j. Here, VR is a
pair-potential term to model the interatomic core-core repulsive interactions,
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VA is a pair-potential term to describe the attractive interactions due to the
valence electrons. B̄ij is a so called many-body empirical bond-order term
which modulates valence electron densities and depends on the bond lengths
and the angles. VW denotes the contribution from the Lennard-Jones potential.
It has in particular a support different from that of the short-range REBO
potential.

The repulsive and the attractive pair terms VR and VA are derived from Morse
potentials and are restricted to immediate neighbors or bonded atoms by a
factor f(rij). This smoothed truncation function f(rij) reads as

f(rij) =





1 : rij ≤ R
(1)
ij

1
2

[
1 + cos

(
π

rij−R(1)
ij

R
(2)
ij −R

(1)
ij

)]
: R

(1)
ij ≤ rij ≤ R

(2)
ij

0 : rij ≥ R
(2)
ij

,

where the cutoff parameters R
(1)
ij and R

(2)
ij only depend on the type of the atom

i and j, i.e. they are dependent on whether i and j are carbon or hydrogen
atoms. Furthermore, all terms which are used to evaluate the many-body em-
pirical bond-order term B̄ij are restricted to bonded atoms by the factor f as
well. To define a continuously differentiable potential VW for the contribution
of the nonbonded interactions, we use cubic spline functions S (1) and S(2).
Here, VW reads

VW (rij) =





0 : rij ≤ R
(2)
ij

S(1)(rij) : R
(2)
ij ≤ rij ≤ R

(3)
ij

4εij
[
(σij/rij)

12 − (σij/rij)
6
]

: R
(3)
ij ≤ rij ≤ R

(4)
ij

S(2)(rij) : R
(4)
ij ≤ rij ≤ R

(5)
ij

0 : rij ≥ R
(5)
ij

where the Lennard-Jones parameters εij and σij and the radii R
(2)
ij , R

(3)
ij , R

(4)
ij

and R
(5)
ij are given in table 1. Note however that all the terms in potential (10)

are restricted by the cutoff parameters R
(2)
ij or R

(5)
ij . Thus, we can use the linked

cell technique for an efficient implementation. A straightforward domain de-
composition approach then allows for a parallel implementation. This results
in a parallel complexity of the order O(ρ3N/P ) [24,51]. Especially, if the den-
sity ρ is assumed to be nearly constant, i.e. if the particles are more or less
uniformly distributed, then the average complexity scales linearly with N/P .
This allows to treat systems with large numbers of particles in a reasonable
time. Here, N denotes the number of particles and P the number of processors.
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εij [eV] σij [Å] R
(2)
ij [Å] R

(3)
ij [Å] R

(4)
ij [Å] R

(5)
ij [Å]

C–C 4.2038× 10−3 3.37 2.0 3.20 9.875 10.0

H–H 5.8901× 10−3 2.91 1.7 2.76 9.875 10.0

C–H 4.9760× 10−3 3.14 1.8 2.98 9.875 10.0

Table 1
Parameters which are used for the Lennard-Jones van der Waals interaction in
addition to the short-ranged Brenner potential [48]. The values for εij , σij , R

(2)
ij ,

R
(3)
ij and R

(5)
ij stem from [55,56]. The parameters εCH and σCH are given by the

Lorentz-Berthelot mixing rules εCH =
√
εCCεHH and σCH = (σCC + σHH)/2.

εij [eV] σij [Å] R
(4)
ij [Å] R

(5)
ij [Å]

C̃–C̃ 6.2040512× 10−3 3.9230 9.875 10.0

C̃–C 5.5562129× 10−3 3.6465 9.875 10.0

Table 2
Parameters which are used for the Lennard-Jones van der Waals interaction between
the monomeric units C̃ of the polyethylene and the carbon nanotube atoms C. The
parameters εC̃C and σC̃C are given by the Lorentz-Berthelot mixing rules εC̃C =√
εC̃C̃εCC and σC̃C = (σC̃C̃ + σCC)/2.

