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Abstract. In this sequel to [15, 16] we focus on the efficient solution of the linear block-systems
arising from a Galerkin discretization of an elliptic partial differential equation of second order with
the partition of unity method (PUM). We present a cheap multilevel solver for partition of unity
discretizations of any order. The shape functions of a PUM are products of piecewise rational
partition of unity (PU) functions ϕi with supp(ϕi) = ωi and higher order local approximation
functions ψni (usually a local polynomial of degree ≤ pi). Furthermore, they are non-interpolatory.
In a multilevel approach we not only have to cope with non-interpolatory basis functions but also with
a sequence of nonnested spaces due to the meshfree construction. Hence, injection or interpolatory
interlevel transfer operators are not available for our multilevel PUM. Therefore, the remaining
natural choice for the prolongation operators are L2-projections. Here, we exploit the partition of
unity construction of the function spaces and a hierarchical construction of the PU itself to localize
the corresponding projection problem. This significantly reduces the computational costs associated
with the setup and the application of the interlevel transfer operators. The second main ingredient
for our multilevel solver is the use of a block-smoother to treat the local approximation functions ψni
for all n simultaneously. The results of our numerical experiments in two and three dimensions show
that the convergence rate of the proposed multilevel solver is independent of the number of patches
card({ωi}). The convergence rate is slightly dependent on the local approximation orders pi.
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1. Introduction. Meshfree methods are promising approaches to overcome the
problem of mesh generation which still is the most time-consuming part of any finite
element simulation. Meshfree methods are based only on a (finite) collection of in-
dependent points within the domain of interest, i.e. there are no fixed connections
between any two points like in a conventional mesh. These points can now be used
as collocation nodes [1, 12, 13, 14, 20], for the construction of approximate densities
[21, 22, 23] or even for the construction of trial and test spaces for a Galerkin method
[2, 3, 4, 11, 15].

Since meshfree methods are independent of a mesh, they are especially well-suited
for problems with complex geometries or problems which require highly adaptive
discretizations. Furthermore, meshfree methods are interesting for the treatment of
time-dependent problems from a Lagrangian point of view [15].

The shape functions of a meshfree Galerkin method are in general more complex
than finite element shape functions. In a meshfree method the shape functions are
usually piecewise rational functions, whereas in a finite element method (FEM) they
are piecewise polynomials. This makes the meshfree Galerkin discretization of a par-
tial differential equation more challenging than its discretization with a FEM. See
[15, 16] for details on the discretization process with the partition of unity method
(PUM).

For the efficient solution of linear systems derived from grid-based discretizations
multigrid [19] and multilevel methods [29] have been developed in the last 25 years.
They exhibit an optimal complexity, i.e. the number of operations necessary to obtain
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the solution up to a prescribed accuracy is proportional to the number of unknowns
of the linear system. Furthermore, the constant of proportionality is quite small. In
a multigrid method we usually deal with nested grids Ω0 ⊂ Ω1 ⊂ . . . ⊂ ΩJ . Here
J denotes the finest level of discretization. In a finite element setting we have the
associated nested function spaces Vk

V0⊂V1⊂V2⊂ · · ·⊂VJ−1⊂VJ ,

with interpolatory basis functions φi,k ∈ Vk. These two properties contribute signifi-
cantly to the optimal convergence of multigrid methods and they are also the standard
prerequisites in the respective convergence proofs.

The shape functions ϕiψ
n
i of a PUM space V PU are products of a piecewise

rational partition of unity function ϕi with supp(ϕi) = ωi and a higher order local
approximation function ψni . These product functions are non-interpolatory due to the
meshfree construction. Furthermore, this construction leads to a nonnested sequence

V PU
0 6⊂V PU

1 6⊂V PU
2 6⊂ · · · 6⊂V PU

J−1 6⊂V PU
J ,

of function spaces V PU
k :=

∑
i ϕi,kV

pi,k
i,k =

∑
i ϕi,k span〈ψni,k〉 in a multilevel setting.

Hence, the construction of prolongation operators Ikk−1 : V PU
k−1 → V PU

k and restriction
operators Ik−1

k : V PU
k → V PU

k−1 which connect the PUM spaces is not an easy task.
Furthermore, the construction of these interlevel transfer operators has to respect the
approximation orders pi,k of the local approximation spaces V pi,ki,k = span〈ψni,k〉.

In this paper we present a multilevel solver for the large sparse linear block-
systems arising from a (higher order) partition of unity discretization [2, 3, 15, 16]
of an elliptic partial differential equation (PDE) of second order. The main ingredi-
ents of our multilevel solver are the use of a hierarchical construction algorithm for
the sequence of partitions of unity {ϕi,k} and an L2-projection approach to the con-
struction of prolongation operators Ikk−1. Here, we not only exploit the structure of
the PUM function space to localize this projection problem but also our hierarchical
construction of {ϕi,k} can be utilized to further reduce the computational costs of the
setup of the interlevel transfer operators. Furthermore, we employ a block-smoother
in our multilevel iteration to treat all local approximation functions ψni,k simultane-
ously. The resulting multilevel iteration scheme converges with a rate ρ which is
independent of the number of discretization points, yet ρ is slightly dependent on the
local approximation orders.

The remainder of the paper is organized as follows: in §2 we give a short recap of
the construction of a PUM function space and its fundamental properties. In §3 we re-
view the Galerkin discretization of an elliptic PDE using a PUM function space. Then
we give the basic ingredients for an abstract multilevel algorithm in §4. We present the
multilevel construction for our partition of unity method in §5. Here, we utilize the
hierarchical construction proposed in [16] for the definition of a sequence of partitions
of unity {ϕi,k} which leads (in general) to a sequence of nonnested trial and test spaces
V PU
k . Since a direct interpolation between two successive PUM spaces is not available

we use an L2-projection approach to construct prolongation operators. We exploit
the structure of the PUM function spaces as well as the hierarchical construction of
the sequence of partitions of unity {ϕi,k} to localize the projections. This localization
in turn significantly reduces the operation count and storage requirements associated
with the interlevel transfer. The results of our numerical examples in two and three
dimensions are given in §6. They show that the presented multilevel iteration scheme
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converges with a rate ρ which is independent of the number of discretization points
and their distribution. Furthermore, we see from these results that the localization
of the L2-projection has no significant effect on the convergence behavior; i.e. the
rates ρ of the multilevel iteration with the global—and expensive—L2-projection are
(almost) identical to those of the iteration which employs our very cheap localized L2-
projection. The convergence rates ρ are slightly dependent on the local approximation
orders pi,k, since the employed block-smoother only eliminates local couplings within
ωi,k but does not eliminate couplings between neighboring patches ωi,k ∩ ωj,k 6= ∅.
Finally, we conclude with some remarks in §7.

2. Partition of Unity Spaces. In the following, we give a short recap of how
to construct partition of unity spaces for a meshfree Galerkin method, see [15, 16] for
details. In a partition of unity method, we define a global approximation uPU simply
as a weighted sum of local approximations ui,

uPU(x) :=
N∑
i=1

ϕi(x)ui(x). (2.1)

These local approximations ui are completely independent of each other, i.e. the
local supports ωi := supp(ui), the local basis {ψni } and the order of approximation
pi for every single ui :=

∑
uni ψ

n
i can be chosen independently of all other uj . Here,

the functions ϕi form a partition of unity (PU). They are used to splice the local
approximations ui together in such a way that the global approximation uPU benefits
from the local approximation orders pi yet it still fulfills global regularity conditions,
see [15].

The starting point for any meshfree method is a collection ofN independent points
P := {xi ∈ IRd |xi ∈ Ω, i = 1, . . . , N}. In the PU approach we need to construct a
partition of unity {ϕi} on the domain of interest Ω to define an approximate solution
(2.1) where the union of the supports supp(ϕi) = ωi covers the domain Ω ⊂

⋃N
i=1 ωi

and ui ∈ V pii (ωi) is some locally defined approximation of order pi to u on ωi. Given
a cover CΩ = {ωi | i = 1, . . . , N} we then can define such a partition of unity and local
approximations ui by using Shepard functions as ϕi and local approximation spaces
V pii = span〈ψni 〉 on the patches ωi. The efficient construction of an appropriate cover
CΩ for general point sets P is not an easy task [27]. Throughout this paper we use a
tree-based construction algorithm for rectangular covers presented in [16].

With the help of weight functions Wk defined on the patches ωk of the cover CΩ

we can easily generate a partition of unity by Shepard’s method, i.e. we define

ϕi(x) =
Wi(x)∑

ωk∈CiΩ
Wk(x)

, (2.2)

where Ci := {ωj ∈ CΩ |ωi ∩ ωj 6= ∅} is the set of all geometric neighbors of a
cover patch ωi. We restrict ourselves to the use of cover patches ωi which are d-
rectangular, i.e. they are products of intervals [xli − hli, xli + hli]. Therefore, the most
natural choice for a weight function Wi is a product of one-dimensional functions,
i.e. Wi (x) =

∏d
l=1W

l
i (xl) =

∏d
l=1W (x−x

l
i+h

l
i

2hli
) with supp(W) = [0, 1] such that

supp(Wi) = ωi. It is sufficient for this construction to choose a one-dimensional
weight function W which is non-negative. The partition of unity functions ϕi inherit
the regularity of the generating weight functionW. We always use a normed B-spline
[27] as the generating weight function W.
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In general, a partition of unity {ϕi} can of course only recover the constant
function on the domain Ω. Hence, we need to improve the approximation quality to
use the method for the discretization of a PDE. To this end, we multiply the partition
of unity functions ϕi locally with polynomials ψni . Since we use d-rectangular patches
ωi only, a local tensor product space is the most natural choice. Throughout this
paper, we use products of univariate Legendre polynomials as local approximation
spaces V pii , i.e. we choose

V pii = span〈{ψni |ψni =
d∏
l=1

Ln̂li ,
d∑
l=1

n̂l ≤ pi}〉,

where n̂ is the multi-index of the polynomial degrees n̂l of the univariate Legendre
polynomials Ln̂li : [xli − hli, x

l
i + hli] → IR, and n is the index associated with the

product function ψni =
∏d
l=1 L

n̂l
i .

In summary we can view the construction given above as follows {xi}W
{pi}

→
 {ωi}

{Wi}
{V pii = span〈ψni 〉}

→ (
{ϕi}
{V pii }

)
→ V PU =

∑
ϕiV

pi
i ,

where the set of points P = {xi}, the generating weight function W and the local
approximation orders pi are assumed to be given.

3. Galerkin Discretization. We want to solve elliptic boundary value prob-
lems of the type

Lu = f in Ω ⊂ IRd ,
Bu = g on ∂Ω ,

where L is a symmetric partial differential operator of second order and B expresses
suitable boundary conditions. For reasons of simplicity we consider in the following
the model problem

−∆u+ u = f in Ω ⊂ IRd ,
∇u = g on ∂Ω ,

(3.1)

of Helmholtz type with natural boundary conditions. The Galerkin discretization of
(3.1) leads to a definite linear system1.

In the following let a (·, ·) be the continuous and elliptic bilinear form induced
by L on V := H1(Ω). We discretize the partial differential equation using Galerkin’s
method. Then, we have to compute the stiffness matrix

A = (A(i,n),(j,m)) , with A(i,n),(j,m) = a (ϕjψmj , ϕiψ
n
i ) ∈ IR ,

and the right hand side vector

f̂ = (f(i,n)) , with f(i,n) = 〈f, ϕiψni 〉L2 =
∫

Ω

fϕiψ
n
i ∈ IR .

