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Abstract

Performance-dependent options are financial derivatives whose payoff de-
pends on the performance of one asset in comparison to a set of bench-
mark assets. In this paper, we present a novel approach for the valuation
of general performance-dependent options. To this end, we use a multi-
dimensional Black-Scholes model to describe the temporal development
of the asset prices. The martingale approach then yields the fair price
of such options as a multidimensional integral whose dimension is the
number of stochastic processes used in the model. The integrand is typ-
ically discontinuous which makes accurate solutions difficult to achieve
by numerical approaches, though. Using tools from computational geo-
metry, we are able to derive a pricing formula which only involves the
evaluation of several smooth multivariate normal distributions. This way,
performance-dependent options can efficiently be priced even for high-
dimensional problems as is shown by numerical results.
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1 Introduction

Companies make big efforts to bind their staff to them for longer periods of time
in order to prevent a permanent change of executives in important positions.
Besides high wages, such efforts are long-term incentive and bonus schemes. One
widespread form of such schemes consists in giving the participants a conditional
award of shares [24]. If the participant stays with the company for at least a
prescribed time period he will receive a certain number of company shares at
the end of the period. Typically, the exact amount of shares is determined by a
performance criterion such as the company’s gain over the period or its ranking
among comparable firms (the peer group). This way, such bonus schemes induce
uncertain future costs for the company.

For the corporate management and especially for the shareholders, the actual
value of such bonus programs is quite interesting. One way to determine an
upper bound of this value is to take the price of vanilla call options on the
maximum number of possibly needed shares. This upper bound, however, often
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significantly overestimates the true value of the bonus program since its specific
structure is not respected.

Contingent claim theory states that the accurate value of such bonus pro-
grams is given by the fair price of options which include the used performance
criteria in their payoff. Such options are called performance-dependent op-
tions. Their payoff yields exactly the required shares at the end of the bonus
scheme. This way, performance-dependent options minimize the amount of
money the company would need to hedge the future payments arising from the
bonus scheme, see, e.g. [19].

Similar performance comparison criteria are currently used in various finan-
cial products, for example many hedge funds are employing so-called portable
alpha strategies. Recently, also pure performance-based derivatives have entered
the market in the form of so-called alpha certificates. Here, typically the relative
performance of a basket of stocks is compared to the relative performance of a
stock index. Such products are either used for risk diversification or for pure
performance speculation purposes.

In this paper, we define a framework for the efficient valuation of fairly gen-
eral performance-dependent options. Thereby, we assume that the performance
of an asset is determined by the relative increase of the asset price over the con-
sidered period of time. This performance is then compared to the performances
of a set of benchmark assets. For each possible outcome of this comparison, a
different payoff can be realized.

We use a multidimensional Black-Scholes model (see, e.g., [15, 18]) for the
temporal development of all asset prices required for the performance ranking.
The martingale approach then yields a fair price of the performance-dependent
option as a multidimensional integral whose dimension is the number of stochas-
tic processes used in the model. In the so-called full model the number of
stochastic processes equals the number of assets. In the reduced model, the
number of processes is smaller. Unfortunately, in either case there is no di-
rect closed-form solution for this integral. Moreover, the integrand is typically
discontinuous which makes accurate numerical solutions difficult to achieve.

The main contribution of this paper is the derivation of closed-form solu-
tions to these integration problems. For reduced models, two novel tools from
computational geometry are used, a fast enumeration method of the cells of a
hyperplane arrangement and an algorithm for the determination of its orthant
decomposition [13]. The resulting closed-form solutions only involve the evalua-
tion of smooth multivariate normal distributions which can be computed quickly
and robustly using numerical integration schemes. In various numerical results,
we illustrate the efficiency of this approach.

The outline of this paper is as follows. In Section 2, we formally define
performance-dependent options, their payoff profiles and the underlying stochas-
tic model. A pricing formula in the full model case is presented in Section 3.
The corresponding pricing formula for reduced models is then derived using tools
from computational geometry in Section 4. In Section 5, we shortly discuss the
numerical computation of multivariate normal distributions. Numerical results
on different types of performance-dependent options are presented in Section 6.
Concluding remarks are finally drawn in Section 7.
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2 Performance-dependent options

In this Section, the functionality of performance-dependent options is illus-
trated. We formally define their payoff functions and give several example
payoff profiles which correspond to possible bonus schemes. The multivariate
Black-Scholes model which we use to describe the temporal development of the
underlying asset prices is recalled at the end of the Section.

2.1 Framework

A performance-dependent option is a financial derivative whose payoff depends
on the performance of one asset in comparison to other assets at the end of a
given period. For the fair valuation of a bonus scheme, as mentioned in the
introduction, the asset under consideration is the stock of our own company
while the other assets are the stocks of benchmark companies.

Let us remark here that several differences between the pricing of standard
derivatives and the pricing of employee stock options which are not addressed in
this paper are thoroughly discussed in Hull and White [16, 17]. In their papers,
only performance-independent employee stock options are considered, though.

