
Computing and Visualization in Science manuscript No.
(will be inserted by the editor)

Photorealistic Visualization and Fluid Animation -
Coupling of Maya with a Two-Phase Navier-Stokes Fluid Solver

Peter Zaspel · Michael Griebel

Received: date / Accepted: date

Abstract We have coupled the three-dimensional solver for
the two-phase incompressible Navier-Stokes equations
NaSt3DGPF with Autodesk Maya. Maya is the industry stan-
dard software framework for the creation of three-dimensio-
nal animations. The parallel level-set-based fluid solver
NaSt3DGPF simulates the interaction of two fluids like air
and water. It uses high-order finite difference discretization
methods that are designed for physics applications. By cou-
pling both applications, we are now able to set up scientific
fluid simulations in an easy-to-use user interface. Moreover,
the rendering techniques provided by Maya allow us to cre-
ate photorealistic visualizations for computational fluid dy-
namics problems and support the creation of highly visu-
ally realistic fluid simulations for animation movies. Alto-
gether, we obtain an easy usable and fully coupled fluid an-
imation toolkit for two-phase fluid simulations. These are
the first published results of the full integration of a physics-
oriented, high-order grid-based parallel two-phase fluid sol-
ver in Maya, at least to our knowledge.

Keywords Photorealistic visualization · computational
fluid dynamics · user interface · multi-phase flows · water ·
animation

P. Zaspel
Institute for Numerical Simulation
University of Bonn, Germany
Tel.: +49-228-732748
Fax.: +49-228-737527
E-mail: zaspel@ins.uni-bonn.de

M. Griebel
Institute for Numerical Simulation
University of Bonn, Germany
Tel.: +49-228-733437
Fax.: +49-228-737527
E-mail: griebel@ins.uni-bonn.de

1 Introduction

Publishing research results for a broader community has al-
ways been a challenging task. Thus, in the domain of sci-
entific visualization, we are interested in giving scientists an
easy understandable representation of computational results.
Let us exemplify this for this paper in the domain of com-
putational fluid dynamics (CFD) or even more specific for
liquid or two-phase fluid simulations with two interacting
fluids like air and water. Standard applications for scientific
visualization in CFD allow us to represent vector fields by
glyphs and scalar fields by colored cut planes, isosurfaces or
volume rendering. However, these representations are often
still too detailed or complicated to illustrate research results
to a broader community of non-scientists. This is why pho-
torealistic visualizations (see Figure 1) may be used since
people’s visual reception practice is much better adapted to
this kind of representation. Furthermore, we see that doc-
umentaries, commercials or popular journals increasingly
create and use fluid simulations to transport their informa-
tion or message. Obviously, the viewer is interested to see
visually realistic animations/pictures with a high grade of
physical accuracy. Consequently, we are now looking for a
fluid simulation tool which is easy usable for everybody, has
a high grade of physical realism and can create photorealis-
tic visualizations.

There has been a broad development of research CFD
codes specifically for animation and visualization oriented
applications. Here, most grid-based fluid simulation engines
model fluid behavior by the well-known three-dimensional
incompressible Navier-Stokes equations. This approach was
initially introduced to the computer animation community
by Foster and Metaxas [13,14]. They discretized the equa-
tions using the finite difference approach on a staggered uni-
form grid. In [13], they especially focused on a one-phase
fluid body with an additional free surface to obtain an ani-

2

Fig. 1 Photorealistic visualizations facilitate the interpretation and comprehension of two-phase fluid simulations for non-scientists.

mation of a liquid including its surface. Furthermore, Stam
[30] introduced semi-Lagrangian time advection schemes
into fluid animation which resulted in stable simulations with
large time steps, but with a considerably increased numerical
diffusion. This issue of numerical diffusion was addressed
in a wide number of publications by [10,29,28]. Foster and
Fedkiw [12] as well as Enright et al. [9] combined the free
surface representation by a level-set function with massless
particles. This resulted in the particle level-set function
which gave an improved liquid surface appearance and a
better mass conservation. Enright et al. [8] used the fifth-
order Weighted Essentially Non-Oscillatory scheme to dis-
cretize the level-set advection and reinitialization. Later on,
several authors [19,24,22,25] covered the topic of visual
improvements by adding particles. Kang et al. [20] were
among the first to develop a two-phase Navier-Stokes solver
for the computer graphics community which simulates two
fluids like air and water at the same time. This approach
leads to an improved realism, as the true interaction of the air
and the water can be reproduced. Technically, they applied
the Ghost Fluid method [11], to capture a discontinuous
density jump, and the level-set method for the free surface
representation with a third order ENO scheme to compute
the transport term. Additional developments can be found
in [32,18,23,25,22]. Furthermore, there is a wide variety of
engineering- or numerics-oriented CFD literature. Here, we
do not go into further details to be concise. However, even
though the latest CFD research codes use strong numerical
methods, there are no publications on their integration into
an easy usable graphical animation interface.

On the other hand, standard engineering CFD packages
like Ansys CFD, FLUENT or Comsol Multiphysics allow us
to create fluid simulations using advanced CFD solvers in
a graphical user interface. They can also generate scientific
visualizations. Ansys CFD can even produce some sort of
animations. But in general, these user interfaces are very

complex and thus might not be suitable for e.g. documen-
tary production. One can also use animation software from
the computer graphics market, which sometimes provides
easy-to-use fluid simulation integrations and supports the
generation of photorealistic renderings. The industry stan-
dard software in this domain is Autodesk Maya. Here, Maya
Fluids and Glu3d are fluid animation extensions that can
be directly integrated into Maya. Additionally the RealFlow
toolkit supports Maya. These fluid animation extensions use
particle-based approaches like the Smoothed Particle Hy-
drodynamics (SPH) methods introduced by Monaghan [26].
Autodesk Softimage also has particle-based incompressible
fluids. Thürey [33] integrated a different technique using a
Lattice-Boltzmann fluid solver in the Open Source alterna-
tive for Maya, called Blender. Particle methods and Lattice-
Boltzmann-like methods are fast but often physically not
very accurate. Higher order grid-based fluid solvers at high
resolutions typically outperform these other methods when
it comes to visual and physical realism. The animation soft-
ware toolkit Houdini allows to simulate liquids with a grid-
base level-set method, which is an advanced technique. How-
ever, it is not perfectly clear which numerical methods it
uses to simulate liquids. Consequently it might not be a good
choice for scientific applications. Altogether, no existing
software package fulfills our requirements.