1The implementation of Neumann boundary conditions with our partition of unity method is
straightforward and similar to their treatment within the FEM. The realization of essential boundary
conditions with meshfree methods is more involved than with a finite element method due to the non-
interpolatory character of the meshfree shape functions. There are several different approaches to
the implementation of essential boundary conditions with meshfree approximations, see [15, 18, 27].
The resulting linear systems may be indefinite, e.g. when we use Lagrangian multipliers to enforce
the essential boundary conditions.
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The integrands of the weak form of (3.1) may have quite a number of jumps of sig-
nificant size since we use piecewise polynomial weights Wi whose supports ωi overlap
in the Shepard construction (2.2). Therefore, the integrals of the weak form have to
be computed using an appropriate numerical quadrature scheme, see [15, 16].

The product structure of the shape functions ϕiψni implies two natural block
partitions of the resulting linear system Aũ = f̂ , where ũ denotes a coefficient vector
and f̂ denotes a moment vector.

1. The stiffness matrix A can be arranged in spatial blocks. A spatial block Anm
corresponds to a discretization of the PDE on the complete domain Ω using
the trial functions ϕjψmj and the test function ϕiψ

n
i with fixed n and m.

Here, all blocks Anm are sparse matrices and have the same row and column
dimensions which corresponds to the number of partition of unity functions
ϕi.

2. The stiffness matrix A may also be arranged in polynomial blocks. Here,
a single block Aij corresponds to a local discretization of the PDE on the
domain ωi ∩ ωj ∩ Ω. The polynomial blocks Aij are dense matrices and
may have different dimensions corresponding to the dimensions of the local
approximation spaces V pjj and V pii .

The separation of degrees of freedom into local approximation functions ψni and par-
tition of unity functions ϕi may also be utilized in the design of multilevel solvers, see
§5.

The number of nonzeros of the stiffness matrix A is given by the number of
neighbors card(Ni) of each cover patch ωi and the local approximation order pi, i.e.
we have

nonzeros(A) ∼
∑
ωi∈CΩ

card(Ni)p2d
i ,

whereas the number of degrees of freedom, i.e. the number of rows of A, is given by

dof = rows(A) ∼
∑
ωi∈CΩ

pdi .

4. Variational Multilevel Algorithm. Now we consider the efficient solution
of the large sparse linear (block-)system Aũ = f̂ . Of course, the computational work
associated with it should be comparable to the computational work associated with
the discretization process. We have to find a solver for the linear system which scales
linearly with the number of unknown coefficients (i.e. actually the solver should
scale with the number of nonzeros of A). It is well-known that the convergence
rates ρ of classical iteration schemes like the Jacobi- or Gauß–Seidel-method grow
with the number of unknowns. Also, the corresponding single-level preconditioners
B result in condition numbers κ (BA) that are dependent on the number of unknown
coefficients. Hence, the computational costs during the solution of the linear system
does not scale linearly with the number of unknowns. To overcome this problem
multilevel techniques can be used. In the following we state the basic assumptions for
a multilevel algorithm for a sequence of (nonnested) discretization spaces Vk.

1. Let V0, . . . , VJ be a sequence of (nonnested) finite dimensional vector spaces
where VJ is the finest discretization space.

2. Assume that we have a linear prolongation operator Ikk−1 : Vk−1 → Vk for
k = 1, . . . , J .
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3. Assume that we have a linear restriction operator Ik−1
k : Vk → Vk−1 for

k = 1, . . . , J .
4. Assume that we have a symmetric positive definite bilinear form a (·, ·) on the

function space V and its respective representation Ak on the discretization
spaces Vk for k = 0, . . . , J .

5. Assume that we have linear smoothing operators Spre
k : Vk × Vk → Vk and

Spost
k : Vk × Vk → Vk on the spaces Vk for k = 1, . . . , J .

We can then define an abstract multilevel algorithm:
Algorithm 1 (Multilevel Algorithm Mν1,ν2

γ (k, xk, bk)).
1. if k > 0:

(a) For l = 1, . . . , ν1: Set xk = Spre
k (xk, bk).

(b) Set dk−1 := Ik−1
k (bk −Akxk).

(c) Set ek−1 := 0.
(d) For i = 1, . . . , γ: ek−1 = Mν1,ν2

γ (k − 1, ek−1, dk−1).
(e) Set xk = Ck (xk, ek−1) := xk + Ikk−1 ek−1.
(f) For l = 1, . . . , ν2: Set xk = Spost

k (xk, bk).
2. else:

(a) Set xk = A−1
k bk.

In the variational setting the prolongation operators Ikk−1, i.e. their matrix represen-
tations, are used to transport coefficient vectors ũ , whereas the restriction operators
Ik−1
k are used to transport moment vectors f̂ .

The iteration Mν1,ν2
γ is an optimal solver for discretizations of continuous prob-

lems with full elliptic regularity on nested grids if we have the approximation property
for Ikk−1, Ik−1

k and the smoothing property for Spre, Spost [5]. A different convergence
theory based on iterative subspace splittings and Schwarz theory was introduced in
[8, 28]. This theory was also extended to the case of nonnested spaces Vk [7] where
the variational assumption

a (Ikk−1φj,k−1, I
k
k−1φi,k−1) = a (φj,k−1, φi,k−1) (4.1)

and subsequently the Galerkin identity

Ak−1 = Ik−1
k AkI

k
k−1 (4.2)

are not valid. The general convergence theory developed in [7] is based on the weaker
assumption

a (Ikk−1φj,k−1, I
k
k−1φi,k−1) ≤ Ca (φj,k−1, φi,k−1) (4.3)

besides further conditions on the regularity of the underlying problem and the ap-
proximation properties of the transfer operators. In [24] a convergence theory for
additive multilevel iterations is presented which exploits an estimate of the growth of
the iterated prolongations in the energy norm instead of a two-level estimate like (4.3).
Nonconforming multigrid methods, where special prolongations and restrictions for a
certain element are constructed (see [9] and the references cited therein), are special
cases of the general nonnested situation.

We now apply the general PUM construction given in §2 to every point set of
a nonnested sequence of point sets Pk = {xi,k} to define a sequence of function
spaces V PU

k . Hence, we not only have to deal with the general situation of nonnested
spaces but also with non-interpolatory shape functions on every level. Our multilevel
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construction can be visualized with the diagram {xi,0}W
{pi,0}

 → (
{ωi,0,Wi,0}
{V pi,0i,0 }

)
→
(
{ϕi,0}
{V pi,0i,0 }

)
→ V PU

0 =
∑
ϕi,0V

pi,0
i,0

↓↑ ↓↑ ↓↑ ↓↑
...

...
...

...
↓↑ ↓↑ ↓↑ ↓↑ {xi,k}W
{pi,k}

 → (
{ωi,k,Wi,k}
{V pi,ki,k }

)
→
(
{ϕi,k}
{V pi,ki,k }

)
→ V PU

k =
∑
ϕi,kV

pi,k
i,k

↓↑ ↓↑ ↓↑ ↓↑
...

...
...

...
↓↑ ↓↑ ↓↑ ↓↑ {xi,J}W
{pi,J}

 → (
{ωi,J ,Wi,J}
{V pi,Ji,J }

)
→
(
{ϕi,J}
{V pi,Ji,J }

)
→ V PU

J =
∑
ϕi,JV

pi,J
i,J

where all interlevel transfer operators have to cope with the nonnestedness of the
point sets and of the function spaces. The construction of a sequence of point sets
Pk = {xi,k} from a given initial point set P̃ = {xi | i = 1, . . . , Ñ} is presented in §5.
There we also develop appropriate prolongation operators Ikk−1 for the resulting PUM
spaces V PU

k of any order.
Prior to our multilevel PUM construction we give a short analysis of the compu-

tational costs associated with the abstract multilevel iteration scheme Mν1,ν2
γ .

4.1. Computational Costs. The number of operations C
M
ν1,ν2
γ

associated with
the abstract multilevel iteration Mν1,ν2

γ can be estimated with the help of the average
number of nonzeros per degree of freedom for the operator matrix Ak, the prolongation
matrix Ikk−1 and the restriction matrix Ik−1

k , i.e. with the constants

C(Ak) :=
nonzeros(Ak)

dofk
, C(Ikk−1) :=

nonzeros(Ikk−1)
dofk

and C(Ik−1
k ) :=

nonzeros(Ik−1
k )

dofk
.

These averages C(Ak), C(Ikk−1) and C(Ik−1
k ) are also the relevant measures for the

storage requirement of the method.
With these estimates for the matrices we can estimate the operation counts per

unknown coefficient on level k. For the defect computation (step 1b) and the correc-
tion step 1e we get the estimates

CD,k = 2C(Ik−1
k )

(
2C(Ak) + 1

)
and CC,k = 1 + 2C(Ikk−1).

The operation count CS,k for the smoothing steps 1d and 1f is given by

CS,k = 2
(
ν1 + ν2

)(
C(Ak)− 1

)
if we apply Gauß–Seidel smoothing.
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With these stepwise operation counts we can bound the number of operations per
iteration of Algorithm 1 on level k by

dofkCkMν1,ν2
γ

≤ dofk(CD,k + CC,k + CS,k) + γdofk−1Ck−1

M
ν1,ν2
γ

, (4.4)

where Ck
M
ν1,ν2
γ

denotes the number of operations per unknown on level k. If we assume

that the averages C(Ak), C(Ik−1
k ) and C(Ikk−1) can be bounded independent of the

level, i.e. C(Ak) ≤ CA, C(Ik−1
k ) ≤ CR and C(Ikk−1) ≤ CP for all levels k, then the

estimates for the number of operations given above are also independent of the level
k, i.e. CD,k ≤ CD, CC,k ≤ CC and CS,k ≤ CS . Hence, the summation of (4.4) over all
levels gives the estimate

CJ
M
ν1,ν2
γ

≤ (CD + CC + CS)

(
1 +

J−1∑
k=1

γk
dofJ−k

dofJ

)
+ γJ

dof0

dofJ
C0. (4.5)

Therefore, one iteration of the multilevel algorithm Mν1,ν2
γ is of linear complexity

with respect to dofJ if the series

J∑
k=0

γk
dofJ−k

dofJ
<∞ for J →∞

converges.

5. Multilevel Partition of Unity Method. In this section we present the
multilevel construction of PUM spaces V PU

k and appropriate prolongation operators
Ikk−1 : V PU

k−1 → V PU
k . Recall from §2 that a general PUM space V PU is defined as

V PU :=
N∑
i=1

ϕiV
pi
i ,

where {ϕi} is a partition of unity based only on a set of points P = {xi ∈ Ω} with
card(P ) = N and the V pii are local approximation spaces of degree pi defined on the
supports ωi = supp(ϕi). Due to this separation of the degrees of freedom in h-type
components ({ϕi}) and p-type components (V pii ) we can define two abstract multilevel
constructions.

Polynomial Multilevel Approach. Here, we keep the PU fixed and define
local hierarchies for the local spaces V pii . Since these local spaces are polynomial
spaces we can easily define a nested sequence of local spaces by

V 0
i ⊂ V 1

i ⊂ V 2
i ⊂ · · · ⊂ V

pi
i

embedding lower order spaces V li into V pii . With this choice we can even define a
direct splitting of the local spaces V pii and the partitioning of the stiffness matrix
into spatial blocks given above can be interpreted as an implementation of this direct
splitting.