We assume that there are n companies involved in total. Our company
gets assigned label 1 and the n − 1 benchmark companies are labeled from 2
to n. The stock price of the i-th company varying with time t is denoted by
Si(t), 1 ≤ i ≤ n. The current time is denoted by t = 0. All stock prices at the
end of the time period t = T are collected in the vector S = (S1(T ), . . . , Sn(T )).

2.2 Payoff profile

The character of a performance-dependent option is described by the payoff of
the option at time T . To this end, we denote the relative price increase of stock
i over the time interval [0, T ] by

∆Si :=
Si(T )
Si(0)

.

We save the performance of the first company in comparison to a given strike
price K and in comparison to the benchmark assets at time T in a ranking
vector Rank(S) ∈ {+,−}n which is defined by

Rank1(S) :=
{

+ if S1(T ) ≥ K,
− else and Ranki(S) :=

{
+ if ∆S1 ≥ ∆Si,
− else

for i = 2, . . . , n. This means, if the first asset outperforms benchmark asset i we
denote this by a plus sign in the i-th component of the ranking vector Rank(S),
otherwise, there is a minus sign. For the fair valuation of a bonus scheme, the
strike K is typically equal to S1(0) since this way the payoff represents the risk
of the price increase of the company’s own stock until time T . In the following,
arbitrary strike prices K are allowed, though.

In order to define the payoff of the performance-dependent option, we require
bonus factors aR which define the bonus for each possible ranking R ∈ {+,−}n.
It is important to distinguish here between a possible ranking denoted R and
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the realized ranking induced by S which is denoted by Rank(S). The payoff of
the performance-dependent option at time T is then defined by

V ((S), T ) := aRank(S) (S1(T )−K)+ = aRank(S) max{S1(T )−K, 0}.

We always define aR = 0 if R1 = −, so that the payoff can be written as

V (S, T ) = aRank(S) (S1(T )−K). (1)

2.3 Example payoff profiles

In the following, we illustrated some possible choices for the bonus factors aR

which are included in our framework.

Example 2.1 Performance-independent option:

aR =
{

1 if R1 = +
0 else.

In this case, we recover a European call option on the stock S1.

Example 2.2 Linear ranking-dependent option:

aR =
{

m/(n− 1) if R1 = +
0 else.

Here, m denotes the number of outperformed benchmark assets. The payoff
only depends on the rank of our company in the benchmark. If the company
ranks first, there is a full payoff (S1(T ) − K)+. If it ranks last, the payoff is
zero. In between, the payoff increases linearly with the number of outperformed
benchmark assets.

Example 2.3 Outperformance option:

aR =
{

1 if R = (+, . . . ,+)
0 else.

A payoff only occurs if S1(T ) ≥ K and if all benchmark assets are outperformed.

Example 2.4 Linear ranking-dependent option combined with an outperfor-
mance condition:

aR =
{

m/(n− 1) if R1 = + and R2 = +
0 else.

The bonus depends linearly on the number m of outperformed benchmark com-
panies like in Example 2.2. However, the bonus is only payed if company two is
outperformed. Company two could, e.g., be the main competitor of our company.
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2.4 Multivariate Black-Scholes model

For the valuation of derivatives in markets with several interacting assets, the
multidimensional Black-Scholes model [15, 18] has been used with great success.
There, it is assumed that the stock prices are driven by d ≤ n stochastic pro-
cesses modeled by the Black-Scholes-type system of stochastic partial differential
equations (SDEs)

dSi(t) = Si(t)

µidt +
d∑

j=1

σijdWj(t)

 (2)

for i = 1, . . . , n. Here, µi denotes the drift of the i-th stock, σ the n × d
volatility matrix of the stock price movements and Wj(t) the corresponding
Wiener processes. The matrix σσT is assumed to be positive definite. If d = n,
we call the corresponding model full. If d < n, the model is called reduced.

Let us remark here that for small benchmarks usually the full model with a
square volatility matrix σ is used. The entries of the volatility matrix are typ-
ically estimated from historical market data. However, for larger benchmarks,
the parameter estimation problem becomes more and more ill-conditioned re-
sulting in eigenvalues of σσT which are close to zero. Then, reduced models
with d < n are often employed. If the benchmark consists of all assets in a
stock index, this reduction can be achieved, for instance, by grouping assets in
the same area of business. The matrix entry σij then reflects the correlation of
stock i with business area j. Such a grouping can often be obtained without
much loss of information e.g. using Principal Component Analysis (PCA), as
was confirmed empirically by research from Meade and Salkin [22] and Laloux
et al. [20].

By Itô’s formula, the explicit solution of the SDE is given by

Si(T ) = Si(X) = Si(0) exp

µiT − σ̄i +
√

T

d∑
j=1

σijXj

 (3)

for i = 1, . . . , n with

σ̄i :=
1
2

d∑
j=1

σ2
ij T

and X = (X1, . . . , Xd) being a N(0, I)-normally distributed random vector.
Various multivariate option pricing problems not discussed in this paper

allow closed form solutions, see, e.g., Zhang [26] or Carmona and Durrleman
[3]. A valuation approach for American-style performance-dependent options
using a fairly general Lévy model for the underlying securities is presented in
Egloff et al. [8]. There, a least-squares Monte Carlo scheme is used for the
numerical solution of the model, but only in the case of one benchmark process.
Thus, the problem of high-dimensionality does not arise which is one of the
main issues in this paper.