This is why we now present a coupling of the three-
dimensional two-phase solver for the incompressible Navier-
Stokes equations NaSt3DGPF with Autodesk Maya. The
fluid solver NaSt3DGPF was originally developed for phy-
sics applications such as the simulation of water ways [4],
droplet deformations [5], flows through porous media [34]
or coating processes. It uses the level-set method to distin-
guish the two fluid phases and WENO/ENO schemes for
high-order level-set and velocity transport space discretiza-
tions and improved mass conservation, see [5]. Consequent-

3

ly, the solver is optimized for high accuracy of the approxi-
mated Navier-Stokes solution.

As a result of the proposed coupling the whole produc-
tion pipeline for the creation of fluid simulations includ-
ing photorealistic visualizations can now be controlled from
within Maya’s three-dimensional user interface which is
easy usable for a broader community. Furthermore, since
Maya is the industry standard for digital artists in movie
production, we imagine not just to apply our coupling for
visualization and a facilitated simulation setup but to use it
for classical fluid animation or even fluid special effects. The
applied fluid solver is able to compete with most of the latest
CFD codes for movie production and even overcomes their
functionality e.g. in the domain of the application of WENO
schemes even for convective terms.

The contributions of this article are as follows:

– One can now set up high quality fluid simulations from
within an easy-to-use three-dimensional user interface

– Photorealistic visualizations can be created for fluid sim-
ulations computed by NaSt3DGPF. This greatly facil-
itates the explanation of CFD research results to non-
scientists.

– We present the successful coupling of a physics-oriented
research software code and an industrial standard soft-
ware computer graphics animation framework.

– To our knowledge, the first integration of a parallel grid-
based truly two-phase solver for the three-dimensional
Navier-Stokes equations in Autodesk Maya is achieved.

– Digital artists can now use Maya to create two-phase
flow simulations with high visual realism and numerical
accuracy.

The remainder of this article is organized as follows.
In Section 2 we present our two-phase solver for the in-
compressible Navier-Stokes equations. This includes a short
summary of the model equations and the numerical solution
methods. Section 3 briefly introduces the application frame-
work of Autodesk Maya as well as its programming inter-
face. In Section 4 we describe and discuss the details of our
coupling and sketch some ideas of the implemented compo-
nents. Section 5 shows visualization and animation results
that were created using our coupling. Section 6 concludes
the main ideas of this article and gives a short outlook on
future work.

2 NaSt3DGPF - A solver for the 3D two-phase
Navier-Stokes equations

2.1 Model equations

The model equations for two-phase incompressible flows
with surface tension in NaSt3DGPF (see [31,7,5]) are based

on on the Navier-Stokes equations. Following the notation
of Croce et al. [5], they can be expressed by the momentum
equation

ρ(φ)
Du
Dt

+∇p = ∇ · (µ(φ)S)−σκ(φ)δ (φ)∇φ +ρ(φ)g (1)

and the continuity equation

∇ ·u = 0 . (2)

Here, the fluid velocity u and pressure p are time- and space-
dependent with the material derivative Du

Dt := ∂tu+(u ·∇)u.
Volume forces are given as g. By introducing the level-set
function φ , here a signed distance function with

φ(x, t)

< 0 if x ∈Ω1
= 0 if x ∈ Γf
> 0 if x ∈Ω2

and |∇φ |= 1 ,

we can formulate a domain-dependent fluid density ρ and
viscosity µ for two fluid phases Ω1 and Ω2 by

ρ(φ) := ρ2 +(ρ1−ρ2)H(φ)

µ(φ) := µ2 +(µ1−µ2)H(φ)
, H(φ) :=

0 if φ < 0
1
2 if φ = 0
1 if φ > 0 .

Thus, the free surface Γf (e.g. the water surface) is mod-
eled discretely by Γf (t) = {x : φ(x, t) = 0}. It is thus given
implicitly as isosurface for the zero level-set of φ . The cur-
vature κ of the free surface, the surface tension coefficient
σ and the Dirac functional δ are included in the surface ten-
sion force term which is based on the Continuum Surface
Force (CSF) scheme. The tensor S in the diffusion term is
given by S := ∇u+ {∇u}T . Interested readers are referred
to [5] and [7] for more detailed introductions to the above
model equations.

2.2 Numerical solution techniques

In the solver NaSt3DGPF, the two-phase Navier-Stokes
equations are discretized with the finite difference method
on a staggered uniform grid. For a coupled solution of the
momentum equation (1) and the continuity equation (2) over
time, the projection approach introduced by Chorin [1] is
applied. The method starts by a time discretization of the
momentum equation with a skipped pressure gradient term.
This allows us to compute a velocity field for a new time
step. To enforce incompressibility, i.e. to satisfy the continu-
ity equation, a pressure Poisson equation is solved. Finally
a pressure correction is added to the velocity field which re-
moves the divergence as required by equation (2).

The outlined method is combined with a level-set trans-
port mechanism to get a full simulation for two-phase flows.
A sketch of the resulting solution approach is given by the
following time-discrete algorithm:

4

For each computational time step n with step size δ t do:

1. compute intermediate velocity field u∗

u∗−un

δ t
= −(un ·∇)un +g

+
1

ρ(φ n)
∇ · (µ(φ n)Sn)

− 1
ρ(φ n)

σκ(φ n)δ (φ n)∇φ
n

2. transport level set function

φ
∗ = φ

n−δ t (un ·∇φ
n)

3. reinitialize level set function by solving

∂τ d + sign(φ ∗)(|∇d|−1) = 0, d0 = φ
∗

4. solve the pressure Poisson equation with φ n+1 = d

∇ ·
(

δ t
ρ(φ n+1)

∇pn+1
)
= ∇ ·u∗

5. apply velocity correction

un+1 = u∗− δ t
ρ(φ n+1)

∇pn+1

Note that this algorithm only demonstrates the method
for the case of a first-order Euler time discretization. In our
implementation of the solver, time discretization methods
of second or third order such as the Adams-Bashforth or the
Runge-Kutta method are used. Space discretizations of the
convective terms are done using fifth-order WENO, ENO or
VONOS schemes. The simulation code provides a Jacobi-
preconditioned BiCGStab solver and an algebraic multi-grid
solver [16] for the linear system of the discretized Poisson
equation.