This p-multilevel approach though suffers from several drawbacks concerning the
optimal complexity of the resulting solver. The reduction in the number of degrees
of freedom is (in general) level-dependent and it is close to one. In the context of
Schwarz methods we can cure this problem by coarsening directly to the pi = 0 case
[25] and by limiting ourselves to a polynomial two-level approach. In the multilevel
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Level 0

Level 1

Level 2

Level 3

Level 4

Level 1

Level 2

Level 3

Level 4

Level 0

Figure 5.1. Hierarchical cover construction with Algorithm 2 in two dimensions. The initial
cell decomposition induced by P̃ (upper left) and its corresponding tree representation (upper right)
after step 2 of Algorithm 2. The final cell decomposition with the cell center point set P (lower left)
and its tree representation (lower right) after the completion of Algorithm 2.

as well as the two-level approach the problem remains that the coarsest linear system
is of dimension N = card(P ), i.e. it is of non-constant size and its condition number
is also not constant. Hence, we still need an optimal solver for the spatial degrees of
freedom.

Spatial Multilevel Approach. Here, we “fix” the local approximation spaces
V pii and work only with the h-components of our PUM space, i.e. the partition
of unity {ϕi}. Due to the overlap of the support patches ωi, the definition of a
nested sequence of function spaces is usually not possible. Furthermore, the meshfree
construction—where we have no fixed connections between any two points—does not
lead to a natural ordering or hierarchy of the partition of unity functions ϕi. In
[16] a hierarchical cover construction algorithm was proposed which simplifies this
problem substantially. Due to the construction principles given in §2 we only need to
specify a sequence of point sets Pk = {xi,k} (besides the generating weight function
W and the polynomial degrees pi,k) for our multilevel PUM setup. The sequences of
covers CkΩ := {(ωi,k,Wi,k) |Wi,k : IRd → IR, supp(Wi,k) = ωi,k}, partitions of unity
{ϕi,k} and PUM spaces V PU

k are then constructed according to our single level PUM
construction Pk = {xi,k}

W
{pi,k}

→ (
{ωi,k,Wi,k}
{V pi,ki,k }

)
→
(
{ϕi,k}
{V pi,ki,k }

)
→ V PU

k =
∑

ϕi,kV
pi,k
i,k

for all k = 0, . . . , J .
The cover construction is the most crucial step in a PUM. The cover has a signif-

icant impact on the computational costs associated with the assembly of the stiffness
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Level 1

Level 2

Level 3

Level 4

Level 0

Level 1

Level 2

Level 3

Level 4

Level 0

Level 1

Level 2

Level 3

Level 4

Level 0

Figure 5.2. The cell decomposition (left) and its respective tree representation (right) for the
fine point set P4 (upper) given in Figure 5.1 and two subsequent coarser point sets (P3 and P2) due
to our cell agglomeration principle. The horizontal lines indicate the active levels for a tree node,
i.e. its respective cell.

matrix A, since the cover already defines the sparsity pattern of the stiffness matrix,
i.e. the number of integrals to be evaluated. Furthermore, the cover influences the
algebraic structure of the partition of unity functions ϕi, which has to be resolved for
the proper integration of a stiffness matrix entry. In [16] the following hierarchical
cover construction algorithm was proposed to reduce the computational costs of the
assembly of the stiffness matrix. Due to this hierarchical construction we can now
use this algorithm to define a sequence of point sets Pk, i.e. we can directly define a
sequence of covers CkΩ, which can then be used to define a sequence of function spaces
V PU
k .

Algorithm 2 (Hierarchical Regular Cover Construction).

1. Given: the domain Ω ⊂ IRd, a bounding box RΩ =
⊗d

i=1[liΩ, u
i
Ω] ⊃ Ω, the

initial point set P̃ = {xj ∈ IRd |xj ∈ Ω, j = 1, . . . Ñ} and a parameter q ∈ IN.
2. Set P := P̃ and build a d-binary tree (quadtree, octree) over RΩ, such that per

10



leaf L at most one xi ∈ P lies within the associated cell CL :=
⊗d

i=1[liL, u
i
L],

and the difference of the levels (with respect to the tree) of two adjacent cells
is at most q, see Figure 5.1.

3. For all cells CL =
⊗d

i=1[liL, u
i
L] with CL ∩ Ω 6= ∅:

(a) Set xiL = liL + 1
2 (uiL − liL).

(b) If there is no xj ∈ P with xj ∈ CL, set P = P ∪ {xL}.
(c) Set ωL = RL =

⊗d
i=1[xiL−hiL, xiL +hiL] ⊃ CL, where hiL = αl

2 (uiL− liL).

(d) Set the associated weight function WL (x) := Πd
i=1W (x−x

i
L+hiL

2hiL
).

Here, the parameter αl is only dependent on the order l of the spline W used in the
construction of the partition of unity, see [16]. Throughout this paper we use a linear
spline W to generate the partition of unity with αl = 1.3 and q =∞.

The d-binary tree of step 2 can be used to build a hierarchy of covers CkΩ and
subsequently to define a sequence of function spaces V PU

k . To this end we define a
coarser cover Ck−1

Ω to a cover CkΩ by collapsing those leaves of the tree into its parent
tree node whose siblings are also leaves, i.e. do not have children, see Figures 5.1
and 5.2. The construction of Ck−1

Ω then proceeds from this reduced tree with step
3 of Algorithm 2. This cover is then used to define the corresponding coarse parti-
tion of unity {ϕi,k−1} according to (2.2). Finally, we use the maximal polynomial
degree pj,k−1 := maxωi,k pi,k of all collapsed children ωi,k to define a local approxi-
mation space V pj,k−1

j,k−1 on the coarse cover patch ωj,k−1. With these we then define the
respective coarser function space V PU

k−1 :=
∑
ϕi,k−1V

pi,k−1
i,k−1 .

The described patch agglomeration principle though does not translate (in gen-
eral) to a nested sequence of function spaces due to the Shepard construction (2.2)
for the partition of unity. Note further that although a geometric patch ω may be
resident on multiple levels, its corresponding shape functions may not be the same on
different levels. Since the geometric neighboring relations and the weight functions
of the respective neighbors on different levels can change, the corresponding partition
of unity function ϕ can change. Hence, the shape functions ϕi,kψni,k associated with
ωi,k = ω on level k are different from those ϕj,k−1ψ

n
j,k−1 on level k − 1, even if the

local approximation space V pi,ki,k = V
pj,k−1
j,k−1 on the cover patch ωi,k = ωj,k−1 = ω is

not changed between levels k and k − 1.
Due to the tree-based construction we have “transfer maps” between the point

sets Pk = {xi,k} on different levels and the cover patches CkΩ = {ωi,k} on different
levels via a descent or ascent operation in the tree. But such tree-operations cannot be
used to transport information between V PU

k−1 and V PU
k . To this end, the prolongations

Ikk−1 : V PU
k−1 → V PU

k have to be constructed explicitly. Yet we can exploit our tree
construction to simplify the construction of Ikk−1, see §5.1.

Note that our coarsening strategy is different from the usual level oriented coarsen-
ing in multigrid methods. The approximation property (with respect to the solution)
of the resulting coarser PUM spaces should benefit from this coarsening strategy since
we have a global coarsening which keeps local differences in the resolution constant
(we assume that such differences are induced by the solution). With our strategy we
also have a very fast coarsening, i.e. the number of points of a coarse level card(Pk−1)
generated by our coarsening strategy is (in general) smaller than the number of points
would be with a level oriented coarsening. A fast coarsening is useful for the optimal
complexity of the multilevel iteration scheme. But still the coarsening rate may only
be of algebraic type for highly irregular point sets P̃ . The optimal operation count
of the multilevel iteration Mν1,ν2

γ in such cases has to be ensured employing similar
11



strategies as we have in multigrid for adaptive grids, see [30] and the references cited
therein for details.

5.1. Interlevel Transfer Operators. Now we turn to the question of interlevel
transfer operators, i.e. the construction of the prolongation operators

Ikk−1 : V PU
k−1 → V PU

k

and the restriction operators

Ik−1
k : V PU

k → V PU
k−1.

Coarser shape functions ϕi,k−1ψi,k−1 cannot be represented exactly on finer levels,
i.e.

ϕi,k−1ψ
l
i,k−1 6=

∑
βmj,kϕj,kψ

m
j,k (5.1)

due to the nonnestedness of the spaces V PU
k . Furthermore, the functions ϕi,kψni,k are

non-interpolatory and therefore a simple interpolation Ikk−1 between the spaces V PU
k−1

and V PU
k is not available.

L2-projections for Interlevel Transfer. One approach toward the construc-
tion of the prolongation operators Ikk−1 for our nonnested spaces is the use of L2-
projections Πk

k−1

Ikk−1 := Πk
k−1 : V PU

k−1 → V PU
k

from V PU
k−1 onto V PU

k . In general an L2-projection ΠW̃
W : W → W̃ from W ⊂ L2 onto

W̃ ⊂ L2 can be defined with the help of two moment matrices

(MW̃
W̃

)ij := 〈φW̃j , φW̃i 〉L2 (MW̃
W )ij := 〈φWj , φW̃i 〉L2

where {φWj } denotes a basis for W and {φW̃j } a basis for W̃ . The L2-projection
ΠW̃
W : W → W̃ can then be defined as

ΠW̃
W := (MW̃

W̃
)−1(MW̃

W ). (5.2)

The projection ΠW̃
W maps coefficients ũW to coefficients ũW̃ . Its transpose (ΠW̃

W )T

obviously transports moment vectors f̂W to moment vectors f̂W̃ . Hence, if we use
projections Π as the prolongations it is legitimate to use the transposed projections
ΠT as restrictions.

Note that in the context of nonconforming discretizations L2-projections are also
used for the interlevel transfer, e.g. for the Crouzeix–Raviart element [6].

5.1.1. Global L2-projection. The selection of W = V PU
k−1 with the PUM basis

{φWj } = {ϕi,k−1ψ
n
i,k−1} and W̃ = V PU

k with {φW̃j } = {ϕi,kψni,k} leads to the mass
matrix Mk

k on V PU
k and the interlevel mass matrix Mk

k−1 from V PU
k−1 to V PU

k . The
global L2-projection Πk

k−1 is then given by

Πk
k−1 = (Mk

k )−1(Mk
k−1). (5.3)

This global projection Πk
k−1 though suffers from three major drawbacks:

12



1. The mass matrix Mk
k has to be inverted. Although the global basis {ϕi,kψni,k}

is stable with respect to the number of cover patches card(Pk), see [16], the
condition number κk of Mk

k is dependent on the local approximation orders
pi,k.

2. The sparsity pattern of the mass matrix Mk
k is identical to that of the operator

matrix Ak and therefore the storage requirement per level k is doubled.
3. The sparsity pattern of the interlevel mass matrix Mk

k−1 is given by the
geometric neighbor relations ωj,k−1 ∩ ωi,k 6= ∅. Due to the overlap of the
cover patches the number of interlevel neighbors is rather large which further
increases the storage requirement per level.

5.1.2. Global-to-Local L2-projection. From the basic PUM error estimate
[2, 3]

‖v − vPU‖2L2 (Ω) ≤ C
∑
i

‖v − vi‖2L2 (ωi∩Ω), (5.4)

where vPU :=
∑
i ϕi

∑
n u

n
i ψ

n
i and vi :=

∑
n u

n
i ψ

n
i , we know that it is sufficient to

control the local errors ‖v − vi‖L2 (ωi∩Ω) on each cover patch ωi. In the context of
our projection problem we have v = uPU

k−1 and vPU = Ikk−1u
PU
k−1 and (5.4) leads to the

estimate

‖uPU
k−1 − Ikk−1u

PU
k−1‖2L2 (Ω) ≤ C

∑
i

‖uPU
k−1 − ui,k‖2L2 (ωi,k∩Ω) (5.5)

for the interlevel transfer problem. Hence, we can localize the approximation of
the coarse function uPU

k−1 to the fine patches ωi,k but still construct a valid global
approximation uPU

k = Ikk−1u
PU
k−1. The corresponding moment matrices associated

with this localized projection are

(M̃k
k )(i,n),(i,m) := 〈ψmi,k, ψni,k〉L2 (ωi,k∩Ω) and

(M̂k
k−1)(i,n),(j,m) := 〈ϕj,k−1ψ

m
j,k−1, ψ

n
i,k〉L2 (ωi,k∩Ω).