3 Pricing formula in the full model

In this Section, we assume that the number of stochastic processes d equals the
number of assets n. We derive the price of a performance-dependent option as
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a multivariate integral and show how this integral can be evaluated in terms of
multivariate normal distributions. In the following, we nevertheless distinguish
between d and n in order to be able to reuse some of the results also for the
reduced model case.

3.1 Martingale approach

The multivariate Black-Scholes model induces a complete market which gives
the existence of a unique equivalent martingale measure. Using the usual Black-
Scholes assumptions, see, e.g., [18], the option price V (S1(0), 0) is given by the
discounted expectation

V (S1(0), 0) = e−rT E[V (S, T )] (4)

of the payoff under the equivalent martingale measure. To this end, the drift
µi is replaced by the riskless interest rate r for each stock i. In the case of a
performance-dependent option with payoff (1) we get

V (S1(0), 0) = e−rT E

 ∑
R∈{+,−}n

aR(S1(T )−K) χR(S)

 .

Thereby, the expectation runs over all possible rankings R and the characteristic
function χR(S) is defined by

χR(S) =
{

1 if Rank(S) = R,
0 else.

Plugging in the density function ϕ(x) := ϕ0,I(x) of the N(0, I)-distributed
random vector X (note that S = S(X)), we get

V (S1(0), 0) = e−rT

∫
Rd

∑
R∈{+,−}n

aR(S1(T )−K) χR(S)ϕ(x) dx (5)

which will be the starting point of our analysis.

3.2 Pricing formula

Looking at formula (5), we see that the fair price of a performance-dependent
can be obtained by computing a d-dimensional integral. The integral can, at
least at first sight, not be solved analytically and therefore requires numerical
approaches for its solution. The integrand, however, is discontinuous induced
by the jumps of the bonus factors aR (see the examples in Section 2). There-
fore, numerical integration methods will perform poorly and only Monte Carlo
integration can be used without penalty. Thus, high accuracy solutions will be
hard to obtain. In the following, we derive an analytical expression for the com-
putation of (5) in terms of smooth functions, in our case multivariate normal
distributions.

Let us first recall that the multivariate normal distribution with mean zero,
limits b = (b1, . . . , bd) and d× d covariance matrix C is defined by

Φ(C,b) :=
∫ b1

−∞
. . .

∫ bd

−∞
ϕ0,C(x) dxd . . . dx1

6



with the Gauss kernel

ϕµ,C(x) :=
1

(2π)d/2(detC)1/2
e−

1
2 (x−µ)T C−1(x−µ).

To prove our main theorem we need the following two lemmas which relate the
payoff conditions to multivariate normal distributions.

Lemma 3.1 Let b,q ∈ IRd and A ∈ IRd×d with full rank, then∫
Ax≥b

eqT xϕ(x)dx = e
1
2qT qΦ(AAT ,Aq− b).

We use
∫
Ax≥b

as abbreviation for the integration over the set {x∈ IRd :Ax≥b}.

Proof: A straightforward computation shows

eqT xϕ(x) = e
1
2qT qϕq,I(x)

for all x ∈ IRd. Using the substitution x = A−1y + q we obtain∫
Ax≥b

eqT xϕ(x)dx = e
1
2qT q

∫
Ax≥b

ϕq,I(x)dx

= e
1
2qT q

∫
y≥b−Aq

ϕ0,AAT(y) dy

and thus the assertion. �
For the second Lemma, we first need to define a comparison relation ≥R of

two vectors x,y ∈ IRn with respect to the ranking R:

x ≥R y :⇔ Ri(xi − yi) ≥ 0 for 1 ≤ i ≤ n.

Thus, the comparison relation ≥R is the usual component-wise comparison
where the direction depends on the sign of the corresponding entry of the rank-
ing vector R.

Lemma 3.2 We have Rank(S) = R exactly if AX ≥R b with

A :=
√

T


σ11 . . . σ1d

σ11 − σ21 . . . σ1d − σ2d

...
...

σ11 − σn1 . . . σ1d − σnd

 and b :=



ln K
S1(0)

− rT + σ̄1

σ̄1 − σ̄2

...

σ̄1 − σ̄n


where A ∈ IRn×d, X ∈ IRd and b ∈ IRn.

Proof: Using (3) we see that Rank1(S) = + is equivalent to

S1(T ) ≥ K ⇐⇒
√

T

d∑
j=1

σ1jXj ≥ ln
K

S1(0)
− rT + σ̄1
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which yields the first row of the system AX ≥R b. Moreover, for i = 2, . . . , n
the outperformance criterion Ranki(S) = + can be written as

S1(T )
S1(0)

≥ Si(T )
Si(0)

⇐⇒
√

T

d∑
j=1

(σ1j − σij)Xj ≥ σ̄1 − σ̄i

which yields rows 2 to n of the system. �
Now we can state the following pricing formula which, in a slightly more

special setting, is originally due to Korn [19].

