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Abstract. A variational problem characterizing the density estimator defined by the maxi-
mum a posteriori method with Gaussian process priors is derived. It is shown that this problem
is well posed and can be solved with Newton’s method. Numerically, the solution is approximated
by a Galerkin/finite element method with piecewise multilinear functions on uniform grids. Error
bounds for this method are given and numerical experiments are performed for one-, two-, and
three-dimensional examples.
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1. Introduction.
All modern theories of statistical inference take as their starting
point the idea of the probability density function of the observations.
Emanuel Parzen, “An Approach to Time Series Analysis” [1].

This statement by Parzen points to the fundamental importance of densities
in statistical reasoning which has not diminished at all in recent years. In fact, the
methods of data mining and unsupervised learning as well as the more traditional
regression and classification are all approaches to extract information about densities
using observed data.

Probability densities are directly applied in machine learning and data mining.
There, one is interested in finding a classifier of objects (characterized by feature
vectors) into one of two classes. If one knows the probability of each class for a given
feature, then one can determine the classifier which minimizes a given loss function.
While it is usually not feasible to determine the probability of each class for every
given feature, one can often find good approximations of the density of the features for
each class. The probability of the class given the feature is then provided by Bayes’
theorem. An example of this approach is the “Naive Bayes classifier” [2]. Probability
densities may also be used as substitutes for the data set in the estimation of features
of the data or in the determination of the probability of subsets. The advantage of this
approach is computational in that it does allow one to obtain the expected function
values or integrals without having to go through the full data set which may be very
large.

Here we consider specifically Gaussian process priors. While the general varia-
tional formulation considered in the next section may also be applied to other types
of priors, a major computational advantage of Gaussian process priors results from
their intimate connection with reproducing kernel Hilbert spaces or Cameron–Martin
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spaces. In this paper we investigate the well posedness and the numerical solution
of the variational problem underlying the maximum a posteriori (MAP) method for
density estimation. The density estimation problem consists of finding a probability
density f(t) from a set of data points t1, . . . , tn. We first show that MAP estimators
are penalized maximum likelihood estimators using the Cameron–Martin theory of
stochastic processes. We then review existence, uniqueness, and the dual problem.
We foremost show that the problem satisfies all the necessary conditions for the appli-
cation of a finite element Newton method using the preconditioned conjugate gradient
method for the solution of the occurring finite-dimensional linear subsystems.

The remainder of this paper is organized as follows: In section 2 we derive the
penalized likelihood functional from the MAP method and review the concept of
modes in infinite-dimensional spaces. In section 3 we use variational calculus to show
existence and uniqueness of the estimator. Furthermore, we derive the dual equations
and give a connection with maximum entropy. In section 4 we show the convergence
of a Newton method and Galerkin approximation in general. In section 5 we discuss
approximation spaces, approximation properties, and convergence rates. In section 6
we give the results of numerical experiments with the new method for one-, two-, and
three-dimensional problems.

2. The MAP framework for density estimation. In this section we review
the basic framework for density estimation used in the later sections. A key component
is that the unknown probability (or the log thereof) is modeled by a stochastic process.
In the case of Gaussian processes, this approach was pioneered by Parzen in a paper [1]
on signal processing. This approach has then led to what is now called “the penalized
maximum likelihood method” of density estimation which was established by Good
and Gaskins in the statistical literature [3]. The approach was further developed by
Leonard in [4] using ideas of Parzen. While Parzen does acknowledge the importance
of stochastic modeling, he does not relate the models to the Cameron–Martin theory
which was developed in the 1940s [5]. This connection of the maximum a posteriori
method with stochastic modeling can be found in a book by Bogachev on Gaussian
processes [6] and was applied to the MAP method in a recent paper [7].

In the following we review this approach and, in particular, derive the variational
problem (the “penalized maximum likelihood problem”) from the maximum a posteri-
ori method in the case of stochastic process priors using tools from stochastic analysis.
In particular, we will use the Radon–Nikodym theorem, the Cameron–Martin spaces,
and the Cameron–Martin derivatives.

Let T ⊂ R
d be a domain, typically the unit cube. The unknown probability

density fu(t) on T is assumed to be of the form

(1) fu(t) = exp(u(t)− γ(u)),

where u is an unknown function on T and γ(·) is the functional given by

(2) γ(u) = log

∫
T

exp(u(t)) dt.

Combining these two equations one gets

(3) fu(t) =
eu(t)∫

T
eu(t) dt

.
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While fu is uniquely determined by u and (3), the converse does not hold, as for all
constants c the functions u+ c lead to the same probability density fu = fu+c.

1 The
functions f defined as in (3) are probability densities; i.e., they are nonnegative and
integrate to one.2

In many statistical applications, and, indeed, also in numerical computations, the
function u(t) is selected from a finite-dimensional function space, such that for some
vector θ ∈ R

m and a function φ : T → R
m one has

u(t) = θTφ(t) =

m∑
i=1

θiφi(t).

In statistics, φ(t) is called a sufficient statistic, γ is the log partition function, and
the family of densities fu thus defined is called the exponential family. Many popular
probability distributions are elements of this family. A prominent member is the
normal distribution where m = 2 and the basis functions are

φ1(t) = t, φ2(t) = t2

in d = 1 dimension. In this case the coefficients turn out to be

θ1 =
μ

σ2
, θ2 = − 1

2σ2
,

where μ and σ2 denote the mean and variance of the normal distribution.
The determination of θ, and hence u(t), from data is often done by the maxi-

mum likelihood method (see, e.g., [8, 9]). There, typically the negative log likelihood
function

(4) l(u) = −
n∑

i=1

u(ti) + n γ(u)

of the data t1, . . . , tn is minimized. This approach has been introduced by Fisher
in [10]. It is known that, under some weak conditions, the minimizer of l(u) is asymp-
totically (in n) unbiased, achieves an optimal error bound (the Cramer/Rao bound),
and is asymptotically normal. This method is closely related to the maximum entropy
method.3

The maximum likelihood method breaks down when the space of considered func-
tions u is infinite dimensional as in this case the problem becomes ill posed. A popular
way to deal with ill posedness is to use a penalized maximum likelihood approach
where instead of the negative log likelihood l(u) one minimizes a penalized negative
log likelihood j(u) which is of the form

(5) j(u) =
α

2
‖Lu‖2 + 1

n
l(u) =

α

2
‖Lu‖2 + log

∫
T

exp(u(t)) dt− 1

n

n∑
i=1

u(ti)

with some operator L and L2-norm ‖ · ‖. Here α ≥ 0 is a regularization parameter
which balances the fit to the data with the regularity of the solution. This functional

1We assume here that the Lebesgue measure of T is finite.
2Note that only probability densities which do not have zero values can be modeled in this way.

By adjusting T to be the support of fu one gets around this problem.
3Here the entropy of f is the expectation of the random variable defined by the function u(t)

with respect to the probability density f(t).
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j(u) shall be derived from the maximum a posteriori method in the following. The
discussion is based on [7].

For simplicity, we assumed in the following that the prior does have a zero mean.
This is the simplest and most widely used case in practice. If required, the inclusion
of a nonzero mean can also be included with no need to change the theory.

2.1. Stochastic processes, their measures, and their modes. In principle,
the maximum a posteriori method is simple: First one assumes a probability distribu-
tion over a class of models which represents the prior knowledge of the problem. Then
the likelihood of the data is interpreted as a conditional probability of the data given
a model. From this, one can derive the posterior probability which is the probability
of the model given the data using Bayes’ theorem.

While a full Bayesian analysis then proceeds by further analyzing the posterior
distribution, the MAP method merely determines the maximum or main mode of the
posterior. The approach works well and is used, e.g., to determine for every t the most
likely u(t) given the data. But in the case of infinite-dimensional function spaces for u
this approach has a problem with the definition of the mode due to the fact that the
Lebesgue measure does not exist here [11]. This problem, while sometimes forgotten,
was well known in the original statistical literature by Parzen and Leonard mentioned
previously. However, it is not discussed in the newer literature based on kernels, and,
in particular, not in the literature on machine learning using Gaussian process priors;
see, e.g., [12, 13].

According to the textbook [14] on stochastic processes by Adler, there are two
“virtually distinct” but equivalent approaches to define random fields or stochastic
processes. The first approach is measure theoretic and a stochastic process is defined
as a measure μ on a set X ⊂ R

T of functions T → R. In the second, probabilistic
approach a stochastic process is defined as a collection of (real) random variables
U(t) parameterized by t ∈ T . While the second approach is dominant in modeling
and simulation, we here use the first one to derive the variational characterization of
the MAP estimator. For the Gaussian case a thorough discussion of this approach
can be found in the book [6] by Bogachev.

To illustrate the measure theoretic approach for the reader who might be less
familiar with stochastic processes, we consider the case of a Gaussian process which
can be described by a series expansion:

U(t) =

∞∑
n=1

ZnMen(t).

In the following, random variables and stochastic processes will be denoted by capital
letters, e.g., U(t), while samples and (nonrandom) functions will be denoted by lower-
case letters, e.g., u(t). The expansion of U(t) is closely related to the Karhunen–Loeve
expansion. Here the Zn are pairwise independent standard Gaussian random variables
and the en form a Hilbert basis of a reproducing kernel Hilbert space H ⊂ R

T . This
Hilbert space is associated with the stochastic process and is usually called Cameron–
Martin space. The linear operator M is bounded on H . In the case discussed later,
H is a tensor product of Sobolev spaces. Clearly, the truncated series

Um(t) =

m∑
n=1

ZnMen(t)

defines a collection of normally distributed random variables indexed by t and at the
same time a Gaussian measure (or probability distribution) on the m-dimensional
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linear space of functions spanned by the e1, . . . , em. As a sample path depends
on the actual sample values zn of the random variables Zn, the measure defining
the stochastic process Um(t) is thus the standard m-dimensional normal distribution
ν(z1, . . . , zm). One can see [6] that these measures converge weakly as measures on
R

T with m→ ∞. More generally, for a general choice of basis bn of Vm, a stochastic
process is approximated in an m-dimensional subspace Vm of H by an expansion of
the form

(6) Um(t) =

m∑
n=1

Ynbn(t),

where the random vector (Y1, . . . , Ym) is Gaussian with a joint probability density
ρ0(y1, . . . , ym). Recall here that we denote random variables by capitals Yi and num-
bers by lowercase letters yi.