United-atom model (Model II)

In our second model, we use a united-atom approach to represent the polyethy-
lene matrix. We employ the so-called expanded collapsed atomic model [50],
where the monomeric C̃ := CH2 units are treated as single spheres. They
interact through a smoothed Lennard-Jones potential

VLJ(rij) =





4εij
[
(σij/rij)

12 − (σij/rij)
6
]

: rij ≤ R
(4)
ij

S(2)(rij) : R
(4)
ij ≤ rij ≤ R

(5)
ij

0 : rij ≥ R
(5)
ij

between the spheres in different molecules. Within a polyethylene molecule
chain, we apply this potential if the spheres are three or more neighbors apart
on the chain. In addition to the Lennard-Jones potential, this model includes
the usual bond stretching, bond angle bending and torsional potentials. The
detailed expressions and the parameters are given in [50]. The carbon nano-
tube is modeled as before using Brenner’s potential. To model the interaction
between the spheres of the polyethylene and the carbon atoms of the nano-
tube, we employ the Lennard-Jones potential with parameters given by the
Lorentz-Berthelot mixing rules; see table 2. Note that both the united-atom
approach for the polyethylene and the atomistic model for the carbon nano-
tube can be implemented using the linked cell technique. Furthermore, the
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domain decomposition approach can be employed for the parallelization. This
again results in a parallel complexity which scales linearly with N/P .

2.3 Elastic moduli and constants

The stress-strain relationship provides the overall mechanical response of a
material when subjected to mechanical loading under certain conditions. One
method to generate stress-strain curves is to vary the strain and to measure
the stress in the framework of an NVE ensemble [30–32]. Alternatively, we
employ our NPT ensemble approach to apply external stress and to measure
the corresponding strain. For this purpose, we use an additional external stress
tensor Πext within the equation of motion (5)

ṗh = (Πint − diag (Pext) + Πext)h
−T deth− pγ

MT

ph . (11)

This way, we are able to accomplish various tensile and compressive load
cases to study the elastic properties of a nanotube-polyethylene composite.
To generate a stress-strain curve for a tensile or compressive load at given
temperature and pressure, we first equilibrate the system with no external
stress applied. We then increase or decrease the external stress over a period
of time and measure the induced stress π := −Πint and the induced strain.
To determine the strain, we can express the instantaneous cell matrix h =
(1 + e)hequi in terms of the unique displacement matrix e and the equilibrated
cell matrix hequi. With the displacement defined as ~u(~v) = e~v, the linear strain
tensor ε is given as

εαβ =
1

2

(
∂uα
∂~vβ

+
∂uβ
∂~vα

)
,

which in particular equals the symmetric part 1
2

(
eT + e

)
of the displacement

matrix e = hh−1
equi − 1. The skew-symmetric part corresponds to the so-called

linear rotational strain tensor. Because the rotations of the unit cell do not
convey any physical meaning, only six (instead of nine; see section 2.1) de-
grees of freedom are required to control pressure within an NPT ensemble.
Therefore, we constrain the 3 × 3 matrix ṗh in the equation of motion (11)
to be symmetric and assume a symmetric cell matrix hequi. Then, the lin-
ear rotational strain tensor vanishes and the linear strain tensor ε equals the
displacement matrix e.

In particular, we want to determine elastic constants. To calculate compo-
nents of the elasticity tensor, the so-called elastic moduli Cαβγδ, we use the
generalized Hooke’s law [57]

παβ =
∑

γδ

Cαβγδεγδ , α, β ∈ {1, 2, 3} . (12)

10



Here, we assume that παβ are homogeneous linear functions of εγδ and vice
versa and that C is a positive-definite fourth order tensor which has major
symmetry Cαβγδ = Cγδαβ [58]. For most solid materials such relations hold un-
til the stress reaches the so-called proportional limit. If the stresses exceed this
limit, the deformation becomes nonlinear but the elastic behavior of the ma-
terial continues until the stresses reach the so-called elastic limit. The general
fourth-order tensor C has 34 = 81 independent constants Cαβγδ. But since π
and ε are symmetric second order tensors, the number of independent elastic
moduli reduces to 6× 6 = 36. Because of major symmetry it further reduces
to 6(6+1)/2 = 21. Then, we can write the stress-strain relation (12) in matrix
form 