Theorem 3.3 The price of a performance-dependent option with payoff (1) is
for the model (2) in the case d = n given by

V (S1(0), 0) =
∑

R∈{+,−}n

aR

(
S1(0)Φ(ARAT

R,−dR)− e−rT KΦ(ARAT
R,−bR)

)
where the vectors bR, dR and the matrix AR are defined by (bR)i := Ribi,
(dR)i := Ridi and (AR)ij := RiAij. Thereby, A ∈ IRn×n and b ∈ IRn are
defined as in Lemma 3.2 and the vector d ∈ IRn is defined by d := b−

√
TAσ1

with σT
1 being the first row of the volatility matrix σ.

Proof: The characteristic function χR(S) in the integral (5) can be eliminated
using Lemma 3.2 and we get

V (S1(0), 0) = e−rT
∑

R∈{+,−}n

aR

∫
Ax≥Rb

(S1(T )−K)ϕ(x)dx. (6)

By (3), the integral term can be written as

S1(0)erT−σ̄1

∫
Ax≥Rb

e
√

TσT
1 x ϕ(x)dx−K

∫
Ax≥Rb

ϕ(x)dx.

Application of Lemma 3.1 with q =
√

Tσ1 shows that the first integral equals

e
1
2qT q

∫
y≥Rb−Aq

ϕ0,AAT(y) dy = eσ̄1

∫
y≥dR

ϕ0,ARAT
R
(y) dy = eσ̄1Φ(ARAT

R,−dR).

By a further application of Lemma 3.1 with q = 0 we obtain that the second
integral equals KΦ(ARAT

R,−bR) and thus the assertion holds. �
Note that this decomposition not only provides the option price as a sum of

normal distributions but can also be used to show which rankings appear with
which probabilities under the model assumptions.

4 Pricing formula in the reduced model

The pricing formula in Theorem 3.3 allows a stable and efficient valuation of
performance-dependent options in the case of moderate-sized benchmarks. For
a large number n of benchmark assets, one is, however, confronted with the
following problems:
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• In total, 2n rankings have to be considered and thus an with n expo-
nentially growing number of cumulative normal distributions have to be
computed.

• For each normal distribution, an n-dimensional integration problem has
to be solved which gets increasingly more difficult with rising n.

• In larger benchmarks, stock prices are typically highly correlated. As a
consequence, some of the eigenvalues of the covariance matrix σ will be
very small which makes the integration problems ill-conditioned.

• There is a large number (n(n + 1)/2) of free model parameters in the
volatility matrix which are difficult to estimate robustly for large n.

In conclusion, the pricing formula in Theorem 3.3 can only be applied to small
benchmarks, although it is very useful in this case. In this Section, we aim to
derive a similar pricing formula for reduced models which incorporate less pro-
cesses than companies (d < n). This way, substantially fewer rankings have to
be considered and much lower-dimensional integrals have to be computed which
allows the pricing of performance-dependent options even for large benchmarks.

4.1 Geometrical view

Lemma 3.2 and thus representation (6) of the option price remains also valid
in the reduced model. Note, however, that A is now an (n × d)-matrix which
prevents the direct application of Lemma 3.1. At this point, a geometrical point
of view is advantageous to illustrate the effect of performance comparisons in
the reduced model.

The matrix A and the vector b define a set of n hyperplanes in the space
IRd. The dissection of IRd into different domains or cells is called an hyperplane
arrangement and denoted by A = An,d. Each cell in the hyperplane arrange-
ment A is a (possibly open) polyhedron P which is uniquely represented by a
ranking vector R ∈ {+,−}n. Each element of the ranking vector indicates on
which side of the corresponding hyperplane the polyhedral cell is located. We
thus have the representation of the polyhedron as the set

P =
{
x ∈ IRd : Ax ≥R b

}
.

Figure 1 illustrates two two-dimensional hyperplane arrangements, one for
a full model with two assets and one for a reduced model with three assets. We
see that in the reduced model fewer than the expected 23 = 8 polyhedral cells
arise. Indeed, it can be shown, see, e.g., [6], that the number of cells cn,d of the
hyperplane arrangement A is bounded from above by

cn,d ≤
d∑

i=0

(
n

d− i

)
. (7)

To illustrate this effect, note that in a full model with 30 benchmark assets,
1.1 billion cells arise while in a reduced model with 30 benchmark assets whose
prices are driven by d = 5 underlying processes only about 170 thousand cells
appear.
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Figure 1: Polyhedral cells and ranking vectors for two hyperplane arrangements
with d = 2, n = 2 (left) and d = 2, n = 3 (right).

By identifying all cells in the hyperplane arrangement, we can significantly
reduce the number of integrals to be computed. This way, the representation
(6) of the option price can be rewritten as

V (S1(0), 0) = e−rT
∑
P∈A

aR

∫
P

(S1(T )−K)ϕ(x)dx. (8)

By integrating the payoff function over each cell of the hyperplane arrange-
ment separately, the option value can be determined as a sum over all integral
values weighted with the corresponding bonus factors. Note that only smooth
integrands appear in this approach.

