
A PARTICLE-PARTITION OF UNITY METHOD–PART II:
EFFICIENT COVER CONSTRUCTION AND RELIABLE

INTEGRATION

MICHAEL GRIEBEL† AND MARC ALEXANDER SCHWEITZER†

Abstract. In this paper we present a meshfree discretization technique based only on a set of
irregularly spaced points xi ∈ IRd and the partition of unity approach. In this sequel to [13] we
focus on the cover construction and its interplay with the integration problem arising in a Galerkin
discretization. We present a hierarchical cover construction algorithm and a reliable decomposition
quadrature scheme. Here, we decompose the integration domains into disjoint cells on which we
employ local sparse grid quadrature rules to improve computational efficiency. The use of these two
schemes already reduces the operation count for the assembly of the stiffness matrix significantly.
Now, the overall computational costs are dominated by the number of the integration cells. We
present a regularized version of the hierarchical cover construction algorithm which reduces the
number of integration cells even further and subsequently improves the computational efficiency.
In fact, the computational costs during the integration of the nonzeros of the stiffness matrix are
comparable to that of a finite element method, yet the presented method is completely independent
of a mesh. Moreover, our method is applicable to general domains and allows for the construction
of approximations of any order and regularity.

Key words. meshfree method, gridless discretization, partition of unity method, Galerkin
method, sparse grids, numerical integration, mesh generation

AMS subject classifications. 65C20, 65N30, 65D30, 65N50

1. Introduction. Meshfree methods (MM) are promising approaches to over-
come the problem of mesh generation which still is the most time-consuming part of
any finite element (FE) simulation. Meshfree methods are based only on a (finite)
collection of independent points within the domain of interest, i.e. there are no fixed
connections between any two points like in a conventional mesh. These points can
now be used as collocation nodes [1, 9, 10, 11, 19], for the construction of approximate
densities [21, 22, 23] or even for the construction of trial and test spaces for a Galerkin
method [2, 3, 4, 8, 13].

The shape functions of a meshfree Galerkin method are in general more complex
than FE shape functions. In a meshfree method the shape functions are (in general)
piecewise rational functions, whereas in a finite element method (FEM) they are
piecewise polynomials. This is due to the fact that the construction of a meshfree
shape function is based only on independent points instead of a mesh. Therefore,
the integration of meshfree shape functions is more complicated than the integration
of FE shape functions. Hence, the assembly of the stiffness matrix and right hand
side vector in a meshfree Galerkin method is far more expensive than in the FEM.
Meshfree Galerkin methods therefore could not be applied to real world problems up
to now and are considered to be in an experimental state only.

In this paper we present a numerical method based only on a set of irregularly
spaced points and the partition of unity approach [2]. In a partition of unity method
(PUM), we define a global approximation uPU simply as a weighted sum of local

†Sonderforschungsbereich 256 Nonlinear Partial Differential Equations, Project D Meshfree nu-
merical methods for the simulation of 3D flows with free boundaries, Institut für Angewandte Math-
ematik, Universität Bonn, Wegelerstr. 6, D-53115 Bonn, {griebel, schweitz}@iam.uni-bonn.de

1

approximations ui,

uPU(x) :=
N∑
i=1

ϕi(x)ui(x).

These local approximations ui are completely independent of each other, i.e. the
local supports ωi := supp(ui), the local basis {ψki } and order of approximation pi
for every single ui :=

∑
uki ψ

k
i can be chosen independently of all other uj . Here,

the functions ϕi form a partition of unity (PU). They are used to splice1 the local
approximations ui together in such a way that the global approximation uPU benefits
from the local approximation orders pi yet still fulfills global regularity conditions,
see [13]. For a general partial differential equation (PDE) Lu = f the fully assembled
approximation functions ϕiψki have to be used within the Galerkin procedure. Hence,
for the approximation of a PDE we have to integrate the product functions ϕiψki in
the assembly of the stiffness matrix. This integration is one major issue of concern
with partition of unity methods. The dominant factor for the approximation quality
of the method certainly is the local basis function ψki but, other than with the p-
version of the FEM, this high order function is not the cause of concern during the
integration—the partition of unity functions ϕi are.

The algebraic structure of the functions ϕi is (in general) more complex than that
of finite element shape functions, since the ϕi have to repair any spatial irregularity
induced by the overlaps of the ωi. Hence, the construction of a partition of unity with
a simple algebraic structure is the most crucial step in a PUM. Therefore, the design
and implementation of a PUM for general covers CΩ := {ωi | i = 1, . . . , N} including
a fast yet reliable quadrature scheme is quite involved.

One approach to utilize at least some of the PUM benefits is the so-called Gener-
alized Finite Element Method (GFEM) [7, 30]. Here, the construction of the PU {ϕi}
is left to an h-version FEM. On top of this PU, local basis functions ψik can still be
selected with all the freedom the PU approach allows for, e.g. ψik which are adapted
to known local behavior of the solution. But the dependence on the h-mesh construc-
tion for the PU is of course a major drawback of the GFEM. Furthermore, one needs
to supply appropriate quadrature schemes for the reliable integration of these general
local basis functions ψik independent of the facts that the cover is a mesh and that
the partition of unity is piecewise linear.

Truly meshfree Galerkin methods [8, 13] have to be concerned with the construc-
tion of a cover from a given set of points P = {xi ∈ Ω} and hence have to cope with
geometric searching and sorting problems. To tackle these problems an algorithm for
finding a set covering a single point based on a tree concept was proposed in [17]. But
still the cover CΩ was assumed to be given.

In this paper we present a general cover construction algorithm based only on a set
of irregularly spaced points P = {xi ∈ Ω}. We partition the domain into overlapping
d-rectangular patches ωi which we assign to the given points xi to cover the complete
domain. We use d-binary trees (binary trees, quadtrees, octrees) for the construction
of these patches ωi. While the data structures used here are similar to those used

1Due to this splicing property of the PU one is tempted to construct the global solution uPU by
solving only local problems for the ui on the support patches ωi. Here, one would use the local basis
functions ψki as trial and test functions and disregard the partition of unity functions ϕi during the
construction of the global solution uPU. For the mass matrix problem—and related interpolation
problems—this is a proper approach which directly leads to a system of linear equations already in
block diagonal form without any lumping.

2

in [17], we are interested in the construction of a cover CΩ with desirable features.
For instance, the subsets Nx ⊂ CΩ of cover patches ωk which cover a point x ∈ Ω,
i.e. Nx = {ωk ∈ CΩ |x ∈ ωk}, should be small. Although a cover CΩ generated
by this general algorithm is minimal in the sense that card(Nx) � card(CΩ) is very
small for all x ∈ Ω, the resulting partition of unity functions ϕi are (in general)
still more complex than in the GFEM. The piecewise character of the constructed
functions ϕi though can further be significantly simplified by making slight changes
to the general cover construction. With this refined algorithm we construct covers
for general domains that stay close to k-irregular grids. This construction not only
minimizes the number of patches card(Nx) which cover a single point x ∈ Ω, but
also leads to partition of unity functions ϕi with simpler algebraic structure. A k-
irregular grid is completely sufficient for a PUM, since the ϕi will repair the jump
within the spatial resolution and ensure the global regularity conditions imposed on
the approximation uPU. At the same time, the cost of the assembly of the stiffness
matrix and right hand side vector is significantly reduced since the simpler algebraic
structure of the ϕi allows for cheaper quadrature rules.

Furthermore, we introduce a numerical quadrature scheme for the fully assembled
approximation functions ϕiψki which further reduces the integration costs. Here, we
decompose the integration domain to resolve the algebraic structure of the partition
of unity functions ϕi; i.e. we decompose the integration domains into disjoint cells
on which the integrands are smooth functions. We then use a sparse grid quadrature
rule [12] with a dynamic stopping criterion locally on the cells. Hence, the number of
integration points on each cell is minimal with respect to accuracy. It turns out that
overall, the number of operations needed by our method during the assembly of the
stiffness matrix is comparable to that of a finite element method. Yet at the same
time it is a truly meshfree method, i.e. it is completely independent of a mesh. Hence,
our partition of unity method is a very flexible and efficient numerical discretization
technique and it is a strong competitor for conventional finite element methods. With
the proposed method the treatment of real world problems using meshfree Galerkin
methods might now be in reach now.

The remainder of the paper is organized as follows: in §2 we give a short review
over the construction of partition of unity spaces for meshfree Galerkin methods. We
then present in §3 a general hierarchical cover construction algorithm based only on
a set of irregularly spaced points which allows for a fast neighbor search. Here, we
make use of d-binary trees (quadtrees, octrees, etc.) to assign parts of the domain to
each of the given points to cover the complete domain. The Galerkin discretization of
a PDE using PUM shape functions is given in §4. In §5 we introduce an appropriate
numerical quadrature scheme for PUM shape functions. The scheme is based on a
decomposition approach to resolve the piecewise character of the partition of unity
functions ϕi. On the cells of this decomposition we employ local sparse grid quadra-
ture rules with a dynamic stopping criterion. This reduces the computational costs
on each cell substantially, yet still ensures a reliable accuracy of the integration. In
§6 we present a refinement of the general cover construction algorithm given in §3; a
similar cover construction algorithm was recently proposed in [18]. It also accounts
for the geometric neighboring relations of the partition of unity functions ϕi, i.e. the
neighboring relations of the cover patches ωi, which have a significant effect on the
number of integration cells. With this improved algorithm the number of integration
cells and the corresponding computational effort during the integration of the stiffness
matrix entries is significantly reduced. Numerical results for elliptic problems in two

3

and three dimensions are given in §7.

2. Construction of trial and test spaces. In the following, we give a short
recap of how to construct partition of unity spaces for a meshfree Galerkin method,
see [13] for details. The starting point for any meshfree method is a collection of N
independent points P := {xi ∈ IRd |xi ∈ Ω, i = 1, . . . , N}. In the PU approach we
need to construct a partition of unity {ϕi} on the domain of interest Ω to define an
approximate solution

uPU(x) :=
N∑
i=1

ϕi(x)ui(x), (2.1)

where the union of the supports supp(ϕi) = ωi covers the domain Ω ⊂
⋃N
i=1 ωi and

ui ∈ V pii (ωi) is some locally defined approximation of order pi to u on ωi. Given a
cover CΩ = {ωi | i = 1, . . . , N} we then can define such a partition of unity and local
approximations ui by using Shepard functions as ϕi and local approximation spaces
V pii on the patches ωi.