A crucial part of the level-set method lies in the con-
servation of the distance property |∇φ | = 1. Unfortunately
this property is disturbed after the transport of the level-set
function in step 2 of the algorithm. This is why a so-called
reinitialization of the level-set function is performed in step
3. Here, a partial differential equation of Hamilton-Jacobi
type is numerically solved in artificial time τ to recover the
distance property.

The fluid solver NaSt3DGPF is able to perform simula-
tions in user-defined geometries with arbitrarily shaped ob-
stacles. A flag technique is used to mark solid computation
cells and to apply appropriate boundary conditions on the
resulting obstacles.

A major strength of the fluid solver is its parallelization.
On can perform simulations on large clusters of worksta-
tions or on supercomputers. For that, the domain decom-
position approach of Schwarz is used. Its basic idea is to
divide the computational domain into parts that can be pro-
cessed independently on a parallel computer. Furthermore,
some boundary data must be exchanged between the proces-

sors, if needed. The implementation of the solver is based on
C++ and uses the Message Passing Interface (MPI) as par-
allelization framework.

Other features of NaSt3DGPF include a large-eddy tur-
bulence model of Smagorinsky, passive transport of species
and the simulation of energy (thus temperature) based on the
Boussinesq approximation [7].

2.3 User interface of the original solver

To better understand the requirements for a coupling be-
tween Maya and the fluid solver, we need to characterize
the user interface of NaSt3DGPF. The original fluid simula-
tor comes with a command line interface. It uses text-based
configuration files that describe simulation parameters. The
overall geometry of a scene is either defined by basic geo-
metric objects like boxes/spheres that can be combined with
Boolean operations or by pre-discretized geometric objects.
The latter are given in external files: To perform the flag-
ging for solid objects, boundaries or initial conditions for
the fluids in the discretization grid, a Boolean value per cell
is saved. The value indicates, whether the cell is inside or
outside the geometric object. This type of discretization is
often called voxelization in computer graphics.

A preprocessor of NaSt3DGPF generates the necessary
three-dimensional data fields from the configuration files,
which are then used as initial conditions for the parallel sol-
ver. During the solution process, a subset of the raw simula-
tion data can be written to data files for given computational
time steps.

After completion of a calculation, the saved raw simu-
lation data of the original fluid solver can be post-processed
and transformed to data formats used by visualization appli-
cations like Paraview and Tecplot. These applications allow
scientific visualizations.

3 Autodesk Maya - A software framework for computer
animation

Maya is a well-known software framework for the creation
of computer-generated images and animations. It has a user
interface for the interactive construction of three-dimensio-
nal scenes. Geometrical objects, which are described by pol-
ygonal meshes or NURBS, can be modeled and animated in
various ways. Textures or materials are applied to the ob-
jects’ surfaces to define their appearance. Different sorts of
lights create a realistic illumination of the scene. Cameras
can be placed, as if it would be a real film set. The final
images are created by a renderer like Mental Ray, which is
supplied with Maya.

5

3.1 Base components

Following the description in [15], the software framework
of Maya is composed of three layers:

1. the graphical user interface
2. the script interpreter
3. the dependency graph

Each action in the user interface is directly translated to a
script command. Maya uses its own scripting language, the
Maya Embedded Language (MEL). The script interpreter
handles all these commands. Most of the commands are de-
signed to modify the dependency graph, which is the low-
level representation of the animation scene. Each shape, ob-
ject, material, camera, geometrical transformation, etc. is
described by a single node in the graph. By connecting these
nodes one can set up an arbitrarily complex three-dimensio-
nal scene.

3.2 Developer framework

There are two main concepts to extend the functionality of
Maya: scripting and plugins.

Scripting was originally based on the script language
MEL. During the last years Python has also been included
as script language. It now gains more and more importance
for Maya developers. The whole user interface is based on
scripting and extending Maya with new menus, windows,
etc. can be also done with scripts. In addition to this, scripts
help to automatize recurring actions.

Plugins collect extensions that are implemented based
on a C++ application programming interface (API) for Maya.
The API allows writing new nodes for the dependency graph
and thus is a powerful way to extend the core functional-
ities. Additionally one can implement new so-called com-
mands for the MEL language that are basically C++ func-
tions which allow dependency graph modifications. Precom-
piled plugins are used to distribute commercial extensions
for Maya.

4 Coupling Maya and NaSt3DGPF

By coupling Maya with NaSt3DGPF, one is able to control
the full fluid simulation pipeline from within Maya’s user
interface. In this section, we will outline this coupling. After
sketching the broad idea of the designed workflow within
Maya, we give a deeper insight into the implemented soft-
ware components and point out some of the details. We end
with a short design discussion.

M
ay

a

Configuration Extension

3D Scene

Extension for Time-Dependent
Meshes

N
aSt3D

G
PF

3D Solver

Isosurface Extraction

Fluid Surface as Polygonal Meshes

Scene Description

Fig. 2 The necessary components for a coupling between Maya and
NaSt3DGPF (new components are highlighted in yellow)

4.1 Workflow

At the beginning of the animation process, the user selects
a simulation domain which is shaped like a rectangular box.
Arbitrary geometrical objects, given by polygonal meshes,
can then be placed inside this domain. They are included
as solid obstacles in the fluid simulation after a selection
and application of the appropriate menu option. Fluid ob-
jects are defined in the same way. Boundary conditions like
inflow-/ outflow-regions or slip-/noslip-boundaries are ap-
plied by selecting the designated areas with a special geo-
metrical object. Most of the fluid solver parameters, includ-
ing density, viscosity, gravity or grid resolution can be ac-
cessed by dialog controls. Furthermore, all necessary param-
eters for a standard air-water-simulation are already preset.
The fluid solver application is launched by a menu option.
Necessary discretizations/voxelizations of geometry objects
are performed fully-automatic in the background. During
the solution process, the solver generates polygonal meshes
of the free surface between the fluid phases (e.g. the water
surface) for a specified animation frame rate. They are then
automatically loaded back into Maya. The last step of the
fluid animation pipeline is a photorealistic rendering of the
free surface meshes.