4.2 Tools from computational geometry

Two problems remain with formula (8), however. First, it is not easy to see
which ranking vectors and corresponding polyhedra appear in the hyperplane
arrangement and which do not. Second, the integration region is now a general
polyhedron and, therefore, involved integration rules are required. To resolve
these difficulties we need some more utilities from computational geometry sum-
marized in the following two Lemmas.

To state the first Lemma, let e1, . . . , ed ∈ IRd denote the first unit vectors.
We assume here that no row of the matrix A is a multiple of ei, 1 ≤ i ≤ d.
Moreover, we assume that the hyperplane arrangement is non-degenerate which
means that exactly d hyperplanes intersect in a unique vertex v ∈ IRd. In the
unlikely case that these conditions are not met, they can be ensured by slightly
perturbing some of entries of the volatility matrix.

The unit vectors impose an order on all vertices. A vertex v is said to be
smaller than another vertex w if v1 < w1. If v1 and w1 happen to be equal, v2

and w2 are compared, and so on.
The position of each vertex can be computed by solving the correspond-

ing d × d linear system. By computing the minimum and maximum vertex of
the hyperplane arrangement in each direction, an artificial bounding box which
encompasses all vertices is defined. This bounding box is only needed for the lo-
calization of the polyhedral cells in the following Lemma and does not implicate
any approximation.
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Figure 2: Illustration of the mapping between intersection points {v1, . . . ,v7}
and polyhedral cells Pj := Pvj for the right arrangement from Figure 1 (left)
and corresponding reflection signs sv,w as well as the orthant Ov4 (right).

Lemma 4.1 Let the set V consist of all vertices of the hyperplane arrangement,
of the largest intersection points of the hyperplanes with the bounding box and
of the largest corner point of the bounding box. Furthermore, let Pv ∈ A be the
polyhedron which is adjacent to the vertex v ∈ V and which contains no other
vertex which is larger than v. Then the mapping v 7→ Pv is one-to-one and
onto.

The proof of Lemma 4.1 can be found in our companion paper [13]. For
the two dimensional example with three hyperplanes in Figure 1 the mapping
between intersection points and polyhedral cells is illustrated in Figure 2 (left).
Each vertex from the set V := {v1, . . . ,v7} is mapped to the polyhedral cell
indicated by the corresponding arrow. Using Lemma 4.1, an easy to implement
optimal order O(cn,d) algorithm which enumerates all cells in an hyperplane
arrangement can be constructed.

Note that by Lemma 4.1 each vertex v ∈ V corresponds to a unique cell
Pv ∈ A and thus to a ranking vector R. We can, therefore, also assign bonus
factors to vertices by setting av := aR.

Next, we assign each vertex v an associated orthant Ov. An orthant is
defined as an open region in IRd which is bounded by at most d hyperplanes.
Note that each vertex is the intersection of 0 ≤ k ≤ d hyperplanes of the
hyperplane arrangement with d−k boundary hyperplanes of the bounding box.
To find the orthant Ov associated with the vertex v, we determine k points
which are smaller than v and which lie on the intersection of d − 1 of these d
hyperplanes. These points are found by solving a d × d linear system where
d− 1 equations are given by the intersecting hyperplanes and the last equation
is x1 = v1 − ε. The unique orthant which contains v and all smaller points is
denoted by Ov.

For illustration, the orthant Ov4 is displayed in Figure 2 (right). Note that
vertices which are located on the boundary correspond to orthants with k < d
intersecting hyperplanes. For example, Ov3 is defined by all points which are
below hyperplane one.

By definition, there exists a (k × d)-submatrix Av of A and a k-subvector
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bv of b such that the orthant Ov can be characterised as the set

Ov =
{
x ∈ IRd : Avx ≥R bv

}
, (9)

where R is the ranking vector which corresponds to v. This way, the subma-
trix Av and the subvector bv consist of exactly those rows of A and b whose
corresponding hyperplanes intersect in v.

Furthermore, given two vertices v,w ∈ V, we define the reflection sign
sv,w := (−1)rv,w where rv,w is the number of reflections on hyperplanes needed
to map Ow onto Pv. The reflection signs sv,w with v ∈ {v1, . . . ,v7} and w ∈ Pv

arising in the two dimensional arrangement in Figure 1 (right) are displayed in
Figure 2 (right). For instance, the three reflection signs in the cell Pv4 are given
by sv4,v1 = +, sv4,v2 = − and sv4,v4 = +. Finally, let Vv denote the set of all
vertices of the polyhedron Pv.

Lemma 4.2 It is possible to algebraically decompose any cell of a hyperplane
arrangement into a signed sum of orthant cells by

χ(Pv) =
∑

w∈Vv

sv,wχ(Ow)

where χ is the characteristic function of a set. Moreover, all cells of a hyperplane
arrangement can be decomposed into a signed sum of orthants using exactly one
orthant per cell.