A naive approach toward the construction of such a cover CΩ would be the design
of patches ω̃i in such a way that every given point xi ∈ ω̃j for some j 6= i. But
this procedure (in general) does not lead to a cover of the complete domain Ω, i.e.⋃
j ω̃j 6⊃ Ω, since the points xi ∈ P may not be uniformly distributed in the domain

Ω. In [13] the following algorithm was proposed which tackles this problem by using
a set P̃ = P ∪ Q of original points P = {xi} and additional (user supplied) points
Q = {ξk}. Note that the additional points ξk are introduced to guarantee that the
patches ωi completely cover the entire domain Ω. However, they are not used to
construct additional cover patches, i.e. the algorithm constructs a cover patch ωi
only for xi ∈ P not for ξ ∈ P̃ \ P .

Algorithm 1 (Direct Cover Construction).
1. Given: the domain Ω ⊂ IRd, a scalar α ≥ 1, the set of points P = {xi ∈

IRd |xi ∈ Ω, i = 1, . . . , N} for the partition of unity construction and a set of
points Q = {ξi ∈ IRd | ξi ∈ Ω} to resolve the domain Ω.

2. Set P̃ = P ∪Q.
3. For all xk ∈ P : Set ωk :=

⊗d
i=1[xik − hik, x

i
k + hik] with hik = 0 for all

i = 1, . . . , d.
4. For all y ∈ P̃ :

(a) Set R = 0. Evaluate the set Sy,R of all points xk ∈ P that fall within
a searching square BR which is centered in y and whose side length is
equal to 2R. If Sy,R = ∅ (or Sy,R = {y} if y = xk), increase the size of
the searching square, i.e. R, and try again.

(b) Compute the distances dy,k := ‖y − xk‖ for all xk ∈ Sy,R with xk 6= y.
(c) Determine a point xl 6= y with dy,l = mink dy,k.
(d) If y 6∈ ωl increase hil for all i = 1, . . . , d appropriately such that y ∈ ωj

holds.
5. For all xk ∈ P : Set ωk = αωk, i.e. hik = αhik for all i = 1, . . . , d.

Now that we have found a cover CΩ of the domain Ω, we construct a partition of
unity {ϕi} by defining weight functions Wi on the cover patches ωi. From these
weight functions Wi we can easily generate a partition of unity by Shepard’s method,
i.e. we define

ϕi(x) =
Wi(x)∑
Wk(x)

. (2.2)

4

Since the cover patches ωi constructed by Algorithm 1 are d-rectangular, i.e. they are
products of intervals, the most natural choice for a weight function Wi is a product
of one-dimensional functions, i.e. Wi (x) =

∏d
l=1W

l
i (xl) =

∏d
l=1W (x−x

l
i+h

l
i

2hli
) with

supp(W) = [0, 1] such that supp(Wi) = ωi. It is sufficient for this construction to
choose a one-dimensional weight function W which is non-negative. Throughout this
paper we use normed B-splines [27] as the generating weight function W.

In general, a partition of unity {ϕi} can of course only recover the constant func-
tion on the domain Ω. Hence, the consistency error in the L2-norm of a discretization
with the {ϕi} would be of first order only. Therefore, we need to improve the approx-
imation quality to use the method for the discretization of a PDE. To this end, we
multiply the partition of unity functions ϕi locally with polynomials. Since we use
d-rectangular patches ωi only, a local tensor product space is the most natural choice.
Throughout this paper, we use complete Legendre polynomials2 as local approxima-
tion spaces V pii , i.e. we choose V pii = span ({ψki |ψki =

∏d
l=1 L

kl
i ,
∑d
l=1 kl ≤ pi})

where Lkli is the one-dimensional Legendre polynomial of degree kl on the interval
[xli − hli, xli + hli].

The selection of optimal local approximation orders pi and basis functions ψki are
by nature problem-dependent. The regularity of the analytical solution space, e.g.
Hk(Ω) or Lp(Ω), and information about the analytical solution u itself may provide
some insight. This and other adaptivity related issues are subject of future research
and will not be treated in this paper.

Following the construction given above, we can construct approximate solutions
uPU of any order and regularity without additional constraints on the cover CΩ. The
resulting shape functions ϕiψki though have some surprising properties.

1. The partition of unity functions ϕi are (in general) non-interpolatory. Fur-
thermore, there are more degrees of freedom in a PUM space than there
are points xi ∈ P due to the use of (multi-dimensional) local approximation
spaces V pii .

2. The regularity of the shape functions ϕiψki is independent of the number of
degrees of freedom. The shape functions inherit the regularity of the partition
of unity functions ϕi (if we assume that the local approximation spaces V pii are
at least of the same regularity). Therefore, we can increase the regularity of an
approximation uPU by changing the B-spline used in (2.2) independent of the
local approximation spaces V pii . Note that this is different from finite element
methods. In the FEM the global regularity of an approximation is given by
the element regularity which on the other hand is implemented by constraints
imposed on the local degrees of freedom. Hence, a higher regularity may only
be achieved by increasing the number of degrees of freedom of an element.

3. The PUM shape functions are piecewise rational functions due to the use of
piecewise polynomial weights in (2.2).

The cover CΩ itself influences the computational work of the method significantly.
For one, the neighbor relations ωi∩ωj 6= ∅ of the cover CΩ already define the sparsity
pattern of the stiffness matrix. Second, the evaluation of a single partition of unity
function ϕi, see (2.2), involves the evaluation of the weights of all neighboring patches
Ni := {ωj ∈ CΩ |ωi ∩ ωj 6= ∅}. Hence, it is necessary to control the number of neigh-

2Note that due to their product structure the shape functions ϕiψ
k
i of our PUM do not inherit

orthogonality properties of the local basis functions ψki . Hence, the chosen Legendre polynomials Lk
will not lead to a diagonal matrix for the mass matrix problem, as well as the integrated Legendre
polynomials LkI will not lead to a diagonal matrix for the Poisson problem.

5

bors card(Ni) to limit the computational work during the assembly of the stiffness
matrix. Furthermore, the smoothness of a PU function ϕi is strongly dependent on
the amount of overlap ωi ∩ωj of the neighboring patches ωj ∈ Ni, see [13] for details.

3. Hierarchical Cover Construction. Therefore, we need to construct a cover
CΩ which minimizes the number of neighbors card(Ni) for each patch ωi, but ensures
significantly large overlaps ωi∩ωj to allow for the use of a cheaper quadrature scheme
for each nonzero entry of the stiffness matrix.

With Algorithm 1 for the cover construction the control over the neighborhoods
Ni is somewhat limited. Hence, it is very difficult to limit the density of the stiff-
ness matrix. Even more problematic though is the fact that Algorithm 1 needs an
additional input3 Q besides the set of points P and the domain Ω ⊂ IRd to ensure
that the complete domain is indeed covered by CΩ. This of course makes Algorithm
1 significantly less useful, especially in time-dependent settings.

In the following we propose a new algorithm which employs a decomposition
approach for the domain Ω to assign sets ωi ⊂ IRd to the points xi ∈ P in such a way
that they cover the domain Ω ⊂

⋃
ωi. This hierarchical algorithm does not need an

additional input Q.
Algorithm 2 (Hierarchical Cover Construction).
1. Given: the domain Ω ⊂ IRd, a bounding box RΩ =

⊗d
i=1[liΩ, u

i
Ω] ⊃ Ω, the

initial point set P = {xj ∈ IRd |xj ∈ Ω} and a parameter k ∈ IN.
2. Build a d-binary tree (quadtree, octree) over RΩ, such that per leaf L at

most one xi ∈ P lies within the associated cell CL :=
⊗d

i=1[liL, u
i
L], and the

difference of the levels of two adjacent cells is at most k, see Figure 3.1.
3. For all cells CL =

⊗d
i=1[liL, u

i
L] with CL ∩ Ω 6= ∅:

(a) If there is an xj ∈ P with xj ∈ CL, set xL = xj . Else, set xL = any
element of CL, e.g. the center xiL = liL + 1

2 (uiL − liL) of the cell CL.
(b) Set P = P ∪ {xL}.
(c) Set ωL = RL =

⊗d
i=1[xiL−hiL, xiL+hiL] ⊃ CL, where hiL = α

2 max{uiL−
xiL, x

i
L − liL} with α > 1.

With Algorithm 2 we not only ensure the covering property Ω ⊂
⋃
ωi without addi-

tional input data, but we also control the neighborhoods Ni, i.e. the nonzeros of the
stiffness matrix, and ensure the smoothness of the functions ϕi. The neighborhoods
Ni of the cover patches ωi constructed by Algorithm 2 are small yet the amount of
overlap of any two neighboring patches is of significant size. Certainly, these features
do come at a prize we have to pay: the algorithm automatically introduces additional
points xN+k into the set P , see Figures 3.1 and 3.2.4 This increases the number of
unknowns, i.e. the number of rows of the stiffness matrix, and seemingly the overall
computational cost. But as it turns out, the number of nonzeros of a stiffness ma-
trix based on our algorithm is comparable to the number of nonzeros of a stiffness
matrix based on Algorithm 1 for uniformly distributed points P (see Table 6.1 where

3The selection of the set Q within Algorithm 1 is quite involved to ensure the sparsity of the
stiffness matrix and to cover the complete domain at the same time if the points xi ∈ P are non-
uniformly distributed.

4The additional points are necessary to ensure the shape-regularity of the tree cells and patches.
A similar tree-based algorithm for the construction of shape-regular triangulations with an almost-
minimal number of vertices was proposed in [5]. In analogy, the presented algorithm may have a
similar almost-optimal property: If m is the minimal number of shape-regular d-rectangles required
to cover the given point set in such way that all d-rectangles contain at most a single point, then the
cover CΩ constructed by the presented algorithm is of size card(CΩ) = O(m).

6

Level 0

Level 1

Level 2

Level 3

Level 4

Level 1

Level 2

Level 3

Level 4

Level 0

Figure 3.1. Hierarchical cover construction with Algorithm 2 in two dimensions. The initial
cell decomposition induced by P (upper left) and its corresponding tree representation (upper right)
after step 2 of Algorithm 2. The final cell decomposition (lower left) and its tree representation after
the completion of Algorithm 2.

the initial point set P for the cover construction is a Halton5 point set). And it is
significantly less for highly irregular point sets P (see Table 6.2). Furthermore, the
proposed algorithm enables the user to control the amounts of overlap ωi ∩ ωj com-
pletely by the choice of the parameter k in step 2 (which corresponds to the local
imbalance of the tree), the choice of xL ∈ CL in step 3a and the choice of α in step
3c. Hence, this construction leads to smoother partition of unity functions ϕi and
allows for the use of cheaper quadrature schemes (compared with Algorithm 1) during
the assembly of the stiffness matrix, although the functions ϕi are still more complex
than FE shape functions (see Figure 3.3). In summary, the proposed algorithm is
applicable to general domains Ω and any initial distribution of points P without an
additional input Q, yet also reduces the computational costs during the assembly of
the stiffness matrix and right hand side vector.