4.2 Necessary components

Based on the outlined workflow and the description of the
user interface of NaSt3DGPF in Section 2.3, one can now
more rigorously formulate the components that are neces-
sary for the coupling of Maya and the fluid solver. We need
a configuration extension for the graphical user interface of
Maya which allows setting up the fluid simulation and which
creates a scene description for the fluid solver. Additionally
an isosurface extraction extension for NaSt3DGPF is neces-
sary. As part of the simulation algorithm, it computes the
appropriate polygonal meshes of the fluid surface for the
computational time steps in the simulation that will be used
as animation frames. Finally, Maya needs an extension for

6

Fig. 3 Small part of the attribute editor template shown on the right-
hand side of Maya’s user interface after selecting the graphical repre-
sentation of the SimulationArea node

time-dependent meshes which automatically loads appropri-
ate meshes based on a given animation frame number. Fig-
ure 2 sums up the above mentioned components.

4.3 Configuration extension

Functionally speaking, the configuration extension has to
represent the parameters of a fluid simulation scene in some
graphical and easily usable way. Additionally it is neces-
sary to convert this representation into data known by NaSt-
3DGPF.

4.3.1 Data representation

We use Maya dependency graph nodes to represent the data
structures which collect the fluid simulation parameters.
There is one main node, the SimulationArea node,
which contains the most important parameters of a simu-
lation as e.g. the grid resolution, domain sizes, viscosities
and densities of the two simulated fluids, volume forces and
numerical methods for time and space discretizations with
appropriate preset values.

In addition, there are nodes, which are attached to polyg-
onal objects, that define the representation of this object in
the fluid simulation scene. By attaching a Simulation-
SolidShape node to a polygonal mesh, the shape of the
mesh is used as solid obstacle in the fluid simulation. The
node stores the boundary conditions which will be applied to
the obstacle. On the other hand, the SimulationFluid-
Shape node allows the use of a mesh as initial fluid shape
(e.g. a sphere represents the initial shape of a liquid drop)
and collects parameters as the initial velocity of the fluid,
the fluid type or the initial pressure.

Finally, inflow boundary conditions (i.e. Dirichlet bound-
ary conditions) and outflow boundary conditions (i.e. Neu-
mann boundary conditions) are represented by the Simu-

Fig. 4 Graphical representation of the SimulationArea node in
the three-dimensional scene. An inflow boundary is attached to the
right-hand side of the simulation domain.

lationInflowBoundary node and the Simulation-
InOutBoundary node which store e.g. the location and
(in the case of an inflow boundary) the inflow velocities. We
also allow the setup of arbitrarily shaped inflow boundaries
(i.e. not only rectangular inflows) by intersecting a plane
of the special SimulationCustomInflowBoundary
node with a polygonal shape, which will be explained fur-
ther in paragraph 4.3.3.

All the above mentioned nodes have some sort of graph-
ical representation in Maya. While they all have a so-called
attribute editor template (see Figure 3) which is basically
a property dialog sheet that allows the easy modification of
the node’s data, some of them also have an actual shape in
the three-dimensional scene representation. The Simula-
tionArea is thus represented by a rectangular box in the
scene, which can be resized with the mouse. Nodes for the
inflow / outflow boundary conditions are also represented by
resizable rectangular shapes (see Figure 4).

4.3.2 Converter for fluid simulation data

The conversion process between the simulation data in Maya
and the representation for NaSt3DGPF is performed in a sin-
gle Maya command. It basically reads the data of all the rel-
evant nodes and creates geometrical information from the
graphical description of the fluid simulation. We have cho-
sen to pre-discretize, thus to voxelize, all the fluid/solid ge-
ometries and the geometry of the inflow/outflow boundaries.
The output of the conversion process is an ASCII file in the
scene description format of NaSt3DGPF and several files
which represent the voxelized geometries (see Figure 5).
Note that the conversion method checks each parameter for
valid input ranges such that non-functional configurations
are in general prevented or corrected before a simulation is
computed.

7

Maya

Configuration File
scene.nav

Geometry Files

NaSt3DGPF

Scene Description

Fig. 5 A full scene description for NaSt3DGPF is composed of an
ASCII configuration file and several files containing voxelized geome-
tries.

Fig. 6 Example of a low-resolution voxelization (right-hand side) of a
sphere geometry based on a polygonal mesh (left-hand side)

The voxelization was implemented directly on top of
the Maya API. Here, we apply the existing ray intersection
framework of Maya and use, in contrast to methods pre-
sented by Kaufman and Décoret [21,6], the classical vox-
elization approach to count ray intersections: It is well-
known that, given a closed polyhedron, one can detect from
a given point in space whether this point lies inside or out-
side of the polyhedron by counting ray intersections. If a
ray from this point has an uneven number of intersections
with the polyhedron, it lies inside, otherwise it is outside.
As pre-build geometries (i.e. geometries from large geome-
try databases) are often not fully watertight we cast several
rays per cell in random directions and use majority decision
to find out whether this cell is inside a polygonal mesh or
outside. In Figure 6 one can find a low-resolution voxeliza-
tion example.