The first part of Lemma 4.2 is originally due to Lawrence [21]. The second
part follows from the one-to-one correspondence between orthants Ov and cells
Pv. It can be found in detail in the companion paper [13].

Note that such an orthant decomposition is not unique. A different decom-
position of a polyhedron into a sum of orthants is, e.g., presented in [7].

Example 4.3 To give an example, the decomposition of all cells within the
hyperplane arrangement from Figure 2 is given by

χ(P1) = χ(O1)
χ(P2) = χ(O2)− χ(O1)
χ(P3) = χ(O3)− χ(O2)
χ(P4) = χ(O4)− χ(O2) + χ(O1)
χ(P5) = χ(O5)− χ(O4)− χ(O1)
χ(P6) = χ(O6)− χ(O4)− χ(O3) + χ(O2)
χ(P7) = χ(O7)− χ(O6)− χ(O5) + χ(O4)

where we used the abbreviations Pj := Pvj and Oj := Ovj .

4.3 Pricing formula

Now, we are finally able to give a pricing formula for performance-dependent
options also in the reduced model case.

Theorem 4.4 The price of a performance-dependent option with payoff (1) is
for the model (2) in the case d ≤ n given by

V (S1(0), 0) =
∑
v∈V

cv
(
S1(0)Φ(AvAT

v ,−dv)− e−rT KΦ(AvAT
v ,−bv)

)
12



with Av,bv as in (9) and dv being the corresponding subvector of d. The
weights cv are given by

cv :=
∑

w∈V: v∈Pw

sv,waw. (10)

Proof: By Lemma 4.1 we see that the integral representation (8) is equivalent
to a summation over all vertices v ∈ V, i.e.

V (S1(0), 0) = e−rT
∑
v∈V

av

∫
Pv

(S1(T )−K)ϕ(x)dx.

By Lemma 4.2 we can decompose the polyhedron Pv into a signed sum of
orthants and obtain

V (S1(0), 0) = e−rT
∑
v∈V

av

∑
w∈Vv

sv,w

∫
Ow

(S1(T )−K)ϕ(x)dx.

By the second part of Lemma 4.2 we know that only cn,d different integrals
appear in the above sum. Rearranging the terms leads to

V (S1(0), 0) = e−rT
∑
v∈V

cv

∫
Ov

(S1(T )−K)ϕ(x)dx.

Since now the integration domains Ov are orthants, Lemma 3.1 can be applied
exactly as in the proof of Theorem 3.3 which finally implies the Theorem. �

To compute the weights cv, all cells Pw incident in v have to be traversed
and their ranking vectors have to be be determined. This can be done sym-
bolically by flipping the signs in the ranking vector of Pv which correspond to
the hyperplanes intersecting in v. By the non-degeneracy condition there are
at most 2d cells adjacent to each vertex which bounds the number of terms in
the definition of cv. Moreover, the number of vertices in V equals cn,d which
yields the number of integrals which have to be computed in the worst case.
The structure of the valuation algorithm is summarized in Figure 3.

Example 4.5 Consider the bonus scheme from Example 2.2 with n = 3, d = 2
and the hyperplane arrangement from Figure 2. Then, the bonus factors aj :=
avj are given by

a1 = 0, a2 = 0, a3 = 0, a4 =
1
2
, a5 = 1, a6 = 0, a7 =

1
2
.

Following the steps in the proof of Theorem 4.4 and employing the decomposition
from Example 4.3 we see that the price of this option satisfies

V (S1(0), 0) = e−rT

(
1
2

I(P4) + I(P5) +
1
2

I(P7)
)

= e−rT

(
−1

2
I(O1)−

1
2

I(O2) +
1
2

I(O5)−
1
2

I(O6) +
1
2

I(O7)
)

where we define

I(B) :=
∫

B

(S1(T )−K)ϕ(x)dx.
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1) to compute the set of all intersection points V:
a) compute the set of vertices of the hyperplane arrangement
b) compute the bounding box of these vertices
c) compute the set of boundary intersection points

2) for each intersection point v ∈ V:
a) determine the submatrix Av and the subvectors dv and bv

b) evaluate the cumulative normal distributions Φ(AvAT
v ,−dv)

and Φ(AvAT
v ,−bv)

c) for all vertices w ∈ V whose polyhedra Pw contain v:
determine the reflection signs sv,w and bonus factors aw

d) compute the weight cv using formula (10)
3) compute the price of the option as the weighted sum over all normal

distributions according to Theorem 4.4.

Figure 3: Valuation algorithm for performance-dependent options in the reduced
model case.

4.4 Special cases

Let us first remark that, if the payoff function has a special structure, many
weights cv are zero in the formula from Theorem 4.4. This way, the correspond-
ing normal distributions do not have to be computed. This is, for example, true
for the outperformance option of Example 2.3.