Note that we capture the domain Ω by the cells CL and subsequently by the
ωL = RL only. This though does not limit the domain or boundary resolution of our
method. At this stage in the construction process, we are only interested in generating
a cover CΩ of the domain Ω. Only during the integration of the stiffness matrix and
right hand side vector entries we need to restrict the evaluation of the associated shape
functions ϕLψkL to the computational domain Ω, i.e. to the integration domain ωL∩Ω.

5Halton–sequences are pseudo Monte Carlo sequences, which are used in sampling and numerical
integration. Consider n ∈ IN0 given as

∑
j njp

j = n for some prime p. We can define the trans-

formation Hp from IN0 to [0, 1] with n 7→ Hp(n) =
∑
j njp

−j−1. Then, the (p, q) Halton–sequence

with N points is defined as HaltonN0 (q, p) := {(Hp(n), Hq(n)) |n = 0, . . . , N}.

7

Figure 3.2. P = Halton63
0 (2, 3) point set in RΩ = Ω = [0, 1]2 (left), P with card(P) = 106

(center) after Algorithm 2 with k =∞ and xiL = liL + 1
2

(uiL − l
i
L) for generated points xL, and the

generated cover CΩ (right) with hiL = 5
4

max{uiL − x
i
L, x

i
L − l

i
L}.

Figure 3.3. The partition of unity function ϕi on Ω ∩ ωi generated by Algorithm 2 with the
input data from 3.2 for an interior point (left), a boundary point (center) and a corner point (right)
using linear B-splines.

We postpone the issue of domain and boundary resolution to §5. Note further that due
to steps 3a and 3c we generally produce d-rectangular cover patches ωi independent
of the shape of the bounding box RΩ, see Figure 3.2. Note also that the construction
allows for the fast evaluation of a single partition of unity function ϕi, see (2.2), due
to the efficient neighbor search in the hierarchical tree data structure. Note finally
that the introduction of a hierarchical cover induces a hierarchy for the associated
function space6 which we may exploit in the design of fast multilevel solvers for the
linear equations arising from a PUM discretization. This issue though is subject of
future research.

4. Galerkin method with the PUM space. We want to solve elliptic bound-
ary value problems of the type

Lu = f in Ω ⊂ IRd ,
Bu = g on ∂Ω ,

(4.1)

where L is a symmetric partial differential operator of second order and B expresses
suitable boundary conditions. The implementation of Neumann boundary conditions
with our partition of unity method is straightforward and similar to their treatment
within the FEM. The realization of essential boundary conditions with meshfree meth-
ods is more involved than with a finite element method due to the non-interpolatory

6For covers from Algorithm 1 the introduction of such a hierarchy would at least be artificial.
Since in Algorithm 1 the selection of the supports ωi is independent of a hierarchical ordering on
the points, this hierarchy on the points would not lead to a hierarchy for the supports of the shape
functions in a natural way.

8

Figure 3.4. P is a Halton63
0 (2, 3) point set in RΩ = Ω = [0, 1]× [−0.5, 0.5] graded by (x, y) 7→

(x2,±y2) (left), P with card(P) = 121 (center) after Algorithm 2 with k =∞ and xiL = liL+ 1
2

(uiL−
liL) for generated points xL, and the generated cover CΩ (right) with hiL = 5

4
max{uiL−x

i
L, x

i
L− l

i
L}.

character of the meshfree shape functions. There are several different approaches to
the implementation of essential boundary conditions with meshfree approximations,
see [13, 16, 27]. Throughout this paper we use Lagrangian multipliers to enforce
essential boundary conditions, see [13, 27].

In the following let a(·, ·) be the continuous and elliptic bilinear form induced by
L on H1(Ω). We discretize the partial differential equation using Galerkin’s method.
Then, we have to compute the stiffness matrix

A = (aij) , with aij = a(ϕjψlj , ϕiψ
k
i) ∈ IRdim(V

pj
j)×dim(V

pi
i) ,

and the right hand side vector

f̂ = (fi) , with fi = 〈f, ϕiψki 〉L2 =
∫

Ω

fϕiψ
k
i ∈ IRdim(V

pi
i) .

If we restrict ourselves for reasons of simplicity to the case L = −∆ we have to compute
the integrals

∫
Ω
ϕiψ

k
i f for the right hand side and the integrals

∫
Ω
∇(ϕiψki)∇(ϕjψlj)

for the stiffness matrix. Recall that ϕi is defined by (2.2), i.e.

ϕi(x) =
Wi(x)∑
Wk(x)

.

Now we carry out the differentiation in
∫

Ω
∇(ϕiψki)∇(ϕjψlj). With the notation S :=∑

Wk, T :=
∑
∇Wk and Gi := ∇WiS −WiT we end up with the integrals

a(ϕjψlj , ϕiψ
k
i) =

∫
Ω

S−4Giψki Gjψlj +
∫

Ω
S−2Wi∇ψkiWj∇ψlj +∫

Ω

S−3GiψkiWj∇ψlj +
∫

Ω
S−3Wi∇ψki Gjψlj

(4.2)

for the stiffness matrix and the integrals

〈f, ϕiψki 〉L2 =
∫

Ω

S−1Wiψ
k
i f (4.3)

for the right hand side. Due to the facts that we use piecewise polynomial weights
Wi for the Shepard construction (2.2) and that the support patches ωi overlap each

9

integration domain decomposition induced by
weight functions

Figure 5.1. Integration domain Ωij = ωi∩ωj (left). The decomposition Eωij of the integration
domain ωij via the subdivision induced by the weight functions Wi and Wj (right). Here, the weights
are tensor products of quadratic B-splines.

other, the functions T and Gi may have quite a number of jumps of significant size.
Therefore, the integrals (4.2) and (4.3) should not be computed by a simple quadrature
scheme which does not respect these discontinuities and the algebraic structure of the
shape functions. Instead, we need to decompose the integration domain in such a way
that the piecewise character of the integrands is resolved.

5. Decomposition Sparse Grid Quadrature Scheme. Let us assume that
the PU is given by an h-mesh construction like we have in the GFEM. Then, we know
how to resolve the piecewise character of the integrands: we subdivide the integration
domains with the help of the geometric elements of the h-mesh. However, with our
general PUM we do not have a mesh or geometric elements. But we have support
patches ωi and weight functions Wi which define the partition of unity functions ϕi by
(2.2). From this information only, we have to find an appropriate subdivision of the
support patches ωi and subsequently the integration domains. Furthermore, we have
to cope with rational integrands on the cells of such a subdivision in our general PUM.
The foundation for the proposed quadrature scheme is a decomposition approach
which was first presented in [27]. Here, we give a short review over the construction
principles for the decomposition Dωij := {Dn

ωij} of the integration domains ωij :=
ωi ∩ ωj ∩ Ω.

The integration domains ωij may be decomposed into disjoint cells Dn
ωij by ex-

ploiting the tensor product structure of the cover patches ωi and the weight functions
Wi used during the construction (2.2) of the partition of unity {ϕi}. This decompo-
sition of an integration domain ωij can efficiently be computed by splitting ωij via its
caps ωij ∩ ωk with the neighboring cover patches ωk ∈ Nij := Ni ∩Nj using a second
tree data structure.

Consider the integration domain ωij = ωi ∩ ωj ⊂ Ω. The intersection ωij of two
cover patches ωi, ωj which are tensor products of intervals is also a tensor product of
intervals, see Figure 5.1 (left). Moreover, the employed weight functions Wk are tensor
products of normed B-splines of order l, i.e. they are piecewise polynomials of degree
l. Therefore, the weight function Wk induces a subdivision of the respective cover
patch ωk into (l+ 1)d sub-patches {ωqk} on which Wk

∣∣
ωqk

is polynomial. Furthermore,

these sub-patches {ωqk} are also tensor products of intervals. With the help of these
sub-patches {ωqi }, {ω

q
j} we can define a first decomposition Eωij = {Enωij} of ωij ,

see Figure 5.1 (right). On the cells Enωij of this decomposition we have that Wi

∣∣
Enωij

10

refinement induced by weight
of neighboring patch

refined decomposition

Figure 5.2. Refinement of the decomposition Eωij of the integration domain ωij via the subdi-
vision induced by the weight function Wk (tensor product of quadratic B-splines) of one neighboring
point xk (left). The resulting decomposition Dωij after the refinement step for the neighboring
weight function Wk (right).

and Wj

∣∣
Enωij

are polynomials of degree l, but all other Wk

∣∣
Enωij

may still be piecewise

polynomial only. Therefore, we further refine the decomposition Eωij by subdividing
the cells Enωij with the help of the {ωqk} sub-patches for all ωk ∈ Nij , see Figure 5.2.
The resulting decomposition Dωij = {Dn

ωij} consists of d-rectangular cells Dn
ωij on

which all weight functions Wk|Dnωij are polynomials of degree l. The number of cells
card(Dωij) of the decomposition Dωij = {Dn

ωij} depends on the polynomial degree l of
the weight functions Wk used during the Shepard construction (2.2) for the partition
of unity, the number of neighbors card(Ni) and their geometric location.

Since all weights Wk are polynomial on the cells Dn
ωij , the functions T and Gi

are non-singular rational functions on Dn
ωij . Hence, any standard quadrature rule

for smooth functions is applicable for the numerical integration of the weak form on
the cells Dn

ωij (if we assume that the local basis functions ψki and ψlj are smooth
on ωij). Independent of the local quadrature rule used on Dn

ωij we can utilize the
product structure of the shape functions ϕiψki to reduce the computational costs
of an evaluation of the weak form at a quadrature point. Here, we simultaneously
evaluate the complete block aij = a(ϕjψlj , ϕiψ

k
i) ∈ IRdim(V

pj
j)×dim(V

pi
i) of the stiffness

matrix rather than evaluating every single (aij)kl = a(ϕjψlj , ϕiψ
k
i) ∈ IR for fixed k

and l. Besides the reduction in the number of evaluations of ϕi and ϕj , this also
allows for a hierarchical evaluation of the local basis functions ψki and ψlj (which is
available for the chosen Legendre polynomials) which reduces the computational costs
of an evaluation of the weak form significantly (esp. for higher order approximations).