In the following we assume that the Cameron–Martin space H is compactly
embedded in the Banach space C(T ) of continuous functions and that the triple
(J , H,C(T )) forms an abstract Wiener space [6, p. 137]. As usual, the norm in C(T )
is ‖u‖∞ = supt∈T |u(t)| and J denotes the embedding of H in C(T ). It is known
that in this case the process U(t) defines a Gaussian measure λ on C(T ); see, e.g., [6,
Thm. 3.9.5].

The posterior measures which occur in the MAP method are in general not Gaus-
sian. Such measures take the form

(7) μ(A) =

∫
A

ρ(u) dλ(u), A ⊂ C(T ), measurable;

i.e., ρ = dμ/dλ is the Radon–Nikodým derivative or density of μ with respect to λ.4

In MAP λ is the prior (in our case Gaussian) and ρ is the likelihood of the data. As
the likelihood ρ(u) depends only on a finite number of function values at the data
points and on the log partition function γ(u) introduced previously, one can show that
ρ is a continous nonlinear functional on C(T ); see also the discussion in section 3.1.
It then follows that ρ is in L1(λ).

For the following definition of the mode of μ one needs the shifted measure λv
which is given by

λv(A) = λ(v +A), A ⊂ C(T ), measurable.

If v is such that λv is absolutely continuous with respect to λ (which we denote by
λv � λ), then the Radon–Nikodým derivative or dλv/dλ ∈ L1(μ) exists.

For the case of Gaussian λ it is known [6] that λv � λ if and only if v is an element
of the Cameron–Martin space H . In this case one has an explicit representation for
the derivative:

(8)
dλv
dλ

(w) = exp

(
−〈ψv, w〉 − 1

2
‖v‖2H

)
, v ∈ H, w ∈ C(T ).

Equation (8) is called the Cameron–Martin formula. The linear functional ψv in this
formula is such that w(t) = 〈ψv, w〉 if v = kt is the reproducing kernel of H at t.
Consequently, for w ∈ H one has

dλv
dλ

(w) = exp

(
−(v, w)H − 1

2
‖v‖2H

)
, v, w ∈ H.

4The “density” ρ is defined on the function space C(T ) and should not be confused with the
“density” fu defined on T .
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It follows that dλv

dλ (w) is a continuous nonlinear functional on H which is in L1(λ).
However, it is in general not a continuous functional on C(T ) except when v =∑m

j=1 cjktj holds for some finite m. In these special cases one has

〈ψv, w〉 =
m∑
j=1

cjw(tj),

which is continuous in C(T ) and the continuity of dλv

dλ (w) as a function of w follows.
The mode of a stochastic process with measure μ of the form given in (7) is then

defined as follows.
Definition 1. Let μ and λ be measures on C(T ) and let the Radon–Nikodým

derivative ρ = dμ/dλ be a continuous linear functional on C(T ). Furthermore, let
u ∈ C(T ).

(a) We call an element v ∈ C(T ) admissible if ‖v‖∞ < ε for some ε > 0, if
λv � λ, and if dλv/dλ(w) is continuous at w = u.

(b) u is a mode of the measure μ if for all admissible v one has

(9) ρ(u) ≥ dλv
dλ

(u) ρ(u+ v).

Note that the set of admissible v is not empty for λ, a Gauss measure on C(T ) where
the Cameron–Martin space has a reproducing kernel kt, as for any v =

∑m
j=1 cjktj one

has λv � λ and dλv

dλ (w) is continuous for all w. Note, however, that in this definition
we do not assume that λ is necessarily Gaussian, even though in the application it
will be.

This definition generalizes the usual finite-dimensional definition of a mode, where
λ is the Lebesgue or Haar measure; thus dλv/dλ = 1 and ρ is the ordinary density.
In the case where ρ = 1, the condition (9) becomes dλv

dλ (u) ≤ 1. Furthermore one has
the following properties.

Proposition 1. Let u be a mode of a measure μ with μ(A) =
∫
A ρ(v) dλ(v);

see (7).
1. u does not depend on the particular choice of λ and ρ.
2. There exists a δ > 0 such that for all admissible v one has

μ(A) ≥ μ(v + A)

for all measurable A ⊂ {w | ‖w − u‖∞ < δ}.
Proof. For the first claim assume that κ � λ is a measure such that for some

ψ ∈ L1(κ) one has

μ(A) =

∫
A

ψ(w)dκ(u).

As κ� λ one can then show that

ρ(w) = ψ(w)
dκ

dλ
(w).

Combining this with the defining condition for the mode, one then obtains

dκ

dλ
(u)ψ(u) ≤ dλv

dλ
(u)

dκ

dλ
(u+ v)ψ(u + v).
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As dκ
dλ(u+ v) = dκv

dλv
(u) and

dκv
dκ

=

dκv

dλv

dλv

dλ
dκ
dλ

,

one gets the desired result.
For the second claim observe that the function ζ ∈ L1(λ) (the set of λ-integrable

functions on C(T )) with

ζ(w) = ρ(w) − dλv
dλ

(w) ρ(w + v)

is continuous as v is admissible. By definition ε := ζ(u) > 0 and by continuity
ζ−1([0, ε)) = Ñ(u) defines a neighborhood of u. Thus there exists a δ such that
{w | ‖w − u‖∞ < δ} ⊂ Ñ(u). It follows that ζ(w) > 0 for all w with ‖w − u‖∞ < δ.
Consequently, for any measurable A ⊂ {w | ‖w − u‖∞ < δ} one has

0 ≤
∫
A

ζ(w) dλ(w) =

∫
A

ρ(w) dλ(w) −
∫
A

dλv
dλ

(w) ρ(w + v) dλ(w)

=

∫
A

ρ(w) dλ(w) −
∫
A+v

ρ(w) dλ(w)

= μ(A)− μ(A+ v)

from which the desired result follows.
A direct consequence of the Cameron–Martin formula (8) is the following.
Corollary 1. Any minimal point u ∈ H of the functional

J(v) =
1

2
‖v‖2H − log(ρ(v))

is a mode of μ.
Proof. Let u be a minimizer of J . Then J(u) ≤ J(u + v) for all v ∈ H in some

neighborhood of u. Taking the exponential one gets

ρ(u) ≤ exp((u, v)H − ‖v‖2H/2) ρ(u+ v),

which by the Cameron–Martin formula shows that u is a mode.

2.2. Density estimation with MAP. We now derive the posterior measure μ
and the variational characterization of the MAP estimator. Recall that the density
fu ≥ 0 to be estimated is of the form

fu(t) = exp(u(t)− γ(u)), t ∈ T,

and γ is such that
∫
T
fu(t) dt = 1. The likelihood of the data, given that the data

points are pairwise independent, is

g(t1, . . . , tn | u) = exp(u(t1) + · · ·+ u(tn)− nγ(u)).

This likelihood is interpreted as the conditional probability of the data given the
function u. The posterior measure is then defined by

μ(A) = C

∫
A

g(t1, . . . , tn | u) dλ(u),
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where C = 1/
∫
RT g(t1, . . . , tn|h) dλ(u) and λ is the prior measure. We can now apply

Corollary 1 with ρ(u) = Cg(t1, . . . , tn | u), and it follows that the mode u of the
posterior measure μ minimizes J with

J(v) =
1

2
‖v‖2H −

n∑
i=1

v(ti) + nγ(v) + log(C).

Notice that the minimizer of J does not depend on C. Furthermore, replace ‖ · ‖H by
the equivalent n‖ · ‖H and recall that the reproducing kernel of the original ‖ · ‖H is
the covariance of the prior to get after division by n the following result.

Proposition 2. Given a Hilbert space H with norm ‖ · ‖H and let u be the
minimizer of the functional

j(v) =
1

2
‖v‖2H − 1

n

n∑
i=1

v(ti) + γ(v)

with

γ(v) = log

∫
T

exp(v(t)) dt.

Then fu(t) = exp(u(t) − γ(u)) is the MAP estimator of the density f from the data
t1, . . . , tn and the Gaussian process prior for u with expectation zero and covariance
nk(t, s) where k is the reproducing kernel of H with respect to ‖ · ‖H .

3. Properties of the functional j(u) and the dual problem. Finding the
minimum of the functional j(u) is a problem of variational and convex analysis. Here,
efficient techniques are available to solve such problems, at least approximately. A
key role is played by the reproducing kernel Hilbert space H . In this setting, the
minimization problem is well posed when a few extra assumptions hold.

3.1. Existence, uniqueness, and characterization of the minimum. The
functional j : H → R with

(10) j(u) =
1

2
‖u‖2H + log

∫
T

exp(u(t)) dt− 1

n

n∑
i=1

u(ti), u ∈ H,

has three terms: The first term is the squared norm of the space H which represents
the prior and serves to regularize the problem, the second term corresponds to the log
partition function in statistical mechanics, and the third term is the data term. The
functional can be controlled by the first term as follows: We assume that H contains
only continuous functions, i.e.,

(11) H ⊂ C(T ).

As H is a reproducing kernel Hilbert space, one has u(t) = (kt, u)H and thus |u(t)| ≤
‖kt‖H‖u‖H . We also assume that ‖kt‖H is bounded for t ∈ T and introduce the
embedding constant

(12) CH = sup
t∈T

‖kt‖H <∞.

One then has

‖u‖∞ ≤ CH‖u‖H .
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Now we assume that T is normalized such that

(13)

∫
T

dt = 1.

With this normalization, the estimates exp(−‖u‖∞) ≤ exp(u(t)) ≤ exp(‖u‖∞), the
monotonicity of the logarithm, and the embedding constant, one finally obtains∣∣∣∣log

∫
T

exp(u(t)) dt

∣∣∣∣ ≤ ‖u‖∞ ≤ CH‖u‖H .

For the third term in the formula for j one applies the triangle inequality and gets∣∣∣∣∣ 1n
n∑

i=1

u(ti)

∣∣∣∣∣ ≤ CH‖u‖H.

By inserting the bounds for the second and third terms into the definition of j(u) one
obtains

(14)
1

2
(‖u‖H − 2CH)2 − 2C2

H ≤ j(u) ≤ 1

2
(‖u‖H + 2CH)2 − 2C2

H .