(5.6)

The respective projection is given by

Π̂k
k−1 = (M̃k

k )−1(M̂k
k−1). (5.7)

Here, the localized moment matrix M̃k
k is block-diagonal. Therefore, the above-

mentioned disadvantages 1 and 2 associated with the mass matrix Mk
k are eliminated.

But since the sparsity pattern of the localized interlevel moment matrix M̂k
k−1 is iden-

tical to that of the global interlevel mass matrix Mk
k−1 we still have to cope with the

corresponding storage overhead.

5.1.3. Local-to-Local L2-projection. The sparsity pattern of the moment ma-
trices M̂k

k−1 and Mk
k−1 is given by the geometric neighbor relations ωj,k−1 ∩ ωi,k 6= ∅.

These have to be taken into account since we approximate the global function uPU
k−1

in V PU
k . But if we also exploit the partition of unity construction of the coarse space

V PU
k−1 and our hierarchical multilevel cover construction we can further localize the

approximation problem associated with the interlevel transfer.
Due to our tree-based cover construction we have exactly one coarse cover patch

ωj,k−1 with ωj,k−1 ⊇ ωi,k for every fine cover patch ωi,k, i.e. the coarse index j, k− 1
is unique for every fine index i, k.
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Every cover patch ωL corresponds to a tree-cell CL and vice versa. Either a fine
cover patch ωi,k is also element of the coarse cover Ck−1

Ω , then we have ωi,k = ωj,k−1,
or the cover patch ωj,k−1 which corresponds to the parent tree-cell of ωi,k is element
of Ck−1

Ω and is the only coarse patch ωl,k−1 that fulfills ωl,k−1 ⊇ ωi,k; i.e. in this
case ωj,k−1 ⊃ ωi,k holds. We plug the associated coarse local approximation uj,k−1 ∈
V
pj,k−1
j,k−1 into the right hand side of (5.5) and get the estimate

‖uPU
k−1 − Ikk−1u

PU
k−1‖2L2 (Ω) ≤ C

∑
i

(
‖uPU

k−1 − uj,k−1‖L2 (ωi,k∩Ω)+
‖uj,k−1 − ui,k‖L2 (ωi,k∩Ω)

)2
.

(5.8)

Now, let u denote the continuous function which is approximated by uPU
k−1 ∈ V PU

k−1

and introduce u into the first term of the right hand side of (5.8). This leads to the
estimate

‖uPU
k−1 − Ikk−1u

PU
k−1‖2L2 (Ω) ≤ C

∑
i

(
‖uPU

k−1 − u‖L2 (ωi,k∩Ω)+
‖u− uj,k−1‖L2 (ωi,k∩Ω)+
‖uj,k−1 − ui,k‖L2 (ωi,k∩Ω)

)2
.

(5.9)

Therefore, it is sufficient to control the error ‖uj,k−1 − ui,k‖L2 (ωi,k∩Ω) of the local
approximation ui,k on the fine cover patch ωi,k to the coarse local approximation
uj,k−1 with ωi,k ⊆ ωj,k−1. The respective moment matrices are then defined by

(M̃k
k )(i,n),(i,m) := 〈ψmi,k, ψni,k〉L2 (ωi,k∩Ω) and

(M̃k
k−1)(i,n),(j,m) := 〈ψmj,k−1, ψ

n
i,k〉L2 (ωi,k∩Ω),

(5.10)

where the sparsity pattern of M̃k
k−1 is now given by the hierarchical condition ωi,k ⊆

ωj,k−1 instead of the neighbor relation ωi,k ∩ ωj,k−1 6= ∅. Hence, the storage require-
ment for the projection

Π̃k
k−1 = (M̃k

k )−1(M̃k
k−1) (5.11)

is reduced to one block-entry (Π̃k
k−1)ij per fine level patch ωi,k without (a significant)

loss of accuracy of the approximation. Note that all projections Πk
k−1, Π̂k

k−1 and Π̃k
k−1

are exact for polynomials of degree mini pi,k.

5.2. Smoothing Operators. The remaining ingredients for our multilevel al-
gorithm are the smoothers Spre and Spost. Since the coarsening procedure involves
only the covers CkΩ and does not coarsen the local degrees of freedom V

pi,k
i,k we use a

block-smoother which treats all local approximation functions ψni,k, i.e. the respective
coefficients, simultaneously.

It is well-known that the smoothing property of the block-Gauß–Seidel smoother
is dependent on the ordering of the unknown coefficients. Due to the meshfree con-
struction of the function space there is no natural ordering scheme for the degrees of
freedom. However, we can define ordering schemes for the cover patches ωi,k with the
help of our tree construction. We can identify the cover patches ωi,J on the finest level
J with the leaves of the tree and use e.g. a depth-first ordering to index the leaves; a
similar approach can be applied for covers CkΩ on coarser levels k < J . But note that
the resulting ordering of the cover patches would have no data locality property. It is
similar to the result we can obtain from a space filling curve (SFC) ordering scheme
[26] with the Lebesgue curve. However, the data locality property where the indices
of geometrically neighboring cover patches are clustered together is desirable not only
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Figure 5.3. An adaptive Hilbert curve which is used to index the cover patches in two (left)
and three (right) dimensions.

from a parallelization point of view [10, 17, 30] but also for the smoothing property
of the block-Gauß–Seidel smoother. Such an ordering with the data locality property
can be obtained by using an SFC ordering based on the Hilbert curve, see Figure
5.3. Hence, throughout this paper we always use such an Hilbert ordering scheme
for the cover patches and subsequently for the block-rows of the stiffness matrix in
polynomial block form.

5.3. Computational Costs. In this section we analyze the computational costs
according to §4.1 associated with the multilevel iteration Mν1,ν2

γ based on the pro-
jections Πk

k−1, Π̂k
k−1 and Π̃k

k−1. Again, we exploit the separation of the degrees of
freedom into p-type and h-type components to simplify the presentation.

In our partition of unity method the number of degrees of freedom on level k

dofk = rows(Ak) =
card(Pk)∑
i=1

dim(V pi,ki,k )

is given by the number of cover patches card(Pk) and the dimensions of the local
approximation spaces V pi,ki,k . Since our multilevel construction does not “change” the
local approximation spaces V pi,ki,k between levels we can assume that dim(V pi,ki,k ) can
be estimated by a constant Cloc which depends on maxi,k pi,k. Therefore, we can
restrict ourselves to the use of card(Pk) instead of dofk for the discussion, i.e. we
restrict ourselves to block-storage and block-operation estimates. Here, we have to
keep in mind that the storage associated with a block-entry is of order p2d

i,k whereas a
block-inversion has an operation count of order p3d

i,k.
With this notation we get the optimal complexity of the multilevel iteration if the

series

J∑
k=0

γk
card(PJ−k)
card(PJ)

<∞ for J →∞ (5.12)

converges and the block-operation counts CD,k, CC,k and CS,k, i.e. the block-storage
estimates C(Ak), C(Ikk−1) and C(Ik−1

k ), are level-independent.
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For reasons of simplicity we restrict ourselves to uniform point sets Pk to estimate
the average storage costs CA for the discrete operator, CP for the prolongations and
CR for the restrictions. The average number of nonzero blocks per row of the discrete
operator Ak is then given by the average number of geometric neighbors

CA = C(Ak) = avgiNi,k = avgi card{ωj,k |ωj,k ∩ ωi,k 6= ∅} = 3d

which is level independent.
The global L2-projection Πk

k−1 involves the inverse of the mass matrix Mk
k on

level k which is a dense matrix. But the inverse can be computed more efficiently
by an iterative method since the condition number κk of Mk

k is independent of the
number of patches card(Pk); yet it may strongly depend on the local approximation
orders pi,k. Then, the operation counts CD and CC for a multilevel iteration with the
global L2-projection can be estimated by

CD,k = 2(C(Mk−1
k ) + CMk

k
)
(
2C(Ak) + 1

)
, and CC,k = 1 + 2(C(Mk

k−1) + CMk
k

)

only, where CMk
k

estimates the costs of the iterative inversion of Mk
k and may be

strongly dependent on pi,k. The necessary storage for Πk
k−1 and (Πk

k−1)T is given by
the storage for Mk

k and Mk
k−1 = (Mk−1

k )T

C(Mk
k ) + C(Mk

k−1) = 3d + 2−13d.

For the Global-to-Local L2-projection Π̂k
k−1 we need the inverse of M̃k

k which is readily
available since M̃k

k is block-diagonal. We only need to invert a single block-entry per
block-row of Π̂k

k−1. In general the inverse can be computed in p̄3d
k operations and it

can be applied in p̄2d
k operations, where p̄k = maxi pi,k. If the local basis functions

ψmi,k are L2-orthogonal (like the Legendre polynomials) the inverse can be computed in
p̄dk operations (disregarding boundary effects). The average storage costs for Π̂k

k−1 is
given by the storage costs for M̂k

k−1 which has an identical sparsity pattern as Mk
k−1.

Hence, we obtain the block-storage estimate

CP = C(Π̂k
k−1) = C(M̂k

k−1) = C(Mk
k−1) = 2−13d

for the Global-to-Local L2-projection Π̂k
k−1 on uniform point sets.

Finally, we obtain a minimal block-storage estimate for the Local-to-Local L2-
projection Π̃k

k−1 for any point set P̃ since no geometric neighbor relations are involved
in its construction, i.e.

CP = C(Π̃k
k−1) = C(M̃k

k−1) = 1

holds independent of the distribution of P̃ . Hence, the conditions for an optimal
complexity multilevel iteration based on the Local-to-Local projection Π̃k

k−1 are the
convergence of the series (5.12) and the validity of the estimate C(Ak) = avgiNi,k ≤
CA. The overall complexity of the iteration with respect to p̄k is at least p̄2d

k since
the block-entries of the operator Ak are dense as well as the blocks of Π̃k

k−1. The
block entries of Π̃k

k−1 are dense since the blocks of M̃k
k−1 are dense. We employ

block-smoothers in the iteration, therefore we have p̄3d
k as the p̄k-complexity of the

iteration.
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The assembly of the global L2-projection Πk
k−1 (and the Global-to-Local L2-

projection Π̂k
k−1) requires the integration of the global shape functions ϕi,kψmi,k which

is more challenging than the integration of a finite element shape function [15, 16].
In the assembly of the Local-to-Local L2-projection though the partition of unity
functions ϕi,k are completely eliminated. Here, we only have to compute integrals of
local approximation functions ψmi,k, i.e. usually polynomials, which can be computed
very efficiently and without any additional error due to numerical integration.