For the selection of a quadrature rule on the cells Dn
ωij we now can assume the

smoothness of the integrands. But still the quadrature rule has to be applicable to
general situations (general covers, weights and local basis functions ψki , etc.). Hence,
we have to find a fast converging, cheap quadrature rule on Dn

ωij which allows for a
reliable dynamic stopping criterion for a wide range of integrands.

So-called sparse grid quadrature [12] rules are multi-dimensional interpolatory
rules with a substantially smaller number of integration nodes compared with a tensor
product rule. They are defined as special products of one-dimensional interpolatory
quadrature rules. Although the number of evaluations of the integrand is significantly
less for a sparse grid quadrature rule, the order of the achieved error is comparable to
that of a full tensor product rule. Here, we only state the fundamental construction
principles and error bounds, see [12] and the references cited therein for further details.

11

Consider a sequence of nested one-dimensional quadrature rules for univariate
functions {Q1

l |Q1
l f :=

∑n1
l
i=1 wlif(xli), n1

l = O(2l), f : IR → IR} with weights wli,
nodes xli and error bound |Q1

l f −
∫
f | = O(2−lr) where f is assumed to be r-times

continuously differentiable. This bound holds for example for the Clenshaw–Curtis
and Gauß–Patterson rules. With the help of the difference quadrature rules ∆1

k

∆1
kf := (Q1

k −Q1
k−1)f with Q1

0f := 0.

we can define the sparse grid quadrature rule Qdl on level l in d-dimensions as

Qdl f :=
∑

∑d
i=1 ki≤l+d−1

(∆1
k1
⊗ . . .⊗∆1

kd
)f

with f : IRd → IR, l ∈ IN and k ∈ INd. Due to the restriction
∑d
i=1 ki ≤ l + d − 1 in

the summation, the number ndl of quadrature points xdi of the resulting sparse grid
quadrature rule Qdl is

ndl = O(2lld−1)

only. Hence, the number of function evaluations for a sparse grid quadrature rule is
dramatically less (see Figure 5.3) than for a full tensor product rule where the inte-
grand has to be evaluated at O(2ld) quadrature points. This reduction of the com-
putational costs though does not compromise the approximation quality significantly
for smooth functions. When f is assumed to be r-times continuously differentiable
the estimate

|Qdl f −
∫
f | = O(2−lrl(d−1)(r+1))

holds.
In summary, sparse grid quadrature rules are not only cheaper to evaluate (esp.

in higher dimensions) compared with tensor product rules, but rather their overall
efficiency with respect to accuracy is significantly better. In [12] the fast convergence
of sparse grid quadrature rules based on Gauß–Patterson rules (see Figure 5.3) is
shown for a wide variety of function classes. In fact, sparse grid quadrature rules
based on Gauß–Patterson rules converge exponentially for smooth integrands. Since,
the integrands we are interested in are smooth on the cells Dn

ωij of the constructed
decomposition Dωij we use Gauß–Patterson sparse grid rules for the numerical inte-
gration of the stiffness matrix entries.

To ensure a reliable accuracy of our quadrature scheme, we use a simple three
level dynamic stopping criterion [24]. The quadrature on a cell Dn

ωij is stopped if

|Qdl−1f −Qdl−2f | ≤ c1εa + c2εr|Qdl−1f | and |Qdl f −Qdl−1f | ≤ εa + c3εr|Qdl f |

hold for the integrand (aij)kl of minimal order k = l = 0 as well as for the integrand
of maximal order k = dim(V pii) − 1, l = dim(V pjj) − 1. Here, c1, c2 and c3 are non-
negative constants and εa and εr are user supplied absolute and relative tolerances.
These tolerances which determine the accuracy of the integration though have to
be chosen with respect to the approximation space. Here, the diameters diam(ωi),
diam(ωj) of the cover patches ωi, ωj , the number of integration cells card(Dωij), their
respective diameters diam(Dn

ωij) and the local approximation orders pi, pj have to be
considered. An automatic selection of the tolerances εa and εr which minimizes the

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.3. Quadrature nodes of sparse grid Gauß–Patterson rules, level l = 6 with 769 nodes
in two dimension (left) and level l = 5 with 1023 nodes in three dimension (right).

integration domain

boundary

refined decomposition
for general domains

parametric integration cell

Figure 5.4. Integration domain Ωij = ωi ∩ωj ∩Ω for general domains Ω (left). The decompo-
sition Dωij of a general integration domain ωij via the subdivision induced by the weight functions
Wi, Wj and a neighboring patch (right), compare Figures 5.1 and 5.2. Here, the weights are tensor
products of quadratic B-splines.

computational work but at the same time does not compromise the accuracy of the
discretization [29, Chapter 4] is subject of future research.

Note that the decomposition approach given above is not restricted to domains
Ω which are unions of d-rectangles but rather applicable to general domains. For
integration domains ωi ∩ ωj ∩Ω 6= ωi ∩ ωj we apply the construction to the fictitious
integration domain ω̃ij := ωi ∩ ωj . From this decomposition Dω̃ij = {Dn

ω̃ij
} we then

select the subset D̂ωij := {D̂n
ωij ∈ Dω̃ij | D̂n

ωij ∩ Ω 6= ∅} of all cells which overlap the
actual integration domain ωij = ω̃ij ∩ Ω. This intermediate cover D̂ωij consists of d-
rectangular cells D̂n

ωij ∩Ω 6= ∅ which cover the integration domain ωij , see Figure 5.4.
Now, the remaining task is to resolve (with the necessary accuracy) the boundary
∂Ω of the domain which runs through some of the cells D̂n

ωij . We assume that a
representation for the boundary ∂Ω is given as part of the computational domain
Ω. That is, we assume the domain Ω and its boundary ∂Ω are given as a collection
of mappings RmΩ : [−1, 1]d → Ω ⊂ IRd from a reference cell into the physical space
Ω ⊂ IRd with

⋃
Rm([−1, 1]d) = Ω. These mappings RmΩ may be coming from a CAD

system, i.e. the mappings themselves are only an approximation to the true domain
Ω, or may be coming from a given analytical representation of the domain Ω.

13

With the help of these mappings RmΩ we can compute the parametric integration
cell Dn

ωij := D̂n
ωij ∩Ω which lies within the integration domain ωij , see Figure 5.4. The

final decomposition Dωij = {Dn
ωij |D

n
ωij := D̂n

ωij ∩Ω} for general domains Ω therefore
consists of d-rectangular cells Dn

ωij = D̂n
ωij if D̂n

ωij ⊂ Ω and parametric cells Dn
ωij if

the corresponding d-rectangular cell D̂n
ωij overlaps the boundary ∂Ω.

Note that the mappings RmΩ do not influence the shape functions of our partition
of unity method. While in a finite element method the supports of the shape function
have to align with the boundary ∂Ω of the domain, in our PUM the supports of the
shape functions only have to cover the domain Ω and its boundary ∂Ω. The mappings
of the domain representation RmΩ are merely used to implement integration domains
ωij with complicated geometry.

Overall the numerical quadrature of the stiffness matrix entries is completed in
three steps:

1. First we compute the decomposition Dω̃ij for the domain ω̃ij = ωi ∩ ωj , see
Figures 5.1 and 5.2. With the help of the domain representation mappings
RmΩ we then select the integration cells D̂n

ωij = Dn
ω̃ij
∩Ω 6= ∅ which overlap the

computational domain Ω. Furthermore, we use the mappingsRmΩ to construct
the final decomposition Dωij = {Dn

ωij |D
n
ωij := D̂n

ωij ∩ Ω}, see Figure 5.4.
2. For each of these integration cells Dn

ωij we then compute the Jacobian JTnωij
of the mapping Tnωij : [−1, 1]d → Dn

ωij from the reference integration domain
[−1, 1]d onto the integration cell Dn

ωij in the configuration space.
3. Finally, we evaluate the entries of the stiffness matrix and right hand side

vector by computing the integrals (4.2) and (4.3) on the integration cells
Dn
ωij . That is, we compute them on the reference integration domain [−1, 1]d

using the transformations Tnωij and the respective Jacobians JTnωij∫
Dnωij

F =
∫

[−1,1]d
F ◦ Tnωij |JTnωij |.

The Jacobian JTnωij
for a simple d-rectangular integration cell is of course

constant and this transformation does not increase the costs of the numerical
integration. But for a parametric cell the transformation Tnωij involves the
mappings RmΩ of the domain representation. Therefore, the Jacobian may
well be space-dependent and has to be evaluated at every integration node of
the quadrature rule.7

Again, the error during the numerical quadrature has to be controlled by
the selection of εa and εr to ensure that the order of approximation is not
compromised by the integration error.

The overall computational costs of the proposed quadrature scheme depends on
the number of cells card(Dωij) of the decomposition, i.e. on the order l of the weight
functions, the geometric location of the neighbors ωj ∈ Ni, their number card(Ni)
and the local quadrature rule used on the cells Dn

ωij . Due to the use of the sparse

7Note that in general the transformations Tnωij may lead to (locally) non-smooth integrands

where an isotrop sparse grid quadrature scheme may not be well-suited on all integration cells Dnωij .

Here, a further decomposition of the integration cells Dnωij where the integrands are non-smooth or

even adaptive quadrature rules (sparse grid or other) should be employed on such integration cells
Dnωij .

14

grid rules on the cells, the computational costs is significantly reduced compared with
tensor product rules.

6. Hierarchical Regular Cover Construction. A further reduction of the
computational effort necessary during the assembly of the stiffness matrix can only
be achieved by reducing the number of cells of the decomposition8 Dωij . This can be
attained by the alignment of the cover patches ωk and their subdivisions {ωqk}.

Taking into account that we limit ourselves to the use of tensor product B-splines
as weight functions for Shepard’s construction (2.2) we can align the cover patches to
simplify the algebraic structure of the resulting partition of unity functions ϕi. Here,
we eliminate some of the flexibility in step 3 of Algorithm 2 for the choices of xL and
α. This though does not lead to a significantly larger number of neighbors. Hence,
the number of nonzeros of the stiffness matrix stays (almost) constant, see Tables 6.1
and 6.2. However, the number of integration cells card(Dωij) is substantially reduced
by this modification, see Tables 6.4 and 6.5.