Clearly, −∞ < j(u) < ∞ for all u ∈ H and thus the functional j is proper. If for a
sequence u1, u2, . . ., the norm is unbounded, i.e., ‖un‖H → ∞, then the values of the
functional are also unbounded, j(un) → ∞, and so j is coercive.

While the first and third terms of j(u) are continuous, the second term is lower
semicontinuous since

log

∫
T

eu(t)+h(t) dt− log

∫
T

eu(t) dt = log

∫
eu(t)eh(t) dt∫
eu(t) dt

≤ ‖h‖∞ ≤ CH‖h‖H , u, h ∈ H.

We now show that j is convex. The first term of j is quadratic, thus convex. For
the second term we consider the Hölder inequality:∫

exp(u1(t))
θ(exp(u2(t)))

1−θ dt ≤
(∫

exp(u1(t)) dt

)θ (∫
exp(u2(t)) dt

)1−θ

for all θ ∈ [0, 1]. By taking the logarithm and rearranging the terms one gets

log

∫
exp(θu1(t)+(1−θ)u2(t)) dt ≤ θ log

∫
exp(u1(t)) dt+(1−θ) log

∫
exp(u2(t)) dt,

which means that the second term is convex. As the third term is linear, one thus
has that j(u) is strictly convex.

We now have all the ingredients for the existence and uniqueness of the minimiza-
tion problem.

Proposition 3. The functional j(u) has exactly one minimum u ∈ H.
Proof. One can apply proposition 1.2 from the book by Ekeland and Témam [15,

p. 35] which states that if j : H → R is strictly convex, lower semicontinuous, proper,
and coercive, then it has exactly one minimum.

In order to further characterize the solution, one uses the Gâteaux derivative of
j at point u in direction v defined by

(15) 〈∇j(u), v〉 = lim
τ→0

j(u+ τv) − j(u)

τ
.
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The Gâteaux derivative of the first part of j(u) can be seen to be (u, v)H , and the
derivative of the last part is 1

n

∑n
i=1 v(ti). The Gâteaux derivative of the second

part is

lim
τ→0

1

τ
log

∫
T
eu(t)eτv(t) dτ∫
T e

u(t) dt
.

In order to obtain the derivative, we use the Taylor remainder formula

eτv(t) = 1 + τv(t) + eτv(t)η(t)
τ2v(t)2

2

for some η(t) ∈ [0, 1]. Inserting this into the integral gives

log

(∫
T
eu(t)eτv(t) dτ∫
T e

u(t) dt

)
= log

(
1 + τ

∫
T
eu(t)v(t) dt∫
T e

u(t) dt
+R(τ)

)
,

where

|R(τ)| ≤ τ2‖v‖2∞
2

eτ‖v‖∞ .

Next we use the Taylor expansion for the logarithm log(1 + z) = z − z2

2(1+ζ)2 for

appropriate ζ and get the Gâteaux derivative of the second term of j(u) as∫
T
eu(t)v(t) dt∫
T e

u(t) dt
.

It follows that the Gâteaux derivative of j(u) in direction v is

(16) 〈∇j(u), v〉 = (u, v)H +

∫
T e

u(t)v(t) dt∫
T e

u(t) dt
− 1

n

n∑
i=1

v(ti).

The Gâteaux derivative is clearly a linear functional of v, it has three parts which are
all bounded, and thus the functional is continuous. The continuity of the second part
follows from the triangular inequality, and one gets∣∣∣∣∣

∫
T
eu(t)v(t) dt∫
T e

u(t) dt

∣∣∣∣∣ ≤ ‖v‖∞ ≤ CH‖v‖H .

Combining the bounds for the three parts gives the estimate

‖∇j(u)‖ ≤ (1 + 2CH)‖u‖H
for the operator norm of the Gâteaux derivative. The characterization of the minimum
is now given by the following.

Proposition 4. Under the conditions of the previous proposition, u minimizes
j if and only if

(17) (u, v)H +

∫
T e

u(t)v(t) dt∫
T
eu(t) dt

− 1

n

n∑
i=1

v(ti) = 0, for all v ∈ H.

Proof. The result follows by application of proposition 2.1 in [15, pp. 36/37] since
the Gâteaux derivative is continuous.
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3.2. Duality. We now consider another approach to deal with the nonlinearity
which this time is exact. In general, one would like to separate components one and
three in j from the second one, and this can be done using Fenchel’s results [15].
Let j0 : H → R be the functional of the approximated uniform distribution used
previously. Furthermore, let j1 be the nonlinear functional with domain dom j1 ⊂
L2(T ) (the domain of a functional is defined as the set of arguments for which the
values of the functional are finite) defined by

j1(u) = log

∫
T

exp(u(t)) dt.

Now let E : H → L2(T ) be the (continuous) embedding so that one gets

j(u) = j0(u) + j1(Eu).

Remember that the dual of a functional φ is defined as

φ∗(u∗) = sup
u∈H

(〈u∗, u〉 − φ(u)) ,

where u∗ is in the dual space of the space of u. The dual of j0 is then defined for
u∗ ∈ H as

j∗0 (u
∗) = sup

u∈H

(
(u∗, u)H − 1

2
‖u‖2H +

1

n

∑
i=1

u(ti)

)

since H is dual to itself. Using the reproducing kernel kt (and the reproducing prop-
erty u(t) = (kt, u)H), one sees that

j∗0 (u
∗) = sup

u∈H

⎛
⎝−1

2

∥∥∥∥∥u− 1

n

n∑
i=1

kti − u∗
∥∥∥∥∥
2

H

+
1

2

∥∥∥∥∥ 1n
n∑

i=1

kti + u∗
∥∥∥∥∥
2

H

⎞
⎠,

and it follows that at the supremum the first term becomes zero as it is nonpositive
and so

j∗0 (u
∗) =

1

2

∥∥∥∥∥ 1n
n∑

i=1

kti + u∗
∥∥∥∥∥
2

H

=
1

2
‖u∗‖2H +

1

n

n∑
i=1

u∗(ti) +
1

2

∥∥∥∥∥ 1n
n∑

i=1

kti

∥∥∥∥∥
2

H

.

The determination of the dual of j1 is simplified considerably by choosing the domain
to be a subset of L2(T ) instead of H as in the case of j0. In order to distinguish
between L2(T ) and H , we let z = Eu denote the value of the function u as an
element of L2(T ). One then has

j∗1 (z
∗) = sup

z∈L2(T )

(∫
T

z∗(t)z(t) dt− log

∫
T

ez(t) dt

)
,

which maximizes

φ(z; z∗) =
∫
T

z∗(t)z(t) dt− log

(∫
T

ez(t) dt

)
.

This functional has a Gâteaux derivative with respect to z given by

∇zφ(z; z
∗)(t) = z∗(t)− e(z(t))∫

T
e(z(s)) ds

.
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If z∗ is a maximizer of the functional φ(z; z∗), the Gâteaux derivative has to be
zero. As the second term is positive and is subtracted, this can thus happen only
if z∗(t) > 0. As the integral (over t) of the second term is one, it follows that one
also has

∫
T z

∗(t) = 1. In summary, j∗1 can be well defined and finite only if z∗ is a
probability density. What remains is the determination of z(t) as a function of z∗(t)
in the case where φ(z; z∗) is maximized. With γ(z) = log

∫
T
exp(z(t)) dt one has for

the maximum

z(t) = log z∗(t) + γ(z).

As for the maximizing z one has j∗1 (z
∗) = φ(z; z∗) and one gets

j∗1 (z
∗) =

∫
T

z∗(t)(log(z∗(t)) + γ(z)) dt− log

(
eγ(z)

∫
T

z∗(t) dt
)

=

∫
T

z∗(t) log(z∗(t)) dt+ γ(z)

∫
T

z∗(t) dt− γ(z)− log

∫
T

z∗(t) dt.

Recall that the supremum of φ is finite only if z∗ is a probability distribution, in
particular, if

∫
T z

∗(t) dt = 1. In this case the last three terms of j∗1 vanish, and one
thus gets

(18) j∗1 (z
∗) =

{∫
T
z∗(t) log z∗(t) dt, if z∗(t) > 0 a.e. and

∫
T
z∗(t) dt = 1,

∞, else.

The functional j∗1 thus turns out to be just the entropy of the probability distribu-
tion z∗.

By the Cauchy–Schwartz inequality and the embedding property one gets

|(z∗, Eu)| =
∣∣∣∣
∫
T

z∗(t)u(t) dt
∣∣∣∣ ≤ ‖u‖∞

∫
T

z∗(t) dt ≤ CH‖u‖H
∫
T

z∗(t) dt,

and it follows that (z∗, Eu) is a continuous functional with respect to u for every
probability density z∗. By the Riesz representation theorem there exists a E∗z∗ ∈ H
such that

(z∗, Eu) = (E∗z∗, u)H ,

where E∗ is the dual of E. Using the representation theorem again, one obtains the
values of the function E∗z∗ as

E∗z∗(t) = (E∗z∗, kt)H = (z∗, Ekt) =
∫
T

z∗(s)kt(s) ds.

Now Fenchel duality theory (see, e.g., [15, pp. 59ff]) tells us that

min
u∈H

j0(u) + j1(Eu) = − min
z∈L2(T )

j∗0 (−E∗z∗) + j∗1 (z
∗).

In order for the Fenchel duality result to hold, one requires a condition on the func-
tionals ji to hold, the so-called constraint qualification. In this case we can show
that

E dom j0 ∩ dom j1 �= ∅.
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In fact, the domain of j0 is H and, on the set EH ⊂ L2(T ), the functional j1 is
bounded as we have seen previously by

j1(Eu) = log

∫
T

eu(t) dt ≤ CH‖u‖H, u ∈ H.

The Fenchel duality theory also provides a way to compute the solution of the
primal problem if the solution of the dual problem is known. In full generality, one
has for the subdifferential ∂j0(u) of j0 at u the inclusion

−E∗z∗ ∈ ∂j0(u)

if z∗ is the solution to the dual problem and u is the solution to the primal problem.
In the case considered here j0 is differentiable and so −E∗z∗ is just the gradient; i.e.,
the subdifferential inclusion property can be seen to simplify to

−E∗z∗ = u+
1

n

n∑
i=1

kti .