In summary, the choice of the projection essentially influences only the constants
in the operation count, but not the overall complexity of the multilevel iteration
scheme. The constants though may vary quite dramatically. The use of the global
L2-projection not only involves the inverse of the mass matrix on level k but also the
interlevel mass matrix Mk

k−1 from level k−1 to level k which has a rather large number
of nonzero blocks depending on the distribution of the point set P̃ . For the Local-to-
Local projection Π̃k

k−1 on the other hand, there is no need for a global inverse and we
have only one block-entry per block-unknown ui,k on the fine level k independent of the
geometric point distribution. Here, the constants CP and CR are always minimal. This
will also have a significant impact on parallel applications [17]. With only one block-
entry in the prolongation and restriction operators, communication can be eliminated
(almost) completely in the interlevel transfers.

For highly irregular point sets P̃ the series (5.12) may well not converge which
would lead (at least) to a logarithmic complexity of the global multilevel iteration
Mν1,ν2
γ . But even for such point sets P̃ we can achieve an optimal complexity im-

plementation. To this end we can employ similar strategies as we have in multigrid
methods on adaptive grids where an equivalent problem arises, see [30] and the refer-
ences cited therein for details.2

6. Numerical Examples. The model problem we apply our multilevel PUM
to is the PDE

−∆u+ u = 0 in Ω = (0, 1)d where d = 2, 3 (6.1)

of Helmholtz type with vanishing Neumann boundary conditions ∇u = 0 on ∂Ω. In
all our experiments we use a linear normed B-spline as the generating weight function
W for the partition of unity construction and αl = 1.3 in step 3c of Algorithm 2.
The initial value ũ0 for the multilevel iteration is random valued with ‖ũ0‖ = 1. The
stopping criterion for the iteration is ‖ũr‖ < 10−10. The convergence rate of our
iteration with respect to the error is then given by

ρ := ‖ũr‖
1
r .

We use the l2-norm of the coefficient vectors ũ for the stopping criterion and the
computation of the convergence rate ρ. Note that even for uniform point sets P̃ we
have no uniform correspondence between the L2-norm of the function u and the l2-
norm of its associated coefficient vector ũ due to the use of local polynomials, just like
in the p-version of the finite element method. Furthermore when we are dealing with
irregular point sets the relation between the L2- and l2-norms now also depends on

2The basic idea is to restrict the iteration on each level to a subset of patches in such a way
that the respective series converges yet there is no deterioration in the quality of the iteration. To
this end we define a set of inactive patches on each level and its complement, the active patches, on
which the iteration Mν1,ν2

γ is carried out. Note that the number of active patches per level is (in
general) larger than the number of active nodes due to our meshfree construction.
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the varying size of the patches. One way of dealing with this problem is to introduce
the mass matrix into the norm measurement

‖u‖2L2 ' ũTMũ.

We have also computed all convergence rates and norms using this approximation
to the L2-norm of u. Here, we found that the absolute value of the l2-norm and the
(approximate) L2-norm may vary significantly (depending on the local approximation
orders pi,J , the distribution of P̃ and the number of the points in P̃ ) but the respective
convergence rates are (almost) identical. Here, the l2-norm of the coefficient vector ũ
was always larger than the L2-norm of u. Hence, our stopping criterion overestimates
the error norm. In that sense we therefore complete too many iterations, but the
convergence rates ρ given are accurate. A similar observation holds also for the l2-
norm of the residual.

Besides the convergence rates ρ we also give the number of initial points Ñ , the
number of generated patches card(P ) = card(PJ) on the finest level J , the polynomial
degree p = maxi pi,J and the dimensionDp of the associated local approximation space
V
pi,J
i,J in all tables. Furthermore, we give the V -cycle (Mν,ν

1 ) complexity C1 and the
W -cycle (Mν,ν

2 ) complexity C2, which are defined as

C1 :=
J∑
k=0

card(PJ−k)
card(PJ)

and C2 :=
J∑
k=0

2k card(PJ−k)
card(PJ)

.

Note that the number of degrees of freedom on the finest level J is given by card(P )Dp.
Example 1 (Halton Point Sets). In our first example we use a Halton3 sequence

as the initial point set P̃ for our cover construction, see Figure 6.1 for several levels of
the constructed cover hierarchy for a Halton4095

0 (2, 3) set in two dimensions. The local
approximation spaces V pi,ki,k we use in this experiment are based on isotropic Legendre
polynomials, i.e. we choose pi,k = p with p = 1, 2, 3, 4, 5 for all i and k. Before we
study higher order approximations p > 1, we begin with the linear case p = 1. Here,
we have Dp = 3 in two dimensions and Dp = 4 in three dimensions.

The measured convergence rates ρν,ν1 for a multilevel V -cycle (Mν,ν
1 ) and ρν,ν2

for a W -cycle (Mν,ν
2 ) with up to 6 iterations of block-Gauß–Seidel smoothing (ν =

1, 2, 3) are given in Tables 6.1, and 6.2 for the two-dimensional and three-dimensional
model problem respectively. Since the Halton sequence is uniformly distributed we
have (almost) standard coarsening rates between levels, i.e. the number of patches
decreases by a factor of 2−d from level to level. Hence, C1 as well as C2 are bounded
in two and three dimensions. The numbers given in the corresponding tables indicate
this behavior. Therefore the V -cycle and W -cycle iteration are of optimal complexity.
This behavior can be observed from Figure 6.3 where we have plotted the iteration
times against the number of degrees of freedom. From these results we clearly observe
that the multilevel V -cycle for the global L2-projection—which provides the best
approximation property of the three presented interlevel transfer operators—converges
with a rate ρ1 which is independent of the number of patches card(P ). Here, we have
ρ1,1

1 ' 0.23, ρ2,2
1 ' 0.13 and ρ3,3

1 ' 0.09. The reduced approximation quality of the

3Halton–sequences are pseudo Monte Carlo sequences, which are used in sampling and numerical
integration. Consider n ∈ IN0 given as

∑
j njp

j = n for some prime p. We can define the trans-

formation Hp from IN0 to [0, 1] with n 7→ Hp(n) =
∑
j njp

−j−1. Then, the (p, q) Halton–sequence

with Ñ points is defined as HaltonN0 (q, p) := {(Hp(n), Hq(n)) |n = 0, . . . , N}.
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Global-to-Global L2-projection

Ñ card(P ) C1 C2 J p Dp ρ1,1
1 ρ2,2

1 ρ3,3
1 ρ1,1

2 ρ2,2
2 ρ3,3

2
16 28 1.64 2.79 3 1 3 0.108 0.063 0.047 0.079 0.046 0.031
64 106 1.87 4.53 5 1 3 0.196 0.091 0.058 0.183 0.080 0.046
256 406 1.65 3.06 5 1 3 0.200 0.115 0.077 0.181 0.102 0.067
1024 1729 1.84 4.64 7 1 3 0.224 0.123 0.086 0.200 0.110 0.076
4096 6364 1.73 3.99 8 1 3 0.228 0.130 0.087 0.199 0.111 0.072
16384 27673 1.84 5.20 10 1 3 0.233 0.140 0.094 0.214 0.128 0.084
65536 101314 1.71 3.87 10 1 3 0.227 0.131 0.088 0.189 0.105 0.068

Global-to-Local L2-projection

Ñ card(P ) C1 C2 J p Dp ρ1,1
1 ρ2,2

1 ρ3,3
1 ρ1,1

2 ρ2,2
2 ρ3,3

2
16 28 1.64 2.79 3 1 3 0.117 0.065 0.047 0.085 0.047 0.032
64 106 1.87 4.53 5 1 3 0.203 0.095 0.066 0.190 0.081 0.050
256 406 1.65 3.06 5 1 3 0.212 0.120 0.082 0.196 0.107 0.070
1024 1729 1.84 4.64 7 1 3 0.248 0.138 0.094 0.211 0.116 0.083
4096 6364 1.73 3.99 8 1 3 0.254 0.143 0.095 0.219 0.119 0.076
16384 27673 1.84 5.20 10 1 3 0.272 0.159 0.109 0.245 0.137 0.090
65536 101314 1.71 3.87 10 1 3 0.255 0.142 0.095 0.207 0.112 0.072

Local-to-Local L2-projection

Ñ card(P ) C1 C2 J p Dp ρ1,1
1 ρ2,2

1 ρ3,3
1 ρ1,1

2 ρ2,2
2 ρ3,3

2
16 28 1.64 2.79 3 1 3 0.112 0.068 0.050 0.083 0.049 0.032
64 106 1.87 4.53 5 1 3 0.197 0.097 0.059 0.180 0.083 0.047
256 406 1.65 3.06 5 1 3 0.210 0.121 0.084 0.179 0.104 0.070
1024 1729 1.84 4.64 7 1 3 0.220 0.127 0.088 0.185 0.107 0.074
4096 6364 1.73 3.99 8 1 3 0.234 0.133 0.090 0.185 0.108 0.071
16384 27673 1.84 5.20 10 1 3 0.230 0.138 0.094 0.197 0.118 0.077
65536 101314 1.71 3.87 10 1 3 0.234 0.137 0.094 0.184 0.104 0.069

Table 6.1

Convergence rates ρν,ν1 for the V ν,ν -cycle and convergence rates ρν,ν2 for the W ν,ν -cycle with
ν = 1, 2, 3. Covers are based on Halton(2, 3) point sets in two dimensions.

Global-to-Local and the Local-to-Local projections though only slightly effects the
convergence rates, i.e. the quality of the localized projections is comparable to that
of the global L2-projection. We have ρ1,1

1 ' 0.26 for the Global-to-Local projection.
For the Local-to-Local projection we have essentially the same convergence rates as
we have for the global L2-projection with ρ1,1

1 ' 0.23. A similar behavior can be
observed for V -cycles with multiple smoothing steps.

The measured convergence rates ρ2 for the W -cycles are essentially the same as
the V -cycle rates ρ1, i.e. the increased work on coarser levels does not improve the
convergence rate and does not pay off. This is due to the approximation quality of
the L2-projection approach, the loss of information between levels is “minimal”.

The computational effort due to the different interlevel transfers is significant,
see §5.3. From the plots of the execution times against the number of degrees of
freedom depicted in Figure 6.3 we clearly see the increased operation count due to
the iterative solution of the mass matrix problem in every interlevel transfer for the
global L2-projection. The execution times for the iterations based on the Global-to-
Local and Local-to-Local projections are significantly smaller. We can also observe
that the overall execution times for cycles with multiple smoothing steps are smaller
than the execution time of the respective cycle with (1, 1) smoothing for the global
L2-projection. This is due to the fact that multiple smoothing steps improve the con-
vergence rates substantially which decreases the number of mass matrix inversions.
This in turn reduces the computational work of the iteration since a single smoothing
step is cheaper than the iterative solution of the mass matrix problem. The perfor-
mance improvement of the iteration due to the use of the Local-to-Local projection
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Figure 6.1. Point set and cover hierarchy constructed by Algorithm 2 for a Halton4095
0 (2, 3)

point set in two dimensions.

instead of the Global-to-Local projection is not as significant. This is due to the fact
that the computational effort involved in the interlevel transfer with these projections
is already small compared with the work due to smoothing. Note that the curves are
not perfectly linear due to the slight variations in the complexities C1 and C2 which
come from the irregularity of the Halton point set.
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Figure 6.2. Setup times for the transfer operators based on the global L2-projection (Global-
to-Global), the Global-to-Local and Local-to-Local projections as defined in §5.1 for Example 1 in
two dimensions. The setup times for the operator assembly are also given.