π11

π22

π33

π12

π13

π23




=




C1111 C1122 C1133 C1112 C1113 C1123

C1122 C2222 C2233 C2212 C2213 C2223

C1133 C2233 C3333 C3312 C3313 C3323

C1112 C2212 C3312 C1212 C1213 C1223

C1113 C2213 C3313 C1213 C1313 C1323

C1123 C2223 C3323 C1323 C1323 C2323







ε11

ε22

ε33

2ε12

2ε13

2ε23




. (13)

We can invert the stress-strain relations (13) by inverting the symmetric 6×6
elastic constant matrix C. This results in




ε11

ε22

ε33

2ε12

2ε13

2ε23




=




S1111 S1122 S1133 S1112 S1113 S1123

S1122 S2222 S2233 S2212 S2213 S2223

S1133 S2233 S3333 S3312 S3313 S3323

S1112 S2212 S3312 S1212 S1213 S1223

S1113 S2213 S3313 S1213 S1313 S1323

S1123 S2223 S3323 S1323 S1323 S2323







π11

π22

π33

π12

π13

π23




,

where S is the so-called compliance matrix. Suppose now that only one of the
six independent components of the induced stress is nonzero, say παβ. Then
the components

S11αβ = ε11

παβ
, S22αβ = ε22

παβ
, S33αβ = ε33

παβ
,

S12αβ = 2ε12

παβ
, S13αβ = 2ε13

παβ
, S23αβ = 2ε23

παβ
,

can be determined by calculating the slopes of the corresponding stress-strain
curves. Here, the slopes can be easily computed by least squares linear regres-
sion [59]. This way, we can successively determine the components Sαβγδ and
consequently the elastic moduli Cαβγδ.

11



There is a special elastic constant, the so-called Young modulus E. If the
stretching force is only applied in uniaxial direction, for example in longitu-
dinal direction, the constant Ell := πll/εll = 1/Sllll represents the ratio of the
longitudinal stress to the corresponding longitudinal strain. In other words, it
is the slope of the stress-strain curve under uniaxial tension. Furthermore, the
ratio of transverse contraction strain to longitudinal extension strain in the di-
rection of the stretching force is known as the Poisson ratio ν := −εtt/εll. Here,
tensile deformation is considered positive and compressive deformation is con-
sidered negative. Thus, normal materials have a positive ratio. Furthermore,
the generalized versions of the Poisson ratio are given by νtt,ll := −Sttll/Sllll.

3 Numerical Experiments

We have extended our existing molecular dynamics package, a load-balanced
distributed memory parallel code [51], by the computational methods de-
scribed in section 2 and conducted several experiments. Here, we run sim-
ulations on our PC cluster Parnass2 [60]. It consists of 128 Intel Pentium II
400 MHz processors connected by a 1.28 GBit/s switched Myrinet.

All tensile tests are carried out at normal conditions, i.e. for a temperature of
273.15 K and for an external pressure of 1.01325 ·10−4 GPa. We equilibrate the
reference systems in two subsequent steps. First, we use an energy minimiza-
tion that employs a conjugate-gradient method in order to relax the system to
its local potential energy minimum. Then, we conduct a molecular dynamics
simulation for 50.0 ps under normal conditions with no external stress applied.
Here, we use a timestep of 0.1 fs in the framework of model I and 0.2 fs in the
framework of model II. The fictitious mass MT for the thermostat is set to
10.0 u Å

2
and the fictitious mass MP for the barostat is set to 10.0 u. In partic-

ular, we start the equilibration process with a diagonal cell matrix and allow
axial variation only. We study the following systems:

(a) A polyethylene matrix, containing nine chains of 1330 CH2 units. The equi-
librated polyethylene matrix has a density of approximately 0.9 g/cm3.

(b) A 6 nm capped (10, 10) carbon nanotube embedded in eight chains of 1420
CH2 units. Each of the carbon nanotube caps consists of one half C240

molecule. This way, there are 1020 carbon atoms of the nanotube within
the unit cell.

(c) A periodically replicated (10, 10) carbon nanotube spanning the length of
the unit cell which is embedded in eight chains of 1095 CH2 units. There
are 1720 carbon atoms of the nanotube within this unit cell.