4.3.3 Inflow boundaries for two-phase flows

At this point, we would like to highlight one quite technical
feature which is representative for the challenges we faced
during the implementation: The correct realization of inflow
boundaries in two-phase fluid simulations. As mentioned
previously, we allow the user to define inflow boundaries us-
ing a SimulationInflowBoundary node. The graphi-
cal representation of this node is an axis parallel plane which
can be arbitrarily placed either at the boundaries of the sim-
ulation domain or on solid obstacles. Inflows are mathemat-

Fig. 7 Profile of a boundary cell definition for single-phase inflows
(left-hand side) and a first attempt to define a liquid inflow in domain
filled with gas (right-hand side). The liquid phase is shaded blue, the
gas phase is white. Solid cells have a line pattern and inflow cells are
marked by an arrow.

ically defined by Dirichlet boundary conditions on the solid
boundary cells which effectively set a (fixed) velocity, the
inflow velocity, for these cells. Figure 7 shows this on the
left-hand side for the profile of a rectangular inflow bound-
ary for the case of a single-phase flow simulation. Here,
solid simulation cells are shaded with a line pattern. Cells
with a Dirichlet boundary condition are indicated by an ar-
row.

Let us now assume that we would like to define a liquid
inflow, while the remaining domain is in the gas phase. Con-
sequently, we have to make sure, that the inflow boundary is
actually in the liquid phase. This can be accomplished by
the configuration shown on the right-hand side of Figure 7.
The blue cells are in the liquid phase while the white cells
are in the gas phase. We have to set the non-solid cell layer
in front of the Dirichlet boundary cells to the liquid phase
since we would otherwise just define an inflow condition for
the (white) gas phase.

Using this definition of a two-phase inflow boundary in
connection with gravity forces pointing from the top of the
figure to the bottom would result in liquid inflow boundary
which would vanish over time. A reason for this lies in the
gravity-based transport of the liquid phase: It moves down.
Consequently, the inflow boundary is no longer covered by
the one-cell layer liquid phase and thus becomes an inflow
boundary for the gas phase. This drawback is common to
all grid-based level-set implementations of two-phase flow
simulations, which do not explicitly overwrite the cell layer
in front of the Dirichlet boundary cells for each time step.
However, such an approach could cause mass balance prob-
lems.

Our way to overcome this issue is based on a fixation
of the level-set values around the inflow boundary. Figure 8
outlines this approach. On the left-hand side of the figure,
one can now observe solid cells at the boundaries of the in-
flow region. The right-hand side of the figure presents the
front view of the rectangular inflow. Here, one can clearly
see our approach: An inner boundary cell layer around the

8

Fig. 8 Modified version of of the inflow boundary (left-hand side: pro-
file view, right-hand side: front view). The inflow is now stabilized and
will no longer vanish based on gravitational forces.

inflow region is now set as solid cells in the liquid phase. The
outer cell layer is composed by solid cells which are flagged
as gas cells. By this construction, we are able to stabilize the
inflow boundary.

In the more general case of arbitrarily shaped inflow
boundaries, the graphical representation of the Simula-
tionCustomInflowBoundary, which is a customly
placed and rotated plane, will be intersected with an arbi-
trary polygonal object. The cut plane between both objects
becomes the inflow boundary. It can be defined by voxeliz-
ing the polygonal object along the inflow plane, see Figure 9
for an example showing a voxelization of a cylinder along a
non-axis-aligned plane. An appropriate inflow boundary for
such a non-planar inflow is suggested in Figure 10 which
has on the left-hand side a simplified version of the problem
and on the right-hand side an appropriate cell configuration
for the solver. Note that we have to use here a double-layer
of liquid cells since we need at least one liquid fluid cell
at the thinnest part of the inflow in the plane surface normal
direction. While defining stabilizing solid cells for rectangu-
lar inflows is quite easy, it is not as simple for a voxelized,
rotated cut-plane with an arbitrary shape. The quite techni-
cal details of this task are however beyond the scope of this
paper and might be described elsewhere. A successful real-
ization of a circular inflow to a tank of water is presented in
Figure 1.

4.4 Isosurface extraction

In the original version of the fluid solver NaSt3DGPF, the
state of the simulation is saved in a binary data file for a
subset of the computational time steps. These binary files,
each describing one time step, are converted to a visualiza-
tion file format and finally one can visualize e.g. the free
surface in a program like Paraview. The drawback of this
approach for fluid animation and photorealistic visualization
is evident: Binary data files for full high-resolution three-
dimensional simulations often take hundreds of megabytes
just for one time step. If one simulates a longer period of
time, the required disk space grows dramatically and reaches

Fig. 9 A voxelization along a plane through a polygonal object (here:
a cylinder) is used to construct arbitrarily shaped inflow boundaries.

Fig. 10 Left-hand side: The red line is the 2D-version of the inflow
plane of the SimulationCustomInflowBoundary. The gray
shaded object is the polygonal mesh which is used to define the ac-
tual inflow region as cut plane. Right-hand side: This is the required
cell configuration for a stabilized two-phase inflow.

tens or even hundreds of gigabytes. Additionally, storing bi-
nary files and converting them to a second format later on to
create a visualization even doubles the necessary disk space.

This is why we now only store the kind of data that
we really need for our visualizations: This is the free sur-
face as polygonal mesh. Thus, instead of three-dimensional
flow data, only the two-dimensional surface data needs to be
stored for each animation frame. This results in a substantial
reduction in storage. Consequently, we have implemented
an isosurface extraction method into the fluid solver which
writes polygonal meshes during the fluid simulation. To this
end, we employ the well-known Marching Cubes algorithm
of Cline and Lorensen [2] in the improved version described
by Montani et al. in [27]. As output file format we utilize the
well-known Wavefront OBJ format for polygonal meshes.

One nice property of the Marching Cubes algorithm is
that it is highly parallel. We thus can perform the isosur-
face extraction in parallel for each subdomain of the par-
allelized fluid solver without any data communication. It
is even possible to store the extracted surfaces in indepen-
dent files which avoids a parallel data output into one file.

9

We only have to take care of appropriately connecting the
meshes when they are loaded into Maya.

4.5 Extension for time-dependent meshes

Loading the generated fluid surface meshes into Maya is
a non-trivial operation. Here, we face two major difficul-
ties: The still large amount of generated data and the lack of
a light-weight mechanism in Maya to load time-dependent
meshes. Even though we do not store the full three-dimen-
sional fluid simulation data explicitly we still generate a
large amount of high-resolution polygonal meshes over time.
Loading these meshes into Maya at the same time would
normally inhibit an efficient workflow due to the lack of
enough main memory. Even though the existing so-called
proxy in Maya should allow loading only data from storage
when it is necessary, it turned out to be not flexible enough1

in the case of time-dependently loaded meshes in the Wave-
front OBJ format.