Recall that we split the integration domain ωij into several cells by its caps ωij∩ωqk
with the cells ωqk of the subdivision induced by the weight Wk on ωk ∈ Nij during the
construction of the decomposition Dωij . Hence, we align these caps ωij ∩ ωqk, which
subsequently induce at least one integration cell Dn

ωij , if we align the neighboring cover
patches ωk with respect to their subdivisions {ωqk}. Therefore, many of the ωij ∩ ωqk
will lead to the same integration cell Dn

ωij and the overall number of integration cells
card(Dωij) will be reduced significantly, see Tables 6.4 and 6.5. This alignment of the
cover patches ωk and their subdivisions {ωqk} is achieved by the following algorithm.

Algorithm 3 (Hierarchical Regular Cover Construction).
1. Given: the domain Ω ⊂ IRd, a bounding box RΩ =

⊗d
i=1[liΩ, u

i
Ω] ⊃ Ω, the

initial point set P = {xj ∈ IRd |xj ∈ Ω} and a parameter k ∈ IN.
2. Build a d-binary tree (quadtree, octree) over RΩ, such that per leaf L at

most one xi ∈ P lies within the associated cell CL :=
⊗d

i=1[liL, u
i
L], and the

difference of the levels of two adjacent cells is at most k.
3. For all cells CL =

⊗d
i=1[liL, u

i
L] with CL ∩ Ω 6= ∅:

(a) Set xiL = liL + 1
2 (uiL − liL).

(b) If there is an xj ∈ P with xj ∈ CL, set P = P \ {xj}.
(c) Set P = P ∪ {xL}.
(d) Set ωL = RL =

⊗d
i=1[xiL−hiL, xiL +hiL] ⊃ CL, where hiL = αl

2 (uiL− liL).

Here, the parameter αl in the computation of the support size in step 3d is only
dependent on the weight function used in (2.2), i.e. the order l of the B-spline.
By construction the one-dimensional distances from a point xL ∈ P to its direct
neighboring point xj ∈ P , i.e. the point xj corresponding to the sibling tree cell
Cj =

⊗d
i=1[lij , u

i
j], are |xiL − xij | = uiL − liL = uij − lij where CL =

⊗d
i=1[liL, u

i
L] is the

cell associated with xL. Hence, if we choose αl in such a way that condition (6.1)
is fulfilled, we not only align the patch ωL with its direct neighboring patch ωj , but
rather also their corresponding subdivisions {ωqL} and {ωqj} induced by the weight

8The decomposition itself though is minimal in the sense that it has a minimal number card(Dωij)
of integration cells necessary to resolve the piecewise character of the partition of unity functions.
In our construction (2.2) of the partition of unity we have to allow for higher orders l of the B-
spline weights to be able to construct global solutions uPU with higher order regularity, i.e. uPU ∈
Cl−1. Therefore, the remaining influences on the computational effort involved with the numerical
integration of the stiffness matrix entries are the geometric neighboring relations of our cover patches
ωi.

15

N A1,R A1,S card(P) A2 A3

1024 18840 21530 1729 20023 21751
4096 79102 91902 6364 73908 78588
16384 325730 377388 27673 326919 360053
65536 1267300 1431210 101314 1245108 1259134

Table 6.1

The number
∑

card(Ni) of neighbors for covers generated by Algorithm 1 with α = 1.5 using
rectangular patches (A1,R), and using square patches (A1,S). The number of cover patches card(P)
after the cover construction and the number of neighbors for Algorithm 2 with k = ∞, xiL =

liL + 1
2

(uiL − l
i
L) for generated points xL and hiL = 5

4
max{uiL − x

i
L, x

i
L − l

i
L} (A2, see also Figure

3.2), and for Algorithm 3 with k =∞ and αl = 2 (A3, see also Figure 6.1). The initial point set P

for all algorithms was HaltonN−1
0 (2, 3).

N A1,R A1,S card(P) A2 A3

1024 33878 39114 1897 23193 26203
4096 127950 149460 7501 92235 104985
16384 507010 591794 30040 369754 416292

Table 6.2

The number
∑

card(Ni) of neighbors for covers generated by Algorithm 1 with α = 1.5 using
rectangular patches (A1,R), and using square patches (A1,S). The number of cover patches card(P)
after the cover construction and the number of neighbors for Algorithm 2 with k = ∞, xiL =

liL + 1
2

(uiL − l
i
L) for generated points xL and hiL = 5

4
max{uiL − x

i
L, x

i
L − l

i
L} (A2, see also Figure

3.4), and for Algorithm 3 with k =∞ and αl = 2 (A3, see also Figure 6.3). The initial point set P

for all algorithms was a graded HaltonN−1
0 (2, 3).

functions WL and Wj . Moreover, this alignment of the patches does not increase the
number of neighbors card(NL). With the notation hil := αl

l+1 (uiL− liL) for the B-spline
interval size, the condition reads

xiL +
l + 1

2
hil = xij −

(
l + 1

2
−m

)
hil = xiL + (uiL − liL)−

(
l + 1

2
−m

)
hil (6.1)

for the i-th coordinate with i = 1, . . . , d. Here, the parameter m ∈ IN indicates the
amount of overlap ωL ∩ ωj ∼

⊗d
i=1mh

i
l for the neighbor ωj ∈ NL. Any integer m

with 1 ≤ m ≤ l+1
2 leads to minimal neighborhoods NL and minimal decompositions

DωLj , i.e. the number
∑
L card(NL) of nonzero entries of the stiffness matrix and the

number
∑
L,j card(DωLj) of integration cells are (almost) constant. Therefore, it is

advisable to choose the largest such integer to control the gradients of the partition
of unity function ϕi. Solving (6.1) for αl we have

αl =
l + 1

l + 1−m
.

With the choice of l = 2n − 1 and maximal m = n, this yields αl = 2, in general we
have 1 < αl ≤ 2. Due to this construction many of the points xi ∈ P are covered
only by the corresponding ωi. Therefore, we have ϕi(xj) = δij for many partition of
unity functions ϕi and points xj ∈ P , see Figure 6.2. In fact, ϕi(x) = 1 holds not
only for the point x = xi if we have αl < 2 but rather on a sub-patch ω̃i ⊂ ωi with
xi ∈ ω̃i ∼

⊗d
i=1 h

i
l, i.e. ϕi|ω̃i ≡ 1, see Figure 6.2.

When we compare the covers CΩ (Figures 3.2 and 6.1) and functions ϕi (Figures
3.3 and 6.2) generated by Algorithms 2 and 3, we clearly see the effect of the alignment
of the cover patches.

Note that the change of the point set P in step 3c in Algorithm 3 is admissible
due to the non-interpolatory character of the PUM shape functions ϕiψki . We can

16

Figure 6.1. P = Halton63
0 (2, 3) point set in RΩ = Ω = [0, 1]2 (upper left), P with card(P) = 106

(upper right) after Algorithm 3 with k = ∞, and the generated cover CΩ with αl = 2 (lower left)
and αl = 1.5 (lower right).

interpret this change in the point set P as a change of the weight functions Wk used
during the Shepard construction (2.2). So far the weight functions Wk and the cover
patches ωk were assumed to be centered in the given point xk (compare §2), but this
is of course not a necessary condition for the PUM to work. Therefore, we may view
the construction given above as a more general approach toward assigning weight
functions Wk to a given point xk ∈ P . The weight functions Wk and cover patches
ωk are now centered in lL + 1

2 (uL − lL) rather than in the given point xk. Note that
the constructed point set P of newly introduced and shifted points xk is only part of
the implementation of the function space. The initial point set P of step 1 is still the
set of all relevant points for the resolution of the solution and the geometry of the
domain. Therefore, a copy P̃ of the initial point set P is stored separately and the
points xl ∈ P̃ are used in time-dependent settings to generate covers for future time
steps [13]. Hence by the introduction of general weight functions Wk as part of the
cover construction, we can also write step 3 of Algorithm 3 equivalently as

3’. For all cells CL =
⊗d

i=1[liL, u
i
L] with CL ∩ Ω 6= ∅:

(a) Set xiL = liL + 1
2 (uiL − liL).

17

Figure 6.2. The partition of unity function ϕi on Ω ∩ ωi generated by Algorithm 3 with the
input data (upper row l = 1, αl = 2, center row l = 2, αl = 1.5, lower row l = 3, αl = 2) from 6.1
for an interior point (left), a boundary point (center) and a corner point (right).

Figure 6.3. P is a Halton63
0 (2, 3) point set in RΩ = Ω = [0, 1]× [−0.5, 0.5] graded by (x, y) 7→

(x2,±y2) (left), P with card(P) = 121 (center) after Algorithm 3 with k = ∞, and the generated
cover CΩ with αl = 2 (right).

(b) If there is no xj ∈ P with xj ∈ CL, set P = P ∪ {xL}.
(c) Set ωL = RL =

⊗d
i=1[xiL−hiL, xiL +hiL] ⊃ CL, where hiL = αl

2 (uiL− liL).

(d) Set the associated weight function WL (x) := Πd
i=1W (x−x

i
L+hiL

2hiL
).

which leaves the given points at their original location. Note also that the cover
patches ωL = RL constructed with Algorithm 3 and the bounding box RΩ always
have the same aspect ratio, see Figure 6.1. If we apply the algorithm given above to
Ω = RΩ = [0, 1]d with k =∞ and αl = 2 to a uniformly distributed set of points P , we

18

d = 2 d = 3
N card(P) A2 A3,2 A3,1.5 N card(P) A2 A3,2 A3,1.5

1024 1729 11.58 12.58 8.51 1024 3543 26.81 30.90 21.23
4096 6364 11.61 12.35 8.48 8192 26699 29.16 34.44 22.41
16384 27673 11.81 13.01 8.65 65536 199417 31.53 34.80 23.30
65536 101314 12.29 12.43 8.56 524288 1694568 32.31 34.94 24.04

Table 6.3

The average number sCΩ (6.3) of nonzero blocks aij per row of the stiffness matrix for the
different cover construction algorithms in two (left) and three dimensions (right). Algorithm 2 with
k = ∞, xiL = liL + 1

2
(uiL − l

i
L) for generated points xL and hiL = 5

4
max{uiL − x

i
L, x

i
L − l

i
L} (A2),

and Algorithm 3 with k = ∞, αl = 2 (A3,2) and αl = 1.5 (A3,1.5) . The initial point set P

was HaltonN−1
0 (2, 3) in [0, 1]2 in two dimensions (left) and HaltonN−1

0 (2, 3, 5) in [0, 1]3 in three
dimensions (right).