The original structures for these three systems were made by S. J. V. Frank-
land, while working with D. W. Brenner and S. P. Adiga. Because the nan-
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Fig. 1. The nanotubes and the matrix. Left : View of the continuous carbon nano-
tube. Center : View into the polyethylene matrix represented by model I. Right :
View of the capped carbon nanotube.

Fig. 2. The unit cell of system (b) represented by model II. Left : View into the finite
tube within the unit cell. Right : Side view of the unit cell.

Fig. 3. The unit cell of system (c) represented by model II. Left : Front view of unit
cell. Right : Side view of the unit cell.

otubes are placed along the third axis, systems (b) and (c) are unidirectional
composites; see figures 2 and 3. Therefore, we can assume that all considered
systems are orthotropic. Then, the compliance matrix has only nine indepen-
dent constants 



S1111 S1122 S1133 0.0 0.0 0.0
S2222 S2233 0.0 0.0 0.0

S3333 0.0 0.0 0.0
S1212 0.0 0.0

sym S1313 0.0
S2323



,

because the basis vectors lie in the symmetry planes. Details of the equilibrated
reference systems are given in table 3.

To study the elastic properties of the polyethylene matrix, we apply a tensile
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load for each of the six independent stress components. For that purpose, we
employed model I and used a stress rate of 0.01 GPa/ps to increase external
stress for the considered component. The resulting compliance matrix can be
written in the form




0.91 −0.40 −0.52 0.0 0.0 0.0
0.94 −0.53 0.0 0.0 0.0

1.18 0.0 0.0 0.0
2.99 0.0 0.0

sym 4.38 0.0
3.79


 =

1

Ea,II
33




0.77 −0.34 −0.44 0.0 0.0 0.0
0.80 −0.45 0.0 0.0 0.0

1.00 0.0 0.0 0.0
2.54 0.0 0.0

sym 3.71 0.0
3.22


 . (14)

Here and in the following, the upper indices denote the system and the model,
respectively. If we look at the right hand side of equation (14), we see that the
compliance matrix of system (a) has nearly isotropic form

1

Ẽ




1 −ν̃ −ν̃ 0.0 0.0 0.0
1 −ν̃ 0.0 0.0 0.0

1 0.0 0.0 0.0
2(1 + ν̃) 0.0 .0.0

sym 2(1 + ν̃) 0.0
2(1 + ν̃)


 = 1.18




0.77 −0.44 −0.44 0.0 0.0 0.0
0.80 −0.44 0.0 0.0 0.0

1.00 0.0 0.0 0.0
2.89 0.0 .0.0

sym 2.89 0.0
2.89


 ,

with Young modulus Ẽ := Ea,II
33 ≈ 0.85 and Poisson ratio ν̃ := (νa,II

11,33 +

νa,II
22,33)/2 ≈ 0.44; see table 5. Then, we used model II to perform the same

tensile tests to compute the compliance matrix of system (b) and (c); see ta-
ble 4. Additionally, we calculated the elastic constant matrix by inverting the
compliance matrix. Furthermore, we used model I to apply uniaxial external
stress to system (a), (b) and (c) to determine the Young moduli and the Pois-
son ratios for the third coordinate direction. Additionally, we computed the
Young moduli corresponding to loading in the direction of the first coordinate.
The results are summarized in table 5. The compliance and elasticity tensors
in table 4 and the elastic constants in table 5 show the anisotropic behav-
ior of the systems (b) and (c). In the same way, we determined the Young
modulus and the Poisson ratio of the periodically replicated (10, 10) carbon
nanotube of system (c) without the polyethylene matrix. For the modulus,
which corresponds to a tensile load in the direction of the axis of the nano-
tube, we obtained 403.85 GPa. For the associated Poisson ratio a value of 0.23
resulted. Here, we assumed the carbon nanotube as a hollow cylinder with
thickness 3.4 Å to calculate the volume [23]. This way, we obtained an equili-
brated volume of 16.075 nm3. Note that there is a lot of variance among the
elastic moduli reported by several groups [61]. For example, ≈ 300 GPa [62],
≈ 600 GPa [22] and ≈ 1 TPa [23] are given for the uniaxial Young modulus of
a (10, 10) carbon nanotube in the literature. For this nanotube, the Poisson
ratio is noted as 2.5 [20], 2.78 [23] and 2.87 [62], respectively. The application
of different approaches, models and parameters is likely to be responsible for
this variety of results. Additionally, if we apply the Langrange strain tensor
[57,58], we get a Young modulus of 395.04 GPa and a Poisson ratio of 0.22.
If we apply the logarithmic strain tensor [57,58], we get a Young modulus of
410.18 GPa and a Poisson ratio of 0.24.
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System Model hequi [Å] Ωequi [nm3]