Global-to-Global L2-projection

Ñ card(P ) C1 C2 J p Dp ρ1,1
1 ρ2,2

1 ρ3,3
1 ρ1,1

2 ρ2,2
2 ρ3,3

2
16 50 1.62 2.68 3 1 4 0.064 0.015 0.007 0.063 0.014 0.007
128 414 1.30 1.88 4 1 4 0.145 0.084 0.056 0.126 0.064 0.042
1024 3543 1.38 2.24 6 1 4 0.176 0.088 0.055 0.128 0.064 0.042
8192 26699 1.37 2.10 6 1 4 0.186 0.098 0.068 0.136 0.061 0.055

Global-to-Local L2-projection

Ñ card(P ) C1 C2 J p Dp ρ1,1
1 ρ2,2

1 ρ3,3
1 ρ1,1

2 ρ2,2
2 ρ3,3

2
16 50 1.62 2.68 3 1 4 0.068 0.024 0.013 0.068 0.021 0.011
128 414 1.30 1.88 4 1 4 0.178 0.097 0.064 0.155 0.075 0.048
1024 3543 1.38 2.24 6 1 4 0.203 0.103 0.065 0.156 0.074 0.047
8192 26699 1.37 2.10 6 1 4 0.227 0.117 0.077 0.158 0.072 0.055

Local-to-Local L2-projection

Ñ card(P ) C1 C2 J p Dp ρ1,1
1 ρ2,2

1 ρ3,3
1 ρ1,1

2 ρ2,2
2 ρ3,3

2
16 50 1.62 2.68 3 1 4 0.075 0.017 0.008 0.074 0.016 0.007
128 414 1.30 1.88 4 1 4 0.154 0.088 0.060 0.131 0.065 0.044
1024 3543 1.38 2.24 6 1 4 0.182 0.094 0.062 0.136 0.070 0.048
8192 26699 1.37 2.10 6 1 4 0.192 0.110 0.076 0.142 0.066 0.055

Table 6.2

Convergence rates ρν,ν1 for the V ν,ν -cycle and convergence rates ρν,ν2 for the W ν,ν -cycle with
ν = 1, 2, 3. Covers are based on Halton(2, 3, 5) point sets in three dimensions.

When we take the costs of the assembly of the transfer operators into account the
performance improvement due to the hierarchical localization though is substantial.
In Figure 6.2 we give plots of the execution times for the setup associated with the dif-
ferent projection approaches and the operator assembly. Here, both the prolongation
and its transpose are computed and stored explicitly. From these plots we clearly see
that the assembly of the global L2-projection, i.e. the assembly of Mk

k−1 and Mk−1
k ,

is even more expensive than the operator assembly (which also includes the setup for
Mk
k ). The impact of the first localization which eliminates the partition of unity func-

tions on the test side is obvious. The setup times for the Global-to-Local projections
Π̂k
k−1 are significantly smaller than the times spent in the operator assembly. But the
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Figure 6.3. Iteration times (V -cycle (left), W -cycle (right)) for the multilevel iteration scheme
based on the global L2-projection (Global-to-Global), the Global-to-Local and Local-to-Local projec-
tions as defined in §5.1 for Example 1 in two dimensions.

number of integrals which have to be computed for M̂k
k−1 is the same as we have for

Mk
k−1 in the global L2-projection Πk

k−1. The second localization of the projections
now reduces the number of block-integrals to be computed for M̃k

k−1 to one per fine
cover patch ωi,k. Furthermore, this block-integral only involves local polynomials and
can be evaluated very efficiently. Hence, the reduction in the computational work is
again substantial. Now the setup time for the computation of the interlevel transfer
operators is negligible compared with the time spent in the operator assembly if we
use the Local-to-Local projections Π̃k

k−1.
The convergence behavior for the model problem in three dimensions (see Table

6.2) is similar to the two-dimensional case. We find e.g. ρ1,1
1 ' 0.20, ρ2,2

1 ' 0.11 and
ρ2,2

1 ' 0.08.
In summary we obtain that the projection approach leads to multilevel iterations

in which the W -cycle or even more expensive cycle types do not seem to pay off. The
loss in the approximation quality due to the localization of the L2-projection is very

22



Global-to-Global L2-projection

p Dp ρ̃1,1
1 ρ̃2,2

1 ρ̃3,3
1 ρ̃1,1

2 ρ̃2,2
2 ρ̃3,3

2 p Dp ρ̃1,1
1 ρ̃2,2

1 ρ̃3,3
1 ρ̃1,1

2 ρ̃2,2
2 ρ̃3,3

2
1 3 0.23 0.13 0.09 0.20 0.11 0.08 1 4 0.17 0.09 0.06 0.13 0.06 0.05
2 6 0.10 0.04 0.02 0.10 0.04 0.02 2 10 0.08 0.02 0.01 0.08 0.02 0.01
3 10 0.18 0.04 0.01 0.18 0.04 0.01 3 20 0.22 0.05 0.01 0.20 0.04 0.01
4 15 0.39 0.17 0.08 0.39 0.17 0.08 4 35 0.41 0.17 0.08 0.41 0.17 0.08
5 21 0.60 0.41 0.27 0.60 0.41 0.27 5 56 0.64 0.44 0.30

Global-to-Local L2-projection

p Dp ρ̃1,1
1 ρ̃2,2

1 ρ̃3,3
1 ρ̃1,1

2 ρ̃2,2
2 ρ̃3,3

2 p Dp ρ̃1,1
1 ρ̃2,2

1 ρ̃3,3
1 ρ̃1,1

2 ρ̃2,2
2 ρ̃3,3

2
1 3 0.26 0.15 0.10 0.22 0.12 0.08 1 4 0.20 0.11 0.07 0.16 0.08 0.05
2 6 0.10 0.04 0.02 0.10 0.04 0.02 2 10 0.08 0.02 0.01 0.08 0.02 0.01
3 10 0.21 0.05 0.01 0.21 0.05 0.01 3 20 0.20 0.04 0.01 0.20 0.04 0.01
4 15 0.44 0.19 0.08 0.44 0.19 0.08 4 35 0.42 0.18 0.08 0.42 0.18 0.08
5 21 0.63 0.44 0.27 0.63 0.44 0.27 5 56 0.64 0.45 0.31

Local-to-Local L2-projection

p Dp ρ̃1,1
1 ρ̃2,2

1 ρ̃3,3
1 ρ̃1,1

2 ρ̃2,2
2 ρ̃3,3

2 p Dp ρ̃1,1
1 ρ̃2,2

1 ρ̃3,3
1 ρ̃1,1

2 ρ̃2,2
2 ρ̃3,3

2
1 3 0.23 0.14 0.09 0.19 0.11 0.07 1 4 0.18 0.10 0.07 0.14 0.07 0.05
2 6 0.12 0.04 0.02 0.12 0.04 0.02 2 10 0.10 0.03 0.01 0.10 0.03 0.01
3 10 0.19 0.04 0.01 0.19 0.04 0.01 3 20 0.20 0.04 0.01 0.20 0.04 0.01
4 15 0.41 0.18 0.08 0.41 0.18 0.08 4 35 0.42 0.18 0.08 0.42 0.18 0.08
5 21 0.61 0.41 0.27 0.61 0.41 0.27 5 56 0.64 0.45 0.31

Table 6.3

Average convergence rates (two dimensions (left), three dimensions (right)) ρ̃ν,ν1 for the V ν,ν -
cycle and convergence rates ρ̃ν,ν2 for the W ν,ν -cycle with ν = 1, 2, 3. Covers based on Halton(2, 3)
point sets in two dimensions, and on Halton(2, 3, 5) point sets in three dimensions.

small and does not seem to effect the convergence rate significantly. A larger number
of smoothing steps improves the convergence rates quite a bit but the overall execution
times may even increase for the Local-to-Local projection multilevel iteration due to
the larger computational work in the smoothing steps. The overall performance of
this approach—which exploits not only the general PUM localization but also our
hierarchical cover construction—is impressive. The convergence rate is essentially the
same as we have for the global L2-projection, yet the solution times as well as the
setup times and associated storage costs are significantly smaller.

Let us now consider higher order discretizations. Here, we use pi,k = p =
1, 2, 3, 4, 5 for the local spaces V pi,ki,k . Recall that all three projection approaches are
exact for polynomials of degree p.

Here, we give the average

ρ̃ :=
ρ(ÑF ) + ρ(2−dÑF ) + ρ(4−dÑF )

3

of the convergence rates ρ for the three finest initial point sets P̃ in Table 6.3 for
the two-dimensional (left) as well as for the three-dimensional model problem (right).
We expect that the rates increase with p since the block-smoother only eliminates
local couplings between the polynomials defined on the same cover patch but it does
not eliminate couplings between polynomials of neighboring patches. Hence, the p-
dependence of the smoother will lead to a p-dependence of the overall convergence
rates. From the numbers given in Table 6.3 we clearly see this p-dependence in
the convergence rates ρ1 and ρ2. It seems that for degrees p = 2 and p = 3 the
local couplings within a patch are dominant over the neighbor couplings since the
convergence rates ρ1 and ρ2 are at least as good as for p = 1. Only for p > 3 we
see a deterioration of the rates. Again, the convergence rates ρ2 for the W -cycle are
essentially the same as the V -cycle rates, independent of the polynomial degree p.
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Figure 6.4. Point set and cover hierarchy constructed by Algorithm 2 for a composite point
set consisting of 8 layers of Halton255

0 (2, 3) point sets in two dimensions.

Example 2 (Composite Halton Point Sets). In our second example we use
the union of multiple Halton sets—each of which is distributed in a subset ΩL ⊆ Ω
of the domain—as the initial point set P̃ . These layers ΩL are nested subsets of
decreasing size, see Figure 6.4 for several levels of the constructed cover hierarchy for
such a composite point set P̃ based on 8 layers of Halton255

0 (2, 3) point sets in two
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Global-to-Global L2-projection

CL card(P ) C1 C2 J p Dp ρ1,1
1 ρ2,2

1 ρ3,3
1 ρ1,1

2 ρ2,2
2 ρ3,3

2
6 1921 1.69 6.91 10 1 3 0.242 0.144 0.099 0.210 0.119 0.083
7 2224 1.69 10.02 11 1 3 0.249 0.144 0.105 0.221 0.130 0.090
8 2527 1.70 15.63 12 1 3 0.243 0.144 0.098 0.213 0.119 0.082
9 2830 1.70 25.82 13 1 3 0.249 0.143 0.104 0.222 0.130 0.090
10 3133 1.71 44.50 14 1 3 0.245 0.144 0.097 0.212 0.119 0.083
11 3436 1.71 78.96 15 1 3 0.249 0.144 0.104 0.222 0.130 0.090
12 3739 1.72 142.89 16 1 3 0.245 0.143 0.097 0.213 0.121 0.085
13 4042 1.72 262.10 17 1 3 0.251 0.145 0.104 0.222 0.131 0.090

Global-to-Local L2-projection

CL card(P ) C1 C2 J p Dp ρ1,1
1 ρ2,2

1 ρ3,3
1 ρ1,1

2 ρ2,2
2 ρ3,3

2
6 1921 1.69 6.91 10 1 3 0.269 0.159 0.111 0.224 0.129 0.087
7 2224 1.69 10.02 11 1 3 0.277 0.160 0.112 0.237 0.138 0.095
8 2527 1.70 15.63 12 1 3 0.270 0.158 0.110 0.225 0.128 0.087
9 2830 1.70 25.82 13 1 3 0.282 0.159 0.111 0.236 0.138 0.095
10 3133 1.71 44.50 14 1 3 0.270 0.157 0.109 0.226 0.128 0.087
11 3436 1.71 78.96 15 1 3 0.282 0.159 0.111 0.236 0.138 0.094
12 3739 1.72 142.89 16 1 3 0.273 0.157 0.109 0.227 0.130 0.089
13 4042 1.72 262.10 17 1 3 0.283 0.160 0.111 0.236 0.138 0.095