In addition, if the vertex v is located on the artificial boundary, see for
example vertex v3 in Figure 2, the corresponding orthant is defined by k <
d intersecting hyperplanes. As a consequence, only a k-dimensional normal
distribution instead of a d-dimensional one has to be computed. Consider, for
example, a bonus scheme which is defined by the bonus factors

aR =


∑

{i:Ri=+}

āi if R1 = +

0 else

(11)

for some given āi ∈ IR, where the sum goes over all i ∈ {2, . . . , n} where Ri = +.
Example 2.2 is a special case of such a scheme with āi ≡ 1/(n− 1). The pricing
formula for such a scheme only contains vertices which are located on at least
d − 2 boundary hyperplanes. Thus, independently of d and n, at most two-
dimensional normal distributions have to be evaluated. Moreover, the number
of two-dimensional normal distributions is bounded by n − 1. This behaviour
is most easily understood if the payoff function of the bonus scheme (11) is
rewritten in the equivalent form

V (S, T ) =
n∑

i=2

āi (S1(T )−K)+ χ∆S1(T )≥∆Si(T )

which shows that only the two-dimensional joint distributions of the random
variables S1(T ) and Si(T ) are required for i = 2, . . . , n.

Note that these special cases are automatically recognized by our algorithm
and only the minimum number of integrals with the corresponding minimal
dimensions are computed.
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5 Quadrature

The efficient application of the formulas from Theorem 3.3 and 4.4 crucially
depends on the availability of accurate and fast numerical methods for the eval-
uation of multivariate normal probabilities. For small dimensions d ≤ 3 there is
reliable and efficient software, see e.g. [5, 10, 25]. For larger dimensions, stan-
dard multivariate numerical integration software, like ADAPT [11] or DCUHRE
[2], can be applied but their accuracy usually suffers from the fact that the infi-
nite integration limits need to be transformed or cut off. Moreover, they do not
take advantage of the special form of the integrand.

Instead, Genz [9] proposed a simple sequence of transformations of the mul-
tivariate normal distribution function which reduces the dimension by one and
places the problem to the unit square. One obtains

Φ(A,b) = e1

∫
[0,1]d−1

d∏
i=2

ei(w1, . . . , wi−1) dw (12)

with

ei(w1, . . . , wi−1) = Φ((bi −
i−1∑
j=1

cijΦ−1(wj ej))/cii)

where Φ(x) denotes the standard univariate normal distribution function and
cij the entries of the Cholesky decomposition CCT of the matrix A.

This way, the convergence of standard numerical integration software can be
significantly accelerated. Usually, the computation time can be further reduced
if the variables are reordered such that the variables associated with the largest
integration intervals are the innermost variables. The standard univariate nor-
mal distribution function and its inverse can efficiently and up to high accuracy
be computed by a Moro [23] scheme.

For the computation of the integral in (12), standard deterministic inte-
gration methods such as quasi-Monte Carlo methods, product or sparse grid
integration can be used. Quasi-Monte Carlo methods in the context of prob-
lems from mathematical finance are discussed in detail in Acworth et al. [1] and
Glasserman [14]. More information about product integration can be found in
Davis and Rabinowitz [4]. The sparse grid approach is based on Gerstner and
Griebel [12].

6 Numerical Results

In this Section we present numerical examples to illustrate the performance
of our approach to price performance-dependent options using Theorem 4.4.
In particular, we compare the efficiency of our algorithm to the direct pricing
approach of (quasi-)Monte Carlo simulation of the expected payoff (4).

We consider a reduced Black-Scholes market with n = 30 assets and d = 5
processes. This setting corresponds, e.g., to the case of a performance-dependent
option which includes the performance of all companies of the German stock in-
dex DAX in its payoff profile. We investigate the four different choices according
to the Examples 2.1 – 2.4 from Section 2 for the bonus factors aR in the payoff
function (1). Throughout this Section we use the following model parameters:
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Example V (S1(0), 0) Discount ] Int Dim STD QMC P SG
2.1 14.4995 - 1 1 1.1 - - -
2.2 12.9115 10.95% 41 2 0.58 0.88 1.45 1.55
2.3 1.8774 87.05% 31 5 0.6 1.1 0.27 1.87
2.4 8.6024 40.67% 38 3 0.52 1.3 0.89 1.54

Table 1: Option prices, discounts compared to the corresponding plain vanilla
option, intrinsic dimensions and convergence rates of the different numerical
approaches for the considered examples.

K = 100, S1(0) = 100, T = 1, r = 5% and σ being a 30 × 5 volatility matrix
whose entries are uniformly distributed in [−1/d, 1/d]. The computations were
performed on a dual Intel(R) Xeon(TM) CPU 3.06GHz workstation.

In the performance-independent case of Example 2.1, an analytical solution
is readily obtained by the Black-Scholes formula. In all other cases, we com-
puted reference values for the option price on a very fine integration grid as a
benchmark value to compare the efficiency of the different pricing approaches.

The prices of the performance-dependent options from the Examples 2.1–2.4
are displayed in the second column of Table 1. In principle, all bonus schemes
described above could be hedged by the plain vanilla option in Example 2.1.
The differences of the prices of the performance-dependent options (yielding
the accurate value) and the corresponding plain vanilla options are displayed
in the third column of Table 1. We see that the usage of plain vanilla options
substantially (up to 87 %) overestimates the fair values of the bonus schemes.
As explained in Section 4.4, the complexity and dimensionality of our formula is
often substantially reduced depending on the choice of the bonus factors. The
number (] Int) and the maximum dimension (Dim) of normal distributions which
have to be computed in the Examples 2.1–2.4 are displayed in the fourth and fifth
column of Table 1. One can see that the number of required normal distributions
is substantially lower than the theoretical bound (7) which is 174, 437 for these
examples. The maximum dimension varies from one to the nominal dimension
five depending on the specific example.