Consequently,

(19) u(t) =

∫
T

k(t, s)z∗(s) ds− 1

n

n∑
i=1

k(t, ti),

which means that u is the difference of the expectation of the kernel with respect
to z∗ and the empirical expectation. The determination of u is thus in terms of
the complexity as expensive as the evaluation of 1

n

∑n
i=1 k(t, ti), i.e., has the same

complexity as a kernel density estimator once the solution z∗ of the dual problem
is known. Such an approach may be computationally advantageous in the case of a
moderate number of data points n. It also provides connections to maximum entropy
methods. For the next sections, however, (19) is important as it establishes the
regularity of the solution.

The dual problem consists of finding the minimum of

j∗0 (−E∗z∗) + j∗1 (z
∗) =

1

2

∥∥∥∥∥ 1n
n∑

i=1

kti −
∫
T

ktz
∗(t) dt

∥∥∥∥∥
2

H

+

∫
T

z∗(t) log z∗(t) dt.

Note that the first term in this sum is just one-half the norm of u squared, and one
thus has that the dual problem consists of minimizing

Φ(u, z∗) =
1

2
‖u‖2H +

∫
T

z∗(t) log z∗(t) dt

as a function of u and z∗ with the linear constraint

(20) u(t) +

∫
T

k(t, s)z∗(s) ds =
1

n

n∑
i=1

k(ti, t).

This augmented problem is known in machine learning and least squares problems;
see, e.g., [16]. The dual problem balances thus the H-norm of u with the entropy
of z∗.



4772 MICHAEL GRIEBEL AND MARKUS HEGLAND

If one takes the Gâteaux derivative (using similar arguments as above) as for the
primal problem, one now gets an integral equation for z∗ as

log z∗(t) +
∫
T

k(t, s)z∗(s) ds =
1

n

n∑
i=1

k(ti, t)− 1.

The solution of the dual problem requires thus the solution of a nonlinear Fredholm in-
tegral equation of the first kind. Computational approaches based on these equations
are very popular in the machine learning community. These are summarized under
the term kernel methods and are related to the radial basis function approaches in
interpolation and smoothing. An advantage of this approach is that it does not re-
quire the determination of the H-norm but relies solely on the reproducing kernels.
The dual “integral equation” approach is also mentioned in [4]. In the following we
will instead discuss the numerical solution of the primal problem which consists of
minimizing the functional j(u) defined in (10).

4. A Newton–Galerkin method. After having considered properties of the
optimization problem we now focus on numerical techniques for the determination of
the minimum which is characterized by the (nonlinear) Galerkin equations:

〈∇j(u), v〉 = (u, v)H +

∫
T e

u(t)v(t) dt∫
T
eu(t) dt

− 1

n

n∑
i=1

v(ti) = 0, v ∈ H.

The Gâteaux derivative ∇j(u) is a continuous functional and, by the Riesz represen-
tation theorem, there is a F (u) ∈ H such that

〈∇j(u), v〉 = (F (u), v)H , u, v ∈ H.

One has the explicit representation

F (u) := u+

∫
T
eu(t)kt dt∫

T
eu(t) dt

− 1

n

∑
i=1

kti

where the integral ∫
T

eu(t)kt dt

is defined in a weak sense using the continuous linear functional

v →
∫
T

eu(t)v(t) dt.

Continuity of this functional on L2(T ) and thus on H is established as every u ∈ H
is a continuous function. The integral

∫
T e

u(t)kt dt is then defined using the Riesz
representation theorem for this functional.

With this the optimization problem is reduced to finding the solution of

F (u) = 0.

As we will use Newton’s method, we first need to determine the Fréchet derivative
DF of F .
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Theorem 1. The nonlinear operator F (u) is Fréchet differentiable for all u ∈ H
and the derivative DF (u) is defined by

DF (u) v = v +

∫
T
eu(t)ktv(t) dt∫
T e

u(t) dt
−
∫
T
eu(t)v(t) dt

∫
T
eu(t)kt dt(∫

T e
u(t) dt

)2 , v ∈ H,

where the integral
∫
T
eu(t)ktv(t) dt ∈ H is defined in the weak sense introduced above.

Proof. We need to show that

(21) lim
v→0

‖F (u+ v)− F (u)−DF (u)v‖H
‖v‖H = 0.

With ψ(v) := ‖F (u+ v)− F (u)−DF (u)v‖H one gets from the triangle inequality

ψ(v) =

∥∥∥∥∥
∫
T e

u+vkt dt∫
T
eu+v dt

−
∫
T e

ukt dt∫
T
eu dt

−
∫
T e

uktv dt∫
T
eu dt

+

∫
T e

uv dt
∫
T e

ukt dt(∫
T e

u dt
)2

∥∥∥∥∥
H

≤
∥∥∥∥
∫
T e

u+vkt dt∫
T
eu+v dt

−
∫
T e

ukt dt∫
T
eu+v dt

−
∫
T e

uktv dt∫
T
eu+v dt

∥∥∥∥
H

+

∥∥∥∥∥
∫
T e

ukt dt∫
T
eu+v dt

−
∫
T e

ukt dt∫
T
eu dt

−
∫
T e

ukt dt
∫
T e

uv dt(∫
T e

u dt
)2

∥∥∥∥∥
H

+

∥∥∥∥
∫
T e

uktv dt∫
eu+v dt

−
∫
T e

uktv dt∫
T
eu dt

∥∥∥∥
H

,

where u and v denote u(t) and v(t), respectively.
Now we proceed to bound these three terms. For the first term we have the

estimate ∥∥∫
T (eu+v − eu − veu) kt dt

∥∥
H∣∣∫

T
eu+v dt

∣∣ ≤ ‖v‖2∞e‖u‖∞+‖v‖∞CH

2 e−‖u‖∞−‖v‖∞

by the Taylor reminder theorem, using bounds on the integrand and the reproducing
kernel property. It then follows that the first term is of order O(‖v‖2∞) = O(‖v‖2H)
for small v. Using the quotient rule of differentiation and a bound for the difference∫
T
eu+v dt− ∫

T
eu dt− ∫

T
euv dt, one sees that the second term is also O(‖v‖2H). The

third term can be seen to be a product of two O(‖v‖H) terms and is therefore O(‖v‖2H)
as well. The sum of these terms is then O(‖v‖2H) and indeed (21) holds. It follows
that DF (u) is the Fréchet derivative of F (u).

To establish Newton’s method we introduce the bilinear form corresponding to
DF (u):

a(v1, v2;u) := (v1, DF (u)v2)H = (v1, v2)H +

∫
T
euv1v2 dt∫
T
eu dt

−
∫
T
euv1 dt

∫
T
euv2 dt(∫

T e
u
)2 ,

where the dependencies on t of u, v1, and v2 are omitted to shorten the notation.
Clearly this defines a local energy norm v → a(v, v;u). Using this bilinear form, a
Newton step which consists of determining Δu ∈ H from the linear operator equations

DF (u)Δu = −F (u)
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may be restated in weak form as

a(v,Δu;u) = −(v, F (u))H for all v ∈ H.

Interestingly, the bilinear form has a statistical interpretation. With

f(t;u) = eu(t)
/∫

T

eu(s) ds,

one can see that the second and third terms of the bilinear form a can be interpreted
as the covariance of v1 and v2 with respect to f and one has

a(v1, v2;u) = (v1, v2)H +

∫
T

f(t;u) (v1(t)− E(v1;u)) (v2(t)− E(v2;u)) dt,

where

E(v;u) :=

∫
T

f(t;u)v(t) dt

is the expectation of v with respect to f(t;u). From this we get the following.
Proposition 5. The local energy norm is uniformly (in u) equivalent to the

H-norm, and one has

‖v‖2H ≤ a(v, v;u) ≤ (1 + C2
H)‖v‖2H , v ∈ H.

Furthermore, one has the bound

|a(v1, v2;u)| ≤ (1 + 2C2
H)‖v1‖H‖v2‖H ,

and it follows that the family of local bilinear forms a(·, ·;u) are uniformly (in u)
H-elliptic.

Proof. The lower bound follows directly from

a(v, v;u) = ‖v‖2H +

∫
T

f(t;u) (v(t) − E(v;u))
2
dt.

For the upper bound one expands the square in the integral to get

a(v, v;u) = ‖v‖2H + E(v2;u)− E(v;u)2 ≤ ‖v‖2H + E(v2;u) ≤ ‖v‖2H + ‖v‖2∞
and the bound follows by ‖v‖∞ ≤ CH‖v‖H . Similarly, for the boundedness one has

a(v1, v2;u) = (v1, v2)H + E(v1v2;u)− E(v1;u)E(v2;u)

and thus

|a(v1, v2;u)| ≤ |(v1, v2)H |+ 2‖v1‖∞‖v2‖∞ ≤ (1 + 2C2
H)‖v1‖H‖v2‖H .

From this one gets directly the following application of Céa’s lemma.
Corollary 2 (Céa). Let Vh ⊂ H be a finite-dimensional subspace, Δu ∈ H

satisfy

(22) a(v,Δu;u) = −(v, F (u))H , v ∈ H,
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and Δuh ∈ Vh satisfy

a(v,Δuh;u) = −(v, F (u))H , v ∈ Vh.

Then

‖Δu−Δuh‖H ≤ (1 + 2C2
H)‖Δu− v‖H , v ∈ Vh.

In practice, the linear equations defining Δuh are solved iteratively with a certain
accuracy. Note that at this stage Vh merely denotes an abstract finite-dimensional
subspace ofH . It will be specified later to be a space of piecewise multilinear functions.

We have now all the tools to establish the numerical solution procedure which is
a Newton–Galerkin iteration with damping. In particular, the method is based on an
iteration

uk+1 = uk + λkδu
k,

where the correction δuk ∈ Vh satisfies

(23) a(v, δuk;uk) = −(v, F (uk))H , v ∈ Vh.

An important point is the choice of the damping parameter. The damping parameter
λk in particular has to ensure that the method is globally convergent. In practice we
found that the Armijo choice (see, e.g., [17]) worked best. Deuflhard and Weiser [18]
provide conditions under which the Newton–Galerkin method is a descent method
and we have here the following.

Theorem 2. Let uk and δuk be given by the Newton–Galerkin method defined
above. If the damping parameter λk satisfies

0 ≤ λk ≤ λmax
K

4

1 +
√
1 + 8hk/3

,

where hk = 2C3
H

√
εk and εk = a(δuk, δuk;uk), then

j(uk+1) ≤ j(uk)− tk(λk)εk,

where tk(λk) = λ− λ2k/2− hkλ
3
k/6.