Local-to-Local L2-projection

CL card(P ) C1 C2 J p Dp ρ1,1
1 ρ2,2

1 ρ3,3
1 ρ1,1

2 ρ2,2
2 ρ3,3

2
6 1921 1.69 6.91 10 1 3 0.240 0.145 0.100 0.205 0.117 0.082
7 2224 1.69 10.02 11 1 3 0.249 0.146 0.108 0.206 0.122 0.088
8 2527 1.70 15.63 12 1 3 0.236 0.145 0.099 0.206 0.117 0.081
9 2830 1.70 25.82 13 1 3 0.247 0.145 0.107 0.208 0.122 0.088
10 3133 1.71 44.50 14 1 3 0.240 0.145 0.099 0.206 0.116 0.082
11 3436 1.71 78.96 15 1 3 0.247 0.146 0.107 0.209 0.123 0.088
12 3739 1.72 142.89 16 1 3 0.236 0.145 0.098 0.206 0.118 0.083
13 4042 1.72 262.10 17 1 3 0.249 0.150 0.107 0.209 0.127 0.088

Table 6.4

Convergence rates ρν,ν1 for the V ν,ν -cycle and convergence rates ρν,ν2 for the W ν,ν -cycle with
ν = 1, 2, 3. Covers based on composite point sets (Halton255

0 (2, 3) point set per layer, CL number of
layers) in two dimensions.

dimensions. The local approximation spaces again are linear Legendre polynomials.
Due to the use of the composite point set P̃ the coarsening will start with the

standard rate of 2−d but the coarsening will eventually break down to a rate close
to one. Hence, we expect that (at least) the W -cycle complexity C2 will no longer
be bounded in two and three dimensions. This can be observed from the numerical
results presented in Tables 6.4 and 6.5 for the two- and three-dimensional model
problem respectively. These numbers also indicate that the V -cycle is of optimal
complexity without restricting the iteration to active subsets of patches (see §5.3 and
[30]).4

From the rates ρ1 displayed in Table 6.4 we see that the convergence behavior
of the V -cycle based on composite point sets is very similar to the one we observed
for the Halton point sets in Example 1. Here, we have ρ1,1

1 ' 0.25, ρ2,2
1 ' 0.15 and

ρ3,3
1 ' 0.10 for the global L2-projection independent of the number of discretization

points card(P ). Again, the difference in the convergence rates due to the change of
the interlevel transfers is very small. We measure convergence rates of ρ1,1

1 ' 0.28,
ρ2,2

1 ' 0.16 and ρ3,3
1 ' 0.11 for the Global-to-Local projection and ρ1,1

1 ' 0.25,

4This technique could be employed to reduce the overall complexity of the W -cycle but the extra
work completed on coarser levels does not effect the convergence rate significantly and will only
slightly improve the measured rate ρ2.

25



Global-to-Global L2-projection

CL card(P ) C1 C2 J p Dp ρ1,1
1 ρ2,2

1 ρ3,3
1 ρ1,1

2 ρ2,2
2 ρ3,3

2
6 4243 1.47 5.77 10 1 4 0.222 0.132 0.099 0.208 0.115 0.081
7 4838 1.48 8.69 11 1 4 0.226 0.131 0.092 0.209 0.116 0.081
8 5433 1.48 13.98 12 1 4 0.230 0.135 0.094 0.211 0.118 0.082
9 6028 1.49 23.67 13 1 4 0.222 0.131 0.095 0.206 0.114 0.081
10 6623 1.49 41.50 14 1 4 0.229 0.133 0.092 0.210 0.118 0.083
11 7218 1.50 74.56 15 1 4 0.230 0.136 0.095 0.211 0.117 0.082
12 7813 1.51 136.14 16 1 4 0.223 0.132 0.095 0.205 0.115 0.082

Global-to-Local L2-projection

CL card(P ) C1 C2 J p Dp ρ1,1
1 ρ2,2

1 ρ3,3
1 ρ1,1

2 ρ2,2
2 ρ3,3

2
6 4243 1.47 5.77 10 1 4 0.268 0.154 0.114 0.231 0.131 0.089
7 4838 1.48 8.69 11 1 4 0.271 0.154 0.108 0.234 0.131 0.089
8 5433 1.48 13.98 12 1 4 0.272 0.156 0.111 0.235 0.134 0.090
9 6028 1.49 23.67 13 1 4 0.267 0.152 0.110 0.229 0.130 0.090
10 6623 1.49 41.50 14 1 4 0.274 0.156 0.109 0.236 0.133 0.090
11 7218 1.50 74.56 15 1 4 0.272 0.156 0.111 0.234 0.132 0.090
12 7813 1.51 136.14 16 1 4 0.269 0.153 0.110 0.229 0.130 0.090

Local-to-Local L2-projection

CL card(P ) C1 C2 J p Dp ρ1,1
1 ρ2,2

1 ρ3,3
1 ρ1,1

2 ρ2,2
2 ρ3,3

2
6 4243 1.47 5.77 10 1 4 0.208 0.128 0.099 0.197 0.110 0.076
7 4838 1.48 8.69 11 1 4 0.213 0.128 0.091 0.200 0.112 0.077
8 5433 1.48 13.98 12 1 4 0.215 0.130 0.095 0.200 0.112 0.081
9 6028 1.49 23.67 13 1 4 0.207 0.127 0.096 0.193 0.111 0.077
10 6623 1.49 41.50 14 1 4 0.213 0.130 0.092 0.199 0.114 0.081
11 7218 1.50 74.56 15 1 4 0.218 0.131 0.096 0.202 0.112 0.077
12 7813 1.51 136.14 16 1 4 0.208 0.128 0.097 0.192 0.112 0.077

Table 6.5

Convergence rates ρν,ν1 for the V ν,ν -cycle and convergence rates ρν,ν2 for the W ν,ν -cycle with
ν = 1, 2, 3. Covers based on composite point sets (Halton255

0 (2, 3, 5) point set per layer, CL number
of layers) in three dimensions.

ρ2,2
1 ' 0.15 and ρ3,3

1 ' 0.10 for the Local-to-Local projection. Furthermore, we see no
significant improvement in the convergence behavior for the W -cycle compared with
the V -cycle. The increased work load on coarser levels does not pay off.

The numerical results given in Table 6.5 show a very similar convergence behavior
for the three-dimensional problem. Here, we measure convergence rates ρ1,1

1 ' 0.23,
ρ2,2

1 ' 0.13 and ρ3,3
1 ' 0.10 for the global L2-projection. The convergence rates

for the Global-to-Local projection are ρ1,1
1 ' 0.27, ρ2,2

1 ' 0.16 and ρ3,3
1 ' 0.11.

We even measure a slight improvement in the convergence rates for the Local-to-
Local projection compared with the results for the global L2-projection. Here, we
have ρ1,1

1 ' 0.21, ρ2,2
1 ' 0.13 and ρ3,3

1 ' 0.10. Again, the (non-optimal) W -cycle
convergence rates ρ2 are only slightly better that the V -cycle rates and certainly do
not justify the increase in computational work.

The convergence behavior for higher order discretization based on the composite
Halton point sets is very similar to the one in Example 1.

Example 3 (Graded Halton Point Sets). In our last example we use a grading
function G : (ξi)di=1 ∈ [0, 1]d 7→ (ξ2

i )di=1 ∈ [0, 1]d to transform a Halton point set and
use the (more irregular) transformed point set for the cover construction. Several
levels of the constructed cover hierarchy for such a graded Halton1023

0 (2, 3) point set
in two dimensions are depicted in Figure 6.5.

Again, we expect that the W -cycle complexity C2 does not stay bounded due to
the irregularity of the point set P̃ (at least in two dimensions). The results displayed in
Table 6.6 indicate this behavior. For the V -cycle we still have the optimal complexity
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Figure 6.5. Point set and cover hierarchy constructed by Algorithm 2 for a Halton1024
0 (2, 3)

point set graded by G : (ξi)
2
i=1 7→ (ξ2

i )2
i=1.

of the iteration scheme. The measured convergence rates ρ1 for the V -cycle and ρ2

for the W -cycle grow slightly with the number of cover patches card(P ). One reason
for this could be the smoothing rate of the Gauß–Seidel smoother which is level-
dependent in this example. The space filling curve ordering scheme we use is not able
to cluster the indices of patches near the edges close together. The function G provides
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Global-to-Global L2-projection

Ñ card(P ) C1 C2 J p Dp ρ1,1
1 ρ2,2

1 ρ3,3
1 ρ1,1

2 ρ2,2
2 ρ3,3

2
16 31 2.13 8.03 5 1 3 0.134 0.060 0.049 0.133 0.056 0.040
64 112 1.91 6.30 6 1 3 0.174 0.090 0.059 0.129 0.068 0.044
256 454 1.80 7.40 8 1 3 0.206 0.112 0.082 0.184 0.096 0.069
1024 1846 1.85 12.85 11 1 3 0.211 0.115 0.083 0.201 0.095 0.067
4096 7468 1.81 13.76 13 1 3 0.248 0.144 0.097 0.243 0.136 0.090
16384 29848 1.82 9.92 14 1 3 0.235 0.140 0.098 0.208 0.118 0.085
65536 119488 1.80 14.34 17 1 3 0.346 0.213 0.156 0.253 0.145 0.106

Global-to-Local L2-projection

Ñ card(P ) C1 C2 J p Dp ρ1,1
1 ρ2,2

1 ρ3,3
1 ρ1,1

2 ρ2,2
2 ρ3,3

2
16 31 2.13 8.03 5 1 3 0.144 0.068 0.052 0.144 0.063 0.046
64 112 1.91 6.30 6 1 3 0.182 0.096 0.064 0.142 0.073 0.047
256 454 1.80 7.40 8 1 3 0.215 0.121 0.085 0.185 0.105 0.069
1024 1846 1.85 12.85 11 1 3 0.224 0.123 0.087 0.202 0.099 0.070
4096 7468 1.81 13.76 13 1 3 0.269 0.158 0.107 0.247 0.142 0.094
16384 29848 1.82 9.92 14 1 3 0.273 0.160 0.113 0.223 0.129 0.089
65536 119488 1.80 14.34 17 1 3 0.346 0.213 0.156 0.270 0.161 0.113

Local-to-Local L2-projection

Ñ card(P ) C1 C2 J p Dp ρ1,1
1 ρ2,2

1 ρ3,3
1 ρ1,1

2 ρ2,2
2 ρ3,3

2
16 31 2.13 8.03 5 1 3 0.129 0.065 0.049 0.126 0.063 0.036
64 112 1.91 6.30 6 1 3 0.173 0.095 0.063 0.129 0.070 0.046
256 454 1.80 7.40 8 1 3 0.214 0.112 0.083 0.189 0.094 0.069
1024 1846 1.85 12.85 11 1 3 0.218 0.121 0.088 0.200 0.099 0.069
4096 7468 1.81 13.76 13 1 3 0.243 0.141 0.097 0.227 0.130 0.086
16384 29848 1.82 9.92 14 1 3 0.234 0.144 0.105 0.210 0.115 0.083
65536 119488 1.80 14.34 17 1 3 0.310 0.190 0.139 0.248 0.136 0.095

Table 6.6

Convergence rates ρν,ν1 for the V ν,ν -cycle and convergence rates ρν,ν2 for the W ν,ν -cycle with
ν = 1, 2, 3. Covers based on Halton(2, 3) point sets graded by G : (ξi)

2
i=1 7→ (ξ2

i )2
i=1.

a grading which is appropriate for edge singularities whereas the space filling curve
we use—the Hilbert curve—is more appropriate for ordering adaptive grids for point
singularities. This could be cured if we would use a generalized Hilbert curve—similar
to the space filling curves developed in [30] for the load balancing problem in parallel
adaptive multigrid—for our ordering scheme.