We thus implemented our own component to load time-
dependent meshes. From the user’s point of view, there is
now a standard mesh (node), which can be transformed, sca-
led, sharpened, smoothed, etc. like every other mesh. The
only difference is that it loads different mesh geometries
given by Wavefront OBJ files for different time frame num-
bers from the file system. Consequently, we only have one
mesh at a given point of time loaded into memory which
makes this method very light-weight in terms of memory
usage. By doing this, we can also include the reconnection
of the meshes, which were written parallelly into different
files, such that they look like one mesh for the user.

4.6 Design discussion

The design we have chosen to implement the presented cou-
pling is build on three basic principles:

1. Keep the coupling as light-weight as possible.
2. Profit from the strengths of the coupled software pack-

ages.
3. Try to stay as interoperable as possible.

The first principle caused us to use files as interaction base
for both components. One alternative approach can be
achieved by putting the whole fluid simulation code directly
into a Maya plugin. This may facilitate and optimize data
transfers. However, since the fluid solver is also a stand-
alone program, the maintenance of the plugin, which is then
no longer part of the original code trunk, could become a
major issue. Another way to couple both applications can be

1 This is at least valid for the software version of Maya (2011) that
was available during the software development for this paper.

a network data exchange for both applications. The draw-
back of this design would be the largely increased complex-
ity of an appropriate client-server system.

Based on the second principle, we decided to imple-
ment the voxelization inside the Maya user interface and
the free surface extraction inside NaSt3DGPF. As already
mentioned, we could directly profit from the line intersec-
tion framework of Maya for this process. We are aware that
GPU-rasterization-based approaches could be a lot faster
than the applied method. On the other hand, the choice of
doing the free surface extraction was very much driven by
the previously mentioned massive storage requirements of
our simulations. If this would not be a problem, we could
imagine to transfer the volumetric data which could allow
even more interesting fluid effects in Maya based on volu-
metric rendering techniques.

The last principle caused us to stay with more generic
data formats: Obviously, the Wavefront OBJ format is nei-
ther the most efficient nor the most storage space saving
mesh data format. Nevertheless, we also want to be able to
use the mesh extraction mechanism as a stand-alone feature
in the fluid solver. To our knowledge, the OBJ format is very
wide-spreaded in all sorts of animation and rendering toolk-
its. So we can also use several other applications to perform
the actual rendering. Our voxelization data format could also
be optimized by switching to a more sparse representation.
Anyway, we never ran into storage problems for the initial
voxelization data.

5 Visualization and animation results

In the following section, we will present some visualization
and animation results which are based on the proposed cou-
pling of Maya and NaSt3DGPF. This includes results which
point out the easy setup up of highly complex fluid simu-
lations, the strength of our system to create photorealistic
visualizations for physics applications and the application
of the coupling for fluid animation in movie production.

All simulations were performed for a combination of
pure water and air at a temperature of 20◦C. Volume forces
were set to standard gravity. While Autodesk Maya and the
applied renderer Mental Ray run on a single workstation, we
submit the fluid simulation tasks to a compute cluster. The
cluster system consists of 128 compute nodes, each with two
single-core Intel Xeon 3.2 GHz processors and 4-6 GB of
main memory. In practice we normally use up to 64 proces-
sors for single compute tasks. Presented calculation timings
in this section reflect the time necessary for the simulations
on the cluster. The full animation sequences may be seen
in the video accompanying this paper, which is available as
Online Resource 1.

10

Fig. 11 The letters I N S are modeled as a liquid body initial condition.
Over time, they vanish in the water volume and create some waves
(domain size: 10m×4m×6m, resolution: 200×80×120 cells).

5.1 Easy fluid simulation setup

A major advantage of the integration of the fluid simulation
pipeline into Maya is that we are now able to set up fluid an-
imations for highly complex base geometries with just a few
mouse clicks. This is possible since we can use arbitrarily
complex polygonal meshes as fluid and solid geometries.

Our first example outlines the ability of modeling com-
plex fluid initial conditions for the two fluid phases. In this
artificial case, we take the letters I N S as water volumes
which disappear over time in a water tank (see Figure 11).
We defined the liquid tank as a cuboid. It took us a few sec-
onds to model the letters in Maya. The overall simulation
setup can be done in a few minutes. Furthermore, in the sup-
plementary video material, we show the full setup of this
simulation scene to prove the easiness of our approach. We
did compute this simulation of 5 seconds, thus 125 frames
at 8.25 minutes per animated frame on 32 processors for a
quite high resolution.

5.2 Photorealistic visualization of scientific results

We are now able to highlight fluid simulation results for sci-
entific applications in a broadly understandable and visually
clear way. This will help to transport physics simulation re-
sults.

A first example to demonstrate this is the simulation of
a droplet impact: If a drop falls into a basin of water, one
can typically observe a jet of liquid that leaves the water
body after the impact. The NaSt3DGPF solver can simulate
this effect. It is modeled by constructing a water basin and
a water drop that is initial located above the basin. During
the simulation, one can observe the impact and finally the
fully realistic creation of a water jet (see Figure 12). We cre-

Fig. 12 A fully simulated drop impact in a water basin creates a real-
istic liquid jet (domain size: 5.76cm× 3.72cm× 5.76cm, resolution:
180×120×180 cells, drop diameter: 0.576cm).

Fig. 13 A large air bubble in water gets ring-shaped while rising (do-
main size: 20cm×20cm×20cm, resolution: 1003 cells, initial bubble
diameter: 6cm).

ate a visualization with 10x slow motion and a total of 250
frames. The simulation time per frame is about 5.12 minutes
when computed in parallel with 64 processors.

Another interesting two-phase flow problem is the be-
havior of an air bubble in water, cf. [5]. Figure 13 presents
the visualized result. A simulation time of 0.4 seconds, thus
200 animated frames for an animation at 20x slow motion,
can be computed by 32 parallel processes within 5.63 min-
utes per frame.