If in addition δλk ≤ λmax
k − δ for sufficiently small δ > 0, then the sequence uk

converges to the minimum in Vh.
Proof. This theorem is a direct consequence of theorem 2.2 in [18]. We thus only

need to show that the conditions of the theorem are satisfied.
First we note that the “Galerkin condition”

(δuk, rk)H = 0

holds where rk = DF (uk) δuk − F (uk) as we are using a Galerkin method to solve
the inner equations (23).

Now we show the special affine conjugate Lipschitz condition. As a(v, v;u) ≥
‖v‖H one has

(24) ‖DF (u)−1‖ = sup
v∈H

‖v‖2H
a(v, v;u)

≤ 1.
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By definition,

‖DF (u2)−DF (u1)‖ = sup
v1,v2∈H

a(v1, v2;u2)− a(v1, v2;u1)

(v1, v2)H
.

An application of the triangle inequality for integration results in

|a(v1, v2;u2)− a(v1, v2;u1)| ≤
∫
T

|f(t;u2)− f(t;u1)|v1(t)v2(t) dt.

The right-hand side corresponds to a positive semidefinite continuous operator, and
one thus, by the Cauchy–Schwarz inequality, gets

‖DF (u2)−DF (u1)‖ ≤ sup
v∈H

∫
T |f(t;u2)− f(t;u1)|v(t)2 dt

‖v‖2H
.

By the mean value theorem one has

f(t;u2)− f(t;u1) =
d

dθ
f(t;u1 + θ(u2 − u1))

for some θ ∈ [0, 1]. Application of the quotient rule of differentiation gives

d

dθ
f(t;u1 + θ(u2 − u1)) =(
u2(t)− u1(t)−

∫
T

(u2(s)− u1(s))f(s;u1 + θ(u2 − u1)) ds

)
f(t;u1 + θ(u2 − u1))

from which the following bound is derived:∣∣∣∣ ddθ f(t;u1 + θ(u2 − u1))

∣∣∣∣ ≤ 2‖u2 − u1‖∞f(t;u1 + θ(u2 − u1)).

Using ‖u2 − u1‖∞ ≤ CH‖u2 − u1‖H , this then leads to

(25) ‖DF (u2)−DF (u1)‖ ≤ sup
v∈H

∫
T
|f(t;u2)− f(t;u1)|v(t)2 dt

‖v‖2H
≤ 2C3

H‖u2 − u1‖H .

In contrast to most other nonlinear problems we have the explicit bounds (24)
and (25). As a consequence one can then get the more general Lipschitz conditions:

‖DF (z)−1(DF (x) −DF (y))‖ ≤ 2C3
H‖y − x‖H

and

‖DF (x)−1(DF (y)−DF (x))(y − x)‖H ≤ 2C3
H‖y − x‖2H .

The affine invariant counterparts of these bounds follow easily from the equivalence
of the local energy norms and the H-norm.

For the convergence we first observe that DF (u) is uniformly positive definite (as
the energy norm is equivalent to the H-norm) and furthermore the level sets defined
by j(u) ≤ const are closed and bounded. The convergence then follows from theorem
2.4 of [18].
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A quadratic convergence result is also available in [19, 20]. The proof is similar
to the previous ones. To simplify, we introduce the following notation. First the local
energy norm shall be denoted as

‖v‖u := a(v, v;u)1/2.

We assume that uk is obtained by an ordinary Newton–Galerkin method, i.e.,

uk+1 = uk + δuk,

where δuk ∈ Vh solves the Galerkin equations

a(v, δuk;uk) = −(v, F (uk))H , v ∈ Vh,

and thus one gets for the residual rk = DF (uk)δuk + F (uk) the Galerkin condition

(δuk, rk)H = 0.

We will also use the approximation error ek defined by DF (uk)ek = rk. One then has
the following.

Theorem 3. Let hk = 2C3
H‖δuk‖uk and u0 such that h0 ≤ 2/(1 + ρ) for some

ρ > 0. If the accuracy

δk =
‖ek‖uk

‖δuk‖uk

of the Galerkin approximation is such that

δk ≤ ρhk

hk +
√
4 + h2k

,

then the Newton–Galerkin iterates uk converge quadratically to the minimizer of j
such that

‖δuk+1‖H ≤ (1 + ρ)C3
H(1 + C2

H)‖δuk‖2H .
Proof. In order to apply the theorem from [19] one needs to (i) show the conjugate

Lipschitz condition for collinear v1, v2, and v3:

‖DF (v3)−1(DF (v1)−DF (v2))v‖v3 ≤ 2C3
H‖v1 − v2‖v2‖v‖v2

(which follows directly from (25)), (ii) verify the closedness and boundedness of the
set {v | j(v) ≤ j(u0)}, and (iii) invoke the equivalence of the H-norm with the local
energy norms.

In short, the theorem states that if the approximation error of the Galerkin
method is sufficiently small, then the inexact Newton method converges like the exact
Newton method.

5. Approximation spaces, approximation properties, and discretiza-
tion. So far, we were not specific what finite-dimensional subspace Vh we use for the
discretization. In the following we first consider function approximation in Hilbert
spaces with an orthogonal system and use this abstract approach for error estimates
in various norms provided that specific mixed regularity assumptions are valid. Here,
we focus on pure approximation results and discretization error estimates. Later, in
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the numerical experiments, we will use the space of piecewise multilinear functions on
uniform grids for discretization.

Let us equip the Hilbert space H with an orthonormal system {φi, i ∈ N}. Any
function u ∈ H is then represented as

(26) u(x) =
∑
i≥1

ciφi(x) with coefficients ci = (φi, u)H .

In the multivariate case we employ a product construction; i.e., we use the coordinates
x = (x1, . . . , xd), multi-indices i = (i1, . . . , id), and the product system {φi(x) =∏d

j=1 φij (xij )}. We sum in (26) on i ∈ N
d.

In the following, we consider the spaces Ht
mix of dominating mixed derivatives

defined on T = [0, 1]d as

Ht
mix(T ) =

⎧⎪⎨
⎪⎩u(x) =

∑
i

ciφi : ||u||Ht
mix

=

⎛
⎝∑

i

⎛
⎝ d∏

j=1

i2tj

⎞
⎠ |ci|2

⎞
⎠

1/2

<∞

⎫⎪⎬
⎪⎭ .

Note that Ht
mix(T ) = Ht([0, 1])× · · · ×Ht([0, 1]); i.e., Ht

mix(T ) is just the product of
Sobolev spaces Ht on the one-dimensional domains [0, 1]. We here consider Ht

mix(T )
since in later applications we just choose Ht

mix(T ) as the reproducing kernel Hilbert
spaceH . This is due to the choice of the corresponding reproducing kernel kt = K(t, ·)
as a product of one-dimensional kernels which allows a straightforward extension
of our approach to the general d-dimensional case.5 In the definition of Ht

mix, we
directly see how the decay of the coefficients in different coordinate directions enters
multiplicatively. It also holds that if u ∈ Ht

mix, then

|ci| ≤ C · 1∏d
j=1 i

t
j

for all ci.

For further details on the Sobolev spaces Ht
mix of dominating mixed derivatives see,

e.g., [21, 22, 23].
Now, let us define the approximation spaces6

(27) Vm = span{φi : |i|∞ ≤ m} =

⎧⎨
⎩u(x) =

∑
|i|∞≤m

ciφi(x)

⎫⎬
⎭ .

Their dimension is clearly

|Vm| = md,

and we see an exponential dependence on the dimension d which resembles the curse
of dimensionality. In this respect, Vh resembles a conventional discretization on, e.g.,
a “full grid.”

5Note here that a choice of H = Ht(T ) as standard Sobolev space has to cope with the Sobolev

embedding; i.e., t then depends on d with t = � d+1
2

�, whereas for our choice H = Ht
mix(T ) this is

not the case.
6We use here the notation Vm for the approximation space Vh, h = 1/m, to allow for general

values of m and general, not necessarily dyadic, function systems {φi}. Later on, we will switch
to uniform meshes and a doubling of the degrees of freedom from level to level and will use m =
2l − 1, l ∈ N, the mesh size h = 1/m, and the notation Vh again.
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We then have the following theorem for the approximation error in the Hs
mix-

norm.
Theorem 4. Let s ≤ t. Furthermore let u =

∑
i∈Nd ciφi(x) ∈ Ht

mix and let
um(x) =

∑
|i|∞≤m ciφi(x) ∈ Vm. For the approximation error, we then have the

estimate

inf
um∈Vm

||u − um||Hs
mix

≤ (m+ 1)−(t−s)||u||Ht
mix

.

Proof. Plug u(x) =
∑

i∈N
ciφi and um =

∑
|i|∞≤m ciφi into ||u − um||Hs

mix
. This

directly gives

||u− um||2Hs
mix

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈N

ciφi −
∑

|i|∞≤m

ciφi

∣∣∣∣∣∣
∣∣∣∣∣∣
2

Hs
mix

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

|i|∞>m

ciφi

∣∣∣∣∣∣
∣∣∣∣∣∣
2

Hs
mix

=
∑

|i|∞>m

⎛
⎝ d∏

j=1

i2sj

⎞
⎠ |ci|2 =

∑
|i|∞>m

∏d
j=1 i

2s
j

∏d
j=1 i

2t
j∏d

j=1 i
2t
j

|ci|2

≤ max
|i|∞>m

∏d
j=1 i

2s
j∏d

j=1 i
2t
j

∑
|i|∞>m

d∏
j=1

i2tj |ci|2

≤ max
|i|∞>m

∏d
j=1 i

2s
j∏d

j=1 i
2t
j

||u||Ht
mix

.(28)

With
∏d

j=1 i
2s
j /
∏d

j=1 i
2t
j =

∏d
j=1 i

2s−2t
j , the maximum is attained at (m+1)2(s−t) for

s ≤ t.
In later applications we will measure the error in the Hs

mix-norm for s = 0 using
a Ht

mix-regularity of u with t = 3/2− ε, ε > 0. This predicts an approximation rate
of 3/2− 2ε.