We have also applied the different multilevel iteration schemes with block-Jacobi
smoothers to this model problem. Then, the smoothing rate is independent of the
order of the cover patches. Here, our Hilbert ordering scheme has no effect on the
measured convergence rates. The rates ρ1 and ρ2 are expected to drop due to the
reduced smoothing quality. But if these rates are level-independent we have a good
indication that the rates given in Table 6.6 are bounded independent of card(P ).

The measured convergence rates (see Table 6.7) for the global L2-projection Πk
k−1

and the Global-to-Local projection Π̂k
k−1 with a block-Jacobi smoother seem to be

level independent. We measure ρ1,1
1 ' 0.55, ρ2,2

1 ' 0.36 and ρ3,3
1 ' 0.26 for the global

L2-projection and ρ1,1
1 ' 0.56, ρ2,2

1 ' 0.37 and ρ3,3
1 ' 0.27 for the Global-to-Local

projection. Note that the convergence rates for the multilevel iteration based on the
Local-to-Local projection Π̃k

k−1 are not level-independent. Here, the iteration may
even diverge.

This is due to that fact that the Local-to-Local projection produces “rougher”
approximations ũk than the other two projections since no neighbor relations are taken
into account in the transfer. Therefore, a small number of steps of the block-Jacobi
smoother—which pays less attention to the neighboring patches than the block-Gauß–
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Global-to-Global L2-projection

Ñ card(P ) C1 C2 J p Dp ρ1,1
1 ρ2,2

1 ρ3,3
1 ρ1,1

2 ρ2,2
2 ρ3,3

2
16 31 2.13 8.03 5 1 3 0.523 0.309 0.184 0.519 0.307 0.182
64 112 1.91 6.30 6 1 3 0.511 0.276 0.160 0.502 0.270 0.151
256 454 1.80 7.40 8 1 3 0.542 0.343 0.221 0.539 0.340 0.212
1024 1846 1.85 12.85 11 1 3 0.533 0.323 0.205 0.529 0.315 0.201
4096 7468 1.81 13.76 13 1 3 0.532 0.328 0.205 0.530 0.324 0.199
16384 29848 1.82 9.92 14 1 3 0.534 0.334 0.228 0.531 0.328 0.206
65536 119488 1.80 14.34 17 1 3 0.546 0.358 0.254 0.544 0.356 0.222

Global-to-Local L2-projection

Ñ card(P ) C1 C2 J p Dp ρ1,1
1 ρ2,2

1 ρ3,3
1 ρ1,1

2 ρ2,2
2 ρ3,3

2
16 31 2.13 8.03 5 1 3 0.560 0.342 0.209 0.555 0.339 0.206
64 112 1.91 6.30 6 1 3 0.542 0.316 0.185 0.533 0.310 0.182
256 454 1.80 7.40 8 1 3 0.568 0.365 0.228 0.566 0.364 0.227
1024 1846 1.85 12.85 11 1 3 0.561 0.356 0.221 0.558 0.350 0.215
4096 7468 1.81 13.76 13 1 3 0.558 0.350 0.215 0.556 0.348 0.212
16384 29848 1.82 9.92 14 1 3 0.570 0.376 0.242 0.567 0.374 0.233
65536 119488 1.80 14.34 17 1 3 0.560 0.367 0.268 0.559 0.366 0.227

Local-to-Local L2-projection

Ñ card(P ) C1 C2 J p Dp ρ1,1
1 ρ2,2

1 ρ3,3
1 ρ1,1

2 ρ2,2
2 ρ3,3

2
16 31 2.13 8.03 5 1 3 0.519 0.301 0.179 0.515 0.300 0.176
64 112 1.91 6.30 6 1 3 0.508 0.272 0.160 0.501 0.267 0.145
256 454 1.80 7.40 8 1 3 0.533 0.330 0.223 0.530 0.326 0.209
1024 1846 1.85 12.85 11 1 3 0.551 0.313 0.203 0.518 0.304 0.192
4096 7468 1.81 13.76 13 1 3 0.608 0.322 0.204 0.524 0.313 0.192
16384 29848 1.82 9.92 14 1 3 0.618 0.329 0.230 0.524 0.320 0.203
65536 119488 1.80 14.34 17 1 3 1.096 0.613 0.306 1.032 0.582 0.308

Table 6.7

Convergence rates ρν,ν1 for the V ν,ν -cycle and convergence rates ρν,ν2 for the W ν,ν -cycle with
ν = 1, 2, 3 and Jacobi smoothing. Covers based on Halton(2, 3) point sets graded by G : (ξi)

2
i=1 7→

(ξ2
i )2
i=1.

Seidel smoother—is not sufficient to achieve a level-independent convergence. In fact
the iteration diverges for the V 1,1- and W 1,1-cycle for the graded Halton point set
on the finest level with 358464 unknowns. The rates ρ2,2 and ρ3,3 for the cycles
with a larger number of smoothing steps are close to the level-independent rates
we measure for the other two projections but it is not clear if these rates will stay
bounded. The jump in ρ2,2

1 to 0.61 in the last refinement step may indicate that
they will not be bounded away from one. But this jump could also be due to the
substantial change in the local resolution we have in this refinement step. Here,
the finest patchsize is of order O(2−17) whereas the previous resolution was of order
O(2−14) only. Furthermore, we observe a slight increase in the convergence rates also
for the global L2-projection (with block-Jacobi or block-Gauß–Seidel smoothing) on
this refinement level.

In three dimensions not only the V -cycle but also the W -cycle complexity is
bounded, see Table 6.8. The convergence behavior is very similar to that of the two-
dimensional example. The rates are ρ1,1

1 ' 0.23, ρ2,2
1 ' 0.12 and ρ3,3

1 ' 0.10 on the
finest level. We also observe a slight level-dependence of these rates ρ1 and ρ2. Again,
this increase can be explained with the reduced smoothing rate of the order-dependent
Gauß–Seidel smoother. The convergence rates ρ2 for the W -cycle are essentially the
same as the respective V -cycle rates ρ1.

The convergence behavior for higher order discretization based on the graded
Halton point sets is very similar to the one in Example 1.
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Global-to-Global L2-projection

Ñ card(P ) C1 C2 J p Dp ρ1,1
1 ρ2,2

1 ρ3,3
1 ρ1,1

2 ρ2,2
2 ρ3,3

2
16 50 1.92 4.68 4 1 4 0.077 0.041 0.029 0.076 0.028 0.023
128 358 1.56 3.01 5 1 4 0.158 0.089 0.062 0.152 0.077 0.050
1024 3193 1.53 3.06 7 1 4 0.193 0.105 0.075 0.164 0.086 0.056
8192 24977 1.53 3.12 9 1 4 0.222 0.111 0.077 0.214 0.099 0.052

Global-to-Local L2-projection

Ñ card(P ) C1 C2 J p Dp ρ1,1
1 ρ2,2

1 ρ3,3
1 ρ1,1

2 ρ2,2
2 ρ3,3

2
16 50 1.92 4.68 4 1 4 0.074 0.048 0.040 0.076 0.033 0.030
128 358 1.56 3.01 5 1 4 0.199 0.103 0.070 0.182 0.090 0.055
1024 3193 1.53 3.06 7 1 4 0.233 0.129 0.087 0.189 0.107 0.069
8192 24977 1.53 3.12 9 1 4 0.247 0.130 0.091 0.227 0.112 0.063

Local-to-Local L2-projection

Ñ card(P ) C1 C2 J p Dp ρ1,1
1 ρ2,2

1 ρ3,3
1 ρ1,1

2 ρ2,2
2 ρ3,3

2
16 50 1.92 4.68 4 1 4 0.090 0.040 0.030 0.088 0.025 0.021
128 358 1.56 3.01 5 1 4 0.153 0.088 0.063 0.145 0.075 0.050
1024 3193 1.53 3.06 7 1 4 0.192 0.105 0.076 0.162 0.083 0.055
8192 24977 1.53 3.12 9 1 4 0.226 0.115 0.083 0.221 0.099 0.054

Table 6.8

Convergence rates ρν,ν1 for the V ν,ν -cycle and convergence rates ρν,ν2 for the W ν,ν -cycle with
ν = 1, 2, 3. Covers based on Halton(2, 3, 5) point sets graded by G : (ξi)

3
i=1 7→ (ξ2

i )3
i=1.

7. Concluding Remarks. We presented a multilevel solver for linear systems
arising from a partition of unity discretization of an elliptic PDE of second order.
The main ingredients of the solver are the use of (localized) L2-projections for the
interlevel transfer between the nonnested function spaces and the employment of
block-smoothers to treat all local degrees of freedom on a PUM patch simultaneously.
The results of our numerical examples clearly showed that the convergence behavior
of the presented iteration schemes are independent of the number of discretization
points card(P ) and the distribution of these points; yet the convergence rates are
slightly dependent on the order of the approximation.

The global L2-projection is certainly too expensive to be used in applications but
the convergence rates of a multilevel iteration based on this projection give a good
idea of the convergence rate we can achieve with the projection approach.

The L2-projections could be localized due to the general PUM construction. This
reduced the iteration times significantly but the setup for such interlevel transfer
operators was still substantial. Note that this first localized multilevel solver based
on the Global-to-Local L2-projections though can be used for any partition of unity
and any coarsening or refinement strategy. Due to our hierarchical cover construction
we were able to localize the approximation problem even further. Now the setup cost
for the Local-to-Local projection operators was negligible compared with the cost
of the operator assembly. Yet the convergence rates of a multilevel iteration with
these completely localized projections were (almost) identical to those for the global
L2-projection. This observation holds even for higher order discretizations.

Altogether, the computational effort involved in the construction of the interlevel
transfer operators was substantially reduced by the presented localizations of the
projection approach. Yet the results of our numerical examples in two and three
dimensions showed that the quality of the interlevel transfer with the Local-to-Local
L2-projection Π̃k

k−1 is comparable to that of the global L2-projection Πk
k−1 although

Π̃k
k−1 produces “rougher” approximations uk. The resulting convergence rates ρ1

and ρ2 are similar if we use a block-Gauß–Seidel smoother with a space filling curve
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ordering induced by the Hilbert curve of the cover patches. If we employ only a
block-Jacobi smoother in the multilevel iteration the impact of the roughing effect
of Π̃k

k−1 can be significant for highly irregular point sets. Here, iterations with the
global projection Πk

k−1 or with the Global-to-Local projection Π̂k
k−1 still converge

independent of the number of discretization points card(P ) and their distribution (yet
they are still dependent on the local approximation orders pi,k), whereas a multilevel
iteration with the Local-to-Local projection Π̃k

k−1 may even diverge if the number of
block-Jacobi-smoothing steps is too small.

In all our experiments we found that the use of a W -cycle does not pay off.
The convergence rates were essentially the same as the V -cycle rates. In summary,
our numerical experiments indicate that a multilevel V -cycle based on the Local-
to-Local projection and a block Gauß–Seidel smoother with an appropriate space
filling curve ordering of the cover patches is a cheap and efficient solver for the linear
systems arising from a PUM discretization of an elliptic PDE. The convergence rate
is independent of the number and the distribution of the discretization points, yet it
is slightly dependent on the local approximation orders pi,k.
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