(a) I diag (49.13, 48.41, 130.86) 311.23

(a) II diag (50.37, 47.90, 130.16) 314.04

(b) I diag (51.35, 51.57, 129.36) 342.56

(b) II diag (49.92, 52.20, 131.70) 343.19

(c) I diag (47.84, 48.50, 105.43) 244.62

(c) II diag (48.30, 48.22, 106.81) 248.76

Table 3
Reference cell matrices and cell volumes of the studied systems for model I and II.
In particular, the volume fraction of the carbon nanotube is approximately 2.8%
for system (b), and approximately 6.5% for system (c).

System S C

(b)




1.24 −0.62 −0.21 0.0 0.0 0.0
1.27 −0.18 0.0 0.0 0.0

0.57 0.0 0.0 0.0
3.43 0.0 0.0

sym 5.27 0.0
5.88







1.29 0.73 0.71 0.0 0.0 0.0
1.24 0.67 0.0 0.0 0.0

2.22 0.0 0.0 0.0
0.29 0.0 0.0

sym 0.19 0.0
0.17




(c)




1.013 −0.351 −0.0087 0.0 0.0 0.0
0.869 −0.0085 0.0 0.0 0.0

0.0393 0.0 0.0 0.0
2.83 0.0 0.0

sym 7.47 0.0
5.94







1.14 0.44 0.35 0.0 0.0 0.0
1.32 0.38 0.0 0.0 0.0

25.59 0.0 0.0 0.0
0.35 0.0 0.0

sym 0.13 0.0
0.17




Table 4
The compliance matrix S and the elastic constant matrix C for systems (b) and (c)
for model II.

System Model E33[GPa] ν11,33 ν22,33 E11[GPa]

(a) I 0.6142 0.4850 0.4304 0.7100

(a) II 0.8495 0.4394 0.4501 1.1034

(b) I 1.4777 0.2778 0.3532 0.6455

(b) II 1.7422 0.3722 0.3215 0.8043

(c) I 23.395 0.2161 0.2795 1.1010

(c) II 25.435 0.2222 0.2157 0.9868

Table 5
Elastic moduli and Poisson ratios of the studied systems for model I and model II.
The longitudinal moduli are increasing and the transversal are constant. The Poisson
ratios are decreasing to the ratio of the (10, 10) carbon nanotube.
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In particular, all simulations were conducted under normal conditions. Here,
the same timesteps and fictitious masses as in the molecular dynamics part of
the equilibration process were used. Furthermore, a stress rate of 0.01 GPa/ps
was taken in all tensile load test cases. A molecular dynamics tensile simulation
was stopped when a strain of 10 % was reached.

4 Discussion

From the results of table 5 we see the following: Subjected to transverse loading
conditions, the Young modulus of the composite is in the range of the modulus
of the matrix. Thus, there is no reinforcement of the matrix. Subjected to
longitudinal loading conditions, we see a Young modulus two times higher
for system (b) and a Young modulus approximately thirty times higher for
system (c).

For a nanocomposite under uniaxial loading, the dependence of the elastic
modulus on the nanotube volume fraction can be estimated by the macroscopic
rule-of-mixtures. This rule reads as

Ec = ΩfEf + (1− Ωf)Em , (15)

where Ec denotes the predicted Young modulus of the composite, Ef denotes
the Young modulus of the fiber, Em denotes the Young modulus of the matrix
and Ωf denotes the volume fraction of the fiber.