But note that Theorem 4 merely states an approximation rate and not a con-
vergence rate of the Galerkin discretization yet. To derive an estimate for that, we
would need a nonlinear Céa lemma which is not available. To this end, we can at least
resort to the local energy norm a(v, v;u) within our Newton–Galerkin method. After
convergence this also gives us the energy norm in the solution. Recall from Proposi-
tion 5 that the local energy norm is uniformly (in u) equivalent to the H-norm and
we have ‖v‖2H ≤ a(v, v;u) ≤ (1 + C2

H)‖v‖2H , v ∈ H , which gives us a local version of
Céa’s lemma. If um now denotes the Galerkin solution of the (local) discrete problem
(22), we can estimate the discretization error in Vm for our choice H = Hs

mix in the
energy norm as

a(u− um, u− um, w) ≤ (1 + C2
H)‖u− um‖2H = (1 + C2

H)‖u− um‖2Hs
mix

≤ (1 + C2
H)(m+ 1)−(t−s)‖u‖Ht

mix
∀w ∈ H,(29)

and we get, using, for example, piecewise multilinear functions in the construction of
the orthogonal system {φi}, with s = 1 (kernel k for H which involves the weak form
of a second order differential operator in the ‖ · ‖H-norm) and t = 3/2 − ε the rate
1/2− ε for the discretization error in Vm with respect to the energy error.

If we want to predict the rates of the discretization error with respect to the
L2-norm, we have to resort to the well-known Aubin–Nitsche lemma. For the specific
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pair of spaces L2 and Ht
mix with associated norms ‖ · ‖L2 and ‖ · ‖Ht

mix
it reads as

follows; compare also [24].
Lemma 1. There holds for the Galerkin solution um in Vm ⊂ Hs

mix

‖u− um‖L2 ≤ C · ‖u− um‖Hs
mix

sup
g∈L2

{
1

‖g‖L2

inf
v∈Vm

‖φg − v‖Hs
mix

}
,

where, to each g ∈ L2, the unique weak solution φg ∈ Hs
mix of the equation

a(w, φg) = (g, w) for w ∈ Hs
mix

is assigned. From this we directly get for s = 1

‖u− um‖L2 ≤ C · ‖u− um‖H1
mix

sup
g∈L2

{
1

‖g‖L2

inf
v∈Vm

‖φg − v‖H1
mix

}

≤ C · ‖u− um‖H1
mix

sup
g∈L2

{
1

‖g‖L2

C̃ · (m+ 1)−1‖g‖L2

}

≤ Ĉ · (m+ 1)−(t−1)‖u‖Ht
mix

(m+ 1)−1 = Ĉ · (m+ 1)−t‖u‖Ht
mix

,(30)

which results in the discretization error rate 3/2 − ε for t = 3/2 − ε. Note here
that Ht

mix is continuously embedded in L2; i.e., the prerequisite of the Aubin–Nitsche
lemma also holds for the spaces of bounded mixed derivatives.

Using ‖ · ‖L1 � ‖ · ‖L2 we finally obtain estimates for the discretization error also
in the L1-norm.

If we want to switch now to function systems with dyadic refinement, we may
proceed as follows: We first consider the case d = 1. In [25] it has been shown that
for s < 2 the norm defined by

|u|2s = ‖P0u‖2L2
+

∞∑
k=1

2−ks‖Pku− Pk−1u‖2L2

defines a norm on the (usual) Sobolev spaces Hs[0, 1] where Pk is the L2-orthogonal
projection onto Vh for h = 2−k. The reasoning uses Jackson and Bernstein inequalities
and is based on the Strang–Fix condition for the hat function; see section 5 of [25].
For example, for the case of homogeneous Dirichlet boundary conditions, we can now
choose any L2-orthogonal basis ψi (with obvious modifications for other boundary
conditions) which satisfies Vh = span{ψ1, . . . , ψ2k−1} and the norm ‖ · ‖Hs can then
be shown to be equivalent to the norm |·|s defined above. Taking tensor products then
gives the analogous result for Hs

mix([0, 1]
d). The corresponding rates in Theorem 4,

inequality (29), and inequality (30) then relate, of course, to base h instead of to base
(m+ 1)−1. A similar reasoning allows one to use here also more general wavelet-like
bases and frames [26] instead of L2-orthogonal function systems. If we then employ,
for example, prewavelets based on piecewise multilinear functions [27], we may use
the fact that they span in our full grid case the same space as the standard multilinear
“hat” functions on the full grid and our results hold for this case as well (albeit with
different constants in the estimates).

Note at this point that instead of the full grid with index set |i|∞ ≤ m also other
subspace constructions and associated index sets may be chosen in the definition of
the approximation space (27). Examples are sparse grid spaces/hyperbolic crosses
(|i|1 ≤ m + d − 1) and generalized sparse grids with more general index sets Λ.
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For the approximation error estimate the maximum in (28) must then be taken over
|i|1 > m+ d− 1 or N/Λ, respectively. This way the dimension of the approximation
space and thus the involved cost is often substantially reduced without compromising
the rate of the approximation error and the curse of dimensionality can be broken, at
least to some extent. Estimates for the discretization error in the ‖ · ‖H -norm then
follow the same direction as above; estimates for the L2-norm are gained with the help
of the Aubin–Nitsche lemma again.7 For further details on optimized approximation
spaces and their associated complexities, see [21, 22, 23]. In this article we will not
follow this direction but stick to the simpler “full grid” case and restrict ourselves to
the dimensions d = 1, 2, 3 for reasons of simplicity.

6. Examples. Numerical analysis is concerned with the trade-off of computa-
tional resources against the accuracy of the computed result. In this section we
consider the effect of the finite-dimensional approximation on the accuracy. We cover
several “synthetic” and real data sets in the one-, two-, and three-dimensional case.

Density estimation considers the reconstruction of a probability density f(t) from
given data t1, . . . , tn which presumably were drawn from this density and are pair-
wise independent. Except in very simple cases, the computed probability density
fh(t) contains errors which reflect the limited information available and the limited
computational resources used. Roughly, one may thus distinguish between two error
components, namely, the statistical error and the numerical error. Here we define the
statistical error as the error which is due to the limited data but also the error which
is due to the statistical estimation procedure (here the MAP method, and in partic-
ular the choice of the prior). While the analysis of the statistical errors is beyond
the scope of this investigation, it is important to have some idea of the statistical
error as it makes little sense to make the numerical error very small compared to
the statistical error. A thorough discussion of statistical aspects can be found in the
statistical literature, for example, in the books by Scott [9], Silverman [28], and Tapia
and Thompson [29].

6.1. Error measurement. For the analysis of the error of the approximation
of probability densities a variety of error measures have been used which include
several norms like the L1- and L2-norms and divergences like the Kullback–Leibler
divergence [28, 9]. The choice of a particular error does, of course, have an effect on
how well a computational procedure performs and thus has to be done carefully. This
choice does depend very much on the nature of the application of the estimate.

In many cases, one uses the probability density to estimate the probability of
events; i.e., for a given set A ⊂ T one would like to estimate the integral

P (A) =

∫
A

f(t) dt.

Many statistical tests are based on such computations. The error which one gets if
one uses fh(t) instead of f is then

|P (A)− Ph(A)| =
∣∣∣∣
∫
A

(f(t)− fh(t)) dt

∣∣∣∣ ≤
∫
T

|f(t)− fh(t)| dt,

and it is thus natural to measure the error f(t) − fh(t) in the L1-norm as this gives
an upper bound on any probability estimation error. In the case where

∫
T dt = 1 one

7Note that due to H = Hs
mix this is straightforward. The use of the conventional Sobolev space

H = Hs and a sparse grids space for Vm would cause problems due to the necessary regularity
assumption on the solution of the dual problem and thus of the regularity of its right-hand side.
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gets from the Cauchy–Schwartz inequality the bound

∫
T

|f(t)− fh(t)| dt ≤
√∫

T

(f(t)− fh(t))2 dt,

and so the L2-error is also frequently used. Note, however, that this bound may
give too pessimistic results in the case where the f contains narrow high peaks. In
the statistical literature, the square of the L2-error is also called integrated squared
error (ISE). This error depends on the actual data samples. An error measure which
does not depend on the data is the expectation of the ISE which is also called mean
integrated squared error (MISE) defined by

E

[∫
T

|f(t)− fh(t)|2 dt
]
.

In the method considered here, approximations uh of u are obtained. Recall that
the approximation fh of the density f is then obtained by the exponential formula as

fh =
expuh∫

Ω
exp(uh(t)) dt

.

The previous error bounds given were in terms of norms of uh − u. It turns out that
for a method for which uh converges to u in the ‖ · ‖H-norm one automatically gets
convergence of the probability densities.

Proposition 6. Let uh → u converge in H for h → 0. Then there exists for
each h0 > 0 a constant C0 > 0 such that

‖fh − f‖Lp ≤ C · ‖uh − u‖Lp , 0 < h < h0.

Proof. Let v = uh − u and

φ(θ, t) =
exp(u(t) + θv(t))∫

Ω
exp (u(s) + θv(s)) ds

.

In particular, φ(0, t) = f(t) and φ(1, t) = fh(t). The derivative with respect to θ is

dφ

dθ
(θ, t) = φ(θ, t)

(
v(t)−

∫
Ω

φ(θ, s)v(s) dt

)
.

It follows by the intermediate value theorem that the pth power of the Lp-norm of
the error of the density is

‖fh − f‖pLp
=

∫
Ω

|φ′(τ(t), t)|p dt =
∫
Ω

|φ(τ(t), t)|p
∣∣∣∣v(t)−

∫
Ω

φ(τ(t), s)v(s) ds

∣∣∣∣
p

dt.

As uh → u in H one has pointwise convergence by the reproducing property, and
consequently φ(τ(t), t) is uniformly bounded independently of h. Thus the first term
of the integrand is bounded. The second term can be bounded using the trian-
gle inequality and a second application of the boundedness of φ to complete the
proof.

As a consequence, it suffices to provide estimates for the errors of the u. We have
seen that the size of the error of uh does control the size of the error of the probability
density fh. The converse, however, is not true. This reflects the simple fact that uh
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is (up to normalization) the logarithm of fhz, the logarithm does have a singularity
at zero, and consequently, uh is not a continuous function of fh.