In the last four columns of Table 1, the estimated asymptotic convergence
rates are listed for four different schemes. In the standard approach denoted by
STD, we used quasi-Monte Carlo integration to simulate the expected payoff
(4). In the other three cases, the option prices were computed with the formula
from Theorem 4.4. For the approximation of the normal distributions, we used
the following integration schemes from Section 5:

• Quasi-Monte Carlo integration based on Sobol point sets (QMC),

• Product integration based on the Clenshaw-Curtis rule (P),

• Sparse grid integration based on the Clenshaw-Curtis rule (SG).

The convergence behaviour of the four different approaches STD, QMC, P and
SG to price the performance-dependent options from the Examples 2.2 – 2.4 are
displayed in Figure 4. There, the time is displayed which is needed to obtain
a given accuracy. In the special case of Example 2.1, the application of The-
orem 4.4 combined with the transformation (12) automatically reduces to the
analytical solution given by the Black-Scholes formula with variance σ̄1. The
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exact solution up to machine precision is obtained in about 4.7 seconds by all
integration schemes (QMC, P, SG). This is the time which is needed in the setup
step of our algorithm to compute all vertices v and all weights cv. In the same
time, the STD approach approximates the solution up to an error of 1e − 03.
One can see that a simulation of the expected payoff (STD) performs similarly
in all examples. Low accuracies are quickly achieved, the convergence rate is
slow, though. The rate is about 0.6 in all examples and thus lower than one,
as may be expected. The integration scheme suffers under the irregularity of
the integrand which is highly discontinuous and not of bounded variation. The
QMC scheme clearly outperforms the STD approach in all examples. It exhibits
a convergence rate of about one and leads to much smaller errors after the setup
time of 4.7 seconds. In contrast to the two previous approaches, the product
integration approach (P) exhibits a high dependency on the specific example.
While it performs very well in the Examples 2.1 and 2.2 it only converges with
a rate of 0.27 in Example 2.3. Here, the curse of dimension, under which the
product approach suffers, is clearly visible. While the intrinsic dimensions of
Examples 2.1 and 2.2 are only one and two, respectively, the intrinsic dimension
of Example 2.3 is five and, thus, equal to the nominal dimension. The combina-
tion of sparse grid integration with our pricing formula (SG) leads to the best
convergence rates. The curse of dimension can be broken to some extent, while
the favorable accuracy of the product approach is maintained. It is the most
efficient scheme for the Examples 2.1, 2.2 and 2.4. However, for higher dimen-
sional problems as Example 2.3, this advantage is only visible if very accurate
solutions are required. In the preasymptotic regime, the QMC scheme leads to
smaller errors.

7 Conclusions

In this paper, we presented several approaches for the valuation of performance-
dependent options in a Black-Scholes framework. The price of a such an option
depends on the joint distribution of all stock prices in the benchmark. Thus,
its valuation must be regarded as a high-dimensional integration problem.

As an alternative to a direct integration of the payoff we presented two
analytical pricing formulas which involve the evaluation of several cumulative
normal distribution functions. The pricing formula for the full model is useful in
case of small benchmarks. It suffers, however, under a very high complexity and
dimensionality if a larger number of benchmark companies are considered. Using
novel tools from computational geometry we derived a more general formula for
reduced models which incorporate less stochastic processes than companies and
can be used for larger benchmarks as well.

In numerical examples we demonstrated for different typical bonus schemes
that our pricing approach outperforms standard methods even for large bench-
marks which may include as much as n = 30 companies and d = 5 stochastic
processes. Thereby several deterministic integration methods were compared re-
garding their efficiency. Furthermore, for specific bonus schemes (11) we showed
that, independently of n and d, the pricing problem can be analytically reduced
to a sum of two-dimensional normal distributions.

An additional advantage of our approach compared to standard Monte Carlo
pricing is given by the fact that option price sensitivities can be obtained by
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analytical differentiation of the pricing formulas. The computation of the Greek
letters can thus be integrated in the valuation algorithm without much addi-
tional effort.

Let us finally remark that we restricted ourselves to payoff profiles which
depend on relative performance comparisons to a specific benchmark. Payoff
profiles which include absolute performance criteria, e.g., performance com-
parisons with different strike prices, can also be included. The corresponding
valuation formulas then include weighted sums of gap option prices.
Acknowledgement: The authors wish to thank Ralf Korn, Kaiserslautern, for
the introduction to this interesting problem and for his help with the derivation
of the pricing formulas.
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Figure 4: Errors and timings of the different numerical approaches to price
the performance-dependent options of Examples 2.2 (top), 2.3 (middle) and 2.4
(bottom).
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