N card(P) A1
2 A1

3,2 A1
3,1.3 A2

2 A2
3,1.5 A3

2 A3
3,2

1024 1729 31.54 6.39 7.03 48.82 8.16 76.51 10.77
4096 6364 32.22 5.29 6.60 50.34 7.46 78.51 9.93
16384 27673 32.18 6.28 6.99 49.51 8.27 77.20 10.76
65536 101314 34.65 5.16 6.62 53.75 7.40 82.47 9.85

Table 6.4

The average number aCΩ (6.2) of integration cells per nonzero block aij of the stiffness matrix

for the different cover construction algorithms. Algorithm 2 with k =∞, xiL = liL + 1
2

(uiL − l
i
L) for

generated points xL and hiL = 5
4

max{uiL−x
i
L, x

i
L− l

i
L} (Al2), and Algorithm 3 with k =∞ (Al3,αl)

using a linear, a quadratic and a cubic B-spline during the Shepard construction (2.2). The initial

point set P was HaltonN−1
0 (2, 3) in [0, 1]2.

construct a uniform grid9 (or at least an r-irregular grid with very small r depending
only on the quality of the initial point set P , see Figure 6.1). Here, also the cells Dn

ωij
of the decomposition Dωij are (geometrically) identical to a bilinear finite element.
Furthermore, the partition of unity {ϕi} generated by (2.2) will again be piecewise
linear for l = 1 just like their FE counterpart in the GFEM (see Figure 6.2). Hence, in
this situation our method does reconstruct functions ϕi that are identical to bilinear
finite element functions and also our general decomposition algorithm will recover the
corresponding geometric elements. Hence, the number of integrals to be evaluated
here with our method or a finite element method are the same. We give the average
number

aCΩ :=

∑card(P)
i=1,j∈Ni card(Dωij)∑card(P)
i=1 card(Ni)

(6.2)

of integration cells per nonzero block aij of the stiffness matrix in Tables 6.4 and 6.5.
Furthermore, we give the average number

sCΩ :=
∑card(P)
i=1 card(Ni)

card(P)
(6.3)

of nonzero blocks aij per block-row of the stiffness matrix in Table 6.3 which corre-
sponds to the number of entries in a finite element stencil. For a one-dimensional
uniform grid the average aCΩ is 4

3 for hat-functions (at interior points, where we have

9The covers from Algorithm 3 with k = 0 will correspond to a uniform grid regardless of the
initial point set P when we have the order l = 2n− 1 and maximal m = n.

19

N card(P) A1
2 A1

3,2 A1
3,1.3 A2

2 A2
3,1.5 A3

2 A3
3,2

1024 3543 250.03 16.34 20.71 464.61 17.61 877.89 29.19
8192 26699 302.20 15.96 22.48 553.66 18.59 1048.01 29.41
65536 199417 363.77 12.09 20.63 668.04 16.59 563.76 24.63
524288 1694568 − 12.44 26.52 − 15.72 − 25.07

Table 6.5

The average number aCΩ (6.2) of integration cells per nonzero block aij of the stiffness matrix

for the different cover construction algorithms. Algorithm 2 with k =∞, xiL = liL + 1
2

(uiL − l
i
L) for

generated points xL and hiL = 5
4

max{uiL−x
i
L, x

i
L− l

i
L} (Al2), and Algorithm 3 with k =∞ (Al3,αl)

using a linear, a quadratic and a cubic B-spline during the Shepard construction (2.2). The initial

point set P was HaltonN−1
0 (2, 3, 5) in [0, 1]3.

Ni = {ωi−1, ωi, ωi+1}). This situation corresponds of course to the case l = 1, m = 1,
αl = 2 in Algorithm 3. Due to the tensor product approach, we have (4

3)d as the
optimal ratio of integration cells to nonzero blocks for l = 1 in the d-dimensional case.
We certainly cannot expect to meet this optimal ratio for an irregular cover.

From the averages displayed in Tables 6.4 and 6.5 for the two-dimensional and
three-dimensional case we see that the averages aCΩ are (almost) independent of the
number of points N of the initial point set P for Algorithm 3 as well as for Algorithm
2. Furthermore, we clearly see the substantial reduction in the number of integration
cells for Algorithm 3 compared with Algorithm 2. The average aCΩ for Algorithm 3
drops by more than a factor of 1

6 in two dimensions and by more than a factor of 1
18 in

three dimensions compared with the average aCΩ for covers constructed by Algorithm
2. This significant improvement in the number of integration cells is of course due
to the alignment of the patches we have with Algorithm 3 but not with Algorithm 2,
see Figures 6.1 and 3.2, Figures 6.3 and 3.4. Another advantage of Algorithm 3 over
Algorithm 2 is the fact that due to the alignment of the weight subdivisions {ωqk}
the aspect ratio and volume of every integration cell Dn

ωij is bounded. This is not
the case for covers constructed with Algorithm 2. In fact, in the three-dimensional
example of Table 6.5 our decomposition algorithm would have generated a number
of integration cells with very large aspect ratios and almost vanishing volume in the
case N = 524288 for a cover constructed with Algorithm 2.

The average aCΩ for covers from Algorithm 3 (with l = 1) is about three times
the optimal ratio of (4

3)d. For one this factor can be explained by the sudden change
in the spatial resolution of the cover, i.e. the level difference k of two neighboring
patches, which leads to nonaligned subdivisions {ωqk}, see Figures 6.1 and 6.3, and
therefore increases the number of integration cells. Moreover though, the optimal ratio
of (4

3)d holds for interior patches only. For cover patches which overlap the boundary
of the domain this ratio is 2 (or even 2.25 at corners) in two dimensions since the
subdivisions {ωqk} are only aligned with each other but not with the boundary ∂Ω, see
Figure 6.4. Hence, we expect the average number of integration cells aCΩ to decrease
for larger N since the volume to surface ratio improves. This can be observed from
the numbers A11

3 displayed in Tables 6.4 and 6.5. A similar argument can be made in
the case of a quadratic B-spline10.

When we use a cubic B-spline (l = 3) we construct smooth approximations uPU ∈

10In the case l = 2, we have an optimal ratio of 5
3

in one dimension. But due to the fact, that

the overlap m = n for l = 2n is smaller in relation to the overall number of cells card({ωqk}), see

Figure 6.1, the generalization of this optimum to higher dimensions is not given by (5
3

)d; e.g. in two

dimensions the optimum is 22
9

only, see Figure 6.4.

20

Figure 6.4. The integration cells induced by four neighboring linear B-splines (left), quadratic
B-splines (center) and cubic B-splines (right) in two dimensions. The integration cells Dnωij align

with the boundary for the cubic B-spline (right) but not for linear (left) or quadratic (center) B-spline
due to the overlap condition for the support patches ωi.

C2 and the optimal ratio for interior patches is (8
3)d, i.e. it is about 7 in two dimensions

and 19 in three dimensions. The averages aCΩ given in Tables 6.4 and 6.5 in this case
are about 10 in two dimensions and 26 in three dimensions, i.e. they are closer to
their optimal ratio of (8

3)d than aCΩ is its optimum for the linear B-spline. This can
be explained by the fact that for l = 3 the boundary effect mentioned above does
not exist, see Figure 6.4. Here, the cells {ωqk} induced by the cubic spline align with
the boundary of [0, 1]d. Hence, only the irregularity of the cover causes an increase
in the number of integration cells. Overall the number of integration cells for an
approximate solution uPU ∈ C2 is about twice the number of integration cells we have
when we construct an approximate solution uPU ∈ C0.

So far we were only concerned with the computational cost during the integration
and the influence the shape functions ϕiψki have on the computational efficiency of
our PUM. Another important issue though is the stability of the basis of our PUM
space. Here, we also have to address the question if the functions ϕiψki are indeed a
basis. In the case of l = 1 and αl = 2 the alignment of the cover patches ωi and their
respective weight subdivisions {ωqi } leads to the reconstruction of the finite element
hat functions for the PU. Hence, our PUM reduces to the GFEM in this situation.
It is well-known [2, 3, 27, 30] that the GFEM (in general) generates linear dependent
shape functions ϕiψki , the so-called nullity of the method. This is essentially due to
the fact that in the GFEM the partition of unity functions ϕi already reconstruct the
linear polynomial.

Consider the one-dimensional situation, where we have one element and two nodes
with their associated hat function as ϕi. Assume that we use linear polynomials as
local approximations spaces Vi. The shape functions ϕiψki are (global) polynomials
due to this construction. The number of shape functions is four and the maximal
polynomial degree is two. Since the quadratic polynomials in one dimension can be
generated by three basis functions, we see that the GFEM shape functions are linear
dependent.

With our approach, the ϕi reconstruct the linear polynomial only away from the
boundary, close to the boundary we have ϕi ≡ 1. Therefore, the shape functions are
not linear dependent. But since the small boundary layer where ϕi ≡ 1 decreases with
larger N the condition number κ of the mass matrix is dependent on N , i.e. the basis
is no longer stable. A simple cure for this stability problem is to use m < 1 in (6.1)
when we have l = 1, i.e. we limit ourselves to 1 < αl < 2 when l = 1. With αl < 2 we

21

can find a sub-patch ω̃i ⊂ ωi where ϕi |ω̃i ≡ 1 for many i. Therefore, the partition of
unity functions ϕi no longer reconstruct the linear polynomial independent of N and
the resulting shape functions form a stable basis. We therefore allow for any value
1 < αl < 2 in Algorithm 3 if l = 1. The number of integration cells increases somewhat
due to this generalization. The patches ωi are still aligned but their respective weight
subdivisions are not. The optimal ratio increases from (4

3)d to 2d. From the averages
displayed in Tables 6.4 and 6.5 we see that aCΩ for the choice of αl = 1.3 is about a
factor of 1.5 to 2 larger than the average is for the optimal choice of αl = 2. But still
the number of integration cells is substantially less compared with the covers from
Algorithm 2.

A similar problem arises for higher order splines l > 1 only when αl > 2, e.g. we
need αl = 4 with l = 2. Therefore, we can stay with our choices of αl = 1.5 if l = 2
and αl = 2 if l = 3.

7. Numerical Experiments. In this section we present some results of our
numerical experiments for elliptic PDE using the h-version and the p-version of our
partition of unity method.

We apply our PUM to elliptic problems on the unit cell Ω = (0, 1)d in two and
three dimensions. Here, we consider the Laplace equation

−∆u = f (7.1)

with Dirichlet boundary conditions u = g on ∂Ω, and the equation

−∆u+ u = f (7.2)

of Helmholtz type with Neumann boundary conditions ∇u = g on ∂Ω. Furthermore,
we use the presented method to study heat conduction in lattice materials [20, 26] in
three dimensions.