Related to this observation is a second point: For the well posedness of the
problem a careful choice of the reproducing kernel of H , i.e., the covariance of the
prior, has to be made. In practice, the H-norm involves a parameter, α > 0 (see
the following examples), which has to be chosen to be sufficiently large enough. This
relates to problems where f has values which are very close to zero. As in the Newton
solver the local mass matrices are generated by some approximation of f , and the case
where this approximation is close to zero will lead to a mass matrix which is singular
because substantial regions where f is zero will lead to zero submatrices of the mass
matrix. In this case the stiffness matrix of the local energy a(v1, v2;u)—which is
provided by the regularization or prior—guarantees the well posedness. A possibility
to deal with this issue is to consider a mixture of a uniform density and the empirical
density given by the data. After the mixture is determined one may “subtract”
the uniform density to retrieve an estimate of the original density. This approach,
however, also has its problems—in particular, it can return negative estimates—and
we will not consider it any further here. In the experiments we will always assume
that α > 0 is not too small.

6.2. Experiments. The following numerical experiments shall confirm and il-
lustrate the error bounds for norms of uh−u obtained in the previous sections. Compu-
tational experiments were performed for one-, two-, and three-dimensional problems.
The numerical method was implemented in Python using scipy, weave, and numpy for
performance and pylab and open-dx for visualization. The linear systems were solved
using GMRES with restart and an ILU preconditioner implemented in the PyTrilinos
package. The nonlinear problem was solved with an inexact Newton method using
Armijo stepsize control. Typically this required less than 10 Newton steps to get full
accuracy. Furthermore, the mass matrix required numerical integration (which was
done by piecewise Gauss quadrature). The code was run on a variety of computer
servers, workstations, and laptops all using the Linux operating system.

The main focus of our analysis and experiments has been on numerical errors or
bias. Statistical errors have not been considered; in particular, we have not investi-
gated how more data would have improved the estimators. This has been investigated
thoroughly in the statistical literature (see, e.g., the book by Scott [9]), and in con-
junction with the current method this has been considered in the thesis [30]. We have
also not considered how to choose the regularization parameter, and for this point we
again refer to the statistical literature and [30] which furthermore contains a compar-
ison of the numerical MAP approach discussed here with other numerical procedures,
including histograms and kernel density estimators.

6.2.1. One-dimensional density. In one dimension, the domain is T = [0, 1].
Here we set

k(t, s) = k(s, t) =
sinh(β(1 − t)) sinh(βs)

β sinh(β)
, s ≤ t.

By the addition theorem of sinh one can see that ∂k(t, s)/∂t has a jump of one at
t = s. It follows that

(31) −∂
2k(t, s)

∂t2
+ β2k(t, s) = δ(t− s),

where δ is the Dirac distribution. As k(t, s) is piecewise polynomial and continu-
ous, it is in H1 (see, for example, the textbook [24] by Braess), and furthermore
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k(0, s) = k(1, s) = 0. It follows that k(t, s) is the Green’s function characterized by
the differential equation (31), and consequently, it is the reproducing kernel of the

norm defined by
√∫ 1

0 (u
′(t))2 + β2u(t)2) dt. The structure parameter β > 0 plays

the same role as the width in Gaussian kernels and, more generally, in kernel density
estimators. It has to be specified and for our experiments we choose β = 1. We now
set

k1(t, s) =
n

α
k(s, t).

This is the kernel of the Sobolev space H = H1
0 [0, 1] with the norm

‖u‖H =

√
α

n

(∫ 1

0

(u′(t))2 dt+ β2

∫ 1

0

u(t)2 dt

)
.

That k1, is indeed, a reproducing kernel follows from the fact that k is the reproducing
kernel as shown above. It then follows that the functional j takes the form

j(u) =
α

n

∫ 1

0

(u′(t))2 dt+
αβ2

n

∫ 1

0

u(t)2 dt+ log

∫ 1

0

eu(t) dt− 1

n

n∑
i=1

u(ti).

As the kernel k(s, t) is continuous and piecewise C2, it follows from the duality theory
(see (20)) that the minimizer of j is continuous and piecewise C2 as well. Then,

u ∈ H
3
2−ε for any ε > 0. As a consequence of the theory developed in the previous

sections one sees that the piecewise linear approximation uh ∈ Vh is then of order
O(h3/2−ε) in terms of the L2-norm.

Now we study two special densities in more detail. First we consider the recon-
struction of a normal density—which has been truncated to the interval [0, 1] and
renormalized—and then the estimation of the density of a widely used data set. Since
we now know the exact solutions, we choose the norms ‖uh − u2h‖Lq as a substitute
for the error norms. This is well justified because the errors have been shown to be
of order O(hr) for some r > 1. For simplicity we will call these substitutes “errors”
in the following.

In the first example the effect of the randomness of data is eliminated by replacing
the term 1

n

∑n
i=1 u(ti) in the expression for j(u) by the limit for n → ∞ which is∫ 1

0
f(t)u(t) dt. We refer to this example as the “exact data” case. Using a similar

duality argument as in (20) one can show that for exact data u ∈ H2[0, 1], and so the
approximation in the space of piecewise linear functions Vh has a L2-error of the order
O(h2). This is confirmed by the results in Table 1 which contains the L1- and L2-
errors of uh together with the ratios of the errors between the levels. As an example we
have chosen the normal distribution with expectation 1/2 and variance 0.05 truncated
to the interval [0, 1] (and normalized to have integral one over [0, 1]). Here we choose
the regularization parameter8 α = 0.0002 and the kernel shape parameter β = 1.
The approximated probability for level l = 6 (i.e., h = 1/64) and the exact normal
distribution are plotted in Figure 1.

As a measure for the error or uh we consider ‖uh − u2h‖Lp for p = 1, 2. One can
verify from Table 1 that the approximation is O(h2) accurate.

8Of course, in practice α and possibly β would be determined by a statistical procedure like cross
validation.
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Table 1

Lq-norms ‖uh−u2h‖Lq for q = 1, 2, grid sizes h = 2−l, and ratios ‖uh−u2h‖Lq /‖uh/2−uh‖Lq

for normal distribution, exact data, smoothing parameter α = 0.0002, and structure parameter β = 1.

level L1-error ratio L2-error ratio

2 0.5 − 0.62 −
3 0.2 2.47 0.27 2.31
4 3.59 · 10−2 5.62 5.40 · 10−2 4.96
5 9.44 · 10−3 3.80 1.36 · 10−2 3.99
6 2.31 · 10−3 4.09 3.35 · 10−3 4.05
7 5.73 · 10−4 4.03 8.34 · 10−4 4.02
8 1.43 · 10−4 4.01 2.08 · 10−4 4.01
9 3.57 · 10−5 4.00 5.20 · 10−5 4.00
10 8.92 · 10−6 4.00 1.30 · 10−5 4.00
11 2.23 · 10−6 4.00 3.25 · 10−6 4.00
12 5.57 · 10−7 4.00 8.13 · 10−7 4.00
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Fig. 1. Gaussian density with variance 0.05 (interpolated to grid with size h) and its approxi-
mation using “exact data” and grid size h = 1/64.

Now we consider the same Gaussian density with mean 1/2 and variance 0.05
and draw a random sample t1, . . . , tn with n = 16 to determine u. For our estimator
we choose again β = 1 and α = 0.002. The resulting errors ‖uh − u2h‖Lq are given
in Table 2. The average error reduction obtained through doubling the grid size is
in theory

√
8 ≈ 2.83. From the results of Table 2 one gets on average over all the

levels a reduction factor of 3.4 for the L1-norm and of 2.7 for the L2-norm. Note
that the observed factor depends on the actual sample size and it increases with the
sample size. For example with 100,000 data points one gets average rates of 3.9 and
3.8 for the L1- and L2-norms, respectively. This is to be expected as in the limit for
an infinite number of points we know that the reduction factor must be 4.0 in theory.
A slight improvement of the reduction rate is also obtained when choosing a larger α;
for example, in the above example we got factors 3.7 for the L1-norm and 2.9 for the
L2-norm when choosing α = 0.01 (instead of the α = 0.002 used earlier). Of course,
both, i.e., larger amounts of data and a larger α, will lead to smoother estimates; see
Figure 2 for the actual estimates, the effect of α, and the number of data points.
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Table 2

Lq-norms ‖uh−u2h‖Lq for q = 1, 2, grid sizes h = 2−l, and ratios ‖uh−u2h‖Lq /‖uh/2−uh‖Lq

for normal distribution, 16 samples, smoothing parameter α = 0.002, and structure parameter β = 1.

level L1-error ratio L2-error ratio

2 0.38 − 0.41 −
3 7.36 · 10−2 5.15 8.92 · 10−2 4.62
4 4.32 · 10−2 1.71 6.44 · 10−2 1.39
5 1.36 · 10−2 3.17 2.35 · 10−2 2.74
6 5.43 · 10−3 2.51 1.00 · 10−2 2.34
7 1.78 · 10−3 3.05 4.17 · 10−3 2.40
8 4.29 · 10−4 4.16 1.39 · 10−3 3.00
9 1.19 · 10−4 3.61 5.21 · 10−4 2.66
10 2.72 · 10−5 4.37 1.53 · 10−4 3.40
11 9.57 · 10−6 2.84 8.08 · 10−5 1.90
12 1.70 · 10−6 5.63 2.07 · 10−5 3.90
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Fig. 2. Gaussian density with variance 0.05 (interpolated to grid with size h) and its approx-
imation using grid size h = 1/64. Top left: 16 data points and α = 0.01; top right: 16 data points
and α = 0.002; bottom: 100,000 data points, α = 0.002, and structure parameter β = 1.

So far we have considered a very simple synthetic example. Now we will look at
the estimation of the density for a well-known data set, the “Old Faithful” data. This
data set contains 272 observations of the eruption times of the Old Faithful Geyser in
the United States. It is arguably one of the most widely used data sets to illustrate
the performance of density estimators [28, 9] and contains multiple modes; see [31].
In Table 3 one clearly sees the O(h3/2) convergence behavior: The reduction rate was
on average 3.1 and 2.6 for the L1-norm and the L2-norm, respectively. The resulting
density again for h = 1/64 can be seen in Figure 3.