Let us consider system (c) first. The modulus of a (10, 10) carbon nanotube
was Ef = 403.85 GPa and its volume fraction was 6.5 %; see section 3 and

table 3. If we now use Em = Ea,I
33 = 0.61 GPa for the modulus of the matrix,

the rule-of-mixtures gives a prediction of Ec ≈ 26.82 GPa for the modulus of
the composite in the case of model I. In an analogous way, the rule-of-mixtures
gives an estimated modulus for model II of Ec ≈ 27.04 GPa. These values are
in the range of our measured moduli Ec,I

33 = 23.39 GPa and Ec,II
33 = 25.43 GPa

for system (c) in table 5.

Now we consider system (b). With a volume fraction of 2.8 %, the rule-of-
mixtures predicts a modulus of Ec ≈ 12 GPa, which is substantially larger
than the results of our measurements; see table 5. But we can expect this
lack of effect, because the 6 nm carbon nanotube is too short compared with
the size of the unit cell of the composite. In particular, a typical single-walled
carbon nanotube is approximately 250 times longer. To overcome this finite
size effect, we follow Liu and Chen [28,29] and employ an extended rule-of-
mixtures

Eex
c =

(
1

Em

(L− Lc)
L

+
1

Ec

Lc
L

A

Ac

)−1

, (16)

16



���

��� �

���
	��� 	���

	��� 	���

��� ������

Fig. 4. Schematic diagram of the unit cell of system (b). Here, we define the areas
A = h11h22 and Ac = A−πR2

in. Furthermore, we assume Lc = 6 nm and Rin = 5 nm.

which also takes the distribution of the fiber into account, contrary to equa-
tion (15); see figure 4. This extended rule-of-mixtures gives a prediction of
Eex
c ≈ 1.11 GPa for the modulus of the composite in the case of model I and a

prediction of Eex
c ≈ 1.52 GPa for model II. These values are in the range of our

measured moduli Eb,I
33 = 1.47 GPa and Eb,II

33 = 1.74 GPa; see table 5. Here, we
applied equation (15) in combination with a volume fraction of 6 % to estimate
the modulus Ec ≈ 24.81 GPa for model I and the modulus Ec ≈ 25.03 GPa in
the case of model II. The remaining values which we used to employ equation
(16), are given in figure 4, table 3, and table 5.

Furthermore, there is only a slight difference between model I and model II,
because no forming or breaking of bonds takes place in the equilibration pro-
cesses and tensile simulations, we performed. In particular, if we use the re-
active model I for system (a) or for system (b), we observe no forming of
chemical bonds between the polyethylene matrix and the nanotube which
would strengthen the interfacial adhesion [31]. Therefore, we anticipate that
a longer and a functionalized nanotube [30,31] would lead to improved re-
inforcement. Especially in the case of functionalized carbon nanotubes, the
second-generation REBO potential [63] can be used to model the hydrocar-
bon system with enhanced accuracy.

5 Concluding Remarks

The results of a molecular dynamics simulation study for the analysis of elastic
properties of a carbon nanotube/polyethylene composite was presented. Here,
we used the Parrinello-Rahman technique to apply external stress to generate
stress-strain curves. As model problems we considered a short and an infinite
carbon nanotube which were embedded into a polyethylene matrix. Load was
applied to calculate the compliance matrix and different elastic constants like
the Young modulus and the Poisson ratio. We used two different ways to model
these systems: first Brenner’s potential only, and second Brenner’s potential for

17



the nanotube but a united-atom potential for the polyethylene matrix. Here,
these two different models show nearly the same results, because there are no
chemical bonds between the fiber and the matrix. Furthermore, the calculated
Young moduli were compared to two different rule-of-mixtures. The simple
rule, which takes only the volume fraction of the fiber into account, holds
for the long continuous nanotube, and the extended rule, which also takes
the distribution of the fiber into account, holds for the short fully embedded
nanotube.

The simulation results suggest the possibility to use nanotubes to reinforce an
appropriate matrix. They furthermore indicate that long nanotubes should be
used. For a fixed tensile loading direction, the nanotubes should be aligned
parallel with the loading direction. For general kinds of loading directions,
very long nanotubes in random orientation will most likely produce the best
results.
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