The local approximation spaces V pii used in our numerical experiments are com-
plete Legendre polynomials with pi = p for all patches ωi. The weight functions Wi

used in the Shepard construction (2.2) are linear splines (l = 1, αl = 1.3). We give
the relative error

e =
‖u− uPU‖
‖u‖

in the L∞-, L2- and the energy-norm, which is computed with the help of the inte-
gration scheme presented in §5. Moreover, we also give the convergence rates

ρ =
log
(
‖u−uPU,L‖
‖u−uPU,L−1‖

)
log
(

dofL
dofL−1

) ,

where dof :=
∑

dim (V pii), with respect to two successive refinement levels L and
L− 1. These convergence rates ρ correspond to an algebraic error estimate

‖u− uPU,L‖ = O (dofρL) (7.3)

which is valid for the h-version of the PUM [2, 3]. We can relate these rates ρ to
the common hα notation by α = −ρd since N−

1
d ∼ h for uniform point sets. Hence,

the optimal convergence rates ρ for our PUM based on uniform point sets and linear
22

N card(P) p dof e∞ ρA∞ e2 ρA2 eE ρAE
16 28 1 84 5.739−2 − 6.462−2 − 2.676−1 −
64 106 1 318 1.817−2 −8.639−1 1.726−2 −9.917−1 1.403−1 −4.850−1

256 406 1 1218 5.700−3 −8.633−1 4.405−3 −1.0170 6.963−2 −5.217−1

1024 1729 1 5187 1.926−3 −7.488−1 1.072−3 −9.753−1 3.462−2 −4.823−1

4096 6364 1 19092 1.101−3 −4.291−1 2.749−4 −1.0440 1.762−2 −5.183−1

16384 27673 1 83019 4.431−4 −6.193−1 6.749−5 −9.555−1 8.677−3 −4.819−1

65536 101314 1 303942 2.099−4 −5.757−1 1.716−5 −1.0550 4.374−3 −5.278−1

Table 7.1

Errors (e) and convergence rates (ρA) in different norms for problem (7.1) in two dimensions
with solution (7.5).

N card(P) p dof e∞ ρ∞ e2 ρ2 eE ρE
64 106 1 318 2.942−2 − 1.476−2 − 1.341−1 −
64 106 2 636 7.960−4 −5.2080 3.448−4 −5.4200 5.761−3 −4.5410

64 106 3 1060 1.465−5 −7.8210 1.046−5 −6.8430 1.986−4 −6.5920

64 106 4 1590 9.093−8 −1.2531 1.091−7 −1.1251 2.612−6 −1.0681

64 106 5 2226 8.003−9 −7.2230 2.640−9 −1.1061 7.121−8 −1.0711

64 106 6 2968 8.579−10 −7.7620 2.588−10 −8.0730 8.429−9 −7.4180

64 106 7 3816 3.710−10 −3.3360 6.482−11 −5.5090 2.481−9 −4.8660

64 106 8 4770 9.538−11 −6.0870 2.183−11 −4.8770 9.217−10 −4.4370

64 106 9 5830 4.137−11 −4.1630 8.451−12 −4.7290 4.100−10 −4.0370

64 106 10 6996 1.401−11 −5.9390 3.075−12 −5.5450 1.700−10 −4.8290

64 106 11 8268 8.220−12 −3.1920 1.535−12 −4.1590 8.807−11 −3.9370

64 106 12 9646 3.836−12 −4.9440 7.533−13 −4.6180 4.751−11 −4.0040

Table 7.2

Errors (e) and convergence rates (ρ) in different norms for problem (7.2) in two dimensions
with solution (7.5).

polynomials are ρ2 = −1 and ρE = − 1
2 in two dimensions (ρ2 = − 2

3 and ρE = − 1
3 in

three dimensions). For the pointwise convergence11 we have ρ2 < ρ∞ < ρE .
For the p-version, we expect an exponential convergence for smooth solutions u

since the local error estimate

‖u− uPU,L‖ = O
(

exp
(
−b
√

dofL
))

(7.4)

holds on every cover patch ωi for smooth solutions u.
Example 1 (Unit Square). In our first example we consider the Dirichlet problem

(7.1) in Ω = (0, 1)2. We choose f and g such that the solution u is given by

u(x) = ‖x‖52. (7.5)

We apply the h-version of our PUM with linear polynomials to approximate (7.1). The
covers CΩ are generated using N points of the Halton(2, 3) sequence with increasing
N . They exhibit a somewhat locally varying patch size, see Figure 6.1. Consequently,
there will be some fluctuation in the measured convergence rates ρ.

The results for the h-version experiment with linear polynomials are given in
Table 7.1. The measured rates ρ show the algebraic convergence (7.3) of our PUM

11In the finite element method we have the estimate ‖u−uh‖∞ = O (h2| log h|µ(d)), where µ(2) = 1
and µ(d) = d

4
+ 1 for d ≥ 3 [25, 28]. The L∞-norm is usually approximated by the maximum over

the nodal values, where we can observe a super-convergence of order h2. For our approximation to
the L∞-norm though we do not use the points xi ∈ P but all quadrature points since the PUM
shape functions ϕiψ

n
i are non-interpolatory and the Legendre polynomials ψni of odd degree vanish

at xi. Hence, we cannot expect to measure h2 super-convergence in the L∞-norm.

23

318 636 1060 1590 2226 2968 3816 4770 6996 9646
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

convergence history

degrees of freedom

re
la

ti
v
e

 e
rr

o
r

L∞

L2

Energy

760 1900 3800 6650 10640 15960 22800 31350

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

convergence history

degrees of freedom
re

la
ti
v
e

 e
rr

o
r

L∞

L2

Energy

Figure 7.1. Convergence history for problem (7.2) in two dimensions (left) with solution (7.5).
Convergence history for problem (7.2) in three dimensions (right) with solution (7.6).

N card(P) p dof e∞ ρA∞ e2 ρA2 eE ρAE
16 50 1 200 4.565−1 − 1.1820 − 1.8280 −
128 414 1 1656 2.580−1 −2.699−1 1.499−1 −9.769−1 4.273−1 −6.876−1

1024 3543 1 14172 7.914−2 −5.505−1 5.452−2 −4.711−1 2.683−1 −2.168−1

8192 26699 1 106796 3.119−2 −4.610−1 9.091−3 −8.869−1 1.197−1 −3.996−1

Table 7.3

Errors (e) and convergence rates (ρA) in different norms for problem (7.1) in three dimensions
with solution (7.6).

in the L2- and energy-norm with rates ρ near the optimal values of ρ2 = −1 and
ρE = − 1

2 for the h-version. In the L∞-norm we measure a convergence rate ρ∞ of
−0.6 which is between −1 and − 1

2 as expected.11

Let us now consider the Neumann problem (7.2). Again, the solution is given
by (7.5). Here, we apply the p-version of our PUM. Since the solution (7.5) is not
analytic in Ω we may not expect an exponential convergence of the p-version. From
the numbers given in Table 7.2 and the convergence history displayed in Figure 7.1
(left) we can observe that the convergence starts off at an exponential rate but breaks
down to a polynomial rate as anticipated for higher polynomial degrees p.

Example 2 (Unit Cube). In our second example we consider (7.1) with Dirichlet
boundary conditions on the unit cube in three dimension. Here, we now choose f and
g such that the solution u is given by

u(x) = exp (4‖x‖1). (7.6)

Again, we use the h-version of our PUM with linear polynomials to approximate
(7.1). The covers are generated using N points of the Halton(2, 3, 5) sequence. The
numerical results are given in Table 7.3. Here, it seems that the convergence in the
L2- and the energy-norm is actually better than the theory (for uniform point sets)
suggests. We measure a convergence rate ρ2 close to −1 but would only expect a
convergence rate of about − 2

3 . This behavior though is due to the fact that the size
of patches ωi based on a Halton sequence varies much more in three dimensions than
in two dimensions (for a small number of samples). Therefore, a larger fluctuation in
the measured convergence rates ρ will occur. If we use a different number N of Halton

24

N card(P) p dof e∞ ρA∞ e2 ρA2 eE ρAE
16 50 1 200 7.184−1 − 4.321−1 − 7.741−1 −
32 106 1 424 4.125−1 −7.383−1 1.384−1 −1.5150 4.846−1 −6.232−1

64 190 1 760 2.020−1 −1.2240 9.887−2 −5.766−1 3.701−1 −4.618−1

128 414 1 1656 1.966−1 −3.457−2 8.198−2 −2.405−1 3.351−1 −1.277−1

256 673 1 2692 1.838−1 −1.387−1 3.729−2 −1.6210 2.630−1 −4.985−1

512 1415 1 5660 8.673−2 −1.0110 3.464−2 −9.924−2 2.364−1 −1.434−1

1024 3543 1 14172 8.565−2 −1.366−2 2.628−2 −3.008−1 1.936−1 −2.180−1

2048 5874 1 23496 6.756−2 −4.692−1 9.380−3 −2.0380 1.340−1 −7.267−1

4096 10606 1 42424 6.734−2 −5.719−3 9.039−3 −6.263−2 1.296−1 −5.676−2

8192 26699 1 106796 3.934−2 −5.821−1 7.021−3 −2.738−1 1.016−1 −2.643−1

16384 45151 1 180604 2.197−2 −1.1090 2.334−3 −2.0960 6.745−2 −7.790−1

Table 7.4

Errors (e) and convergence rates (ρA) in different norms for problem (7.2) in three dimensions
with solution (7.6). The covers CΩ are based on a Halton(2, 3, 5) point set.

N card(P) p dof e∞ ρA∞ e2 ρA2 eE ρAE
64 64 1 256 4.124−1 − 1.382−1 − 4.846−1 −
512 512 1 2048 1.838−1 −3.887−1 3.734−2 −6.295−1 2.634−1 −2.931−1

4096 4096 1 16384 6.751−2 −4.816−1 9.409−3 −6.628−1 1.351−1 −3.211−1

32768 32768 1 131072 2.199−2 −5.395−1 2.332−3 −6.708−1 6.787−2 −3.311−1

Table 7.5

Errors (e) and convergence rates (ρA) in different norms for problem (7.2) in three dimensions
with solution (7.6). The covers CΩ are based on a uniform point set.

points for the initial cover or refine the covers using only twice as many points instead
of eight times as many, this behavior becomes much more obvious. To this end we also
give the numerical results of an h-version experiment with linear polynomials applied
to the Neumann problem (7.2) with solution (7.6) in Table 7.4. Here, we clearly see
the fluctuation in the convergence rates due to the unstructured refinement induced
by the Halton sequence. If we use the grid points of a uniform grid to generate the
covers CΩ we can observe a very good correspondence of the measured convergence
rates ρ with those of the theory, see Table 7.5 where the corresponding numerical
results for the Neumann problem (7.2) with solution (7.6) are given.