The last example of a photorealistic visualization of a
scientific research result comes from the domain of water
ways construction, in which the coupled solver was inten-
sively used [4]. Here, we show how water behaves, when it
discharges from a dam construction and pours into a water
basin. The water tank behind the dam construction is ini-
tially filled up and drains over time (see Figure 14). This

11

Fig. 14 Water discharges from a dam construction and pours into a
water basin (domain size: 24m× 14m× 30m, resolution: 120× 70×
150).

Fig. 15 Water flows through an alley splashing against a wall (domain
size: 24m×14m×30m, resolution: 120×70×150).

example is simulated over a time period of 8.5 seconds. We
animate 212 frames with a computation time of 1.05 minutes
per frame using 64 parallel processes.

5.3 Animations for movie production

In our first example for movie animation, we show water
that flows through a small model of an alley. By doing this, it
splashes against a wall. This kind of animation is often used
for special effects in disaster films. In the final animation
(see Figure 15), we use a 4x slow motion for a simulated
time of 1.47 seconds. We thus compute 147 frames with a
calculation time of 5.65 minutes per frame by 64 processes.

The second case study focuses on a breaking wave that
splashes against a lighthouse, cf. [24]. We combine in this
simulation most of our effects: Breaking waves can only
be simulated by high quality fluid simulation engines. The

lighthouse is a complex geometry which can be easily in-
tegrated into the fluid simulation with Maya. We also use
an additional droplet particle system for improved visual
appearance. We create the wave by a water column that is
initially placed at one boundary of the simulation domain.
When the column collapses, it creates a wave that travels
across the domain. The simulated time is 7 seconds, ani-
mated in real-time. We thus get 175 frames. On 64 proces-
sors, it takes us in average 16 minutes to simulate one frame.
In Figure 16 one can observe the realistic development of the
wave and the splash particles. When the wave hits the light-
house, additional splashes are created, which follow the sim-
ulated gas phase velocity field. This makes the results even
more realistic.

6 Conclusions and Future Work

In this paper, we presented the successful coupling of a phy-
sics-oriented fluid solver with an industrial standard anima-
tion software framework. The applied parallel fluid simula-
tor NaSt3DGPF is able to approximate the two-phase Navier-
Stokes equations. A coupling of the solver and Autodesk
Maya includes an easy-to-use interface to set up fluid sim-
ulations in Maya, efficient extensions for the fluid solver
to extract the fluid surface and new components for Maya
to automatically load the data created by NaSt3DGPF for
fluid animation. Consequently, we can set up fluid simu-
lations, create photorealistic fluid visualizations and make
highly physically realistic animations including two-phase
flows available. We also showed a large variety of different
complex fluid visualization results.

In the future, we plan to integrate even more features
of NaSt3DGPF into Maya. The most important one will be
the fluid-structure interaction which was recently developed
in [3]. We also intend to design techniques to control the
fluid during the simulation from within Maya. Another task
is to port parts or even the whole fluid solver NaSt3DGPF
to the GPU, cf. [17]. It is evident that this will speed up the
simulation process a lot. Obviously, the presented system
design can also be adapted to other applications like solid
mechanics or acoustics.

Acknowledgements This work was supported in parts by the Sonder-
forschungsbereich 611 Singular phenomena and scaling in mathema-
tical models funded by the Deutsche Forschungsgemeinschaft.

References

1. Chorin, A.J.: Numerical solution of the Navier-Stokes equations.
Mathematics of Computation 22(104), 745–762 (1968)

2. Cline, H.E., Lorensen, W.E.: Marching cubes: A high
resolution 3d surface construction algorithm. SIG-
GRAPH Comput. Graph. 21(4), 163–169 (1987). DOI
http://doi.acm.org/10.1145/37402.37422

12

Fig. 16 The water wave hits a lighthouse. Splashes are created based on the implemented particle system (domain size: 60m× 12m× 25m,
resolution: 480×96×192 cells, water surface height: 2m).

3. Croce, R.: Numerische Simulation der Interaktion von inkom-
pressiblen Zweiphasenströmungen mit Starrkörpern in drei
Raumdimensionen. PhD thesis (2010)

4. Croce, R., Engel, M., Strybny, J., Thorenz, C.: A parallel 3d free
surface Navier-Stokes solver for high performance computing at
the german waterways administration. In: The 7th Int. Conf. on
Hydroscience and Engineering (ICHE-2006). Philadelphia, USA
(2006)

5. Croce, R., Griebel, M., Schweitzer, M.A.: Numerical simulation
of bubble and droplet-deformation by a level set approach with
surface tension in three dimensions. International Journal for
Numerical Methods in Fluids 62(9), 963–993 (2009). DOI
10.1002/fld.2051

6. Décoret, X., Eisemann, E.: Fast scene voxelization and applica-
tions. In: I3D ’06: Proceedings of the 2006 symposium on Inter-
active 3D graphics and games, pp. 71–78. ACM, New York, NY,
USA (2006). DOI http://doi.acm.org/10.1145/1111411.1111424

7. Dornseifer, T., Griebel, M., Neunhoeffer, T.: Numerical Simula-
tion in Fluid Dynamics, a Practical Introduction. SIAM, Philadel-
phia (1998)

8. Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid parti-
cle level set method for improved interface capturing. J. Comput.
Phys. 183, 83–116 (2002). DOI 10.1006/jcph.2002.7166. URL
http://portal.acm.org/citation.cfm?id=641282.641285

9. Enright, D., Losasso, F., Fedkiw, R.: A fast and accurate semi-
lagrangian particle level set method. Computers and Structures
83, 479–490 (2003)

10. Fedkiw, R., Stam, J., Jensen, H.W.: Visual simulation of
smoke. In: SIGGRAPH 2001: Proceedings of the 28th an-
nual conference on Computer graphics and interactive tech-

niques, pp. 15–22. ACM, New York, NY, USA (2001). DOI
http://doi.acm.org/10.1145/383259.383260

11. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-
oscillatory eulerian approach to interfaces in multimaterial flows
(the ghost fluid method). Journal of Computational Physics
152(2), 457–492 (1999). DOI 10.1006/jcph.1999.6236. URL
http://dx.doi.org/10.1006/jcph.1999.6236

12. Foster, N., Fedkiw, R.: Practical animation of liquids. In:
SIGGRAPH ’01: Proceedings of the 28th annual confer-
ence on Computer graphics and interactive techniques, pp.
23–30. ACM, New York, NY, USA (2001). DOI
http://doi.acm.org/10.1145/383259.383261

13. Foster, N., Metaxas, D.: Realistic animation of liquids. Graphical
models and image processing: GMIP 58(5), 471–483 (1996). URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.4000

14. Foster, N., Metaxas, D.: Modeling the motion of a hot, turbu-
lent gas. In: SIGGRAPH 1997: Proceedings of the 24th an-
nual conference on Computer graphics and interactive techniques,
pp. 181–188. ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA (1997). DOI 10.1145/258734.258838. URL
http://dx.doi.org/10.1145/258734.258838

15. Gould, D.: Complete Maya Programming: An Extensive Guide to
MEL and the C++ API. Elsevier (2003)

16. Griebel, M., Metsch, B., Oeltz, D., Schweitzer, M.A.: Coarse grid
classification: A parallel coarsening scheme for algebraic multi-
grid methods. Numerical Linear Algebra with Applications 13(2–
3), 193–214 (2006)

17. Griebel, M., Zaspel, P.: A multi-GPU accelerated solver for the
three-dimensional two-phase incompressible Navier-Stokes equa-
tions. Computer Science - Research and Development 25(1–2),
65–73 (2010). DOI 10.1007/s00450-010-0111-7

13

18. Hong, J.M., Kim, C.H.: Discontinuous fluids. In: SIG-
GRAPH 2005: ACM SIGGRAPH 2005 Papers, pp.
915–920. ACM, New York, NY, USA (2005). DOI
http://doi.acm.org/10.1145/1186822.1073283

19. Hong, J.M., Lee, H.Y., Yoon, J.C., Kim, C.H.: Bubbles
alive. In: SIGGRAPH 2008: ACM SIGGRAPH 2008 pa-
pers, pp. 1–4. ACM, New York, NY, USA (2008). DOI
http://doi.acm.org/10.1145/1399504.1360647

20. Kang, M., Fedkiw, R., Liu, X.D.: A boundary condition capturing
method for multiphase incompressible flow. J. Sci. Comput. 15(3),
323–360 (2000)

21. Kaufman, A., Shimony, E.: 3d scan-conversion algorithms
for voxel-based graphics. In: SI3D ’86: Proceedings
of the 1986 workshop on Interactive 3D graphics, pp.
45–75. ACM, New York, NY, USA (1987). DOI
http://doi.acm.org/10.1145/319120.319126

22. Lee, H.Y., Hong, J.M., Kim, C.H.: Interchangeable SPH and level
set method in multiphase fluids. The Visual Computer 25(5), 713–
718 (2009). URL http://dx.doi.org/10.1007/s00371-009-0339-z

23. Losasso, F., Shinar, T., Selle, A., Fedkiw, R.: Multiple interact-
ing liquids. In: SIGGRAPH 2006: ACM SIGGRAPH 2006 Pa-
pers, pp. 812–819. ACM, New York, NY, USA (2006). DOI
http://doi.acm.org/10.1145/1179352.1141960

24. Losasso, F., Talton, J.O., Kwatra, N., Fedkiw, R.: Two-way cou-
pled SPH and particle level set fluid simulation. IEEE Trans-
actions on Visualization and Computer Graphics 14(4), 797–804
(2008). DOI 10.1109/TVCG.2008.37

25. Mihalef, V., Metaxas, D.N., Sussman, M.: Simulation of two-
phase flow with sub-scale droplet and bubble effects. Comput.
Graph. Forum 28(2), 229–238 (2009)

26. Monaghan, J.J.: Smoothed particle hydrodynamics. Annual re-
view of astronomy and astrophysics 30, 543–574 (1992). DOI
10.1146/annurev.aa.30.090192.002551

27. Montani, C., Scateni, R., Scopigno, R.: A modified look-up table
for implicit disambiguation of marching cubes. The Visual Com-
puter 10(6), 353–355 (1994). URL http://www.crs4.it/vic/cgi-
bin/bib-page.cgi?id=’Montani:1994:MLT’

28. Selle, A., Fedkiw, R., Kim, B., Liu, Y., Rossignac, J.: An un-
conditionally stable MacCormack method. J. Sci. Comput. 35(2-
3), 350–371 (2008). DOI http://dx.doi.org/10.1007/s10915-007-
9166-4

29. Selle, A., Rasmussen, N., Fedkiw, R.: A vortex particle method for
smoke, water and explosions. In: SIGGRAPH 2005: ACM SIG-
GRAPH 2005 Papers, pp. 910–914. ACM, New York, NY, USA
(2005). DOI http://doi.acm.org/10.1145/1186822.1073282

30. Stam, J.: Stable fluids. In: Proceedings of SIGGRAPH 1999,
Computer Graphics Proceedings, Annual Conference Series, pp.
121–128 (1999)

31. Sussman, M., Smereka, P., Osher, S.: A level set approach for
computing solutions to incompressible two-phase flow. J. Com-
put. Phys. 114, 146–159 (1994). DOI 10.1006/jcph.1994.1155.
URL http://portal.acm.org/citation.cfm?id=182683.182718

32. Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T.,
Tanaka, K., Ueki, H.: Realistic animation of fluid with splash and
foam. Comput. Graph. Forum 22(3), 391–400 (2003)

33. Thuerey, N.: Fluid simulation with blender. Dr. Dobbs Journal
(2006)

34. Verleye, B., Croce, R., Griebel, M., Klitz, M., Lomov, S., Mor-
ren, G., Sol, H., Verpoest, I., Roose, D.: Permeability of textile
reinforcements: Simulation, influence of shear, validation. Com-
posites science and technology 68(13), 2804–2810 (2008)