NUMERICAL METHODS FOR MAP 4787

Table 3

Lq-norms ‖uh−u2h‖Lq for q = 1, 2, grid sizes h = 2−l, and ratios ‖uh−u2h‖Lq /‖uh/2−uh‖Lq

for Old Faithful data set with 272 samples, smoothing parameter α = 0.0005, and structure parameter
β = 1.

level L1-error ratio L2-error ratio

2 1 − 1.12 −
3 0.38 2.62 0.43 2.61
4 7.23 · 10−2 5.26 8.71 · 10−2 4.95
5 2.14 · 10−2 3.37 3.28 · 10−2 2.66
6 7.62 · 10−3 2.81 1.16 · 10−2 2.82
7 2.47 · 10−3 3.09 3.98 · 10−3 2.92
8 1.07 · 10−3 2.30 2.14 · 10−3 1.86
9 3.52 · 10−4 3.04 7.72 · 10−4 2.77
10 1.10 · 10−4 3.21 3.39 · 10−4 2.28
11 3.00 · 10−5 3.67 1.14 · 10−4 2.98
12 7.96 · 10−6 3.76 4.54 · 10−5 2.51

1 2 3 4 5

0

1

2

t

d
en

si
ty

f
h

Fig. 3. Old Faithful data with grid size h = 1/64, α = 0.0005, and structure parameter β = 1.

6.2.2. Two-dimensional density. For two dimensions, we use the product
kernel

k2(t, s; q, r) =
n

α
k(t, q)k(s, r),

which corresponds to a prior that will favor independent variables if no information
is available. This makes sense as the dependence structure should originate from the
data (unless it is known a priori, of course). The domain is T = [0, 1]2, and one can
see that the kernel defines as H the mixed Sobolev space H = H1

0 [0, 1] × H1
0 [0, 1].

The norm which is also derived from this kernel is

‖u‖H =

√
α

n

(∫ 1

0

∫ 1

0

ut,s(t, s)2 + β2ut(t, s)2 + β2us(t, s)2 + β4u(t, s)2 dt ds

)
.

As in the one-dimensional case, other norms are possible, and one might wish to
choose a smoother kernel. However, this kernel has been selected here because it
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Table 4

Lq-norms ‖uh−u2h‖Lq for q = 1, 2, grid sizes h = 2−l, and ratios ‖uh−u2h‖Lq /‖uh/2−uh‖Lq

for normal distribution, 16 samples, smoothing parameter α = 0.0002, and structure parameter
β = 1.

level L1-error ratio L2-error ratio

2 0.26 − 0.31 −
3 9.16 · 10−2 2.82 0.13 2.31
4 2.19 · 10−2 4.18 3.56 · 10−2 3.71
5 7.97 · 10−3 2.75 1.51 · 10−2 2.36
6 3.13 · 10−3 2.55 6.09 · 10−3 2.47
7 9.80 · 10−4 3.19 2.18 · 10−3 2.80
8 3.50 · 10−4 2.80 8.18 · 10−4 2.66

Table 5

Lq-norms ‖uh−u2h‖Lq for q = 1, 2, grid sizes h = 2−l, and ratios ‖uh−u2h‖Lq /‖uh/2−uh‖Lq

for two-dimensional lipid data set, α = 0.00005, and structure parameter β = 1.

level L1-error ratio L2-error ratio

2 1.33 − 1.56 −
3 0.22 6.14 0.28 5.55
4 3.14 · 10−2 6.90 5.05 · 10−2 5.57
5 1.14 · 10−2 2.76 1.97 · 10−2 2.57
6 3.72 · 10−3 3.06 7.96 · 10−3 2.47
7 1.30 · 10−3 2.85 2.56 · 10−3 3.11
8 5.48 · 10−4 2.38 1.06 · 10−3 2.42

clearly exhibits numerical errors in the computations. For a kernel which relates to
H2

0 , see [30]. In our case, it holds that k2 ∈ H3/2−ε[0, 1]×H3/2−ε[0, 1] for all ε > 0, and
it follows as in the one-dimensional case that the solution u has the same regularity as
the kernel. Consequently, one expects to see an O(h3/2) error. This can be observed
in Table 4 for the case of a (truncated) normal distribution with variance 0.1. Here
we have chosen only 50 data points and a relatively small α = 0.0002. We found that
the asymptotics (in the number of data points) which leads to an approximate O(h2)
error starts earlier in two dimensions. The average reduction factor of the error is
here 3.0 and 2.7 for the L1- and L2-norms, respectively.

As the next example we consider the lipid data set from [9]. It contains obser-
vations of the cholesterol and triglyceride values of 371 male patients. The density
estimation should provide insight into the structure of the population; in particular, it
should show whether these values are related to heart disease. The errors are given in
Table 5. They again show clearly a convergence rate of substantially more than O(h)
but slightly less than O(h2). The observed reduction factor of the error is fluctuating
and appears to be asymptotically decreasing. An average value, computed as the geo-
metric mean of the reduction factors over the full range, is 3.7 for the L1-norm and 3.4
for the L2-norm. Note here that a larger than usual reduction of the error occurred
right at the beginning for the coarsest grids, i.e., in the preasymptotic region.

6.2.3. Three-dimensional density. For three-dimensional density estimation
we considered the landsat data set from [9]. This example was earlier discussed in [32]
where the authors point out some of the statistical difficulties for density estimation
in three and more dimensions. The data which are described in detail in [32, 9] are
based on remote sensing data measured over North Dakota in 1977 and contain the
following three variables: the time of maximum greenness, the ripening period of the
crop, and the value of the maximum greenness. The variables were obtained by fitting
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Fig. 4. Three-dimensional (rotated) view of density fh, h = 2−7, landsat data set, and isosur-
faces for three different values.

Table 6

Lq-norms ‖uh−u2h‖Lq for q = 1, 2, grid sizes h = 2−l, and ratios ‖uh−u2h‖Lq /‖uh/2−uh‖Lq

for three-dimensional landsat data set, α = 0.00001, and structure parameter β = 1.

level L1-error ratio L2-error ratio

2 0.29 − 0.42 −
3 7.13 · 10−2 4.05 0.13 3.10
4 1.57 · 10−2 4.54 3.32 · 10−2 4.05
5 3.79 · 10−3 4.15 8.64 · 10−3 3.84
6 1.03 · 10−3 3.67 2.68 · 10−3 3.22

a growth model to time-spatial observations of reflectance intensities. It is difficult
to see any structure from lower-dimensional projections of the data; however, one
can clearly distinguish two main clusters (which correspond to different crops) in the
three-dimensional density. See Figure 4 which was obtained with our code and the
open-dx visualization software.

The landsat data set contains 22932 observations of three variables of which we
selected a subregion with 22513 observations which contains “most of the action” but
was substantially smaller than the original region. As prior we have chosen a tensor
product of the one-dimensional priors. The kernel is then

k3(t1, t2, t3; s1, s2, s3) =
n

α
k(t1, s1)k(t2, s2)k(t3, s3)

and the H-norm is

‖u‖H =

√√√√√α

n

⎛
⎝∫∫∫

[0,1]3

⎛
⎝u2t1t2t3 + β2

∑
i<j

u2titj + β4

3∑
i=1

u2ti + β6 u2

⎞
⎠ dt1dt2dt3

⎞
⎠.

The associated space turns out to be the mixed space H0[0, 1]×H0[0, 1]×H0[0, 1].
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Table 6 shows the L1- and L2-errors for the case of α = 0.0002. Similar errors
were also obtained for the case α = 0.000001. Here we observe on average a decrease
by 4.1 of the L1-error and by 3.5 of the L2-error. This high convergence rate is re-
markable; however, one commonly observes that the preasymptotic region extends for
higher-dimensional data over several orders of magnitudes of h. Because of complex-
ity reasons we are presently limited to six levels of refinement in three dimensions and
can not reach the asymptotic range here.

7. Concluding remarks. In this article, we derived a variational problem char-
acterizing the density estimator defined by the maximum a posteriori method with
Gaussian process priors. We demonstrated that MAP estimators are penalized maxi-
mum likelihood estimators using the Cameron–Martin theory of stochastic processes.
We then showed that this problem is well posed and can be solved with Newton’s
method. Furthermore, we proposed a Newton–Galerkin approach for its solution and
discussed the computational performance of this approach for discretizations on reg-
ular “full grids” for reasons of simplicity.

The MAP density estimators belong to the class of penalized maximum likeli-
hood estimators. Other big classes include the histograms and kernel methods; see
the books by Scott [9], Silverman [28], and Tapia and Thompson [29] and a rich
literature for a further statistical discussion of comparative merits of these meth-
ods. Arguably, kernel density estimators are among the most popular approaches
due to their simplicity of implementation. However, a naive implementation of kernel
methods—especially in higher dimensions—pose a complexity problem: It will require
visiting all data points for the evaluation at any point which is extremely costly. This
problem can be circumvented by a further discretization [28], but we are not aware
of any studies of the associated errors in the literature. In contrast to that, we intro-
duced here a new class of methods where the discretization is an integral component
of the approximation and we were able to use standard numerical estimation tech-
niques to get error bounds. Similar methods are well known to be highly efficient
in solving partial differential equations. We have shown that they can be adopted
with the same efficiency to density estimation. A difference to the solution of partial
differential equations is the occurrence of point evaluations on the right-hand side of
the equations which is akin to computing Green’s functions. This is why reproducing
kernels now play an important role.

So far, the curse of dimension limits us to three dimensions. To this end, instead
of the “full grid” discretization other subspace constructions may also be chosen like
sparse grid spaces/hyperbolic crosses and generalized sparse grids. This way the di-
mension of the approximation space, and thus the involved cost, is often substantially
reduced without compromising the rate of the approximation error and the curse of
dimensionality can be broken, at least to some extent. In the future we plan to in-
vestigate several techniques for the solution of high-dimensional problems including
Opticom [33, 34] and other variants of the sparse grid combination technique [35, 16].

The extension of the current methods to other types of priors would require the
availability of the equivalent of the Cameron–Martin formula for the Radon–Nikodým
derivative of the translated measure with respect to the original measure (defined by
the prior) and will have to be the subject of future work.

Note finally that, while we discussed the new method for density estimation, our
approach can also be used for conditional density estimation; see [7]. In this case one
is given a sequence of data pairs (t1, y1), . . . , (tn, yn). The values of yk are random and
the values of tk can be either random or fixed. The conditional probability distribution
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is defined by a conditional density f(y | t) which shall be found from the data. From
this conditional density one can then obtain Bayesian (optimal) estimators of the
value of y given t which leads to various classification methods in the case where y is
discrete and regression techniques when y is continuous.
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