We now turn to the p-version of our partition of unity method in three dimen-
sions. The numerical results for problem (7.2) with Neumann boundary conditions
are given in Table 7.6. For the smooth solution (7.6) we expect an exponential con-
vergence behavior of the p-version of our PUM. From the measured values of ρ and
the convergence history given in Figure 7.1 (right) we clearly see this behavior.

In summary we have that on simple domains in two and three dimensions the PUM
works with the anticipated convergence properties. Now we turn to more complicated
(yet still academic) computational domains in three dimensions.

Example 3 (Lattice Material). In our third example we study the problem of
heat conduction in a lattice material. To this end, we use our PUM to discretize the
PDE

−∆u+ u = f in Ω ⊂ (0, 1)d where d = 2, 3

on a domain Ω which describes a lattice material with a characteristic cell width of
4
14 and a cell number of 3. As boundary conditions we use the Neumann conditions

∇u = g =
{
−10(1

4 − 2x) : ΓI := {x ∈ ∂Ω |x0 = 0 and ‖x‖2 < 1
4}

0 : ΓO := ∂Ω \ ΓI
25

N card(P) p dof e∞ ρ∞ e2 ρ2 eE ρE
64 190 1 760 2.020−1 − 9.887−2 − 3.701−1 −
64 190 2 1900 3.355−2 −1.9590 1.682−2 −1.9330 8.527−2 −1.6020

64 190 3 3800 7.049−3 −2.2510 2.698−3 −2.6400 1.644−2 −2.3750

64 190 4 6650 1.150−3 −3.2400 3.631−4 −3.5840 2.606−3 −3.2910

64 190 5 10640 1.536−4 −4.2830 4.095−5 −4.6430 3.408−4 −4.3280

64 190 6 15960 1.763−5 −5.3390 4.062−6 −5.6990 3.810−5 −5.4040

64 190 7 22800 1.800−6 −6.3970 3.809−7 −6.6360 3.882−6 −6.4030

64 190 8 31350 3.818−7 −4.8690 4.652−8 −6.6030 5.759−7 −5.9920

Table 7.6

Errors (e) and convergence rates (ρ) in different norms for problem (7.2) in three dimensions
with solution (7.6).

Figure 7.2. Isosurfaces of approximate solution and diagonal slice through lattice domain.

to simulate heat-introduction into the material at the contact points ΓI to a heat
source and out-flow conditions on the remaining boundary ΓO.

We use a Halton4095
0 (2, 3, 5) set distributed in the bounding box RΩ := (0, 1)3 as

initial point set P for our cover construction. The local approximation spaces V pii
that are assigned to the 5187 patches which overlap the computational domain Ω are
quadratic Legendre polynomials. In Figure 7.2 some isosurfaces of the computed solu-
tion and a diagonal slice through the material are displayed. From these illustrations
we observe the heat-introduction into the material at the contact points ΓI and the
heat-propagation through the material. We clearly see the expected radial shape of
the isosurfaces due to the prescribed profile of the Neumann boundary conditions on
ΓI .

8. Concluding Remarks. We presented a meshfree Galerkin method for the
discretization of a PDE. The method is based on the partition of unity approach
and utilizes a novel tree-based cover construction algorithm. The introduction of this
algorithm for the cover construction problem and the presented numerical quadrature
scheme—both of which are applicable to general domains—improve the computational
efficiency during the assembly of the stiffness matrix substantially.

The results of our numerical experiments showed the exponential convergence of
the p-version of our PUM for smooth solutions and the anticipated algebraic con-

26

vergence of the h-version in two and three dimensions. Furthermore, we applied our
PUM to the heat conduction problem in lattice materials. Although these examples
are still of academic nature, we believe that the substantial improvement of the com-
putation efficiency due to the ideas and algorithms presented in this paper makes the
treatment of real world problems with meshfree Galerkin methods seizable in the near
future, at least for Neumann boundary conditions. The implementation of Dirichlet
boundary conditions in meshfree methods is in general a challenging problem which
needs further investigation.

The presented hierarchical cover construction algorithm not only reduces the com-
putational costs significantly but also introduces a hierarchy on the PUM function
space. This may be exploited in the development of multilevel solvers [14]. The par-
allelization of our PUM [15] may be simplified by the tree-based cover construction.
Here, we can apply a space filling curves parallelization approach [6] which allows for
a cheap dynamic load balancing strategy.

REFERENCES

[1] N. R. Aluru, A Point Collocation Method Based on Reproducing Kernel Approximations, Int.
J. Numer. Meth. Engrg., 47 (2000), pp. 1083–1121.

[2] I. Babuška and J. M. Melenk, The Partition of Unity Finite Element Method: Basic Theory
and Applications, Comput. Meth. Appl. Mech. Engrg, 139 (1996), pp. 289–314. Special
Issue on Meshless Methods.

[3] , The Partition of Unity Method, Int. J. Numer. Meth. Engrg., 40 (1997), pp. 727–758.
[4] T. Belytschko, Y. Y. Lu, and L. Gu, Element-free Galerkin methods, Int. J. Numer. Meth.

Engrg., 37 (1994), pp. 229–256.
[5] M. Bern, D. Eppstein, and J. Gilbert, Provably Good Mesh Generation, J. of Comp. Sys.

Sci., 48 (1994), pp. 384–409.
[6] A. Caglar, M. Griebel, M. A. Schweitzer, and G. Zumbusch, Dynamic Load-Balancing

of Hierarchical Tree Algorithms on a Cluster of Multiprocessor PCs and on the Cray T3E,
in Proceedings 14th Supercomputer Conference, Mannheim, H. W. Meuer, ed., Mannheim,
Germany, 1999, Mateo.

[7] C. A. M. Duarte, I. Babuška, and J. T. Oden, Generalized Finite Element Methods for
Three Dimensional Structural Mechanics Problems, Computers and Structures, 77 (2000),
pp. 215–232.

[8] C. A. M. Duarte and J. T. Oden, hp Clouds – A Meshless Method to Solve Boundary Value
Problems, Num. Meth. for PDE, 12 (1996), pp. 673–705.

[9] G. Fasshauer, Solving Differential Equations with Radial Basis Functions: Multilevel Methods
and Smoothing, Adv. Comp. Math., 11 (1999), pp. 139–159.

[10] C. Franke and R. Schaback, Convergence Orders of Meshless Collocation Methods using
Radial Basis Functions, Adv. in Comput. Math., 8 (1998), pp. 381–399.

[11] , Solving Partial Differential Equations by Collocation using Radial Basis Functions,
Appl. Math. and Comput., 93 (1998), pp. 73–82.

[12] T. Gerstner and M. Griebel, Numerical Integration using Sparse Grids, Numer. Algorithms,
18 (1998), pp. 209–232.

[13] M. Griebel and M. A. Schweitzer, A Particle-Partition of Unity Method for the Solution
of Elliptic, Parabolic and Hyperbolic PDE, SIAM J. Sci. Comp., 22 (2000), pp. 853–890.

[14] , A Particle-Partition of Unity Method—Part III: A Multilevel solver, SFB Preprint, Son-
derforschungsbereich 256, Institut für Angewandte Mathematik, Universität Bonn, 2001.
submitted.

[15] , A Particle-Partition of Unity Method—Part IV: Parallelization, SFB Preprint, Son-
derforschungsbereich 256, Institut für Angewandte Mathematik, Universität Bonn, 2001.
in preparation.

[16] F. C. Günther and W. K. Liu, Implementation of Boundary Conditions for Meshless Meth-
ods, Comput. Meth. Appl. Mech. Engrg., 163 (1998), pp. 205–230.

[17] X. Han, S. Oliveira, and D. Stewart, Finding sets Covering a Point with Application to
Mesh-Free Galerkin Methods, SIAM J. Comput., 30 (2000), pp. 1368–1383.

[18] O. Klaas and m. S. Shepard, Automatic Generation of Octree-based Three-Dimensional Dis-
cretizations for Partition of Unity Methods, Comput. Mech., 25 (2000), pp. 296–304.

27

[19] T. J. Liszka, C. A. M. Duarte, and W. W. Tworzydlo, hp-Meshless Cloud Method, Comp.
Meth. Appl. Mech. Engrg., 139 (1996), pp. 263–288.

[20] A.-M. Matache, I. Babuška, and C. Schwab, Generalized p-FEM in Homogenization, Numer.
Math., 86 (2000), pp. 319–375.

[21] J. J. Monaghan, Why Particle Methods Work, SIAM J. Sci. Stat. Comput., 3 (1982), pp. 422–
433.

[22] , An Introduction to SPH, Comput. Phys. Comm., 48 (1988), pp. 89–96.
[23] H. Neunzert, A. Klar, and J. Struckmeier, Particle Methods: Theory and Applications,

Tech. Rep. 95-153, Arbeitsgruppe Technomathematik, Universität Kaiserslautern, 1995.
[24] E. Novak, K. Ritter, R. Schmitt, and A. Steinbauer, On a recent interpolatory method

for high dimensional integration, J. Comput. Appl. Math., 15 (1999), pp. 499–522.
[25] R. Rannacher, Zur L∞-Konvergenz linearer finiter Elemente beim Dirichletproblem, Math.

Z., 149 (1976), pp. 69–77.
[26] C. Schwab and A.-M. Matache, High order generalized FEM for lattice materials, in Pro-

ceedings of the 3rd European Conference on Numerical Mathematics and Advanced Ap-
plications, 1999, Finnland, P. Neittaanmäki, T. Tiihonen, and P. Tarvainen, eds., 2000.

[27] M. A. Schweitzer, Ein Partikel–Galerkin–Verfahren mit Ansatzfunktionen der Partition of
Unity Method, Diplomarbeit, Institut für Angewandte Mathematik, Universität Bonn,
1997.

[28] R. Scott, Optimal L∞-Estimates for the Finite Element Method on Irregular Meshes, Math.
Comp., 30 (1976), pp. 681–697.

[29] G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Prentice–Hall, 1973.
[30] T. Strouboulis, I. Babuška, and K. Copps, The Design and Analysis of the Generalized

Finite Element Method, Comp. Meth. Appl. Mech. Engrg., 181 (1998), pp. 43–69.

28

